Supercritical Airfoil Coordinates
National Aeronautics and Space Administration — Rectangular Supercritical Wing (Ricketts) - design and measured locations are provided in an Excel file RSW_airfoil_coordinates_ricketts.xls . One sheet is with Non...
Reinforced Airfoil Shaped Body
DEFF Research Database (Denmark)
2011-01-01
The present invention relates to an airfoil shaped body with a leading edge and a trailing edge extending along the longitudinal extension of the body and defining a profile chord, the airfoil shaped body comprising an airfoil shaped facing that forms the outer surface of the airfoil shaped body...... and surrounds an internal volume of the body, a distance member that is connected to the facing inside the body and extends from the facing and into the internal volume of the body, and at least one reinforcing member that operates in tension for reinforcing the facing against inward deflections...... and that is connected to the facing inside the internal volume of the body at the same side of the profile chord as the connection of the distance member to the facing and to the distance member at a distance from the facing....
Wind turbine airfoil catalogue
DEFF Research Database (Denmark)
Bertagnolio, F.; Sørensen, Niels N.; Johansen, Jeppe
2001-01-01
method code XFOIL. Secondly, we are interested in validating the code EllipSys2D and finding out for which airfoils it does not perform well compared to the experiments, as well as why, when it does so. Theairfoils are classified according to the agreement between the numerical results and experimental...... to these discrepancies is identified. Some advices are given for elaborating future airfoil design processes that would involvethe numerical code EllipSys2D in particular, and transition modelling in general.......The aim of this work is two-sided. Firstly, experimental results obtained for numerous sets of airfoil measurements (mainly intended for wind turbine applications) are collected and compared with computational results from the 2D Navier-Stokes solverEllipSys2D, as well as results from the panel...
Airfoil Design and Rotorcraft Performance
Bousman, William G.
2003-01-01
The relationship between global performance of a typical helicopter and the airfoil environment, as represented by the airfoil angles of attack and Mach number, has been examined using the comprehensive analysis CAMRAD II. A general correspondence is observed between global performance parameters, such as rotor L/D, and airfoil performance parameters, such as airfoil L/D, the drag bucket boundaries, and the divergence Mach number. Effects of design parameters such as blade twist and rotor speed variation have been examined and, in most cases, improvements observed in global performance are also observed in terms of airfoil performance. The relations observed between global Performance and the airfoil environment suggests that the emphasis in airfoil design should be for good L/D, while the maximum lift coefficient performance is less important.
Vertical axis wind turbine airfoil
Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich
2012-12-18
A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.
Turbine airfoil to shround attachment
Campbell, Christian X; Morrison, Jay A; James, Allister W; Snider, Raymond G; Eshak, Daniel M; Marra, John J; Wessell, Brian J
2014-05-06
A turbine airfoil (31) with an end portion (42) that tapers (44) toward the end (43) of the airfoil. A ridge (46) extends around the end portion. It has proximal (66) and distal (67) sides. A shroud platform (50) is bi-cast onto the end portion around the ridge without bonding. Cooling shrinks the platform into compression (62) on the end portion (42) of the airfoil. Gaps between the airfoil and platform are formed using a fugitive material (56) in the bi-casting stage. These gaps are designed in combination with the taper angle (44) to accommodate differential thermal expansion while maintaining a gas seal along the contact surfaces. The taper angle (44) may vary from lesser on the pressure side (36) to greater on the suction side (38) of the airfoil. A collar portion (52) of the platform provides sufficient contact area for connection stability.
Unsteady flow about a circulation control airfoil
Institute of Scientific and Technical Information of China (English)
刘晶昌; 孙茂; 吴礼义
1996-01-01
The unsteady flow around a circulation control (CC) airfoil was investigated with Navier-Stokes method,which includes the flow around CC airfoil with pulsating jet,the flow around oscillating CC airfoil,and the flow around oscillating CC airfoil with pulsating jet.Dynamic properties of the flow and the aerodynamic forces were rewaled.
Airfoil characteristics for wind turbines
DEFF Research Database (Denmark)
Bak, C.; Fuglsang, P.; Sørensen, Niels N.
1999-01-01
Airfoil characteristics for use in the Blade Element Momentum (BEM) method calculating the forces on Horizontal Axis Wind Turbines (HAWT) are derived by use of systematic methods. The investigation and derivation of the airfoil characteristics are basedon four different methods: 1) Inverse momentum...... to a commonly used set of airfoil characteristics. The numerical optimisation is based on both the 3D CFDcomputations and measurements on a 41-m rotor with LM 19.1 and LM 19.0 blades, respectively. The method requires power and loads from a turbine and is promising since a set of lift and drag curves is derived...
Analysis of a theoretically optimized transonic airfoil
Lores, M. E.; Burdges, K. P.; Shrewsbury, G. D.
1978-01-01
Numerical optimization was used in conjunction with an inviscid, full potential equation, transonic flow analysis computer code to design an upper surface contour for a conventional airfoil to improve its supercritical performance. The modified airfoil was tested in a compressible flow wind tunnel. The modified airfoil's performance was evaluated by comparison with test data for the baseline airfoil and for an airfoil developed by optimization of leading edge of the baseline airfoil. While the leading edge modification performed as expected, the upper surface re-design did not produce all of the expected performance improvements. Theoretical solutions computed using a full potential, transonic airfoil code corrected for viscosity were compared to experimental data for the baseline airfoil and the upper surface modification. These correlations showed that the theory predicted the aerodynamics of the baseline airfoil fairly well, but failed to accurately compute drag characteristics for the upper surface modification.
Flatback airfoil wind tunnel experiment.
Energy Technology Data Exchange (ETDEWEB)
Mayda, Edward A. (University of California, Davis, CA); van Dam, C.P. (University of California, Davis, CA); Chao, David D. (University of California, Davis, CA); Berg, Dale E.
2008-04-01
A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.
Airfoil characteristics for wind turbines
Energy Technology Data Exchange (ETDEWEB)
Bak, C.; Fuglsang, P.; Soerensen, N.N.; Aagaard Madsen, H. [Risoe National Lab., Roskilde (Denmark); Wen Zhong Shen; Noerkaer Soerensen, J. [Technical Univ. of Denmark, Lyngby (Denmark)
1999-03-01
Airfoil characteristics for use in the Blade Element Momentum (BEM) method calculating the forces on Horizontal Axis Wind Turbines (HAWT) are derived by use of systematic methods. The investigation and derivation of the airfoil characteristics are based on four different methods: 1) Inverse momentum theory, 2) Actuator disc theory, 3) Numerical optimisation and 4) Quasi-3D CFD computations. The two former methods are based on 3D CFD computations and wind tunnel measurements on a 41-m full-scale rotor with LM 19.1 blades. The derived airfoil characteristics show that the lift coefficient in stall at the tip is low and that it is high at the root compared to 2D airfoil characteristics. The use of these characteristics in aeroelastic calculations shows a good agreement in power and flap moments with measurements. Furthermore, a fatigue analysis shows a reduction in the loads of up to 15 % compared to a commonly used set of airfoil characteristics. The numerical optimisation is based on both the 3D CFD computations and measurements on a 41-m rotor with LM 19.1 and LM 19.0 blades, respectively. The method requires power and loads from a turbine and is promising since a set of lift and drag curves is derived that can be used to calculate mean values of power and loads. The lift in stall at the tip is low and at the root it is high compared to 2D airfoil characteristics. In particular the power curves were well calculated by use of the optimised airfoil characteristics. In the quasi-3D CFD computations, the airfoil characteristics are derived directly. This Navier-Stokes model takes into account rotational and 3D effects. The model enables the study of the rotational effect of a rotor blade at computing costs similar to what is typical for 2D airfoil calculations. The depicted results show that the model is capable of determining the correct qualitative behaviour for airfoils subject to rotation. The method shows that lift is high at the root compared to 2D airfoil
Institute of Scientific and Technical Information of China (English)
Li Jing; Gao Zhenghong; Huang Jiangtao; Zhao Ke
2013-01-01
A robust optimization design approach of natural laminar airfoils is developed in this paper.First,the non-uniform rational B-splines (NURBS) free form deformation method based on NURBS basis function is introduced to the airfoil parameterization.Second,aerodynamic characteristics are evaluated by solving Navier Stokes equations,and the γ-Reθt transition model coupling with shear-stress transport (SST) turbulent model is introduced to simulate boundary layer transition.A numerical simulation of transition flow around NLF0416 airfoil is conducted to test the code.The comparison between numerical simulation results and wind tunnel test data approves the validity and applicability of the present transition model.Third,the optimization system is set up,which uses the separated particle swarm optimization (SPSO) as search algorithm and combines the Kriging models as surrogate model during optimization.The system is applied to carry out robust design about the uncertainty of lift coefficient and Mach number for NASA NLF-0115 airfoil.The data of optimized airfoil aerodynamic characteristics indicates that the optimized airfoil can maintain laminar flow stably in an uncertain range and has a wider range of low drag.
An Integrated Method for Designing Airfoils Shapes
Directory of Open Access Journals (Sweden)
Wang Xudong
2015-01-01
Full Text Available A new method for designing wind turbine airfoils is presented in this paper. As a main component in the design method, airfoil profiles are expressed in a trigonometric series form using conformal transformations and series of polynomial equations. The characteristics of the coefficient parameters in the trigonometric expression for airfoils profiles are first studied. As a direct consequence, three generic airfoil profiles are obtained from the expression. To validate and show the generality of the trigonometric expression, the profiles of the NACA 64418 and S809 airfoils are expressed by the present expression. Using the trigonometric expression for airfoil profiles, a so-called integrated design method is developed for designing wind turbine airfoils. As airfoil shapes are expressed with analytical functions, the airfoil surface can be kept smooth in a high degree. In the optimization step, drag and lift force coefficients are calculated using the XFOIL code. Three new airfoils CQ-A15, CQ-A18, and CQ-A21 with a thickness of 15%, 18%, and 21%, respectively, are designed with the new integrated design method.
OUT Success Stories: Advanced Airfoils for Wind Turbines
Jones, J.; Green, B.
2000-08-01
New airfoils have substantially increased the aerodynamic efficiency of wind turbines. It is clear that these new airfoils substantially increased energy output from wind turbines. Virtually all new blades built in this country today use these advanced airfoil designs.
Design and optimization of tidal turbine airfoil
Energy Technology Data Exchange (ETDEWEB)
Grasso, F. [ECN Wind Energy, Petten (Netherlands)
2012-03-15
To increase the ratio of energy capture to the loading and, thereby, to reduce cost of energy, the use of specially tailored airfoils is needed. This work is focused on the design of an airfoil for marine application. Firstly, the requirements for this class of airfoils are illustrated and discussed with reference to the requirements for wind turbine airfoils. Then, the design approach is presented. This is a numerical optimization scheme in which a gradient-based algorithm is used, coupled with the RFOIL solver and a composite Bezier geometrical parameterization. A particularly sensitive point is the choice and implementation of constraints .A section of the present work is dedicated to address this point; particular importance is given to the cavitation phenomenon. Finally, a numerical example regarding the design of a high-efficiency hydrofoil is illustrated, and the results are compared with existing turbine airfoils, considering also the effect on turbine performance due to different airfoils.
Manela, A.
2016-07-01
The acoustic signature of an acoustically compact tandem airfoil setup in uniform high-Reynolds number flow is investigated. The upstream airfoil is considered rigid and is actuated at its leading edge with small-amplitude harmonic pitching motion. The downstream airfoil is taken passive and elastic, with its motion forced by the vortex-street excitation of the upstream airfoil. The non-linear near-field description is obtained via potential thin-airfoil theory. It is then applied as a source term into the Powell-Howe acoustic analogy to yield the far-field dipole radiation of the system. To assess the effect of downstream-airfoil elasticity, results are compared with counterpart calculations for a non-elastic setup, where the downstream airfoil is rigid and stationary. Depending on the separation distance between airfoils, airfoil-motion and airfoil-wake dynamics shift between in-phase (synchronized) and counter-phase behaviors. Consequently, downstream airfoil elasticity may act to amplify or suppress sound through the direct contribution of elastic-airfoil motion to the total signal. Resonance-type motion of the elastic airfoil is found when the upstream airfoil is actuated at the least stable eigenfrequency of the downstream structure. This, again, results in system sound amplification or suppression, depending on the separation distance between airfoils. With increasing actuation frequency, the acoustic signal becomes dominated by the direct contribution of the upstream airfoil motion, whereas the relative contribution of the elastic airfoil to the total signature turns negligible.
Study of airfoil trailing edge bluntness noise
DEFF Research Database (Denmark)
Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær
2010-01-01
This paper deals with airfoil trailing edge noise with special focus on airfoils with blunt trailing edges. Two methods are employed to calculate airfoil noise: The flow/acoustic splitting method and the semi-empirical method. The flow/acoustic splitting method is derived from compressible Navier...... design or optimization. Calculations from both methods are compared with exist experiments. The airfoil blunt noise is found as a function of trailing edge bluntness, Reynolds number, angle of attack, etc.......-Stokes equations. It provides us possibilities to study details about noise generation mechanism. The formulation of the semi-empirical model is based on acoustic analogy and then curve-fitted with experimental data. Due to its high efficiency, such empirical relation is used for purpose of low noise airfoil...
NASA low- and medium-speed airfoil development
Mcghee, R. J.; Beasley, W. D.; Whitcomb, R. T.
1979-01-01
The status of NASA low and medium speed airfoil research is discussed. Effects of airfoil thickness-chord ratios varying from 9 percent to 21 percent on the section characteristics for a design lift coefficient of 0.40 are presented for the initial low speed family of airfoils. Also, modifications to the 17-percent low-speed airfoil to reduce the pitching-moment coefficient and to the 21-percent low speed airfoil results are shown for two new medium speed airfoils with thickness ratios of 13 percent and 17 percent and design-lift coefficients of 0.30. Applications of NASA-developed airfoils to general aviation aircraft are summarized.
Trailing edge modifications for flatback airfoils.
Energy Technology Data Exchange (ETDEWEB)
Kahn, Daniel L. (University of California, Davis, CA); van Dam, C.P. (University of California, Davis, CA); Berg, Dale E.
2008-03-01
The adoption of blunt trailing edge airfoils (also called flatback airfoils) for the inboard region of large wind turbine blades has been proposed. Blunt trailing edge airfoils would not only provide a number of structural benefits, such as increased structural volume and ease of fabrication and handling, but they have also been found to improve the lift characteristics of thick airfoils. Therefore, the incorporation of blunt trailing edge airfoils would allow blade designers to more freely address the structural demands without having to sacrifice aerodynamic performance. These airfoils do have the disadvantage of generating high levels of drag as a result of the low-pressure steady or periodic flow in the near-wake of the blunt trailing edge. Although for rotors, the drag penalty appears secondary to the lift enhancement produced by the blunt trailing edge, high drag levels are of concern in terms of the negative effect on the torque and power generated by the rotor. Hence, devices are sought that mitigate the drag of these airfoils. This report summarizes the literature on bluff body vortex shedding and bluff body drag reduction devices and proposes four devices for further study in the wind tunnel.
Inviscid double wake model for stalled airfoils
DEFF Research Database (Denmark)
Marion, Lucas; Ramos García, Néstor; Sørensen, Jens Nørkær
2014-01-01
An inviscid double wake model based on a steady two-dimensional panel method has been developed to predict aerodynamic loads of wind turbine airfoils in the deep stall region. The separated flow is modelled using two constant vorticity sheets which are released at the trailing edge and at the sep......An inviscid double wake model based on a steady two-dimensional panel method has been developed to predict aerodynamic loads of wind turbine airfoils in the deep stall region. The separated flow is modelled using two constant vorticity sheets which are released at the trailing edge...... and at the separation point. A calibration of the code through comparison with experiments has been performed using one set of airfoils. A second set of airfoils has been used for the validation of the calibrated model. Predicted aerodynamic forces for a wide range of angles of attack (0 to 90 deg) are in overall good...
Integrated airfoil and blade design method for large wind turbines
DEFF Research Database (Denmark)
Zhu, Wei Jun; Shen, Wen Zhong
2013-01-01
This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and tip speed ratio, the optimal airfoils are designed based on the local speed ratios. To achieve high power performance at low cost, the airfoils are designed...... with an objective of high Cp and small chord length. When the airfoils are obtained, the optimum flow angle and rotor solidity are calculated which forms the basic input to the blade design. The new airfoils are designed based on the previous in-house airfoil family which were optimized at a Reynolds number of 3...... million. A novel shape perturbation function is introduced to optimize the geometry on the existing airfoils and thus simplify the design procedure. The viscos/inviscid code Xfoil is used as the aerodynamic tool for airfoil optimization where the Reynolds number is set at 16 million with a free...
AirfoilPrep.py Documentation: Release 0.1.0
Energy Technology Data Exchange (ETDEWEB)
Ning, S. A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2013-09-01
AirfoilPrep.py provides functionality to preprocess aerodynamic airfoil data. Essentially, the module is an object oriented version of the AirfoilPrep spreadsheet with additional functionality and is written in the Python language. It allows the user to read in two-dimensional aerodynamic airfoil data, apply three-dimensional rotation corrections for wind turbine applications, and extend the datato very large angles of attack. This document discusses installation, usage, and documentation of the module.
Analysis of non-symmetrical flapping airfoils
Institute of Scientific and Technical Information of China (English)
W.B.Tay; K.B.Lim
2009-01-01
Simulations have been done to assess the lift, thrust and propulsive efficiency of different types of nonsymmetrical airfoils under different flapping configurations. The variables involved are reduced frequency, Strouhal number, pitch amplitude and phase angle. In order to analyze the variables more efficiently, the design of experiments using the response surface methodology is applied. Results show that both the variables and shape of the airfoil have a profound effect on the lift, thrust, and efficiency. By using nonsymmetrical airfoils, average lift coefficient as high as 2.23 can be obtained. The average thrust coefficient and efficiency also reach high values of 2.53 and 0.6 I, respectively. The lift production is highly dependent on the airfoil's shape while thrust production is influenced more heavily by the variables. Efficiency falls somewhere in between. Two-factor interactions are found to exist among the variables. This shows that it is not sufficient to analyze each variable individually. Vorticity diagrams are analyzed to explain the results obtained. Overall, the S1020 airfoil is able to provide relatively good efficiency and at the same time generate high thrust and lift force. These results aid in the design of a better omithopter's wing.
Vortex noise from nonrotating cylinders and airfoils
Schlinker, R. H.; Amiet, R. K.; Fink, M. R.
1976-01-01
An experimental study of vortex-shedding noise was conducted in an acoustic research tunnel over a Reynolds-number range applicable to full-scale helicopter tail-rotor blades. Two-dimensional tapered-chord nonrotating models were tested to simulate the effect of spanwise frequency variation on the vortex-shedding mechanism. Both a tapered circular cylinder and tapered airfoils were investigated. The results were compared with data for constant-diameter cylinder and constant-chord airfoil models also tested during this study. Far-field noise, surface pressure fluctuations, and spanwise correlation lengths were measured for each configuration. Vortex-shedding noise for tapered cylinders and airfoils was found to contain many narrowband-random peaks which occurred within a range of frequencies corresponding to a predictable Strouhal number referenced to the maximum and minimum chord. The noise was observed to depend on surface roughness and Reynolds number.
Transonic flow theory of airfoils and wings
Energy Technology Data Exchange (ETDEWEB)
Garabedian, P R
1976-01-01
Supercritical wing technology is expected to have a significant influence on the next generation of commercial aircraft. Computational fluid dynamics is playing a central role in the development of new supercritical wing sections. One of the principal tools is a fast and reliable code that simulates two-dimensional wind tunnel data for transonic flow at high Reynolds numbers. This is used widely by industry to assess drag creep and drag rise. Codes for the design of shockless airfoils by the hodograph method have not been so well received because they usually require a lot of trial and error. However, a more advanced mathematical approach makes it possible to assign the pressure as a function of the arc length and then obtain a shockless airfoil that nearly achieves the given distribution of pressure. This tool should enable engineers to design families of transonic airfoils more easily both for airplane wings and for compressor blades in cascade.
Timmer, W.A.
2009-01-01
This paper investigates the NACA 63 and 64 6-digit series of airfoils tested in the NACA LTPT in view to verify the RFOIL calculated airfoil characteristics for high Reynolds numbers. Some anomalies in the zero-lift angles of 15% and 18% thick airfoils from these series are identified, both in the a
Multi-pass cooling for turbine airfoils
Liang, George
2011-06-28
An airfoil for a turbine vane of a gas turbine engine. The airfoil includes an outer wall having pressure and suction sides, and a radially extending cooling cavity located between the pressure and suction sides. A plurality of partitions extend radially through the cooling cavity to define a plurality of interconnected cooling channels located at successive chordal locations through the cooling cavity. The cooling channels define a serpentine flow path extending in the chordal direction. Further, the cooling channels include a plurality of interconnected chambers and the chambers define a serpentine path extending in the radial direction within the serpentine path extending in the chordal direction.
ANALYSIS OF TRANSONIC FLOW PAST CUSPED AIRFOILS
Directory of Open Access Journals (Sweden)
Jiří Stodůlka
2015-06-01
Full Text Available Transonic flow past two cusped airfoils is numerically solved and achieved results are analyzed by means of flow behavior and oblique shocks formation.Regions around sharp trailing edges are studied in detail and parameters of shock waves are solved and compared using classical shock polar approach and verified by reduction parameters for symmetric configurations.
Analysis of non-symmetrical flapping airfoils
Tay, W. B.; Lim, K. B.
2009-08-01
Simulations have been done to assess the lift, thrust and propulsive efficiency of different types of non-symmetrical airfoils under different flapping configurations. The variables involved are reduced frequency, Strouhal number, pitch amplitude and phase angle. In order to analyze the variables more efficiently, the design of experiments using the response surface methodology is applied. Results show that both the variables and shape of the airfoil have a profound effect on the lift, thrust, and efficiency. By using non-symmetrical airfoils, average lift coefficient as high as 2.23 can be obtained. The average thrust coefficient and efficiency also reach high values of 2.53 and 0.61, respectively. The lift production is highly dependent on the airfoil’s shape while thrust production is influenced more heavily by the variables. Efficiency falls somewhere in between. Two-factor interactions are found to exist among the variables. This shows that it is not sufficient to analyze each variable individually. Vorticity diagrams are analyzed to explain the results obtained. Overall, the S1020 airfoil is able to provide relatively good efficiency and at the same time generate high thrust and lift force. These results aid in the design of a better ornithopter’s wing.
LES tests on airfoil trailing edge serration
DEFF Research Database (Denmark)
Zhu, Wei Jun; Shen, Wen Zhong
2016-01-01
In the present study, a large number of acoustic simulations are carried out for a low noise airfoil with different Trailing Edge Serrations (TES). The Ffowcs Williams-Hawkings (FWH) acoustic analogy is used for noise prediction at trailing edge. The acoustic solver is running on the platform...
Optimization design of airfoil profiles based on the noise of wind turbines
DEFF Research Database (Denmark)
Chen, Jin; Cheng, Jiangtao; Shen, Wenzhong
2012-01-01
Based on design theory of airfoil profiles and airfoil self-noise prediction model, a new method with the target of the airfoil average efficiency-noise ratio of design ranges for angle of attack had been developed for designing wind turbine airfoils. The airfoil design method was optimized for a...
Turbine airfoil with laterally extending snubber having internal cooling system
Scribner, Carmen Andrew; Messmann, Stephen John; Marsh, Jan H.
2016-09-06
A turbine airfoil usable in a turbine engine and having at least one snubber with a snubber cooling system positioned therein and in communication with an airfoil cooling system is disclosed. The snubber may extend from the outer housing of the airfoil toward an adjacent turbine airfoil positioned within a row of airfoils. The snubber cooling system may include an inner cooling channel separated from an outer cooling channel by an inner wall. The inner wall may include a plurality of impingement cooling orifices that direct impingement fluid against an outer wall defining the outer cooling channel. In one embodiment, the cooling fluids may be exhausted from the snubber, and in another embodiment, the cooling fluids may be returned to the airfoil cooling system. Flow guides may be positioned in the outer cooling channel, which may reduce cross-flow by the impingement orifices, thereby increasing effectiveness.
Integrated airfoil and blade design method for large wind turbines
DEFF Research Database (Denmark)
Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær
2014-01-01
This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and a tip speed ratio, optimal airfoils are designed based on the local speed ratios. To achieve a high power performance at low cost, the airfoils are designed...... momentum (BEM) technique proves the reliability of the integrated design method. © 2014 Elsevier Ltd....... with the objectives of high Cp and small chord length. When the airfoils are obtained, the optimum flow angle and rotor solidity are calculated which forms the basic input to the blade design. The new airfoils are designed based on a previous in-house designed airfoil family which was optimized at a Reynolds number...
New airfoils for small horizontal axis wind turbines
Energy Technology Data Exchange (ETDEWEB)
Giguere, P.; Selig, M.S. [Univ. of Illinois, Urbana, IL (United States)
1997-12-31
In a continuing effort to enhance the performance of small energy systems, one root airfoil and three primary airfoils were specifically designed for small horizontal axis wind turbines. These airfoils are intended primarily for 1-10 kW variable-speed wind turbines for both conventional (tapered/twisted) or pultruded blades. The four airfoils were wind-tunnel tested at Reynolds numbers between 100,000 and 500,000. Tests with simulated leading-edge roughness were also conducted. The results indicate that small variable-speed wind turbines should benefit from the use of the new airfoils which provide enhanced lift-to-drag ratio performance as compared with previously existing airfoils.
BIFURCATIONS OF AIRFOIL IN INCOMPRESSIBLE FLOW
Institute of Scientific and Technical Information of China (English)
LiuFei; YangYiren
2005-01-01
Bifurcations of an airfoil with nonlinear pitching stiffness in incompressible flow are investigated. The pitching spring is regarded as a spring with cubic stiffness. The motion equations of the airfoil are written as the four dimensional one order differential equations. Taking air speed and the linear part of pitching stiffness as the parameters, the analytic solutions of the critical boundaries of pitchfork bifurcations and Hopf bifurcations are obtained in 2 dimensional parameter plane. The stabilities of the equilibrium points and the limit cycles in different regions of 2 dimensional parameter plane are analyzed. By means of harmonic balance method, the approximate critical boundaries of 2-multiple semi-stable limit cycle bifurcations are obtained, and the bifurcation points of supercritical or subcritical Hopf bifurcation are found. Some numerical simulation results are given.
Turbine airfoil with ambient cooling system
Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.
2016-06-07
A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.
EUDP Project: Low Noise Airfoil - Final Report
DEFF Research Database (Denmark)
at the Aerospace and Ocean Engineering Department of Virginia Tech (Blacksburg, VA,(USA), also a classical aerodynamic wind tunnel but equipped with an anechoic chamber that allow to perform acoustic measurements. On the theoretical side, the above experiments yield a series of model validations and improvements......This document summarizes the scientific results achieved during the EUDP-funded project `Low-Noise Airfoil'. The goals of this project are, on one side to develop a measurement technique that permits the evaluation of trailing edge noise in a classical aerodynamic wind tunnel, and on the other side...... to develop and implement a design procedure to manufacture airfoil profiles with low noise emission. The project involved two experimental campaigns: one in the LM Wind Power wind tunnel, a classical aerodynamic wind tunnel, in Lunderskov (DK), the second one in the Virginia Tech Stability Wind Tunnel...
Turbomachinery Airfoil Design Optimization Using Differential Evolution
Madavan, Nateri K.; Biegel, Bryan (Technical Monitor)
2002-01-01
An aerodynamic design optimization procedure that is based on a evolutionary algorithm known at Differential Evolution is described. Differential Evolution is a simple, fast, and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems, including highly nonlinear systems with discontinuities and multiple local optima. The method is combined with a Navier-Stokes solver that evaluates the various intermediate designs and provides inputs to the optimization procedure. An efficient constraint handling mechanism is also incorporated. Results are presented for the inverse design of a turbine airfoil from a modern jet engine and compared to earlier methods. The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated. Substantial reductions in the overall computing time requirements are achieved by using the algorithm in conjunction with neural networks.
2010-08-01
airfoils where the drag coefficient within the laminar bucket is nearly constant. (See, for example, ref. 4.) This characteristic is related to the...edge with increasing (decreasing) lift coefficient. This feature results in a leading-edge shape that produces a suction peak at higher lift...should look like sketch 3. Sketch 3 1Director, Institute for Aerodynamics and Gas Dynamics, University of Stuttgart, Germany, 1974–1985.5 No suction
Timmer, W.A.
2009-01-01
This paper investigates the NACA 63 and 64 6-digit series of airfoils tested in the NACA LTPT in view to verify the RFOIL calculated airfoil characteristics for high Reynolds numbers. Some anomalies in the zero-lift angles of 15% and 18% thick airfoils from these series are identified, both in the airfoil clean case and in case of wrap-around roughness. It is found that RFOIL predicts the maximum lift coefficient at a Reynolds number of 3 million well, but consistently under predicts the Cl,m...
Airfoil Analysis with Uncertain Geometry using the Probabilistic Collocation method
Loeven, G.J.A.; Bijl, H.
2008-01-01
Due to manufacturing tolerances, the airfoil of a wing after production is never exactly the same as the designed airfoil. Also during operation the geometry may change due to aerodynamic loading, icing or wear of the construction. The geometry can, therefore, be treated as uncertain. Uncertainties
Airfoil noise prediction from 2D3C PIV data
De Santana, L.D.; Schram, C.; Desmet, W.
2015-01-01
The noise emitted by incoming turbulence interacting with an airfoil has many technological applications, and has accordingly received much attention in the literature. While numerous developments are focused on the determination of the airfoil response to a given incoming gust, the characterization
Identification of dynamic properties of radial air-foil bearings
Arora, V.; Hoogt, van der P.J.M.; Aarts, R.G.K.M.; Boer, de A.
2010-01-01
Air-foil bearings (AFBs) are self acting hydrodynamic bearings made from sheet metal foils comprised of at least two layers. The innermost “top foil” layer traps a gas pressure film that supports a load while the layer or layers underneath provide an elastic foundation. Air-foil bearings are current
Design of the LRP airfoil series using 2D CFD
DEFF Research Database (Denmark)
Zahle, Frederik; Bak, Christian; Sørensen, Niels N.;
2014-01-01
This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Nav...
Identification of dynamic properties of radial air-foil bearings
Arora, V.; Hoogt, van der P.J.M.; Aarts, R.G.K.M.; Boer, de A.
2010-01-01
Air-foil bearings (AFBs) are self acting hydrodynamic bearings made from sheet metal foils comprised of at least two layers. The innermost ‘‘top foil’’ layer traps a gas pressure film that supports a load while the layer or layers underneath provide an elastic foundation. Air-foil bearings are curre
Airfoil family design for large offshore wind turbine blades
Méndez, B.; Munduate, X.; San Miguel, U.
2014-06-01
Wind turbine blades size has scaled-up during last years due to wind turbine platform increase especially for offshore applications. The EOLIA project 2007-2010 (Spanish Goverment funded project) was focused on the design of large offshore wind turbines for deep waters. The project was managed by ACCIONA Energia and the wind turbine technology was designed by ACCIONA Windpower. The project included the design of a wind turbine airfoil family especially conceived for large offshore wind turbine blades, in the order of 5MW machine. Large offshore wind turbines suffer high extreme loads due to their size, in addition the lack of noise restrictions allow higher tip speeds. Consequently, the airfoils presented in this work are designed for high Reynolds numbers with the main goal of reducing blade loads and mantainig power production. The new airfoil family was designed in collaboration with CENER (Spanish National Renewable Energy Centre). The airfoil family was designed using a evolutionary algorithm based optimization tool with different objectives, both aerodynamic and structural, coupled with an airfoil geometry generation tool. Force coefficients of the designed airfoil were obtained using the panel code XFOIL in which the boundary layer/inviscid flow coupling is ineracted via surface transpiration model. The desing methodology includes a novel technique to define the objective functions based on normalizing the functions using weight parameters created from data of airfoils used as reference. Four airfoils have been designed, here three of them will be presented, with relative thickness of 18%, 21%, 25%, which have been verified with the in-house CFD code, Wind Multi Block WMB, and later validated with wind tunnel experiments. Some of the objectives for the designed airfoils concern the aerodynamic behavior (high efficiency and lift, high tangential coefficient, insensitivity to rough conditions, etc.), others concern the geometry (good for structural design
Tonal noise production from a wall-mounted finite airfoil
Moreau, Danielle J.; Doolan, Con J.
2016-02-01
This study is concerned with the flow-induced noise of a smooth wall-mounted finite airfoil with flat ended tip and natural boundary layer transition. Far-field noise measurements have been taken at a single observer location and with a microphone array in the Virginia Tech Stability Wind Tunnel for a wall-mounted finite airfoil with aspect ratios of L / C = 1 - 3, at a range of Reynolds numbers (ReC = 7.9 ×105 - 1.6 ×106, based on chord) and geometric angles of attack (α = 0 - 6 °). At these Reynolds numbers, the wall-mounted finite airfoil produces a broadband noise contribution with a number of discrete equispaced tones at non-zero angles of attack. Spectral data are also presented for the noise produced due to three-dimensional vortex flow near the airfoil tip and wall junction to show the contributions of these flow features to airfoil noise generation. Tonal noise production is linked to the presence of a transitional flow state to the trailing edge and an accompanying region of mildly separated flow on the pressure surface. The separated flow region and tonal noise source location shift along the airfoil trailing edge towards the free-end region with increasing geometric angle of attack due to the influence of the tip flow field over the airfoil span. Tonal envelopes defining the operating conditions for tonal noise production from a wall-mounted finite airfoil are derived and show that the domain of tonal noise production differs significantly from that of a two-dimensional airfoil. Tonal noise production shifts to lower Reynolds numbers and higher geometric angles of attack as airfoil aspect ratio is reduced.
DEFF Research Database (Denmark)
Chen, Jin; Cheng, Jiangtao; Shen, Wenzhong
2013-01-01
Aerodynamic of airfoil performance is closely related to the continuity of its surface curvature, and airfoil profiles with a better aerodynamic performance plays an important role in the design of wind turbine. The surface curvature distribution along the chord direction and pressure distributio...
Wind turbine airfoil design method with low noise and experimental analysis
DEFF Research Database (Denmark)
Wang, Quan; Chen, Jin; Cheng, Jiangtao;
2015-01-01
In order to study the noise characteristic of wind turbine airfoils, the airfoil optimal design mathematic model was built based on airfoil functional integrated theory and noise calculated model. The new optimized objective function of maximizing lift/drag to noise was developed on the design......, though there is a certain difference between the theory results and experiment data. Compared with NACA-64-618 airfoil, the CQU-DTU-B18 airfoil exhibits lower noise, which validates the feasibility of this design method. It is a guide to design wind turbine airfoil with lower noise and to reduce airfoil...
Linearized propulsion theory of flapping airfoils revisited
Fernandez-Feria, Ramon
2016-11-01
A vortical impulse theory is used to compute the thrust of a plunging and pitching airfoil in forward flight within the framework of linear potential flow theory. The result is significantly different from the classical one of Garrick that considered the leading-edge suction and the projection in the flight direction of the pressure force. By taking into account the complete vorticity distribution on the airfoil and the wake the mean thrust coefficient contains a new term that generalizes the leading-edge suction term and depends on Theodorsen function C (k) and on a new complex function C1 (k) of the reduced frequency k. The main qualitative difference with Garrick's theory is that the propulsive efficiency tends to zero as the reduced frequency increases to infinity (as 1 / k), in contrast to Garrick's efficiency that tends to a constant (1 / 2). Consequently, for pure pitching and combined pitching and plunging motions, the maximum of the propulsive efficiency is not reached as k -> ∞ like in Garrick's theory, but at a finite value of the reduced frequency that depends on the remaining non-dimensional parameters. The present analytical results are in good agreement with experimental data and numerical results for small amplitude oscillations. Supported by the Ministerio de Economia y Competitividad of Spain Grant No. DPI2013-40479-P.
FLEET Velocimetry Measurements on a Transonic Airfoil
Burns, Ross A.; Danehy, Paul M.
2017-01-01
Femtosecond laser electronic excitation tagging (FLEET) velocimetry was used to study the flowfield around a symmetric, transonic airfoil in the NASA Langley 0.3-m TCT facility. A nominal Mach number of 0.85 was investigated with a total pressure of 125 kPa and total temperature of 280 K. Two-components of velocity were measured along vertical profiles at different locations above, below, and aft of the airfoil at angles of attack of 0 deg, 3.5 deg, and 7deg. Measurements were assessed for their accuracy, precision, dynamic range, spatial resolution, and overall measurement uncertainty in the context of the applied flowfield. Measurement precisions as low as 1 m/s were observed, while overall uncertainties ranged from 4 to 5 percent. Velocity profiles within the wake showed sufficient accuracy, precision, and sensitivity to resolve both the mean and fluctuating velocities and general flow physics such as shear layer growth. Evidence of flow separation is found at high angles of attack.
Design and experimental results for the S809 airfoil
Energy Technology Data Exchange (ETDEWEB)
Somers, D M [Airfoils, Inc., State College, PA (United States)
1997-01-01
A 21-percent-thick, laminar-flow airfoil, the S809, for horizontal-axis wind-turbine applications, has been designed and analyzed theoretically and verified experimentally in the low-turbulence wind tunnel of the Delft University of Technology Low Speed Laboratory, The Netherlands. The two primary objectives of restrained maximum lift, insensitive to roughness, and low profile drag have been achieved. The airfoil also exhibits a docile stall. Comparisons of the theoretical and experimental results show good agreement. Comparisons with other airfoils illustrate the restrained maximum lift coefficient as well as the lower profile-drag coefficients, thus confirming the achievement of the primary objectives.
Optimum Transonic Airfoils Based on the Euler Equations
Iollo, Angelo; Salas, Manuel, D.
1996-01-01
We solve the problem of determining airfoils that approximate, in a least square sense, given surface pressure distributions in transonic flight regimes. The flow is modeled by means of the Euler equations and the solution procedure is an adjoint- based minimization algorithm that makes use of the inverse Theodorsen transform in order to parameterize the airfoil. Fast convergence to the optimal solution is obtained by means of the pseudo-time method. Results are obtained using three different pressure distributions for several free stream conditions. The airfoils obtained have given a trailing edge angle.
Geometrical effects on the airfoil flow separation and transition
Zhang, Wei
2015-04-25
We present results from direct numerical simulations (DNS) of incompressible flow over two airfoils, NACA-4412 and NACA-0012-64, to investigate the effects of the airfoil geometry on the flow separation and transition patterns at Re=104 and 10 degrees incidence. The two chosen airfoils are geometrically similar except for maximum camber (respectively 4%C and 0 with C the chord length), which results in a larger projection area with respect to the incoming flow for the NACA-4412 airfoil, and a larger leeward surface curvature at the leading edge for the NACA-0012-64 airfoil. The governing equations are discretized using an energy conservative fourth-order spatial discretization scheme. An assessment on the two-point correlation indicates that a spanwise domain size of 0.8C is sufficiently large for the present simulations. We discuss flow separation at the airfoil leading edge, transition of the separated shear layer to three-dimensional flow and subsequently to turbulence. Numerical results reveal a stronger adverse pressure gradient field in the leading edge region of the NACA-0012-64 airfoil due to the rapidly varying surface curvature. As a result, the flow experiences detachment at x/C=0.08, and the separated shear layer transition via Kelvin-Helmholtz mechanism occurs at x/C=0.29 with fully developed turbulent flow around x/C=0.80. These flow development phases are delayed to occur at much downstream positions, respectively, observed around x/C=0.25, 0.71 and 1.15 for the NACA-4412 airfoil. The turbulent intensity, measured by the turbulent fluctuations and turbulent Reynolds stresses, are much larger for NACA-0012-64 from the transition onset until the airfoil trailing edge, while turbulence develops significantly downstream of the trailing edge for the NACA-4412 airfoil. For both airfoils, our DNS results indicate that the mean Reynolds stress u\\'u\\'/U02 reaches its maximum value at a distance from the surface approximately equal to the displacement
Effects of finite aspect ratio on wind turbine airfoil measurements
DEFF Research Database (Denmark)
Kiefer, Janik; Miller, Mark A.; Hultmark, Marcus;
2016-01-01
Wind turbines partly operate in stalled conditions within their operational cycle. To simulate these conditions, it is also necessary to obtain 2-D airfoil data in terms of lift and drag coefficients at high angles of attack. Such data has been obtained previously, but often at low aspect ratios...... and only barely past the stall point, where strong wall boundary layer influence is expected. In this study, the influence of the wall boundary layer on 2D airfoil data, especially in the post stall domain, is investigated. Here, a wind turbine airfoil is tested at different angles of attack and with two...
Computational design and analysis of flatback airfoil wind tunnel experiment.
Energy Technology Data Exchange (ETDEWEB)
Mayda, Edward A. (University of California, Davis, CA); van Dam, C.P. (University of California, Davis, CA); Chao, David D. (University of California, Davis, CA); Berg, Dale E.
2008-03-01
A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.
Study of the TRAC Airfoil Table Computational System
Hu, Hong
1999-01-01
The report documents the study of the application of the TRAC airfoil table computational package (TRACFOIL) to the prediction of 2D airfoil force and moment data over a wide range of angle of attack and Mach number. The TRACFOIL generates the standard C-81 airfoil table for input into rotorcraft comprehensive codes such as CAM- RAD. The existing TRACFOIL computer package is successfully modified to run on Digital alpha workstations and on Cray-C90 supercomputers. A step-by-step instruction for using the package on both computer platforms is provided. Application of the newer version of TRACFOIL is made for two airfoil sections. The C-81 data obtained using the TRACFOIL method are compared with those of wind-tunnel data and results are presented.
Numerical investigation of airfoils for small wind turbine applications
Directory of Open Access Journals (Sweden)
Natarajan Karthikeyan
2016-01-01
Full Text Available A detailed numerical investigation of the aerodynamic performance on the five airfoils namely Mid321a, Mid321b, Mid321c, Mid321d, and Mid321e were carried out at Reynolds numbers ranging from 0.5×105 to 2.5×105. The airfoils used for small wind turbines are designed for Reynolds number ranges between 3×105 and 5×105 and the blades are tend to work on off-design conditions. The blade element moment method was applied to predict the aerodynamic loads, power coefficient, and blade parameters for the airfoils. Based on the evaluate data, it was found that Mid321c airfoil has better lift to drag ratio over the range of Reynolds numbers and attained maximum power coefficient of 0.4487 at Re = 2×105.
A finite-difference method for transonic airfoil design.
Steger, J. L.; Klineberg, J. M.
1972-01-01
This paper describes an inverse method for designing transonic airfoil sections or for modifying existing profiles. Mixed finite-difference procedures are applied to the equations of transonic small disturbance theory to determine the airfoil shape corresponding to a given surface pressure distribution. The equations are solved for the velocity components in the physical domain and flows with embedded shock waves can be calculated. To facilitate airfoil design, the method allows alternating between inverse and direct calculations to obtain a profile shape that satisfies given geometric constraints. Examples are shown of the application of the technique to improve the performance of several lifting airfoil sections. The extension of the method to three dimensions for designing supercritical wings is also indicated.
Turbine airfoil with a compliant outer wall
Campbell, Christian X [Oviedo, FL; Morrison, Jay A [Oviedo, FL
2012-04-03
A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation in the outer layer is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a support structure. The outer layer may be a compliant layer configured such that the outer layer may thermally expand and thereby reduce the stress within the outer layer. The outer layer may be formed from a nonplanar surface configured to thermally expand. In another embodiment, the outer layer may be planar and include a plurality of slots enabling unrestricted thermal expansion in a direction aligned with the outer layer.
An inverse design method for 2D airfoil
Liang, Zhi-Yong; Cui, Peng; Zhang, Gen-Bao
2010-03-01
The computational method for aerodynamic design of aircraft is applied more universally than before, in which the design of an airfoil is a hot problem. The forward problem is discussed by most relative papers, but inverse method is more useful in practical designs. In this paper, the inverse design of 2D airfoil was investigated. A finite element method based on the variational principle was used for carrying out. Through the simulation, it was shown that the method was fit for the design.
Aero-elastic stability of airfoil flow using 2-D CFD
Energy Technology Data Exchange (ETDEWEB)
Johansen, J. [Risoe National Lab., Roskilde (Denmark)
1999-03-01
A three degrees-of-freedom structural dynamics model has been coupled to a two-dimensional incompressible CFD code. The numerical investigation considers aero-elastic stability for two different airfoils; the NACA0012 and the LM 2 18 % airfoils. Stable and unstable configurations and limit cycle oscillations are predicted in accordance with literature for the first airfoil. An attempt to predict stall induced edge-wise vibrations on a wind turbine airfoil fails using this two-dimensional approach. (au)
Interaction of two-dimensional impulsively started airfoils
Institute of Scientific and Technical Information of China (English)
WU Fu-bing; ZENG Nian-dong; ZHANG Liang; WU De-ming
2004-01-01
Continuous vorticity panels were used to model general unsteady inviscid, incompressible, two-dimensional flows. The geometry of thc airfoil was approximated by series of short straight segments having endpoints that lie on the actual surface. A piecewise linear, continuous distribution of vorticity over the airfoil surface was used to generate disturbance flow. The no-penetration condition was imposed at the midpoint of each segment and at discrete times. The wake was simulated by a system of point vortices, which moved at local fluid velocity. At each time step, a new wake panel with uniform vorticity distribution was attached to the trailing edge, and the condition of constant circulation around the airfoil and wake was imposed. A new expression for Kutta condition was developed to study the interference effect between two impulsively started NACA0012 airfoils. The tandem arrangement was found to be the most effective to enhance the lift of the rear airfoil. The interference effect between tidal turbine blades was shown clearly.
Turbine Airfoil Leading Edge Film Cooling Bibliography: 1972–1998
Directory of Open Access Journals (Sweden)
D. M. Kercher
2000-01-01
Full Text Available Film cooling for turbine airfoil leading edges has been a common practice for at least 35 years as turbine inlet gas temperatures and pressures have continually increased along with cooling air temperatures for higher engine cycle efficiency. With substantial engine cycle performance improvements from higher gas temperatures, it has become increasingly necessary to film cool nozzle and rotor blade leading edges since external heat transfer coefficients and thus heat load are the highest in this airfoil region. Optimum cooling air requirements in this harsh environment has prompted a significant number of film cooling investigations and analytical studies reported over the past 25 years from academia, industry and government agencies. Substantial progress has been made in understanding the complex nature of leading edge film cooling from airfoil cascades, simulated airfoil leading edges and environment. This bibliography is a report of the open-literature references available which provide information on the complex aero–thermo interaction of leading edge gaseous film cooling with mainstream flow. From much of this investigative information has come successful operational leading edge film cooling design systems capable of sustaining airfoil leading edge durability in very hostile turbine environments.
Validation of the CQU-DTU-LN1 series of airfoils
DEFF Research Database (Denmark)
Shen, Wen Zhong; Zhu, Wei Jun; Fischer, Andreas
2014-01-01
-DTU-LN118 airfoil by using wind tunnel measurements in the acoustic wind tunnel located at Virginia Tech and numerical computations with the inhouse Q3uic and EllipSys 2D/3D codes. To show the superiority of the new airfoils, comparisons with a NACA64618 airfoil are made. For the aerodynamic features...
Aerodynamic Analysis of Trailing Edge Enlarged Wind Turbine Airfoils
DEFF Research Database (Denmark)
Xu, Haoran; Shen, Wen Zhong; Zhu, Wei Jun;
2014-01-01
model and RFOIL all show that with the increase of thickness of trailing edge, the linear region of lift is extended and the maximum lift also increases, the increase rate and amount of lift become limited gradually at low angles of attack, while the drag increases dramatically. For thicker airfoils...... with larger maximum thickness to chord length, the increment of lift is larger than that of relatively thinner airfoils when the thickness of blunt trailing edge is increased from 5% to 10% chord length. But too large lift can cause abrupt stall which is profitless for power output. The transient...... characteristics of blunt trailing edge airfoils are caused by blunt body vortices at low angles of attack, and by the combined effect of separation and blunt body vortices at large angles of attack. With the increase of thickness of blunt trailing edge, the vibration amplitudes of lift and drag curves increase...
A robust inverse inviscid method for airfoil design
Chaviaropoulos, P.; Dedoussis, V.; Papailiou, K. D.
An irrotational inviscid compressible inverse design method for two-dimensional airfoil profiles is described. The method is based on the potential streamfunction formulation, where the physical space on which the boundaries of the airfoil are sought, is mapped onto the (phi, psi) space via a body-fitted coordinate transformation. A novel procedure based on differential geometry arguments is employed to derive the governing equations for the inverse problem, by requiring the curvature of the flat 2-D Euclidean space to be zero. An auxiliary coordinate transformation permits the definition of C-type computational grids on the (phi, psi) plane resulting to a more accurate description of the leading edge region. Geometry is determined by integrating Frenet equations along the grid lines. To validate the method inverse calculation results are compared to direct, `reproduction', calculation results. The design procedure of a new airfoil shape is also presented.
Evolving aerodynamic airfoils for wind turbines through a genetic algorithm
Hernández, J. J.; Gómez, E.; Grageda, J. I.; Couder, C.; Solís, A.; Hanotel, C. L.; Ledesma, JI
2017-01-01
Nowadays, genetic algorithms stand out for airfoil optimisation, due to the virtues of mutation and crossing-over techniques. In this work we propose a genetic algorithm with arithmetic crossover rules. The optimisation criteria are taken to be the maximisation of both aerodynamic efficiency and lift coefficient, while minimising drag coefficient. Such algorithm shows greatly improvements in computational costs, as well as a high performance by obtaining optimised airfoils for Mexico City's specific wind conditions from generic wind turbines designed for higher Reynolds numbers, in few iterations.
Design of wind turbine airfoils based on maximum power coefficient
DEFF Research Database (Denmark)
Chen, Jin; Cheng, Jiangtao; Shen, Wenzhong;
2010-01-01
noise prediction model, the previously developed integrated design technique is further developed. The new code takes into account different airfoil requirements according to their local positions on a blade, such as sensitivity to leading edge roughness, design lift at off-design condition, stall......Based on the blade element momentum (BEM) theory, the power coefficient of a wind turbine can be expressed in function of local tip speed ratio and lift-drag ratio. By taking the power coefficient in a predefined range of angle of attack as the final design objective and combining with an airfoil...
Research on design methods and aerodynamics performance of CQUDTU-B21 airfoil
DEFF Research Database (Denmark)
Chen, Jin; Cheng, Jiangtao; Wen, Zhong Shen
2012-01-01
This paper presents the design methods of CQU-DTU-B21 airfoil for wind turbine. Compared with the traditional method of inverse design, the new method is described directly by a compound objective function to balance several conflicting requirements for design wind turbine airfoils, which based...... on design theory of airfoil profiles, blade element momentum (BEM) theory and airfoil Self-Noise prediction model. And then an optimization model with the target of maximum power performance on a 2D airfoil and low noise emission of design ranges for angle of attack has been developed for designing CQU...
Effect of pivot location and passive heave on propulsion from a pitching airfoil
Mackowski, A. W.; Williamson, C. H. K.
2017-01-01
We experimentally investigate the propulsive characteristics of a pitching NACA 0012 airfoil section, with emphasis on thrust and propulsive efficiency, at a Reynolds number of 1.7 ×104 . For the sake of mechanical simplicity, we consider an airfoil restricted to a single actuator in the pitching direction. We examine the effect of changing the airfoil's axis of rotation, finding that contrary to Garrick's linear theory, there exists a pitching axis near the airfoil that maximizes propulsive efficiency. Next, we examine the effect of placing passive springs on the airfoil in the heave (transverse) direction using our Cyber-Physical Fluid Dynamics technique. This elastic heaving motion allows the airfoil to combine pitching and heaving modes while being actuated only in the pitching direction. Two sets of dynamics are considered: one case where the airfoil is weighted unevenly and pitched about its center of mass (so that the resulting heaving motion is independent of inertial forces), and another case where the airfoil's center of mass is fixed at its centroid. For pitching at an amplitude of 8∘ and a reduced frequency k of two, we find that elastic heave produces a maximum propulsive efficiency of 35%, compared to 25% without any heave motion. Further, while operating at the same efficiency as the static-pivot case, we find that passive heaving greatly increases the magnitude of the airfoil's thrust. The airfoil configurations with highest propulsive efficiency generally involve pitching near or ahead of the airfoil's leading edge.
Design of the new Risoe-A1 airfoil family for wind turbines
Energy Technology Data Exchange (ETDEWEB)
Fuglsang, P.; Dahl, K.S. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)
1999-03-01
A new airfoil family for wind turbines was developed by use of a design method using numerical optimization and the flow solver, XFOIL. The results were evaluated with the Navier-Stokes solver EllipSys2D. The airfoil family constitutes 6 airfoils ranging in thickness from 15% to 30%. The airfoils were designed to have a maximum lift coefficient around 1.5 in natural conditions and high lift-drag ratios below maximum lift. Insensitivity to leading edge roughness was obtained by securing that transition from laminar to turbulent flow on the suction side occurred close to the leading edge just before stall. The airfoil family was designed for a 600 kW wind turbine and provides a basis for further enhancing the characteristics of airfoils for wind turbines and to tailor airfoils for specific rotor sizes and power regulation principles. (au) EFP-95; EFP-98. 16 refs.
Design and validation of the high performance and low noise CQU-DTU-LN1 airfoils
DEFF Research Database (Denmark)
Cheng, Jiangtao; Zhu, Wei Jun; Fischer, Andreas
2014-01-01
. To validate the airfoil design, CQU-DTU-LN118 airfoil has been tested experimentally in the acoustic wind tunnel located at the Virginia Polytechnic Institute and State University (Virginia Tech), USA. To show the superiority of the CQU-DTU-LN1 airfoils, comparisons on aerodynamic performance and noise......This paper presents the design and validation of the high performance and low noise Chong Qing University and Technical University of Denmark LN1 (CQU-DTU-LN1) series of airfoils for wind turbine applications. The new design method uses target characteristics of wind turbine airfoils in the design...... emission between the CQU-DTU-LN118 airfoil and the National Advisory Committee for Aeronautics (NACA) 64618 airfoil, which is used in modern wind turbine blades, are carried out. Copyright © 2013 John Wiley & Sons, Ltd....
Design of a shape adaptive airfoil actuated by a Shape Memory Alloy strip for airplane tail
Shirzadeh, R.; Raissi Charmacani, K.; Tabesh, M.
2011-04-01
Of the factors that mainly affect the efficiency of the wing during a special flow regime, the shape of its airfoil cross section is the most significant. Airfoils are generally designed for a specific flight condition and, therefore, are not fully optimized in all flight conditions. It is very desirable to have an airfoil with the ability to change its shape based on the current regime. Shape memory alloy (SMA) actuators activate in response to changes in the temperature and can recover their original configuration after being deformed. This study presents the development of a method to control the shape of an airfoil using SMA actuators. To predict the thermomechanical behaviors of an SMA thin strip, 3D incremental formulation of the SMA constitutive model is implemented in FEA software package ABAQUS. The interactions between the airfoil structure and SMA thin strip actuator are investigated. Also, the aerodynamic performance of a standard airfoil with a plain flap is compared with an adaptive airfoil.
Mechanism of unconventional aerodynamic characteristics of an elliptic airfoil
Directory of Open Access Journals (Sweden)
Sun Wei
2015-06-01
Full Text Available The aerodynamic characteristics of elliptic airfoil are quite different from the case of conventional airfoil for Reynolds number varying from about 104 to 106. In order to reveal the fundamental mechanism, the unsteady flow around a stationary two-dimensional elliptic airfoil with 16% relative thickness has been simulated using unsteady Reynolds-averaged Navier–Stokes equations and the γ-Reθt‾ transition turbulence model at different angles of attack for flow Reynolds number of 5 × 105. The aerodynamic coefficients and the pressure distribution obtained by computation are in good agreement with experimental data, which indicates that the numerical method works well. Through this study, the mechanism of the unconventional aerodynamic characteristics of airfoil is analyzed and discussed based on the computational predictions coupled with the wind tunnel results. It is considered that the boundary layer transition at the leading edge and the unsteady flow separation vortices at the trailing edge are the causes of the case. Furthermore, a valuable insight into the physics of how the flow behavior affects the elliptic airfoil’s aerodynamics is provided.
Unsteady Double Wake Model for the Simulation of Stalled Airfoils
DEFF Research Database (Denmark)
Ramos García, Néstor; Cayron, Antoine; Sørensen, Jens Nørkær
2015-01-01
separation and its dynamics. In this paper, the calculated integral forces have been successfully validated against wind tunnel measurements for the FFA-W3-211 airfoil. Furthermore, the computed highly unsteady flow field is analyzed in detail for a set of angles of attack ranging from light to deep stall...
Flow characteristics over NACA4412 airfoil at low Reynolds number
Directory of Open Access Journals (Sweden)
Genç Mustafa Serdar
2016-01-01
Full Text Available In this study, the flow phenomena over NACA4412 were experimentally observed at various angle of attack and Reynolds number of 25000, 50000 and 75000, respectively. NACA4412 airfoil was manufactured at 3D printer and each tips of the wing were closed by using plexiglas to obtain two-dimensional airfoil. The experiments were conducted at low speed wind tunnel. The force measurement and hot-wire experiments were conducted to obtain data so that the flow phenomenon at the both top and bottom of the airfoil such as the flow separation and vortex shedding were observed. Also, smoke-wire experiment was carried out to visualize the surface flow pattern. After obtaining graphics from both force measurement experiment and hot-wire experiment compared with smoke wire experiment, it was noticed that there is a good coherence among the experiments. It was concluded that as Re number increased, the stall angle increased. And the separation bubble moved towards leading edge over the airfoil as the angle of attack increased.
Extraction of airfoil data using PIV and pressure measurements
DEFF Research Database (Denmark)
Yang, Hua; Shen, Wen Zhong; Sørensen, Jens Nørkær
2011-01-01
Velocimetry (PIV) flow fields at different rotor azimuth positions are examined for determining sectional airfoil data. The AOA is derived locally by determining the local circulation on the blade from pressure data and subtracting the induction of the bound circulation from the local velocity. The derived...
Stability of Inviscid Flow over Airfoils Admitting Multiple Numerical Solutions
Liu, Ya; Xiong, Juntao; Liu, Feng; Luo, Shijun
2012-11-01
Multiple numerical solutions at the same flight condition are found of inviscid transonic flow over certain airfoils (Jameson et al., AIAA 2011-3509) within some Mach number range. Both symmetric and asymmetric solutions exist for a symmetric airfoil at zero angle of attack. Global linear stability analysis of the multiple solutions is conducted. Linear perturbation equations of the Euler equations around a steady-state solution are formed and discretized numerically. An eigenvalue problem is then constructed using the modal analysis approach. Only a small portion of the eigen spectrum is needed and thus can be found efficiently by using Arnoldi's algorithm. The least stable or unstable mode corresponds to the eigenvalue with the largest real part. Analysis of the NACA 0012 airfoil indicates stability of symmetric solutions of the Euler equations at conditions where buffet is found from unsteady Navier-Stokes equations. Euler solutions of the same airfoil but modified to include the displacement thickness of the boundary layer computed from the Navier-Stokes equations, however, exhibit instability based on the present linear stability analysis. Graduate Student.
Prediction of the Effect of Vortex Generators on Airfoil Performance
DEFF Research Database (Denmark)
Sørensen, Niels N.; Zahle, Frederik; Bak, Christian;
2014-01-01
Vortex Generators (VGs) are widely used by the wind turbine industry, to control the flow over blade sections. The present work describes a computational fluid dynamic procedure that can handle a geometrical resolved VG on an airfoil section. After describing the method, it is applied to two diff...
Modeling of Airfoil Trailing Edge Flap with Immersed Boundary Method
DEFF Research Database (Denmark)
Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær
2011-01-01
to simulate the moving part of the trailing edge. Over the main fixed part of the airfoil the Navier-Stokes (NS) equations are solved using a standard body-fitted finite volume technique whereas the moving trailing edge flap is simulated with the immersed boundary method on a curvilinear mesh. The obtained...
Numerical simulation of airfoil trailing edge serration noise
DEFF Research Database (Denmark)
Zhu, Wei Jun; Shen, Wen Zhong
In the present work, numerical simulations are carried out for a low noise airfoil with and without serrated Trailing Edge. The Ffowcs Williams-Hawkings acoustic analogy is implemented into the in-house incompressible flow solver EllipSys3D. The instantaneous hydrodynamic pressure and velocity...
Detached Eddy Simulations of an Airfoil in Turbulent Inflow
DEFF Research Database (Denmark)
Gilling, Lasse; Sørensen, Niels; Davidson, Lars
2009-01-01
The effect of resolving inflow turbulence in detached eddy simulations of airfoil flows is studied. Synthetic turbulence is used for inflow boundary condition. The generated turbulence fields are shown to decay according to experimental data as they are convected through the domain with the free ...
Decomposing the aerodynamic forces of low-Reynolds flapping airfoils
Moriche, Manuel; Garcia-Villalba, Manuel; Flores, Oscar
2016-11-01
We present direct numerical simulations of flow around flapping NACA0012 airfoils at relatively small Reynolds numbers, Re = 1000 . The simulations are carried out with TUCAN, an in-house code that solves the Navier-Stokes equations for an incompressible flow with an immersed boundary method to model the presence of the airfoil. The motion of the airfoil is composed of a vertical translation, heaving, and a rotation about the quarter of the chord, pitching. Both motions are prescribed by sinusoidal laws, with a reduced frequency of k = 1 . 41 , a pitching amplitude of 30deg and a heaving amplitude of one chord. Both, the mean pitch angle and the phase shift between pitching and heaving motions are varied, to build a database with 18 configurations. Four of these cases are analysed in detail using the force decomposition algorithm of Chang (1992) and Martín Alcántara et al. (2015). This method decomposes the total aerodynamic force into added-mass (translation and rotation of the airfoil), a volumetric contribution from the vorticity (circulatory effects) and a surface contribution proportional to viscosity. In particular we will focus on the second, analysing the contribution of the leading and trailing edge vortices that typically appear in these flows. This work has been supported by the Spanish MINECO under Grant TRA2013-41103-P. The authors thankfully acknowledge the computer resources provided by the Red Española de Supercomputacion.
Airfoil Trailing Edge Noise Generation and Its Surface Pressure Fluctuation
DEFF Research Database (Denmark)
Zhu, Wei Jun; Shen, Wen Zhong
2015-01-01
In the present work, Large Eddy Simulation (LES) of turbulent flows over a NACA 0015 airfoil is performed. The purpose of such numerical study is to relate the aerodynamic surface pressure with the noise generation. The results from LES are validated against detailed surface pressure measurements...
Large Eddy Simulations of an Airfoil in Turbulent Inflow
DEFF Research Database (Denmark)
Gilling, Lasse; Sørensen, Niels
2008-01-01
Wind turbines operate in the turbulent boundary layer of the atmosphere and due to the rotational sampling effect the blades experience a high level of turbulence [1]. In this project the effect of turbulence is investigated by large eddy simulations of the turbulent flow past a NACA 0015 airfoil...
CFD code comparison for 2D airfoil flows
DEFF Research Database (Denmark)
Sørensen, Niels N.; Méndez, B.; Muñoz, A.;
2016-01-01
The current paper presents the effort, in the EU AVATAR project, to establish the necessary requirements to obtain consistent lift over drag ratios among seven CFD codes. The flow around a 2D airfoil case is studied, for both transitional and fully turbulent conditions at Reynolds numbers of 3 × ...
Robust Airfoil Optimization with Multi-objective Estimation of Distribution Algorithm
Institute of Scientific and Technical Information of China (English)
Zhong Xiaoping; Ding Jifeng; Li Weiji; Zhang Yong
2008-01-01
A transonic airfoil designed by means of classical point-optimization may result in its dramatically inferior performance under off-design conditious. To overcome this shortcoming, robust design is proposed to fred out the optimal profile of an airfoil to maintain its performance in an uncertain environment. The robust airfoil optimization is aimed to minimize mean values and variances of drag coefficients while satisfying the lift and thickness constraints over a range of Maeb numbers. A multi-objective estimation of distribution algorithm is applied to the robust airfoil optimization on the base of the RAE2822 benchmark airfoil. The shape of the airfoil is obtained through superposing ten Hick-Heune shape functions upon the benchmark airfoil. A set of design points is selected according to a uniform design table for aerodynamic evaluation. A Kriging model of drag coefficient is coustrueted with those points to reduce eumputing costs. Over the Maeh range fi'om 0.7 to 0.8, the airfoil generated by the robust optimization has a configuration characterized by supercritical airfoil with low drag coefficients. The small fluctuation in its drag coefficients means that the performance of the robust airfoil is insensitive to variation of Mach number.
The Effect of Aerodynamic Evaluators on the Multi-Objective Optimization of Flatback Airfoils
Miller, M.; Slew, K. Lee; Matida, E.
2016-09-01
With the long lengths of today's wind turbine rotor blades, there is a need to reduce the mass, thereby requiring stiffer airfoils, while maintaining the aerodynamic efficiency of the airfoils, particularly in the inboard region of the blade where structural demands are highest. Using a genetic algorithm, the multi-objective aero-structural optimization of 30% thick flatback airfoils was systematically performed for a variety of aerodynamic evaluators such as lift-to-drag ratio (Cl/Cd), torque (Ct), and torque-to-thrust ratio (Ct/Cn) to determine their influence on airfoil shape and performance. The airfoil optimized for Ct possessed a 4.8% thick trailing-edge, and a rather blunt leading-edge region which creates high levels of lift and correspondingly, drag. It's ability to maintain similar levels of lift and drag under forced transition conditions proved it's insensitivity to roughness. The airfoil optimized for Cl/Cd displayed relatively poor insensitivity to roughness due to the rather aft-located free transition points. The Ct/Cn optimized airfoil was found to have a very similar shape to that of the Cl/Cd airfoil, with a slightly more blunt leading-edge which aided in providing higher levels of lift and moderate insensitivity to roughness. The influence of the chosen aerodynamic evaluator under the specified conditions and constraints in the optimization of wind turbine airfoils is shown to have a direct impact on the airfoil shape and performance.
Advancements in adaptive aerodynamic technologies for airfoils and wings
Jepson, Jeffrey Keith
Although aircraft operate over a wide range of flight conditions, current fixed-geometry aircraft are optimized for only a few of these conditions. By altering the shape of the aircraft, adaptive aerodynamics can be used to increase the safety and performance of an aircraft by tailoring the aircraft for multiple flight conditions. Of the various shape adaptation concepts currently being studied, the use of multiple trailing-edge flaps along the span of a wing offers a relatively high possibility of being incorporated on aircraft in the near future. Multiple trailing-edge flaps allow for effective spanwise camber adaptation with resulting drag benefits over a large speed range and load alleviation at high-g conditions. The research presented in this dissertation focuses on the development of this concept of using trailing-edge flaps to tailor an aircraft for multiple flight conditions. One of the major tasks involved in implementing trailing-edge flaps is in designing the airfoil to incorporate the flap. The first part of this dissertation presents a design formulation that incorporates aircraft performance considerations in the inverse design of low-speed laminar-flow adaptive airfoils with trailing-edge cruise flaps. The benefit of using adaptive airfoils is that the size of the low-drag region of the drag polar can be effectively increased without increasing the maximum thickness of the airfoil. Two aircraft performance parameters are considered: level-flight maximum speed and maximum range. It is shown that the lift coefficients for the lower and upper corners of the airfoil low-drag range can be appropriately adjusted to tailor the airfoil for these two aircraft performance parameters. The design problem is posed as a part of a multidimensional Newton iteration in an existing conformal-mapping based inverse design code, PROFOIL. This formulation automatically adjusts the lift coefficients for the corners of the low-drag range for a given flap deflection as
Manela, A.; Halachmi, M.
2015-06-01
The acoustic signature of side-by-side airfoils, subject to small-amplitude harmonic pitching and incoming flow unsteadiness, is investigated. The two-dimensional near-field problem is formulated using thin-airfoil theory, where flow unsteadiness is modeled as a passing line vortex, and wake evolution is calculated via the Brown and Michael formula. Assuming that the setup is acoustically compact, acoustic radiation is obtained by means of the Powell-Howe acoustic analogy. The associated compact Green's function is calculated numerically using potential-flow analysis of the fluid-structure flow domain. Results, comparing the acoustic radiation of the double-airfoil system to a reference case of a single airfoil, point to several mechanisms of sound attenuation and sound amplification, caused by airfoil-airfoil and airfoils-wake interactions. It is found that counter-phase pitching of the airfoils results in effective cloaking of the system, which otherwise becomes significantly noisy (as a 5/2-power of the pitching frequency) at large frequencies. In addition, depending on the distance between airfoils, in-phase pitching may result in an acoustic signature equivalent to a single airfoil (when the airfoils are adjacent) or to two separate airfoils (when the airfoils are far apart). In general, flow unsteadiness produces more sound when interacting with a double (compared with a single) airfoil setup. However, airfoils' nonlinear wake-wake interactions give rise to a sound reduction mechanism, which becomes most efficient at times when incoming vorticity passes above airfoils' leading and trailing edges. The present scheme can be readily extended to consider the acoustic properties of various double-airfoil configurations, as well as multiple (> 2) airfoil setups.
Ice-induced unsteady flowfield effects on airfoil performance
Gurbacki, Holly Marie
Numerical prediction of iced-airfoil performance prior to and at maximum lift is often inaccurate due to large-scale flow unsteadiness. New computational models are being developed to improve predictions of complex separated flowfields; however, experimental data are required to improve and validate these algorithms. The objective of this investigation was to examine the unsteady flow behavior and the time-dependent performance of an iced airfoil to determine the flowfield characteristics with the most influence on airfoil performance, especially near stall. A NACA 0012 airfoil with two-dimensional and three-dimensional leading-edge simulated glaze ice shapes was tested in a wind tunnel at Reynolds numbers 1.8 x 106 and 1.0 x 106. Time-dependent surface pressure measurements were used to calculate root-mean-square lift and quarter-chord pitching-moment coefficients. Surface and flowfield visualization and wake hot-wire data were acquired. Spectral, correlation and phase-angle analyses were performed. The most significant unsteady flowfield effect on the iced-airfoil performance was a low-frequency flow phenomenon on the order of 10 Hz that resulted in Strouhal numbers of 0.0048--0.0101. The low-frequency oscillation produced large-scale pressure fluctuations nears eparation at high angles of attack and elevated lift and moment fluctuations as low as alpha = 4°. The low-frequency motion of surface pressure coefficients convected downstream at velocities 4%--34% of the freestream value and in one case, upstream at 0.18Uinfinity. The iced-airfoil flowfield exhibited a separation bubble of varying thickness and fluctuating reattachment, characteristics similar to those associated with the low-frequency shear-layer flapping and bubble growth and decay of other separated and reattached flows. Vortex structures observed in the shear layer were presumed to be the cause of large-scale pressure fluctuations upstream of reattachment at small angles of attack. Pressure
Vortex Interaction and Roll-Up in Unsteady Flow past Tandem Airfoils
Directory of Open Access Journals (Sweden)
H. Aziz
2016-01-01
Full Text Available A discrete vortex model coupled with a vortex dissipation and vortex core criteria is used to study the unsteady ﬂow past two airfoils in conﬁguration. The unsteady wakes of the airfoils are modeled by discrete vortices and time-stepping is used to predict the individual wake shapes. The coupled ﬂow is solved using a combined zero-normal ﬂow boundary condition and Kelvin condition which result in (2N + 2X(2N + 2 equations. Results are presented showing the eﬀect of airfoil-airfoil and airfoil-wake interaction on the aerodynamic characteristics of the conﬁguration. The eﬀect of relative velocity, rate of pitching and phase-lag are studied on airfoil performance and wake shape is predicted.
Experimental verification of the new RISOe-A1 airfoil family for wind turbines
Energy Technology Data Exchange (ETDEWEB)
Dahl, K.S.; Fuglsang, P.; Antoniou, I. [Risoe National Lab., Roskilde (Denmark)
1999-03-01
This paper concerns the experimental verification of a new airfoil family for wind turbines. The family consist of airfoils in the relative thickness range from 15% to 30%. Three airfoils, Risoe-A1-18, Risoe-A1-21, and Risoe-A1-24 were tested in a wind tunnel. The verification consisted of both static and dynamic measurements. Here, the static results are presented for a Reynolds number of 1.6x10{sup 6} for the following airfoil configurations: smooth surface (all three airfoils) and Risoe-A1-24 mounted with leading edge roughness, vortex generators, and Gurney-flaps, respectively. All three airfoils have constant lift curve slope and almost constant drag coefficient until the maximum lift coefficient of about 1.4 is reached. The experimental results are compared with corresponding computational from the general purpose flow solver, EllipSys2D, showing good agreement. (au)
2011-05-13
sound production from a hydrofoil and identified three mechanisms: (1) low frequency curvature noise associated with interaction of a turbulent...2002). 2 Technical Approach A two-dimensional, dual-slotted, elliptic circulation control airfoil based on the hydrofoil studied by Rogers...airfoil, shown in Figure 1A, is designed based on the geometry of the hydrofoil previously studied by Rogers & Donnelly (2004). The airfoil’s profile
Stability investigation of an airfoil section with active flap control
DEFF Research Database (Denmark)
Bergami, Leonardo; Gaunaa, Mac
2010-01-01
This work presents a method to determine flutter and divergence instability limits for a two-dimensional (2-D) airfoil section fitted with an actively controlled trailing edge flap. This flap consists of a deformable trailing edge, which deformation is governed by control algorithms based...... for fatigue load alleviation. The structural model of the 2-D airfoil section contains three degrees of freedom: heave translation, pitch rotation and flap deflection. A potential flow model provides the aerodynamic forces and their distribution. The unsteady aerodynamics are described using an indicial...... function approximation. Stability of the full aeroservoelastic system is determined through eigenvalue analysis by state-space formulation of the indicial approximation. Validation is carried out against an implementation of the recursive method by Theodorsen and Garrick for flexure-torsion-aileron flutter...
Control theory based airfoil design using the Euler equations
Jameson, Antony; Reuther, James
1994-01-01
This paper describes the implementation of optimization techniques based on control theory for airfoil design. In our previous work it was shown that control theory could be employed to devise effective optimization procedures for two-dimensional profiles by using the potential flow equation with either a conformal mapping or a general coordinate system. The goal of our present work is to extend the development to treat the Euler equations in two-dimensions by procedures that can readily be generalized to treat complex shapes in three-dimensions. Therefore, we have developed methods which can address airfoil design through either an analytic mapping or an arbitrary grid perturbation method applied to a finite volume discretization of the Euler equations. Here the control law serves to provide computationally inexpensive gradient information to a standard numerical optimization method. Results are presented for both the inverse problem and drag minimization problem.
A Theory of Unstaggered Airfoil Cascades in Compressible Flow
Spurr, Robert A.; Allen, H. Julian
1947-01-01
By use of the methods of thin airfoil theory, which include effects of compressibility, rela.tio^as are developed which permit the rapid determination of the pressure distribution over an unstaggered cascade of airfoils of a given profile, and the determination of the profile shape necessary to yield a given pressure distribution for small chord gap ratios, For incompressible flow the results of the theory are compared with available examples obtained by the more exact method of conformal transformation. Although the theory is developed for small chord/gap ratios, these comparisons show that it may be extended to chord/gap ratios of order unity, at least for low speed flows. Choking of cascades, a phenomenon of particular importance in compressor design, is considered.
Unsteady 2D potential-flow forces on a thin variable geometry airfoil undergoing arbitrary motion
DEFF Research Database (Denmark)
Gaunaa, M.
2006-01-01
In this report analytical expressions for the unsteady 2D force distribution on a variable geometry airfoil undergoing arbitrary motion are derived under the assumption of incompressible, irrotational, inviscid flow. The airfoil is represented by itscamberline as in classic thin-airfoil theory...... of the present theory in problems employing the eigenvalue approach, such as stabilityanalysis. The analytical expressions for the forces simplify to all previously known steady and unsteady thin-airfoil solutions. Apart from the obvious applications within active load control/reduction, the current theory can...
Inverse airfoil design procedure using a multigrid Navier-Stokes method
Malone, J. B.; Swanson, R. C.
1991-01-01
The Modified Garabedian McFadden (MGM) design procedure was incorporated into an existing 2-D multigrid Navier-Stokes airfoil analysis method. The resulting design method is an iterative procedure based on a residual correction algorithm and permits the automated design of airfoil sections with prescribed surface pressure distributions. The new design method, Multigrid Modified Garabedian McFadden (MG-MGM), is demonstrated for several different transonic pressure distributions obtained from both symmetric and cambered airfoil shapes. The airfoil profiles generated with the MG-MGM code are compared to the original configurations to assess the capabilities of the inverse design method.
Oscillatory Behavior of an Arc Airfoil in Low-Speed Airflow
Molki, Majid; Sattari, Negin
2011-11-01
A computational investigation is conducted to study the oscillatory behavior of an arc airfoil situated in low-speed airflow. The present work is relevant to situations where the conventional rigid airfoils do not apply, such as the flight of bats. The outcome of this study is also beneficial in the design of micro air vehicles with flexible wings. The computations are performed using a deforming mesh to accommodate the airfoil oscillations. An unsteady, spatially second-order algorithm is employed to capture the time-variations of the lift and drag coefficients. A key feature of the present work is the flow response to airfoil oscillations. Fast Fourier Transform was applied to various parameters of the flow. For certain values of angle of attack for the non-oscillating airfoil, the flow has a dominant frequency and a well-defined vortex shedding. For other values of angle of attack, the flow around the non-oscillating airfoil contains many frequencies and has complex vortical structures. However, the oscillating airfoil in all cases makes the flow field periodic with well-defined patterns of vortex shedding. In this work, the flux of vorticity from the airfoil surface into the airflow is computed and compared with the pressure gradient along the surface of the airfoil. Effects of oscillations on magnitude and behavior of aerodynamic forces are also studied.
Characterization of the Flow Separation of a Variable Camber Airfoil
Institute of Scientific and Technical Information of China (English)
YANG Wen-Chao; WANG Hui; YANG Jian-Ting; YANG Ji-Ming
2012-01-01
An experimental investigation is carried out to study the How separation behaviors of a variable camber airfoil. The aerodynamic load measurements and related flow visualization show that there are two types of stalls caused by the deformation on the camber: the leading-edge stall and the trailing-edge stall. Static measurements of aerodynamic force show a drastic leading-edge stall, while the serial measurements on an airfoil with camber deformation illustrate a trailing-edge stall and gradual bending-over on the aerodynamic coefficient curve. Under flow separation circumstances, the Bow structure is related not only to current boundary conditions, but also the previous flow characteristics, so the quasi-steady aerodynamic characteristics are significantly distinct from those of the static measurements.%An experimental investigation is carried out to study the flow separation behaviors of a variable camber airfoil.The aerodynamic load measurements and related flow visualization show that there are two types of stalls caused by the deformation on the camber:the leading-edge stall and the trailing-edge stall.Static measurements of aerodynamic force show a drastic leading-edge stall,while the serial measurements on an airfoil with camber deformation illustrate a trailing-edge stall and gradual bending-over on the aerodynamic coefficient curve.Under flow separation circumstances,the flow structure is related not only to current boundary conditions,but also the previous flow characteristics,so the quasi-steady aerodynamic characteristics are significantly distinct from those of the static measurements.
Leading-Edge "Pop-Up" Spoiler For Airfoil
Wilson, John C.; Lance, Michael B.
1991-01-01
New concept places spoiler in leading edge of airfoil, hinged along its trailing edge, so airflow helps to deploy it and force it against mechanical stop. Deployed "pop-up" spoiler quickly eliminates almost all aerodynamic lift of stabilator. Designed to be added to leading edge of existing stabilator, without major rework. Though initial application to be on helicopter stabilators, equally applicable to wings or winglike components.
The S411, S412, and S413 Airfoils
2010-08-01
not as low as at point A, unlike the polars of many laminar-flow airfoils where the drag coefficient within the laminar bucket is nearly constant...in a leading edge that produces a suction peak at higher lift coefficients, which ensures that tran- sition on the upper surface will occur very near...the pressure distribution should look like sketch 3. Sketch 3 No suction peak exists at the leading edge. Instead, a rounded peak occurs aft of the
Design and Experimental Results for the S415 Airfoil
2010-08-01
polars of many laminar-flow airfoils where the drag coefficient within the laminar bucket is nearly constant. (See, for example, ref. 8.) This... suction peak at higher lift coefficients, which ensures that transition on the upper surface will occur very near the leading edge. Thus, the...pressure distribution should look like sketch 3. Sketch 3 No suction peak exists at the leading edge. Instead, a moderately adverse pressure
Design and Experimental Results for the S411 Airfoil
2010-08-01
unlike the polars of many laminar-flow airfoils where the drag coefficient within the laminar bucket is nearly constant. (See, for example, ref. 8...produces a suction peak at higher lift coefficients, which ensures that tran- sition on the upper surface will occur very near the leading edge. Thus...like sketch 3. Sketch 3 No suction peak exists at the leading edge. Instead, a rounded peak occurs aft of the leading edge, which allows some laminar
Design and Experimental Results for the S406 Airfoil
2010-08-01
point B is not as low as at point A, unlike the polars of many laminar-flow airfoils where the drag coefficient within the laminar bucket is nearly...in a leading edge that produces a suction peak at higher lift coefficients, which ensures that transition on the upper surface will occur very near...3. Sketch 3 No suction peak exists at the leading edge. Instead, a rounded peak occurs aft of the leading edge, which allows some laminar flow
Trailing Edge Noise Model Validation and Application to Airfoil Optimization
DEFF Research Database (Denmark)
Bertagnolio, Franck; Aagaard Madsen, Helge; Bak, Christian
2010-01-01
The aim of this article is twofold. First, an existing trailing edge noise model is validated by comparing with airfoil surface pressure fluctuations and far field sound pressure levels measured in three different experiments. The agreement is satisfactory in one case but poor in two other cases...... across the boundary layer near the trailing edge and to a lesser extent by a smaller boundary layer displacement thickness. ©2010 American Society of Mechanical Engineers...
Simulasi Numerik Dynamic Stall Pada Airfoil Yang Berosilasi
Directory of Open Access Journals (Sweden)
Galih S.T.A. Bangga
2012-09-01
Full Text Available Kebutuhan analisa pada sudu helikopter, kompresor, kincir angin dan struktur streamline lainya yang beroperasi pada angle of attack yang tinggi dan melibatkan instationary effects yang disebut dynamic stall menjadi semakin penting. Fenomena ini ditandai dengan naiknya dynamic lift melewati static lift maksimum pada critical static stall angle, vortex yang terbentuk pada leading edge mengakibatkan naiknya suction contribution yang kemudian terkonveksi sepanjang permukaan hingga mencapai trailling edge diikuti terbentuknya trailling edge vortex yang menunjukkan terjadinya lift stall. Fenomena ini sangat berbahaya terhadap struktur airfoil itu sendiri. Secara umum, beban fatique yang ditimbulkan oleh adanya efek histerisis karena fluktuasi gaya lift akibat induksi vibrasi lebih besar dibandingkan kondisi statis. Simulasi numerik dilakukan secara 2D dengan menggunakan profil Boeing-Vertol V23010-1.58 pada α0 = 14.92°. Standard-kω dan SST-kω digunakan sebagai URANS turbulence modelling. Model osilasi dari airfoil disusun dalam suatu user defined function (UDF. Gerakan meshing beserta airfoil diakomodasi dengan menggunakan dynamic mesh approach. Simulasi numerik menunjukkan bahwa, model SST-kω menunjukkan performa yang lebih baik dibandingkan dengan Standard-kω. Fenomena travelling vortex yang terjadi mampu ditangkap dengan baik, meski pada angle of attack yang tinggi URANS turbulence model gagal memprediksikan fenomena yang terjadi karena dominasi efek 3D.
Aerodynamic Control of a Pitching Airfoil by Distributed Bleed Actuation
Kearney, John; Glezer, Ari
2013-11-01
The aerodynamic forces and moments on a dynamically pitching 2-D airfoil model are controlled in wind tunnel experiments using distributed active bleed. Bleed flow on the suction surface downstream of the leading edge is driven by pressure differences across the airfoil and is regulated by low-power louver actuators. The bleed interacts with cross flows to effect time-dependent variations of the vorticity flux and thereby alters the local flow attachment, resulting in significant changes in pre- and post-stall lift and pitching moment (over 50% increase in baseline post-stall lift). The flow field over the airfoil is measured using high-speed (2000 fps) PIV, resolving the dynamics and characteristic time-scales of production and advection of vorticity concentrations that are associated with transient variations in the aerodynamic forces and moments. In particular, it is shown that the actuation improves the lift hysteresis and pitch stability during the oscillatory pitching by altering the evolution of the dynamic stall vortex and the ensuing flow attachment during the downstroke. Supported by the Rotorcraft Center (VLRCOE) at Georgia Tech.
Prediction of Film Cooling on Gas Turbine Airfoils
Garg, Vijay K.; Gaugler, Raymond E.
1994-01-01
A three-dimensional Navier-Stokes analysis tool has been developed in order to study the effect of film cooling on the flow and heat transfer characteristics of actual turbine airfoils. An existing code (Arnone et al., 1991) has been modified for the purpose. The code is an explicit, multigrid, cell-centered, finite volume code with an algebraic turbulence model. Eigenvalue scaled artificial dissipation and variable-coefficient implicit residual smoothing are used with a full-multigrid technique. Moreover, Mayle's transition criterion (Mayle, 1991) is used. The effects of film cooling have been incorporated into the code in the form of appropriate boundary conditions at the hole locations on the airfoil surface. Each hole exit is represented by several control volumes, thus providing an ability to study the effect of hole shape on the film-cooling characteristics. Comparison is fair with near mid-span experimental data for four and nine rows of cooling holes, five on the shower head, and two rows each on the pressure and suction surfaces. The computations, however, show a strong spanwise variation of the heat transfer coefficient on the airfoil surface, specially with shower-head cooling.
RANS Simulations of Aerodynamic Performance of NACA 0015 Flapped Airfoil
Directory of Open Access Journals (Sweden)
Sohaib Obeid
2017-01-01
Full Text Available An analysis of 2D subsonic flow over an NACA 0015 airfoil with a 30% trailing edge flap at a constant Reynolds number of 106 for various incidence angles and a range of flap deflections is presented. The steady-state governing equations of continuity and momentum conservation are solved combined with the realizable k-ε turbulence model using the ANSYS-Fluent code (Version 13.7, ANSYS, Inc., Canonsburg, PA, USA. The primary objective of the study is to provide a comprehensive understanding of flow characteristics around the NACA 0015 airfoil as a function of the angle of attack and flap deflection at Re = 106 using the realizable k-ε turbulence model. The results are validated through comparison of the predictions with the free field experimental measurements. Consistent with the experimental observations, the numerical results show that increased flap deflections increase the maximum lift coefficient, move the zero-lift angle of attack (AoA to a more negative value, decrease the stall AoA, while the slope of the lift curve remains unchanged and the curve just shifts upwards. In addition, the numerical simulations provide limits for lift increment Δ C l and Cl, max values to be 1.1 and 2.2, respectively, obtained at a flap deflection of 50°. This investigation demonstrates that the realizable k-ε turbulence model is capable of predicting flow features over an airfoil with and without flap deflections with reasonable accuracy.
Performance Trades Study for Robust Airfoil Shape Optimization
Li, Wu; Padula, Sharon
2003-01-01
From time to time, existing aircraft need to be redesigned for new missions with modified operating conditions such as required lift or cruise speed. This research is motivated by the needs of conceptual and preliminary design teams for smooth airfoil shapes that are similar to the baseline design but have improved drag performance over a range of flight conditions. The proposed modified profile optimization method (MPOM) modifies a large number of design variables to search for nonintuitive performance improvements, while avoiding off-design performance degradation. Given a good initial design, the MPOM generates fairly smooth airfoils that are better than the baseline without making drastic shape changes. Moreover, the MPOM allows users to gain valuable information by exploring performance trades over various design conditions. Four simulation cases of airfoil optimization in transonic viscous ow are included to demonstrate the usefulness of the MPOM as a performance trades study tool. Simulation results are obtained by solving fully turbulent Navier-Stokes equations and the corresponding discrete adjoint equations using an unstructured grid computational fluid dynamics code FUN2D.
Aerodynamics Investigation of Faceted Airfoils at Low Reynolds Number
Napolillo, Zachary G.
The desire and demand to fly farther and faster has progressively integrated the concept of optimization with airfoil design, resulting in increasingly complex numerical tools pursuing efficiency often at diminishing returns; while the costs and difficulty associated with fabrication increases with design complexity. Such efficiencies may often be necessary due to the power density limitations of certain aircraft such as small unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs). This research, however, focuses on reducing the complexity of airfoils for applications where aerodynamic performance is less important than the efficiency of manufacturing; in this case a Hybrid Projectile. By employing faceted sections to approximate traditional contoured wing sections it may be possible to expedite manufacturing and reduce costs. We applied this method to the development of a low Reynolds number, disposable Hybrid Projectile requiring a 4.5:1 glide ratio, resulting in a series of airfoils which are geometric approximations to highly contoured cross-sections called ShopFoils. This series of airfoils both numerically and experimentally perform within a 10% margin of the SD6060 airfoil at low Re. Additionally, flow visualization has been conducted to qualitatively determine what mechanisms, if any, are responsible for the similarity in performance between the faceted ShopFoil sections and the SD6060. The data obtained by these experiments did not conclusively reveal how the faceted surfaces may influence low Re flow but did indicate that the ShopFoil s did not maintain flow attachment at higher angles of attack than the SD6060. Two reasons are provided for the unexpected performance of the ShopFoil: one is related to downwash effects, which are suspected of placing the outer portion of the span at an effective angle of attack where the ShopFoils outperform the SD6060; the other is the influence of the tip vortex on separation near the wing tips, which possibly
Russian Laminar Flow Airfoils 3rd Part: Measurements on the Profile No. 2315 BIS with Ava-Nose Flap
Riegels, F.
1947-01-01
The tests on the Russian airfoil 2315 Bis were continued. This airfoil shows, according to Moscow tests, good laminar flow characteristics. Several tests were prepared in the large wind tunnel at Gottingen; partial results were obtained.
DEFF Research Database (Denmark)
Chougule, Prasad; Nielsen, Søren R.K.
2014-01-01
been made to utilize high lift technology for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double-element airfoil mainly used in aeroplane wing design. In this current work a low Reynolds number airfoil is selected to design a double-element airfoil blade......Nowadays, small vertical axis wind turbines are receiving more attention due to their suitability in micro-electricity generation. There are few vertical axis wind turbine designs with good power curve. However, the efficiency of power extraction has not been improved. Therefore, an attempt has...... for use in vertical axis wind turbine to improve the power efficiency. Double-element airfoil blade design consists of a main airfoil and a slat airfoil. Orientation of slat airfoil is a parameter of investigation in this paper and air flow simulation over double-element airfoil. With primary wind tunnel...
Thick airfoil designs for the root of the 10MW INNWIND.EU wind turbine
Mu≁oz, A.; Méndez, B.; Munduate, X.
2016-09-01
The main objective of the “INNWIND.EU” project is to investigate and demonstrate innovative designs for 10-20MW offshore wind turbines and their key components, such as lightweight rotors. In this context, the present paper describes the development of two new airfoils for the blade root region. From the structural point of view, the root is the region in charge of transmitting all the loads of the blade to the hub. Thus, it is very important to include airfoils with adequate structural properties in this region. The present article makes use of high-thickness and blunt trailing edge airfoils to improve the structural characteristics of the airfoils used to build this blade region. CENER's (National Renewable Energy Center of Spain) airfoil design tool uses the airfoil software XFOIL to compute the aerodynamic characteristics of the designed airfoils. That software is based on panel methods which show some problems with the calculation of airfoils with thickness bigger than 35% and with blunt trailing edge. This drawback has been overcome with the development of an empirical correction for XFOIL lift and drag prediction based on airfoil experiments. From the aerodynamic point of view, thick airfoils are known to be very sensitive to surface contamination or turbulent inflow conditions. Consequently, the design optimization takes into account the aerodynamic torque in both clean and contaminated conditions. Two airfoils have been designed aiming to improve the structural and the aerodynamic behaviour of the blade in clean and contaminated conditions. This improvement has been corroborated with Blade Element Momentum (BEM) computations.
Design and Experimental Validation of Thick Airfoils for Large Wind Turbines
DEFF Research Database (Denmark)
Hrgovan, Iva; Shen, Wen Zhong; Zhu, Wei Jun
2015-01-01
In this chapter, two new airfoils with thickness to chord ratios of 30 and 36 % are presented, which were designed with an objective of good aerodynamic and structural features. Airfoil design is based on a direct method using shape perturbation function. The optimization algorithm is coupled wit...
Hybrid immersed boundary method for airfoils with a trailing-edge flap
DEFF Research Database (Denmark)
Zhu, Wei Jun; Behrens, Tim; Shen, Wen Zhong;
2013-01-01
In this paper, a hybrid immersed boundary technique has been developed for simulating turbulent flows past airfoils with moving trailing-edge flaps. Over the main fixed part of the airfoil, the equations are solved using a standard body-fitted finite volume technique, whereas the moving trailing-...
A Numerical Study of Aerodynamic Performance and Noise of a Bionic Airfoil Based on Owl Wing
Directory of Open Access Journals (Sweden)
Xiaomin Liu
2014-08-01
Full Text Available Noise reduction and efficiency enhancement are the two important directions in the development of the multiblade centrifugal fan. In this study, we attempt to develop a bionic airfoil based on the owl wing and investigate its aerodynamic performance and noise-reduction mechanism at the relatively low Reynolds number. Firstly, according to the geometric characteristics of the owl wing, a bionic airfoil is constructed as the object of study at Reynolds number of 12,300. Secondly, the large eddy simulation (LES with the Smagorinsky model is adopted to numerically simulate the unsteady flow fields around the bionic airfoil and the standard NACA0006 airfoil. And then, the acoustic sources are extracted from the unsteady flow field data, and the Ffowcs Williams-Hawkings (FW-H equation based on Lighthill's acoustic theory is solved to predict the propagation of these acoustic sources. The numerical results show that the lift-to-drag ratio of bionic airfoil is higher than that of the traditional NACA 0006 airfoil because of its deeply concave lower surface geometry. Finally, the sound field of the bionic airfoil is analyzed in detail. The distribution of the A-weighted sound pressure levels, the scaled directivity of the sound, and the distribution of dP/dt on the airfoil surface are provided so that the characteristics of the acoustic sources could be revealed.
Study of laminar boundary layer instability noise study on a controlled diffusion airfoil
Jaiswal, Prateek; Sanjose, Marlene; Moreau, Stephane
2016-11-01
Detailed experimental study has been carried out on a Controlled Diffusion (CD) airfoil at 5° angle of attack and at chord based Reynolds number of 1 . 5 ×105 . All the measurements were done in an open-jet anechoic wind tunnel. The airfoil mock-up is held between two side plates, to keep the flow two-dimensional. PIV measurements have been performed in the wake and on the boundary layer of the airfoil. Pressure sensor probes on the airfoil were used to detect mean airfoil loading and remote microphone probes were used to measure unsteady pressure fluctuations on the surface of the airfoil. Furthermore the far field acoustic pressure was measured using an 1/2 inch ICP microphone. The results confirm very later transition of a laminar boundary layer to a turbulent boundary layer on the suction side of the airfoil. The process of transition of laminar to turbulent boundary layer comprises of turbulent reattachment of a separated shear layer. The pressure side of the boundary layer is found to be laminar and stable. Therefore tonal noise generated is attributed to events on suction side of the airfoil. The flow transition and emission of tones are further investigated in detail thanks to the complementary DNS study.
Airfoil-shaped micro-mixers for reducing fouling on membrane surfaces
Ho, Clifford K; Altman, Susan J; Clem, Paul G; Hibbs, Michael; Cook, Adam W
2012-10-23
An array of airfoil-shaped micro-mixers that enhances fluid mixing within permeable membrane channels, such as used in reverse-osmosis filtration units, while minimizing additional pressure drop. The enhanced mixing reduces fouling of the membrane surfaces. The airfoil-shaped micro-mixer can also be coated with or comprised of biofouling-resistant (biocidal/germicidal) ingredients.
Experimental benchmark and code validation for airfoils equipped with passive vortex generators
DEFF Research Database (Denmark)
Baldacchino, D.; Manolesos, M.; Ferreira, Célia Maria Dias;
2016-01-01
Experimental results and complimentary computations for airfoils with vortex generators are compared in this paper, as part of an effort within the AVATAR project to develop tools for wind turbine blade control devices. Measurements from two airfoils equipped with passive vortex generators, a 30%...
Cost Reduction of Large Eddy Simulation of Airfoils in Turbulent Inflow
DEFF Research Database (Denmark)
Gilling, Lasse; Sørensen, Niels; Rethore, Pierre-Elouan
2009-01-01
This paper discusses simulations of airfoil flows by use of computational fluid dynamics. In recent work large eddy simulations (LES) of airfoil flows have proved superior to detached eddy simulations (DES); by resolving the inflow turbulence the agreement with experiments is improved. The scope...
Modelling of unsteady airfoil aerodynamics for the prediction of blade standstill vibrations
DEFF Research Database (Denmark)
Skrzypinski, Witold Robert; Gaunaa, Mac; Sørensen, Niels N.;
2012-01-01
In the present work, CFD simulations of the DU96-W-180 airfoil at 26 and 24 deg. angles of attack were performed. 2D RANS and 3D DES computations with non-moving and prescribed motion airfoil suspensions were carried out. The openings of the lift coefficient loops predicted by CFD were different...
A semi-empirical airfoil stall noise model based on surface pressure measurements
DEFF Research Database (Denmark)
Bertagnolio, Franck; Aagaard Madsen, Helge; Fischer, Andreas
2017-01-01
This work is concerned with the experimental study of airfoil stall and the modelling of stall noise. Using pressure taps and high-frequency surface pressure microphones flush-mounted on airfoils measured in wind tunnels and on an operating wind turbine blade, the characteristics of stall are ana...
PIV MEASUREMENTS OF THE NEAR-WAKE FLOW OF AN AIRFOIL ABOVE A FREE SURFACE
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The near-wake flow of a NACA0012 airfoils mounted above a water surface were experimentally studied in a wind/wave tunnel. The main objective of this study is to investigate the influence of the free surface on the structure of the airfoil trailing wake. The flow structure was measured with different ride heights between the airfoil and free surface using a Particle Image Velocimetry (PIV) system. The Reynolds number based on the chord length of the airfoil was about 3.5×103. For each experimental condition, large amount of instantaneous velocity fields were captured and ensemble-averaged to get the spatial distributions of mean velocity and mean vorticity, as well as turbulence statistics. The results show that the flow structures of the airfoil wake varies remarkably with the change in the ride height.
The shock tube as a device for testing transonic airfoils at high Reynolds numbers
Cook, W. J.; Presley, L. L.; Chapman, G. T.
1978-01-01
A performance analysis of gas-driven shock tubes shows that transonic airfoil flows with chord Reynolds numbers in the range of 100 million can be generated behind the primary shock in a large shock tube. A study of flow over simple airfoils has been carried out at low and intermediate Reynolds numbers to assess the testing technique. Results obtained from schlieren photos and airfoil pressure measurements show that steady transonic flows similar to those observed for the airfoils in wind tunnels can be generated within the available testing time in a shock tube with either properly-contoured test section walls or a properly-designed slotted-wall test section. The study indicates that the shock tube is a useful facility for studying two-dimensional high Reynolds number transonic airfoil flows.
A study of test section configuration for shock tube testing of transonic airfoils
Cook, W. J.
1978-01-01
Two methods are investigated for alleviating wall interference effects in a shock tube test section intended for testing two-dimensional transonic airfoils. The first method involves contouring the test section walls to match approximate streamlines in the flow. Contours are matched to each airfoil tested to produce results close to those obtained in a conventional wind tunnel. Data from a previous study and the present study for two different airfoils demonstrate that useful results are obtained in a shock tube using a test section with contoured walls. The second method involves use of a fixed-geometry slotted-wall test section to provide automatic flow compensation for various airfoils. The slotted-wall test section developed exhibited the desired performance characteristics in the approximate Mach number range 0.82 to 0.89, as evidenced by good agreement obtained between shock tube and wind tunnel results for several airfoil flows.
Rashid, J. M.; Freling, M.; Friedrich, L. A.
1987-01-01
The ability of coatings to provide at least a 2X improvement in particulate erosion resistance for steel, nickel and titanium compressor airfoils was identified and demonstrated. Coating materials evaluated included plasma sprayed cobalt tungsten carbide, nickel carbide and diffusion applied chromium plus boron. Several processing parameters for plasma spray processing and diffusion coating were evaluated to identify coating systems having the most potential for providing airfoil erosion resistance. Based on laboratory results and analytical evaluations, selected coating systems were applied to gas turbine blades and evaluated for surface finish, burner rig erosion resistance and effect on high cycle fatigue strength. Based on these tests, the following coatings were recommended for engine testing: Gator-Gard plasma spray 88WC-12Co on titanium alloy airfoils, plasma spray 83WC-17Co on steel and nickel alloy airfoils, and Cr+B on nickel alloy airfoils.
Airfoil shape optimization using non-traditional optimization technique and its validation
Directory of Open Access Journals (Sweden)
R. Mukesh
2014-07-01
Full Text Available Computational fluid dynamics (CFD is one of the computer-based solution methods which is more widely employed in aerospace engineering. The computational power and time required to carry out the analysis increase as the fidelity of the analysis increases. Aerodynamic shape optimization has become a vital part of aircraft design in the recent years. Generally if we want to optimize an airfoil we have to describe the airfoil and for that, we need to have at least hundred points of x and y co-ordinates. It is really difficult to optimize airfoils with this large number of co-ordinates. Nowadays many different schemes of parameter sets are used to describe general airfoil such as B-spline, and PARSEC. The main goal of these parameterization schemes is to reduce the number of needed parameters as few as possible while controlling the important aerodynamic features effectively. Here the work has been done on the PARSEC geometry representation method. The objective of this work is to introduce the knowledge of describing general airfoil using twelve parameters by representing its shape as a polynomial function. And also we have introduced the concept of Genetic Algorithm to optimize the aerodynamic characteristics of a general airfoil for specific conditions. A MATLAB program has been developed to implement PARSEC, Panel Technique, and Genetic Algorithm. This program has been tested for a standard NACA 2411 airfoil and optimized to improve its coefficient of lift. Pressure distribution and co-efficient of lift for airfoil geometries have been calculated using the Panel method. The optimized airfoil has improved co-efficient of lift compared to the original one. The optimized airfoil is validated using wind tunnel data.
Unsteady airfoil flows with application to aeroelastic stability
Energy Technology Data Exchange (ETDEWEB)
Johansen, Jeppe
1999-09-01
The present report describes numerical investigation of two-dimensional unsteady airfoil flows with application to aeroelastic stability. The report is divided in two parts. Part A describes the purely aerodynamic part, while Part B includes the aeroelastic part. In Part A a transition prediction algorithm based on a simplified version of the e{sup n} method is proposed. Laminar Boundary Layer instability data are stored in a database from which stability characteristics can be extracted by interpolation. Input to the database are laminar integral boundary layer parameters. These are computed from an integral boundary layer formulation coupled to a Navier-Stokes flow solver. Five different airfoils are considered at fixed angle of attack, and the flow is computed assuming both fully turbulent and transitional flow and compared with experimental data. Results indicate that using a transition model the drag prediction is improved considerably. Also the lift is slightly improved. At high angles of attack transition will affect leading edge separation which again will affect the overall vortex shedding. If the transition point is not properly predicted this will affect the whole hysteresis curve. The transition model developed in the present work showed more stable predictions compared to the empirical transition model. In Part B a simple three degrees-of-freedom (DOF) structural dynamics model is developed and coupled to the aerodynamics models from Part A. A 2nd order accurate time integration scheme is used to solve the equations of motion. Two airfoils are investigated. The aeroelastic models predict stable conditions well at low angle of attack. But at high angles of attack, and where unstable behaviour is expected, only the Navier-Stokes solver predict correct aeroelastic response. The semi-empirical dynamic stall model does not predict vortex shedding and moment correctly leading to an erroneous aerodynamic damping. (au) 5 tabs.; 55 ills., 52 refs.
Unsteady Thick Airfoil Aerodynamics: Experiments, Computation, and Theory
Strangfeld, C.; Rumsey, C. L.; Mueller-Vahl, H.; Greenblatt, D.; Nayeri, C. N.; Paschereit, C. O.
2015-01-01
An experimental, computational and theoretical investigation was carried out to study the aerodynamic loads acting on a relatively thick NACA 0018 airfoil when subjected to pitching and surging, individually and synchronously. Both pre-stall and post-stall angles of attack were considered. Experiments were carried out in a dedicated unsteady wind tunnel, with large surge amplitudes, and airfoil loads were estimated by means of unsteady surface mounted pressure measurements. Theoretical predictions were based on Theodorsen's and Isaacs' results as well as on the relatively recent generalizations of van der Wall. Both two- and three-dimensional computations were performed on structured grids employing unsteady Reynolds-averaged Navier-Stokes (URANS). For pure surging at pre-stall angles of attack, the correspondence between experiments and theory was satisfactory; this served as a validation of Isaacs theory. Discrepancies were traced to dynamic trailing-edge separation, even at low angles of attack. Excellent correspondence was found between experiments and theory for airfoil pitching as well as combined pitching and surging; the latter appears to be the first clear validation of van der Wall's theoretical results. Although qualitatively similar to experiment at low angles of attack, two-dimensional URANS computations yielded notable errors in the unsteady load effects of pitching, surging and their synchronous combination. The main reason is believed to be that the URANS equations do not resolve wake vorticity (explicitly modeled in the theory) or the resulting rolled-up un- steady flow structures because high values of eddy viscosity tend to \\smear" the wake. At post-stall angles, three-dimensional computations illustrated the importance of modeling the tunnel side walls.
CFD code comparison for 2D airfoil flows
DEFF Research Database (Denmark)
Sørensen, Niels N.; Méndez, B.; Muñoz, A.
2016-01-01
The current paper presents the effort, in the EU AVATAR project, to establish the necessary requirements to obtain consistent lift over drag ratios among seven CFD codes. The flow around a 2D airfoil case is studied, for both transitional and fully turbulent conditions at Reynolds numbers of 3...... × 106 and 15 × 106. The necessary grid resolution, domain size, and iterative convergence criteria to have consistent results are discussed, and suggestions are given for best practice. For the fully turbulent results four out of seven codes provide consistent results. For the laminar...
The S407, S409, and S410 Airfoils
2010-08-01
coefficient at point B is not as low as at point A, unlike the polars of many laminar-flow airfoils where the drag coefficient within the laminar bucket is...feature results in a leading-edge shape that produces a suction peak at higher lift coefficients, which ensures that transition on the upper surface...like sketch 3. Sketch 3 No suction peak exists at the leading edge. Instead, a rounded peak occurs aft of the leading edge, which allows some laminar
An inverse method with regularity condition for transonic airfoil design
Zhu, Ziqiang; Xia, Zhixun; Wu, Liyi
1991-01-01
It is known from Lighthill's exact solution of the incompressible inverse problem that in the inverse design problem, the surface pressure distribution and the free stream speed cannot both be prescribed independently. This implies the existence of a constraint on the prescribed pressure distribution. The same constraint exists at compressible speeds. Presented here is an inverse design method for transonic airfoils. In this method, the target pressure distribution contains a free parameter that is adjusted during the computation to satisfy the regularity condition. Some design results are presented in order to demonstrate the capabilities of the method.
A dynamic stall model for airfoils with deformable trailing edges
DEFF Research Database (Denmark)
Andersen, Peter Bjørn; Gaunaa, Mac; Bak, Christian;
2009-01-01
, lead-lag, pitch, trailing-edge flapping. In the linear region, the model reduces to the inviscid model, which includes the aerodynamic effect of a thin airfoil with a deformable camberline in inviscid flow. Therefore, the proposed model can be considered a crossover between the work of Gaunaa...... for the attached flow region and Hansen et al. The model is compared qualitatively to wind tunnel measurements of a Riso/ B1-18 blade section equipped with deformable trailing-edge flap devices in the form of piezoelectric devices. Copyright © 2009 John Wiley & Sons, Ltd....
Uncertainty Quantification for Airfoil Icing using Polynomial Chaos Expansions
DeGennaro, Anthony M; Martinelli, Luigi
2014-01-01
The formation and accretion of ice on the leading edge of a wing can be detrimental to airplane performance. Complicating this reality is the fact that even a small amount of uncertainty in the shape of the accreted ice may result in a large amount of uncertainty in aerodynamic performance metrics (e.g., stall angle of attack). The main focus of this work concerns using the techniques of Polynomial Chaos Expansions (PCE) to quantify icing uncertainty much more quickly than traditional methods (e.g., Monte Carlo). First, we present a brief survey of the literature concerning the physics of wing icing, with the intention of giving a certain amount of intuition for the physical process. Next, we give a brief overview of the background theory of PCE. Finally, we compare the results of Monte Carlo simulations to PCE-based uncertainty quantification for several different airfoil icing scenarios. The results are in good agreement and confirm that PCE methods are much more efficient for the canonical airfoil icing un...
Evaluation of Icing Scaling on Swept NACA 0012 Airfoil Models
Tsao, Jen-Ching; Lee, Sam
2012-01-01
Icing scaling tests in the NASA Glenn Icing Research Tunnel (IRT) were performed on swept wing models using existing recommended scaling methods that were originally developed for straight wing. Some needed modifications on the stagnation-point local collection efficiency (i.e., beta(sub 0) calculation and the corresponding convective heat transfer coefficient for swept NACA 0012 airfoil models have been studied and reported in 2009, and the correlations will be used in the current study. The reference tests used a 91.4-cm chord, 152.4-cm span, adjustable sweep airfoil model of NACA 0012 profile at velocities of 100 and 150 knot and MVD of 44 and 93 mm. Scale-to-reference model size ratio was 1:2.4. All tests were conducted at 0deg angle of attack (AoA) and 45deg sweep angle. Ice shape comparison results were presented for stagnation-point freezing fractions in the range of 0.4 to 1.0. Preliminary results showed that good scaling was achieved for the conditions test by using the modified scaling methods developed for swept wing icing.
Implementation of CPFD to Control Active and Passive Airfoil Propulsion
Young, Jay; Asselin, Daniel; Williamson, Charles
2016-11-01
The fluid dynamics of biologically-inspired flapping propulsion provides a fertile testing ground for the field of unsteady aerodynamics, serving as important groundwork for the design and development of fast, mobile underwater vehicles and flapping-wing micro air vehicles (MAVs). There has been a recent surge of interest in these technologies as they provide low cost, compact, and maneuverable means for terrain mapping, search and rescue operations, and reconnaissance. Propulsion by unsteady motions has been fundamentally modeled with an airfoil that heaves and pitches, and previous work has been done to show that actively controlling these motions can generate high thrust and efficiency (Read, Hover & Triantafyllou 2003). In this study, we examine the performance of an airfoil with an actuated heave motion coupled with a passively controlled pitch motion created by simulating the presence of a torsional spring using our cyber-physical fluid dynamics (CPFD) approach (Mackowski & Williamson 2011, 2015, 2016). By using passively controlled pitch, we have effectively eliminated an actuator, decreasing cost and mass, an important step for developing efficient vehicles. In many cases, we have achieved comparable or superior thrust and efficiency values to those obtained using two actively controlled degrees of freedom. This work was supported by the National Science Foundation and the Air Force Office of Scientific Research Grant No. FA9550-15-1-0243, monitored by Dr. Douglas Smith.
A strong viscous–inviscid interaction model for rotating airfoils
DEFF Research Database (Denmark)
Ramos García, Néstor; Sørensen, Jens Nørkær; Shen, Wen Zhong
2014-01-01
a boundary-layer trip or computed using an en envelope transition method. Validation of the incompressible 2D version of the code is carried out against measurements and other numerical codes for different airfoil geometries at various Reynolds numbers, ranging from 0.9 ⋅ 106 to 8.2 ⋅ 106. In the quasi-3D......Two-dimensional (2D) and quasi-three dimensional (3D), steady and unsteady, viscous–inviscid interactive codes capable of predicting the aerodynamic behavior of wind turbine airfoils are presented. The model is based on a viscous–inviscid interaction technique using strong coupling between...... the viscous and inviscid parts. The inviscid part is modeled by a 2D panel method, and the viscous part is modeled by solving the integral form of the laminar and turbulent boundary-layer equations with extension for 3D rotational effects. Laminar-to-turbulent transition is either forced by employing...
Improvement of airfoil trailing edge bluntness noise model
Directory of Open Access Journals (Sweden)
Wei Jun Zhu
2016-02-01
Full Text Available In this article, airfoil trailing edge bluntness noise is investigated using both computational aero-acoustic and semi-empirical approach. For engineering purposes, one of the most commonly used prediction tools for trailing edge noise are based on semi-empirical approaches, for example, the Brooks, Pope, and Marcolini airfoil noise prediction model developed by Brooks, Pope, and Marcolini (NASA Reference Publication 1218, 1989. It was found in previous study that the Brooks, Pope, and Marcolini model tends to over-predict noise at high frequencies. Furthermore, it was observed that this was caused by a lack in the model to predict accurately noise from blunt trailing edges. For more physical understanding of bluntness noise generation, in this study, we also use an advanced in-house developed high-order computational aero-acoustic technique to investigate the details associated with trailing edge bluntness noise. The results from the numerical model form the basis for an improved Brooks, Pope, and Marcolini trailing edge bluntness noise model.
Flight tests of a supersonic natural laminar flow airfoil
Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.
2015-06-01
A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80 inch (203 cm) chord and 40 inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The test article was designed with a leading edge sweep of effectively 0° to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate that the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, was similar to that of subsonic natural laminar flow wings.
Parametric analyses for synthetic jet control on separation and stall over rotor airfoil
Institute of Scientific and Technical Information of China (English)
Zhao Guoqing; Zhao Qijun
2014-01-01
Numerical simulations are performed to investigate the effects of synthetic jet control on separation and stall over rotor airfoils. The preconditioned and unsteady Reynolds-averaged Navier-Stokes equations coupled with akxshear stream transport turbulence model are employed to accomplish the flowfield simulation of rotor airfoils under jet control. Additionally, a velocity boundary condition modeled by a sinusoidal function is developed to fulfill the perturba-tion effect of periodic jets. The validity of the present CFD procedure is evaluated by the simulated results of an isolated synthetic jet and the jet control case for airfoil NACA0015. Then, parametric analyses are conducted specifically for an OA213 rotor airfoil to investigate the effects of jet param-eters (forcing frequency, jet location and momentum coefficient, jet direction, and distribution of jet arrays) on the control effect of the aerodynamic characteristics of a rotor airfoil. Preliminary results indicate that the efficiency of jet control can be improved with specific frequencies (the best lift-drag ratio at F+=2.0) and jet angles (40? or 75?) when the jets are located near the separation point of the rotor airfoil. Furthermore, as a result of a suitable combination of jet arrays, the lift coefficient of the airfoil can be improved by nearly 100%, and the corresponding drag coefficient decreased by 26.5%in comparison with the single point control case.
Unsteady 2D potential-flow forces and a thin variable geometry airfoil undergoing arbitrary motion
Energy Technology Data Exchange (ETDEWEB)
Gaunaa, M.
2006-07-15
In this report analytical expressions for the unsteady 2D force distribution on a variable geometry airfoil undergoing arbitrary motion are derived under the assumption of incompressible, irrotational, inviscid flow. The airfoil is represented by its camberline as in classic thin-airfoil theory, and the deflection of the airfoil is given by superposition of chordwise deflection mode shapes. It is shown from the expressions for the forces, that the influence from the shed vorticity in the wake is described by the same time-lag for all chordwise positions on the airfoil. This time-lag term can be approximated using an indicial function approach, making the practical calculation of the aerodynamic response numerically very efficient by use of Duhamel superposition. Furthermore, the indicial function expressions for the time-lag terms are formulated in their equivalent state-space form, allowing for use of the present theory in problems employing the eigenvalue approach, such as stability analysis. The analytical expressions for the forces simplify to all previously known steady and unsteady thin-airfoil solutions. Apart from the obvious applications within active load control/reduction, the current theory can be used for various applications which up to now have been possible only using much more computational costly methods. The propulsive performance of a soft heaving propulsor, and the influence of airfoil camberline elasticity on the flutter limit are two computational examples given in the report that highlight this feature. (au)
Numerical Analysis of Wind Turbine Airfoil Aerodynamic Performance with Leading Edge Bump
Directory of Open Access Journals (Sweden)
Majid Asli
2015-01-01
Full Text Available Aerodynamic performance improvement of wind turbine blade is the key process to improve wind turbine performance in electricity generated and energy conversion in renewable energy sources concept. The flow behavior on wind turbine blades profile and the relevant phenomena like stall can be improved by some modifications. In the present paper, Humpback Whales flippers leading edge protuberances model as a novel passive stall control method was investigated on S809 as a thick airfoil. The airfoil was numerically analyzed by CFD method in Reynolds number of 106 and aerodynamic coefficients in static angle of attacks were validated with the experimental data reported by Somers in NREL. Therefore, computational results for modified airfoil with sinusoidal wavy leading edge were presented. The results revealed that, at low angles of attacks before the stall region, lift coefficient decreases slightly rather than baseline model. However, the modified airfoil has a smooth stall trend while baseline airfoil lift coefficient decreases sharply due to the separation which occurred on suction side. According to the flow physics over the airfoils, leading edge bumps act as vortex generator so vortices containing high level of momentum make the flow remain attached to the surface of the airfoil at high angle of attack and prevent it from having a deep stall.
A Two Element Laminar Flow Airfoil Optimized for Cruise. M.S. Thesis
Steen, Gregory Glen
1994-01-01
Numerical and experimental results are presented for a new two-element, fixed-geometry natural laminar flow airfoil optimized for cruise Reynolds numbers on the order of three million. The airfoil design consists of a primary element and an independent secondary element with a primary to secondary chord ratio of three to one. The airfoil was designed to improve the cruise lift-to-drag ratio while maintaining an appropriate landing capability when compared to conventional airfoils. The airfoil was numerically developed utilizing the NASA Langley Multi-Component Airfoil Analysis computer code running on a personal computer. Numerical results show a nearly 11.75 percent decrease in overall wing drag with no increase in stall speed at sailplane cruise conditions when compared to a wing based on an efficient single element airfoil. Section surface pressure, wake survey, transition location, and flow visualization results were obtained in the Texas A&M University Low Speed Wind Tunnel. Comparisons between the numerical and experimental data, the effects of the relative position and angle of the two elements, and Reynolds number variations from 8 x 10(exp 5) to 3 x 10(exp 6) for the optimum geometry case are presented.
On the influence of airfoil deviations on the aerodynamic performance of wind turbine rotors
Winstroth, J.; Seume, J. R.
2016-09-01
The manufacture of large wind turbine rotor blades is a difficult task that still involves a certain degree of manual labor. Due to the complexity, airfoil deviations between the design airfoils and the manufactured blade are certain to arise. Presently, the understanding of the impact of manufacturing uncertainties on the aerodynamic performance is still incomplete. The present work analyzes the influence of a series of airfoil deviations likely to occur during manufacturing by means of Computational Fluid Dynamics and the aeroelastic code FAST. The average power production of the NREL 5MW wind turbine is used to evaluate the different airfoil deviations. Analyzed deviations include: Mold tilt towards the leading and trailing edge, thick bond lines, thick bond lines with cantilever correction, backward facing steps and airfoil waviness. The most severe influences are observed for mold tilt towards the leading and thick bond lines. By applying the cantilever correction, the influence of thick bond lines is almost compensated. Airfoil waviness is very dependent on amplitude height and the location along the surface of the airfoil. Increased influence is observed for backward facing steps, once they are high enough to trigger boundary layer transition close to the leading edge.
Effects of relative thickness on aerodynamic characteristics of airfoil at a low Reynolds number
Directory of Open Access Journals (Sweden)
Ma Dongli
2015-08-01
Full Text Available This study focuses on the characteristics of low Reynolds number flow around airfoil of high-altitude unmanned aerial vehicles (HAUAVs cruising at low speed. Numerical simulation on the flows around several representative airfoils is carried out to investigate the low Reynolds number flow. The water tunnel model tests further validate the accuracy and effectiveness of the numerical method. Then the effects of the relative thickness of airfoil on aerodynamic performance are explored, using the above numerical method, by simulating flows around airfoils of different relative thicknesses (12%, 14%, 16%, 18%, as well as different locations of the maximum relative thickness (x/c = 22%, 26%, 30%, 34%, at a low Reynolds number of 5 × 105. Results show that performance of airfoils at low Reynolds number is mainly affected by the laminar separation bubble. On the premise of good stall characteristics, the value of maximum relative thickness should be as small as possible, and the location of the maximum relative thickness ought to be closer to the trailing edge to obtain fine airfoil performance. The numerical method is feasible for the simulation of low Reynolds number flow. The study can help to provide a basis for the design of low Reynolds number airfoil.
Experimental Study of Thin and Thick Airfoils at Low Reynolds Numbers
Durgesh, Vibhav; Garcia, Elifalet; Johari, Hamid
2015-11-01
A recent surge in applications of unmanned air vehicles in various fields has led to increased interest in understanding the characteristics of airfoils at Reynolds number regime ~104. At these low Re numbers, aerodynamics of an airfoil is influenced by laminar separation and its possible reattachment, which is in contrast to airfoil behavior at high Re numbers. This study focused on comparing the load characteristics of symmetric, thin (NACA-0009) and thick (NACA-0021) airfoils at low Re numbers ~2 - 4 × 104, and angles of attack between 2° to 12°, along with simultaneous flow visualization. The experiments were performed in a low speed flow visualization water tunnel facility, and two-component Laser Doppler Velocimetry was used to quantify the inflow conditions and turbulence intensity. A high precision force/torque transducer was used for the load measurements, while hydrogen bubble technique was used for flow visualization on the suction side of the airfoils. The presentation will discuss the correlation between observed flow structures and instantaneous load on the airfoils, as well as the aerodynamic load characteristics of thin and thick airfoils at low Re numbers.
SiC/SiC Leading Edge Turbine Airfoil Tested Under Simulated Gas Turbine Conditions
Robinson, R. Craig; Hatton, Kenneth S.
1999-01-01
Silicon-based ceramics have been proposed as component materials for use in gas turbine engine hot-sections. A high pressure burner rig was used to expose both a baseline metal airfoil and ceramic matrix composite leading edge airfoil to typical gas turbine conditions to comparatively evaluate the material response at high temperatures. To eliminate many of the concerns related to an entirely ceramic, rotating airfoil, this study has focused on equipping a stationary metal airfoil with a ceramic leading edge insert to demonstrate the feasibility and benefits of such a configuration. Here, the idea was to allow the SiC/SiC composite to be integrated as the airfoil's leading edge, operating in a "free-floating" or unrestrained manner. and provide temperature relief to the metal blade underneath. The test included cycling the airfoils between simulated idle, lift, and cruise flight conditions. In addition, the airfoils were air-cooled, uniquely instrumented, and exposed to the same internal and external conditions, which included gas temperatures in excess of 1370 C (2500 F). Results show the leading edge insert remained structurally intact after 200 simulated flight cycles with only a slightly oxidized surface. The instrumentation clearly suggested a significant reduction (approximately 600 F) in internal metal temperatures as a result of the ceramic leading edge. The object of this testing was to validate the design and analysis done by Materials Research and Design of Rosemont, PA and to determine the feasibility of this design for the intended application.
Experimental Study of Tip Vortex Flow from a Periodically Pitched Airfoil Section
Zaman, Khairul; Fagan, Amy; Mankbadi, Mina
2016-01-01
An experimental investigation of tip vortex flow from a NACA0012 airfoil, pitched periodically at various frequencies, is conducted in a low-speed wind tunnel. Initially, data for stationary airfoil held fixed at various angles-of-attack are gathered. Flow visualization pictures as well as detailed cross-sectional properties areobtained at various streamwise locations using hot-wire anemometry. Data include mean velocity, streamwise vorticity as well as various turbulent stresses. Preliminary data are also acquired for periodically pitched airfoil. These results are briefly presented in this extended abstract.
Natural laminar flow airfoil design considerations for winglets on low-speed airplanes
Vandam, C. P.
1984-01-01
Winglet airfoil section characteristics which significantly influence cruise performance and handling qualities of an airplane are discussed. A good winglet design requires an airfoil section with a low cruise drag coefficient, a high maximum lift coefficient, and a gradual and steady movement of the boundary layer transition location with angle of attack. The first design requirement provides a low crossover lift coefficient of airplane drag polars with winglets off and on. The other requirements prevent nonlinear changes in airplane lateral/directional stability and control characteristics. These requirements are considered in the design of a natural laminar flow airfoil section for winglet applications and chord Reynolds number of 1 to 4 million.
Fluid mechanics mechanisms in the stall process of airfoils for helicopters
Young, W. H., Jr.
1981-01-01
Phenomena that control the flow during the stall portion of a dynamic stall cycle are analyzed, and their effect on blade motion is outlined. Four mechanisms by which dynamic stall may be initiated are identified: (1) bursting of the separation bubble, (2) flow reversal in the turbulent boundary layer on the airfoil upper surface, (3) shock wave-boundary layer interaction behind the airfoil crest, and (4) acoustic wave propagation below the airfoil. The fluid mechanics that contribute to the identified flow phenomena are summarized, and the usefulness of a model that incorporates the required fluid mechanics mechanisms is discussed.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In order to improve airfoil performance under different flight conditions and to make the performance insensitive to off-design condition at the same time,a multi-objective optimization approach considering robust design has been developed and applied to airfoil design. Non-uniform rational B-spline (NURBS) representation is adopted in airfoil design process,control points and related weights around airfoil are used as design variables. Two airfoil representation cases show that the NURBS method can get airfoil geometry with max geometry error less than 0.0019. By using six-sigma robust approach in multi-objective airfoil design,each sub-objective function of the problem has robustness property. By adopting multi-objective genetic algorithm that is based on non-dominated sorting,a set of non-dominated airfoil solutions with robustness can be obtained in the design. The optimum robust airfoil can be traded off and selected in these non-dominated solutions by design tendency. By using the above methods,a multi-objective robust optimization was conducted for NASA SC0712 airfoil. After performing robust airfoil optimization,the mean value of drag coefficient at Ma0.7-0.8 and the mean value of lift coefficient at post stall regime (Ma0.3) have been improved by 12.2% and 25.4%. By comparing the aerodynamic force coefficients of optimization result,it shows that: different from single robust airfoil design which just improves the property of drag divergence at Ma0.7-0.8,multi-objective robust design can improve both the drag divergence property at Ma0.7-0.8 and stall property at low speed. The design cases show that the multi-objective robust design method makes the airfoil performance robust under different off-design conditions.
DEFF Research Database (Denmark)
Fischer, Andreas
2011-01-01
blades makes a transition from laminar to turbulent. In the turbulent boundary layer eddies are created which are a potential noise sources. They are ineffective as noise source on the airfoil surface or in free flow, but when convecting past the trailing edge of the airfoil their efficiency is much...... and to improve it, because the predictions gave in general too low far field noise levels. Our main finding is that the acoustic formulations to relate the fluctuating surface pressure field close to the trailing edge of airfoil to the radiated far field sound give excellent results when compared to far field......, trailing edge noise can be evaluated by means of measured surface pressure field, even in cases where a direct measurement of trailing edge noise is not possible. This opens up great new vistas, i.e. by testing new airfoils in a standard industrial wind tunnel or by testing new wind turbine rotors...
A Method for the Constrained Design of Natural Laminar Flow Airfoils
Green, Bradford E.; Whitesides, John L.; Campbell, Richard L.; Mineck, Raymond E.
1996-01-01
A fully automated iterative design method has been developed by which an airfoil with a substantial amount of natural laminar flow can be designed, while maintaining other aerodynamic and geometric constraints. Drag reductions have been realized using the design method over a range of Mach numbers, Reynolds numbers and airfoil thicknesses. The thrusts of the method are its ability to calculate a target N-Factor distribution that forces the flow to undergo transition at the desired location; the target-pressure-N-Factor relationship that is used to reduce the N-Factors in order to prolong transition; and its ability to design airfoils to meet lift, pitching moment, thickness and leading-edge radius constraints while also being able to meet the natural laminar flow constraint. The method uses several existing CFD codes and can design a new airfoil in only a few days using a Silicon Graphics IRIS workstation.
Modeling the Aerodynamic Lift Produced by Oscillating Airfoils at Low Reynolds Number
Khalid, Muhammad Saif Ullah
2015-01-01
For present study, setting Strouhal Number (St) as control parameter, numerical simulations for flow past oscillating NACA-0012 airfoil at 1,000 Reynolds Numbers (Re) are performed. Temporal profiles of unsteady forces; lift and thrust, and their spectral analysis clearly indicate the solution to be a period-1 attractor for low Strouhal numbers. This study reveals that aerodynamic forces produced by plunging airfoil are independent of initial kinematic conditions of airfoil that proves the existence of limit cycle. Frequencies present in the oscillating lift force are composed of fundamental (fs), even and odd harmonics (3fs) at higher Strouhal numbers. Using numerical simulations, shedding frequencies (f_s) were observed to be nearly equal to the excitation frequencies in all the cases. Unsteady lift force generated due to the plunging airfoil is modeled by modified van der Pol oscillator. Using method of multiple scales and spectral analysis of steady-state CFD solutions, frequencies and damping terms in th...
Airfoil Selection of MAV (Miniature Air Vehicle for Low Reynolds Number
Directory of Open Access Journals (Sweden)
Mayur S. Marathe
2013-12-01
Full Text Available This paper discusses issues and practical requirements of Airfoil for MAV. Here considering the MAV which travel with the speed range between 9-20 m/s. The Airfoil which is been selected on various criteria, i.e. - stable flight, cover maximum distance with minimum force. So here the NACA 2204 is been selected for MAV. The Fluent analysis is done on the airfoil for lift to drag ratio. These MAV are having some purpose i.e.:- they can be use as a spy in enemy area, inspection of hazardous area, where human resource can’t reach. Aerodynamic performance and stability should be considered in the context of the airfoil structural integrity. Particular attention should be paid to the unsteady nature of the flow.
Application of shock tubes to transonic airfoil testing at high Reynolds numbers
Cook, W. J.; Chaney, M. J.; Presley, L. L.; Chapman, G. T.
1978-01-01
Performance analysis of a gas-driven shock tube shows that transonic airfoil flows with chord Reynolds numbers of the order of 100 million can be produced, with limitations being imposed by the structural integrity of the facility or the model. A study of flow development over a simple circular arc airfoil at zero angle of attack was carried out in a shock tube at low and intermediate Reynolds numbers to assess the testing technique. Results obtained from schlieren photography and airfoil pressure measurements show that steady transonic flows similar to those produced for the same airfoil in a wind tunnel can be generated within the available testing time in a shock tube with properly contoured test section walls.
Unsteady two-dimensional potential-flow model for thin variable geometry airfoils
DEFF Research Database (Denmark)
Gaunaa, Mac
2010-01-01
in their equivalent state-space form, allowing for use of the present theory in problems employing the eigenvalue approach, such as stability analysis. The analytical expressions for the integral forces can be reduced to Munk's steady and Theodorsen's unsteady results for thin airfoils, and numerical evaluation shows...... excellent agreement with other unsteady two-dimensional thin-airfoil results. Apart from the obvious applications within active load control/reduction, the present theory can be used for various applications which up to the formulation of the present theory have been possible only using much more...... as in classic thin-airfoil theory, and the deflection of the airfoil is given by superposition of chord-wise deflection mode shapes. It is shown from the expressions for the forces that the influence from the shed vorticity in the wake is described by the same time lag for all chord-wise positions...
Effects of a ground vortex on the aerodynamics of an airfoil
Krothapalli, A.; Leopold, D.
1988-01-01
An experimental investigation was carried out to study the aerodynamics of an airfoil with a rectangular jet exiting from its lower surface at fifty percent of the chord. The airfoil was tested with and without the influence of a ground plane. Surface static pressures were measured on the airfoil at jet to free stream velocity ratios ranging from 0 to 9. From these pressures, the variation of C sub L with velocity ratio was easily determined. The measurements indicated significant positive and negative pressure regions on the lower surface of the airfoil ahead of and after the nozzle exit respectively. The presence of a ground plane enhanced these pressure regions at low velocity ratios, but at a particular ratio for each plane location, a recirculation zone or vortex formed ahead of the jet resulting in decreased pressures and a drop in C sub L.
Bionic Design of Wind Turbine Blade Based on Long-Eared Owl's Airfoil
Li, Ming
2017-01-01
The main purpose of this paper is to demonstrate a bionic design for the airfoil of wind turbines inspired by the morphology of Long-eared Owl's wings. Glauert Model was adopted to design the standard blade and the bionic blade, respectively. Numerical analysis method was utilized to study the aerodynamic characteristics of the airfoils as well as the blades. Results show that the bionic airfoil inspired by the airfoil at the 50% aspect ratio of the Long-eared Owl's wing gives rise to a superior lift coefficient and stalling performance and thus can be beneficial to improving the performance of the wind turbine blade. Also, the efficiency of the bionic blade in wind turbine blades tests increases by 12% or above (up to 44%) compared to that of the standard blade. The reason lies in the bigger pressure difference between the upper and lower surface which can provide stronger lift. PMID:28243053
Bionic Design of Wind Turbine Blade Based on Long-Eared Owl's Airfoil.
Tian, Weijun; Yang, Zhen; Zhang, Qi; Wang, Jiyue; Li, Ming; Ma, Yi; Cong, Qian
2017-01-01
The main purpose of this paper is to demonstrate a bionic design for the airfoil of wind turbines inspired by the morphology of Long-eared Owl's wings. Glauert Model was adopted to design the standard blade and the bionic blade, respectively. Numerical analysis method was utilized to study the aerodynamic characteristics of the airfoils as well as the blades. Results show that the bionic airfoil inspired by the airfoil at the 50% aspect ratio of the Long-eared Owl's wing gives rise to a superior lift coefficient and stalling performance and thus can be beneficial to improving the performance of the wind turbine blade. Also, the efficiency of the bionic blade in wind turbine blades tests increases by 12% or above (up to 44%) compared to that of the standard blade. The reason lies in the bigger pressure difference between the upper and lower surface which can provide stronger lift.
Airfoil data sensitivity analysis for actuator disc simulations used in wind turbine applications
DEFF Research Database (Denmark)
Nilsson, Karl; Breton, Simon-Philippe; Sørensen, Jens Nørkær;
2014-01-01
To analyse the sensitivity of blade geometry and airfoil characteristics on the prediction of performance characteristics of wind farms, large-eddy simulations using an actuator disc (ACD) method are performed for three different blade/airfoil configurations. The aim of the study is to determine...... how the mean characteristics of wake flow, mean power production and thrust depend on the choice of airfoil data and blade geometry. In order to simulate realistic conditions, pre-generated turbulence and wind shear are imposed in the computational domain. Using three different turbulence intensities...... and varying the spacing between the turbines, the flow around 4-8 aligned turbines is simulated. The analysis is based on normalized mean streamwise velocity, turbulence intensity, relative mean power production and thrust. From the computations it can be concluded that the actual airfoil characteristics...
Coupled-Mode Flutter of Bending-Bending Type in Highly-Flexible Uniform Airfoils
Pourazarm, Pariya; Modarres-Sadeghi, Yahya
2016-11-01
We study the behavior of a highly flexible uniform airfoil placed in wind both numerically and experimentally. It is shown that for a non-rotating highly-flexible cantilevered airfoil, placed at very small angles of attack (less than 1 degree), the airfoil loses its stability by buckling. For slightly higher angles of attack (more than 1 degree) a coupled-mode flutter in which the first and the second flapwise modes coalesce toward a flutter mode is observed, and thus the observed flutter has a bending-bending nature. The flutter onset and frequency found experimentally matched the numerical predictions. If the same airfoil is forced to rotate about its fixed end, the static deflection decreases and the observed couple-mode flutter becomes of flapwise-torsional type, same as what has already been observed for flutter of rotating wind turbine blades. The support provided by the National Science Foundation, CBET-1437988, is greatly acknowledged.
Directory of Open Access Journals (Sweden)
Řidký Václav
2014-03-01
Full Text Available The work is devoted to 3D and 2D parallel numerical computation of pressure and velocity fields around an elastically supported airfoil self-oscillating due to interaction with the airflow. Numerical solution is computed in the OpenFOAM package, an open-source software package based on finite volume method. Movement of airfoil is described by translation and rotation, identified from experimental data. A new boundary condition for the 2DOF motion of the airfoil was implemented. The results of numerical simulations (velocity are compared with data measured in a wind tunnel, where a physical model of NACA0015 airfoil was mounted and tuned to exhibit the flutter instability. The experimental results were obtained previously in the Institute of Thermomechanics by interferographic measurements in a subsonic wind tunnel in Nový Knín.
System and method for manufacture of airfoil components
Energy Technology Data Exchange (ETDEWEB)
Moors, Thomas Michael
2016-11-29
Embodiments of the present disclosure relate generally to systems and methods for manufacturing an airfoil component. The system can include: a geometrical mold; an elongated flexible sleeve having a closed-off interior and positioned within the geometrical mold, wherein the elongated flexible sleeve is further positioned to have a desired geometry; an infusing channel in fluid communication with the closed-off interior of the elongated flexible sleeve and configured to communicate a resinous material thereto; a vacuum channel in fluid communication with the closed-off interior of the elongated flexible sleeve and configured to vacuum seal the closed-off interior of the elongated flexible sleeve; and a glass fiber layer positioned within the closed-off interior of the elongated flexible sleeve.
Improvement of airfoil trailing edge bluntness noise model
DEFF Research Database (Denmark)
Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær;
2016-01-01
, Pope, and Marcolini airfoil noise prediction model developed by Brooks, Pope, and Marcolini (NASA Reference Publication 1218, 1989). It was found in previous study that the Brooks, Pope, and Marcolini model tends to over-predict noise at high frequencies. Furthermore, it was observed...... that this was caused by a lack in the model to predict accurately noise from blunt trailing edges. For more physical understanding of bluntness noise generation, in this study, we also use an advanced in-house developed high-order computational aero-acoustic technique to investigate the details associated...... with trailing edge bluntness noise. The results from the numerical model form the basis for an improved Brooks, Pope, and Marcolini trailing edge bluntness noise model....
Dynamic stall on a pitching and surging airfoil
Dunne, Reeve; McKeon, Beverley J.
2015-08-01
Vertical axis wind turbine blades undergo dynamic stall due to the large angle of attack variation they experience during a turbine rotation. The flow over a single blade was modeled using a sinusoidally pitching and surging airfoil in a non-rotating frame with a constant freestream flow at a mean chord Reynolds number of . Two-dimensional, time-resolved velocity fields were acquired using particle image velocimetry. Vorticity contours were used to visualize shear layer and vortex activity. A low-order model of dynamic stall was developed using dynamic mode decomposition, from which primary and secondary dynamic separation modes were identified. The interaction between these two modes was able to capture the physics of dynamic stall and as such can be extended to other turbine configurations and problems in unsteady aerodynamics. Results from the linear pitch/surge frame are extrapolated to the rotating VAWT frame to investigate the behavior of identified flow structures.
Institute of Scientific and Technical Information of China (English)
孙茂; 于鑫
2003-01-01
The aerodynamic forces and flow structures of two airfoils performing "fling and subsequent translation" and "translation and subsequent clap" are studied by numerically solving the Navier-Stokes equations in moving overset grids. These motions are relevant to the flight of very small insects. The Reynolds number, based on the airfoil chord length c and the translation velocity U, is 17. It is shown that: (1) For two airfoils performing fling and subsequent translation, a large lift is generated both in the fling phase and in the early part of the translation phase. During the fling phase,a pair of leading edge vortices of large strength is generated; the generation of the vortex pair in a short period results in a large time rate of change of fluid impulse, which explains the large lift in this period. During the early part of the translation, the two leading edge vortices move with the airfoils;the relative movement of the vortices also results in a large time rate of change of fluid impulse, which explains the large lift in this part of motion. (In the later part of the translation, the vorticity in the vortices is diffused and convected into the wake.) The time averaged lift coeffcient is approximately 2.4 times as large as that of a single airfoil performing a similar motion. (2) For two airfoils performing translation and subsequent clap, a large lift is generated in the clap phase. During the clap, a pair of trailing edge vortices of large strength are generated; again, the generation of the vortex pair in a short period (which results in a large timerate of change of fluid impulse) is responsible for the large lift in this period. The time averaged lift coefficient is approximately 1.6 times as large as that of a single airfoil performing a similar motion. (3) When the initial distance between the airfoils (in the case of clap, the final distance between the airfoils) varies from 0.1 to 0.2c, the lift on an airfoil decreases only slightly but the torque
On the design of airfoils in which the transition of the boundary layer is delayed
Tani, Itiro
1952-01-01
A method is presented for designing suitable thickness distributions and mean camber lines for airfoils permitting extensive chordwise laminar flow. Wind tunnel and flight tests confirming the existence of laminar flow; possible maintenance of laminar flow by area suction; and the effects of wind tunnel turbulence and surface roughness on the promotion of premature boundary layer transition are discussed. In addition, estimates of profile drag and scale effect on maximum lift of the derived airfoils are made.
Chandrasekhara, M.S.; Ahmed, S; Carr, L.W.
1990-01-01
Compressibility effects on the flowfield of an airfoil executing rapid transient pitching motion from 0 - 60 degrees over a wide range of Mach numbers and pitching rates were studied using a stroboscopic schlieren flow visualization technique. The studies have led to the first direct experiments] documentation of multiple shocks on the airfoil upper surface flow for certain conditions. Also, at low Mach numbers, additional coherent vortical structures were found to be ...
Schlieren Studies of Compressibility Effects on Dynamic Stall on Transiently Pitching Airfoils
Chandrasekhara, M.S.; Ahmed, S; Carr, L.W.
2016-01-01
The article of record as published may be found at http://dx.doi.org/10.2514/3.48268 Compressibility effects on the flowfield of an airfoil executing rapid transient pitching motion from 0-60 deg over a wide range of Mach numbers and pitching rates were studied using a stroboscopic schlieren flow visualization technique. The studies have led to the first direct experimental documentation of multiple shocks on the airfoil upper surface flow for certain conditions. Also, at low Mach...
Investigation of the Effects of Airfoil-probes on the Aerodynamic Performance of an Axial Compressor
Institute of Scientific and Technical Information of China (English)
HE Xiang; MA Hongwei; REN Minglin; XIANG Honghui
2012-01-01
In order to investigate the effects of the airfoil-probes on the aerodynamic performance of an axial compressor,a numerical simulation of 3D flow field is performed in a 1.5-stage axial compressor with airfoil-probes installed at the stator leading-edge (LE).The airfoil-probes have a negative influence on the compressor aerodynamic performance at all operating points.A streamwise vortex is induced by the airfoil-probe along both sides of the blade.At the mid-operating point,the vortex is notable along the pressure side and is relatively small along the suction side (SS).At the near-stall point,the vortex is slightly suppressed in the pressure surface (PS),but becomes remarkable in the suction side.A small local-separation is induced by the interactions between the vortex and the end-wall boundary layer in the corner region near the hub.That the positive pitch angle of the airfoil-probe at 6.5％ span is about 15° plays an important role in the vortex evolution near the hub,which causes the fact that the airfoil-probe near the hub has the largest effects among the four airfoil-probes.In order to get a further understanding of the vortex evolution in the stator in the numerical simulation,a flow visualization experiment in a water tunnel is performed.The flow visualization results give a deep insight into the evolution of the vortex induced by the airfoil-probe.
Directory of Open Access Journals (Sweden)
Arash Mahboubi Doust
2016-01-01
Full Text Available In this work, a numerical study of two dimensional laminar incompressible flow around the flexible oscillating NACA0012 airfoil is performed using the open source code OpenFOAM. Oscillatory motion types including pitching and flapping is considered. Reynolds number for these motions is assumed fixed at 12000. One of the important issues that must be considered in designing air structures, in particular the aircraft wing, is the interaction between the air and the elastic aircraft wings that is known as the Aeroelastic phenomenon. For this purpose, the effect of airfoil flexibility and flow induced vibration in these motion types is investigated and compared with the case of rigid airfoil. It is observed that the flexibility in both types of motions causes improvement of the thrust which is boosted with increasing the frequency. Contrary to thrust, the significant improvement of lift is only achievable in high frequencies. It was also found that the effect of flexibility on the flapping motion is higher than the pitching motion. For flow control on the airfoil, Dielectric Barrier Discharge plasma actuator is used in the trailing edge of a flexible airfoil, and its effect on the flexible airfoil is also investigated.
Cylinder wake influence on the tonal noise and aerodynamic characteristics of a NACA0018 airfoil
Takagi, Y.; Fujisawa, N.; Nakano, T.; Nashimoto, A.
2006-11-01
The influence of cylinder wake on discrete tonal noise and aerodynamic characteristics of a NACA0018 airfoil is studied experimentally in a uniform flow at a moderate Reynolds number. The experiments are carried out by measuring sound pressure levels and spectrum, separation and the reattachment points, pressure distribution, fluid forces, mean-flow and turbulence characteristics around the airfoil with and without the cylinder wake. Present results indicate that the tonal noise from the airfoil is suppressed by the influence of the cylinder wake and the aerodynamic characteristics are improved in comparison with the case without the cylinder wake. These are mainly due to the separation control of boundary layers over the airfoil caused by the wake-induced transition, which is observed by surface flow visualization with liquid- crystal coating. The PIV measurements of the flow field around the airfoil confirm that highly turbulent velocity fluctuation of the cylinder wake induces the transition of the boundary layers and produces an attached boundary layer over the airfoil. Then, the vortex shedding phenomenon near the trailing edge of pressure surface is removed by the influence of the wake and results in the suppression of tonal noise.
Numerical analysis of the s1020 airfoils in tandem under different flapping configurations
Lim, K. B.; Tay, W. B.
2010-05-01
The objective of this project is to improve the performance of the efficiency, thrust and lift of flapping wings in tandem arrangement. This research investigates the effect of the arrangement of the airfoils in tandem on the performance of the airfoils by varying the phase difference and distance between the airfoils. Three flapping configurations from an earlier phase of a research which gives high efficiency, thrust and lift are used in the tandem simulation. It is found all the different flapping configurations show improvement in the efficiency, thrust or lift when the distance between the two airfoils and the phase angle between the heaving positions of the two airfoils are optimal. The average thrust coefficient of the tandem arrangement managed to attain more than twice that of the single one (4.84 vs. 2.05). On the other hand, the average lift coefficient of the tandem arrangement also increased to 4.59, as compared to the original single airfoil value of 3.04. All these results obtained will aid in the design of a better ornithopter with tandem wing arrangement.
Airfoil Aeroelastic Flutter Analysis Based on Modified Leishman-Beddoes Model at Low Mach Number
Institute of Scientific and Technical Information of China (English)
SHAO Song; ZHU Qinghua; ZHANG Chenglin; NI Xianping
2011-01-01
Based on modified Leishman-Beddoes(L-B)state space model at low Mach number(lower than 0.3),the airfoil aeroelastic system is presented in this paper.The main modifications for L-B model include a new dynamic stall criterion and revisions of normal force and pitching moment coefficient.The bifurcation diagrams,the limit cycle oscillation (LCO)phase plane plots and the time domain response figures are applied to investigating the stall flutter bifurcation behavior of airfoil aeroelastic systems with symmetry or asymmetry.It is shown that the symmetric periodical oscillation happens after subcritical bifurcation caused by dynamic stall,and the asymmetric periodical oscillation,which is caused by the interaction of dynamic stall and static divergence,only happens in the airfoil aeroelastic system with asymmetry.Validations of the modified L-B model and the airfoil aeroelastic system are presented with the experimental airload data of NACA0012 and OA207 and experimental stall flutter data of NACA0012 respectively.Results demonstrate that the airfoil aeroelastic system presented in this paper is effective and accurate,which can be applied to the investigation of airfoil stall flutter at low Mach number.
Numerical Simulations of Subscale Wind Turbine Rotor Inboard Airfoils at Low Reynolds Number
Energy Technology Data Exchange (ETDEWEB)
Blaylock, Myra L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Thermal/ Fluid Sciences & Engineering Dept.; Maniaci, David Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Wind Energy Technologies Dept.; Resor, Brian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Wind Energy Technologies Dept.
2015-04-01
New blade designs are planned to support future research campaigns at the SWiFT facility in Lubbock, Texas. The sub-scale blades will reproduce specific aerodynamic characteristics of utility-scale rotors. Reynolds numbers for megawatt-, utility-scale rotors are generally above 2-8 million. The thickness of inboard airfoils for these large rotors are typically as high as 35-40%. The thickness and the proximity to three-dimensional flow of these airfoils present design and analysis challenges, even at the full scale. However, more than a decade of experience with the airfoils in numerical simulation, in the wind tunnel, and in the field has generated confidence in their performance. Reynolds number regimes for the sub-scale rotor are significantly lower for the inboard blade, ranging from 0.7 to 1 million. Performance of the thick airfoils in this regime is uncertain because of the lack of wind tunnel data and the inherent challenge associated with numerical simulations. This report documents efforts to determine the most capable analysis tools to support these simulations in an effort to improve understanding of the aerodynamic properties of thick airfoils in this Reynolds number regime. Numerical results from various codes of four airfoils are verified against previously published wind tunnel results where data at those Reynolds numbers are available. Results are then computed for other Reynolds numbers of interest.
Numerical solutions for a two-dimensional airfoil undergoing unsteady motion
Institute of Scientific and Technical Information of China (English)
WU Fu-bing; ZENG Nian-dong; ZHANG Liang; WU De-ming
2004-01-01
Continuous vorticity panels are used to model general unsteady inviscid, incompressible, and two-dimensional flows. The geometry of the airfoil is approximated by series of short straight segments having endpoints that lie on the actual surface. A piecewise linear, continuous distribution of vorticity over the airfoil surface is used to generate disturbance flow. The no-penetration condition is imposed at the midpoint of each segment and at discrete times. The wake is simulated by a system of point vortices, which move at local fluid velocity. At each time step, a new wake panel with uniform vorticity distribution is attached to the trailing edge, and the condition of eonstant circulation around the airfoil and wake is imposed. A new expression for Kutta condition is developed to study (i) the effect of thickness on the lift build-up of an impulsively started airfoil, (ii) the effects of reduced frequency and heave amplitude on the thrust production of flapping airfoils, and (iii) the vortex-airfoil interaction. This work presents some hydrodynamic results for tidalstreaim turbine.
Numerical Simulation of Airfoil Aerodynamic Penalties and Mechanisms in Heavy Rain
Directory of Open Access Journals (Sweden)
Zhenlong Wu
2013-01-01
Full Text Available Numerical simulations that are conducted on a transport-type airfoil, NACA 64-210, at a Reynolds number of 2.6×106 and LWC of 25 g/m3 explore the aerodynamic penalties and mechanisms that affect airfoil performance in heavy rain conditions. Our simulation results agree well with the experimental data and show significant aerodynamic penalties for the airfoil in heavy rain. The maximum percentage decrease in CL is reached by 13.2% and the maximum percentage increase in CD by 47.6%. Performance degradation in heavy rain at low angles of attack is emulated by an originally creative boundary-layer-tripped technique near the leading edge. Numerical flow visualization technique is used to show premature boundary-layer separation at high angles of attack and the particulate trajectories at various angles of attack. A mathematic model is established to qualitatively study the water film effect on the airfoil geometric changes. All above efforts indicate that two primary mechanisms are accountable for the airfoil aerodynamic penalties. One is to cause premature boundary-layer transition at low AOA and separation at high AOA. The other occurs at times scales consistent with the water film layer, which is thought to alter the airfoil geometry and increase the mass effectively.
Design of a family of new advanced airfoils for low wind class turbines
Grasso, Francesco
2014-12-01
In order to maximize the ratio of energy capture and reduce the cost of energy, the selection of the airfoils to be used along the blade plays a crucial role. Despite the general usage of existing airfoils, more and more, families of airfoils specially tailored for specific applications are developed. The present research is focused on the design of a new family of airfoils to be used for the blade of one megawatt wind turbine working in low wind conditions. A hybrid optimization scheme has been implemented, combining together genetic and gradient based algorithms. Large part of the work is dedicated to present and discuss the requirements that needed to be satisfied in order to have a consistent family of geometries with high efficiency, high lift and good structural characteristics. For each airfoil, these characteristics are presented and compared to the ones of existing airfoils. Finally, the aerodynamic design of a new blade for low wind class turbine is illustrated and compared to a reference shape developed by using existing geometries. Due to higher lift performance, the results show a sensitive saving in chords, wetted area and so in loads in idling position.
Effect of cavity on shock oscillation in transonic flow over RAE2822 supercritical airfoil
Rahman, M. Rizwanur; Labib, Md. Itmam; Hasan, A. B. M. Toufique; Ali, M.; Mitsutake, Y.; Setoguchi, T.
2016-07-01
Transonic flow past a supercritical airfoil is strongly influenced by the interaction of shock wave with boundary layer. This interaction induces unsteady self-sustaining shock wave oscillation, flow instability, drag rise and buffet onset which limit the flight envelop. In the present study, a computational analysis has been carried out to investigate the flow past a supercritical RAE2822 airfoil in transonic speeds. To control the shock wave oscillation, a cavity is introduced on the airfoil surface where shock wave oscillates. Different geometric configurations have been investigated for finding optimum cavity geometry and dimension. Unsteady Reynolds averaged Navier-Stokes equations (RANS) are computed at Mach 0.729 with an angle of attack of 5°. Computed results are well validated with the available experimental data in case of baseline airfoil. However, in case of airfoil with control cavity; it has been observed that the introduction of cavity completely suppresses the unsteady shock wave oscillation. Further, significant drag reduction and successive improvement of aerodynamic performance have been observed in airfoil with shock control cavity.
Mechanism of Water Droplet Breakup Near the Leading Edge of an Airfoil
Vargas, Mario; Sor, Suthyvann; Magarino, Adelaida, Garcia
2012-01-01
This work presents results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. The airfoil model was placed at the end of the rotating arm and a monosize droplet generator produced droplets that fell from above, perpendicular to the path of the airfoil. The interaction between the droplets and the airfoil was captured with high speed imaging and allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. Image processing software was used to measure the position of the droplet centroid, equivalent diameter, perimeter, area, and the major and minor axes of an ellipse superimposed over the deforming droplet. The horizontal and vertical displacement of each droplet against time was also measured, and the velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of the droplet to the beginning of breakup. Droplet deformation is defined and studied against main parameters. The high speed imaging allowed observation of the actual mechanism of breakup and identification of the sequence of configurations from the initiation of the breakup to the disintegration of the droplet. Results and comparisons are presented for droplets of diameters in the range of 500 to 1800 microns, and airfoil velocities of 70 and 90 m/sec.
Drag Coefficient of Water Droplets Approaching the Leading Edge of an Airfoil
Vargas, Mario; Sor, Suthyvann; Magarino, Adelaida Garcia
2013-01-01
This work presents results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. An airfoil model was placed at the end of the rotating arm and a monosize droplet generator produced droplets that fell from above, perpendicular to the path of the airfoil. The interaction between the droplets and the airfoil was captured with high speed imaging and allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. Image processing software was used to measure the position of the droplet centroid, equivalent diameter, perimeter, area, and the major and minor axes of an ellipse superimposed over the deforming droplet. The horizontal and vertical displacement of each droplet against time was also measured, and the velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of the droplet to the beginning of breakup. Results are presented and discussed for drag coefficients of droplets with diameters in the range of 300 to 1800 micrometers, and airfoil velocities of 50, 70 and 90 meters/second. The effect of droplet oscillation on the drag coefficient is discussed.
WIND TUNNEL RESEARCH ON THE INFLUENCE OF ACTIVE AIRFLOW ON THE LIFT FORCE GENERATED BY THE AIRFOIL
Directory of Open Access Journals (Sweden)
Paweł Magryta
2013-09-01
Full Text Available The paper discusses the results of wind tunnel tests of airfoils with additional active airflow applied to their upper surfaces. These studies were carried out for a range of velocities up to 28 m/s in an open wind tunnel. Several types of airfoils selected for the examination feature different geometries and are widely applied in today’s aviation industry. The changes in the lift and drag force generated by these airfoils were recorded during the study. The test bench for the tests was equipped with a compressor and a vacuum pump to enable airflow through some holes on the airfoil upper surface. A rapid prototyping method and a 3D printer based on a powder printing technique were applied to print the airfoils. All of their surfaces were subject to surface grinding to smooth their external surfaces. The wind tunnel tests with and without active airflow applied to airfoils are summarised in the paper.
Derivation of airfoil characteristics for the LM 19.1 blade based on 3D CFD rotor calculations
Energy Technology Data Exchange (ETDEWEB)
Bak, C.; Soerensen, N.N.; Madsen, H.A. [Risoe National Lab., Roskilde (Denmark)
1999-03-01
Airfoil characteristics for the LM 19.1 blade are derived from 3D CFD computations on a full-scale 41-m rotor. Based on 3D CFD the force distributions on the blades are determined, from which airfoil characteristics are derived using the momentum theory. The final airfoil characteristics are constructed using both wind tunnel measurements and 3D CFD. Compared to 2D wind tunnel measurements they show a low lift in stall for the airfoil sections at the tip. At the airfoil sections at the inner part of the blade, they show a high lift in stall. At about 60% radius the lift agrees well to 2D wind tunnel measurements. Aero-elastic calculations using the final airfoil characteristics show good agreement to measured power and flap moments. Furthermore, a fatigue load analysis shows a reduction of up to 15% of the load compared to commonly used data. (au)
DEFF Research Database (Denmark)
Chougule, Prasad; Rosendahl, Lasse; Nielsen, Søren R.K.
2015-01-01
A design of double-element airfoil is proposed for its use in the vertical axis wind turbine. The double-element airfoil system consists of a main airfoil and a slat airfoil. The design parameters of the double-element airfoil system are given by the position and orientation of the trailing edge......-element airfoil system designed in this paper. Further, the performance of new design of a vertical axis wind turbine shows considerable increase in the power coefficient and the total power output as compared to the reference wind turbine...
Leading edge embedded fan airfoil concept -- A new powered high lift technology
Phan, Nhan Huu
A new powered-lift airfoil concept called Leading Edge Embedded Fan (LEEF) is proposed for Extremely Short Take-Off and Landing (ESTOL) and Vertical Take-Off and Landing (VTOL) applications. The LEEF airfoil concept is a powered-lift airfoil concept capable of generating thrust and very high lift-coefficient at extreme angles-of attack (AoA). It is designed to activate only at the take-off and landing phases, similar to conventional flaps or slats, allowing the aircraft to operate efficiently at cruise in its conventional configuration. The LEEF concept consists of placing a crossflow fan (CFF) along the leading-edge (LE) of the wing, and the housing is designed to alter the airfoil shape between take-off/landing and cruise configurations with ease. The unique rectangular cross section of the crossflow fan allows for its ease of integration into a conventional subsonic wing. This technology is developed for ESTOL aircraft applications and is most effectively applied to General Aviation (GA) aircraft. Another potential area of application for LEEF is tiltrotor aircraft. Unlike existing powered high-lift systems, the LEEF airfoil uses a local high-pressure air source from cross-flow fans, does not require ducting, and is able to be deployed using distributed electric power systems throughout the wing. In addition to distributed lift augmentation, the LEEF system can provide additional thrust during takeoff and landing operation to supplement the primary cruise propulsion system. Two-dimensional (2D) and three-dimensional (3D) Computational Fluid Dynamics (CFD) simulations of a conventional airfoil/wing using the NACA 63-3-418 section, commonly used in GA, and a LEEF airfoil/wing embedded into the same airfoil section were carried out to evaluate the advantages of and the costs associated with implementing the LEEF concept. Computational results show that significant lift and augmented thrust are available during LEEF operation while requiring only moderate fan power
Directory of Open Access Journals (Sweden)
Kan Kan
2016-01-01
Full Text Available Airfoil is a key factor that influences the hydrodynamic performance of vertical axis tidal current energy turbine. In order to explore the influences from the runner’s blade airfoil towards its hydrodynamic performance, three-dimensional unsteady flow numerical simulation on four airfoils of straight blade H type of tidal current energy turbines was carried out, under the precondition of same turbine compactness. Through investigating the influences from the four different airfoils of H blade towards the runner in terms of its dynamic torque feature and hydropower utilization coefficient, this research has analyzed the hydrodynamic performance of the tidal current energy turbine. As the research result indicates, the maximum dynamic torque value of the single-blade turbine with NACA0015 airfoil is significantly higher than that of the other three airfoils; while the maximum value of the overall runner torque is determined by the operating conditions such as different stream speed etc. As a whole, hydropower utilization coefficient of the turbine with asymmetric airfoil NACA4415 is better than that of the other three airfoils. This research has provided references for the design and airfoil selection for the new type of tidal current energy turbine.
Dag, Yusuf
Forced convection over traditional surfaces such as flat plate, cylinder and sphere have been well researched and documented. Data on forced convection over airfoil surfaces, however, remain very scanty in literature. High altitude vehicles that employ airfoils as lifting surfaces often suffer leading edge ice accretions which have tremendous negative consequences on the lifting capabilities and stability of the vehicle. One of the ways of mitigating the effect of ice accretion involves judicious leading edge convective cooling technique which in turn depends on the accuracy of convective heat transfer coefficient used in the analysis. In this study empirical investigation of convective heat transfer measurements on asymmetric airfoil is presented at different angle of attacks ranging from 0° to 20° under subsonic flow regime. The top and bottom surface temperatures are measured at given points using Senflex hot film sensors (Tao System Inc.) and used to determine heat transfer characteristics of the airfoils. The model surfaces are subjected to constant heat fluxes using KP Kapton flexible heating pads. The monitored temperature data are then utilized to determine the heat convection coefficients modelled empirically as the Nusselt Number on the surface of the airfoil. The experimental work is conducted in an open circuit-Eiffel type wind tunnel, powered by a 37 kW electrical motor that is able to generate subsonic air velocities up to around 41 m/s in the 24 square-inch test section. The heat transfer experiments have been carried out under constant heat flux supply to the asymmetric airfoil. The convective heat transfer coefficients are determined from measured surface temperature and free stream temperature and investigated in the form of Nusselt number. The variation of Nusselt number is shown with Reynolds number at various angles of attacks. It is concluded that Nusselt number increases with increasing Reynolds number and increase in angle of attack from 0
Control of unsteady separated flow associated with the dynamic stall of airfoils
Wilder, M. C.
1995-01-01
An effort to understand and control the unsteady separated flow associated with the dynamic stall of airfoils was funded for three years through the NASA cooperative agreement program. As part of this effort a substantial data base was compiled detailing the effects various parameters have on the development of the dynamic stall flow field. Parameters studied include Mach number, pitch rate, and pitch history, as well as Reynolds number (through two different model chord lengths) and the condition of the boundary layer at the leading edge of the airfoil (through application of surface roughness). It was found for free stream Mach numbers as low as 0.4 that a region of supersonic flow forms on the leading edge of the suction surface of the airfoil at moderate angles of attack. The shocks which form in this supersonic region induce boundary-layer separation and advance the dynamic stall process. Under such conditions a supercritical airfoil profile is called for to produce a flow field having a weaker leading-edge pressure gradient and no leading-edge shocks. An airfoil having an adaptive-geometry, or dynamically deformable leading edge (DDLE), is under development as a unique active flow-control device. The DDLE, formed of carbon-fiber composite and fiberglass, can be flexed between a NACA 0012 profile and a supercritical profile in a controllable fashion while the airfoil is executing an angle-of-attack pitch-up maneuver. The dynamic stall data were recorded using point diffraction interferometry (PDI), a noninvasive measurement technique. A new high-speed cinematography system was developed for recording interferometric images. The system is capable of phase-locking with the pitching airfoil motion for real-time documentation of the development of the dynamic stall flow field. Computer-aided image analysis algorithms were developed for fast and accurate reduction of the images, improving interpretation of the results.
Rudmin, Daniel
Previous research at RMC has cataloged the occurrence of limit cycle oscillations at low-to-moderate Reynolds numbers for an elastically mounted aeroelastic airfoil. These oscillations were attributed to boundary layer separation and the formation of a laminar separation bubble. For this thesis, an instrumented and motor-driven oscillating airfoil rig was designed and fabricated for the purpose of investigating the boundary layer of a NACA-0012 airfoil. The oscillating airfoil was driven by a servo motor to mimic the observed aeroelastic pitching with a sinusoid of matched amplitude and frequency. Hot-wire anemometry was used to investigate the near wake of the new motor-driven airfoil and compare it with the aeroelastic experiment. A chord-wise array of hot-film sensors captured the boundary layer state during the airfoil pitching oscillation. A novel analysis technique is introduced; A sliding window (in time) cross-correlation of adjacent sensors was used to detect dynamic laminar separation. Wind tunnel tests were performed at static angles-of-attack, for quasi-static very low frequency sweeps to verify the technique, and for selected cases of oscillations obtained with the aeroelastic rig. The new detection method was verified against the existing static techniques of phase reversal signature detection and signal cross-correlation by comparing quasi-static and static results. A map of the laminar separation bubble was produced for fixed angles of attack as well as for the pitching airfoil. The presence of a laminar separation was linked to the occurrence and characteristics of the limit cycle oscillations. Keywords: laminar separation, NACA0012, hot-film, hot-wire, anemometry, transitional flow, aeroelasticity.
Pressure measurements on a pitching airfoil in a water channel
Conger, Rand N.; Ramaprian, B. R.
1994-01-01
Measurements of unsteady pressures over a symmetric NACA 0015 airfoil performing pitching maneuvers are reported. The tests were performed in an open-surface water channel specially constructed for this purpose. The design of the apparatus allowed the pressure measurements to be made to a very high degree of spatial and temporal resolution. Reynolds numbers in the range of 5.2 x 10(exp 4) to 2.2 x 10(exp 5) were studied. Although the results qualitatively agreed with earlier studies performed at similar Reynolds numbers, the magnitudes of pressure and aerodynamic forces measured were observed to be much larger than those measured in ealier pitchup studies. They were found, in fact, to be closer to those obtained in some recent high-Reynolds-number experiments. This interesting behavior, which was suspected to be caused by the relatively high freestream turbulence level in the water channel, was explored in some detail. In addition, several issues like the quasisteady and dynamic effects of the pitching process are discussed. The experimental data are all archived and are available for use as a database.
Numerical simulations of the NREL S826 airfoil
Sagmo, KF; Bartl, J.; Sætran, L.
2016-09-01
2D and 3D steady state simulations were done using the commercial CFD package Star-CCM+ with three different RANS turbulence models. Lift and drag coefficients were simulated at different angles of attack for the NREL S826 airfoil at a Reynolds number of 100 000, and compared to experimental data obtained at NTNU and at DTU. The Spalart-Allmaras and the Realizable k-epsilon turbulence models reproduced experimental results for lift well in the 2D simulations. The 3D simulations with the Realizable two-layer k-epsilon model predicted essentially the same lift coefficients as the 2D Spalart-Allmaras simulations. A comparison between 2D and 3D simulations with the Realizable k-epsilon model showed a significantly lower prediction in drag by the 2D simulations. From the conducted 3D simulations surface pressure predictions along the wing span were presented, along with volumetric renderings of vorticity. Both showed a high degree of span wise flow variation when going into the stall region, and predicted a flow field resembling that of stall cells for angles of attack above peak lift.
On the acoustics of a circulation control airfoil
Reger, R.; Nickels, A.; Ukeiley, L.; Cattafesta, L. N.
2017-02-01
A two-dimensional elliptical circulation control airfoil model is studied in the Florida State Aeroacoustic Tunnel. Far-field acoustics are obtained via a 55 microphone phased array. Single microphone spectra are also obtained, and it is shown that background noise is significant. In order to circumvent this problem, beamforming is employed. The primary sources of background noise are from the tunnel collector and jet/sidewall interaction. The deconvolution approach to mapping acoustic sources (DAMAS) is employed to remove the effects of the array point spread function. Spectra are acquired by integrating the DAMAS result over the source region. The resulting DAMAS spectral levels are significantly below single microphone levels. Although the DAMAS levels are reduced from those of a single microphone or delay and sum beamforming (DAS), they are still above those of a NACA 0012, estimated using NAFNoise, at the same geometric and free-stream conditions. A scaling analysis is performed on the processed array data. With a constant free-stream velocity and a varying jet velocity the data scale as jet Mach number to the 6th power. If the momentum coefficient is held constant and the free-stream velocity is varied the data scale as free-stream Mach number to the 7th power.
Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos
Lee, B. H. K.; Price, S. J.; Wong, Y. S.
1999-04-01
Different types of structural and aerodynamic nonlinearities commonly encountered in aeronautical engineering are discussed. The equations of motion of a two-dimensional airfoil oscillating in pitch and plunge are derived for a structural nonlinearity using subsonic aerodynamics theory. Three classical nonlinearities, namely, cubic, freeplay and hysteresis are investigated in some detail. The governing equations are reduced to a set of ordinary differential equations suitable for numerical simulations and analytical investigation of the system stability. The onset of Hopf-bifurcation, and amplitudes and frequencies of limit cycle oscillations are investigated, with examples given for a cubic hardening spring. For various geometries of the freeplay, bifurcations and chaos are discussed via the phase plane, Poincaré maps, and Lyapunov spectrum. The route to chaos is investigated from bifurcation diagrams, and for the freeplay nonlinearity it is shown that frequency doubling is the most commonly observed route. Examples of aerodynamic nonlinearities arising from transonic flow and dynamic stall are discussed, and special attention is paid to numerical simulation results for dynamic stall using a time-synthesized method for the unsteady aerodynamics. The assumption of uniform flow is usually not met in practice since perturbations in velocities are encountered in flight. Longitudinal atmospheric turbulence is introduced to show its effect on both the flutter boundary and the onset of Hopf-bifurcation for a cubic restoring force.
Numerical simulation of the interaction of a vortex with stationary airfoil in transonic flow
Srinivasan, G. R.; Mccroskey, W. J.; Kutler, P.
1984-01-01
A perturbation form of an implicit conservative, noniterative numerical algorithm for the two-dimensional thin layer Navier-Stokes and Euler equations is used to compute the interaction flow-field of a vortex with stationary airfoil. A Lamb-like analytical vortex having a finite core is chosen to interact with a thick (NACA 0012) and a thin (NACA 64A006) airfoil independently in transonic flow. Two different configurations of vortex interaction are studied, viz., (1) when the vortex is fixed at one location in the flowfield, and (2) when the vortex is convecting past the airfoil at freestream velocity. Parallel computations of this interacting flowfield are also done using a version of the Transonic Small Disturbance Code (ATRAN2). A special treatment of the leading edge region for thin airfoils is included in this code. With this, the three methods gave qualitatively similar results for the weaker interactions considered in this study. However, the strongest interactions considered proved to be beyond the capabilities of the small disturbance code. The results also show a far greater influence of the vortex on the airfoil flowfield when the vortex is stationary than when it is convecting with the flow.
Tay, W. B.; Lim, K. B.
2010-01-01
This paper investigates the effect of active chordwise flexing on the lift, thrust and propulsive efficiency of three types of airfoils. The factors studied are the flexing center location, standard two-sided flexing as well as a type of single-sided flexing. The airfoils are simulated to flap with four configurations, and the effects of flexing under these configurations are investigated. Results show that flexing is not necessarily beneficial for the performance of the airfoils. However, with the correct parameters, efficiency is as high as 0.76 by placing the flexing centre at the trailing edge. The average thrust coefficient is more than twice as high, from 1.63 to 3.57 with flapping and flexing under the right conditions. Moreover, the single-sided flexing also gives an average lift coefficient as high as 4.61 for the S1020 airfoil. The shape of the airfoil does alter the effect of flexing too. Deviating the flexing phase angle away from 90° does not give a significant improvement to the airfoil’s performance. These results greatly enhance the design of a better performing ornithopter wing.
On the unsteady motion and stability of a heaving airfoil in ground effect
Institute of Scientific and Technical Information of China (English)
Juan Molina; Xin Zhang; David Angland
2011-01-01
This study explores the fluid mechanics and force generation capabilities of an inverted heaving airfoil placed close to a moving ground using a URANS solver with the Spalart-Allmaras turbulence model. By varying the mean ground clearance and motion frequency of the airfoil, it was possible to construct a frequency-height diagram of the various forces acting on the airfoil. The ground was found to enhance the downforce and reduce the drag with respect to freestream. The unsteady motion induces hysteresis in the forces' behaviour. At moderate ground clearance, the hysteresis increases with frequency and the airfoil loses energy to the flow, resulting in a stabilizing motion. By analogy with a pitching motion, the airfoil stalls in close proximity to the ground. At low frequencies, the motion is unstable and could lead to stall flutter. A stall flutter analysis was undertaken. At higher frequencies, inviscid effects overcome the large separation and the motion becomes stable. Forced trailing edge vortex shedding appears at high frequencies. The shedding mechanism seems to be independent of ground proximity.However, the wake is altered at low heights as a result of an interaction between the vortices and the ground.
Lift on a Steady Airfoil in Low Reynolds Number Shear Flow
Hammer, Patrick; Visbal, Miguel; Naguib, Ahmed; Koochesfahani, Manoochehr
2016-11-01
Current understanding of airfoil aerodynamics is primarily based on a uniform freestream velocity approaching the airfoil, without consideration for possible presence of shear in the approach flow. Inviscid theory by Tsien (1943) shows that a symmetric airfoil at zero angle of attack experiences positive lift, i.e. a shift in the zero-lift angle of attack, in the presence of positive mean shear in the approach flow. In the current work, 2D computations are conducted on a steady NACA 0012 airfoil at a chord Reynolds number of Re = 12,000, at zero angle of attack. A uniform shear profile (i.e. a linear velocity variation) is used for the approach flow by modifying the FDL3DI Navier-Stokes solver (Visbal and Gaitonde, 1999). Interestingly, opposite to the inviscid prediction of Tsien (1943), the results for the airfoil at zero angle of attack show that the average lift is negative in the shear flow. The magnitude of this lift grows as the shear rate increases. Additional results are presented regarding the physics underlying the shear effect on lift. A companion experimental study is also given in a separate presentation. This work was supported by AFOSR Award Number FA9550-15-1-0224.
Institute of Scientific and Technical Information of China (English)
Zhang Lizhen; Wang Xiaoming; Miguel A.González Hernández; Wang Jun
2008-01-01
This paper was to validate the effects of airfoil thickness ratio on the characteristics of a family of airfoils.Re-search was carried out in different ways.First,tests were conducted in the wind tunnel.And numerical simulation was performed on the basis of tests.Results from calculation were consistent with tests,indicating that numerical method could help evaluate characteristics of airfoils.Then the results were confirmed by compared with empirical data.The study also showed that the determining factor of lift is not only the thickness ratio,but the angle of attack,the relative camber and the camber line.The thickness ratio appears to have little effect on lift coefficient at zero angle of attack,since the angle of zero llft is largely determined by the airfoil camber.According to the research,numerical simulation can be used to determine the aerodynamic characteristics of airfoils in different environment such as in the dusty or hu-mid air.
Experimental study of ice accretion effects on aerodynamic performance of an NACA 23012 airfoil
Institute of Scientific and Technical Information of China (English)
Masoud Mirzaei; Mohammad-Mahdi Nazemi; Mojtaba Fouladi; Alireza Doostmahmoudi
2016-01-01
In this paper, the effects of icing on an NACA 23012 airfoil have been studied. Exper-iments were applied on the clean airfoil, runback ice, horn ice, and spanwise ridge ice at a Reynolds number of 0.6 ? 106 over angles of attack from ? 8? to 20?, and then results are compared. Gener-ally, it is found that ice accretion on the airfoil can contribute to formation of a flow separation bubble on the upper surface downstream from the leading edge. In addition, it is made clear that spanwise ridge ice provides the greatest negative effect on the aerodynamic performance of the airfoil. In this case, the stall angle drops about 10? and the maximum lift coefficient reduces about 50%which is hazardous for an airplane. While horn ice leads to a stall angle drop of about 4? and a maximum lift coefficient reduction to 21%, runback ice has the least effect on the flow pattern around the airfoil and the aerodynamic coefficients so as the stall angle decreases 2? and the maximum lift reduces about 8%.
Transitory Control of the Aerodynamic Loads on an Airfoil in Dynamic Pitch and Plunge
Tan, Yuehan; Crittenden, Thomas; Glezer, Ari
2016-11-01
Transitory control and regulation of trapped vorticity concentrations are exploited in wind tunnel experiments for control of the aerodynamic loads on an airfoil moving in time-periodic 2-DOF (pitch and plunge) beyond the dynamic stall margin. Actuation is effected using a spanwise array of integrated miniature chemical (combustion based) high-impulse actuators that are triggered intermittently relative to the airfoil's motion. Each actuation pulse has sufficient control authority to alter the global aerodynamic performance throughout the motion cycle on a characteristic time scale that is an order of magnitude shorter than the airfoil's convective time scale. The effects of the actuation on the aerodynamic characteristics of the airfoil are assessed using time-dependent measurements of the lift force and pitching moment coupled with time-resolved particle image velocimetry that is acquired phased-locked to the motion of the airfoil. It is shown that the aerodynamic loads can be significantly altered using actuation programs based on multiple actuation pulses during the time-periodic pitch/plunge cycle. Superposition of such actuation programs leads to enhancement of cycle lift and pitch stability, and reduced cycle hysteresis and peak pitching moment. Supported by GT-VLRCOE.
Flow past a self-oscillating airfoil with two degrees of freedom: measurements and simulations
Directory of Open Access Journals (Sweden)
Šidlof Petr
2014-03-01
Full Text Available The paper focuses on investigation of the unsteady subsonic airflow past an elastically supported airfoil for subcritical flow velocities and during the onset of the flutter instability. A physical model of the NACA0015 airfoil has been designed and manufactured, allowing motion with two degrees of freedom: pitching (rotation about the elastic axis and plunging (vertical motion. The structural mass and stiffness matrix can be tuned to certain extent, so that the natural frequencies of the two modes approach as needed. The model was placed in the measuring section of the wind tunnel in the aerodynamic laboratory of the Institute of Thermomechanics in Nový Knín, and subjected to low Mach number airflow up to the flow velocities when self-oscillation reach amplitudes dangerous for the structural integrity of the model. The motion of the airfoil was registered by a high-speed camera, with synchronous measurement of the mechanic vibration and discrete pressure sensors on the surface of the airfoil. The results of the measurements are presented together with numerical simulation results, based on a finite volume CFD model of airflow past a vibrating airfoil.
2D CFD Analysis of an Airfoil with Active Continuous Trailing Edge Flap
Jaksich, Dylan; Shen, Jinwei
2014-11-01
Efficient and quieter helicopter rotors can be achieved through on-blade control devices, such as active Continuous Trailing-Edge Flaps driven by embedded piezoelectric material. This project aims to develop a CFD simulation tool to predict the aerodynamic characteristics of an airfoil with CTEF using open source code: OpenFOAM. Airfoil meshes used by OpenFOAM are obtained with MATLAB scripts. Once created it is possible to rotate the airfoil to various angles of attack. When the airfoil is properly set up various OpenFOAM properties, such as kinematic viscosity and flow velocity, are altered to achieve the desired testing conditions. Upon completion of a simulation, the program gives the lift, drag, and moment coefficients as well as the pressure and velocity around the airfoil. The simulation is then repeated across multiple angles of attack to give full lift and drag curves. The results are then compared to previous test data and other CFD predictions. This research will lead to further work involving quasi-steady 2D simulations incorporating NASTRAN to model aeroelastic deformation and eventually to 3D aeroelastic simulations. NSF ECE Grant #1358991 supported the first author as an REU student.
Thrust generation and wake structure for flow across a pitching airfoil at low Reynolds number
Indian Academy of Sciences (India)
Intesaaf Ashraf; Amit Agrawal; Majid Hassan Khan; Sooraj P; Atul Srivastava; Atul Sharma
2015-12-01
In this work, we present detailed particle image velocimetry (PIV) based investigation of wake structure of a pitching airfoil. PIV measurements have been carried out for NACA0015 airfoil at Re = 2900 with reduced frequency range of 1.82–10.92 and pitching angle of 5°. Two different wake structures (reverse Kármán shedding and deflected vortex shedding) are observed over this parameter range. The vorticity decreases substantially over a distance of two chord-lengths. The velocity profile indicates a jet-like flow downstream of the airfoil. It is shown that the jet-like flow downstream of the airfoil is however not a sufficient condition for the generation of thrust. The vortex strength is found to be invariant of the pitching frequency. Certain differences from the reported results are noted, which may be because of difference in the airfoil shape. These results can help improve understanding of the flow behavior as the low Reynolds number range is not well studied.
Experimental study of ice accretion effects on aerodynamic performance of an NACA 23012 airfoil
Directory of Open Access Journals (Sweden)
Sohrab Gholamhosein Pouryoussefi
2016-06-01
Full Text Available In this paper, the effects of icing on an NACA 23012 airfoil have been studied. Experiments were applied on the clean airfoil, runback ice, horn ice, and spanwise ridge ice at a Reynolds number of 0.6 × 106 over angles of attack from −8° to 20°, and then results are compared. Generally, it is found that ice accretion on the airfoil can contribute to formation of a flow separation bubble on the upper surface downstream from the leading edge. In addition, it is made clear that spanwise ridge ice provides the greatest negative effect on the aerodynamic performance of the airfoil. In this case, the stall angle drops about 10° and the maximum lift coefficient reduces about 50% which is hazardous for an airplane. While horn ice leads to a stall angle drop of about 4° and a maximum lift coefficient reduction to 21%, runback ice has the least effect on the flow pattern around the airfoil and the aerodynamic coefficients so as the stall angle decreases 2° and the maximum lift reduces about 8%.
Application of a Beamforming Technique to the Measurement of Airfoil Leading Edge Noise
Directory of Open Access Journals (Sweden)
Thomas Geyer
2012-01-01
Full Text Available The present paper describes the use of microphone array technology and beamforming algorithms for the measurement and analysis of noise generated by the interaction of a turbulent flow with the leading edge of an airfoil. Experiments were performed using a setup in an aeroacoustic wind tunnel, where the turbulent inflow is provided by different grids. In order to exactly localize the aeroacoustic noise sources and, moreover, to separate airfoil leading edge noise from grid-generated noise, the selected deconvolution beamforming algorithm is extended to be used on a fully three-dimensional source region. The result of this extended beamforming are three-dimensional mappings of noise source locations. Besides acoustic measurements, the investigation of airfoil leading edge noise requires the measurement of parameters describing the incident turbulence, such as the intensity and a characteristic length scale or time scale. The method used for the determination of these parameters in the present study is explained in detail. To demonstrate the applicability of the extended beamforming algorithm and the experimental setup as a whole, the noise generated at the leading edge of airfoils made of porous materials was measured and compared to that generated at the leading edge of a common nonporous airfoil.
DEFF Research Database (Denmark)
Yilmaz, Özlem Ceyhan; Pires, Oscar; Munduate, Xabier;
2017-01-01
This paper summarizes the results of a blind test campaign organized in the AVATAR project to predict the high Reynolds number performance of a wind turbine airfoil for wind turbine applications. The DU00-W-210 airfoil was tested in the DNW-HDG pressurized wind tunnel in order to investigate the ...
Violato, D.; Moore, P.; Scarano, F.
2010-01-01
This work investigates the rod-airfoil air flow by time-resolved Tomographic Particle Image Velocimetry (TR-TOMO PIV) in thin-light volume configuration. Experiments are performed at the region close to the leading edge of a NACA0012 airfoil embedded in the von Karman wake of a cylindrical rod. The
Wind tunnel test on airfoil Riso-B1-18 with an Active Trailing Edge Flap
DEFF Research Database (Denmark)
Bak, Christian; Gaunaa, Mac; Andersen, Peter Bjørn;
2010-01-01
A wind tunnel test of the wind turbine airfoil Risø-B1-18 equipped with an Active Trailing Edge Flap (ATEF) was carried out. The ATEF was 9% of the total chord, made of piezo electric actuators attached to the trailing edge of a non-deformable airfoil and actuated using an (electric) amplifier...
Aerodynamic Design of Airfoils Based on Variable-Domain Variational Finite Element Method
Institute of Scientific and Technical Information of China (English)
陈池; 刘高联
2005-01-01
Designing airfoils according to given pressure (or velocity) distribution is one kind of free boundary problems. Free boundary condition can be coupled with the flow governing equations by variable-domain variational calculus, which makes it possible to calculate simultaneously the flow field and the free boundary. An accurate deduction of the variable-domain variational principles is taken herein to design airfoils in compressible and incompressible flows. Furthermore, two grid types (H and O) are used in the calculation with better results for the O-type grid. It is shown that convergence is accelerated and good results can be obtained even if the initial guessed airfoil shape is a triangle, demonstrating the strong adaptability of this method.
Status of advanced airfoil tests in the Langley 0.3-meter transonic cryogenic tunnel
Ladson, C. L.; Ray, E. J.
1984-01-01
A joint NASA/U.S. industry program to test advanced technology airfoils in the Langley 0.3-meter Transonic Tunnel (TCT) was formulated under the Langley ACEE Project Office. The objectives include providing U.S. industry an opportunity to compare their most advanced airfoils to the latest NASA designs by means of high Reynolds number tests in the same facility. At the same time, industry would again experience in the design and construction of cryogenic test techniques. The status and details of the test program are presented. Typical aerodynamic results obtained, to date, are presented at chord Reynolds number up to 45 x 10(6) and are compared to results from other facilities and theory. Details of a joint agreement between NASA and the Deutsche Forschungs- und Versuchsantalt fur Luft- and Raumfahrt e.V. (DFVLR) for tests of two airfoils are also included. Results of these tests will be made available as soon as practical.
Wind Tunnel Tests of Wind Turbine Airfoils at High Reynolds Numbers
Llorente, E.; Gorostidi, A.; Jacobs, M.; Timmer, W. A.; Munduate, X.; Pires, O.
2014-06-01
Wind tunnel tests have been performed to measure the two-dimensional aerodynamic characteristics of two different airfoil families at high Reynolds numbers (from 3 to 12 millions) in the DNW High Pressure Wind Tunnel in Gottingen (HDG), Germany. Also, tests at a Reynolds number of 3 millions have been performed in the Low-Speed Low- Turbulence Wind Tunnel of Delft University, The Netherlands. The airfoils tested belong to two wind turbine dedicated families: the TU-Delft DU family and the ACCIONA Windpower AWA family that was designed in collaboration with CENER. Reynolds number effects on airfoil performance have been obtained in the range of 3 to 12 millions. The availability of data from two different wind tunnels has brought the opportunity to cross compare the results from the two facilities.
Compressible dynamic stall vorticity ﬂux control using a dynamic camber airfoil
Indian Academy of Sciences (India)
M S Chandrasekhara
2007-02-01
This study reports control of compressible dynamic stall through management of its unsteady vorticity using a variable droop leading edge (VDLE) airfoil. Through dynamic adaptation of the airfoil edge incidence, the formation of a dynamic stall vortex was virtually eliminated for Mach numbers of up to 0·4. Consequently, the leading edge vorticity ﬂux was redistributed enabling retention of the dynamic lift. Of even greater importance was the fact that the drag and pitching moment coefﬁcients were reduced by nearly 50%. The camber variations introduced when the leading edge was drooped are explained to be the source of this beneﬁt. Analysis of the peak vorticity ﬂux levels allowed the determination of minimum necessary airfoil adaptation schedule.
Application of numerical optimization to the design of advanced supercritical airfoils
Johnson, R. R.; Hicks, R. M.
1979-01-01
An application of numerical optimization to the design of advanced airfoils for transonic aircraft showed that low-drag sections can be developed for a given design Mach number without an accompanying drag increase at lower Mach numbers. This is achieved by imposing a constraint on the drag coefficient at an off-design Mach number while minimizing the drag coefficient at the design Mach number. This multiple design-point numerical optimization has been implemented with the use of airfoil shape functions which permit a wide range of attainable profiles during the optimization process. Analytical data for the starting airfoil shape, a single design-point optimized shape, and a double design-point optimized shape are presented. Experimental data obtained in the NASA Ames two-by two-foot wind tunnel are also presented and discussed.
Modeling and computation of flow in a passage with 360 deg turning and multiple airfoils
Shyy, W.; Vu, T. C.
1991-06-01
Numerical modeling of the three-dimensional flows in a spiral casing of a hydraulic turbine, containing a passage of 360-deg turning and multiple elements of airfoils (the so-called distributor), is made. The physical model is based on a novel two-level approach, comprising of (1) a global model that adequately accounts for the geometry of the spiral casing but smears out the details of the distributor and represents the multiple airfoils by a porous medium treatment; and (2) a local model that performs detailed analysis of flow in the distributor region. The global analysis supplies the inlet flow condition for the individual cascade of distributor airfoils, while the distributor analysis yields the information needed for modeling the characteristics of the porous medium. Comparisons of pressure and velocity profiles between measurement and prediction have been made to assess the validity of the present approach. Flow characteristics in the spiral casing are also discussed.
CFD simulation of flow-induced vibration of an elastically supported airfoil
Directory of Open Access Journals (Sweden)
Šidlof Petr
2016-01-01
Full Text Available Flow-induced vibration of lifting or control surfaces in aircraft may lead to catastrophic consequences. Under certain circumstances, the interaction between the airflow and the elastic structure may lead to instability with energy transferred from the airflow to the structure and with exponentially increasing amplitudes of the structure. In the current work, a CFD simulation of an elastically supported NACA0015 airfoil with two degrees of freedom (pitch and plunge coupled with 2D incompressible airflow is presented. The geometry of the airfoil, mass, moment of inertia, location of the centroid, linear and torsional stiffness was matched to properties of a physical airfoil model used for wind-tunnel measurements. The simulations were run within the OpenFOAM computational package. The results of the CFD simulations were compared with the experimental data.
A SIMPLIFIED THEORY FOR UNSTEADY AERODYNAMIC FORCES ACTING ON AN AIRFOIL FLYING ABOVE SEA-WAVES
Institute of Scientific and Technical Information of China (English)
SHENG Qi-hu; WU De-ming; ZHANG Liang
2004-01-01
A simplified theoretical method based on the quasi-steady wing theory was proposed to study the unsteady aerodynamic forces acting on an airfoil flying in non-uniform flow. Comparison between the theoretical results and the numerical results based on nonlinear theory was made. It shows that the simplified theory is a good approximation for the investigation of the aerodynamic characteristics of an airfoil flying above sea-waves. From on the simplified theory it is also found that an airfoil can get thrust from a wave-disturbed airflow and thus the total drag is reduced. And the relationship among the thrust, the flying altitude, the flying speed and the wave parameters was worked out and discussed.
Probabilistic Design of Hollow Airfoil Composite Structure by Using Finite Element Method
Directory of Open Access Journals (Sweden)
Mr. Sachin M. Shinde
2014-04-01
Full Text Available This study represents simulation of Airfoil composite beam by using Monte Carlo method. A three dimensional static analysis of large displacement type has been carried out. Finite element analysis of NACA0012 airfoil composite structure has been carried out and uncertainty in bending stress is analyzed. Bending stress was objective function. Chord length , beam length ,elastic modulus in XY,YZ,XZ and shear modulus of epoxy graphite in XY,YZ,XZ, ply angle and ply thickness of airfoil section, force are varied within effective range and their effect on bending stress has been analyzed. In order to validate the results, one loop of simulation is benchmarked from results in literature. Ultimately, best set of probabilistic design variable is proposed to reduce bending stress under static loading condition.
Strong, Stuart L.; Meade, Andrew J., Jr.
1992-01-01
Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.
Parameter study of simplified dragonfly airfoil geometry at Reynolds number of 6000.
Levy, David-Elie; Seifert, Avraham
2010-10-21
Aerodynamic study of a simplified Dragonfly airfoil in gliding flight at Reynolds numbers below 10,000 is motivated by both pure scientific interest and technological applications. At these Reynolds numbers, the natural insect flight could provide inspiration for technology development of Micro UAV's and more. Insect wings are typically characterized by corrugated airfoils. The present study follows a fundamental flow physics study (Levy and Seifert, 2009), that revealed the importance of flow separation from the first corrugation, the roll-up of the separated shear layer to discrete vortices and their role in promoting flow reattachment to the aft arc, as the leading mechanism enabling high-lift, low drag performance of the Dragonfly gliding flight. This paper describes the effect of systematic airfoil geometry variations on the aerodynamic properties of a simplified Dragonfly airfoil at Reynolds number of 6000. The parameter study includes a detailed analysis of small variations of the nominal geometry, such as corrugation placement or height, rear arc and trailing edge shape. Numerical simulations using the 2D laminar Navier-Stokes equations revealed that the flow accelerating over the first corrugation slope is followed by an unsteady pressure recovery, combined with vortex shedding. The latter allows the reattachment of the flow over the rear arc. Also, the drag values are directly linked to the vortices' magnitude. This parametric study shows that geometric variations which reduce the vortices' amplitude, as reduction of the rear cavity depth or the reduction of the rear arc and trailing edge curvature, will reduce the drag values. Other changes will extend the flow reattachment over the rear arc for a larger mean lift coefficients range; such as the negative deflection of the forward flat plate. These changes consequently reduce the drag values at higher mean lift coefficients. The detailed geometry study enabled the definition of a corrugated airfoil
Computational Analysis of the 2415-3S Airfoil Aerodynamic Performance
Directory of Open Access Journals (Sweden)
Luis Velázquez-Araque
2014-02-01
Full Text Available This paper deals with the numerical simulation of the two-dimensional, incompressible, steady air flow past an airfoil for a solar powered unmanned aerial vehicle (UAV with internal propulsion system. This airfoil results from a NACA 2415 four digits family base airfoil modification [7] and has a propulsive outlet with the shape of a step on the suction surface. The analysis involved the airfoil's aerodynamic performance which meant obtaining lift, drag and pitching moment coefficient curves as a function of the angle of attack (AOA for the condition where the engine of the UAV is turned off called the gliding condition and also for the blowing propulsive condition by means computational fluid dynamics. The computational domain has been discretised using a structured mesh of 188 x 200 tetrahedral elements. The RNG k-Ε model is utilized to describe the turbulent flow process as it was followed in [5]. The simulations were held at a Reynolds number of 300000. Results allowed obtaining lift and drag forces and pitching moment coefficient and also the location of the separation and reattachment points in some cases by means of the wall shear stress on the suction surface as well as velocity contours and streamlines for both conditions at different angles of attack, from 0 to 16 degrees with the smallest increment of 4 degrees. Finally, results from both cases were compared and the influence of the propulsive flow on the aerodynamic characteristics of the airfoil has been analysed turning out that it improves significantly the performance of the airfoil reaching values up to 1,8 times in terms of lift at high angles of attack. [5] Rhie C.M., Chow W.L., Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation, AIAA Journal, Vol. 21, No. 11, 1983. [7] Velazquez L., Nožička J, Kulhanek R., Oil and Smoke Flow Visualization past Two-Dimensional Airfoils for an Unmanned Aerial Vehicle, in The 11th Asian Symposium of
Aerodynamic behaviour of NREL S826 airfoil at Re=100,000
DEFF Research Database (Denmark)
Chivaee, Hamid Sarlak; Mikkelsen, Robert Flemming; Sarmast, Sasan;
2014-01-01
at Fluid Mechanics laboratory of the Technical University of Denmark (DTU). Lift coefficient is obtained from the forge gauge measurements while the drag is measured according to the integration of the wake profiles downstream of the airfoil. The pressure distribution is measured by a set of pressure taps......, there is a better agreement between the drag measurements and computations. It is concluded that LES computations are able to capture the lift and drag polars as well as the pressure distribution around the airfoil with an acceptable accuracy....
Nonlinear angle control of a sectioned airfoil by using shape memory alloys
Directory of Open Access Journals (Sweden)
Abreu G.
2014-01-01
Full Text Available The present work illustrates an application of shape memory alloys and nonlinear controller applied to the active angular control of a sectioned airfoil. The main objective of the proposed control system is to modify the shape of the profile based on a reference angle. The change of the sectioned airfoil angle is resultant by the effect of shape memory of the alloy due to heating of the wire caused by an electric current that changes its temperature by Joule effect. Considering the presence of plant’s nonlinear effects, especially in the mathematical model of the alloy, this work proposes the application of an on-off control system.
Nonlinear angle control of a sectioned airfoil by using shape memory alloys
Abreu G.; Maestá M.; Faria C.; Lopes V.
2014-01-01
The present work illustrates an application of shape memory alloys and nonlinear controller applied to the active angular control of a sectioned airfoil. The main objective of the proposed control system is to modify the shape of the profile based on a reference angle. The change of the sectioned airfoil angle is resultant by the effect of shape memory of the alloy due to heating of the wire caused by an electric current that changes its temperature by Joule effect. Considering the presence o...
Finding optimum airfoil shape to get maximum aerodynamic efficiency for a wind turbine
Sogukpinar, Haci; Bozkurt, Ismail
2017-02-01
In this study, aerodynamic performances of S-series wind turbine airfoil of S 825 are investigated to find optimum angle of attack. Aerodynamic performances calculations are carried out by utilization of a Computational Fluid Dynamics (CFD) method withstand finite capacity approximation by using Reynolds-Averaged-Navier Stokes (RANS) theorem. The lift and pressure coefficients, lift to drag ratio of airfoil S 825 are analyzed with SST turbulence model then obtained results crosscheck with wind tunnel data to verify the precision of computational Fluid Dynamics (CFD) approximation. The comparison indicates that SST turbulence model used in this study can predict aerodynamics properties of wind blade.
Assessment of PIV-based unsteady load determination of an airfoil with actuated flap
Sterenborg, J. J. H. M.; Lindeboom, R. C. J.; Simão Ferreira, C. J.; van Zuijlen, A. H.; Bijl, H.
2014-02-01
For complex experimental setups involving movable structures it is not trivial to directly measure unsteady loads. An alternative is to deduce unsteady loads indirectly from measured velocity fields using Noca's method. The ultimate aim is to use this method in future work to determine unsteady loads for fluid-structure interaction problems. The focus in this paper is first on the application and assessment of Noca's method for an airfoil with an oscillating trailing edge flap. To our best knowledge Noca's method has not been applied yet to airfoils with moving control surfaces or fluid-structure interaction problems. In addition, wind tunnel corrections for this type of unsteady flow problem are considered.
An Iterative Method for Estimating Airfoil Deformation due to Solid Particle Erosion
Directory of Open Access Journals (Sweden)
Valeriu DRAGAN
2014-04-01
Full Text Available Helicopter blades are currently constructed with composite materials enveloping honeycomb cores with only the leading and trailing edges made of metal alloys. In some cases, the erosive wear of the bound between the composite skin and metallic leading edge leads to full blade failure. It is therefore the goal of this paper to provide a method for simulating the way an airfoil is deformed through the erosion process. The method involves computational fluid dynamics simulations, scripts for automatic meshing and spreadsheet calculators for estimating the erosion and, ultimately, the airfoil deformation. Further work could include more complex meshing scripts allowing the use of similar methods for turbo-machineries.
Usability of the Selig S1223 Profile Airfoil as a High Lift Hydrofoil for Hydrokinetic Application
Directory of Open Access Journals (Sweden)
Sergio Oller
2016-01-01
Full Text Available This work presents a numerical analysis of the ability of the high lift airfoil profile Selig S1223 for working as hydrofoil under water conditions. The geometry of the hydrofoil blade is designed through a suitable airfoil profile and then studied carefully by means of Computational Fluid Dynamics (CFD in order to check its hydrodynamic behavior, i.e., including lift and drag analysis, and determinations of streamlines velocities and pressures fields. Finally conclusions on the use of this profile in a possible application for hydrokinetic turbine blades are detailed.
Self-induced vibrations of a DU96-W-180 airfoil in stall
DEFF Research Database (Denmark)
Skrzypinski, Witold Robert; Gaunaa, Mac; Sørensen, Niels N.;
2014-01-01
This work presents an analysis of two-dimensional (2D) and three-dimensional (3D) non-moving, prescribed motion and elastically mounted airfoil computational fluid dynamics (CFD) computations. The elastically mounted airfoil computations were performed by means of a 2D structural model with two d...... are likely to occur at modern wind turbine blades at standstill. In contrast, the predicted cut-in wind speed necessary for the onset of stall-induced vibrations appeared high enough for such vibrations to be unlikely. Copyright © 2013 John Wiley & Sons, Ltd....
Evaluation of a research circulation control airfoil using Navier-Stokes methods
Shrewsbury, George D.
1987-01-01
The compressible Reynolds time averaged Navier-Stokes equations were used to obtain solutions for flows about a two dimensional circulation control airfoil. The governing equations were written in conservation form for a body-fitted coordinate system and solved using an Alternating Direction Implicit (ADI) procedure. A modified algebraic eddy viscosity model was used to define the turbulent characteristics of the flow, including the wall jet flow over the Coanda surface at the trailing edge. Numerical results are compared to experimental data obtained for a research circulation control airfoil geometry. Excellent agreement with the experimental results was obtained.
Effects of laminar separation bubbles and turbulent separation on airfoil stall
Energy Technology Data Exchange (ETDEWEB)
Dini, P. [Carleton College, Northfield, MN (United States); Coiro, D.P. [Universita di Napoli (Italy)
1997-12-31
An existing two-dimensional, interactive, stall prediction program is extended by improving its laminar separation bubble model. The program now accounts correctly for the effects of the bubble on airfoil performance characteristics when it forms at the mid-chord and on the leading edge. Furthermore, the model can now predict bubble bursting on very sharp leading edges at high angles of attack. The details of the model are discussed in depth. Comparisons of the predicted stall and post-stall pressure distributions show excellent agreement with experimental measurements for several different airfoils at different Reynolds numbers.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Aerodynamic performance of low-Reynolds-number high-lift airfoil makes a great impact on designing a high-efficiency propeller for low-dynamic vehicles in stratosphere. At high altitude,low-Reynolds-number airfoils are supposed to have high lift-drag ratio or high endurance factor at cruising attack angle along with good stall characteristics. To design such a high-performance low-Reynolds-number high-lift airfoil,the paper established a hierarchical multi-objective optimization platform by combing direct search optimization algorithm EXTREM and airfoil flow field solver XFOIL to automatically and quickly calculate aerodynamic performance function of airfoil by computer. It provides an effective solution to multi-point design problem of low-speed low-Reynolds-number airfoil. It can be seen from the results of three typical optimization examples,the new airfoil E387_OPT2,FX63-137_OPT2 and S1223_OPT2 based on hot low-Reynolds-number high-lift airfoils (Eppler 387 airfoil,Wortmann FX63-137 airfoil and S1223 airfoil) can meet the optimization design requirements and have very good aerodynamic characteristics in both design state and non-design state. Thus,the applicability and effectiveness of hierarchical multi-objective optimization platform are verified.
Vargas, Mario; Feo, Alex
2011-01-01
This work presents the results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. An airfoil model placed at the end of the rotating arm was moved at speeds of 50 to 90 m/sec. A monosize droplet generator was employed to produce droplets that were allowed to fall from above, perpendicular to the path of the airfoil at a given location. High speed imaging was employed to observe the interaction between the droplets and the airfoil. The high speed imaging allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. A tracking software program was used to measure from the high speed movies the horizontal and vertical displacement of the droplet against time. The velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of a given droplet from beginning of deformation to breakup and/or hitting the airfoil. Results are presented for droplets with a diameter of 490 micrometers at airfoil speeds of 50, 60, 70, 80 and 90 m/sec
Development of a fast shape memory alloy based actuator for morphing airfoils
Lara-Quintanilla, A.
2016-01-01
The design of aerodynamic airfoils are optimized for certain conditions. For instance, the shape of the wings of fixed-wing aircrafts are designed and optimized for a certain flight condition (in terms of altitude, speed, aircraft weight, etc.). However, these flight conditions vary significantly du
DEFF Research Database (Denmark)
Yang, Hua; Shen, Wen Zhong; Xu, Haoran
2013-01-01
some models before they can be used in a BEM code. In this article, the airfoil data for the MEXICO (Model EXperiments in Controlled cOnditions) rotor are extracted from CFD (Computational Fluid Dynamics) results. The azimuthally averaged velocity is used as the sectional velocity to define the angle...
Estimation of morphing airfoil shape and aerodynamic load using artificial hair sensors
Butler, Nathan S.; Su, Weihua; Thapa Magar, Kaman S.; Reich, Gregory W.
2016-04-01
An active area of research in adaptive structures focuses on the use of continuous wing shape changing methods as a means of replacing conventional discrete control surfaces and increasing aerodynamic efficiency. Although many shape-changing methods have been used since the beginning of heavier-than-air flight, the concept of performing camber actuation on a fully-deformable airfoil has not been widely applied. A fundamental problem of applying this concept to real-world scenarios is the fact that camber actuation is a continuous, time-dependent process. Therefore, if camber actuation is to be used in a closed-loop feedback system, one must be able to determine the instantaneous airfoil shape as well as the aerodynamic loads at all times. One approach is to utilize a new type of artificial hair sensors developed at the Air Force Research Laboratory to determine the flow conditions surrounding deformable airfoils. In this work, the hair sensor measurement data will be simulated by using the flow solver XFoil, with the assumption that perfect data with no noise can be collected from the hair sensor measurements. Such measurements will then be used in an artificial neural network based process to approximate the instantaneous airfoil camber shape, lift coefficient, and moment coefficient at a given angle of attack. Various aerodynamic and geometrical properties approximated from the artificial hair sensor and artificial neural network system will be compared with the results of XFoil in order to validate the approximation approach.
Cross-Validation of Numerical and Experimental Studies of Transitional Airfoil Performance
DEFF Research Database (Denmark)
Frere, Ariane; Hillewaert, Koen; Sarlak, Hamid;
2015-01-01
The aerodynamic performance characteristic of airfoils are the main input for estimating wind turbine blade loading as well as annual energy production of wind farms. For transitional flow regimes these data are difficult to obtain, both experimentally as well as numerically, due to the very high...
Validation of DYSTOOL for unsteady aerodynamic modeling of 2D airfoils
González, A.; Gomez-Iradi, S.; Munduate, X.
2014-06-01
From the point of view of wind turbine modeling, an important group of tools is based on blade element momentum (BEM) theory using 2D aerodynamic calculations on the blade elements. Due to the importance of this sectional computation of the blades, the National Renewable Wind Energy Center of Spain (CENER) developed DYSTOOL, an aerodynamic code for 2D airfoil modeling based on the Beddoes-Leishman model. The main focus here is related to the model parameters, whose values depend on the airfoil or the operating conditions. In this work, the values of the parameters are adjusted using available experimental or CFD data. The present document is mainly related to the validation of the results of DYSTOOL for 2D airfoils. The results of the computations have been compared with unsteady experimental data of the S809 and NACA0015 profiles. Some of the cases have also been modeled using the CFD code WMB (Wind Multi Block), within the framework of a collaboration with ACCIONA Windpower. The validation has been performed using pitch oscillations with different reduced frequencies, Reynolds numbers, amplitudes and mean angles of attack. The results have shown a good agreement using the methodology of adjustment for the value of the parameters. DYSTOOL have demonstrated to be a promising tool for 2D airfoil unsteady aerodynamic modeling.
Experiments on a Steady Low Reynolds Number Airfoil in a Shear Flow
Olson, David; Naguib, Ahmed; Koochesfahani, Manoochehr
2016-11-01
The aerodynamics of steady airfoils in uniform flow have received considerably more attention than that of an airfoil operating in a non-uniform flow. Inviscid theory by Tsien (1943) shows that an airfoil experiences a decrease in the zero lift angle of attack for a shear flow with uniform clockwise vorticity. The current work utilizes a shaped honeycomb technique to create a velocity profile with a large region of uniform shear in a water tunnel. Direct force measurements are implemented and validated using experiments on a circular cylinder and NACA 0012 in a uniform cross-flow. Results for a NACA 0012 airfoil with a chord Reynolds number of 1.2 ×104 in a non-uniform approach flow are compared to concurrent CFD calculations (presented in a companion talk) showing an increase in the zero lift angle of attack; in contradiction with inviscid theory. The effect of shear on the mean lift coefficient over a wide range of angles of attack is also explored. This work was supported by AFOSR Award Number FA9550-15-1-0224.
Control of Pitching Airfoil Aerodynamics by Vorticity Flux Modification using Active Bleed
Kearney, John; Glezer, Ari
2014-11-01
Distributed active bleed driven by pressure differences across a pitching airfoil is used to regulate the vorticity flux over the airfoil's surface and thereby to control aerodynamic loads in wind tunnel experiments. The range of pitch angles is varied beyond the static stall margin of the 2-D VR-7 airfoil at reduced pitching rates up to k = 0.42. Bleed is regulated dynamically using piezoelectric louvers between the model's pressure side near the trailing edge and the suction surface near the leading edge. The time-dependent evolution of vorticity concentrations over the airfoil and in the wake during the pitch cycle is investigated using high-speed PIV and the aerodynamic forces and moments are measured using integrated load cells. The timing of the dynamic stall vorticity flux into the near wake and its effect on the flow field are analyzed in the presence and absence of bleed using proper orthogonal decomposition (POD). It is shown that bleed actuation alters the production, accumulation, and advection of vorticity concentrations near the surface with significant effects on the evolution, and, in particular, the timing of dynamic stall vortices. These changes are manifested by alteration of the lift hysteresis and improvement of pitch stability during the cycle, while maintaining cycle-averaged lift to within 5% of the base flow level with significant implications for improvement of the stability of flexible wings and rotor blades. This work is supported by the Rotorcraft Center (VLRCOE) at Georgia Tech.
Identification of stiffness and damping characteristics of axial air-foil bearings
Arora, Vikas; Hoogt, van der P.J.M.; Aarts, R.G.K.M.; Boer, de A.
2011-01-01
Air-foil bearings (AFBs) are self acting hydrodynamic bearings made from sheet metal foils comprised of at least two layers. The innermost “top foil” layer traps a gas pressure film that supports a load while the layer or layers underneath provide an elastic foundation. AFBs are currently used in ma
Directory of Open Access Journals (Sweden)
Weipeng Yue
2017-01-01
Full Text Available Damp air with high humidity combined with foggy, rainy weather, and icing in winter weather often is found to cause turbine performance degradation, and it is more concerned with offshore wind farm development. To address and understand the high humidity effects on wind turbine performance, our study has been conducted with spread sheet analysis on damp air properties investigation for air density and viscosity; then CFD modeling study using Fluent was carried out on airfoil and blade aerodynamic performance effects due to water vapor partial pressure of mixing flow and water condensation around leading edge and trailing edge of airfoil. It is found that the high humidity effects with water vapor mixing flow and water condensation thin film around airfoil may have insignificant effect directly on airfoil/blade performance; however, the indirect effects such as blade contamination and icing due to the water condensation may have significant effects on turbine performance degradation. Also it is that found the foggy weather with microwater droplet (including rainy weather may cause higher drag that lead to turbine performance degradation. It is found that, at high temperature, the high humidity effect on air density cannot be ignored for annual energy production calculation. The blade contamination and icing phenomenon need to be further investigated in the next study.
Propagation of Shock on NREL Phase VI Wind Turbine Airfoil under Compressible Flow
Directory of Open Access Journals (Sweden)
Mohammad A. Hossain
2013-01-01
Full Text Available The work is focused on numeric analysis of compressible flow around National Renewable Energy Laboratory (NREL phase VI wind turbine blade airfoil S809. Although wind turbine airfoils are low Reynolds number airfoils, a reasonable investigation of compressible flow under extreme condition might be helpful. A subsonic flow (mach no. M=0.8 has been considered for this analysis and the impacts of this flow under seven different angles of attack have been determined. The results show that shock takes place just after the mid span at the top surface and just before the mid span at the bottom surface at zero angle of attack. Slowly the shock waves translate their positions as angle of attack increases. A relative translation of the shock waves in upper and lower face of the airfoil are presented. Variation of Turbulent viscosity ratio and surface Y+ have also been determined. A k-ω SST turbulent model is considered and the commercial CFD code ANSYS FLUENT is used to find the pressure coefficient (Cp as well as the lift (CL and drag coefficients (CD. A graphical comparison of shock propagation has been shown with different angle of attack. Flow separation and stream function are also determined.
Ground effect on the aerodynamics of a two-dimensional oscillating airfoil
Lu, H.; Lua, K. B.; Lim, T. T.; Yeo, K. S.
2014-07-01
This paper reports results of an experimental investigation into ground effect on the aerodynamics of a two-dimensional elliptic airfoil undergoing simple harmonic translation and rotational motion. Ground clearance ( D) ranging from 1 c to 5 c (where c is the airfoil chord length) was investigated for three rotational amplitudes ( α m) of 30°, 45° and 60° (which respectively translate to mid-stroke angle of attack of 60°, 45° and 30°). For the lowest rotational amplitude of 30°, results show that an airfoil approaching a ground plane experiences a gradual decrease in cycle-averaged lift and drag coefficients until it reaches D ≈ 2.0 c, below which they increase rapidly. Corresponding DPIV measurement indicates that the initial force reduction is associated with the formation of a weaker leading edge vortex and the subsequent force increase below D ≈ 2.0 c may be attributed to stronger wake capture effect. Furthermore, an airfoil oscillating at higher amplitude lessens the initial force reduction when approaching the ground and this subsequently leads to lift distribution that bears striking resemblance to the ground effect on a conventional fixed wing in steady translation.
Design and verification of the Risø-B1 airfoil family for wind turbines
DEFF Research Database (Denmark)
Fuglsang, P.; Bak, C.; Gaunaa, M.
2004-01-01
This paper presents the design and experimental verification of the Risø-B1 airfoil family for MW-size wind turbines with variable speed and pitch control. Seven airfoils were designed with thickness-to-chord ratios between 15% and 53% to cover the entire span of a wind turbine blade. The airfoils...... were designed to have high maximum lift and high design lift to allow a slender flexible blade while maintaining high aerodynamic efficiency. The design was carried out with a Risø in-house multi disciplinary optimization tool. Wind tunnel testing was done for Risø-B1-18 and Risø-B1-24 in the VELUX...... wind tunnel, Denmark, at a Reynolds number of 1.6x10(6). For both airfoils the predicted target characteristics were met. Results for Risø-B1-18 showed a maximum lift coefficient of 1.64. A standard case of zigzag tape leading edge roughness caused a drop in maximum lift of only 3.7%. Cases of more...
Self-sustained Flow-acoustic Interactions in Airfoil Transitional Boundary Layers
2015-07-09
all tested airfoils multiple tones were observed. Tracking the dominant tone at increasing flow speed produces the so-called ladder-type tonal...anecho c w nd tunne of Eco e Centra e de Lyon. Measurements of wa pressure, far- f e d acoust c pressure and ve oc ty f uctuat ons us ng the hot-w re
Experimental Study of Tip Vortex Flow from a Periodically Pitched Airfoil Section
Zaman, KBMQ; Fagan, A. F.; Mankbadi, M. R.
2016-01-01
An experimental investigation of a tip vortex from a NACA0012 airfoil is conducted in a low-speed wind tunnel at a chord Reynolds number of 4x10(exp 4). Initially, data for a stationary airfoil held at various angles-of-attack (alpha) are gathered. Detailed surveys are done for two cases: alpha=10 deg with attached flow and alpha=25 deg with massive flow separation on the upper surface. Distributions of various properties are obtained using hot-wire anemometry. Data include mean velocity, streamwise vorticity and turbulent stresses at various streamwise locations. For all cases, the vortex core is seen to involve a mean velocity deficit. The deficit apparently traces to the airfoil wake, part of which gets wrapped by the tip vortex. At small alpha, the vortex is laminar within the measurement domain. The strength of the vortex increases with increasing alpha but undergoes a sudden drop around alpha (is) greater than 16 deg. The drop in peak vorticity level is accompanied by transition and a sharp rise in turbulence within the core. Data are also acquired with the airfoil pitched sinusoidally. All oscillation cases pertain to a mean alpha=15 deg while the amplitude and frequency are varied. An example of phase-averaged data for an amplitude of +/-10 deg and a reduced frequency of k=0.2 is discussed. All results are compared with available data from the literature shedding further light on the complex dynamics of the tip vortex.
2013-12-24
helicopter rotor blades , wind turbine blades , pitching and flapping airfoils and wings, and rotating turbomachinery blades . For instance, helicopter...the date of this printing . List the papers, including journal references, in the following categories: (b) Papers published in non-peer-reviewed...77 A.3.5 3D Taylor-Green vortex . . . . . . . . . . . . . . . . . . . . . . . . . 82 A.4 Summary
URANS simulations of separated flow with stall cells over an NREL S826 airfoil
DEFF Research Database (Denmark)
Sarlak Chivaee, Hamid; Nishino, T.; Sørensen, Jens Nørkær
2016-01-01
A series of wind tunnel measurements and oil flow visualization was recently carried out at the Technical University of Denmark in order to investigate flow characteristics over a 14% thick NREL S826 airfoil at low Reynolds numbers. This paper aims at presenting numerical simulations of the same ...
Predicting extreme loads effects on wind turbines considering uncertainty in airfoil data
DEFF Research Database (Denmark)
Abdallah, Imad; Natarajan, Anand; Sørensen, John Dalsgaard
2013-01-01
The sources contributing to uncertainty in a wind turbine blade static airfoil data include wind tunnel testing, CFD calculations, 3D rotational corrections based on CFD or empirical models, surface roughness corrections, Reynolds number corrections, expansion to the full 360-degree angle of atta...
Aeroelastic Stability of a 2D Airfoil Section equipped with a Trailing Edge Flap
DEFF Research Database (Denmark)
Bergami, Leonardo
section. A simulation tool is implemented to predict the flow speed at which a flap equipped section may become unstable, either due to flutter or divergence. First, the stability limits of the airfoil without flap are determined, and, in the second part of the work, a deformable trailing edge flap...
Computational Study on the Aerodynamic Performance of Wind Turbine Airfoil Fitted with Coandă Jet
Directory of Open Access Journals (Sweden)
H. Djojodihardjo
2013-01-01
Full Text Available Various methods of flow control for enhanced aerodynamic performance have been developed and applied to enhance and control the behavior of aerodynamic components. The use of Coandă effect for the enhancement of circulation and lift has gained renewed interest, in particular with the progress of CFD. The present work addresses the influence, effectiveness, and configuration of Coandă-jet fitted aerodynamic surface for improving lift and L/D, specifically for S809 airfoil, with a view on its incorporation in the wind turbine. A simple two-dimensional CFD modeling using k-ɛ turbulence model is utilized to reveal the key elements that could exhibit the desired performance for a series of S809 airfoil configurations. Parametric study performed indicates that the use of Coandă-jet S809 airfoil can only be effective in certain range of trailing edge rounding-off radius, Coandă-jet thickness, and momentum jet size. The location of the Coandă-jet was found to be effective when it is placed close to the trailing edge. The results are compared with experimental data for benchmarking. Three-dimensional configurations are synthesized using certain acceptable assumptions. A trade-off study on the S809 Coandă configured airfoil is needed to judge the optimum configuration of Coandă-jet fitted Wind-Turbine design.
Amiet theory extension to predict leading-edge generated noise in compact airfoils
De Santana, L.D.; Schram, C.
2015-01-01
This paper extends the Amiet theory to frequencies where the airfoil can be considered a compact noise source. The original Amiet theory proposes to apply the Schwarzschild theorem in an iterative procedure, which generally leads to noise over-prediction at low-frequencies. To overcome this problem,
The semi-discrete Galerkin finite element modelling of compressible viscous flow past an airfoil
Meade, Andrew J., Jr.
1992-01-01
A method is developed to solve the two-dimensional, steady, compressible, turbulent boundary-layer equations and is coupled to an existing Euler solver for attached transonic airfoil analysis problems. The boundary-layer formulation utilizes the semi-discrete Galerkin (SDG) method to model the spatial variable normal to the surface with linear finite elements and the time-like variable with finite differences. A Dorodnitsyn transformed system of equations is used to bound the infinite spatial domain thereby permitting the use of a uniform finite element grid which provides high resolution near the wall and automatically follows boundary-layer growth. The second-order accurate Crank-Nicholson scheme is applied along with a linearization method to take advantage of the parabolic nature of the boundary-layer equations and generate a non-iterative marching routine. The SDG code can be applied to any smoothly-connected airfoil shape without modification and can be coupled to any inviscid flow solver. In this analysis, a direct viscous-inviscid interaction is accomplished between the Euler and boundary-layer codes, through the application of a transpiration velocity boundary condition. Results are presented for compressible turbulent flow past NACA 0012 and RAE 2822 airfoils at various freestream Mach numbers, Reynolds numbers, and angles of attack. All results show good agreement with experiment, and the coupled code proved to be a computationally-efficient and accurate airfoil analysis tool.
Maniaci, David C.; White, Edward B.; Wilcox, Benjamin; Langel, Christopher M.; van Dam, C. P.; Paquette, Joshua A.
2016-09-01
Leading edge erosion and roughness accumulation is an issue observed with great variability by wind plant operators, but with little understanding of the effect on wind turbine performance. In wind tunnels, airfoil models are typically tested with standard grit roughness and trip tape to simulate the effects of roughness and erosion observed in field operation, but there is a lack of established relation between field measurements and wind tunnel test conditions. A research collaboration between lab, academic, and industry partners has sought to establish a method to estimate the effect of erosion in wind turbine blades that correlates to roughness and erosion measured in the field. Measurements of roughness and erosion were taken off of operational utility wind turbine blades using a profilometer. The field measurements were statistically reproduced in the wind tunnel on representative tip and midspan airfoils. Simultaneously, a computational model was developed and calibrated to capture the effect of roughness and erosion on airfoil transition and performance characteristics. The results indicate that the effects of field roughness fall between clean airfoil performance and the effects of transition tape. Severe leading edge erosion can cause detrimental performance effects beyond standard roughness. The results also indicate that a heavily eroded wind turbine blade can reduce annual energy production by over 5% for a utility scale wind turbine.
A dynamic wall model for Large-Eddy simulations of wind turbine dedicated airfoils
J, Calafell; O, Lehmkuhl; A, Carmona; D, Pérez-Segarra C.; A, Oliva
2014-06-01
This work aims at modelling the flow behavior past a wind turbine dedicated airfoil at high Reynolds number and large angle of attack (AoA). The DU-93-W-210 airfoil has been selected. To do this, Large Eddy Simulations (LES) have been performed. Momentum equations have been solved with a parallel unstructured symmetry preserving formulation while the wall-adapting local-eddy viscosity model within a variational multi-scale framework (VMS- WALE) is used as the subgrid-scales model. Since LES calculations are still very expensive at high Reynolds Number, specially at the near-wall region, a dynamic wall model has been implemented in order to overcome this limitation. The model has been validated with a very unresolved Channel Flow case at Reτ = 2000. Afterwards, the model is also tested with the Ahmed Car case, that from the flow physics point of view is more similar to an stalled airfoil than the Channel Flow is, including flow features as boundary layer detachment and recirculations. This case has been selected because experimental results of mean velocity profiles are available. Finally, a flow around a DU-93-W-210 airfoil is computed at Re = 3 x 106 and with an AoA of 15°. Numerical results are presented in comparison with Direct Numerical Simulation (DNS) or experimental data for all cases.
Characterization of the Effect of Wing Surface Instrumentation on UAV Airfoil Performance
Ratnayake, Nalin A.
2009-01-01
Recently proposed flight research at NASA Dryden Flight Research Center (DFRC) has prompted study into the aerodynamic effects of modifications made to the surfaces of laminar airfoils. The research is focused on the high-aspect ratio, laminar-flow type wings commonly found on UAVs and other aircraft with a high endurance requirement. A broad range of instrumentation possibilities, such as structural, pressure, and temperature sensing devices may require the alteration of the airfoil outer mold line as part of the installation process. This study attempts to characterize the effect of installing this additiona1 instrumentation on key airfoil performance factors, such as transition location, lift and drag curves, and stall point. In particular, the general case of an airfoil that is channeled in the spanwise direction is considered, and the impact on key performance characteristics is assessed. Particular attention is focused on exploring the limits of channel depth and low-Reynolds number on performance and stall characteristics. To quantify the effect of increased skin friction due to premature transition caused by protruding or recessed instrumentation, two simplified, conservative scenarios are used to consider two potential sources of diaturbance: A) that leading edge alterations would cause linearly expanding areas (triangles) of turbulent flow on both surfaces of the wing upstream of the natural transition point, and B) that a channel or bump on the upper surface would trip turbulent flow across the whole upper surface upstream of the natural transition point. A potentially more important consideration than the skin friction drag increment is the change in overall airfoil performance due to the installation of instrumentation along most of the wingspan. To quantify this effect, 2D CFD simulations of the flow over a representative mid-span airfoil section were conducted in order to assess the change in lift and drag curves for the airfoil in the presence of
EUDP project 'Low noise airfoil' - Final report
Energy Technology Data Exchange (ETDEWEB)
Bertagnolio, F. (ed.)
2012-06-15
This document summarizes the scientific results achieved during the EUDP-funded project 'Low-Noise Airfoil'. The goals of this project are, on one side to develop a measurement technique that permits the evaluation of trailing edge noise in a classical aerodynamic wind tunnel, and on the other side to develop and implement a design procedure to manufacture airfoil profiles with low noise emission. The project involved two experimental campaigns: one in the LM Wind Power wind tunnel, a classical aerodynamic wind tunnel, in Lunderskov (Denmark), the second one in the Virginia Tech Stability Wind Tunnel at the Aerospace and Ocean Engineering Department of Virginia Tech (Blacksburg, VA, USA), also a classical aerodynamic wind tunnel but equipped with an anechoic chamber that allow to perform acoustic measurements. On the theoretical side, the above experiments yield a series of model validations and improvements. In particular, the so-called TNO trailing edge noise model could be significantly improved by introducing turbulence anisotropy in its formulation, as well as the influence of the boundary layer mean pressure gradient. This two characteristics are inherent to airfoil flows but were neglected in the original approach. In addition, the experimental results are confronted to detailed Large Eddy Simulations of the airfoil flow giving more insight into the flow turbulence characteristics. The methodology which consists in measuring surface pressure spectra directly on the airfoil surface using flush-mounted microphones in order to evaluate far-field noise emission using additional theoretical results has been validated. This technique presents the advantage that it can easily be used in a classical aerodynamic wind tunnel and does not require the use of an anechoic facility. It was developed as a substitute to the original plan that consisted in measuring acoustic waves using hot-wire velocimetry. This last technique proved ineffective in the LM Wind
Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil
Wang, Yan; Zheng, Xiaojing; Hu, Ruifeng; Wang, Ping
2016-01-01
Background Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper. Methodology Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10−7 and 10−6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0. Results It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics
Estimation of morphing airfoil shapes and aerodynamic loads using artificial hair sensors
Butler, Nathan Scott
An active area of research in adaptive structures focuses on the use of continuous wing shape changing methods as a means of replacing conventional discrete control surfaces and increasing aerodynamic efficiency. Although many shape-changing methods have been used since the beginning of heavier-than-air flight, the concept of performing camber actuation on a fully-deformable airfoil has not been widely applied. A fundamental problem of applying this concept to real-world scenarios is the fact that camber actuation is a continuous, time-dependent process. Therefore, if camber actuation is to be used in a closed-loop feedback system, one must be able to determine the instantaneous airfoil shape, as well as the aerodynamic loads, in real time. One approach is to utilize a new type of artificial hair sensors (AHS) developed at the Air Force Research Laboratory (AFRL) to determine the flow conditions surrounding deformable airfoils. In this study, AHS measurement data will be simulated by using the flow solver XFoil, with the assumption that perfect data with no noise can be collected from the AHS measurements. Such measurements will then be used in an artificial neural network (ANN) based process to approximate the instantaneous airfoil camber shape, lift coefficient, and moment coefficient at a given angle of attack. Additionally, an aerodynamic formulation based on the finite-state inflow theory has been developed to calculate the aerodynamic loads on thin airfoils with arbitrary camber deformations. Various aerodynamic properties approximated from the AHS/ANN system will be compared with the results of the finite-state inflow aerodynamic formulation in order to validate the approximation approach.
Design Of An Aerodynamic Measurement System For Unmanned Aerial Vehicle Airfoils
Directory of Open Access Journals (Sweden)
L. Velázquez-Araque
2012-10-01
Full Text Available This paper presents the design and validation of a measurement system for aerodynamic characteristics of unmanned aerial vehicles. An aerodynamic balance was designed in order to measure the lift, drag forces and pitching moment for different airfoils. During the design process, several aspects were analyzed in order to produce an efficient design, for instance the range of changes of the angle of attack with and a small increment and the versatility of being adapted to different type of airfoils, since it is a wire balance it was aligned and calibrated as well. Wind tunnel tests of a two dimensional NACA four digits family airfoil and four different modifications of this airfoil were performed to validate the aerodynamic measurement system. The modification of this airfoil was made in order to create a blowing outlet with the shape of a step on the suction surface. Therefore, four different locations along the cord line for this blowing outlet were analyzed. This analysis involved the aerodynamic performance which meant obtaining lift, drag and pitching moment coefficients curves as a function of the angle of attack experimentally for the situation where the engine of the aerial vehicle is turned off, called the no blowing condition, by means of wind tunnel tests. The experiments were performed in a closed circuit wind tunnel with an open test section. Finally, results of the wind tunnel tests were compared with numerical results obtained by means of computational fluid dynamics as well as with other experimental references and found to be in good agreement.
Design of low noise airfoil with high aerodynamic performance for use on small wind turbines
Institute of Scientific and Technical Information of China (English)
Taehyung; KIM; Seungmin; LEE; Hogeon; KIM; Soogab; LEE
2010-01-01
Wind power is one of the most reliable renewable energy sources and internationally installed capacity is increasing radically every year.Although wind power has been favored by the public in general,the problem with the impact of wind turbine noise on people living in the vicinity of the turbines has been increased.Low noise wind turbine design is becoming more and more important as noise is spreading more adverse effect of wind turbine to public.This paper demonstrates the design of 10 kW class wind turbines,each of three blades,a rotor diameter 6.4 m,a rated rotating speed 200 r/min and a rated wind speed 10 m/s.The optimized airfoil is dedicated for the 75% spanwise position because the dominant source of a wind turbine blade is trailing edge noise from the outer 25% of the blade.Numerical computations are performed for incompressible flow and for Mach number at 0.145 and for Reynolds numbers at 1.02×106 with a lift performance,which is resistant to surface contamination and turbulence intensity.The objectives in the design process are to reduce noise emission,while sustaining high aerodynamic efficiency.Dominant broadband noise sources are predicted by semi-empirical formulas composed of the groundwork by Brooks et al.and Lowson associated with typical wind turbine operation conditions.During the airfoil redesign process,the aerodynamic performance is analyzed to reduce the wind turbine power loss.The results obtained from the design process show that the design method is capable of designing airfoils with reduced noise using a commercial 10 kW class wind turbine blade airfoil as a basis.Therefore,the new optimized airfoil showing 2.9 dB reductions of total sound pressure level(SPL) and higher aerodynamic performance are achieved.
Vortex-induced vibrations of a DU96-W-180 airfoil at 90° angle of attack
DEFF Research Database (Denmark)
Skrzypinski, Witold Robert; Gaunaa, Mac; Sørensen, Niels N.;
2014-01-01
This work presents an analysis of vortex-induced vibrations of a DU96-W-180 airfoil in deep stall at a 90 degrees angle of attack, based on 2D and 3D Reynolds Averaged Navier Stokes and 3D Detached Eddy Simulation unsteady Computational Fluid Dynamics computations with non-moving, prescribed motion...... and elastically mounted airfoil suspensions. Stationary vortex-shedding frequencies computed in 2D and 3D Computational Fluid Dynamics differed. In the prescribed motion computations, the airfoil oscillated in the direction of the chord line. Negative aerodynamic damping, found in both 2D and 3D Computational...... Fluid Dynamics computations with moving airfoil, showed in the vicinity of the stationary vortex-shedding frequency computed by 2D Computational Fluid Dynamics. A shorter time series was sufficient to verify the sign of the aerodynamic damping in the case of the elastic computations than the prescribed...
Goradia, S. H.; Mehta, J. M.; Shrewsbury, G. S.
1977-01-01
The viscous flow phenomena associated with sharp and blunt trailing edge airfoils were investigated. Experimental measurements were obtained for a 17 percent thick, high performance GAW-1 airfoil. Experimental measurements consist of velocity and static pressure profiles which were obtained by the use of forward and reverse total pressure probes and disc type static pressure probes over the surface and in the wake of sharp and blunt trailing edge airfoils. Measurements of the upper surface boundary layer were obtained in both the attached and separated flow regions. In addition, static pressure data were acquired, and skin friction on the airfoil upper surface was measured with a specially constructed device. Comparison of the viscous flow data with data previously obtained elsewhere indicates reasonable agreement in the attached flow region. In the separated flow region, considerable differences exist between these two sets of measurements.
Wind tunnel tests of the NACA 63-415 and a modified NACA 63-415 airfoil
Energy Technology Data Exchange (ETDEWEB)
Bak, C.; Fuglsang, P.; Johansen, J.; Antoniou, I.
2000-12-01
This report contains 2D measurements of the NACA 63-415 and a NACA 63-415 airfoil with modified leading edge called NACA 63-415-Risoe-D. The aerodynamic properties were derived from pressure measurements on the airfoil surface and in the wake. The VELUX open jet wind tunnel was used having a background turbulence intensity of 1%, an inlet flow velocity of 40 m/s which resulted in a Reynolds number of 1.6Oe10{sup 6}. The airfoil sections had a chord of 0.600 m and 0.606 m for NACA 63-415 and NACA 63-415-Risoe-D, respectively. The span was 1.9 m and end plates were used to minimise 3D flow effects. The measurements comprised both static and dynamic inflow where dynamic inflow was obtained by pitching the airfoil in a harmonic motion. We tested the influence of leading edge roughness, stall strips and vortex generators. For smooth surface conditions the modified airfoil showed an increase in lift-drag ratio before stall at {alpha}=8 from 67 to 72. Furthermore, the maximum lift increased from 1.33 to 1.37 while the minimum drag was maintained. Double stall was observed on the NACA 63-415 airfoil, but not on the modified airfoil. This was reflected in the standard deviation of both lift and drag in stall which was significantly lower for the modified airfoil indicating smooth and stable stall conditions. No significant differences were observed for dynamic stall. Test on both airfoil sections with zigzag tape at the leading edge towards the pressure side showed that the insensitivity to roughness was improved significantly for the modified airfoil. However, if zigzag tape was mounted at the leading edge towards the suction side less improvement was observed. Mounting of stall strips at and near the leading edge showed that only if they were mounted at the very vicinity of the leading edge the airfoil characteristics were affected significantly. If the stall strips were mounted on the pressure side downstream of approximately 1 % chord length only little influence was
2007-08-31
increasing Re, while the angle for maximum lift increases with increasing Re. Hot - wire anemometry data indicated the occurrence of a short bubble...then convects downstream near the airfoil surface, which causes an increase in lift and strong pitching- moments due to suction created by the vortex...always forms and 14 convects over the airfoil upper surface at approximately 0.3 times the freestream velocity for all cases studied. The
Isaev, Sergey; Baranov, Paul; Popov, Igor; Sudakov, Alexander; Usachov, Alexander
2017-03-01
The modified SST model (2005) is verified using Rodi- Leschziner-Isaev's approach and the multiblock computational technologies are validated in the VP2/3 code on different-structure overlapping grids by comparing the numerical predictions with the experimental data on transonic flow around an NACA0012 airfoil at an angle of attack of 4o for M=0.7 and Re=4×106. It is proved that the aerodynamic characteristics of a thick (20% of the chord) MQ airfoil mounted at an angle of attack of 2o for Re=107 and over the Mach number range 0.3-0.55 are significantly improved because an almost circular small-size (0.12) vortex cell with a defined volumetric flow rate coefficient of 0.007 during slot suction has been located on the upper airfoil section and an intense trapped vortex has been formed in it. A detailed analysis of buffeting within the self-oscillatory regime of flow around the MQ airfoil with a vortex cell has demonstrated the periodic changes in local and integral characteristics; the lift and the aerodynamic efficiency remain quite high, but inferior to the similar characteristics at M=0.55. It is found that the vortex cell at M=0.7 is inactive, and the aerodynamic characteristics of the MQ airfoil with a vortex cell are close to those of a smooth airfoil without a cell.
Data-Driven Low-Dimensional Modeling and Uncertainty Quantification for Airfoil Icing
DeGennaro, Anthony M; Martinelli, Luigi
2015-01-01
The formation and accretion of ice on the leading edge of an airfoil can be detrimental to aerodynamic performance. Furthermore, the geometric shape of leading edge ice profiles can vary significantly depending on a wide range of physical parameters, which can translate into a wide variability in aerodynamic performance. The purpose of this work is to explore the variability in airfoil aerodynamic performance that results from variability in leading edge ice shape profile. First, we demonstrate how to identify a low-dimensional set of parameters that governs ice shape from a database of ice shapes using Proper Orthogonal Decomposition (POD). Then, we investigate the effects of uncertainty in the POD coefficients. This is done by building a global response surface surrogate using Polynomial Chaos Expansions (PCE). To construct this surrogate efficiently, we use adaptive sparse grid sampling of the POD parameter space. We then analyze the data from a statistical standpoint.
DEFF Research Database (Denmark)
Chougle, Prasad Devendra
, as big as 10 MW wind energy convertors. Today wind turbines are the biggest structures on the earth. The knowledge and experiences from aviation and a construction industry has made quicker developments in the wind turbines. This research work is aimed at design and development of a small wind turbine....... Mainly, there is the horizontal axis wind turbine (HAWT) and vertical axis wind turbine (VAWT). HAWTs are more popular than VAWTs due to failure of VAWT commercialization during the late of 1980s on a large scale. However, in recent research work it has been documented that VAWTs are more economical...... for validation. In this PhD research, a development of wind turbine rotor is planned based on the multi-element airfoil technology used in aviation for aeroplanes. A method of experimental and numerical analysis is combined together for successful research. A double-element airfoil design is carried out...
Discontinuous Galerkin methodology for Large-Eddy Simulations of wind turbine airfoils
DEFF Research Database (Denmark)
Frére, A.; Sørensen, Niels N.; Hillewaert, K.
2016-01-01
sector yet. The present study aims at evaluating this methodology on an application which is relevant for that sector and focuses on blade section aerodynamics characterization. To be pertinent for large wind turbines, the simulations would need to be at low Mach numbers (M ≤ 0.3) where compressible......This paper aims at evaluating the potential of the Discontinuous Galerkin (DG) methodology for Large-Eddy Simulation (LES) of wind turbine airfoils. The DG method has shown high accuracy, excellent scalability and capacity to handle unstructured meshes. It is however not used in the wind energy...... approaches are often limited and at large Reynolds numbers (Re ≥ 106) where wall-resolved LES is still unaffordable. At these high Re, a wall-modeled LES (WMLES) approach is thus required. In order to first validate the LES methodology, before the WMLES approach, this study presents airfoil flow simulations...
Poozesh, Amin; Mirzaei, Masoud
2017-01-01
In this paper the developed interpolation lattice Boltzmann method is used for simulation of unsteady fluid flow. It combines the desirable features of the lattice Boltzmann and the Joukowski transformation methods. This approach has capability to simulate flow around curved boundary geometries such as airfoils in a body fitted grid system. Simulation of unsteady flow around a cambered airfoil in a non-uniform grid for the first time is considered to show the capability of this method for modeling of fluid flow around complex geometries and complicated long-term periodic flow phenomena. The developed solver is also coupled with a fast adaptive grid generator. In addition, the new approach retains all the advantages of the standard lattice Boltzmann method. The Strouhal number, the pressure, the drag and the lift coefficients obtained from the simulations agree well with classical computational fluid dynamics simulations. Numerical studies for various test cases illustrate the strength of this new approach.
Passive Boundary Layer Separation Control on a NACA2415 Airfoil at High Reynolds Numbers
Parikh, Agastya; Hultmark, Marcus
2016-11-01
The design and analysis of a passive flow control system for a NACA2415 airfoil is undertaken. There exists a vast body of knowledge on airfoil boundary layer control with the use of controlled mass flux, but there is little work investigating passive mass flux-based methods. A simple duct system that uses the upper surface pressure gradient to force blowing near the leading edge and suction near the trailing edge is proposed and evaluated. 2D RANS analyses at Rec 1 . 27 ×106 were used to generate potential configurations for experimental tests. Initial computational results suggest drag reductions of approximately 2 - 7 % as well as lift increases of 4 - 5 % at α = 10 .0° and α = 12 .5° . A carbon composite-aluminum structure model that implements the most effective configurations, according to the CFD predictions, has been designed and fabricated. Experiments are being performed to evaluate the CFD results and the feasibility the duct system.
Kinematic optimization of 2D plunging airfoil motion using the response surface methodology
Institute of Scientific and Technical Information of China (English)
Mahmoud MEKADEM; Taha CHETTIBI; Samir HANCHI; Laurent KEIRSBULCK; Larbi LABRAGA
2012-01-01
The propulsive efficiency of a plunging NACA0012 airfoil is maximized by means of a simple numerical optimization method based on the response surface methodology (RSM).The control parameters are the amplitude and the reduced frequency of the harmonic sinusoidal motion.The 2D unsteady laminar flow around the plunging airfoil is computed by solving the Navier-Stokes equations for three Reynolds number values (Re =3.3 × 103,1.1 × 104,and 2.2× 104).The Nelder-Mead algorithm is used to find the best control parameters leading to the optimal propulsive efficiency over the constructed response surfaces.It is found that,for a given efficiency level and regardless of the considered Re value,it is possible either to obtain high thrust by selecting a high oscillation frequency or to reduce the input power by adopting a low plunging amplitude.
Application of numerical optimization to the design of supercritical airfoils without drag-creep
Hicks, R. M.; Vanderplaats, G. N.
1977-01-01
Recent applications of numerical optimization to the design of advanced airfoils for transonic aircraft have shown that low-drag sections can be developed for a given design Mach number without an accompanying drag increase at lower Mach numbers. This is achieved by imposing a constraint on the drag coefficient at an off-design Mach number while the drag at the design Mach number is the objective function. Such a procedure doubles the computation time over that for single design-point problems, but the final result is worth the increased cost of computation. The ability to treat such multiple design-point problems by numerical optimization has been enhanced by the development of improved airfoil shape functions. Such functions permit a considerable increase in the range of profiles attainable during the optimization process.
Numerical modeling of aerodynamics of airfoils of micro air vehicles in gusty environment
Gopalan, Harish
The superior flight characteristics exhibited by birds and insects can be taken as a prototype of the most perfect form of flying machine ever created. The design of Micro Air Vehicles (MAV) which tries mimic the flight of birds and insects has generated a great deal of interest as the MAVs can be utilized for a number of commercial and military operations which is usually not easily accessible by manned motion. The size and speed of operation of a MAV results in low Reynolds number flight, way below the flying conditions of a conventional aircraft. The insensitivity to wind shear and gust is one of the required factors to be considered in the design of airfoil for MAVs. The stability of flight under wind shear is successfully accomplished in the flight of birds and insects, through the flapping motion of their wings. Numerous studies which attempt to model the flapping motion of the birds and insects have neglected the effect of wind gust on the stability of the motion. Also sudden change in flight conditions makes it important to have the ability to have an instantaneous change of the lift force without disturbing the stability of the MAV. In the current study, two dimensional rigid airfoil, undergoing flapping motion is studied numerically using a compressible Navier-Stokes solver discretized using high-order finite difference schemes. The high-order schemes in space and in time are needed to keep the numerical solution economic in terms of computer resources and to prevent vortices from smearing. The numerical grid required for the computations are generated using an inverse panel method for the streamfunction and potential function. This grid generating algorithm allows the creation of single-block orthogonal H-grids with ease of clustering anywhere in the domain and the easy resolution of boundary layers. The developed numerical algorithm has been validated successfully against benchmark problems in computational aeroacoustics (CAA), and unsteady viscous
Integrated axial and tangential serpentine cooling circuit in a turbine airfoil
Energy Technology Data Exchange (ETDEWEB)
Lee, Ching-Pang; Jiang, Nan; Marra, John J; Rudolph, Ronald J; Dalton, John P
2015-05-05
A continuous serpentine cooling circuit forming a progression of radial passages (44, 45, 46, 47A, 48A) between pressure and suction side walls (52, 54) in a MID region of a turbine airfoil (24). The circuit progresses first axially, then tangentially, ending in a last radial passage (48A) adjacent to the suction side (54) and not adjacent to the pressure side (52). The passages of the axial progression (44, 45, 46) may be adjacent to both the pressure and suction side walls of the airfoil. The next to last radial passage (47A) may be adjacent to the pressure side wall and not adjacent to the suction side wall. The last two radial passages (47A, 48A) may be longer along the pressure and suction side walls respectively than they are in a width direction, providing increased direct cooling surface area on the interiors of these hot walls.
Airfoil profile optimization of an air suction equipment with an air duct
Directory of Open Access Journals (Sweden)
Qiu Li
2015-01-01
Full Text Available On the basis of boundary layer with the airfoil profile, this research attempts to investigate the effect of the angle of spread of the winged air suction equipment on the efficiency of operation. The application of Fluent with the split-middle method under the identical operation mode is expected to optimize the spread angle. The investigated airfoil profile is NACA6413, of which the restrictions on the critical angle of spread suggested in literature will be overcome through the interactions between the internal and external flow fields. As a result, the air speed might increase. The wind tunnel test employed in this research offers the solid evidences to support this hypothesis. The test demonstrates that when the angle of spread is larger than 12°, the effect of accelerating the air flow is still observable. Following the optimization, the air suction effect of the equipment would be optimal when its angle of spread reached 30°.
Investigation of flow past a translatoric oscillating airfoil using detached eddy simulation
DEFF Research Database (Denmark)
Reck, Mads; Hansen, Martin Otto Laver; Sørensen, Jens Nørkær
2003-01-01
. The DES method difines a hybrid method combining Reynolds Averaged Navier-Stokes (RANS) in the attached boundary layer with Large Eddy Simulation (LES) in the outer separated regions, thus resolving largescaled transient turbulent motion. Comparison to existing unsteady k-w-SST RANS simulations...... at the high angle of attacks often experienced by the individual rotor blade. The present paper covers simulation of a translatoric oscillating NACA 0015 airfoil at a Reynolds number of 555,000, corresponding to avialable experimental data, using the newly adopted Detached Eddy Simulation (DES) approach......Wind turbine rotor blades in operation have been observed to undergo stall-induced lead-lag instabilities resulting in dramatic reduction of blade life, due to structural fatigue. Previous attempts to numerically simulate the flow past a translatoric oscillating airfoil have been few and feeble...
LDA measurement of the passage flow field in an annular airfoil cascade
Stauter, R. C.; Fleeter, S.
1987-01-01
Models to predict the complex three-dimensional flow through turbomachine blade rows are being developed. To verify these models and direct necessary refinements, it is necessary that predictions be correlated with data obtained in experiments which model the fundamental three-dimensional blade row flow phenomena. This paper describes a series of experiments performed in a large scale, subsonic, annular cascade facility specifically designed to provide such data. In particular, the effect of incidence angle on the three-dimensional passage flow field through an annular cascade of cambered airfoils is investigated and quantified, accomplished by obtaining detailed and expensive LDA data. These data demonstrate and quantify the development of the passage vortices through the airfoil passage and their strong interaction with the endwall boundary layers.
LDA measurement of the passage flow field in a 3-D airfoil cascade
Stauter, R. C.; Fleeter, S.
1986-01-01
Three-dimensional internal flow computational models are currently being developed to predict the flow through turbomachinery blade rows. For these codes to be of quantitative value, they must be verified with data obtained in experiments which model the fundamental flow phenomena. In this paper, the complete three-dimensional flow field through a subsonic annular cascade of cambered airfoils is experimentally quantified. In particular, detailed three-dimensional data are obtained to quantify the inlet velocity profile, the cascade passage velocity field, and the exit region flow field. The primary instrumentation for acquiring these data is a single-channel Laser Doppler Anemometer operating in the backscatter mode, with chordwise distributions of airfoil surface static pressure taps also utilized. Appropriate data are correlated with predictions from the MERIDL/TSONIC codes.
Arash Mahboubi Doust; Abas Ramiar; Morteza Dardel
2016-01-01
In this work, a numerical study of two dimensional laminar incompressible flow around the flexible oscillating NACA0012 airfoil is performed using the open source code OpenFOAM. Oscillatory motion types including pitching and flapping is considered. Reynolds number for these motions is assumed fixed at 12000. One of the important issues that must be considered in designing air structures, in particular the aircraft wing, is the interaction between the air and the elastic aircraft wings that i...
Effects of a trapped vortex cell on a thick wing airfoil
Energy Technology Data Exchange (ETDEWEB)
Lasagna, Davide; Iuso, Gaetano [Politecnico di Torino, Dipartimento di Ingegneria Aeronautica e Spaziale, Torino (Italy); Donelli, Raffaele; De Gregorio, Fabrizio [Centro Italiano di Ricerca Aerospaziale (C.I.R.A), Capua (Italy)
2011-11-15
The effects of a trapped vortex cell (TVC) on the aerodynamic performance of a NACA0024 wing model were investigated experimentally at Re = 10{sup 6} and 6.67 x 10{sup 5}. The static pressure distributions around the model and the wake velocity profiles were measured to obtain lift and drag coefficients, for both the clean airfoil and the controlled configurations. Suction was applied in the cavity region to stabilize the trapped vortex. For comparison, a classical boundary layer suction configuration was also tested. The drag coefficient curve of the TVC-controlled airfoil showed sharp discontinuities and bifurcative behavior, generating two drag modes. A strong influence of the angle of attack, the suction rate and the Reynolds number on the drag coefficient was observed. With respect to the clean airfoil, the control led to a drag reduction only if the suction was high enough. Compared to the classical boundary layer suction configuration, the drag reduction was higher for the same amount of suction only in a specific range of incidence, i.e., {alpha} = -2 to {alpha} = 6 and only for the higher Reynolds number. For all the other conditions, the classical boundary layer suction configuration gave better drag performances. Moderate increments of lift were observed for the TVC-controlled airfoil at low incidence, while a 20% lift enhancement was observed in the stall region with respect to the baseline. However, the same lift increments were also observed for the classical boundary layer suction configuration. Pressure fluctuation measurements in the cavity region suggested a very complex interaction of several flow features. The two drag modes were characterized by typical unsteady phenomena observed in rectangular cavity flows, namely the shear layer mode and the wake mode. (orig.)
High-Speed Wind-Tunnel Tests of the NACA 23012 and 23012-64 Airfoils
1941-02-01
ce tha n the :: JaCA 2,3012 and should , therefore , have the l o we r cr itica l speed . The critical speeds esti - ~ated frorr ref er ence 7 a r e...t ical sleeds at w~icb :arge i~cr ea5e s in drag coefficient o ccurr et were sli~h tl y higher for the NACA 23012- 54 airfoil t h an for tne JACA
Vega Coso, Almudena
2017-01-01
This thesis studies the unsteady aerodynamics of oscillating airfoils in the low reduced frequency regime, with special emphasis on its impact on the scaling of the work per cycle curves, using an asymptotic approach and numerical experiments. The unsteady aerodynamics associated with the vibration of turbine and compressor bladed-discs and stator vanes is nowadays routinely analysed within the design loop of the aeroengine companies, and it has also been the subject of dedicated experiments....
Interferometric Investigations of Compressible Dynamic Stall Over a Transiently Pitching Airfoil
Chandrasekhara, M.S.; Carr, L.W.; Wilder, M.C.
1993-01-01
The article of record as published may be found at http://dx.doi.org/10.2514/6.1993-211 The dynamic stall flow field over a NACA 0012 airfoil pitching transiently from 0 - 60 degrees at a constant rate under compressible flow conditions has been studied using the real-time technique of point diffraction interferometrv. This investigation using nonintrusive diagnostics-provides a quantitative description of the overall flow field, including the finer details of dynamic...
Falco UAV Low Reynolds Airfoil Design and Testing at Galileo Avionica
2007-04-01
thickness to chord ratio. The airfoil selected among a wide range of geometries optimizing the two design points has been investigated using CFD for...ALSWT Alenia Low Speed Wind Tunnel A/P Autopilot AR Aspect Ratio CD Drag Coefficient CFD Computational Fluid Dynamics CMIC Continuous...features (estimated geometrical characteristics) Air Vehicle T/O weight [kg] Wing surf . [m2] Wing span [m] AR M.A.C. [m] Meteor Mirach 26 230 2.94
Experimental investigation of the transonic flow around the leading edge of an eroded fan airfoil
Klinner, Joachim; Hergt, Alexander; Willert, Christian
2014-01-01
The influence of leading edge modification on the time-averaged and instantaneous flow around a fan airfoil is investigated by particle image velocimetry (PIV), schlieren imaging and high-speed shock shadowgraphs in a transonic cascade windtunnel. In addition to a global characterization of the time-averaged flow using PIV, the instantaneous passage shock position was extracted from single-shot PIV measurements by matching the tracer velocity across the normal shock with an exponential fit. T...
Computing Aerodynamic Performance of a 2D Iced Airfoil: Blocking Topology and Grid Generation
Chi, X.; Zhu, B.; Shih, T. I.-P.; Slater, J. W.; Addy, H. E.; Choo, Yung K.; Lee, Chi-Ming (Technical Monitor)
2002-01-01
The ice accrued on airfoils can have enormously complicated shapes with multiple protruded horns and feathers. In this paper, several blocking topologies are proposed and evaluated on their ability to produce high-quality structured multi-block grid systems. A transition layer grid is introduced to ensure that jaggedness on the ice-surface geometry do not to propagate into the domain. This is important for grid-generation methods based on hyperbolic PDEs (Partial Differential Equations) and algebraic transfinite interpolation. A 'thick' wrap-around grid is introduced to ensure that grid lines clustered next to solid walls do not propagate as streaks of tightly packed grid lines into the interior of the domain along block boundaries. For ice shapes that are not too complicated, a method is presented for generating high-quality single-block grids. To demonstrate the usefulness of the methods developed, grids and CFD solutions were generated for two iced airfoils: the NLF0414 airfoil with and without the 623-ice shape and the B575/767 airfoil with and without the 145m-ice shape. To validate the computations, the computed lift coefficients as a function of angle of attack were compared with available experimental data. The ice shapes and the blocking topologies were prepared by NASA Glenn's SmaggIce software. The grid systems were generated by using a four-boundary method based on Hermite interpolation with controls on clustering, orthogonality next to walls, and C continuity across block boundaries. The flow was modeled by the ensemble-averaged compressible Navier-Stokes equations, closed by the shear-stress transport turbulence model in which the integration is to the wall. All solutions were generated by using the NPARC WIND code.
Institute of Scientific and Technical Information of China (English)
高超; 罗时钧; 刘锋
2003-01-01
This paper presents an efficient numerical method for solving the unsteady Euler equations on stationary rectilinear grids. Boundary conditions on the surface of an airfoil are implemented by using their first-order expansions on the mean chord line. The method is not restricted to flows with small disturbances since there are no restrictions on the mean angle of attack of the airfoil. The mathematical formulation and the numerical implementation of the wall boundary conditions in a fully implicit time-accurate finite-volume Euler scheme are described. Unsteady transonic flows about an oscillating NACA 0012 airfoil are calculated. Computational results compare well with Euler solutions by the full boundary conditions on a body-fitted curvilinear grid and published experimental data. This study establishes the feasibility for computing unsteady fluid-structure interaction problems, where the use of a stationary rectilinear grid offers substantial advantages in saving computer time and program design since it does not require the generation and implementation of time-dependent body-fitted grids.
Wall-modeled large-eddy simulation of transonic airfoil buffet at high Reynolds number
Fukushima, Yuma; Kawai, Soshi
2016-11-01
In this study, we conduct the wall-modeled large-eddy simulation (LES) of transonic buffet phenomena over the OAT15A supercritical airfoil at high Reynolds number. The transonic airfoil buffet involves shock-turbulent boundary layer interactions and shock vibration associated with the flow separation downstream of the shock wave. The wall-modeled LES developed by Kawai and Larsson PoF (2012) is tuned on the K supercomputer for high-fidelity simulation. We first show the capability of the present wall-modeled LES on the transonic airfoil buffet phenomena and then investigate the detailed flow physics of unsteadiness of shock waves and separated boundary layer interaction phenomena. We also focus on the sustaining mechanism of the buffet phenomena, including the source of the pressure waves propagated from the trailing edge and the interactions between the shock wave and the generated sound waves. This work was supported in part by MEXT as a social and scientific priority issue to be tackled by using post-K computer. Computer resources of the K computer was provided by the RIKEN Advanced Institute for Computational Science (Project ID: hp150254).
Wall-Resolved Large-Eddy Simulation of Turbulent Flow Past a NACA0012 Airfoil
Gao, Wei; Zhang, Wei; Samtaney, Ravi
2014-11-01
Large-eddy simulation (LES) of turbulent flow past a NACA0012 airfoil is performed at angle of attack (AoA) 3o and Rec = 2 . 3 ×104 . The filtered incompressible Navier-Stokes equations are spatially discretized using an energy conservative fourth-order scheme developed by Morinishi et al. (J. of Comput. Phys., 1998), and the subgrid-scale (SGS) tensor is modeled by the stretched-vortex SGS model developed by Pullin and co-workers (Phys. of Fluids, 2000, J. of Fluid Mech., 2009). An extension of the original stretched-vortex SGS model is utilized to resolve the streak-like structures in the near-wall flow regions. The mean velocity and turbulence intensity profiles on airfoil surface and in wake are validated against experimental data reported in Dong-Ha Kim et al. (AIAA, 2009). To further verify our LES capacity, some high-order turbulence quantities are also compared with the DNS results produced by our in-house DNS code. The effect of grid-refinement on the wall-resolved LES approach is also discussed. Supported by KAUST OCRF funded CRG project on simulation of turbulent flows over bluff bodies and airfoils.
Large-Eddy Simulations of Plasma Flow Control on a GOE735 Wind Turbine Airfoil
Czulak, Alexander; Franck, Jennifer
2015-11-01
Active flow control using plasma actuation was studied for the GOE735 airfoil and compared to non-actuated baseline cases using numerical simulations. This investigation considers two-dimensional simulations at a Reynolds number of 1,000 using direct numerical simulation (DNS) as well as three-dimensional simulations at a Reynolds number of 50,000 and 100,000 using large-eddy simulation (LES). Plasma actuation is applied in terms of a source term within the boundary layer close to the airfoil surface. Angles of attack of 0°, 5° and 15° were considered, and control is shown to be effective at increasing the lift coefficient, decreasing the drag coefficient and reducing the root mean squared deviation of both lift and drag. An analysis of the flow physics reveals that the actuated cases delay the point of separation, reduce the wake width and diminish the size and strength of the shed vortices. For this particular airfoil, there are significant differences in Reynolds number in terms of the baseline flow, control effectiveness and performance factors such as lift and drag.
Flow Visualization around a Double Wedge Airfoil Model with Focusing Schlieren System
Institute of Scientific and Technical Information of China (English)
Masashi KASHITANI; Yutaka YAMAGUCHI
2006-01-01
In the present study, aerodynamic characteristics of the double wedge airfoil model were investigated in a transonic flow by using the shock tube as an intermittent wind tunnel. The driver and driven gases of the shock tube are dry air. The airfoil model of double wedge has the span of 58 mm, chord length c = 75 mm and its maximum thickness is 7.5 mm. The apex of the double wedge airfoil model is located on the 35% chord length from the leading edge. The range of hot gas Mach numbers are from 0.80 to 0.88, and the Reynolds numbers based on chord length are 3.11×105～3.49×105, respectively. The flow visualizations were performed by the sharp focusing schlieren method which can visualize the three dimensional flow fields. The results show that the present system can visualize the transonic flowfield clearer than the previous system, and the shock wave profiles of the center of span in the test section are visualized
Accurate load prediction by BEM with airfoil data from 3D RANS simulations
Schneider, Marc S.; Nitzsche, Jens; Hennings, Holger
2016-09-01
In this paper, two methods for the extraction of airfoil coefficients from 3D CFD simulations of a wind turbine rotor are investigated, and these coefficients are used to improve the load prediction of a BEM code. The coefficients are extracted from a number of steady RANS simulations, using either averaging of velocities in annular sections, or an inverse BEM approach for determination of the induction factors in the rotor plane. It is shown that these 3D rotor polars are able to capture the rotational augmentation at the inner part of the blade as well as the load reduction by 3D effects close to the blade tip. They are used as input to a simple BEM code and the results of this BEM with 3D rotor polars are compared to the predictions of BEM with 2D airfoil coefficients plus common empirical corrections for stall delay and tip loss. While BEM with 2D airfoil coefficients produces a very different radial distribution of loads than the RANS simulation, the BEM with 3D rotor polars manages to reproduce the loads from RANS very accurately for a variety of load cases, as long as the blade pitch angle is not too different from the cases from which the polars were extracted.
Delayed Detached Eddy Simulation of Flow Over an Airfoil with Synthetic Jet Control
Lopez, Omar; Uday, Godse; Moser, Robert
2007-11-01
Delayed Detached-Eddy Simulation (DDES) is a hybrid RANS-LES model similar to DES but with modifications to reduce the influences of ambiguous grid densities in the numerical results. This model was implemented in CDP, a parallel unstructured grid incompressible flow solver, developed at the Center for Integrated Turbulence Simulations (CITS) at Stanford University. CDP has the advantage of being nearly energy conserving. Several simulations at static angles of attack at a Re based on the chord of 5.7e5 showed good agreement with experiments and other computational studies. Simulations of pitching and plunging cases have also yield good results. This simulation capability is being used to model closed-loop flow control of the airfoil. The action of tangential-blowing synthetic jet actuators mounted near the trailing edge of the airfoil are modeled as local momentum sources, based on detailed measurements of this configuration conducted at Georgia Tech. Resulting simulations show the effects of the actuators on the vortical structure of the flow, as well as on the aerodynamic properties. By integrating actuator and sensor models with a model of the flow controller, we will be able to simulate experiments currently being conducted by A.Glezer and his group at Georgia Tech. on the control of an airfoil in a wind tunnel.
Directory of Open Access Journals (Sweden)
Ziaul Huque
2012-01-01
Full Text Available A Computational Fluid Dynamics (CFD and response surface-based multiobjective design optimization were performed for six different 2D airfoil profiles, and the Pareto optimal front of each airfoil is presented. FLUENT, which is a commercial CFD simulation code, was used to determine the relevant aerodynamic loads. The Lift Coefficient (CL and Drag Coefficient (CD data at a range of 0° to 12° angles of attack (α and at three different Reynolds numbers (Re=68,459, 479, 210, and 958, 422 for all the six airfoils were obtained. Realizable k-ε turbulence model with a second-order upwind solution method was used in the simulations. The standard least square method was used to generate response surface by the statistical code JMP. Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II was used to determine the Pareto optimal set based on the response surfaces. Each Pareto optimal solution represents a different compromise between design objectives. This gives the designer a choice to select a design compromise that best suits the requirements from a set of optimal solutions. The Pareto solution set is presented in the form of a Pareto optimal front.
Zonal Detached-Eddy Simulation of Turbulent Unsteady Flow over Iced Airfoils
Zhang, Yue
2015-07-23
This paper presentsamultiscale finite-element formulation for the second modeofzonal detached-eddy simulation. The multiscale formulation corrects the lack of stability of the standard Galerkin formulation by incorporating the effect of unresolved scales to the grid (resolved) scales. The stabilization terms arise naturally and are free of userdefined stability parameters. Validation of the method is accomplished via the turbulent flow over tandem cylinders. The boundary-layer separation, free shear-layer rollup, vortex shedding from the upstream cylinder, and interaction with the downstream cylinder are well reproduced. Good agreement with experimental measurements gives credence to the accuracy of zonal detached-eddy simulation in modeling turbulent separated flows. A comprehensive study is then conducted on the performance degradation of ice-contaminated airfoils. NACA 23012 airfoil with a spanwise ice ridge and Gates Learjet Corporation-305 airfoil with a leading-edge horn-shape glaze ice are selected for investigation. Appropriate spanwise domain size and sufficient grid density are determined to enhance the reliability of the simulations. A comparison of lift coefficient and flowfield variables demonstrates the added advantage that the zonal detached-eddy simulation model brings to the Spalart-Allmaras turbulence model. Spectral analysis and instantaneous visualization of turbulent structures are also highlighted via zonal detached-eddy simulation. Copyright © 2015 by the CFD Lab of McGill University. Published by the American Institute of Aeronautics and Astronautics, Inc.
Impingement of water droplets on wedges and diamond airfoils at supersonic speeds
Serafini, John S
1953-01-01
An analytical solution has been obtained for the equations of motion of water droplets impinging on a wedge in a two-dimensional supersonic flow field with a shock wave attached to the wedge. The closed-form solution yields analytical expressions for the equation of the droplet trajectory, the local rate of impingement and the impingement velocity at any point on the wedge surface, and the total rate of impingement. The analytical expressions are utilized to determine the impingement on the forward surfaces of diamond airfoils in supersonic flow fields with attached shock waves. The results presented include the following conditions: droplet diameters from 2 to 100 microns, pressure altitudes from sea level to 30,000 feet, free-stream static temperatures from 420 degrees to 460 degrees R. Also, free-stream Mach numbers from 1.1 to 2.0, semi-apex angles for the wedge from 1.14 degrees to 7.97 degrees, thickness-to-chord ratios for the diamond airfoil from 0.02 to 0.14, chord lengths from 1 to 20 feet, and angles of attack from zero to the inverse tangent of the airfoil thickness-to-chord ratio.
Impingement of water droplets on wedges and double-wedge airfoils at supersonic speeds
Serafini, John S
1954-01-01
An analytical solution has been obtained for the equations of motion of water droplets impinging on a wedge in a two-dimensional supersonic flow field with a shock wave attached to the wedge. The closed-form solution yields analytical expressions for the equation of the droplet trajectory, the local rate of impingement and the impingement velocity at any point on the wedge surface, and the total rate of impingement. The analytical expressions are utilized to determine the impingement on the forward surfaces of diamond airfoils in supersonic flow fields with attached shock waves. The results presented include the following conditions: droplet diameters from 2 to 100 microns, pressure altitudes from sea level to 30,000 feet, free-stream static temperatures from 420 degrees r, free stream Mach numbers from 1.1 to 2.0, semiapex angles for the wedge from 1.14 degrees to 7.97 degrees, thickness-to-chord ratios for the diamond airfoil from 0.02 to 0.14, chord lengths from 1 to 20 feet, and angles of attack from zero to the inverse tangent of the airfoil thickness-to-chord ratio.
Active Control of Airfoil Boundary Layer Separation and Wake using Ns-DBD Plasma Actuators
Durasiewicz, Claudia; Castro Maldonado, Jorge; Little, Jesse
2016-11-01
Nanosecond pulse driven dielectric barrier discharge (ns-DBD) plasma actuators are employed to control boundary layer separation and the wake of a NACA 0012 airfoil having aspect ratio of three. Ns-DBD plasma actuators are known to operate via a thermal mechanism in contrast to ac-DBDs which are momentum-based devices. Nominally 2D forcing is applied to the airfoil leading edge with pulse energy of 0.35 mJ/cm. Experiments are conducted at a Reynolds number of 0 . 74 ×106 primarily at 18° incidence which is well within the stalled regime. Baseline and controlled flow fields are studied using surface pressure measurements, constant temperature anemometry (CTA) and PIV. Forcing at a dimensionless frequency of F+ = fc /U∞ = 1 . 14 results in reattachment of nominally separated flow to the airfoil surface. Lower frequency forcing is less optimal for separation control, but produces strong fluctuations in the wake which are intended for use in the study of vortex body interaction in the future. Actuation below F+ = 0 . 23 shows behavior consistent with an impulse-like response while forcing in the range 0 . 23
Institute of Scientific and Technical Information of China (English)
Minh Khang Phan; Jichul Shin
2016-01-01
Numerical simulation of unsteady flow control over an oscillating NACA0012 airfoil is investigated. Flow actuation of a turbulent flow over the airfoil is provided by low current DC sur-face glow discharge plasma actuator which is analytically modeled as an ion pressure force pro-duced in the cathode sheath region. The modeled plasma actuator has an induced pressure force of about 2 kPa under a typical experiment condition and is placed on the airfoil surface at 0%chord length and/or at 10%chord length. The plasma actuator at deep-stall angles (from 5° to 25°) is able to slightly delay a dynamic stall and to weaken a pressure fluctuation in down-stroke motion. As a result, the wake region is reduced. The actuation effect varies with different plasma pulse frequen-cies, actuator locations and reduced frequencies. A lift coefficient can increase up to 70%by a selec-tive operation of the plasma actuator with various plasma frequencies and locations as the angle of attack changes. Active flow control which is a key advantageous feature of the plasma actuator reveals that a dynamic stall phenomenon can be controlled by the surface plasma actuator with less power consumption if a careful control scheme of the plasma actuator is employed with the opti-mized plasma pulse frequency and actuator location corresponding to a dynamic change in reduced frequency.
Modeling and computation of flow in a passage with 360-degree turning and multiple airfoils
Energy Technology Data Exchange (ETDEWEB)
Shyy, W. (Univ. of Florida, Gainesville, FL (United States). Dept. of Aerospace Engineering); Vu, T.C. (GE Canada, Lanchine, Quebec, (Canada). Hydro Business)
1993-03-01
The spiral casing of a hydraulic turbine is a complex flow device which contains a passage of 360-degree turning and multiple elements of airfoils (the so-called distributor). A three-dimensional flow analysis has been made to predict the flow behavior inside the casing and distributor. The physical model employs a two-level approach, comprising of (1) a global model that adequately accounts for the geometry of the spiral casing but smears out the details of the distributor, and represents the multiple airfoils by a porous medium treatment, and (2) a local model that performs detailed analysis of flow in the distributor region. The global analysis supplies the inlet flow condition for the individual cascade of distributor airfoils, while the distributor analysis yields the information needed for modeling the characteristics of the porous medium. Comparisons of pressure and velocity profiles between measurement and prediction have been made to assess the validity of the present approach. Flow characteristics in the spiral casing are also discussed.
Boundary layer separation and reattachment detection on airfoils by thermal flow sensors.
Sturm, Hannes; Dumstorff, Gerrit; Busche, Peter; Westermann, Dieter; Lang, Walter
2012-10-24
A sensor concept for detection of boundary layer separation (flow separation, stall) and reattachment on airfoils is introduced in this paper. Boundary layer separation and reattachment are phenomena of fluid mechanics showing characteristics of extinction and even inversion of the flow velocity on an overflowed surface. The flow sensor used in this work is able to measure the flow velocity in terms of direction and quantity at the sensor's position and expected to determine those specific flow conditions. Therefore, an array of thermal flow sensors has been integrated (flush-mounted) on an airfoil and placed in a wind tunnel for measurement. Sensor signals have been recorded at different wind speeds and angles of attack for different positions on the airfoil. The sensors used here are based on the change of temperature distribution on a membrane (calorimetric principle). Thermopiles are used as temperature sensors in this approach offering a baseline free sensor signal, which is favorable for measurements at zero flow. Measurement results show clear separation points (zero flow) and even negative flow values (back flow) for all sensor positions. In addition to standard silicon-based flow sensors, a polymer-based flexible approach has been tested showing similar results.
Directory of Open Access Journals (Sweden)
Vlček V.
2013-04-01
Full Text Available The work is devoted to comparing measured data with the results of numerical simulations. As mathematical model was used mathematical model whitout turbulence for incompressible flow In the experiment was observed the behavior of designed NACA0015 airfoil in airflow. For the numerical solution was used OpenFOAM computational package, this is open-source software based on finite volume method. In the numerical solution is prescribed displacement of the airfoil, which corresponds to the experiment. The velocity at a point close to the airfoil surface is compared with the experimental data obtained from interferographic measurements of the velocity field. Numerical solution is computed on a 3D mesh composed of about 1 million ortogonal hexahedron elements. The time step is limited by the Courant number. Parallel computations are run on supercomputers of the CIV at Technical University in Prague (HAL and FOX and on a computer cluster of the Faculty of Mechatronics of Liberec (HYDRA. Run time is fixed at five periods, the results from the fifth periods and average value for all periods are then be compared with experiment.
AERODYNAMIC FORCE AND FLOW STRUCTURES OF TWO AIRFOILS IN FLAPPING MOTIONS
Institute of Scientific and Technical Information of China (English)
兰世隆; 孙茂
2001-01-01
Aerodynamic force and flow structures of two airfoils in a tandem configuration in flapping motions are studied, by solving the Navier-Stokes equations in moving overset grids. Three typical phase differences between the fore- and aftairfoil flapping cycles are considered. It is shown that: (1) in the case of no interaction (single airfoil), the time average of the vertical force coefficient over the downstroke is 2.74, which is about 3 times as large as the maximum steady-state lift coefficient of a dragonfly wing; the time average of the horizontal force coefficient is 1.97, which is also large. The reasons for the large force coefficients are the acceleration at the beginning of a stroke, the delayed stall and the “pitching-up” motion near the end of the stroke. (2) In the cases of two-airfoils, the time-variations of the force and moment coefficients on each airfoil are broadly similar to that of the single airfoil in that the vertical force is mainly produced in downstroke and the horizontal force in upstroke, but very large differences exist due to the interaction. (3) For in-phase stroking, the major differences caused by the interaction are that the vertical force on FA in downstroke is increased and the horizontal force on FA in upstroke decreased.As a result, the magnitude of the resultant force is almost unchanged but it inclines less forward. (4) For counter stroking, the major differences are that the vertical force on AA in downstroke and the horizontal force on FA in upstroke are decreased. As a result, the magnitude of the resultant force is decreased by about 20 percent but its direction is almost unchanged. (5) For 90°-phase-difference stroking, the major differences are that the vertical force on AA in downstroke and the horizontal force on FA in upstroke are decreased greatly and the horizontal force on AA in upstrokeincreased. As a result, the magnitude of the resultant force is decreased by about 28% and it inclines more forward. (6
Feasibility of Actively Cooled Silicon Nitride Airfoil for Turbine Applications Demonstrated
Bhatt, Ramakrishna T.
2001-01-01
Nickel-base superalloys currently limit gas turbine engine performance. Active cooling has extended the temperature range of service of nickel-base superalloys in current gas turbine engines, but the margin for further improvement appears modest. Therefore, significant advancements in materials technology are needed to raise turbine inlet temperatures above 2400 F to increase engine specific thrust and operating efficiency. Because of their low density and high-temperature strength and thermal conductivity, in situ toughened silicon nitride ceramics have received a great deal of attention for cooled structures. However, the high processing costs and low impact resistance of silicon nitride ceramics have proven to be major obstacles for widespread applications. Advanced rapid prototyping technology in combination with conventional gel casting and sintering can reduce high processing costs and may offer an affordable manufacturing approach. Researchers at the NASA Glenn Research Center, in cooperation with a local university and an aerospace company, are developing actively cooled and functionally graded ceramic structures. The objective of this program is to develop cost-effective manufacturing technology and experimental and analytical capabilities for environmentally stable, aerodynamically efficient, foreign-object-damage-resistant, in situ toughened silicon nitride turbine nozzle vanes, and to test these vanes under simulated engine conditions. Starting with computer aided design (CAD) files of an airfoil and a flat plate with internal cooling passages, the permanent and removable mold components for gel casting ceramic slips were made by stereolithography and Sanders machines, respectively. The gel-cast part was dried and sintered to final shape. Several in situ toughened silicon nitride generic airfoils with internal cooling passages have been fabricated. The uncoated and thermal barrier coated airfoils and flat plates were burner rig tested for 30 min without
Zhang, M. M.; Wang, G. F.; Xu, J. Z.
2014-04-01
An experimental study of flow separation control on a low- Re c airfoil was presently investigated using a newly developed leading-edge protuberance method, motivated by the improvement in the hydrodynamics of the giant humpback whale through its pectoral flippers. Deploying this method, the control effectiveness of the airfoil aerodynamics was fully evaluated using a three-component force balance, leading to an effectively impaired stall phenomenon and great improvement in the performances within the wide post-stall angle range (22°-80°). To understand the flow physics behind, the vorticity field, velocity field and boundary layer flow field over the airfoil suction side were examined using a particle image velocimetry and an oil-flow surface visualization system. It was found that the leading-edge protuberance method, more like low-profile vortex generator, effectively modified the flow pattern of the airfoil boundary layer through the chordwise and spanwise evolutions of the interacting streamwise vortices generated by protuberances, where the separation of the turbulent boundary layer dominated within the stall region and the rather strong attachment of the laminar boundary layer still existed within the post-stall region. The characteristics to manipulate the flow separation mode of the original airfoil indicated the possibility to further optimize the control performance by reasonably designing the layout of the protuberances.
Design of a 21 m blade with Risø-A1 airfoils for active stall controlled wind turbines
DEFF Research Database (Denmark)
Fuglsang, Peter; Sangill, O.; Hansen, P.
2002-01-01
the characteristics of the new blade. Airfoil characteristics, power curve and fatigue loads were derived onbasis of the measurements. Most of the design criteria for the new blade were met. The new blade had a reduced weight of 4% reducing blade cost compared with LM 21.0P. The measurements showed that the wind......This is the final report, from the project, "Design of a Rotor/Airfoil Family for Active Stall-regulated Wind Turbines by Use of Multi-point Optimization". It describes the full scale testing of a 21 m wind turbine blade specially designed for active stallregulation. Design objectives were...... increased ratio of produced energy to turbine loads and more stable power control characteristics. Both were taken directly into account during the design of the blade using numerical optimization. The blade used theRisø-A1 airfoil family, which was specially designed for operation on wind turbine blades...
AN EXPERIMENTAL STUDY OF FLOW AROUND A BIO-INSPIRED AIRFOIL AT REYNOLDS NUMBER 2.0×103
Institute of Scientific and Technical Information of China (English)
SHI Sheng-xian; LIU Ying-zheng; CHEN Jian-min
2012-01-01
The fluid flow around a bio-iuspired airfoil with corrugated surfaces and its smooth counterpart at chord Reynolds number Re =2.0× 103 and different Angle-Of-Attack (AOA =0°,4°,8° and 12°) were measured by using Particle Image Velocimetry (PIV).The global characteristics of the fluid flow around two airfoils were analyzed by ensemble-averaged velocity field,distribution of reverse flow intennittency,and time-series flow visualizations.At AOA =0°,no significant variation of the global flow patterns was recognized for both configurations.The statistical results of reverse flow intermittency results demonstrated that the protruding peaks of the corrugated airfoil delay flow separation occur at AOA =4°.At large AOAs (8° and 12°),however,the flow is massively separated in both configurations,the combination of large separation bubble above the corrugated airfoil and small reeirculation zones in the upstream upper valley results in earlier separation of the flow.At AOA=g°,the wake region behind the corrugated airfoil is considerably shortened in comparison to the smooth one,indicating a remarkable reduction of the time-mean lift and drag forces,however,at AOA =12°,the wake region behind the corrugated one is slightly larger than that behind the smooth one.For the case of AOA - 8° and 12°,the time-series flow visualizations demonstrate the intensified vortex shedding process of the corrugated airfoil,which would give rise to enhanced dynamic loading.Due to the fact that dragonfly wing is practically flexible,it is speculated that the wing structure of a gliding dragonfly might be sophisticatedly deformed in response to the periodic loading to reduce the drag.
Investigation of airfoil leading edge separation control with nanosecond plasma actuator
Zheng, J. G.; Cui, Y. D.; Zhao, Z. J.; Li, J.; Khoo, B. C.
2016-11-01
A combined numerical and experimental investigation of airfoil leading edge flow separation control with a nanosecond dielectric barrier discharge (DBD) plasma actuator is presented. Our study concentrates on describing dynamics of detailed flow actuation process and elucidating the nanosecond DBD actuation mechanism. A loose coupling methodology is employed to perform simulation, which consists of a self-similar plasma model for the description of pulsed discharge and two-dimensional Reynolds averaged Navier-Stokes (RANS) equations for the calculation of external airflow. A series of simulations of poststall flows around a NACA0015 airfoil is conducted with a Reynolds number range covering both low and high Re at Re=(0.05 ,0.15 ,1.2 ) ×106 . Meanwhile, wind-tunnel experiment is performed for two low Re flows to measure aerodynamic force on airfoil model and transient flow field with time-resolved particle image velocimetry (PIV). The PIV measurement provides possibly the clearest view of flow reattachment process under the actuation of a nanosecond plasma actuator ever observed in experiments, which is highly comparable to that predicted by simulation. It is found from the detailed simulation that the discharge-induced residual heat rather than shock wave plays a dominant role in flow control. For any leading edge separations, the preliminary flow reattachment is realized by residual heat-induced spanwise vortices. After that, the nanosecond actuator functions by continuing exciting flow instability at poststall attack angles or acting as an active trip near stall angle. As a result, the controlled flow is characterized by a train of repetitive, downstream moving vortices over suction surface or an attached turbulent boundary layer, which depends on both angle of attack and Reynolds number. The advection of residual temperature with external flow offers a nanosecond plasma actuator a lot of flexibility to extend its influence region. Animations are provided for
High-Lift System for a Supercritical Airfoil: Simplified by Active Flow Control
Melton, LaTunia Pack; Schaeffler, Norman W.; Lin, John C.
2007-01-01
Active flow control wind tunnel experiments were conducted in the NASA Langley Low-Turbulence Pressure Tunnel using a two-dimensional supercritical high-lift airfoil with a 15% chord hinged leading-edge flap and a 25% chord hinged trailing-edge flap. This paper focuses on the application of zero-net-mass-flux periodic excitation near the airfoil trailing edge flap shoulder at a Mach number of 0.1 and chord Reynolds numbers of 1.2 x 10(exp 6) to 9 x 10(exp 6) with leading- and trailing-edge flap deflections of 25 deg. and 30 deg., respectively. The purpose of the investigation was to increase the zero-net-mass-flux options for controlling trailing edge flap separation by using a larger model than used on the low Reynolds number version of this model and to investigate the effect of flow control at higher Reynolds numbers. Static and dynamic surface pressures and wake pressures were acquired to determine the effects of flow control on airfoil performance. Active flow control was applied both upstream of the trailing edge flap and immediately downstream of the trailing edge flap shoulder and the effects of Reynolds number, excitation frequency and amplitude are presented. The excitations around the trailing edge flap are then combined to control trailing edge flap separation. The combination of two closely spaced actuators around the trailing-edge flap knee was shown to increase the lift produced by an individual actuator. The phase sensitivity between two closely spaced actuators seen at low Reynolds number is confirmed at higher Reynolds numbers. The momentum input required to completely control flow separation on the configuration was larger than that available from the actuators used.
A least squares finite element scheme for transonic flow around harmonically oscillating airfoils
Cox, C. L.; Fix, G. J.; Gunzburger, M. D.
1983-01-01
The present investigation shows that a finite element scheme with a weighted least squares variational principle is applicable to the problem of transonic flow around a harmonically oscillating airfoil. For the flat plate case, numerical results compare favorably with the exact solution. The obtained numerical results for the transonic problem, for which an exact solution is not known, have the characteristics of known experimental results. It is demonstrated that the performance of the employed numerical method is independent of equation type (elliptic or hyperbolic) and frequency. The weighted least squares principle allows the appropriate modeling of singularities, which such a modeling of singularities is not possible with normal least squares.
A comparative study on the flow over an airfoil using transitional turbulence models
DEFF Research Database (Denmark)
Lin, Mou; Sarlak Chivaee, Hamid
2016-01-01
This work addresses the simulation of the flow over NREL S826 airfoil under a relatively low Reynolds number (Re = 1 × 105 ) using the CFD solvers OpenFoam and ANSYS Fluent. The flow is simulated using two different transition models, γ − Reθ and k − kL − ω model, and the results are examined...... against the k − ω SST model without transitional formulations. By comparing the simulations with the available experimental data, we find that the using the transitional model can effectively improve the flow prediction, especially the drag coefficient results, before the stall....
Numerical study of the static and pitching RISØ-B1-18 airfoil
DEFF Research Database (Denmark)
Bertagnolio, Franck
2004-01-01
The objective of this report is the better understanding of the physics of the aeroelastic motion of wind turbine blades in order to improve the numerical models used for their design. In this study, the case of the RISØ-B1-18 airfoil which was equippedand measured in an open jet wind tunnel...... is studied. Two and three dimensional Navier-Stokes calculations using the k-w SST and Detached Eddy Simulation turbulence models are conducted. An engineering semi-empirical dynamic stall model is also used forperforming calculations. Computational results are compared to the experimental results...
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
An optimization method to design turbine airfoils using a Genetic Algorithm (GA) design shell coupled directly with a viscous CFD (Computational Fluid Dynamics) analysis code is proposed in this paper. The blade geometry is parameterized and the optimization method is used to search for a blade geometry that will minimize the loss in the turbine cascade passage. The viscous flow prediction code is verified by the experimental data of cascade, which is typical for a gas turbine rotor blade section. A comparative study of the blades designed by the optimization technique and the original one is presented
Choo, Yung K.; Vickerman, Mary B.
2000-01-01
SmaggIce (Surface Modeling and Grid Generation for Iced Airfoils), which is being developed at the NASA Glenn Research Center at Lewis Field, is an interactive software system for data probing, boundary smoothing, domain decomposition, and structured grid generation and refinement. All these steps are required for aerodynamic performance prediction using structured, grid-based computational fluid dynamics (CFD), as illustrated in the following figure. SmaggIce provides the underlying computations to perform these functions, as well as a graphical user interface to control and interact with them, and graphics to display the results.
Aerodynamic effects of simulated ice shapes on two-dimensional airfoils and a swept finite tail
Alansatan, Sait
An experimental study was conducted to investigate the effect of simulated glaze ice shapes on the aerodynamic performance characteristics of two-dimensional airfoils and a swept finite tail. The two dimensional tests involved two NACA 0011 airfoils with chords of 24 and 12 inches. Glaze ice shapes computed with the LEWICE code that were representative of 22.5-min and 45-min ice accretions were simulated with spoilers, which were sized to approximate the horn heights of the LEWICE ice shapes. Lift, drag, pitching moment, and surface pressure coefficients were obtained for a range of test conditions. Test variables included Reynolds number, geometric scaling, control deflection and the key glaze ice features, which were horn height, horn angle, and horn location. For the three-dimensional tests, a 25%-scale business jet empennage (BJE) with a T-tail configuration was used to study the effect of ice shapes on the aerodynamic performance of a swept horizontal tail. Simulated glaze ice shapes included the LEWICE and spoiler ice shapes to represent 9-min and 22.5-min ice accretions. Additional test variables included Reynolds number and elevator deflection. Lift, drag, hinge moment coefficients as well as boundary layer velocity profiles were obtained. The experimental results showed substantial degradation in aerodynamic performance of the airfoils and the swept horizontal tail due to the simulated ice shapes. For the two-dimensional airfoils, the largest aerodynamic penalties were obtained when the 3-in spoiler-ice, which was representative of 45-min glaze ice accretions, was set normal to the chord. Scale and Reynolds effects were not significant for lift and drag. However, pitching moments and pressure distributions showed great sensitivity to Reynolds number and geometric scaling. For the threedimensional study with the swept finite tail, the 22.5-min ice shapes resulted in greater aerodynamic performance degradation than the 9-min ice shapes. The addition of 24
Large-eddy simulations of a S826 airfoil with the Discontinuous Galerkin Method
DEFF Research Database (Denmark)
Frère, A.; Chivaee, Hamid Sarlak; Mikkelsen, Robert Flemming;
2014-01-01
The aim of the present work is to improve the understanding of low Reynolds flow physics by performing Large-Eddy Simulations (LES) of the NREL S826 airfoil. The paper compares the results obtained with a novel high order code based on the Discontinuous Galerkin Method (ArgoDG) and a recent...... experiment performed at the Technical University of Denmark. Chordwise pressure evolutions, integrated lift and drag forces are compared at Reynolds number 4.104 and angles of attack (AoA) 10 and 12 degrees. Important differences are observed between the simulations and the experiment. These differences are...
A feedback control strategy for the airfoil system under non-Gaussian colored noise excitation
Energy Technology Data Exchange (ETDEWEB)
Huang, Yong, E-mail: hy@njust.edu.cn, E-mail: taogang@njust.edu.cn; Tao, Gang, E-mail: hy@njust.edu.cn, E-mail: taogang@njust.edu.cn [School of Energy and Power Engineering, Nanjing University of Science and Technology, 200 XiaoLingwei Street, Nanjing 210094 (China)
2014-09-01
The stability of a binary airfoil with feedback control under stochastic disturbances, a non-Gaussian colored noise, is studied in this paper. First, based on some approximated theories and methods the non-Gaussian colored noise is simplified to an Ornstein-Uhlenbeck process. Furthermore, via the stochastic averaging method and the logarithmic polar transformation, one dimensional diffusion process can be obtained. At last by applying the boundary conditions, the largest Lyapunov exponent which can determine the almost-sure stability of the system and the effective region of control parameters is calculated.
Design and construction of 2 transonic airfoil models for tests in the NASA Langley C.3-M TCT
Schaechterle, G.; Ludewig, K. H.; Stanewsky, E.; Ray, E. J.
1982-01-01
As part of a NASA/DFVLR cooperation program two transonic airfoils were tested in the NASA Langley 0.3-m TCT. Model design and construction was carried out by DFVLR. The models designed and constructed performed extremely well under cryogenic conditions. Essentially no permanent changes in surface quality and geometric dimensions occurred during the tests. The aerodynamic results from the TCT tests which demonstrate the large sensitivity of the airfoil CAST 10-Z/DOAZ to Reynolds number changes compared well with results from other facilities at ambient temperatures.
Experimental study of the boundary layer over an airfoil in plunging motion
Institute of Scientific and Technical Information of China (English)
F. Rasi Marzabadi; M. R. Soltani
2012-01-01
This is an experimental study on the boundary layer over an airfoil under steady and unsteady conditions.It specifically deals with the effect of plunging oscillation on the laminar/turbulent characteristics of the boundary layer.The wind tunnel measurements involved surfacemounted hot-film sensors and boundary-layer rake.The experiments were conducted at Reynolds numbers of 0.42 × 106 to 0.84 × 106 and the reduced frequency was varied from 0.01 to 0.1 1.The results of the quasi-wall-shear stress as well as the boundary layer velocity profiles provided important information about the state of the boundary layer over the suction surface of the airfoil in both static and dynamic cases.For the static tests,boundary layer transition occurred through a laminar separation bubble.By increasing the angle of attack,disturbances and the transition location moved toward the leading edge.For the dynamic tests,earlier transition occurred with increasing rather than decreasing effective angle of attack.The mean angle of attack and the oscillating parameters significantly affected the state of the boundary layer.By increasing the reduced frequency,the boundary layer transition was promoted to the upstroke portion of the equivalent angle of attack,but the quasi skin friction coefficient was decreased.
Large Eddy Simulation of Airfoil Self-Noise at High Reynolds Number
Kocheemoolayil, Joseph; Lele, Sanjiva
2015-11-01
The trailing edge noise section (Category 1) of the Benchmark Problems for Airframe Noise Computations (BANC) workshop features five canonical problems. No first-principles based approach free of empiricism and tunable coefficients has successfully predicted trailing edge noise for the five configurations to date. Our simulations predict trailing edge noise accurately for all five configurations. The simulation database is described in detail, highlighting efforts undertaken to validate the results through systematic comparison with dedicated experiments and establish insensitivity to grid resolution, domain size, alleatory uncertainties such as the tripping mechanism used to force transition to turbulence and epistemic uncertainties such as models for unresolved near-wall turbulence. Ongoing efforts to extend the predictive capability to non-canonical configurations featuring flow separation are summarized. A novel, large-span calculation that predicts the flow past a wind turbine airfoil in deep stall with unprecedented accuracy is presented. The simulations predict airfoil noise in the near-stall regime accurately. While the post-stall noise predictions leave room for improvement, significant uncertainties in the experiment might preclude a fair comparison in this regime. We thank Cascade Technologies Inc. for providing access to the CharLES toolkit - a massively-parallel, unstructured large eddy simulation framework.
Computational Simulation of the Flow Past an Airfoil for an Unmanned Aerial Vehicle
Directory of Open Access Journals (Sweden)
L. Velázquez-Araque
2013-08-01
Full Text Available This paper deals with the numerical simulation of the two-dimensional, incompressible, steady air flow past a NACA 2415 airfoil and four modifications of this one. The modification of this airfoil was made in order to create a blowing outlet with the shape of a step on the suction surface. Therefore, five different locations along the cord line for this blowing outlet were analyzed. This analysis involved the aerodynamic performance which meant obtaining lift, drag and pitching moment coefficients curves as a function of the angle of attack for the situation where the engine of the aerial vehicle is turned off called the no blowing condition by means computational fluid dynamics. The RNG k-ε model is utilized to describe the turbulent flow process. The simulations were held at a Reynolds number of 105. Results allowed obtaining lift and drag forces and pitching moment coefficient and also the location of the separation and reattachment point in some cases for different angles of attack, from 0 to 16 degrees with the smallest increment of 4 degrees. Finally, numerical results were compared with results obtained from wind tunnel tests by means of an aerodynamic balance and also oil and smoke visualization techniques and found to be in very good agreement.
Transonic flow of moist air around an NACA 0012 airfoil with non-equilibrium condensation
Institute of Scientific and Technical Information of China (English)
LI Liang; SUN Xiuling; FENG Zhenping; LI Guojun
2005-01-01
The classical condensation model of water vapor is coupled with the Euler equations to calculate transonic flows of moist air with non-equilibrium condensation. By means of this model, numerical computations are implemented to investigate the aerodynamic characteristics of an NACA 0012 airfoil in transonic flows of moist air at various angles of attack and relative humidities, and the results are compared with those in dry air flows. For different angles of attack considered at 50 % relative humidity, the lift decreases 30 % -40 %.The pressure drag increases when the angle of attack is smaller than 1.4° and decreases when higher than 1.4°. At zero angle of attack,with the relative humidity rising from zero to 90 %, the pressure drag increases exponentially. At 90 % relative humidity, the pressure drag increases 160 %, and self-oscillation takes place periodically and alternately over the upper and lower surfaces of the airfoil. The oscillation is caused by the interactions of local supersonic flow and heat release in the condensation process.
The passage of a distorted velocity field through a cascade of airfoils
Adamczyk, J. J.
1976-01-01
An analysis has been developed to predict the unsteady force and moment generated by the passage of a timewise periodic total pressure distortion through an arbitrary cascade of airfoils. The mathematical formulation of this analysis is based on the assumption that the magnitudes of the timewise fluctuations of the variables which describe the flow field are small compared to their time average values. This assumption permits the development of a linear unsteady perturbation analysis about a steady flow field. In addition to this linearization assumption the fluid medium is assumed to be incompressible and inviscid. The mathematical development begins by decomposing the velocity field surrounding an infinite cascade of airfoils into its irrotational and rotational components. The rotational component is associated with an upstream unsteady total pressure distortion and is defined in terms of the vorticity field associated with the distortion pattern. The irrotational component is further decomposed into a steady and unsteady part. A combined analytical and numerical procedure has been developed to solve the field equations which govern the rotational and irrotational velocity fields. Results of this analysis show a strong influence of mean loading on the unsteady force generated by the passage of a one dimensional gust through a cascade of compressor blades.
Gust Acoustic Response of a Single Airfoil Using the Space-Time CE/SE Method
Scott, James (Technical Monitor); Wang, X. Y.; Chang, S. C.; Himansu, A.; Jorgenson, P. C. E.
2003-01-01
A 2D parallel Euler code based on the space-time conservation element and solution element (CE/SE) method is validated by solving the benchmark problem I in Category 3 of the Third CAA Workshop. This problem concerns the acoustic field generated by the interaction of a convected harmonic vortical gust with a single airfoil. Three gust frequencies, two gust configurations, and three airfoil geometries are considered. Numerical results at both near and far fields are presented and compared with the analytical solutions, a frequency-domain solver GUST3D solutions, and a time-domain high-order Discontinuous Spectral Element Method (DSEM) solutions. It is shown that the CE/SE solutions agree well with the GUST3D solution for the lowest frequency, while there are discrepancies between CE/SE and GUST3D solutions for higher frequencies. However, the CE/SE solution is in good agreement with the DSEM solution for these higher frequencies. It demonstrates that the CE/SE method can produce accurate results of CAA problems involving complex geometries by using unstructured meshes.
Performance of active and passive control of an airfoil using CPFD
Asselin, Daniel; Young, Jay; Williamson, C. H. K.
2016-11-01
Birds and fish employ flapping motions of their wings and fins in order to produce thrust and maneuver in flight and underwater. There is considerable interest in designing aerial and submersible systems that mimic these motions for the purposes of surveillance, environmental monitoring, and search and rescue, among other applications. Flapping motions are typically composed of combined pitch and heave and can provide good thrust and efficiency (Read, et al. 2003). In this study, we examine the performance of an airfoil actuated only in the heave direction. Using a cyber-physical fluid dynamics system (Mackowski & Williamson 2011, 2015, 2016), we simulate the presence of a torsion spring to enable the airfoil to undergo a passively controlled pitching motion. The addition of passive pitching combined with active heaving ("Active-Passive" or AP) provides significantly improved thrust and efficiency compared with heaving alone. In many cases, values of thrust and efficiency are comparable to or better than those obtained with two actively controlled degrees of freedom ("Active-Active" or AA). By using carefully-designed passive dynamics in the pitch direction, we can eliminate one of the two actuators, saving cost, complexity, and weight, while maintaining or improving performance. This work was supported by the Air Force Office of Scientific Research Grant No. FA9550-15-1-0243, monitored by Dr. Douglas Smith.
Dynamic Stall Prediction of a Pitching Airfoil using an Adjusted Two-Equation URANS Turbulence Model
Directory of Open Access Journals (Sweden)
Galih Bangga
2017-01-01
Full Text Available The necessity in the analysis of dynamic stall becomes increasingly important due to its impact on many streamlined structures such as helicopter and wind turbine rotor blades. The present paper provides Computational Fluid Dynamics (CFD predictions of a pitching NACA 0012 airfoil at reduced frequency of 0.1 and at small Reynolds number value of 1.35e5. The simulations were carried out by adjusting the k − ε URANS turbulence model in order to damp the turbulence production in the near wall region. The damping factor was introduced as a function of wall distance in the buffer zone region. Parametric studies on the involving variables were conducted and the effect on the prediction capability was shown. The results were compared with available experimental data and CFD simulations using some selected two-equation turbulence models. An improvement of the lift coefficient prediction was shown even though the results still roughly mimic the experimental data. The flow development under the dynamic stall onset was investigated with regards to the effect of the leading and trailing edge vortices. Furthermore, the characteristics of the flow at several chords length downstream the airfoil were evaluated.
Directory of Open Access Journals (Sweden)
Yaping Ju
2016-05-01
Full Text Available The Monte Carlo simulation method for turbomachinery uncertainty analysis often requires performing a huge number of simulations, the computational cost of which can be greatly alleviated with the help of metamodeling techniques. An intensive comparative study was performed on the approximation performance of three prospective artificial intelligence metamodels, that is, artificial neural network, radial basis function, and support vector regression. The genetic algorithm was used to optimize the predetermined parameters of each metamodel for the sake of a fair comparison. Through testing on 10 nonlinear functions with different problem scales and sample sizes, the genetic algorithm–support vector regression metamodel was found more accurate and robust than the other two counterparts. Accordingly, the genetic algorithm–support vector regression metamodel was selected and combined with the Monte Carlo simulation method for the uncertainty analysis of a wind turbine airfoil under two types of surface roughness uncertainties. The results show that the genetic algorithm–support vector regression metamodel can capture well the uncertainty propagation from the surface roughness to the airfoil aerodynamic performance. This work is useful to the application of metamodeling techniques in the robust design optimization of turbomachinery.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The effectiveness of the sliding mode control(SMC) method for active flutter suppression(AFS) and the issues concerning control system discretization and control input constraints were studied using a typical two-dimensional airfoil.The airfoil has a trailing-edge flap for flutter control.The aeroelastic system involves a two-degrees-of-freedom motion(pitch and plunge),and the equations were constructed by utilizing quasi-steady aerodynamic forces.The control system,designed by the output feedback SMC method,was incorporated to suppress the pitch-plunge flutter.Meanwhile,the system discretization and the flap deflection constraints were implemented.Then,a classical Runge-Kutta(RK) algorithm was utilized for numerical calculations.The results indicated that the close-loop system with the SMC system could be stable at a speed above the flutter boundary.However,when the flap deflection limits are reached,the close-loop system with the simple discretized control system loses control.Furthermore,control compensation developed by theoretical analysis was proposed to make the system stable again.The parameter perturbations and the time delay effects were also discussed in this paper.
Unsteady Aerodynamics and Vortex-sheet Formation of A Two-dimensional Airfoil
Xia, Xi
2016-01-01
Unsteady inviscid flow models of wings and airfoils have been developed to study the aerodynamics of natural and man-made flyers. Vortex methods have been extensively applied to reduce the dimensionality of these aerodynamic models, based on the proper estimation of the strength and distribution of the vortices in the wake. In such modeling approaches, one of the most fundamental questions is how the vortex sheets are generated and released from sharp edges. To determine the formation of the trailing-edge vortex sheet, the classical Kutta condition can be extended to unsteady situations by realizing that a flow cannot turn abruptly around a sharp edge. This condition can be readily applied to a flat plate or an airfoil with cusped trailing edge since the direction of the forming vortex sheet is known to be tangential to the trailing edge. However, for a finite-angle trailing edge, or in the case of flow separation away from a sharp corner, the direction of the forming vortex sheet is ambiguous. To remove any ...
Numerical simulation and reduced-order modeling of a flapping airfoil
Lewin, Gregory Carl
Recent advances in many fields have made the design of micro-aerial vehicles that implement flapping wings a possibility. However, there are many outstanding problems that must be solved before flapping flight can be implemented as a practical means of propulsion. This dissertation focuses on two important aspects of flapping flight: the physics of the flow of a fluid around a heaving airfoil and the development of a reduced-order model for the control of a flapping airfoil. To study the physics of the flow, a numerical model for two-dimensional flow around an airfoil undergoing prescribed oscillatory motions in a viscous flow is developed. The model is used to examine the flow characteristics and power coefficients of a symmetric airfoil heaving sinusoidally over a range of frequencies and amplitudes. Both periodic and aperiodic solutions are found. Additionally, some flows are asymmetric in that the up-stroke is not a mirror image of the down-stroke. For a given Strouhal number---defined as the product of dimensionless frequency and heave amplitude---the maximum efficiency occurs at an intermediate heaving frequency. This is in contrast to ideal flow models, in which efficiency increases monotonically as frequency decreases. Below a threshold frequency, the separation of the leading edge vortices early in each stroke reduces the force on the airfoil and leads to diminished thrust and efficiency. Above the optimum frequency, the efficiency decreases similarly to inviscid theory. For most cases, the efficiency can be correlated to interactions between leading and trailing edge vortices, with positive reinforcement leading to relatively high efficiency, and negative reinforcement leading to relatively low efficiency. Additionally, the efficiency is related to the proximity of the heaving frequency to the frequency of the most spatially unstable mode of the average velocity profile of the wake; the greatest efficiency occurs when the two frequencies are nearly
Spera, David A.
2008-01-01
Equations are developed with which to calculate lift and drag coefficients along the spans of torsionally-stiff rotating airfoils of the type used in wind turbine rotors and wind tunnel fans, at angles of attack in both the unstalled and stalled aerodynamic regimes. Explicit adjustments are made for the effects of aspect ratio (length to chord width) and airfoil thickness ratio. Calculated lift and drag parameters are compared to measured parameters for 55 airfoil data sets including 585 test points. Mean deviation was found to be -0.4 percent and standard deviation was 4.8 percent. When the proposed equations were applied to the calculation of power from a stall-controlled wind turbine tested in a NASA wind tunnel, mean deviation from 54 data points was -1.3 percent and standard deviation was 4.0 percent. Pressure-rise calculations for a large wind tunnel fan deviated by 2.7 percent (mean) and 4.4 percent (standard). The assumption that a single set of lift and drag coefficient equations can represent the stalled aerodynamic behavior of a wide variety of airfoils was found to be satisfactory.
Van Fossen, G. James; De Witt, Kenneth J.; Newton, James E.; Poinsatte, Phillip E.
1988-01-01
Wind tunnels typically have higher free stream turbulence levels than are found in flight. Turbulence intensity was measured to be 0.5 percent in the NASA Lewis Icing Research Tunnel (IRT) with the cloud making sprays off and around 2 percent with cloud making equipment on. Turbulence intensity for flight conditions was found to be too low to make meaningful measurements for smooth air. This difference between free stream and wind tunnel conditions has raised questions as to the validity of results obtained in the IRT. One objective of these tests was to determine the effect of free stream turbulence on convective heat transfer for the NASA Lewis LEWICE ice growth prediction code. These tests provide in-flight heat transfer data for a NASA-0012 airfoil with a 533 cm chord. Future tests will measure heat transfer data from the same airfoil in the Lewis Icing Research Tunnel. Roughness was obtained by the attachment of small, 2 mm diameter hemispheres of uniform size to the airfoil in three different patterns. Heat transfer measurements were recorded in flight on the NASA Lewis Twin Otter Icing Research Aircraft. Measurements were taken for the smooth and roughened surfaces at various aircraft speeds and angles of attack up to four degrees. Results are presented as Frossling number versus position on the airfoil for various roughnesses and angles of attack.
Poinsatte, Philip E.; Van Fossen, G. James; Dewitt, Kenneth J.
1990-01-01
Local heat transfer coefficients were measured on a smooth and roughened NACA 0012 airfoil. Heat transfer measurements on the 0.533 m chord airfoil were made both in flight on the NASA Lewis Twin Otter Icing Research Aircraft and in the NASA Icing Research Tunnel (IRT). Roughness was obtained by the attachment of uniform 2 mm diameter hemispheres to the airfoil surface in 4 distinct patterns. Flight data were taken for the smooth and roughened airfoil at various Reynolds numbers based on chord in the range 1.24 to 2.50 x 10 (exp 6) and at various angles of attack up to 4 deg. During these flight tests, the free stream velocity turbulence intensity was found to be very low (less than 0.1 percent). Wind tunnel data were acquired in the Reynolds number range 1.20 to 4.25 x 10 (exp t) and at angles of attack from -4 to 8 deg. The turbulence intensity in the IRT was 0.5 to 0.7 percent with the cloud generating sprays off. A direct comparison was made between the results obtained in flight and in the IRT. The higher level of turbulence in the IRT vs. flight had little effect on the heat transfer for the lower Reynolds numbers but caused a moderate increase in heat transfer at the high Reynolds numbers. Roughness generally increased the heat transfer.
Newton, James E.; Vanfossen, G. James; Poinsatte, Phillip E.; Dewitt, Kenneth J.
1988-01-01
Wind tunnels typically have higher free stream turbulence levels than are found in flight. Turbulence intensity was measured to be 0.5 percent in the NASA Lewis Icing Research Tunnel (IRT) with the cloud making sprays off and around 2 percent with cloud making equipment on. Turbulence intensity for flight conditions was found to be too low to make meaningful measurements for smooth air. This difference between free stream and wing tunnel conditions has raised questions as to the validity of results obtained in the IRT. One objective of these tests was to determine the effect of free stream turbulence on convective heat transfer for the NASA Lewis LEWICE ice growth prediction code. These tests provide in-flight heat transfer data for a NASA-0012 airfoil with a 533 cm chord. Future tests will measure heat transfer data from the same airfoil in the Lewis Icing Research Tunnel. Roughness was obtained by the attachment of small, 2 mm diameter hemispheres of uniform size to the airfoil in three different patterns. Heat transfer measurements were recorded in flight on the NASA Lewis Twin Otter Icing Research Aircraft. Measurements were taken for the smooth and roughened surfaces at various aircraft speeds and angles of attack up to four degrees. Results are presented as Frossling number versus position on the airfoil for various roughnesses and angles of attack.
Ravi, Sridhar; Watkins, Simon; Watmuff, Jon; Massey, Kevin; Petersen, Phred; Marino, Matthew; Ravi, Anuradha
2012-09-01
Micro Air Vehicles (MAVs) can be difficult to control in the outdoor environment as they fly at relatively low speeds and are of low mass, yet exposed to high levels of freestream turbulence present within the Atmospheric Boundary Layer. In order to examine transient flow phenomena, two turbulence conditions of nominally the same longitudinal integral length scale (Lxx/c = 1) but with significantly different intensities (Ti = 7.2 % and 12.3 %) were generated within a wind tunnel; time-varying surface pressure measurements, smoke flow visualization, and wake velocity measurements were made on a thin flat plate airfoil. Rapid changes in oncoming flow pitch angle resulted in the shear layer to separate from the leading edge of the airfoil even at lower geometric angles of attack. At higher geometric angles of attack, massive flow separation occurred at the leading edge followed by enhanced roll up of the shear layer. This lead to the formation of large Leading Edge Vortices (LEVs) that advected at a rate much lower than the mean flow speed while imparting high pressure fluctuations over the airfoil. The rate of LEV formation was dependent on the angle of attack until 10° and it was independent of the turbulence properties tested. The fluctuations in surface pressures and consequently aerodynamic loads were considerably limited on the airfoil bottom surface due to the favorable pressure gradient.
DEFF Research Database (Denmark)
Velte, Clara Marika; Hansen, Martin Otto Laver
2013-01-01
Stereoscopic Particle Image Velocimetry measurements investigating the effect of vortex generators (VGs) on the flow near stall were carried out in a purpose-built wind tunnel for airfoil investigations on a DU 91-W2-250 profile. Measurements were conducted at Re = 0.9⋅106, corresponding to free...
Velázquez-Araque, L.; Mendoza Perez, Luis Daniel; Casanova Kindelán, Jesús; Nozicka, J.
2013-01-01
This paper deals with the prediction of pressure and velocity fields on the 2415-3S airfoil which will be used for and unmanned aerial vehicle with internal propulsion system and in this way analyze the air flow through an internal duct of the airfoil using computational fluid dynamics. The main objective is to evaluate the effect of the internal air flow past the airfoil and how this affects the aerodynamic performance by means of lift and drag forces. For this purpose, three different desig...
Luis D. Mendoza; Jiří Nožička
2014-01-01
This paper deals with the prediction of velocity fields on the 2415-3S airfoil which will be used for an unmanned aerial vehicle with internal propulsion system and in this way analyze the air flow through an internal duct of the airfoil using computational fluid dynamics. The main objective is to evaluate the effect of the internal air flow past the airfoil and how this affects the aerodynamic performance by means of lift and drag forces. For this purpose, three different designs of the inte...
Velázquez-Araque, L.; Mendoza Pérez, Luis Daniel; J. Nožička
2014-01-01
This paper deals with the prediction of velocity fields on the 2415-3S airfoil which will be used for an unmanned aerial vehicle with internal propulsion system and in this way analyze the air flow through an internal duct of the airfoil using computational fluid dynamics. The main objective is to evaluate the effect of the internal air flow past the airfoil and how this affects the aerodynamic performance by means of lift and drag forces. For this purpose, three different designs of the inte...
Institute of Scientific and Technical Information of China (English)
孙茂; Hossein Hamdani
2001-01-01
The aerodynamic force and flow structure of NACA 0012 airfoil performing an unsteady motion at low Reynolds number (Re = 100) are calculated by solving Navier-Stokes equations. The motion consists of three parts: the first translation, rotation and the second translation in the direction opposite to the first.The rotation and the second translation in this motion are expected to represent the rotation and translation of the wing-section of a hovering insect. The flow structure is used in combination with the theory of vorticity dynamics to explain the generation of unsteady aerodynamic force in the motion. During the rotation, due to the creation of strong vortices in short time, large aerodynamic force is produced and the force is almost normal to the airfoil chord. During the second translation, large lift coefficient can be maintained for certain time period and CL1, the lift coefficient averaged over four chord lengths of travel, is larger than 2 (the corresponding steady-state lift coefficient is only 0.9). The large lift coefficient is due to two effects. The first is the delayed shedding of the stall vortex. The second is that the vortices created during the airfoil rotation and in the near wake left by previous translation form a short "vortex street" in front of the airfoil and the "vortex street" induces a "wind";against this "wind" the airfoil translates, increasing its relative speed. The above results provide insights to the understanding of the mechanism of high-lift generation by a hovering insect.
Disotell, Kevin J.; Nikoueeyan, Pourya; Naughton, Jonathan W.; Gregory, James W.
2016-05-01
Recognizing the need for global surface measurement techniques to characterize the time-varying, three-dimensional loading encountered on rotating wind turbine blades, fast-responding pressure-sensitive paint (PSP) has been evaluated for resolving unsteady aerodynamic effects in incompressible flow. Results of a study aimed at demonstrating the laser-based, single-shot PSP technique on a low Reynolds number wind turbine airfoil in static and dynamic stall are reported. PSP was applied to the suction side of a Delft DU97-W-300 airfoil (maximum thickness-to-chord ratio of 30 %) at a chord Reynolds number of 225,000 in the University of Wyoming open-return wind tunnel. Static and dynamic stall behaviors are presented using instantaneous and phase-averaged global pressure maps. In particular, a three-dimensional pressure topology driven by a stall cell pattern is detected near the maximum lift condition on the steady airfoil. Trends in the PSP-measured pressure topology on the steady airfoil were confirmed using surface oil visualization. The dynamic stall case was characterized by a sinusoidal pitching motion with mean angle of 15.7°, amplitude of 11.2°, and reduced frequency of 0.106 based on semichord. PSP images were acquired at selected phase positions, capturing the breakdown of nominally two-dimensional flow near lift stall, development of post-stall suction near the trailing edge, and a highly three-dimensional topology as the flow reattaches. Structural patterns in the surface pressure topologies are considered from the analysis of the individual PSP snapshots, enabled by a laser-based excitation system that achieves sufficient signal-to-noise ratio in the single-shot images. The PSP results are found to be in general agreement with observations about the steady and unsteady stall characteristics expected for the airfoil.
Assessment of spanwise domain size effect on the transitional flow past an airfoil
Zhang, Wei
2015-10-19
In most large-eddy and direct numerical simulations of flow past an isolated airfoil, the flow is assumed periodic in the spanwise direction. The size of the spanwise domain is an important geometrical parameter determining whether the turbulent flow is fully developed, and whether the separation and transition patterns are accurately modeled. In the present study, we investigate the incompressible flow past an isolated NACA0012 airfoil at the angle of attack of 5 degrees and Reynolds number 5 × 104. The spanwise domain size Lz, represented by the aspect ratio AR=Lz/C where C is the airfoil chord length, is varied in the range 0.1−0.80.1−0.8. The effect of varying the normalized spanwise domain size AR is examined via direct numerical simulation (DNS) on several aspects of the turbulent flow quantities including the time-averaged and time-dependent behavior as well as the spanwise variation of the selected statistical quantities. DNS results reveal that different aspect ratios result in close predictions of the time-averaged aerodynamic quantities, and the velocity field except for a slight difference in the separation bubble. Smaller aspect ratios tend to underpredict the turbulent fluctuations near the separation point but overpredict them inside the separation bubble. Large differences are observed for multiple statistical quantities near the reattachment point, especially the turbulent kinetic energy budget terms. The leading edge separation is notably three-dimensional for simulation at AR=0.8, while remaining quasi-2D for smaller aspect ratios. The spanwise two-point correlation coefficient shows significant dependence on the position of the probe and the velocity component analyzed: small aspect ratios do not produce uncorrelated results for all the velocity components. The simulation results demonstrate that examining only a few statistical quantities may result in a misleading conclusion regarding the sufficiency of the spanwise domain size. Reliable
Experimental investigations of a trailing edge noise feedback mechanism on a NACA 0012 airfoil
Plogmann, B.; Herrig, A.; Würz, W.
2013-05-01
Discrete frequency tones in the trailing edge noise spectra of NACA 0012 airfoils are investigated with the Coherent Particle Velocity method. The Reynolds number and angle of attack range, in which these discrete frequency tones are present, are consistent with published results. The discrete tones are composed of a main tone and a set of regularly spaced side peaks resulting in a ladder-type structure for the dependency on the free stream velocity. The occurrence of this discrete frequency noise could be attributed to the presence of a laminar boundary layer on the pressure side opening up into a separation bubble near the trailing edge, which was visualized using oil flow. Wall pressure measurements close to the trailing edge revealed a strong spanwise and streamwise coherence of the flow structures inside this laminar separation bubble. The laminar vortex shedding frequencies inferred from the streamwise velocity fluctuations, which were evaluated from hot-wire measurements at the trailing edge, were seen to coincide with the discrete tone frequencies observed in the trailing edge noise spectra. Previous findings on discrete frequency tones for airfoils with laminar boundary layers up to the trailing edge hint at the existence of a global feedback loop. Hence, sound waves generated at the trailing edge feed back into the laminar boundary layer upstream by receptivity and are, then, convectively amplified downstream. The most dominant amplification of these disturbance modes is observed inside the laminar separation bubble. Therefore, the frequencies of the most pronounced tones in the trailing edge noise spectra are in the frequency range of the convectively most amplified disturbance modes. Modifying the receptivity behavior of the laminar boundary layer on the pressure side by means of very thin, two-dimensional roughness elements considerably changes the discrete tone frequencies. For roughness elements placed closer to the trailing edge, the main tone
DEFF Research Database (Denmark)
Troldborg, Niels
2005-01-01
A comprehensive computational study, in both steady and unsteady flow conditions, has been carried out to investigate the aerodynamic characteristics of the Risø-B1.18 airfoil equipped with variable trailing edge geometry as produced by a hinged flap. The function of such flaps should be to decre...... frequencies, was investigated so that an optimum design can be suggested for application with wind turbine blades. It is concluded that a moderately curved flap with flap chord to airfoil curve ratio between 0.05 and 0.10 would be an optimum choice....... on the baseline airfoil showed excellent agreement with measurements on the same airfoil with the same specified conditions. Furthermore, a more widespread comparison with an advanced potential theory code is presented. The influence of various key parameters, such as flap shape, flap size and oscillating...
Supersonic unstalled flutter. [aerodynamic loading of thin airfoils induced by cascade motion
Adamczyk, J. J.; Goldstein, M. E.; Hartmann, M. J.
1978-01-01
Flutter analyses were developed to predict the onset of supersonic unstalled flutter of a cascade of two-dimensional airfoils. The first of these analyzes the onset of supersonic flutter at low levels of aerodynamic loading (i.e., backpressure), while the second examines the occurrence of supersonic flutter at moderate levels of aerodynamic loading. Both of these analyses are based on the linearized unsteady inviscid equations of gas dynamics to model the flow field surrounding the cascade. These analyses are utilized in a parametric study to show the effects of cascade geometry, inlet Mach number, and backpressure on the onset of single and multi degree of freedom unstalled supersonic flutter. Several of the results are correlated against experimental qualitative observation to validate the models.
Adamczyk, J. L.
1974-01-01
An approximate solution is reported for the unsteady aerodynamic response of an infinite swept wing encountering a vertical oblique gust in a compressible stream. The approximate expressions are of closed form and do not require excessive computer storage or computation time, and further, they are in good agreement with the results of exact theory. This analysis is used to predict the unsteady aerodynamic response of a helicopter rotor blade encountering the trailing vortex from a previous blade. Significant effects of three dimensionality and compressibility are evident in the results obtained. In addition, an approximate solution for the unsteady aerodynamic forces associated with the pitching or plunging motion of a two dimensional airfoil in a subsonic stream is presented. The mathematical form of this solution approaches the incompressible solution as the Mach number vanishes, the linear transonic solution as the Mach number approaches one, and the solution predicted by piston theory as the reduced frequency becomes large.
Control theory based airfoil design for potential flow and a finite volume discretization
Reuther, J.; Jameson, A.
1994-01-01
This paper describes the implementation of optimization techniques based on control theory for airfoil design. In previous studies it was shown that control theory could be used to devise an effective optimization procedure for two-dimensional profiles in which the shape is determined by a conformal transformation from a unit circle, and the control is the mapping function. The goal of our present work is to develop a method which does not depend on conformal mapping, so that it can be extended to treat three-dimensional problems. Therefore, we have developed a method which can address arbitrary geometric shapes through the use of a finite volume method to discretize the potential flow equation. Here the control law serves to provide computationally inexpensive gradient information to a standard numerical optimization method. Results are presented, where both target speed distributions and minimum drag are used as objective functions.
Propagations of fluctuations and flow separation on an unsteadily loaded airfoil
Tenney, Andrew; Lewalle, Jacques
2014-11-01
We analyze pressure data from 18 taps located along the surface of a DU-96-W180 airfoil in bothand steady flow conditions. The conditions were set to mimic the flow conditions experienced by a wind turbine blade under unsteady loading to test and to quantify the effects of several flow control schemes. Here we are interested in the propagation of fluctuations along the pressure and suction sides, particularly in relation to the fluctuating separation point. An unsteady phase of the incoming fluctuations is defined using Morlet wavelets, and phase-conditioned cross-correlations are calculated. Using wavelet-based pattern recognition, individual events in the pressure data are identified with several different algorithms utilizing both the original time series pressure signals and their corresponding scalograms. The data analyzed in this study was collected by G. Wang in the Skytop anechoic chamber at Syracuse University in the spring of 2013; the work of Zhe Bai on this data is also acknowledged.
The Development of Erosion and Impact Resistant Turbine Airfoil Thermal Barrier Coatings
Zhu, Dongming; Miller, Robert A.
2007-01-01
Thermal barrier coatings are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments and extend component lifetimes. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Advanced erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the doped thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion and impact damage mechanisms of the thermal barrier coatings will also be discussed.
DEFF Research Database (Denmark)
Kamruzzaman, M.; Lutz, Th.; Würz, W.;
2012-01-01
-layer properties such as two-point turbulent velocity correlations, the spectra of the associated wall pressure fluctuations and the emitted trailing-edge far-field noise were performed in the laminar wind tunnel of the Institute of Aerodynamics and Gas Dynamics, University of Stuttgart. The measurements were...... carried out for a NACA 643-418 airfoil, at Re = 2.5 ×106, angle of attack of −6° to 6°. Numerical results of different prediction schemes are extensively validated and discussed elaborately. The investigations on the TNO-Blake noise prediction model show that the numerical wall pressure fluctuation...... with measurements in the frequency region higher than 1 kHz, whereas they over-predict the sound pressure level in the low-frequency region. Copyright © 2011 John Wiley & Sons, Ltd....
DEFF Research Database (Denmark)
Døssing, Mads
Time series of pressure fluctuations has been obtained using high frequency microphones distributed over the surface of airfoils undergoing wind tunnel tests in the LM Windtunnel, owned by ’LM Glasfiber’, Denmark. The present report describes the dataanalysis, with special attention given...... to transition detection. It is argued that the transition point can be detected by observing the increase in the mean of the Fourier spectre and that thismethod is very stable froma numerical point of view. Other important issues are also discussed, e.g. the variation of pressure standard deviations (sound...... pressure) and Tollmien-Schlichting frequencies. The tests were made at Reynolds and Mach numbers corresponding to the operating conditions of a typical horizontal axis wind turbine (HAWT). The Risø B1-18, Risø C2-18 and NACA0015 profiles were tested and the measured transition points are reported....
Large-eddy simulation of flows past a flapping airfoil using immersed boundary method
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The numerical simulation of flows past flapping foils at moderate Reynolds numbers presents two challenges to computational fluid dynamics: turbulent flows and moving boundaries. The direct forcing immersed boundary(IB) method has been developed to simulate laminar flows. However,its performance in simulating turbulent flows and transitional flows with moving boundaries has not been fully evaluated. In the present work,we use the IB method to simulate fully developed turbulent channel flows and transitional flows past a stationary/plunging SD7003 airfoil. To suppress the non-physical force oscillations in the plunging case,we use the smoothed discrete delta function for interpolation in the IB method. The results of the present work demonstrate that the IB method can be used to simulate turbulent flows and transitional flows with moving boundaries.
Passive Separation Control on a Symmetric Airfoil via Elastic-Layer
Directory of Open Access Journals (Sweden)
Chedhli Hafien
2016-01-01
Full Text Available The passive control of flow-separation at averaged Reynolds Number (Re=3.42×105 using self-adapting flexible-flaps in the upper side of the wing, is presented. The two-way Fluid-Structure Interaction (FSI in an elastic-layer up on the airfoil (NACA 0012 is investigated numerically by Coupling between the Transient Structural and Fluid Flow (Fluent in ANSYS-Workbench14.0. During the fluid-structure interaction, the transient deformation of the elastic-layer provokes the modification of the flow topology at large-scale. There are reductions of the size and intensity of the vortex-shedding and an increase in the Strouhal number. This explains the increase of the lift-to-drag ratio. The study of the flap flexibility shows that the deformation of the elastic-layer and the variation of aeronautical efforts are inversely proportional to the Young Modulus.
Uncertainty Quantification and Bifurcation Analysis of an Airfoil with Multiple Nonlinearities
Directory of Open Access Journals (Sweden)
Haitao Liao
2013-01-01
Full Text Available In order to calculate the limit cycle oscillations and bifurcations of nonlinear aeroelastic system, the problem of finding periodic solutions with maximum vibration amplitude is transformed into a nonlinear optimization problem. An algebraic system of equations obtained by the harmonic balance method and the stability condition derived from the Floquet theory are used to construct the general nonlinear equality and inequality constraints. The resulting constrained maximization problem is then solved by using the MultiStart algorithm. Finally, the proposed approach is validated, and the effects of structural parameter uncertainty on the limit cycle oscillations and bifurcations of an airfoil with multiple nonlinearities are studied. Numerical examples show that the coexistence of multiple nonlinearities may lead to low amplitude limit cycle oscillation.
Lahoti, G. D.; Akgerman, N.; Altan, T.
1978-01-01
Mild steel (AISI 1018) was selected as model cold rolling material and Ti-6A1-4V and Inconel 718 were selected as typical hot rolling and cold rolling alloys, respectively. The flow stress and workability of these alloys were characterized and friction factor at the roll/workpiece interface was determined at their respective working conditions by conducting ring tests. Computer-aided mathematical models for predicting metal flow and stresses, and for simulating the shape rolling process were developed. These models utilized the upper bound and the slab methods of analysis, and were capable of predicting the lateral spread, roll separating force, roll torque, and local stresses, strains and strain rates. This computer-aided design system was also capable of simulating the actual rolling process, and thereby designing the roll pass schedule in rolling of an airfoil or a similar shape.
An Improved Method for Airfoil Parameterization by B-Spline%一种改进的B样条翼型参数化方法
Institute of Scientific and Technical Information of China (English)
张骥; 朱春钢; 冯仁忠; 刘明明; 张恒洋
2016-01-01
翼型设计是空气动力学研究的一项重要内容，翼型的参数化结果将影响翼型的优化设计。为了减少翼型优化中的设计变量，保证优化结果的光滑性与C2连续，在优化过程中控制翼型几何特性的变化范围，提出了一种改进的B样条参数化方法。用一条三次非均匀B样条曲线表示翼型，翼型数据的参数化过程中主要运用了B样条曲线拟合算法，并且在一般的B样条曲线拟合算法的基础上加入了对曲线的法向约束，通过迭代得到最终的参数化结果。实验结果表明，该方法可以很好的拟合典型的翼型数据，得到的翼型参数化结果不仅光滑，满足 C2条件，而且所得翼型函数的参数个数比传统的参数化方法有了进一步的减少，更有利于之后翼型的优化设计。%Airfoil design is a crucial issue of aerodynamic research, the parameterization of airfoil will affect the airfoil optimization design. In order to reduce the number of variables in the airfoil optimization, eliminate the unfairness phenomenon, preserve theC2 continuity condition, and control the geometric characteristics of the airfoil in the optimization process, in this paper, we present an improved method for airfoil parameterization by B-spline. The method represents airfoil by a cubic non-uniform B-spline curve. Fitting of airfoil data by B-spline curve is mainly by least square method and the normal constraints. And the final result is obtained by iteration. Experiments show that the proposed method can be well fitted to the typical airfoil data, the resulting curve is fair andC2 continuity, and has few parameters of airfoil function compared with the classical airfoil parametric methods.
Test results of NREL 10M, special-purpose family of thin airfoils
Energy Technology Data Exchange (ETDEWEB)
Starcher, K.L.; Nelson, V.C.; Wei, Jun [West Texas A& M Univ., Canyon, TX (United States)
1996-12-31
Two 25 kW Carter Wind Systems were tested to determine performance differences between production blades and rotors with NREL Special Purpose Thin Airfoils. Blade design, mold preparation, blade production, and testing were conducted. Design tools were created for computer modeling of the blade. The blades had the same twist, taper, and length as production blades. Flap natural frequency was adjusted to be as similar as possible between rotors, as was blade mass, blade center of gravity and rotor moment of inertia. Data collected were; wind speed at hub height, blade root flap & edgewise loads, main shaft torque, azimuth position, teeter angle, yaw angle and electrical power. These data were collected at 128 Hertz for data sets of eight seconds. This data set was then written to hard disk and the cycle repeated resulting in a file containing five and one half minutes of data. A data run consisted of; preflight checkout/warm-up of equipment, preflight calibration/verification of all sensors on both turbines, collection of five files of data (about thirty minutes of data), post flight calibration/verification of sensors. During this high speed data collection period there were a total of twenty-four data runs collected. Data were collected for wind speeds in the range about 7, 10 and 13 m/s. A data matrix was filled for clean, medium and heavy surface roughness. Baseline power curves, parametric pitch variation runs to establish testing pitch settings, high speed data collection runs with and without applied surface roughness were completed and analyzed. Data were compared using simple arithmetic mean, Fast Fourier Transform (FFT) analysis, rainflow counting algorithms and wavelet analysis. The NREL airfoils showed much less sensitivity to surface roughness. There were minimal root bending load differences. Annual energy production during long term operation is being determined. 9 refs., 7 figs.
Energy Technology Data Exchange (ETDEWEB)
Seki, K.; Shimizu, Y.; Yasui, T. [Tokai University, Tokyo (Japan); Nakayama, H. [Oriental Kiden Company, Osaka (Japan)
1996-10-27
Features of a straight wing type vertical axis wind turbine (VAW) and its airfoil sections were studied. The wind turbine in which various aerodynamic work components are mounted on the rotation axis normal to the ground surface is named VAW. Like the airfoil section of aircraft, in lift type VAW, wind turbines were driven by lift 70-90 times as large as drag in some cases. Features of the VAW airfoil section which is a straight wing in plan and a fixed pitch wing (with a fixed angle to a blade support arm) in cross section, and those of wind turbines were studied. Some factors affecting the features, work principle and performance of VAW were clarified. On airfoil sections, products of each weight function and each corresponding aerodynamic factor (lift, drag and pitching moment factors) were plotted on an attack angle ({alpha}) axis. From the conditions for increasing the total sum of areas drawn by the products on the {alpha} axis, various characteristics required for airfoil sections were clarified. Such characteristics nearly agreed between an airfoil section for favorable starting characteristics and that for high efficiency. 3 refs., 7 figs.
Rotational Augmentation on a 2.3 MW Rotor Blade with Thick Flatback Airfoil Cross-Sections: Preprint
Energy Technology Data Exchange (ETDEWEB)
Schreck, S.; Fingersh, L.; Siegel, K.; Singh, M.; Medina, P.
2013-01-01
Rotational augmentation was analyzed for a 2.3 MW wind turbine, which was equipped with thick flatback airfoils at inboard radial locations and extensively instrumented for acquisition of time varying surface pressures. Mean aerodynamic force and surface pressure data were extracted from an extensive field test database, subject to stringent criteria for wind inflow and turbine operating conditions. Analyses of these data showed pronounced amplification of aerodynamic forces and significant enhancements to surface pressures in response to rotational influences, relative to two-dimensional, stationary conditions. Rotational augmentation occurrence and intensity in the current effort was found to be consistent with that observed in previous research. Notably, elevated airfoil thickness and flatback design did not impede rotational augmentation.
Yon, Steven; Katz, Joseph; Plotkin, Allen
1992-01-01
The practical limit of airfoil thickness ratio for which acceptable engineering results are obtainable with the Dirichlet boundary-condition-based numerical methods is investigated. This is done by studying the effect of thickness on the calculated pressure distribution near the trailing edge and by comparing the aerodynamic coefficients with available exact solutions. The first objective of this study, owing to the wide use of such computational methods, is to demonstrate the numerical symptoms that occur when the body or wing thickness approaches zero and to increase the awareness of potential users of these methods. Additionally, an effort is made to obtain the practical limits of the trailing-edge thickness where such problems will appear in the flow solution, and to propose some possible cures for very thin airfoils or those with cusped trailing edges.
Energy Technology Data Exchange (ETDEWEB)
Delnero, J S; Maranon Di Leo, J; Colman, J; Camocardi, M; Garcia Sainz, M; Munoz, F, E-mail: delnero@ing.unlp.edu.ar [LaCLyFA, Departamento Aeronautica, Facultad de Ingenieria, Universidad Nacional de La Plata (Argentina)
2011-12-22
The present research analyzes the asymmetry in the rolling up shear layers behind the blunt trailing edge of an airfoil 4412 with a miniflap acting as active flow control device and its wake organization. Experimental investigations relating the asymmetry of the vortex flow in the near wake region, able to distort the flow increasing the downwash of an airfoil, have been performed. All of these in a free upstream turbulent flow (1.8% intensity). We examine the near wake region characteristics of a wing model with a 4412 airfoil without and with a rotating miniflap located on the lower surface, near the trailing edge. The flow in the near wake, for 3 x-positions (along chord line) and 20 vertical points in each x-position, was explored, for three different rotating frequencies, in order to identify signs of asymmetry of the initial counter rotating vortex structures. Experimental evidence is presented showing that for typical lifting conditions the shear layer rollup process within the near wake is different for the upper and lower vortices: the shear layer separating from the pressure side of the airfoil begins its rollup immediately behind the trailing edge, creating a stronger vortex while the shear layer from the suction side begins its rollup more downstream creating a weaker vortex. The experimental data were processed by classical statistics methods. Aspects of a mechanism connecting the different evolution and pattern of these initial vortex structures with lift changes and wake alleviating processes, due to these miniflaps, will be studied in future works.
2011-07-28
have been the angle of attack, the turbulence model, the airfoil, the Reynolds number, and the grid spacing. The Taguchi method also allows the...important to remember that Taguchi Methods do not provide "hard engineering" numbers - only the statistical significance of a particular experimental factor...34good", "bad", or "acceptable". To use a Taguchi Method to aid in evaluating a CFD code would require sound engineering judgement since so very many
Wind tunnel tests of the NACA 63-415 and a modified NACA 63-415 airfoil
DEFF Research Database (Denmark)
Bak, C.; Fuglsang, P.; Johansen, J.
2000-01-01
a background turbulence intensity of 1%, an inlet flow velocity of 40 m/s which resulted in a Reynolds number of 1.6×106. The airfoil sections had a chord of 0.600 m and 0.606 m for NACA 63-415 and NACA 63-415-Risø-D,respectively. The span was 1.9 m and end plates were used to minimise 3D flow effects...
Directory of Open Access Journals (Sweden)
Alireza Naderi
2016-01-01
Full Text Available Various applications of ornithopter have led to research interest in oscillation airfoils which affect on low Reynolds number flight, like; pitching oscillation, heaving oscillation and flapping of a wing. The purpose of this study is investigation of aerodynamic characteristics of NACA0012 airfoil with a simple harmonic pitching oscillation at zero and 10 degrees of mean angle of attack. Therefore the effects of unstable parameters, including oscillation amplitude up to 10 degrees, reduced frequency up to 1.0, center of oscillation up to 6/8 chord length, and Reynolds number up to 5000 have been studied numerically. A pressure based algorithm using a finite volume element method has been used to solve Navier-Stokes equations. According to results, variation of each studied parameters at mean angle of attack of 0 degree do not cause significant changes in flow phenomena on airfoil but at mean angle of attack of 10 degrees, changing in reduced frequency and specially Reynolds number cause variations in flow phenomena. These variations are because of “wake capturing” and/or “added mass” phenomena.
KIM, DONG-HYUN; LEE, IN
2000-07-01
A two-degree-of-freedom airfoil with a freeplay non-linearity in the pitch and plunge directions has been analyzed in the transonic and low-supersonic flow region, where aerodynamic non-linearities also exist. The primary purpose of this study is to show aeroelastic characteristics due to freeplay structural non-linearity in the transonic and low-supersonic regions. The unsteady aerodynamic forces on the airfoil were evaluated using two-dimensional unsteady Euler code, and the resulting aeroelastic equations are numerically integrated to obtain the aeroelastic time responses of the airfoil motions and to investigate the dynamic instability. The present model has been considered as a simple aeroelastic model, which is equivalent to the folding fin of an advanced generic missile. From the results of the present study, characteristics of important vibration responses and aeroelastic instabilities can be observed in the transonic and supersonic regions, especially considering the effect of structural non-linearity in the pitch and plunge directions. The regions of limit-cycle oscillation are shown at much lower velocities, especially in the supersonic flow region, than the divergent flutter velocities of the linear structure model. It is also shown that even small freeplay angles can lead to severe dynamic instabilities and dangerous fatigue conditions for the flight vehicle wings and control fins.
Drost, Kevin; Apte, Sourabh
2010-11-01
Direct numerical simulations are performed to investigate the effect of a movable leading edge on the unsteady flow at high angles of attack over a flat, thin airfoil at Reynolds number of 14700 based on the chord length. The leading edge of the airfoil is hinged at one-third chord length allowing dynamic variations in the effective angle of attack through specified oscillations (or flapping). A fictitious-domain based finite volume approach [(Apte et al. (JCP 2009)] is used to compute the flow over an airfoil with a flapping leading edge on a fixed background mesh. Cases were run at 20 degrees angle of attack to study the drag and lift characteristics with sinusoidal flapping of the leading edge about the hinge over a range of reduced frequencies (k=πf c/U∞ = 0.57- 5.7). It is shown that high-frequency low amplitude actuation of the leading edge significantly alters the leading edge boundary-layer and vortex shedding and increases the mean lift- to-drag ratio. The concept of an actuated leading-edge flap has potential for development of control techniques to stabilize and maneuver low-Reynolds number micro-air vehicles in response to unsteady perturbations.
Asada, Kengo; Kawai, Soshi
2016-11-01
Wall-resolved large-eddy simulation (LES) of an airfoil flow involving a turbulent transition and separations near stall condition at a high Reynolds number 2.1 x 106 (based on the freestream velocity and the airfoil chord length) is conducted by using K computer. This study aims to provide the wall-resolved LES database including detailed turbulence statistics for near-wall modeling in LES and also to investigate the flow physics of the high Reynolds number airfoil flow near stall condition. The LES well predicts the laminar separation bubble, turbulent reattachment and turbulent separation. The LES also clarified unsteady flow features associated with shear-layer instabilities: high frequency unsteadiness at St = 130 at the laminar separation bubble near the leading edge and low frequency unsteadiness at St = 1.5 at the separated turbulent shear-layer near the trailing edge. Regarding the near-wall modeling in LES, the database indicates that the pressure term in the mean streamwise-momentum equation is not negligible at the laminar and turbulent separated regions. This fact suggests that widely used equilibrium wall model is not sufficient and the inclusion of the pressure term is necessary for wall modeling in LES of such flow. This research used computational resources of the K computer provided by the RIKEN Advanced Institute for Computational Science through the HPCI System Research project (Project ID: hp140028). This work was supported by KAKENHI (Grant Number: 16K18309).
Generalized Kutta–Joukowski theorem for multi-vortex and multi-airfoil flow (a lumped vortex model
Directory of Open Access Journals (Sweden)
Bai Chenyuan
2014-02-01
Full Text Available For purpose of easy identification of the role of free vortices on the lift and drag and for purpose of fast or engineering evaluation of forces for each individual body, we will extend in this paper the Kutta–Joukowski (KJ theorem to the case of inviscid flow with multiple free vortices and multiple airfoils. The major simplification used in this paper is that each airfoil is represented by a lumped vortex, which may hold true when the distances between vortices and bodies are large enough. It is found that the Kutta–Joukowski theorem still holds provided that the local freestream velocity and the circulation of the bound vortex are modified by the induced velocity due to the outside vortices and airfoils. We will demonstrate how to use the present result to identify the role of vortices on the forces according to their position, strength and rotation direction. Moreover, we will apply the present results to a two-cylinder example of Crowdy and the Wagner example to demonstrate how to perform fast force approximation for multi-body and multi-vortex problems. The lumped vortex assumption has the advantage of giving such kinds of approximate results which are very easy to use. The lack of accuracy for such a fast evaluation will be compensated by a rigorous extension, with the lumped vortex assumption removed and with vortex production included, in a forthcoming paper.
Generalized Kutta-Joukowski theorem for multi-vortex and multi-airfoil flow (a lumped vortex model)
Institute of Scientific and Technical Information of China (English)
Bai Chenyuan; Wu Ziniu
2014-01-01
For purpose of easy identification of the role of free vortices on the lift and drag and for purpose of fast or engineering evaluation of forces for each individual body, we will extend in this paper the Kutta-Joukowski (KJ) theorem to the case of inviscid flow with multiple free vortices and multiple airfoils. The major simplification used in this paper is that each airfoil is represented by a lumped vortex, which may hold true when the distances between vortices and bodies are large enough. It is found that the Kutta-Joukowski theorem still holds provided that the local freestream velocity and the circulation of the bound vortex are modified by the induced velocity due to the out-side vortices and airfoils. We will demonstrate how to use the present result to identify the role of vortices on the forces according to their position, strength and rotation direction. Moreover, we will apply the present results to a two-cylinder example of Crowdy and the Wagner example to demon-strate how to perform fast force approximation for multi-body and multi-vortex problems. The lumped vortex assumption has the advantage of giving such kinds of approximate results which are very easy to use. The lack of accuracy for such a fast evaluation will be compensated by a rig-orous extension, with the lumped vortex assumption removed and with vortex production included, in a forthcoming paper.
Active Flow Separation Control of a Laminar Airfoil at Low Reynolds Number
Packard, Nathan Owen
Detailed investigation of the NACA 643-618 is obtained at a Reynolds number of 6.4x104 and angle of attack sweep of -5° locked investigation, by way of particle image velocimetry, at ten degrees angle of attack illuminates physical mechanisms responsible for separation control of pulsed actuation at a low frequency and duty cycle. Temporal resolution of large structure formation and wake shedding is obtained, revealing a key mechanism for separation control. The Kelvin-Helmholtz instability is identified as responsible for the formation of smaller structures in the separation region which produce favorable momentum transfer, assisting in further thinning the separation region and then fully attaching the boundary layer. Closed-loop separation control of an oscillating NACA 643-618 airfoil at Re = 6.4x104 is investigated in an effort to autonomously minimize control effort while maximizing aerodynamic performance. High response sensing of unsteady flow with on-surface hot-film sensors placed at zero, twenty, and forty percent chord monitors the airfoil performance and determines the necessity of active flow control. Open-loop characterization identified the use of the forty percent sensor as the actuation trigger. Further, the sensor at twenty percent chord is used to distinguish between pre- and post- leading edge stall; this demarcation enables the utilization of optimal blowing parameters for each circumstance. The range of effectiveness of the employed control algorithm is explored, charting the practicality of the closed-loop control algorithm. To further understand the physical mechanisms inherent in the control process, the transients of the aerodynamic response to flow control are investigated. The on-surface hot-film sensor placed at the leading edge is monitored to understand the time delays and response times associated with the initialization of pulsed normal blowing. The effects of angle of attack and pitch rate on these models are investigated. Black
The SNL100-03 Blade: Design Studies with Flatback Airfoils for the Sandia 100-meter Blade.
Energy Technology Data Exchange (ETDEWEB)
Griffith, Daniel; Richards, Phillip William
2014-09-01
A series of design studies were performed to inv estigate the effects of flatback airfoils on blade performance and weight for large blades using the Sandi a 100-meter blade designs as a starting point. As part of the study, the effects of varying the blade slenderness on blade structural performance was investigated. The advantages and disadvantages of blad e slenderness with respect to tip deflection, flap- wise & edge-wise fatigue resistance, panel buckling capacity, flutter speed, manufacturing labor content, blade total weight, and aerodynamic design load magn itude are quantified. Following these design studies, a final blade design (SNL100-03) was prod uced, which was based on a highly slender design using flatback airfoils. The SNL100-03 design with flatback airfoils has weight of 49 tons, which is about 16% decrease from its SNL100-02 predecessor that used conventional sharp trailing edge airfoils. Although not systematically optimized, the SNL100 -03 design study provides an assessment of and insight into the benefits of flatback airfoils for la rge blades as well as insights into the limits or negative consequences of high blade slenderness resulting from a highly slender SNL100-03 planform as was chosen in the final design definition. This docum ent also provides a description of the final SNL100-03 design definition and is intended to be a companion document to the distribution of the NuMAD blade model files for SNL100-03, which are made publicly available. A summary of the major findings of the Sandia 100-meter blade development program, from the initial SNL100-00 baseline blade through the fourth SNL100-03 blade study, is provided. This summary includes the major findings and outcomes of blade d esign studies, pathways to mitigate the identified large blade design drivers, and tool development that were produced over the course of this five-year research program. A summary of large blade tec hnology needs and research opportunities is also presented.
Institute of Scientific and Technical Information of China (English)
王骥月; 丛茜; 梁宁; 毛士佳; 关欢欢; 刘林鹏; 陈创发
2015-01-01
针对现有小型风力发电机效率远低于理论值问题，对100 W水平轴风力机叶片进行仿生改进。采用Spalart-Allmaras模型分析不同攻角下海鸥翼型与标准翼型的气动特性；以标准100 W水平轴风力机叶片为原型，结合海鸥翼型、标准弦长和计算得出的安装角，设计得到仿海鸥翼型叶片；利用SST k-ω模型进行仿海鸥翼型叶片与标准叶片气动特性数值模拟；搭建室内风力机效率测试平台，进行仿海鸥翼型风力机与标准风力机效率对比试验。结果表明：海鸥翼型气动性能优良，最大升力系数是标准翼型的2.19倍，最大升阻比是标准翼型的1.34倍；仿海鸥翼型叶片与标准叶片相比，输出功率提高25.77%。该研究可为小型风力发电机的改进设计提供参考。%Power of the existing small-sized wind turbine blades is much less than the theoretical value. This study improved 100 W wind turbine blades to increase the power of wind turbine. First of all, Spalart-Allmaras model which was suitable for airfoil stalling characteristics research was used to analyze the aerodynamic characteristics of seagull airfoil and standard airfoil with different angles of attack (AOA). Seagull airfoil and standard airfoil were got from seagull wing and standard blade by portable three-dimension scanner, Imageware software and Geomagic Studio software through standard blade scan, seagull wing scan, point cloud processing, reverse engineering modeling and cross section capture. Lift coefficients and lift-drag ratios of seagull airfoil and standard airfoil were calculated by Fluent software. Secondly, bionic blade was designed based on standard 100 W blades and Glauert theory. Thirdly, numerical simulations of bionic blade and standard blade were performed by using SST(shear stress transport) k-ω model which was suitable for blade performance research to analyze the aerodynamic characteristics of bionic blade and standard
Li, Fei; Choudhari, Meelan M.; Carpenter, Mark H.; Malik, Mujeeb R.; Eppink, Jenna; Chang, Chau-Lyan; Streett, Craig L.
2010-01-01
A high fidelity transition prediction methodology has been applied to a swept airfoil design at a Mach number of 0.75 and chord Reynolds number of approximately 17 million, with the dual goal of an assessment of the design for the implementation and testing of roughness based crossflow transition control and continued maturation of such methodology in the context of realistic aerodynamic configurations. Roughness based transition control involves controlled seeding of suitable, subdominant crossflow modes in order to weaken the growth of naturally occurring, linearly more unstable instability modes via a nonlinear modification of the mean boundary layer profiles. Therefore, a synthesis of receptivity, linear and nonlinear growth of crossflow disturbances, and high-frequency secondary instabilities becomes desirable to model this form of control. Because experimental data is currently unavailable for passive crossflow transition control for such high Reynolds number configurations, a holistic computational approach is used to assess the feasibility of roughness based control methodology. Potential challenges inherent to this control application as well as associated difficulties in modeling this form of control in a computational setting are highlighted. At high Reynolds numbers, a broad spectrum of stationary crossflow disturbances amplify and, while it may be possible to control a specific target mode using Discrete Roughness Elements (DREs), nonlinear interaction between the control and target modes may yield strong amplification of the difference mode that could have an adverse impact on the transition delay using spanwise periodic roughness elements.
Panther, Chad C.
Vertical Axis Wind Turbines (VAWTs) have experienced a renewed interest in development for urban, remote, and offshore applications. Past research has shown that VAWTs cannot compete with Horizontals Axis Wind Turbines (HAWTs) in terms of energy capture efficiency. VAWT performance is plagued by dynamic stall (DS) effects at low tip-speed ratios (lambda), where each blade pitches beyond static stall multiple times per revolution. Furthermore, for lambdasize and strength of wake vorticity during DS, resulting in lower profile drag relative to baseline and steady actuation cases. A database of pitching airfoil test data, including overshoot and hysteresis of aerodynamic coefficients (Cl, Cd), was compiled for improved analytical model inputs to update CCVAWT performance predictions, where the aforementioned L/D improvements will be directly reflected. Relative to a conventional VAWT with annual power output of 1 MW, previous work at WVU proved that the addition of steady jet CC could improve total output to 1.25 MW. However, the pumping cost to generate the continuous jet reduced yearly CCVAWT net gains to 1.15 MW. The current study has shown that pulsed CC jets can recover 4% of the pumping demands due to reduced mass flow requirements, increasing annual CCVAWT net power production to 1.19 MW, a 19% improvement relative to the conventional turbine.
Pressure measurements on a rectangular wing with a NACA0012 airfoil during conventional flutter
Rivera, Jose A., Jr.; Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Silva, Walter A.
1992-01-01
The Structural Dynamics Division at NASA LaRC has started a wind tunnel activity referred to as the Benchmark Models Program. The primary objective of the program is to acquire measured dynamic instability and corresponding pressure data that will be useful for developing and evaluating aeroelastic type CFD codes currently in use or under development. The program is a multi-year activity that will involve testing of several different models to investigate various aeroelastic phenomena. The first model consisted of a rigid semispan wing having a rectangular planform and a NACA 0012 airfoil shape which was mounted on a flexible two degree-of-freedom mount system. Two wind-tunnel tests were conducted with the first model. Several dynamic instability boundaries were investigated such as a conventional flutter boundary, a transonic plunge instability region near Mach = 0.90, and stall flutter. In addition, wing surface unsteady pressure data were acquired along two model chords located at the 60 to 95-percent span stations during these instabilities. At this time, only the pressure data for the conventional flutter boundary is presented. The conventional flutter boundary and the wing surface unsteady pressure measurements obtained at the conventional flutter boundary test conditions in pressure coefficient form are presented. Wing surface steady pressure measurements obtained with the model mount system rigidized are also presented. These steady pressure data were acquired at essentially the same dynamic pressure at which conventional flutter had been encountered with the mount system flexible.
Experimental investigation of the transonic flow around the leading edge of an eroded fan airfoil
Klinner, Joachim; Hergt, Alexander; Willert, Christian
2014-09-01
The influence of leading edge modification on the time-averaged and instantaneous flow around a fan airfoil is investigated by particle image velocimetry (PIV), schlieren imaging and high-speed shock shadowgraphs in a transonic cascade windtunnel. In addition to a global characterization of the time-averaged flow using PIV, the instantaneous passage shock position was extracted from single-shot PIV measurements by matching the tracer velocity across the normal shock with an exponential fit. The instantaneous shock positions are assigned to a probability density distribution in order to obtain the average position and the range of fluctuations of the eroded and reference leading edge. The profiles are used to estimate the response time of the particles to the normal shock which was found to be in the sub-microsecond range. Averaged PIV measurements and the probability density of shock position from both geometries are obtained at near stall and choked conditions. In order to extract the frequency range of the shock motion, the shadow of the shock wave was tracked using high-speed shadowgraphy. The paper also provides details on the experimental implementation such as a specifically designed light-sheet probe.
Nonlinear switched models for control of unsteady forces on a rapidly pitching airfoil
Dawson, Scott; Brunton, Steven; Rowley, Clarence
2013-11-01
The unsteady aerodynamic forces incident on a pitching flat plate airfoil at a Reynolds number of 100 are investigated through direct numerical simulation. Linear state-space models, identified from impulse response data via the eigensystem realization algorithm, are used to accurately track rapid changes in lift coefficient through either feedback or feedforward control, even in the presence of gust disturbances. We develop a technique to project between states of linear models obtained at different angles of attack using primal and pseudo-adjoint balanced POD modes. This allows for the formation of a nonlinear switched model that is accurate over a wide range of angles of attack, in both pre- and post-stall regimes. We additionally investigate phenomena that are not captured by linear models, such as an increase in mean lift that occurs when vortex shedding frequencies are excited. The effect of changing the pitch axis is also investigated, where it is found that pitching aft of the mid-chord results in right half plane zeros that increase the difficulty of the control problem. This work was supported by AFOSR grant FA9550-12-1-0075.
Direct numerical simulation of broadband trailing edge noise from a NACA 0012 airfoil
Mehrabadi, Mohammad; Bodony, Daniel
2016-11-01
Commercial jet-powered aircraft produce unwanted noise at takeoff and landing when they are close to near-airport communities. Modern high-bypass-ratio turbofan engines have reduced jet exhaust noise sufficiently such that noise from the main fan is now significant. In preparation for a large-eddy simulation of the NASA/GE Source Diagnostic Test Fan, we study the broadband noise due to the turbulent flow on a NACA 0012 airfoil at zero degree angle-of-attack, a chord-based Reynolds number of 408,000 and a Mach number of 0.115 using direct numerical simulation (DNS) and wall-modeled large-eddy simulation (WMLES). The flow conditions correspond to existing experimental data. We investigate the roughness-induced transition-to-turbulence and sound generation from a DNS perspective as well as examine how these two features are captured by a wall model. Comparisons between the DNS- and WMLES-predicted noise are made and provide guidance on the use of WMLES for broadband fan noise prediction. AeroAcoustics Research Consortium.
High-Lift Optimization Design Using Neural Networks on a Multi-Element Airfoil
Greenman, Roxana M.; Roth, Karlin R.; Smith, Charles A. (Technical Monitor)
1998-01-01
The high-lift performance of a multi-element airfoil was optimized by using neural-net predictions that were trained using a computational data set. The numerical data was generated using a two-dimensional, incompressible, Navier-Stokes algorithm with the Spalart-Allmaras turbulence model. Because it is difficult to predict maximum lift for high-lift systems, an empirically-based maximum lift criteria was used in this study to determine both the maximum lift and the angle at which it occurs. Multiple input, single output networks were trained using the NASA Ames variation of the Levenberg-Marquardt algorithm for each of the aerodynamic coefficients (lift, drag, and moment). The artificial neural networks were integrated with a gradient-based optimizer. Using independent numerical simulations and experimental data for this high-lift configuration, it was shown that this design process successfully optimized flap deflection, gap, overlap, and angle of attack to maximize lift. Once the neural networks were trained and integrated with the optimizer, minimal additional computer resources were required to perform optimization runs with different initial conditions and parameters. Applying the neural networks within the high-lift rigging optimization process reduced the amount of computational time and resources by 83% compared with traditional gradient-based optimization procedures for multiple optimization runs.
Characteristic analysis of lock-in for an elastically suspended airfoil in transonic buffet flow
Institute of Scientific and Technical Information of China (English)
Quan Jingge; Zhang Weiwei; Gao Chuanqiang; Ye Zhengyin
2016-01-01
Numerical simulations are performed to study the aeroelastic responses of an elastically suspended airfoil in transonic buffet flow, by coupling the unsteady Reynolds-averaged Navier-Stokes (RANS) equations and structural motion equation. The current work focuses on the char-acteristic analysis of the lock-in phenomenon. Great attentions are paid to studying the frequency range of lock-in and the effects of the three parameters, namely the structural natural frequency, mass ratio and structural damping, on lock-in characteristic of the elastic system in detail. It is found that when the structural natural frequency is close to the buffet frequency, the coupling fre-quency of the elastic system is no longer equal to the buffet frequency, but keeps the same value as the structural natural frequency. The frequency lock-in occurs and stays present until the structural nature frequency is near the double buffet frequency. It means that the lock-in presents within a broad range, of which the lower threshold is near the buffet frequency, while the upper threshold is near the double buffet frequency. Moreover, the frequency range of lock-in is affected by mass ratio and structural damping. The lower the mass ratio and structural damping are, the wider the range of lock-in will be. The upper threshold of lock-in grows with the mass ratio and structural damping decreasing, but the lower threshold always keeps the same.
Vorticity transport and the leading-edge vortex of a plunging airfoil
Eslam Panah, Azar; Akkala, James M.; Buchholz, James H. J.
2015-08-01
The three-dimensional flow field was experimentally characterized for a nominally two-dimensional flat-plate airfoil plunging at large amplitude and reduced frequencies, using three-dimensional reconstructions of planar PIV data at a chord-based Reynolds number of 10,000. Time-resolved, instantaneous PIV measurements reveal that secondary vorticity, of opposite sign to the primary vortex, is intermittently entrained into the leading-edge vortex (LEV) throughout the downstroke, with the rate of entrainment increasing toward the end of the stroke when the leading-edge shear layer weakens. A planar vorticity transport analysis around the LEV indicated that, during the downstroke, the surface vorticity flux due to the pressure gradient is consistently about half that due to the leading-edge shear layer for all parameter values investigated, demonstrating that production and entrainment of secondary vorticity is an important mechanism regulating LEV strength. A small but non-negligible vorticity source was also attributed to spanwise flow toward the end of the downstroke. Aggregate vortex tilting is notably more significant for higher plunge frequencies, suggesting that the vortex core is more three-dimensional.
Machine Learning-Assisted Predictions of Turbulent Separated Flows over Airfoils
Singh, Anand Pratap; Medida, Shivaji; Duraisamy, Karthik
2016-11-01
RANS based models are typically found to be lacking in predictive accuracy when applied to complex flows, particularly those involving adverse pressure gradients and flow separation. A modeling paradigm is developed to effectively augment turbulence models by utilizing limited data (such as surface pressures and lift) from physical experiments. The key ingredients of our approach involve Inverse modeling to infer the spatial distribution of model discrepancies, and Neural networks to reconstruct discrepancy information from a large number of inverse problems into corrective model forms. Specifically, we apply the methodology to turbulent flows over airfoils involving flow separation. When the machine learning-generated model forms are embedded within a standard solver setting, we show that much improved predictions can be achieved, even in geometries and flow conditions that were not used in model training. The usage of very limited data (such as the measured lift coefficient) as an input to construct comprehensive model corrections provides a renewed perspective towards the use of vast, but sparse, amounts of available experimental datasets towards the end of developing predictive turbulence models. This work was funded by the NASA Aeronautics Research Institute (NARI) under the Leading Edge Aeronautics Research for NASA (LEARN) program with Gary Coleman as the technical monitor.
Aerodynamic forces acting on a passive flow control equipped airfoil in turbulent inflow conditions
Kampers, Gerrit; Peinke, Joachim; Hölling, Michael
2016-11-01
Wind turbines work within turbulent atmospheric flows, with their well known challenging features of intermittent two point statistics. These intermittent statistics have a big impact on wind turbines, concerning fluctuating mechanical loads. Flow control is a promising approach for the reduction of these fluctuations. In this project, an airfoil profile is equipped with mechanically coupled flexible leading and trailing edge flaps, enabling to passively adapt its camber. We expose the profile to different reproducible turbulent inflow conditions, generated with an active grid in a wind tunnel and study the profile's ability to alleviate lift fluctuations. The first experiment is concerned with repeated mexican hat shaped inflow gusts. The corresponding lift reactions of the profile show, that the adaptive camber mechanism is able to alleviate lift fluctuations caused by the inflow gust. In the second experiment, we use different grid excitations to vary the flatness of the inflow angle increments and study the influence of the statistics at different angles of attack. We propose a stochastic Langevin approach to decompose the lift dynamics into a deterministic response and a stochastic part, allowing for a quantitative analysis of the response dynamics. Funded by the German Research Foundation, Ref. No. PE 478/15-1.
2-D Circulation Control Airfoil Benchmark Experiments Intended for CFD Code Validation
Englar, Robert J.; Jones, Gregory S.; Allan, Brian G.; Lin, Johb C.
2009-01-01
A current NASA Research Announcement (NRA) project being conducted by Georgia Tech Research Institute (GTRI) personnel and NASA collaborators includes the development of Circulation Control (CC) blown airfoils to improve subsonic aircraft high-lift and cruise performance. The emphasis of this program is the development of CC active flow control concepts for both high-lift augmentation, drag control, and cruise efficiency. A collaboration in this project includes work by NASA research engineers, whereas CFD validation and flow physics experimental research are part of NASA s systematic approach to developing design and optimization tools for CC applications to fixed-wing aircraft. The design space for CESTOL type aircraft is focusing on geometries that depend on advanced flow control technologies that include Circulation Control aerodynamics. The ability to consistently predict advanced aircraft performance requires improvements in design tools to include these advanced concepts. Validation of these tools will be based on experimental methods applied to complex flows that go beyond conventional aircraft modeling techniques. This paper focuses on recent/ongoing benchmark high-lift experiments and CFD efforts intended to provide 2-D CFD validation data sets related to NASA s Cruise Efficient Short Take Off and Landing (CESTOL) study. Both the experimental data and related CFD predictions are discussed.
风力机分离式尾缘襟翼气动性能%Aerodynamic performance of discrete trailing edge flaps of wind turbine airfoil
Institute of Scientific and Technical Information of China (English)
韩中合; 贾亚雷; 李恒凡; 李秋菊; 刘华新; 朱霄珣
2014-01-01
In order to increase the wind capture ability of the wind turbine, many research studies on the lift enhancement method of the wind turbine airfoil have been conducted by scholars at home and abroad. An airfoil with tailing edge flaps has a much higher lift-to-drag ratio than an airfoil without trailing edge flaps. Among all the lift enhancement methods of trailing edge flaps, the structure of the wind turbine airfoil with discrete trailing edge flaps is simple, the cost of production is low, and it can easily achieve variable angle control. But the aerodynamic performance of the wind turbine airfoil with traditional discrete trailing edge flaps has not been comprehensively studied, and gaps between the flaps and the airfoil main body has an influence on the aerodynamic performance of the airfoil. So it is necessary to optimize the gap structure and study the aerodynamic performance of the discrete trailing edge flaps with different deflection angles. Taking a wind turbine airfoil S809 as the research object, the structure of the discrete trailing edge flaps was designed, the chord length was set as 1 000 mm, and the gap between the flap and the main body of airfoil was optimized to make the width of gap an even 1 mm. Then the trailing edge flaps model was established. The flap rotates around the rotate center to form a different flap model at different deflect angles, the deflect angles of the flap varied from 0-16°, and the step size was 2. Mesh generation software Gambit s used to generate a model mesh, and the grids near the trailing edge were refined. After comparing the three kinds of grid number models, the grid independence was verified, and the number of a 148000 grid model for a calculating model was determined. Thek-ω two equation turbulence model of Commercial software FLUENT was used here to calculate the aerodynamic performance of the airfoil S809 without flaps, and the result was compared with the experimental data. The result showed that when the
Directory of Open Access Journals (Sweden)
Hossein Parishani
2016-01-01
Full Text Available An experimental study of stationary and non-stationary dielectric barrier discharge (DBD plasma actuator is presented to control the flow around a NACA0024 airfoil. First, an induced air velocity of ~5 m/s is generated on a flat plate in still air using an AC-DBD actuator to find the optimal setup of the actuator (voltage, frequency, electrode width and gap size. Using the same actuator in the optimal position/setup on a NACA0024 airfoil at Reynolds number of 0.48×106, we are able to increase the stall angle of the airfoil to 18º, compared to 16º in no-actuator state. Furthermore, during the plasma actuation, the lift is increased by up to 5%. We show that non-stationary actuation, while yielding a performance similar to stationary actuation, leads to a considerable reduction of ~51% in plasma power consumption.
Wind tunnel test of the FFA-W3-241, FFA-W3-301 and NACA 63-430 airfoils
Energy Technology Data Exchange (ETDEWEB)
Fuglsang, P.; Antoniou, I.; Dahl, K.S.; Madsen, H.A.
1998-12-01
This report deals with 2D measurements of the FFA-W3-241, FFA-W3-301 and NACA 63-430 airfoils. The aerodynamic properties were measured at Re = 1.6x10{sup 6}. The VELUX open jet wind tunnel with a background turbulence intensity of 1% was used. The airfoil sections had a chord of 0.60 m and a span of 1.9 m and end plates were used to minimize 3D flow effects. The measurements comprised both static and dynamic inflow where dynamic inflow was obtained by pitching the airfoil in a harmonic motion. We tested the influence from vortex generators and leading edge roughness both individually and in combination. The aerodynamic characteristics were measured and the agreement between calculations and measurements was fair for FFA-W3-241 but not good for FFA-W3-301 and NACA 63-430. In general calculations overestimated maximum C{sub L} and sometimes underestimated minimum C{sub D}. Maximum C{sub L} for smooth flow was in good agreement with calculated maximum C{sub L} for leading edge transition flow and this could serve as a worst case calculation. We determined the influence from vortex generators and they should always be applied on thick airfoils to increase maximum C{sub L}. We determined the influence from leading edge roughness, which reduced maximum C{sub L} and increased minimum C{sub D}. Compared with the NACA 63-4xx airfoils, the FFA-W3 airfoils were found better suited for the inboard part of a wind turbine blade both with and without vortex generators. (au) EFP-94; EFP-95; EFP-97. 8 tabs., 195 ills., 13 refs.
大型水陆两栖飞机翼型优化设计%Optimum airfoil design on an heavy amphibious aircraft
Institute of Scientific and Technical Information of China (English)
秦何军; 曾友兵
2012-01-01
对大型水陆两栖飞机翼型进行了数值优化设计研究,通过以翼型设计升力系数下的阻力系数最小化为设计目标和以翼型低头力矩、最大升力系数、失速后升力系数下降率作为约束条件的大型水陆两栖飞机翼型优化设计,在满足翼型相对厚度、最大厚度位置、最大弯度、最大弯度位置符合相应设计范围的情况下,得到了综合性能较基本翼型提高的新翼型.该设计方法适用于大型水陆两栖飞机的翼型设计,是一种符合工程应用实际的数值优化设计方法.%The research discussed focused upon the optimal airfoil shape design of a heavy amphibious aircraft. A new airfoil with better general performance was attained through the optimal airfoil design, of which the objective was to reduce the drag coefficient on a given airfoil with constant lift coefficient. Restricted the pitch moment, the maximum lift, and the lift drop rate of stalling angle. Made the relative thick, the maximum camber, and the relative position of the maximum thick according with the design request. This design method is fit for the airfoil design on a heavy amphibious aircraft, and is a better optimal airfoil shape design which is suit for the engineering application.
BiGlobal linear stability analysis on low-Re flow past an airfoil at high angle of attack
Zhang, Wei
2016-04-04
We perform BiGlobal linear stability analysis on flow past a NACA0012 airfoil at 16° angle of attack and Reynolds number ranging from 400 to 1000. The steady-state two-dimensional base flows are computed using a well-tested finite difference code in combination with the selective frequency damping method. The base flow is characterized by two asymmetric recirculation bubbles downstream of the airfoil whose streamwise extent and the maximum reverse flow velocity increase with the Reynolds number. The stability analysis of the flow past the airfoil is carried out under very small spanwise wavenumber β = 10−4 to approximate the two-dimensional perturbation, and medium and large spanwise wavenumbers (β = 1–8) to account for the three-dimensional perturbation. Numerical results reveal that under small spanwise wavenumber, there are at most two oscillatory unstable modes corresponding to the near wake and far wake instabilities; the growth rate and frequency of the perturbation agree well with the two-dimensional direct numerical simulation results under all Reynolds numbers. For a larger spanwise wavenumber β = 1, there is only one oscillatory unstable mode associated with the wake instability at Re = 400 and 600, while at Re = 800 and 1000 there are two oscillatory unstable modes for the near wake and far wake instabilities, and one stationary unstable mode for the monotonically growing perturbation within the recirculation bubble via the centrifugal instability mechanism. All the unstable modes are weakened or even suppressed as the spanwise wavenumber further increases, among which the stationary mode persists until β = 4.
DEFF Research Database (Denmark)
Bergami, Leonardo; Riziotis, Vasilis A.; Gaunaa, Mac
2015-01-01
–inviscid interaction method and an engineering dynamic stall model suitable for implementation in aeroelastic codes based on blade element momentum theory. The aerodynamic integral forces and pitching moment coefficients are first determined in steady conditions, at angles of attack spanning from attached flow...... generated by the airfoil undergoing harmonic pitching motions and harmonic flap deflections. The unsteady aerodynamic coefficients exhibit significant variations over the corresponding steady-state values. The dynamic characteristics of the unsteady response are predicted with an excellent agreement among...
DEFF Research Database (Denmark)
Bergami, Leonardo; Gaunaa, Mac; Heinz, Joachim Christian
2013-01-01
The aeroelastic response of wind turbines is often simulated in the time domain by using indicial response techniques. Unsteady aerodynamics in attached flow are usually based on Jones's approximation of the flat plate indicial response, although the response for finite‐thickness airfoils differs...... profile undergoing harmonic pitching motion in the attached flow region; the resulting lift forces are compared with computational fluid dynamics (CFD) simulations. The relevance for aeroelastic simulations of a wind turbine is also evaluated, and the effects are quantified in terms of variations...
Weatherill, W. H.; Ehlers, F. E.
1979-01-01
The design and usage of a pilot program for calculating the pressure distributions over harmonically oscillating airfoils in transonic flow are described. The procedure used is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equations for small disturbances. The steady velocity potential which must be obtained from some other program, was required for input. The unsteady equation, as solved, is linear with spatially varying coefficients. Since sinusoidal motion was assumed, time was not a variable. The numerical solution was obtained through a finite difference formulation and either a line relaxation or an out of core direct solution method.
Numerical Modeling of Anti-icing Systems and Comparison to Test Results on a NACA 0012 Airfoil
Al-Khalil, Kamel M.; Potapczuk, Mark G.
1993-01-01
A series of experimental tests were conducted in the NASA Lewis IRT on an electro-thermally heated NACA 0012 airfoil. Quantitative comparisons between the experimental results and those predicted by a computer simulation code were made to assess the validity of a recently developed anti-icing model. An infrared camera was utilized to scan the instantaneous temperature contours of the skin surface. Despite some experimental difficulties, good agreement between the numerical predictions and the experiment results were generally obtained for the surface temperature and the possibility for each runback to freeze. Some recommendations were given for an efficient operation of a thermal anti-icing system.
Computational Aerodynamic Analysis of Three-Dimensional Ice Shapes on a NACA 23012 Airfoil
Jun, GaRam; Oliden, Daniel; Potapczuk, Mark G.; Tsao, Jen-Ching
2014-01-01
The present study identifies a process for performing computational fluid dynamic calculations of the flow over full three-dimensional (3D) representations of complex ice shapes deposited on aircraft surfaces. Rime and glaze icing geometries formed on a NACA23012 airfoil were obtained during testing in the NASA Glenn Research Centers Icing Research Tunnel (IRT). The ice shape geometries were scanned as a cloud of data points using a 3D laser scanner. The data point clouds were meshed using Geomagic software to create highly accurate models of the ice surface. The surface data was imported into Pointwise grid generation software to create the CFD surface and volume grids. It was determined that generating grids in Pointwise for complex 3D icing geometries was possible using various techniques that depended on the ice shape. Computations of the flow fields over these ice shapes were performed using the NASA National Combustion Code (NCC). Results for a rime ice shape for angle of attack conditions ranging from 0 to 10 degrees and for freestream Mach numbers of 0.10 and 0.18 are presented. For validation of the computational results, comparisons were made to test results from rapid-prototype models of the selected ice accretion shapes, obtained from a separate study in a subsonic wind tunnel at the University of Illinois at Urbana-Champaign. The computational and experimental results were compared for values of pressure coefficient and lift. Initial results show fairly good agreement for rime ice accretion simulations across the range of conditions examined. The glaze ice results are promising but require some further examination.
Exploration of plasma-based control for low-Reynolds number airfoil/gust interaction
Rizzetta, Donald P.; Visbal, Miguel R.
2011-12-01
Large-eddy simulation (LES) is employed to investigate the use of plasma-based actuation for the control of a vortical gust interacting with a wing section at a low Reynolds number. Flow about the SD7003 airfoil section at 4° angle of attack and a chord-based Reynolds number of 60,000 is considered in the simulation, which typifies micro air vehicle (MAV) applications. Solutions are obtained to the Navier-Stokes equations that were augmented by source terms used to represent body forces imparted by the plasma actuator on the fluid. A simple phenomenological model provided these body forces resulting from the electric field generated by the plasma. The numerical method is based upon a high-fidelity time-implicit scheme and an implicit LES approach which are used to obtain solutions on a locally refined overset mesh system. A Taylor-like vortex model is employed to represent a gust impinging upon the wing surface, which causes a substantial disruption to the undisturbed flow. It is shown that the fundamental impact of the gust on unsteady aerodynamic forces is due to an inviscid process, corresponding to variation in the effective angle of attack, which is not easily overcome. Plasma control is utilised to mitigate adverse effects of the interaction and improve aerodynamic performance. Physical characteristics of the interaction are described, and several aspects of the control strategy are explored. Among these are uniform and non-uniform spanwise variations of the control configuration, co-flow and counter-flow orientations of the directed force, pulsed and continuous operations of the actuator and strength of the plasma field. Results of the control situations are compared with regard to their effect upon aerodynamic forces. It was found that disturbances to the moment coefficient produced by the gust can be greatly reduced, which may be significant for stability and handling of MAV operations.
Lift Optimization Study of a Multi-Element Three-Segment Variable Camber Airfoil
Kaul, Upender K.; Nguyen, Nhan T.
2016-01-01
This paper reports a detailed computational high-lift study of the Variable Camber Continuous Trailing Edge Flap (VCCTEF) system carried out to explore the best VCCTEF designs, in conjunction with a leading edge flap called the Variable Camber Krueger (VCK), for take-off and landing. For this purpose, a three-segment variable camber airfoil employed as a performance adaptive aeroelastic wing shaping control effector for a NASA Generic Transport Model (GTM) in landing and take-off configurations is considered. The objective of the study is to define optimal high-lift VCCTEF settings and VCK settings/configurations. A total of 224 combinations of VCK settings/configurations and VCCTEF settings are considered for the inboard GTM wing, where the VCCTEFs are configured as a Fowler flap that forms a slot between the VCCTEF and the main wing. For the VCK settings of deflection angles of 55deg, 60deg and 65deg, 18, 19 and 19 vck configurations, respectively, were considered for each of the 4 different VCCTEF deflection settings. Different vck configurations were defined by varying the horizontal and vertical distance of the vck from the main wing. A computational investigation using a Reynolds-Averaged Navier-Stokes (RANS) solver was carried out to complement a wind-tunnel experimental study covering three of these configurations with the goal of identifying the most optimal high-lift configurations. Four most optimal high-lift configurations, corresponding to each of the VCK deflection settings, have been identified out of all the different configurations considered in this study yielding the highest lift performance.
An experimental and numerical investigation on the formation of stall-cells on airfoils
Manolesos, M.; Papadakis, G.; Voutsinas, S.
2014-12-01
Stall Cells (SCs) are large scale three-dimensional structures of separated flow that have been observed on the suction side of airfoils designed for or used on wind turbine blades. SCs are unstable in nature but can be stabilised by means of a localized disturbance; here in the form of a zigzag tape covering 10% of the wing span. Based on extensive tuft flow visualisations, the resulting flow was found macroscopically similar to the undisturbed flow. Next a combined investigation was carried out including pressure recordings, Stereo-PIV measurements and CFD simulations. The investigation parameters were the aspect ratio, the angle of attack and the Re number. Tuft and pressure data were found in good agreement. The 3D CFD simulations reproduced the structure of the SCs in qualitative agreement with the experimental data but had a delay of ~3deg in capturing the first appearance of a SC. The error in Cl max prediction was 7% compared to 19% for the 2D cases. Tests show that SCs grow with Re number and angle of attack. Also analysis of the time averaged computational results indicated the presence of three types of vortices: (a) the trailing edge line vortex (TELV) in the wake, (b) the separation line vortex (SLV) over the wing and (c) the SC vortices. The TELV and SLV run parallel to the trailing edge and are of opposite sign, while the SC vortices start normal to the wing suction surface, then bend towards the SC centre and later extend downstream, with their vorticity parallel to the free stream.
Farsimadan, Ehsaan
2008-01-01
This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. The broad aim of the work presented in this thesis is to investigate the wake of an airfoil under the combined effects of streamwise curvature and pressure gradient. This was accomplished by an experimental investigation using hot-wire anemometry and large eddy simulation (LES). The wake was generated by placing a NACA 0012 airfoil in a uniform stream of air, which is then subjected to an abr...
Directory of Open Access Journals (Sweden)
Somashekar V
2014-01-01
Full Text Available A Micro air vehicle (MAV is defined as class of unmanned air vehicle (UAV having a linear dimension of less than 15 centimeters and a mass of less than 100 grams with flight speeds of 6 to 12 meters per second. MAVs fall within a Reynolds number (Re range of 50,000 and 120,000, in which many causes of unsteady aerodynamic effects are not fully understood. The research field of low Reynolds number aerodynamics is currently an active one, with many defence organizations, universities, and corporations working towards a better understanding of the physical processes of this aerodynamic regime. In the present work, it is proposed to study the unsteady aerodynamic analysis of 2D airfoil using CFD software and Xfoil panel code method. The various steps involved in this work are geometric modelling using CATIA V5R17, meshing using ICEM CFD, and solution and postprocessing through FLUENT. The finite control volume analysis and Xfoil panel code method has been carried out to predict aerodynamic characteristics such as lift coefficients, drag coefficients, moment coefficients, pressure coefficients, and flow visualization. The lift and drag coefficients were compared for all the simulations with experimental results. It was observed that for the 2D airfoil, lift and drag both compared well for the midrange angle of attack from −10 to 15 degree AOA.
New sonic shockwave multi-element sensors mounted on a small airfoil flown on F-15B testbed aircraft
1996-01-01
An experimental device to pinpoint the location of a shockwave that develops in an aircraft flying at transonic and supersonic speeds was recently flight-tested at NASA's Dryden Flight Research Center, Edwards, California. The shock location sensor, developed by TAO Systems, Hampton, Va., utilizes a multi-element hot-film sensor array along with a constant-voltage anemometer and special diagnostic software to pinpoint the exact location of the shockwave and its characteristics as it develops on an aircraft surface. For this experiment, the 45-element sensor was mounted on the small Dryden-designed airfoil shown in this illustration. The airfoil was attached to the Flight Test Fixture mounted underneath the fuselage of Dryden's F-15B testbed aircraft. Tests were flown at transonic speeds of Mach 0.7 to 0.9, and the device isolated the location of the shock wave to within a half-inch. Application of this technology could assist designers of future supersonic aircraft in improving the efficiency of engine air inlets by controlling the shockwave, with a related improvement in aircraft performance and fuel economy.
1983-12-01
The purpose of this study was to investigate the effect a trailing vortex wake has on an airfoil undergoing a constant rate of change of angle of...When applied to the constant rate - of - change of angle-of-attack problem, the results showed that a trailing vortex wake has a measurable and
Test of 4' x 20' Clark-Y airfoil model in FST
1929-01-01
Test of 4' x 20' Clark-Y airfoil model in Full-Scale Tunnel (FST). On June 26, 1929, Elton W. Miller wrote to George W. Lewis proposing the construction of a model of the full-scale tunnel. 'The excellent energy ratio obtained in the new wind tunnel of the California Institute of Technology suggests that before proceeding with our full scale tunnel design, we ought to investigate the effect on energy ratio of such factors as: 1. small included angle for the exit cone; 2. carefully designed return passages of circular section as far as possible, without sudden changes in cross sections; 3. tightness of walls. It is believed that much useful information can be obtained by building a model of about 1/16 scale, that is, having a closed throat of 2 ft. by 4 ft. The outside dimensions would be about 12 ft. by 25 ft. in plan and the height 4 ft. Two propellers will be required about 28 in. in diameter, each to be driven by direct current motor at a maximum speed of 4500 R.P.M. Provision can be made for altering the length of certain portions, particularly the exit cone, and possibly for the application of boundary layer control in order to effect satisfactory air flow. This model can be constructed in a comparatively short time, using 2 by 4 framing with matched sheathing inside, and where circular sections are desired they can be obtained by nailing sheet metal to wooden ribs, which can be cut on the band saw. It is estimated that three months will be required for the construction and testing of such a model and that the cost will be approximately three thousand dollars, one thousand dollars of which will be for the motors. No suitable location appears to exist in any of our present buildings, and it may be necessary to build it outside and cover it with a roof.' George Lewis responded immediately (June 27) granting the authority to proceed. He urged Langley to expedite construction and to employ extra carpenters if necessary. Funds for the model came from the FST
Directory of Open Access Journals (Sweden)
Luis D. Mendoza
2014-08-01
Full Text Available This paper deals with the prediction of velocity fields on the 2415-3S airfoil which will be used for an unmanned aerial vehicle with internal propulsion system and in this way analyze the air flow through an internal duct of the airfoil using computational fluid dynamics. The main objective is to evaluate the effect of the internal air flow past the airfoil and how this affects the aerodynamic performance by means of lift and drag forces. For this purpose, three different designs of the internal duct were studied; starting from the base 2415-3S airfoil developed in previous investigation, basing on the hypothesis of decreasing the flow separation produced when the propulsive airflow merges the external flow, and in this way obtaining the best configuration. For that purpose, an exhaustive study of the mesh sensitivity was performed. It was used a non-structured mesh since the computational domain is three-dimensional and complex. The selected mesh contains approximately 12.5 million elements. Both the computational domain and the numerical solution were made with commercial CAD and CFD software, respectively. Air, incompressible and steady was analyzed. The boundary conditions are in concordance with experimental setup in the AF 6109 wind tunnel. The k-ε model is utilized to describe the turbulent flow process as followed in references. Results allowed obtaining velocity contours as well as lift and drag coefficients and also the location of separation and reattachment regions in some cases for zero degrees of angle of attack on the internal and external surfaces of the airfoil. Finally, the selection of the configuration with the best aerodynamic performance was made, selecting the option without curved baffles.
Mechanisms research of rain effects on airfoil aerodynamic performance%降雨对翼型气动性能影响的机理研究
Institute of Scientific and Technical Information of China (English)
张瑞民; 曹义华
2011-01-01
利用计算流体力学软件FLUENT 6.3.26中的拉格朗日离散相模型研究了降雨条件下翼型的气动特性变化,并应用UDF(用户自定义函数)对FLUENT中自带的Wilcox转捩模式进行了修正,对降雨对翼型气动性能的影响机理进行了研究.结果表明,在降雨条件下,翼型表面积聚的水膜层及其表面粗糙度会影响翼型表面的光洁度,引起边界层提前转捩,造成升力系数略微减小,阻力系数增加;当翼型接近失速时,聚集在翼型上表面尾缘处的水膜层会触发边界层气流的提前分离,造成翼犁气动性能的严重损失.%The aerodynamic characteristics of an airfoil in rain condition were studied with the Lagrangian discrete phase model in the computational fluid dynamics soft ware FLUENT 6. 3.26. The mechanism of rain effects on airfoil aerodynamic performance was also investigated based on modifying the Wilcox transition mode with a UDF (user-defined function). It is shown that the water film accumulated on airfoil surfaces and the film roughness can influence the smoothness of the airfoil surfaces and induce premature transition. Thus the lift coefficients decrease lightly and the drag coefficients increase; when the airfoil approaches stalling, the water film accumulated on the trailing edge of the upper surface can trigger the advanced separation of boundary airflow and cause the serious aerodynamic penalty.
The research of robust supercritical airfoil design optimization%超临界翼型稳健型优化设计研究
Institute of Scientific and Technical Information of China (English)
白俊强; 王波; 孙智伟; 张扬
2011-01-01
基于标准遗传算法、RBF神经网络以及类函数/型函数变形技术建立了翼型气动优化设计系统,在选取3次CST方法即分别对翼型上下表面采用4个设计变量进行参数化,对某型客机基本翼型在给定设计指标下进行优化设计,分别研究了巡航状态下的气动优化,以及结合蒙特卡洛分析方法马赫数随机平均分布下的翼型稳健型优化设计.结果显示,优化后的翼型的气动特性有着显著提高.%Airfoil optimization design system is built, based on the standard genetic algorithm, RBF neural network and the class functions / shape function distortion technology. The thrice CST method which has four design variables is utilized to parameterize the upper and lower shape of the airfoil. Then the optimal airfoil design of a typical aircraft is done on condition that the design index is given. The aerodynamic optimization under the state of cruise and the robust airfoil shape optimization on the basis of Mach number average distribution under Monte Carlo analysis are studied. The results show that the aerodynamic characteristics of the optimized airfoil has improved significantly.
Lee, C.; Chung, M. K.; Kim, Y.-H.
1993-06-01
An analytical model is presented for predicting the vortex shedding noise generated from the wake of axial flow fan blades. The downstream wake of a fan blade is assumed to be dominated by the von Karman vortex street, and the strength and the shedding frequency of the wake vortex are determined from the wake structure model. The fluctuating pressure and lift on the blade surface, which are induced from the vortices in the wake, are analyzed by incorporating the wake model for the von Karman vortex street with thin airfoil theory. The predicted vortex shedding frequency and the overall sound pressure level compare favorably with the measured results for the vortex shedding noise from axial flow fans.
Pires, O.; Munduate, X.; Ceyhan, O.; Jacobs, M.; Madsen, J.; Schepers, J. G.
2016-09-01
2D wind tunnel tests at high Reynolds numbers have been done within the EU FP7 AVATAR project (Advanced Aerodynamic Tools of lArge Rotors) on the DU00-W-212 airfoil and at two different test facilities: the DNW High Pressure Wind Tunnel in Gottingen (HDG) and the LM Wind Power in-house wind tunnel. Two conditions of Reynolds numbers have been performed in both tests: 3 and 6 million. The Mach number and turbulence intensity values are similar in both wind tunnels at the 3 million Reynolds number test, while they are significantly different at 6 million Reynolds number. The paper presents a comparison of the data obtained from the two wind tunnels, showing good repeatability at 3 million Reynolds number and differences at 6 million Reynolds number that are consistent with the different Mach number and turbulence intensity values.
Tsirkunov, Yu. M.; Romanyuk, D. A.
2016-07-01
A dusty gas flow through two, moving and immovable, cascades of airfoils (blades) is studied numerically. In the mathematical model of two-phase gas-particle flow, the carrier gas is treated as a continuum and it is described by the Navier-Stokes equations (pseudo-DNS (direct numerical simulation) approach) or the Reynolds averaged Navier-Stokes (RANS) equations (unsteady RANS approach) with the Menter k-ω shear stress transport (SST) turbulence model. The governing equations in both cases are solved by computational fluid dynamics (CFD) methods. The dispersed phase is treated as a discrete set of solid particles, the behavior of which is described by the generalized kinetic Boltzmann equation. The effects of gas-particle interaction, interparticle collisions, and particle scattering in particle-blade collisions are taken into account. The direct simulation Monte Carlo (DSMC) method is used for computational simulation of the dispersed phase flow. The effects of interparticle collisions and particle scattering are discussed.
Sutton, David M.
The effect of freestream turbulence intensities ranging from Tu = 1.26% to Tu = 3.2% is studied. Skin friction measurements made on the surface of the airfoil using oil film interferometry (OFI) show that, in general, the effect of the increased Tu is to inhibit separation of the laminar boundary layer. With increased Tu, the near-wall flow experiences strong deceleration in the adverse pressure gradient, but does not reverse as it does in the baseline case where Tu = 0.05%. The Cp distribution resulting from this decelerated fluid is similar in appearance to that of a laminar separation bubble. OFI results also show that laminar separation initiates a more rapid transition process than does higher turbulence intensity: transition of the boundary layer occurs over a shorter distance with Tu = 1.26% than it does with Tu = 2.19% due to the presence of a LSB at the lower turbulence intensity.
Fischer, A.; Lutz, T.; Kramer, E.; Cordes, U.; Hufnagel, K.; Tropea, C.; Kampers, G.; Hölling, M.; Peinke, J.
2016-09-01
A new passive load reduction system, using coupled leading and trailing edge flaps, was developed at TU Darmstadt and investigated experimentally and numerically. The experiments were performed in the wind tunnel of the University of Oldenburg, where sinusoidal inflow conditions, representing for example the tower blockage effect, were created by means of an active grid. The numerical investigations were performed at the University of Stuttgart, using a quasi two-dimensional setup and a block structured CFD solver. In the present paper, a brief description of the experimental setup is given, whereas the numerical setup, in particular the realisation of the wind tunnel conditions, is presented in more detail. Moreover, a comparison between the measured and simulated loads for an airfoil with and without adaptive camber concept is discussed.
DEFF Research Database (Denmark)
Døssing, Mads
Time series of pressure fluctuations has been obtained using high frequency microphones distributed over the surface of airfoils undergoing wind tunnel tests in the LM Windtunnel, owned by ’LM Glasfiber’, Denmark. The present report describes the dataanalysis, with special attention given...... to transition detection. It is argued that the transition point can be detected by observing the increase in the mean of the Fourier spectre and that thismethod is very stable froma numerical point of view. Other important issues are also discussed, e.g. the variation of pressure standard deviations (sound...... pressure) and Tollmien-Schlichting frequencies. The tests were made at Reynolds and Mach numbers corresponding to the operating conditions of a typical horizontal axis wind turbine (HAWT). The Risø B1-18, Risø C2-18 and NACA0015 profiles were tested and the measured transition points are reported....
DEFF Research Database (Denmark)
Døssing, Mads
Time series of pressure fluctuations has been obtained using high frequency microphones distributed over the surface of airfoils undergoing wind tunnel tests in the LM Windtunnel, owned by ’LM Glasfiber’, Denmark. The present report describes the dataanalysis, with special attention given...... to transition detection. It is argued that the transition point can be detected by observing the increase in the mean of the Fourier spectre and that thismethod is very stable froma numerical point of view. Other important issues are also discussed, e.g. the variation of pressure standard deviations (sound...... pressure) and Tollmien-Schlichting frequencies. The tests were made at Reynolds and Mach numbers corresponding to the operating conditions of a typical horizontal axis wind turbine (HAWT). The Risø B1-18, Risø C2-18 and NACA0015 profiles were tested and the measured transition points are reported....
Institute of Scientific and Technical Information of China (English)
LI Shengmao; LI Yan; FENG Fang; WANG Lijun; CHI Yuan
2010-01-01
To invest the condition of ice accretion on the blade used for straight-bladed vertical axis wind turbine(SB-VAWT),wind tunnel tests were carded out on a blade with NACA0015 airfoil by using a small simple icing wind tunnel.Tests were carried out at some typical attack angles under different wind speeds and flow discharges of a water spray with wind.The icing shape and area on blade surface were recorded and measured.Then the numerical computation was carried out to calculate the lift and drag coefficients of the blade before and after ice accretion according to the experiment result,the effect of icing on the aerodynamic characteristics of blade were discussed.
Thomareis, Nikitas; Papadakis, George
2017-01-01
Direct numerical simulations of the flow field around a NACA 0012 airfoil at Reynolds number 50 000 and angle of attack 5° with 3 different trailing edge shapes (straight, blunt, and serrated) have been performed. Both time-averaged flow characteristics and the most dominant flow structures and their frequencies are investigated using the dynamic mode decomposition method. It is shown that for the straight trailing edge airfoil, this method can capture the fundamental as well as the subharmonic of the Kelvin-Helmholtz instability that develops naturally in the separating shear layer. The fundamental frequency matches well with relevant data in the literature. The blunt trailing edge results in periodic vortex shedding, with frequency close to the subharmonic of the natural shear layer frequency. The shedding, resulting from a global instability, has an upstream effect and forces the separating shear layer. Due to forcing, the shear layer frequency locks onto the shedding frequency while the natural frequency (and its subharmonic) is suppressed. The presence of serrations in the trailing edge creates a spanwise pressure gradient, which is responsible for the development of a secondary flow pattern in the spanwise direction. This pattern affects the mean flow in the near wake. It can explain an unexpected observation, namely, that the velocity deficit downstream of a trough is smaller than the deficit after a protrusion. Furthermore, the insertion of serrations attenuates the energy of vortex shedding by de-correlating the spanwise coherence of the vortices. This results in weaker forcing of the separating shear layer, and both the subharmonics of the natural frequency and the shedding frequency appear in the spectra.
A unified viscous theory of lift and drag of 2-D thin airfoils and 3-D thin wings
Yates, John E.
1991-01-01
A unified viscous theory of 2-D thin airfoils and 3-D thin wings is developed with numerical examples. The viscous theory of the load distribution is unique and tends to the classical inviscid result with Kutta condition in the high Reynolds number limit. A new theory of 2-D section induced drag is introduced with specific applications to three cases of interest: (1) constant angle of attack; (2) parabolic camber; and (3) a flapped airfoil. The first case is also extended to a profiled leading edge foil. The well-known drag due to absence of leading edge suction is derived from the viscous theory. It is independent of Reynolds number for zero thickness and varies inversely with the square root of the Reynolds number based on the leading edge radius for profiled sections. The role of turbulence in the section induced drag problem is discussed. A theory of minimum section induced drag is derived and applied. For low Reynolds number the minimum drag load tends to the constant angle of attack solution and for high Reynolds number to an approximation of the parabolic camber solution. The parabolic camber section induced drag is about 4 percent greater than the ideal minimum at high Reynolds number. Two new concepts, the viscous induced drag angle and the viscous induced separation potential are introduced. The separation potential is calculated for three 2-D cases and for a 3-D rectangular wing. The potential is calculated with input from a standard doublet lattice wing code without recourse to any boundary layer calculations. Separation is indicated in regions where it is observed experimentally. The classical induced drag is recovered in the 3-D high Reynolds number limit with an additional contribution that is Reynold number dependent. The 3-D viscous theory of minimum induced drag yields an equation for the optimal spanwise and chordwise load distribution. The design of optimal wing tip planforms and camber distributions is possible with the viscous 3-D wing theory.
Institute of Scientific and Technical Information of China (English)
严敬; 刘小兵; 周绪成; 刘小梅; 杨小林
2016-01-01
Singularity calculating program is an important approach to design blade airfoils of axial flow machinery. This method is originally used in the runner design of propeller turbines. High efficiency and satisfactory performance of the runners has proved that this program has many advantages compared with other calculating methods for axial flow machines. To improve performance characteristics of axial flow pumps, it is valuable to introduce singularity calculating approach for the design of axial flow pumps. The principles in this program can be described briefly as follows. A vortex sheet is placed along a special curve in the uniform flow field with planar potential flow. If the induced velocity superimposed with the original planar uniform flow can ensure the curve to be a streamline and this streamline can meet all flowing boundary conditions, a solid curved thin plate can be used to replace the vortex sheet, for the flow field formed by the plate and the flow field without the plate are identical. Because velocity distribution of a potential flow is determined by its potential function, which satisfies the Laplacian equation. The solution to any Laplacian equation is solely determined by boundary conditions of the flow. As the induced velocity is developed by vortex sheet, the vortex density distribution along the sheet is very important. In a developed planar flow surface, for the same cascade, energy conversion and relative velocity in the runners and impellers are opposite, and stagnant point and singular point are also located in 2 opposite positions of the same airfoil. As a result, the vortex density distribution along the airfoil mean line can’t be the same for the cascade when used for 2 kinds of hydraulic machines. However, there is only one distribution function presented in traditional approaches reported in all literatures. Further analysis showed that the traditional distribution function was only suitable for boundary conditions of runner
Gumbert, C. R.; Newman, P. A.; Kemp, W. B., Jr.; Adcock, J. B.
1984-01-01
Based upon limited, initial observations of wall interference corrections obtained for one airfoil test, there is a need for assessing the upstream flow direction. If there is no direct measurement then a two-pass correction procedure similar to the one described here is required. Questions have arisen pertaining to the correct interpretation of the pressure coefficients measured on the slats of a slotted tunnel wall, the interpretation of just what the calculated equivalent body encompasses or should include, and what can or should be considered as quantitative criteria for data correctability. Further studies using this modified procedure will address these questions. Hopefully, a meaningful WIAC procedure can be validated for the airfoil tests in the 0.3-m TCT.
Simulation and Calculation of Airfoil Icing based on FLUENT%基于FLUENT的翼型结冰仿真计算研究
Institute of Scientific and Technical Information of China (English)
刘美萍
2015-01-01
In order to investigate the effects of ice on aircraft performance, the RAE2822 airfoil is introduced. Using the FLUENT software, the lift coefficient and drag coefficient of RAE2822 airfoil with different types of ice have been calculat-ed and the flow of airfoil icing are analyzed. Its shows that the ice changes the wing shape, and leading the flow separation occurs in advance, so the aircraft aerodynamic performance affected.%文中选取RAE2822翼型, 利用FLUENT软件研究了不同迎角下正常翼型和结冰翼型的升力系数、 阻力系数的变化规律, 并对翼型结冰后的流场进行了分析, 结果表明, 结冰改变了翼形的形状, 导致流场提前发生气流分离, 进而影响了飞机的气动性能.
DEFF Research Database (Denmark)
Skrzypinski, Witold Robert; Gaunaa, Mac
2015-01-01
The present study investigated physical phenomena related to stall-induced vibrations potentially existing on wind turbine blades at standstill conditions. The study considered two-dimensional airfoil sections while it omitted three-dimensional effects. In the study, a new engineering-type comput......The present study investigated physical phenomena related to stall-induced vibrations potentially existing on wind turbine blades at standstill conditions. The study considered two-dimensional airfoil sections while it omitted three-dimensional effects. In the study, a new engineering......-type computational model for the aeroelastic response of an elastically mounted airfoil was used to investigate the influence of temporal lag in the aerodynamic response on the aeroelastic stability in deep stall. The study indicated that even a relatively low lag significantly increases the damping of the model...... of the influence of the added mass terms showed that only the pitch-rate and flapwise-acceleration terms have any influence on the stability. An investigation of three different profiles showed that the stability is heavily dependent on the aerodynamic characteristics of the profiles—mainly on the lift...
McGowan, Gregory Z.
Current interests in Micro Air Vehicle (MAV) technologies call for the development of aerodynamic-design tools that will aid in the design of more efficient platforms that will also have adequate stability and control for flight in gusty environments. Influenced largely by nature MAVs tend to be very small, have low flight speeds, and utilize flapping motions for propulsion. For these reasons the focus is, specifically, on high-frequency motions at low Reynolds numbers. Toward the goal of developing design tools, it is of interest to explore the use of elementary flow solutions for simple motions such as pitch and plunge oscillations to predict aerodynamic performance for more complex motions. In the early part of this research, a validation effort was undertaken. Computations from the current effort were compared with experiments conducted in a parallel, collaborative effort at the Air Force Research Laboratory (AFRL). A set of pure-pitch and pure-plunge sinusoidal oscillations of the SD7003 airfoil were examined. Phase-averaged measurements using particle image velocimetry in a water tunnel were compared with computations using two flow solvers: (i) an incompressible Navier-Stokes Immersed Boundary Method and (ii) an unsteady compressible Reynolds-Averaged Navier-Stokes (RANS) solver. The motions were at a reduced frequency of k = 3.93, and pitch-angle amplitudes were chosen such that a kinematic equivalence in amplitudes of effective angle of attack (from plunge) was obtained. Plunge cases showed good qualitative agreement between computation and experiment, but in the pitch cases, the wake vorticity in the experiment was substantially different from that predicted by both computations. Further, equivalence between the pure-pitch and pure-plunge motions was not attained through matching effective angle of attack. With the failure of pitch/plunge equivalence using equivalent amplitudes of effective angle of attack, the effort shifted to include pitch-rate and
变体平尾翼型气动外形设计方法%Airfoil Aerodynamic Optimization Method of Morphing Horizontal Stabilizer
Institute of Scientific and Technical Information of China (English)
杜厦; 昂海松
2012-01-01
A morphing airfoil instead of traditional horizontal stabilizer and control elements is proposed in order to make the aircraft keep the optimal lift/drag ratio during flight attitude controlling. Bornstein polynomial with order "n" is used to describe the airfoil configuration. A set of airfoil that can provide a minimum drag coefficient at different lift coefficient in a confirmed flight environment is obtained by aerodynamic optimization simulation using the genetic algorithm. It is proved that the morphing airfoil can provide a smaller drag coefficient than the traditional control element do when the same lift coefficient is provided. The relationship between shape control parameters and lift is fitted according to the optimized airfoil. A set of example is used to verify the morphing regularity.%为了使飞机在控制飞行姿态时仍然能保持最优升阻比,提出了一种通过改变翼型形状来代替传统控制舵面采控制飞机俯仰的方法.采用伯恩斯坦多项式对机翼的翼型进行数学建模,并采用遗传算法通过空气动力学仿真对翼型进行优化得到一组在一定飞行环境下、产生附加阻力最小且随升力系数变化的翼型形状.通过对比证明在提供相同升力的情况下,变体翼比传统的控制舵面产生更小的附加阻力.根据翼型形状和升力系数的变化采用数据拟合的方法得到翼型形状控制参数随升力变化的规律.通过算例对变化规律的验证表明其可以用来作为飞行姿态控制的翼型形状变化依据.
Tsirkunov, Yu. M.; Romanyuk, D. A.; Panfilov, S. V.
2011-10-01
Time-dependent two-dimensional (2D) flow of dusty gas through a set of two cascades of airfoils (blades) has been studied numerically. The first cascade was assumed to move (rotor) and the second one to be immovable (stator). Such a flow can be considered, in some sense, as a flow in the inlet stage of a turbomachine, for example, in the inlet compressor of an aircraft turbojet engine. Dust particle concentration was assumed to be very low, so that the interparticle collisions and the effect of the dispersed phase on the carrier gas were negligible. Flow of the carrier gas was described by full Navier-Stokes equations. In calculations of particle motion, the particles were considered as solid spheres. The particle drag force, transverse Magnus force, and damping torque were taken into account in the model of gas-particle interaction. The impact interaction of particles with blades was considered as frictional and partly elastic. The effects of particle size distribution and particle scattering in the course of particle-blade collisions were investigated. Flow fields of the carrier gas and flow patterns of the particle phase were obtained and discussed.
Hague, D. S.; Merz, A. W.
1975-01-01
An investigation was conducted on a CDC 7600 digital computer to determine the effects of additional thickness distributions to the upper surface of an NACA 64 sub 1 - 212 airfoil. Additional thickness distributions employed were in the form of two second-order polynomial arcs which have a specified thickness at a given chordwise location. The forward arc disappears at the airfoil leading edge, the aft arc disappears at the airfoil trailing edge. At the juncture of the two arcs, x = x, continuity of slope is maintained. The effect of varying the maximum additional thickness and its chordwise location on airfoil lift coefficient, pitching moment, and pressure distribution was investigated. Results were obtained at a Mach number of 0.2 with an angle-of-attack of 6 degrees on the basic NACA 64 sub 1 - 212 airfoil, and all calculations employ the full potential flow equations for two dimensional flow. The relaxation method of Jameson was employed for solution of the potential flow equations.
Merz, A. W.; Hague, D. S.
1975-01-01
An investigation was conducted on a CDC 7600 digital computer to determine the effects of additional thickness distributions to the upper surface of an NACA 64-206 airfoil. Additional thickness distributions employed were in the form of two second-order polynomial arcs which have a specified thickness at a given chordwise location. The forward arc disappears at the airfoil leading edge, the aft arc disappears at the airfoil trailing edge. At the juncture of the two arcs, x = x, continuity of slope is maintained. The effect of varying the maximum additional thickness and its chordwise location on airfoil lift coefficient, pitching moment, and pressure distribution was investigated. Results were obtained at a Mach number of 0.2 with an angle-of-attack of 6 degrees on the basic NACA 64-206 airfoil, and all calculations employ the full potential flow equations for two dimensional flow. The relaxation method of Jameson was employed for solution of the potential flow equations.
Institute of Scientific and Technical Information of China (English)
陈池; 刘高联
2005-01-01
Designing airfoils according to given pressure ( or velocity) distribution is one kind of free boundary problems. Free boundary condition can be coupled with the flow governing equations by variable-domain variational calculus, which makes it possible to calculate simultaneously the flow field and the free boundary. An accurate deduction of the variable-domain variational principles is taken herein to design airfoils in compressible and incompressible flows. Furthermore, two grid types (H and O ) are used in the calculation with better results for the O-type grid. It is shown that convergence is accelerated and good results can be obtained even if the initial guessed airfoil shape is a triangle, demonstrating the strong adaptability of this method.
基于特征正交分解翼型流场反设计方法研究%Airfoil Flow Field Reconstruction via Proper Orthogonal Decomposition
Institute of Scientific and Technical Information of China (English)
叶茂; 徐敏; 姚伟刚; 刘浩
2011-01-01
基于特征正交分解( Proper Orthogonal Decomposition,POD)方法中模态的思想,利用特征正交分解基,通过改变马赫数或迎角来得到相应的流场快照,对流场参数进行重构,基于快照范围内可以得到高精度的重构流场结果.以NACA0012翼型和RAE2822翼型为研究对象,采用POD方法对流场参数进行了重构.验证结果表明,POD方法能高效而精确地重构所需状态下的二维流场参数,并具有一定的外插能力.该方法为数值风洞、流动控制及翼型设计研究提供了理论基础.%A method for reconstructing flow fields that using proper orthogonal decomposition (POD) basis functions or modes with great reduction on the computational cost is presented. Using this approach, it is possible to construct entire aerodynamic flow fields from the knowledge of computed aerodynamic data or measured flow data specified on the aerodynamic surfaces, demonstrating a way to effectively combine experimental and computational data. There are three cases here, varying inflow Mach number to NACA0012 airfoil in subsonic region and RAE2822 airfoil in transonic region. The results demonstrate that the POD procedure could provides effectively high accurate low fields reconstruction when just very little amount of data is known. It is a simple, effective method for digit wind tunnel, flow control, and airfoil design.
Zhang, Wei
2015-05-05
We present results of direct numerical simulations of a synthetic jet (SJ) based separation control of flow past a NACA-0018 (National Advisory Committee for Aeronautics) airfoil, at 10° angle of attack and Reynolds number 104 based on the airfoil chord length C and uniform inflow velocity U 0. The actuator of the SJ is modeled as a spanwise slot on the airfoil leeward surface and is placed just upstream of the leading edge separation position of the uncontrolled flow. The momentum coefficient of the SJ is chosen at a small value 2.13 × 10−4 normalized by that of the inflow. Three forcing frequencies are chosen for the present investigation: the low frequency (LF) F + = feC/U 0 = 0.5, the medium frequency (MF) F + = 1.0, and the high frequency (HF) F + = 4.0. We quantify the effects of forcing frequency for each case on the separation control and related vortex dynamics patterns. The simulations are performed using an energy conservative fourth-order parallel code. Numerical results reveal that the geometric variation introduced by the actuator has negligible effects on the mean flow field and the leading edge separation pattern; thus, the separation control effects are attributed to the SJ. The aerodynamic performances of the airfoil, characterized by lift and lift-to-drag ratio, are improved for all controlled cases, with the F + = 1.0 case being the optimal one. The flow in the shear layer close to the actuator is locked to the jet, while in the wake this lock-in is maintained for the MF case but suppressed by the increasing turbulent fluctuations in the LF and HF cases. The vortex evolution downstream of the actuator presents two modes depending on the frequency: the vortex fragmentation and merging mode in the LF case where the vortex formed due to the SJ breaks up into several vortices and the latter merge as convecting downstream; the discrete vortices mode in the HF case where discrete vortices form and convect downstream without any fragmentation and
Gross, A. R.; Steinle, F. W., Jr.
1975-01-01
A NACA 64A010 pressure-instrumented airfoil was tested at transonic speeds over a range of angle of attack from -1 to 12 degrees at various Reynolds numbers ranging from 2 to 6 million in air, argon, Freon 12, and a mixture of argon and Freon 12 having a ratio of specific heats corresponding to air. Good agreement of results is obtained for conditions where compressibility is not significant and for the air and comparable argon-Freon 12 mixture. Comparison of heavy gas results with air, when adjusted for transonic similarity, show improved, but less than desired agreement.
Crivellini, A.
2016-02-01
This paper deals with the numerical performance of a sponge layer as a non-reflective boundary condition. This technique is well known and widely adopted, but only recently have the reasons for a sponge failure been recognised, in analysis by Mani. For multidimensional problems, the ineffectiveness of the method is due to the self-reflections of the sponge occurring when it interacts with an oblique acoustic wave. Based on his theoretical investigations, Mani gives some useful guidelines for implementing effective sponge layers. However, in our opinion, some practical indications are still missing from the current literature. Here, an extensive numerical study of the performance of this technique is presented. Moreover, we analyse a reduced sponge implementation characterised by undamped partial differential equations for the velocity components. The main aim of this paper relies on the determination of the minimal width of the layer, as well as of the corresponding strength, required to obtain a reflection error of no more than a few per cent of that observed when solving the same problem on the same grid, but without employing the sponge layer term. For this purpose, a test case of computational aeroacoustics, the single airfoil gust response problem, has been addressed in several configurations. As a direct consequence of our investigation, we present a well documented and highly validated reference solution for the far-field acoustic intensity, a result that is not well established in the literature. Lastly, the proof of the accuracy of an algorithm for coupling sub-domains solved by the linear and non-liner Euler governing equations is given. This result is here exploited to adopt a linear-based sponge layer even in a non-linear computation.
Directory of Open Access Journals (Sweden)
Matejka Milan
2012-04-01
Full Text Available Infrared camera, Particle Image Velocimetry, smoke-wire, tuft filaments and oil-flow visualization techniques were used for wind-tunnel and in-flight investigation of boundary layer separation, both stall and separation bubbles, related to the low-Reynolds numbers transition mechanism. Airfoils of Wortmann FX66 series and FX66 series wing-fuselage interaction, as well as modern airfoils and their wing-fuselage geometry were subject to study. The presence of previously identified structures in the CFD modelling, such as horse-shoe vortices, was confirmed in the flow. Wind-tunnels and in-flight measurements on sailplanes were carried out and effect of passive flow control devices - vortex generators - was surveyed; namely counter-rotating vortex generators and Zig-zag type turbulators were applied. Separation suppression and consequent drag coefficient reduction of test aircrafts was reached. PIV investigation was further extended by Time-Resolved techniques. An important study on structure of the turbulent flow in the lower atmosphere, creating an environment of the soaring flight, was presented.
Popelka, Lukas; Kuklova, Jana; Simurda, David; Souckova, Natalie; Matejka, Milan; Uruba, Vaclav
2012-04-01
Infrared camera, Particle Image Velocimetry, smoke-wire, tuft filaments and oil-flow visualization techniques were used for wind-tunnel and in-flight investigation of boundary layer separation, both stall and separation bubbles, related to the low-Reynolds numbers transition mechanism. Airfoils of Wortmann FX66 series and FX66 series wing-fuselage interaction, as well as modern airfoils and their wing-fuselage geometry were subject to study. The presence of previously identified structures in the CFD modelling, such as horse-shoe vortices, was confirmed in the flow. Wind-tunnels and in-flight measurements on sailplanes were carried out and effect of passive flow control devices - vortex generators - was surveyed; namely counter-rotating vortex generators and Zig-zag type turbulators were applied. Separation suppression and consequent drag coefficient reduction of test aircrafts was reached. PIV investigation was further extended by Time-Resolved techniques. An important study on structure of the turbulent flow in the lower atmosphere, creating an environment of the soaring flight, was presented.
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
This paper presents an efficient numerical method for solving the Euler equations on rectilinear grids. Wall boundary conditions on the surface of an airfoil are implemented by using their first-order expansions on the airfoil chord line, which is placed along a grid line. However, the method is not restricted to flows with small disturbances since there are no restrictions on the magnitude of the velocity or pressure perturbations. The mathematical formulation and the numerical implementation of the wall boundary conditions in a finite-volume Euler code are described. Steady transonic flows are calculated about the NACA 0006, NACA 0012 and NACA 0015 airfoils, corresponding to thickness ratios of 6%, 12%, and 15%, respectively. The computed results, including surface pressure distributions, the lift coefficient, the wave drag coefficient, and the pitching moment coefficient, at angles of attack from 0° to 8° are compared with solutions at the same conditions by FLO52, a well-established Euler code using body-fitted curvilinear grids. Results demonstrate that the method yields acceptable accuracies even for the relatively thick NACA 0015 airfoil and at high angles of attack. This study establishes the potential of extending the method to computing unsteady fluid-structure interaction problems, where the use of a stationary rectilinear grid offers substantial advantages in both computer time and human work since it would not require the generation of time-dependent body-fitted grids.
Fein, Howard
1999-03-01
Holographic Interferometry has been successfully employed to characterize the materials and behavior of diverse types of structures under stress. Specialized variations of this technology have also been applied to define dynamic and vibration related structural behavior. Such applications of holographic technique offer some of the most effective methods of modal and dynamic analysis available. Real-time dynamic testing of the modal and mechanical behavior of aerodynamic control and airfoil structures for advanced aircraft has always required advanced instrumentation for data collection in either actual flight test or wind-tunnel simulations. Advanced optical holography techniques are alternate methods which result in actual full-field behavioral data on the ground in a noninvasive environment. These methods offer significant insight in both the development and subsequent operational test and modeling of advanced exotic metal control structures and their integration with total vehicle system dynamics. Structures and materials can be analyzed with very low amplitude excitation and the resultant data can be used to adjust the accuracy mathematically derived structural and behavioral models. Holographic Interferometry offers a powerful tool to aid in the developmental engineering of exotic metal structures for high stress applications. Advanced Titanium alloy is a significant example of these sorts of materials which has found continually increased use in advanced aerodynamic, undersea, and other highly mobil platforms. Aircraft applications in particular must consider environments where extremes in vibration and impulsive mechanical stress can affect both operation and structural stability. These considerations present ideal requisites for analysis using advanced holographic methods in the initial design and test of structures made with such advanced materials. Holographic techniques are nondestructive, real- time, and definitive in allowing the identification of
Design and experiment of the NPU-WA airfoil family for wind turbines%NPU-WA系列风力机翼型设计与风洞实验
Institute of Scientific and Technical Information of China (English)
乔志德; 宋文萍; 高永卫
2012-01-01
NPU-WA airfoil family is designed for MW-size wind turbines and it is featured by advanced aerodynamic performance at high lift and high Reynolds number. Wind tunnel tests show that the airfoils are of higher lift to drag ratio than present wind turbine airfoils at high lift and high Reynolds number and insen-sitivity of maximum lift to leading edge roughness, which are satisfied the main design requirements. From this study the NPU-WA airfoil data base including geometry and the wind tunnel test performance at Reynolds number from 1. 0×106-5. 0×106 are developed. The airfoils can be applied to MW-size wind turbine design for the China industry with independent intellectual property rights.%针对兆瓦级大型风力机,研究发展了以具有更优良高雷诺数和高升力气动性能为特点的NPU-WA翼型族,风洞实验表明,该翼型族达到了在高雷诺数、高升力条件下实现高升阻比和外侧翼型对粗糙度不敏感的主要设计要求,为我国自主研发大型风力机提供了可以实际使用的翼型几何数据和雷诺数范围内1.0×106～5.0×106的风洞实验数据.
Investigation of vibration on an airfoil aerodynamics at larger incidence%大迎角下翼型振动的气动性能研究
Institute of Scientific and Technical Information of China (English)
解亚军; 叶正寅
2011-01-01
众所周知,风洞试验中的飞机模型,尤其是带有大展弦比机翼的模型有时会出现翼梢振动现象,振动模式主要表现为翼梢沉浮和俯仰形式,以致影响实验结果的精度和可靠性.选取相对厚度较小的NACA0008翼型,在求解非定常Navier-Stokes方程的基础上,采用改进的无限插值理论和绕翼型的C型网格,模拟风洞实验中模型振动条件下的流场,研究振动模式及其不同耦合对流场、尤其是大迎角流场的影响,并考虑了模型弹性轴不同位置对结果的影响.研究结果表明:在临近传统定常失速迎角的大迎角条件下,翼型的振动可以引起翼型大尺度的分离,导致翼型失速的提前发生;振动在不同的相位滞后条件下,对翼型流场的分离程度不尽相同.%It is well known that the model wing may appear obvious vibration in wind tunnel experiments sometimes at high incidence especially in large aspect ratio aircraft models. The vibration modes mainly come in plunging and pitching which seriously affect the precision and reliability of wind tunnel experiments results. In this paper, the investigation of NACA0008 airfoil is carried out. Based on the unsteady Reynolds-Averaged Navier-Stokes equations, applying the modified infinite interpolation approach and the C type grid, the flow field and aerodynamic characteristics of the airfoil at high incidence are studied for simulating vibrations of wind-tunnel models, especially for the wind-tunnel airplane with high aspect ratio wing. Two vibration models and the phase delay between the different vibrations are also studied. It is shown that the vibrations of the airfoil can cause large scale unsteady separate vortex shedding before the stall incidence,and lead to the stall appearing at some lower incidence than the steady meaning stall incidence.The different phase delay has different effect on the flow-field.
Computational Aerodynamic Analysis of Thick Flatback Airfoils%大厚度钝后缘翼型气动性能计算研究
Institute of Scientific and Technical Information of China (English)
邓磊; 乔志德; 杨旭东; 熊俊涛
2011-01-01
Flatbact (blunt trailing edge ) airfoils are adopted for the inboard region of large wind turbine blades due to their structural and aerodynamic performance advantages. But very limited experimental data at high Reynolds Numbers are available because the wind tunnel experiments are limited by the Reynolds Number and solid blockage. In this study,a 2-D Reynolds-Averaged Navier-Stokes solver coupled with a transition prediction based on eN method is used to CFD calculated of blunt triling edge airfoils. Several blunt trailing edge airfoils,blunting the trailing edge by different methods and with expermental data,are calculated and the results are analyzed. The results show that the CFD results of lift coefficients agree very well in linear region with the experimental data but the maximum lift is over predicted and post-stall phenomena are not captured computationally.%大厚度钝后缘翼型由于其气动和结构的优点,近来被作为大型风力机叶片设计时的内侧翼型成为风力机翼型设计的热点之一EULL由于此类翼型厚度和风洞阻塞度的限制,大雷诺数的风洞实验数据很少.耦合RANS方程和基于线性稳定性分析EULL捩预测方法,进行了大厚度钝后缘翼型气动性能计算研究.使用Gridgen程序生成计算网格,湍流模型为S-A模型.对常用的钝后缘修形方式如直接截断、对称增加厚度等并且有风洞实验结果的几种翼型进行了CFD计算并和实验结果及文献计算结果进行了比较.结果表明升力系数在线性段,计算结果和实验结果吻合很好,但是对失速迎角的捕捉能力差;阻力系数计算结果和实验值吻合较好.不同修形方式的计算结果为钝后缘修形设计提供了参考.
Energy Technology Data Exchange (ETDEWEB)
Kim, Tae Ho [Department of Mechanical Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Kwon, Jin Gyu [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Yoon, Sung Ho [Korea Institute of Nuclear Nonproliferation and Control, Daejeon 305-348 (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Kim, Moo Hwan [Korea Institute of Nuclear Safety, Daejeon 305-338 (Korea, Republic of); Cha, Jae Eun [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of)
2015-07-15
Highlights: • Staggered arrangement affects the pressure drop but does not significantly affect to the heat transfer. • The total pressure drop is reduced, but the amount of acceleration pressure drop increases while that of frictional pressure drop decreases as the horizontal number increases. • For the vertical number, the total pressure drop decreases more largely than the horizontal number. • The objective function shows that the fully staggered arrangement shows best performance. - Abstract: One of the key issues of the PCHE technology in the supercritical CO{sub 2} Brayton cycle is to achieve an efficient and compact designs to be able to enhance heat transfer and reduce pressure drop. The issue is challenging due to the complex configuration of micro-channels in the PCHE. In this study, an innovative micro-channel equipped with an array of airfoil fins is analyzed to evaluate its performance. In so doing, sensitivity analysis with various design parameters is performed to configure the optimal arrangement of airfoil fins by using CFD analysis for Supercritical Carbon dioxide Integral Experimental Loop (SCIEL) in Korean Atomic Energy Research Institute (KAERI). Dominant geometric parameters of the fin arrangement that affects to the thermal and hydraulic performances are the horizontal, vertical and staggered pitches. ANSYS ICEM CFD and ANSYS CFX are used for the grid generation and the computational calculation. CO{sub 2} properties are used by using REFPROF software database. The inlet temperature of the hot side is 618 K and that of the cold side is 585 K. The reference mass flow rate is set as 1.2 g/s for the vertical number of 2.0, which is the Reynolds number of about 30,000. The mass flow rate changes from 0.4 to 4.8 g/s in order to investigate the Reynolds number effect. The k-ε model is selected as the turbulence model. In conclusions, the results show that the optimal arrangement of airfoil fins can be examined in terms of an objective
Energy Technology Data Exchange (ETDEWEB)
Wiers, S.H.
2002-02-01
subject, as well as state of the art in secondary flow, single cooling jet behavior and film cooling. An overview of existing linear, annular and rotating annular test facilities is also given. The second part deals with the design and instrumentation as well as the measuring technique used for the performed investigations. Surface flow visualization has been performed to get a first idea about the secondary flow. Aerodynamic performance measurements have been conducted by means of five-hole pneumatic pressure probe traverses at 98%, 106% and 140% of c{sub ax} downstream of the cascade to gain information about the secondary flow and primary loss distribution. The variation of the Reynolds number and turbulence level show an overall loss increase for higher turbulence levels and Reynolds numbers due to higher mixing losses. Experimental investigations in terms of surface flow visualization and 5 hole pressure probe traverse of the influence of film cooling on the secondary flow effects and the losses of the cascade have been performed on a modem three dimensional nozzle guide vane with shower head cooling at the leading edge, four film cooling rows at the suction side, two film cooling rows at the pressure side and trailing edge ejection. The results of the flow visualization and pressure probe traverse show that the secondary flow region is only slightly effected by the ejection of low momentum cooling air. The cooling jets are deflected towards the hub, due to the low energy contents. With increasing mass flux ratio, respectively momentum flux ratio, the expanded secondary flow area at the trailing edge decreases. A rapid increase of the mixing loss at the midsection for ejection of high mass flow ratios in a highly accelerated flow at the suction side is observed. The coolant is seen, in every case, to increase the loss compared with the uncooled case. This is in accordance with the findings of most authors with regard to airfoil surface cooling, but the decrease in
Turbine airfoil manufacturing technology
Energy Technology Data Exchange (ETDEWEB)
Kortovich, C. [PCC Airfoils, Inc., Beachwood, OH (United States)
1995-10-01
The efficiency and effectiveness of the gas turbine engine is directly related to the turbine inlet temperatures. The ability to increase these temperatures has occurred as a result of improvements in materials, design, and processing techniques. A generic sequence indicating the relationship of these factors to temperature capability is schematically shown in Figure 1 for aircraft engine and land based engine materials. A basic contribution that is not captured by the Figure is the significant improvement in process and manufacturing capability that has accompanied each of these innovations. It is this capability that has allowed the designs and innovations to be applied on a high volume, cost effective scale in the aircraft gas turbine market.
Energy Technology Data Exchange (ETDEWEB)
Gell, M.; Duhl, D.N.; Gupta, D.K.; Sheffler, K.D.
1987-07-01
Single-crystal superalloy technology for gas-turbine blades has combined the design of alloys for exclusive use in single-crystal form with advancements in directional solidification, in order to manufacture single-crystal castings with complex internal cooling passages. To these improvements have been incorporated metallic and ceramic coatings that further extend high temperature capabilities. The directional solidification of single-crystal turbine alloys requires total control of the thermal environment, using large vacuum furnaces capable of casting up to 30 blades at a time. All modern coatings involve the enrichment of the superalloy surface with elements that promote the formation and retention of alumina, which precludes further oxidation. 15 references.
Leung, Chung Ming; Wang, Ya; Chen, Wusi
2016-11-01
In this letter, the airfoil-based electromagnetic energy harvester containing parallel array motion between moving coil and trajectory matching multi-pole magnets was investigated. The magnets were aligned in an alternatively magnetized formation of 6 magnets to explore enhanced power density. In particular, the magnet array was positioned in parallel to the trajectory of the tip coil within its tip deflection span. The finite element simulations of the magnetic flux density and induced voltages at an open circuit condition were studied to find the maximum number of alternatively magnetized magnets that was required for the proposed energy harvester. Experimental results showed that the energy harvester with a pair of 6 alternatively magnetized linear magnet arrays was able to generate an induced voltage (Vo) of 20 V, with an open circuit condition, and 475 mW, under a 30 Ω optimal resistance load operating with the wind speed (U) at 7 m/s and a natural bending frequency of 3.54 Hz. Compared to the traditional electromagnetic energy harvester with a single magnet moving through a coil, the proposed energy harvester, containing multi-pole magnets and parallel array motion, enables the moving coil to accumulate a stronger magnetic flux in each period of the swinging motion. In addition to the comparison made with the airfoil-based piezoelectric energy harvester of the same size, our proposed electromagnetic energy harvester generates 11 times more power output, which is more suitable for high-power-density energy harvesting applications at regions with low environmental frequency.
Leung, Chung Ming; Wang, Ya; Chen, Wusi
2016-11-01
In this letter, the airfoil-based electromagnetic energy harvester containing parallel array motion between moving coil and trajectory matching multi-pole magnets was investigated. The magnets were aligned in an alternatively magnetized formation of 6 magnets to explore enhanced power density. In particular, the magnet array was positioned in parallel to the trajectory of the tip coil within its tip deflection span. The finite element simulations of the magnetic flux density and induced voltages at an open circuit condition were studied to find the maximum number of alternatively magnetized magnets that was required for the proposed energy harvester. Experimental results showed that the energy harvester with a pair of 6 alternatively magnetized linear magnet arrays was able to generate an induced voltage (Vo) of 20 V, with an open circuit condition, and 475 mW, under a 30 Ω optimal resistance load operating with the wind speed (U) at 7 m/s and a natural bending frequency of 3.54 Hz. Compared to the traditional electromagnetic energy harvester with a single magnet moving through a coil, the proposed energy harvester, containing multi-pole magnets and parallel array motion, enables the moving coil to accumulate a stronger magnetic flux in each period of the swinging motion. In addition to the comparison made with the airfoil-based piezoelectric energy harvester of the same size, our proposed electromagnetic energy harvester generates 11 times more power output, which is more suitable for high-power-density energy harvesting applications at regions with low environmental frequency.
Guda, Venkata Subba Sai Satish
There have been several advancements in the aerospace industry in areas of design such as aerodynamics, designs, controls and propulsion; all aimed at one common goal i.e. increasing efficiency --range and scope of operation with lesser fuel consumption. Several methods of flow control have been tried. Some were successful, some failed and many were termed as impractical. The low Reynolds number regime of 104 - 105 is a very interesting range. Flow physics in this range are quite different than those of higher Reynolds number range. Mid and high altitude UAV's, MAV's, sailplanes, jet engine fan blades, inboard helicopter rotor blades and wind turbine rotors are some of the aerodynamic applications that fall in this range. The current study deals with using dynamic roughness as a means of flow control over a NACA 0012 airfoil at low Reynolds numbers. Dynamic 3-D surface roughness elements on an airfoil placed near the leading edge aim at increasing the efficiency by suppressing the effects of leading edge separation like leading edge stall by delaying or totally eliminating flow separation. A numerical study of the above method has been carried out by means of a Large Eddy Simulation, a mathematical model for turbulence in Computational Fluid Dynamics, owing to the highly unsteady nature of the flow. A user defined function has been developed for the 3-D dynamic roughness element motion. Results from simulations have been compared to those from experimental PIV data. Large eddy simulations have relatively well captured the leading edge stall. For the clean cases, i.e. with the DR not actuated, the LES was able to reproduce experimental results in a reasonable fashion. However DR simulation results show that it fails to reattach the flow and suppress flow separation compared to experiments. Several novel techniques of grid design and hump creation are introduced through this study.
Institute of Scientific and Technical Information of China (English)
方洪; 张正科; 高超
2011-01-01
Two-dimensional Reynolds averaged Navier-Stokes equations with SST k-ω turbulence model equations are solved for the flow field around airfoils with burrs ( protuberances or grooves) or roughness tapes on to study the effects of the geometric irregularity on pressure distribution. Comparisons between different burrs (I. E. , different shapes of protuberances, grooves) are made with respect to their effects on the airfoil surface pressure distribution. The influence of roughness, the heights of burrs, and the position of the burrs on the pressure distribution are also investigated. An explanation is given to the pressure jump over the burrs (protuberances, grooves) or roughness on the airfoil surface. This is helpful to guide the pressure measurement experiments, to improve the experimental accuracy, and to give a reasonable correction of the test data. A roughness height for fixed transition on airfoil tests is suggested.%通过求解二维雷诺平均Navier-Stokes方程(RANS)及SST k-ω二方程湍流模型,数值模拟表面存在几何不规则的突起物或凹坑的翼型绕流.分析对比了不同位置处多种类型的突起物和凹坑在不同的高度下对翼型压力分布、激波位置的影响.对翼型测压实验中所出现的压力跳动给出了一种解释,有助于指导风洞实验,提高实验精度,并对实验数据进行合理的修正.
Institute of Scientific and Technical Information of China (English)
高超; 罗时钧; 刘锋
2003-01-01
This paper presents an efficient numerical method for solving the unsteady Euler equations on stationary Cartesian grids. Wall boundary conditions are implemented on non-moving mean wall positions by assuming the airfoil being thin and undergoing small deformation, but the mean angle of attack of the body can still be large and we use the full nonlinear Euler equation in the field for accurate resolution of shock waves and vorticity. The method does not require the generation of moving body-fitted grids and thus can be easily deployed in any fluid-structure interaction problem involving relatively small deformation of a thin body. We use the first-order wall boundary conditions in solving the full Euler equation. Unsteady transonic flow is calculated about an oscillating NACA 0012 airfoil at free stream Mach number M∞=0.755, mean angle of attack αm=0.016, amplitude of pitching oscillation α0=2.51, reduced frequency κ=0.081 4. The computed results, including surface pressure distribution, instantaneous lift and moment coefficients are compared with known experimental data. It is shown that the first-order boundary conditions are satisfactory for airfoils of typical thicknesses with small deformation for unsteady calculations.
Merz, A. W.; Hague, D. S.
1975-01-01
An investigation was conducted on a CDC 7600 digital computer to determine the effects of additional thickness distributions to the upper surface of the NACA 64-206 and 64 sub 1 - 212 airfoils. The additional thickness distribution had the form of a continuous mathematical function which disappears at both the leading edge and the trailing edge. The function behaves as a polynomial of order epsilon sub 1 at the leading edge, and a polynomial of order epsilon sub 2 at the trailing edge. Epsilon sub 2 is a constant and epsilon sub 1 is varied over a range of practical interest. The magnitude of the additional thickness, y, is a second input parameter, and the effect of varying epsilon sub 1 and y on the aerodynamic performance of the airfoil was investigated. Results were obtained at a Mach number of 0.2 with an angle-of-attack of 6 degrees on the basic airfoils, and all calculations employ the full potential flow equations for two dimensional flow. The relaxation method of Jameson was employed for solution of the potential flow equations.
Kriging 模型在翼型反设计中的应用研究%Kriging-based airfoil inverse design
Institute of Scientific and Technical Information of China (English)
刘俊; 宋文萍; 韩忠华; 许建华; 樊艳红
2014-01-01
Up to date,the Kriging-based optimization methods are widely used in the aerodynamic opti-mization design,however,it hasn’t been successfully applied to the aerodynamic inverse design problems. In this research,the Kriging-based optimization method is applied to the single and multi-point airfoil inverse design,and its feasibility to inverse design problems is validated;besides,the choice of infill criteria is inves-tigated.Moreover,this method is compared to the polynomial response surface based method (P-RSM)and the Adjoint-based method,the results show that the Kriging-based method outperforms the P-RSM,and has comparable efficiency with Adjoint-based method but better flexibility and easier to use.Finally,the current method is applied to engineering inverse airfoil design problems and its feasibility is validated.%目前，基于 Kriging 代理模型的优化方法在气动优化设计中得到了广泛的应用，然而却并未能应用于气动反设计中。本文将翼型气动反设计问题转化为优化问题，利用基于 Kriging 模型的优化方法进行了翼型的单目标、多目标反设计，验证了 Kriging 模型在翼型单目标、多目标反设计中的适应性，并研究了模型加点准则对设计结果的影响；此外，将本文方法与多项式响应面模型优化方法、基于 Adjoint 的优化方法进行了比较，结果表明，该方法明显优于基于多项式响应面的优化方法，且与 Adjoint 方法相比，设计效率相当且具有更好的通用性。最后将本文方法应用于接近工程实际的在已有翼型基础上修改压力分布进行反设计，验证了本文方法的可行性。
Directory of Open Access Journals (Sweden)
Rajat Gupta, Sukanta Roy, Agnimitra Biswas
2010-11-01
Full Text Available H-Darrieus rotor is a lift type device having two to three blades designed as airfoils. The blades are attached vertically to the central shaft through support arms. The support to vertical axis helps the rotor maintain its shape. In this paper, Computational Fluid Dynamics (CFD analysis of an airfoil shaped two-bladed H-Darrieus rotor using Fluent 6.2 software was performed. Based on the CFD results, a comparative study between experimental and computational works was carried out. The H-Darrieus rotor was 20cm in height, 5cm in chord and twisted with an angle of 30° at the trailing end. The blade material of rotor was Fiberglass Reinforced Plastic (FRP. The experiments were earlier conducted in a subsonic wind tunnel for various height-to-diameter (H/D ratios. A two dimensional computational modeling was done with the help of Gambit tool using unstructured grid. Realistic boundary conditions were provided for the model to have synchronization with the experimental conditions. Two dimensional steady-state segregated solver with absolute velocity formulation and cell based grid was considered, and a standard k-epsilon viscous model with standard wall functions was chosen. A first order upwind discretization scheme was adopted for pressure velocity coupling of the flow. The inlet velocities and rotor rotational speeds were taken from the experimental results. From the computational analysis, power coefficient (Cp and torque coefficient (Ct values at ten different H/D ratios namely 0.85, 1.0, 1.10, 1.33, 1.54, 1.72, 1.80, 1.92, 2.10 and 2.20 were calculated in order to predict the performances of the twisted H-rotor. The variations of Cp and Ct with tip speed ratios were analyzed and compared with the experimental results. The standard deviations of computational Cp and Ct from experimental Cp and Ct were obtained. From the computational analysis, the highest values of Cp and Ct were obtained at H/D ratios of 1.0 and 1.54 respectively. The
跨声速风洞中的超临界翼型速度场测量%Velocity Field Measurement of Supercritical Airfoil in Transonic Wind Tunnel
Institute of Scientific and Technical Information of China (English)
王猛; 李玉军; 衷洪杰
2015-01-01
针对跨声速风洞实验环境，发展适用于高速流动测量的粒子图像测速（PIV）实验技术，从而实现对超临界翼型的非定常流动进行准确的速度场测量。对跨声速风洞中的PIV测量系统进行了如下改进工作：改进粒子播撒装置；对片光光路布局进行了优化；对模型表面进行了防漫反射处理；提高图像位移场计算精度。使用RAE 2822超临界翼型，在FL-1风洞进行实验，来流马赫数为0.6～0.92，雷诺数为1.86×106～2.58×106。结果表明，利用PIV测得的速度场能够有效捕捉激波位置，并且与表面平均压力分布一致，通过对PIV数据进行统计分析可得到激波振荡的类型及幅度等特征。%A PIV measurement system had been developed to measure the unsteady lfow structure of the supercritical airfoil in transonic wind tunnel. The following improvements had been made to the PIV measurement system for transonic wind tunnel: improved particle seeding device, optimized the light path arrangement, anti-diffuse relfection treatment on the model surface, and increased the image displacement ifeld calculation accuracy. An experiment was conducted at FL-1 wind tunnel to investigate the behavior of transient shock wave/boundary layer interaction on a supercritical airfoil (RAE 2822). The Mach number was between 0.6 and 0.92, and Reynolds number between 1.86×106 and 2.58×106. The results show that the velocity ifeld measured by PIV can effectively capture the shock position, and the average pressure distribution is consistent with that of the PIV data. The type and magnitude of the shock wave can be obtained by statistical analysis.
DEFF Research Database (Denmark)
Ferreira, C.; Gonzalez, A.; Baldacchino, D.;
2016-01-01
The FP7 AdVanced Aerodynamic Tools for lArge Rotors - Avatar project aims to develop and validate advanced aerodynamic models, to be used in integral design codes for the next generation of large scale wind turbines (10-20MW). One of the approaches towards reaching rotors for 10-20MW size...... is the application of flow control devices, such as flaps. In Task 3.2: Development of aerodynamic codes for modelling of flow devices on aerofoils and, rotors of the Avatar project, aerodynamic codes are benchmarked and validated against the experimental data of a DU95W180 airfoil in steady and unsteady flow......, for different angle of attack and flap settings, including unsteady oscillatory trailing-edge-flap motion, carried out within the framework of WP3: Models for Flow Devices and Flow Control, Task 3.1: CFD and Experimental Database. The aerodynamics codes are: AdaptFoil2D, Foil2W, FLOWer, MaPFlow, OpenFOAM, Q3UIC...
Ferreira, C.; Gonzalez, A.; Baldacchino, D.; Aparicio, M.; Gómez, S.; Munduate, X.; Garcia, N. R.; Sørensen, J. N.; Jost, E.; Knecht, S.; Lutz, T.; Chassapogiannis, P.; Diakakis, K.; Papadakis, G.; Voutsinas, S.; Prospathopoulos, J.; Gillebaart, T.; van Zuijlen, A.
2016-09-01
The FP7 AdVanced Aerodynamic Tools for lArge Rotors - Avatar project aims to develop and validate advanced aerodynamic models, to be used in integral design codes for the next generation of large scale wind turbines (10-20MW). One of the approaches towards reaching rotors for 10-20MW size is the application of flow control devices, such as flaps. In Task 3.2: Development of aerodynamic codes for modelling of flow devices on aerofoils and, rotors of the Avatar project, aerodynamic codes are benchmarked and validated against the experimental data of a DU95W180 airfoil in steady and unsteady flow, for different angle of attack and flap settings, including unsteady oscillatory trailing-edge-flap motion, carried out within the framework of WP3: Models for Flow Devices and Flow Control, Task 3.1: CFD and Experimental Database. The aerodynamics codes are: AdaptFoil2D, Foil2W, FLOWer, MaPFlow, OpenFOAM, Q3UIC, ATEFlap. The codes include unsteady Eulerian CFD simulations with grid deformation, panel models and indicial engineering models. The validation cases correspond to 18 steady flow cases, and 42 unsteady flow cases, for varying angle of attack, flap deflection and reduced frequency, with free and forced transition. The validation of the models show varying degrees of agreement, varying between models and flow cases.
Energy Technology Data Exchange (ETDEWEB)
Soorkia, Satchin; Liu, Chen-Lin; Savee, John D; Ferrell, Sarah J; Leone, Stephen R; Wilson, Kevin R
2011-10-12
A new pulsed Laval nozzle apparatus with vacuum ultraviolet (VUV) synchrotron photoionization quadrupole mass spectrometry is constructed to study low-temperature radicalneutralchemical reactions of importance for modeling the atmosphere of Titan and the outer planets. A design for the sampling geometry of a pulsed Laval nozzle expansion has beendeveloped that operates successfully for the determination of rate coefficients by time-resolved mass spectrometry. The new concept employs airfoil sampling of the collimated expansion withexcellent sampling throughput. Time-resolved profiles of the high Mach number gas flow obtained by photoionization signals show that perturbation of the collimated expansion by theairfoil is negligible. The reaction of C2H with C2H2 is studied at 70 K as a proof-of-principle result for both low-temperature rate coefficient measurements and product identification basedon the photoionization spectrum of the reaction product versus VUV photon energy. This approach can be used to provide new insights into reaction mechanisms occurring at kinetic ratesclose to the collision-determined limit.
Institute of Scientific and Technical Information of China (English)
张瑞民; 于金玲
2013-01-01
Boundary layer transition is an important factor to determine the airfoil flow field characteristics. Therefore,it is of significance to study the boundary layer transition in aeronautical engineering. From the physical characteristics of the transition flow,the Wilcox transition mode in the k-ω SST two-equation turbulence model was corrected with the introduction of the intermittent function. And thus the flow characteristics and aerodynamic performance of the traditional NACA0012 airfoil were studied and compared to the test results and to the results with original boundary layer transition. The results show that the transition position can be predicted by the modified model with certain accuracy and the prediction accuracy of airfoil drag characteristics has been improved to some extent by considering boundary layer transition.%边界层转捩是决定翼型流场特性的重要因素,因此在航空工程中开展边界层转捩研究具有重要意义.从转捩流动的物理特征出发,引人间歇函数对k-ω SST两方程湍流模型的Wilcox转捩模式进行了修正,进而对传统的NACA0012翼型的流场特性和气动性能进行了研究,并与原始边界层转捩的计算结果以及试验结果进行了比较.研究表明,改进后的模型对转捩位置具有较好的预测能力;在采用修正边界层转捩模型的情况下,翼型的阻力预测精度有了一定程度的提高.
Institute of Scientific and Technical Information of China (English)
王元元; 张彬乾; 陈迎春
2011-01-01
A robust airfoil optimization platform was constructed based on modified particle swarm optimization method( I. E. Second-order oscillating particle swarm method ) .which consists of an efficient optimization algorithm, a precise aerodynamic analysis program, a highac-curacy surrogate model and a classical airfoil parametric method. There are two improvements for the modified particle swarm method compared to standard particle swarm method. Firstly, particle velocity was represented by the combination of particle position and variation of position, which makes the particle swarm algorithm become a second-order precision method with respect to particle position. Secondly, for the sake of adding diversity to the swarm and enlarging parameter searching domain to improve the global convergence performance of the algorithm, an oscillating term was introduced to the update formula of particle velocity. At last, taking two airfoils as examples, the aerodynamic shapes were optimized on this optimization platform. It is shown from the optimization results that the aerodynamic characteristic of the airfoils was greatly improved at a broad design range.%基于标准粒子群算法,将位移变化作为影响微粒速度的变量,使得粒子群算法关于粒子位置为二阶精度函数,加快了收敛速度；进一步地在粒子速度更新公式中引入振荡环节,提高了群体多样性,改善了算法的全局收敛性.以改进粒子群算法为基础,结合气动分析程序、代理模型以及翼型参数化方法,构建了翼型稳健型气动优化设计系统.针对某型客机的基本翼型以及翼梢小翼翼型气动优化设计结果表明,优化后的翼型气动特性相对于初始翼型在较宽的设计范围内都有了大幅度提高.
Institute of Scientific and Technical Information of China (English)
王超; 高正红; 黄江涛; 赵轲; 李静; 许放
2015-01-01
The number of design variables and their design room are focused on in airfoil pa-rameterization.Fewer variables helps improve the speed of convergence and adequate design room can help to find the best result.However,they contradict with each other.A research was carried on the performances of basic Bezier-Spline curves and a comparison was presented between different orders of Bezier-Spline curves in order to explain their ability of describing a supercritical airfoil and aerodynamic errors as a result of geometric errors.An adding-order airfoil parameter-ization method was put forward based on the characteristics of Bezier-Spline curves.An optimiza-tion design system of expanding design room was established combined with improved particle swarm optimization algorithm which guarantees design room and efficiency.The method balances the inconsistency of design quality and efficiency.By comparing the results of a typical airfoil op-timization using the proposed method and the traditional Hicks-Henne model function method, feasibility and high efficiency of this method is verified.%研究了基本 Bezier 样条曲线的特性，对比了不同阶次 Bezier 曲线对超临界翼型的几何描述能力以及由几何偏差带来的气动性能的偏差。利用 Bezier 曲线的特性提出逐次升阶的翼型参数化方法，结合改进的粒子群优化算法，建立了逐步扩展设计空间的气动优化设计方法，兼顾设计空间和优化效率，很好地解决了设计质量和设计效率之间的矛盾。最后通过典型翼型的优化设计，对比了文中方法与传统 Hicks-Henne 型函数方法，验证了文中方法的可行性和高效性。
基于变精度遗传算法的翼型快速优化设计方法%Rapid design and optimization of airfoil based on improved genetic algorithm
Institute of Scientific and Technical Information of China (English)
梁宵; 孟光磊; 佟胜喜; 刘晓青
2016-01-01
Electric aircraft with low carbon consumption is gradually developed along with the growing demand of civilian aircraft. The production of electric aircraft pursues lower costs and shorter development cycle. In the process of designing an airfoil, it is hard to select the initial airfoil, and most optimization methods are very time consuming. An improved genetic algorithm ( GA) with variable resolution is developed for rapid multi-objective optimization of airfoils. Based on the original Hicks-Henne shape function, the representation of airfoil on trailing edge is improved. In the calculation of aerodynamic parameters, a subsonic airfoil development system XFOIL is introduced which is faster than conventional CFD software, and the applicability and limitation of XFOIL is also analyzed. Then a joint method combining XFOIL and Matlab is proposed, and it realizes a full automatic design of airfoil without the intervention of human. In the stage of optimization, parameters of airfoil are real-coded to maintain high accuracy and efficiency. In addition, the conventional GA is improved by hybridization with variable resolution and dynamic penalty. At last, the integrated design solution of rapid multi-objective and multi-point optimization is summarized. Simulation is divided into two parts, and the improved Hicks-Henne shape function can change the angle of trailing edge effectively. By the comparison with elitist nondominated sorting genetic algorithm (NSGA-II), the proposed method will get higher lift to drag ratio within certain number of iterations, the stall characteristic is more moderate, and it especially improves efficiency performance. The integrated design solution is accelerated by numerical calculation and improved GA, and it has a lower computational cost. The simulation results show that the method is useful in engineering conditioning for the rapid design and optimization of airfoil shapes, particularly in the preliminary design stage, such as the
Institute of Scientific and Technical Information of China (English)
陶源; 于贤君; 刘宝杰
2012-01-01
Matching characteristic of tandem airfoil was researched by using numerical simulation.The forward and aft blade working characteristics were analyzed,and then,an attempt to optimize the blades with the controlled diffusion airfoil was made,by doing which a higher cascade performance was achieved.The result indicates that:the working status of forward blade changes obviously with the incidence,and the incidence range of whole stage almost depends on forward blade alone;aft blade incidence depends on the working status of forward blade deviation.Flow diffusion and turning in aft blade is weakened because of forward blade trailing edge's piling up,thus the working status of aft blade is improved on condition that the forward blade has large flow separations.Based on the analysis of tandem airfoil working characteristics,routine blade was replaced with controlled diffusion airfoil and a good result was achieved.%以数值模拟的方法对串列叶片的匹配特性展开研究,分析其前后排叶片的工作特点,并在此基础上利用可控扩散叶型（CDA叶型）替换常规叶型,有效提高了叶栅性能.研究结果表明：随来流攻角的变化,前排叶片的工作状态变化很大,并且串列叶栅的可用攻角范围几乎只由前排叶片决定;而后排叶片的攻角由前排叶片落后角确定,同时前排叶片的尾迹在后排主流区中的堆积能够削弱后排叶片中气流扩压的过程,前排分离严重的情况下,后排叶片工作状态反而有所改善.在分析串列叶片工作特点的基础上,以CDA叶型分别替换常规叶型能够取得良好的效果.
回归型支持向量机的机翼结冰冰型预测%Airfoil Ice Shape Predictions Based on Support Vector Regression
Institute of Scientific and Technical Information of China (English)
周莉; 徐浩军; 龚胜科; 李大伟; 郭辉
2012-01-01
Aircraft icing has been one of the fatal causes to aircraft accidents. Considering the uncertainty of factors and difficulty in predicting accurately in airfoil ice shape predictions, a new predicting method based on support vector regression is proposed. Coefficients of polynomial can be obtained by using support vector regression based on the establishment of ice shape model. As a result, ice shape predictions under certain circumstance can be accomplished. The simulation results show that the method has good ability of prediction, and reliable icing information can be presented in time, which will benefit flight safety greatly under icing conditions.%飞机结冰严重威胁着飞行安全.针对机翼结冰冰型预测时不确定性因素较多、难以准确预测的问题,提出了一种基于回归型支持向量机的机翼结冰冰型预测方法.在建立冰型模型的基础上,利用回归型支持向量机(Support Vector Regression,SVR)获得冰型多项式系数,从而预测出相关飞行条件和大气条件下的冰型.仿真结果表明,该方法具有较好的预测能力,可以及时提供可靠的结冰信息,为保证结冰条件下的飞行安全提供了保障.
Han, J. C.; Chandra, P. R.
1987-01-01
The heat transfer characteristics of turbulent air flow in a multipass channel were studied via the naphthalene sublimation technique. The naphthalene-coated test section, consisting of two straight, square channels joined by a 180 deg turn, resembled the internal cooling passages of gas turbine airfoils. The top and bottom surfaces of the test channel were roughened by rib turbulators. The rib height-to-hydraulic diameter ratio (e/D) were 0.063 and 0.094, and the rib pitch-to-height ratio (P/e) were 10 and 20. The local heat/mass transfer coefficients on the roughened top wall and on the smooth divider and side walls of the test channel were determined for three Reynolds numbers of 15, 30, and 60, thousand, and for three angles of attack (alpha) of 90, 60, and 45 deg. Results showed that the local Sherwood numbers on the ribbed walls were 1.5 to 6.5 times those for a fully developed flow in a smooth square duct. The average ribbed-wall Sherwood numbers were 2.5 to 3.5 times higher than the fully developed values, depending on the rib angle of attack and the Reynolds number. The results also indicated that, before the turn, the heat/mass transfer coefficients in the cases of alpha = 60 and 45 deg were higher than those in the case of alpha=90 deg. However, after the turn, the heat/mass transfer coefficients in the oblique-rib cases were lower than those in the transverse rib case. Correlations for the average Sherwood number ratios for individual channel surfaces and for the overall Sherwood number ratios are reported. Correlations for the fully developed friction factors and for the loss coefficients are also provided.
Theoretical Investigation of the Vortex Shedding Noise from the Wake of Airfoil%机翼尾迹脱落涡噪声的理论研究
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The vortex shedding noise has been revealed as an important wing noise source on some modern commercial aircraft based on the fly-over measurements with a planar microphone array by Michel (1998). In this paper, an analytical model is presented for predicting this vortex shedding noise. The downstream wake of a 2-dimensional airfoil is assumed to be dominated by the von Karman vortex street, and the strength and the shedding frequency of the wake vortex are determined from the wake structure model. An aero-acoustic model is developed based on the Howe's unified theory of trailing edge noise and is incorpo-rated with the wake model to predict the sound pressure level and directivity of vortex shedding noise. The predicted vortex shedding frequencies, sound pressure levels and directivities compare favorably with the measured results for 6 modern commercial aircraft.%Michel等人1998年应用平面传声器阵列对飞机过顶噪声进行的测量研究首次发现，机翼尾迹脱落涡噪声是某些类型飞机重要的噪声源。为发展一种预测这种噪声源的理论预测模型，应用von Karman涡街模型模拟二维机翼下游尾迹脱落涡，尾迹涡的强度和脱落频率应用这个模型进行计算。基于Howe后缘噪声理论，并结合尾迹模型，本文发展了一种预测脱落涡噪声声压级和指向特征的气动声学模型。对6架现代商用飞机的机翼尾迹脱落涡噪声的计算表明，本文理论模型预测的涡脱落频率、声压级以及噪声的指向性等与实验测量结果有较好的一致性。
带地效翼型俯仰控制技术研究%Investigation on pitch control technique for an airfoil with ground effect
Institute of Scientific and Technical Information of China (English)
沈冬; 陈迎春; 张彬乾
2011-01-01
Aim to the pitch control problem of flying-wing configuration, a novel simple pitch control effector called a belly-flap is investigated to increase nose-up couple efficiently without unacceptable lift loss in this paper. Two-dimensional Reynolds-averaged Navier-Stokes calculations for various belly-flap configurations applied to an airfoil are described, and results are presented. The geometry parameters ( size, location, deflection angle) , ground effect and angle of attack are studied to detect their effects on the aerodynamic characteristics. The researches show that the optimized belly-flap can improve aerodynamic performance in take-off add landing conditions by bringing obvious increments in pitch up moment and lift. Aim to the additive drag increment complied with the belly-flap, many holes are disposed on the belly-flap. The researches show that those holes can decrease the additive drag and increase lift-drag ratio with few decrease in the pitch up moment. In conclusion, the belly-flap is an effective pitch control effector for the blended-wing-body in take-off and landing conditions.%为解决飞翼布局起降状态俯仰控制能力不足问题,研究一种新型的腹部扰流板俯仰控制装置.针对带地效翼型,采用数值计算方法,研究了扰流板高度、弦向位置、偏度、迎角、离地高度等参数对俯仰与升阻性能的影响及其流动机理,给出了扰流板设计原则.研究结果表明,在地效作用下,合适的扰流板弦向位置和高度与偏度配合,可提供显著的抬头力矩增量和较大的升力增量,有助于提高飞机起降性能.针对附加的较大阻力增量,扰流板面开孔影响探索性研究表明,开孔可减小附加阻力,提高升阻比,但使抬头力矩增量有所减小.扰流板是一种改善无尾飞翼布局俯仰操纵的有效措施,值得深入研究.
Institute of Scientific and Technical Information of China (English)
高永卫; 朱奇亮; 罗凯
2012-01-01
The dynamic parameters of gap flow of a multi-element airfoil have significant effect on its lift characteristics. Using wind tunnel experiments, the authors compared the changes of lift coefficients of a multi-element airfoil (GAW-1) under conditions of acoustic excitation on/off. The experiments were conducted in NF-3 wind tunnel. The sound pressure level (SPL) of internal acoustic excitation was 60dB. The results showed that the lift coefficients of the airfoil were reduced when disturbance were appended. The most decrement of lift coefficient is -1. 8%. This paper confirms that the designers should study the dynamic characteristics of flow near the gap. It should be noticed that the sources of error in experiment data analysis should include scale and quality of test model and the back ground sound pressure level of the wind tunnel.%采用风洞实验的方法,在不停风且固定迎角和几何构型的情况下,通过对比有、无人为脉动压力扰动时多段翼型升力特性的变化,证明多段翼型缝道流动的脉动参数(包括脉动速度和脉动压力)对其升力特性有着不可忽视的影响.人为扰动源为模型表面埋设的有源式蜂鸣器.蜂鸣器出口20mm处的声压级约为60dB.实验表明,在研究范围内,弱声学扰动可使翼型的升力系数降低.升力系数的减少量随扰动的位置、频率变化而变化,最大减少量为1.8％.提出在多段翼型的实验评估工作中需要注意风洞本底噪声、模型尺度、加工质量对缝道脉动压力和脉动速度等参数的影响以及相应升力特性的变化.
Flutter analysis of hypersonic airfoil skin by differential quadrature method%基于微分求积法的高超声速机翼蒙皮颤振研究
Institute of Scientific and Technical Information of China (English)
钮耀斌; 王中伟; 毛佳; 张礼学
2012-01-01
机翼蒙皮在高超声速气流中会发生颤振等气动弹性问题,破坏结构.引入微分求积方法,可以有效地分析机翼蒙皮的颤振问题.将机翼蒙皮等效成薄板,基于一阶活塞理论,根据克希霍夫假设及弹性理论建立蒙皮的气动弹性偏微分方程,采用微分求积法将偏微分方程离散为常微分方程,并根据频率重合理论对颤振问题进行求解.得到的颤振速度与有限元方法计算结果进行比较,误差为0 58％,验证了微分求积法在求解颤振偏微分方程时的有效性.分析了蒙皮面积、厚度、纵横比等不同参数对蒙皮颤振速度的影响.结果表明,颤振速度随蒙皮面积的增大而减小,随纵横比、厚度的增大而增大.%Flutter analysis plays a vital role in the design of hypersonic airfoil skin. This research introduces he differential quadrature method into the aeroelastic problem of hypersonic skin. The aeroelastic model was presented based on the elasticity theory, and the hypersonic piston theory was used for the modeling of supersonic aerodynamic loads. The validity of the differential quadrature method was confirmed by comparing the FEM solutions for the natural frequencies and the flutter velocity of the airfoil skin, and the relative error is 0. 58%. A detailed parametric study was carried out to study the influences of the thickness, area and aspect ratio on the hypersonic flutter behavior of airfoil skins. The result shows that, the flutter velocity increases with the aspect ratio and thickness increased, and decreases with the area increased.
Institute of Scientific and Technical Information of China (English)
李德顺; 李仁年; 杨从新; 王秀勇; 李银然
2011-01-01
Analysis of Circulation Controlled Airfoils
1975-06-01
NEPS NBPTS KUTTA NAEQN AK HI NT oC <degrees) Re«, N^ N B N. K N Lift coefficient Angle of attack Free stream Reynolds number...BT.RLE.RTE) C INPUT SHOULD BE COMPLETE , i - NPRNT = 0 NLE = NBPTS /2 * 1 PI = 3.141593 TOPI ■ 6.283185 RADEG = 360...5)*DPHi_^~ 4 PCNEPS+J) = <J-1J*DPHI CALCULATE EPSILON DO 5 J=1,NEPS LL = 1 IF (J .GT. 1) LL 5 JJ=LL, NBPTS (Z0( JJ
Institute of Scientific and Technical Information of China (English)
李传峰; 徐宇; 宋娟娟; 赵晓路; 徐建中
2012-01-01
引入试验中正交设计的思想，通过数值模拟研究了风力机翼型尾缘襟翼不同参数的影响。采用带有转捩模型的SSTk—u湍流模型模拟了基于S809的尾缘襟翼的尺寸、偏斜角度和形状的影响。结果表明：尾缘襟翼尺寸、偏斜角度对于翼型相关气动参数影响较大，在考查参数范围内折中采用10％弦长、偏斜10°的尾缘襟翼综合性能较好；尾缘襟翼形状函数影响相对较小，采用变化较平缓的尾缘襟翼有利于保持流动稳定性。%Introducing the orthogonal experimental design method, influences of different parameters such as the size, angle and shape, on the wind turbine airfoil S809 with a trailing edge flap are studied using SST k - w turbulence model with a transition model. The results indicate that the flap size and angle have big influences on aerodynamic properties of wind turbine airfoil. Among the studied parameters, the flap with 10% chord length and 10° flap angle obtains better performances. The shape of the flap has relatively smaller influences, but it makes for a stable flowfield using a mildly changing flap shape.
Institute of Scientific and Technical Information of China (English)
王博; 马贵春; 陈阳; 董浩
2016-01-01
无人机机载导弹发射产生的尾喷流对机翼的气动干扰影响载机飞行安全。本研究以Fluent软件为基础，采用二维非结构动网格技术并选择标准k-ω二方程湍流模型，对导弹沿导轨弹射滑行后点火和直接点火的发射过程分别进行数值模拟，并对两组结果进行对比。结果表明：滑弹一体式发射装置在一定程度上降低导弹尾喷流对机翼的气动影响。该研究为无人机导弹滑弹一体式发射装置的研究提供一定参考。%When airborne missile launched from UAV , its exhaust jet has an impact on UAV airfoil and safety .This study is based on two-dimensional unstructured dynamic grids and standard k-omega tow-equation turbulence model of the software Fluent .In this research differ-ence between missile ignition firing and ignition firing after ejection was analyzed , and these two results were compared .The results show that the rail-catapult integrated launcher can reduce aerodynamic influence on airfoil caused by missile exhaust jet stream .The results will provide certain reference for research of rail-catapult integrated missile launcher of UAV .
Institute of Scientific and Technical Information of China (English)
孟凡英; 吕晓军
2014-01-01
针对农业灌溉中对轴流泵性能的要求，为了更深入的研究该轴流泵的性能特性，研究了NACA0006对称翼型导叶的轴流泵性能，利用计算流体动力学软件Fluent ，采用RNG k-ε湍流模型和SIMPLEC算法对该轴流泵进行数值模拟。通过对其进行数值计算和对比分析表明，设计工况下的数据值不仅与 Fluent软件模拟的数据值相对误差为1．9％，并且应用Fluent软件模拟计算得到泵的性能曲线与性能实验的结果吻合较好，证明了在轴流泵导叶设计中，NACA0006翼型不仅结构简单、适用性良好，而且取得了更高的效率。%For the requirements of axial flow pump performance in agricultural irrigation ,in order to research the characteristics of axial-flow pump further ,the performance of axial guide vane by NACA 0006 symmetrical air-foil flow pump was studied .Through the computational fluid dynamics software of Fluent and RNG k -εtur-bulent model and SIMPLEC algorithm ,the axial flow pump was simulated .The numerical calculation and com-parative analysis showed that relative error of data was 1 .9% with data stimulated by Fluent software under design condition ,and the performance curve and experiment results simulated by application of Fluent software were in good agreement .It proved that the design of flow pump in axial guide vane ,NACA0006 airfoil had sim-ple structure and good applicability ,and it could achieve higher efficiency .
Institute of Scientific and Technical Information of China (English)
曹丽华; 于靖雯; 程朝卿; 李勇
2015-01-01
In order to further investigate the flow characteristics of the circulating water after the secondary filter in the pipe of the condenser, the standard k-ε turbulence model and the 3D uncompressible Reynolds time-averaged N-S equations based on finite volume method are adopted to simulate the influence of the different shapes of secondary filter lath to the flow characteristics.The results show that the secondary filter with the airfoil-shaped splice lath can decrease the pipe pressure before the filter and the pressure drop of the filter.It also can reduce the distribution of low-velocity zone,making the flow get better uniformity.In addition, under the conditions of the different flow velocities, the secondary filter with the airfoil-shaped splice lath makes lower flowing resistance to improve the flow characteristics.This paper can provide reference to the optimization design of filter structure.%为了进一步研究凝汽器循环水管道二次滤网后水流的流动特性,应用k-ε湍流模型,基于有限体积法求解三维不可压缩雷诺时均N-S方程,模拟分析了不同网板条形状的二次滤网对水流流动特性的影响.结果表明:采用翼形网板条搭接型二次滤网时,滤网前管道所受压力及流经滤网时产生的压降均较小,滤网后低速水流带较少,水流分布均匀.不同来流速度时,翼形网板条搭接型二次滤网所产生的流动阻力较小,从而改善了流动特性.可为滤网结构的优化设计提供一定的参考.
Institute of Scientific and Technical Information of China (English)
王江峰; 伍贻兆; Periaux J
2003-01-01
New parallel hierarchical multi-objective optimization approaches based on Genetic Algorithms (GAs) with Nash scenarios of Game Theory (GT) are investigated for solving inverse multi-element airfoil design problems in aerodynamics on distributed parallel environments. A multi-objective optimization methodology presented here relies on binary coded GAs and coupled with GT. The design variables of such optimization problems are split among several players, the global multi-criterion optimization problem being replaced by several sub optimizations operating in the decomposed search space. A shape/position reconstruction problem (inverse problem) for a multi-element airfoil in compressible potential flow is solved using Parallel Hierarchical GAs coupled a Nash game with a hierarchy based on unstructured meshes. Numerical results, compared with sequential algorithms, show that parallel hierarchical GAs combined with Nash strategy are more efficient and robust than simple GAs and this method could be used with high efficiency for complex multi-criteria optimization problems in aerodynamics.%构造了一种新型基于基因算法与博弈论的并行分级多目标优化方法,并应用于多段翼型气动反设计.此方法基于二进制编码的基因算法和博弈论,优化变量被分配给不同的博弈者,因而总体优化问题转变为分裂空间中的局部优化问题.文中给出了一个多段翼型形状/位置可压位流的反设计问题的求解算例,引入了基于非结构网格的分级结构.与传统基因算法数值算例的对比表明了本文构造的并行分级算法具有较高的计算效率,可广泛应用于多目标优化问题.
Institute of Scientific and Technical Information of China (English)
张征; 吴和龙; 吴化平; 鲍雨梅
2012-01-01
探讨可变形机翼中使用双稳态复合材料层合壳结构驱动其变形的潜力.基于最小势能原理,采用有限元法对不同铺层形式、不同材料组分的反对称双稳态复合材料层合壳的力学模型进行了数值模拟和详细讨论,计算确定结构几何尺寸和材料参数对结构卷曲半径的定量影响程度.进而,运用研究得到的层合壳的结构性能,对三种机翼变形方式包括机翼的弯曲变形、平面变化和弦长改变采用双稳态结构驱动进行了分析和讨论,初步探讨其应用于可变形机翼的适用性,并给出一些有益的结果.%The deformative potential of using bistable laminated composite structures for morphing airfoil section was investigated in the paper. Based on the principle of minimum potential energy, the different kinds of lay-ups and material components were simulated successfully by finite element method and then discussed in detail about the anti symmetric lay-up bistable composite shell structures. The quantitative influence of the curvature radii by the geometry dimensions and material parameters through finite element simulation were discussed. Using the obtained structure properties of the anti-symmetric lay-up shell, three kinds of shape morphing wings including the span-wise bending, chord length change and span change were analyzed and discussed. The primary inquiry shows that the bistable composite structure can be used to drive the morphing airfoil with some beneficial results.
Institute of Scientific and Technical Information of China (English)
刘峰; 邹建锋; 郑耀
2013-01-01
The effect of synthetic jets on controlling flow separation over a NACA0015 airfoil was numerically analyzed using computational fluid dynamic (CFD) method. The synthetic jets were located at 12%c, 30%c and 70%c, respectively, from the leading edge (c is the chord length of the airfoil). The trends of flow separation control effect at these locations with the variation of angle of attack (AOA) and jet angle were analyzed. Meanwhile, the locations, phase angle and momentum coefficient of multi-location synthetic jets were analyzed. The two-dimensional unsteady incompressible Navier-Stokes equations were used to simulate unsteady separated flows. SST turbulence model was utilized for the computation, and the pressure-implicit with splitting of operators (PISO) algorithm was utilized for pressure correction. An implicit numerical treatment was adopted for time integral and the second order upwind scheme for space discretization. The numerical results show that: 1) when synthetic jets are located at 12%c, 30%c and 70%c from the leading edge, the tangential jet shows better control effect than normal jet; 2) for single and multi-location synthetic jets, the jet locations should be close to the separation point or prior to the separation point, only in this occasion can the purpose of flow control be achieved, and the closer the jet locations to the separation point, the better control effect can be expected; 3) the performance of multi-location synthetic jets can be improved by changing phase angle of multi-location synthetic jets.%应用计算流体力学(CFD)技术数值模拟了合成射流对NACA0015翼型流动控制的影响.合成射流施加的位置分别距离翼型前缘12％c、30％c和70％c(c为翼型的弦长),研究分析在不同位置施加合成射流,控制流动分离的效果随攻角和射流偏角的变化趋势,对组合射流的位置、相位角和动量系数进行研究.以二维不可压非定常Reynolds-averaged Navier-Stokes(RANS)方程
Institute of Scientific and Technical Information of China (English)
王海民; 林浩; 黄雄; 周裁民
2012-01-01
运用轴流泵孤立叶片设计方法,设计了基于Gottingen翼型的前置导流叶片,并对离心泵预旋调节的基本规律及调节机理进行了试验研究.通过对比前置导叶的不同安装方式对单吸离心泵效率、功率的影响,发现单吸离心泵采用前置导叶长弦端靠近中心轴的安装方式对离心泵外特性的改善效果要优于前置导叶短弦端靠近中心轴的安装方式,而且长弦端靠近中心轴安装方式前置导叶能够有效拓宽离心泵的高效运行范围,改善其在非设计工况下的水力性能,且与无前置导叶工况相比,最高效率可提高2.3％,从而达到为离心泵增效节能的目的.%The guide vanes were designed by using the axial flow pumps isolated blade design method based on Gottingen airfoil blade. The experimental studies on the basic rule and the regulatory mechanisms of prewhirl regulation for the centrifugal pump were made. Comparison experiment tests showed that the inlet guide vane installed with long-string side close to the center axis on the improvement of the external characteristics of centrifugal pump was better than the other. Also the inlet guide vane installed with long-string side close to the center axis has enlarged the high efficiency scope and improved the hydraulic performance of the centrifugal pump. When compared with the performance of the centrifugal pump without inlet guide vane, the peak value of efficiency was enhanced by 2. 3 % after the guide vane was installed. This method improved efficiency and saved energy for the centrifugal pump.
Institute of Scientific and Technical Information of China (English)
范彩霞; 胡瑞华; 尹点点
2013-01-01
Nowadays, most of the computer-aided manufacturing technology considers cutter location path generation from the geometric view, but seldom considers the physical properties of processing resource in real machining, such as machine tool, fixtures, work piece, cutters, etc, and the reason for the high-quality process planning is fewer in production practice. Here the example given is process parameters analysis and design of NACA4412 Die-cavity; first, fittings airfoil section curve of NACA4412 based on data point of back and basin of blade, builds the 3D model of die-cavity of back blade; second, it analyses the metal removal rate and its applications in roughing process design;last, it inclines the work piece in fixture, and increases the diameter of the cutting tool and the effective cutting speed to obtain a higher finishing quality and processing efficiency.%现有的计算机辅助制造(Computer-aided manufacturing,CAM)技术大多只从几何角度考虑加工轨迹的生成,极少考虑实际加工时机床、夹具、工件、刀具等加工资源的物理特性,造成生产实践中高质量的工艺规划较少.以NACA4412翼型模具型腔数控工艺参数的分析与设计为例,首先基于叶背和叶盆数据点拟合NACA4412叶片翼剖面曲线,建立叶背模具型腔三维模型；其次分析金属去除率及其在粗加工工艺设计的应用；最后,将工件倾斜装夹,增大刀具直径和有效切削速度,获得较高的精加工质量和加工效率.
Institute of Scientific and Technical Information of China (English)
徐林程; 王刚; 武洁; 叶正寅
2014-01-01
基于自动微分原理和 NS 方程有限体积方法建立了一套翼型敏感性导数计算方法和程序，可以一次性获得翼型不同气动力系数、压力分布对模型几何外形误差的敏感性导数和不确定度。计算结果表明，在跨声速范围内，即使翼型的外形误差只有63μm（弦长1m），也可以给翼型压力分布带来0．312（以来流动压为参考）量级的不确定度，而激波处的流动最为敏感。这种自动微分方法对于分析数值模拟结果的分散性、风洞试验结果的分散性或不确定性具有很好的指导意义。%Focused on the quantification of the uncertainties of areodynamics performance of airfoils with respect to geometry error,with a set of CFD program based on finite volume algorithm solving the Reynolds-Averaged Navier-Stokes equations with S-A turbulent model,adopting automatic differentiation method to reform the program simultaniously,all kinds of sensitive derivatives,uncertainties of all kinds of aerody-namic coefficients and pressure coefficients distribution resulting from geometry error could be obtained in one course of computation.As the computational results show,even if the geometry error is only 63 microns (while the length of chord is 1 meter),the pressure distribution of the walls could be influenced obviously with uncertainty quantity reaching 0.312 (taking dynamic pressure of the flow as reference)for an airfois in transonic flow,moreover,pressure attached to the place where shock wave stationed bears peak uncertainty. the results of method of automatic differentiation account for the dispersity of results of numeric simulations and wind tunnel experiments well.
Institute of Scientific and Technical Information of China (English)
白越; 曹萍; 高庆嘉; 孙强
2011-01-01
In this paper, a concept of multi rotor micro air vehicle ( MAV), which can motion to any direction even rolling on the ground, was presented. Three configurations of this vehicle were analyzed and the equations of motion were built. The vehicle has smaller sizes of shape, lighter weight and lower flight speed. As a result, Reynolds number of airfoil for this vehicle, based on rotor velocity, rotor chord length and flight mode of the vehicle, was varied from 1×104 to 12.8×104. A fairly conventional low Reynolds number airfoil section (Eppler 387 ) was chosen for the analysis. Aerodynamic characteristics of airfoil at low Reynolds number were investigated in order to better understand the behavior of airfoils in different flight regime using conformal hybrid meshes. The lift coefficient, drag coefficient and ratio of lift coefficient to drag coefficient at Reynolds number of 1×104, 2×104, 3×l04 and 6×104, respectively, for a series of attack angle, were obtained, no study at Reynolds number less than 6×104 before. The results of simulation were compared to the results of experiment and the agreement of trend of both is very well.%提出了一种新结构的六转子无人飞行器的概念,该飞行器可以在空间任意方向飞行,甚至可以在地面上滚动前进.分析了其可能的三种构型并给出了各自的运动方程,给出了三轴解耦时该飞行器的配置方式及转子空间位置.由于该飞行器具有小尺寸外形、低重量和飞行速度慢的特点,根据转子速度、弦长和飞行模态,计算得该飞行器的雷诺数变化范围为1×104到12.8×104.以选用的Eppler 387翼型作为分析对象,采用正投影混合网格方法对其在低雷诺数下的气动性能进行研究,得到了雷诺数分别为1×104,2×104,3×104和6×104下对应不同迎角的升力系数、阻力系数和升阻比,并对雷诺数为6×104下的升力系数仿真结果同试验结果进行了对比,二者具有较好的一致性.制
Analysis of flow separation over aerodynamic airfoils
Rodríguez Sánchez, Sergio Jesús
2014-01-01
Energy industries are nowadays struggling with the most effcient source of energy generation. The list of energy resources is huge starting with traditional coal and going through the different technologies until reaching the controversial nuclear reactors. One of the most interesting areas in energy generation is the renewable energy technologies. Among the different renewable energy sources, this project will be focused on eolic energy generation via horizontal axis wind turbine...
Aeroacoustic Computations for Turbulent Airfoil Flows
DEFF Research Database (Denmark)
Shen, Wen Zhong; Zhu, Wei Jun; Sørensen, Jens Nørkær
2009-01-01
The How-acoustic splitting technique for aeroacoustic computations is extended to simulate the propagation of acoustic waves generated by three-dimensional turbulent flows. In the flow part, a subgrid-scale turbulence model (the mixed model) is employed for large-eddy simulations. The obtained in...
NUMERICAL SIMULATION OF ICE ACCRETION ON AIRFOIL
Directory of Open Access Journals (Sweden)
Nicusor ALEXANDRESCU
2009-09-01
Full Text Available This work consists in the simulation of the ice accretion in the leading edge of aerodynamic profiles and our proposed model encompasses: geometry generation, calculation of the potential flow around the body, boundary layer thickness computation, water droplet trajectory computation, heat and mass balances and the consequent modification of the geometry by the ice growth. The flow calculation is realized with panel methods, using only segments defined over the body contour. The viscous effects are considered using the Karman-Pohlhausen method for the laminar boundary layer. The local heat transfer coefficient is obtained by applying the Smith-Spalding method for the thermal boundary layer. The ice accretion limits and the collection efficiency are determined by computing water droplet trajectories impinging the surface. The heat transfer process is analyzed with an energy and a mass balance in each segment defining the body. Finally, the geometry is modified by the addition of the computed ice thickness to the respective panel. The process by repeating all the steps. The model validation is done using a selection of problems with experimental solution, CIRA (the CESAR project. Hereinafter, results are obtained for different aerodynamic profiles, angles of attack and meteorological parameters
Dynamic stall model for wind turbine airfoils
DEFF Research Database (Denmark)
Larsen, J.W.; Nielsen, S.R.K.; Krenk, Steen
2007-01-01
A model is presented for aerodynamic lift of wind turbine profiles under dynamic stall. The model combines memory delay effects under attached flow with reduced lift due to flow separation under dynamic stall conditions. The model is based on a backbone curve in the form of the static lift...... conditions, nonstationary effects are included by three mechanisms: a delay of the lift coefficient of fully attached flow via a second-order filter, a delay of the development of separation represented via a first-order filter, and a lift contribution due to leading edge separation also represented via...... during dynamic stall conditions. The proposed model is compared with five other dynamic stall models including, among others, the Beddoes-Leishman model and the ONERA model. It is demonstrated that the proposed model performs equally well or even better than more complicated models and that the included...
Aerodynamic Characteristics of Airfoils. Volume 4.
1927-01-01
8-6-4 -2 02a46 a 10 12 14 16is 20 2Angie of Attack in Degrees. Angle of Attack in Deprese . I~r xi N . A rxi (\\I ) M ITTll IK’ FORi AERONAUT~ICS RFM...8217 ~ 86--20a2 46 a10 12 14 163826 D Aogle of Attack in Deprese . Angle of it tak in Deprese . A II~ il A CHC ARACTERIISTICS OF Al RFOILS-i V 205 nzmuRRCS
Evaluation of airfoils for small wind turbines
A new set of blades have been designed, fabricated, and tested at the United States Department of Agriculture-Agricultural Research Service-Conservation and Production Research Laboratory in Bushland, Texas in an attempt to improve the overall performance of small (1-10 kilowatt) wind turbines. The ...
A demonstration of simple airfoils: Structural design and materials choices
Energy Technology Data Exchange (ETDEWEB)
Bunnell, L.R. (Pacific Northwest Lab., Richland, WA (United States)); Piippo, S.W. (Richland School District, WA (United States))
1993-01-01
An educational unit is presented for building and evaluating simple wing structures, in order to learn about materials choice and lightweight construction. This unit is appropriate for a high school materials science class or lower-division college courses in structural engineering, materials science, or aeronautical engineering.
High frequency microphone measurements for transition detection on airfoils
DEFF Research Database (Denmark)
Døssing, Mads
pressure) and Tollmien-Schlichting frequencies. The tests were made at Reynolds and Mach numbers corresponding to the operating conditions of a typical horizontal axis wind turbine (HAWT). The Risø B1-18, Risø C2-18 and NACA0015 profiles were tested and the measured transition points are reported....
A dynamic stall model for airfoils with deformable trailing edges
DEFF Research Database (Denmark)
Andersen, Peter Bjørn; Gaunaa, Mac; Bak, Dan Christian;
2007-01-01
The present work contains an extension of the Beddoes-Leishman (B-L) type dynamic stall model, as described by Hansen et al. [7]. In this work a Deformable Trailing Edge Geometry (DTEG) has been added to the dynamic stall model. The model predicts the unsteady aerodynamic forces and moments...
Experimental benchmark and numerical validation of a free heaving airfoil
Sterenborg, J.J.H.M.; Van Zuijlen, A.H.; Bijl, H.
2011-01-01
In order to validate fluid-structure interaction solvers, a one degree of freedom (1 DOF) aeroelastic experiment is performed. A rigid wing with an harmonically actuated flap, is suspended by springs to allow a free heaving motion. Displacements and time dependent aerodynamic forces are measured for
An Investigation of Airfoil Dynamic Stall with Large Amplitude Motions.
1983-10-01
solid aluminum pieces and excavated to provide interior mounting locations for nineteen (19) miniature piezo -resistive pressure transducers. A side...PRESSURE MEASUREMENT SYSTEM Unsteady pressures were measured by miniature, dynamic piezo -resistive transducers possessing a high frequency response...motions introduces - another possible source of "contamination," namely, the influence of -. flow phenomena which are either multiples or subharmonics
Correlation of Puma airfoils - Evaluation of CFD prediction methods
Strawn, Roger C.; Desopper, Andre; Miller, Judith; Jones, Alan
1989-01-01
A cooperative program was undertaken by research organizations in England, France, Australia and the U.S. to study the capabilities of computational fluid dynamics codes (CFD) to predict the aerodynamic loading on helicopter rotor blades. The program goal is to compare predictions with experimental data for flight tests of a research Puma helicopter with rectangular and swept tip blades. Two topics are studied. First, computed results from three CFD codes are compared for flight test cases where all three codes use the same partial inflow-angle boundary conditions. Second, one of the CFD codes (FPR) is iteratively coupled with the CAMRAD/JA heilcopter performance code. These results are compared with experimental data and with an uncoupled CAMRAD/JA solution. The influence of flow field unsteadiness is found to play an important role in the blade aerodynamics. Alternate boundary conditions are suggested in order to properly model this unsteadiness in the CFD codes.
Design and Experimental Results for the S407 Airfoil
2010-08-01
the drag coefficient within the laminar bucket is nearly constant. (See, for example, ref. 7.) This characteristic is related to the elimination of...with increasing (or decreasing) lift coefficient. This feature results in a leading edge that produces a suction peak at higher lift coefficients, which...distribution should look like sketch 3. Sketch 3 No suction spike exists at the leading edge. Instead, a rounded peak occurs aft of the leading edge, which
Intermittent Flow Regimes in a Transonic Fan Airfoil Cascade
Directory of Open Access Journals (Sweden)
J. Lepicovsky
2004-01-01
velocity.To date, this flow behavior has only been observed in a linear transonic cascade. Further research is necessary to confirm this phenomenon occurs in actual transonic fans and is not the by-product of an endwall restricted linear cascade.
Coating-Substrate Systems for Thermomechanically Durable Turbine Airfoils
2015-06-30
Department Building 503, Room 1355 Santa Barbara, CA 93106 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Office of Naval Research 8...approach has been to study in detail degradation mechanisms during thermomechanical cycling under isothermal fatigue conditions with sustained ...layers of surface protection. For example, yttria-stabilized zirconia (YSZ) thermal barrier coating systems are applied to nickel-base single crystals
Aerodynamic Characteristics of Airfoils with Blunt Trailing Edge
Directory of Open Access Journals (Sweden)
Alejandro Gómez
2006-11-01
Full Text Available El siguiente trabajo estudia de manera computacional el comportamiento de las características aerodinámicas de perfiles NACA (National Advisory Committee for Aeronautics, hoy conocido como NASA, con modificaciones en el borde de salida. Las modificaciones consisten en remover secciones del borde de fuga del perfil. La investigación realizada estudia 39 perfiles diferentes de la familia NACA de 4 dígitos, con modelos teóricos sencillos para explicar los fenómenos. Los resultados muestran los cambios en las características de sustentación y arrastre del perfil, y cambios en cuanto a la entrada en pérdida del mismo./ This paper is a computational study of the behaviour of aerodynamic characteristics of NACA (National Advisory Committee for Aeronautics, today known as NASA profiles with tailored trailing edges. 39 different profiles 4-digit NACA family were studied during the research. A computational research was made, using simple theoretical models to explain and to understand the results. The results describe the changes in lift and drag characteristics and changes in stall angle of attack.
A Novel SMA-based Concept for Airfoil Structural Morphing
Barbarino, S.; Pecora, R.; Lecce, L.; Concilio, A.; Ameduri, S.; Calvi, E.
2009-08-01
The adaptive structures concept is of great interest in the aerospace field because of the several benefits which can be accomplished in the fields including noise reduction, load alleviation, weight reduction, etc., at a level in which they can be considered as compulsory in the design of future aircraft. Improvements in terms of the aerodynamic efficiency, aeroelastic behavior, stability, and manoeuvrability performance have already been proved through many international studies in the past. In the family of the Smart Materials, Shape Memory Alloys (SMA) seem to be a suitable solution for many static applications. Their high structural integrability in conjunction with actuation capabilities and a favorable performance per weight ratio, allows the development of original architectures. In this study, a morphing wing trailing edge concept is presented; morphing ability was introduced with the aim of replacing a conventional flap device. A compliant rib structure was designed, based on SMA actuators exhibiting structural potential (bearing external aerodynamic loads). Numerical results, achieved through a FE approach, are presented in terms of trailing edge induced displacement and morphed shape.
Comparisons of Theoretical Methods for Predicting Airfoil Aerodynamic Characteristics
2010-08-01
Reynolds numbers tested, by properly-sized zig - zag turbulator tape. Both the grit roughness and the turbulator tape were employed to simulate full-chord...models were produced from solid aluminum using a numerically-controlled milling machine. Each model has approximately 33 pressure orifices on the