WorldWideScience

Sample records for aire acondicionado solar

  1. El ruido en instalaciones de aire acondicionado

    Directory of Open Access Journals (Sweden)

    Alamán, Aurelio

    1964-04-01

    Full Text Available This article gives a general account of the noise problem in air conditioning systems. This problem causes grave concern to the technicians owing to its influence on the comfort of the buildings concerned. The acceptable levels of noise are discussed, also their codification into general specifications. Methods are given to test whether a given installation satisfies such noise specifications, and the means that are usually adopted to prevent air conditioning noise from extending into inhabited rooms. The study of the limitation of noise to a comfortable level depends both on the noise specifications and the actual design of the installation. Scale «A» is utilised in connection with the specifications, and the sound spectral curves are part of the design technique, which enables to obtain the cheapest design for the same level of comfort. The designer needs the fullest cooperation of the manufacturers, who should supply him with detailed accoustical data about the equipment. This applies both to installations that will produce noise and to the material that is meant to absorb it.Se expone en este artículo una idea general del problema del ruido en instalaciones de aire acondicionado, problema que preocupa hondamente en los medios técnicos correspondientes, por su gran influencia en el confort de los edificios. Se dan las cifras de niveles de presión sonora admisibles, recomendables para un Pliego de Condiciones, y el procedimiento para comprobar si las instalaciones terminadas lo cumplen, así como los medios normalmente utilizados para evitar la emisión de ruido a los locales habitados. Para el estudio del confort sonoro se recomienda tener en cuenta, tanto en el Pliego de Condiciones (mediante el empleo de la escala «A» como en el estudio de la eliminación de ruidos, al proyectar la instalación (mediante las curvas espectrales que se indican, no solamente el nivel sonoro global, sino, de acuerdo con la tendencia mundial, el espectro

  2. Voltage controller design for air conditioning; Diseno de controlador de voltaje para aire acondicionado

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Andrade, R; Lopez Villalobos, J.J; Valderrama Chairez, J; Ramirez, R.L. [Instituto Tecnologico de Nuevo Leon, Guadalupe, Nuevo Leon (Mexico)]. E-mails: roxana_garciaandrade@yahoo.com; xe2n@yahoo.com.mx; jose.valderrama@ieee.org

    2013-03-15

    This paper discusses the design of a voltage controller for an air conditioning system in order to generate additional power in activation or startup of the system, for which as a first stage is presented the modeling power generation of electric current through alternative means, such as solar energy. The results of this study will be the basis for development of the physical prototype of this system controller. [Spanish] El presente trabajo trata sobre el diseno de un controlador de voltaje para un sistema de aire acondicionado con el fin de generar energia adicional en la activacion o arranque de dicho sistema, para lo cual como primer fase se presenta el modelado de la generacion de corriente electrica mediante medios alternos, como lo es la energia solar. Los resultados de este trabajo seran la base para desarrollo del prototipo fisico de este sistema controlador.

  3. Estimated saving potential and efficient use of energy in air conditioning by means of the solar protection; Potencial estimado de ahorro y uso eficiente de energia en aires acondicionados mediante la proteccion solar

    Energy Technology Data Exchange (ETDEWEB)

    Mejia D, David; Morillon G, David; Rodriguez V, Luis [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    2001-07-01

    In here it is presented the analysis of the impact of the solar gains through the transparent parts of a prototype house of social interest, located in a dry warm climate. This analysis was made to determine the gains through windows for the summer time and under the following conditions: without outside solar protections, with the use of eaves, solar breakers and finally with the use of both systems of solar protection. The results were compared to obtain the considered potential of energy saving in cooling equipment, that could be obtained in future houses to build. [Spanish] Se presenta el analisis del impacto de las ganancias solares a traves de las partes transparentes de un prototipo de vivienda de interes social, ubicado en un clima calido seco. Dicho analisis se realizo para determinar las ganancias a traves de ventanas para la epoca de verano y bajo las siguientes condiciones: sin protecciones solares exteriores, con el empleo de aleros, con quiebrasoles y finalmente con el empleo de ambos sistemas de proteccion solar. Se compararon los resultados para obtener el potencial estimado de ahorro de energia en equipo de enfriamiento, que se tendria en las futuras viviendas por construir.

  4. El uso de humidificadores como alternativa energética al aire acondicionado: caso de un edificio docente en Santiago de Compostela

    Directory of Open Access Journals (Sweden)

    Fernando Blanco Silva

    2012-01-01

    Full Text Available El presente artículo es una propuesta para reducir la temperatura en un espacio denominado Claustro en el edificio Escuela Técnica Superior de Ingeniería, de la Universidad de Santiago (U.S.C.. Este espacio dispone de un lucernarioabierto con alta radiación solar y que en verano llega a alcanzar los 37ºC. El espacio tiene un volumen de unos 7.000 m3 y una instalación convencional de aire acondicionado es demasiado cara. Nuestra propuesta para reducir la temperatura es aumentar la humedad en el ambiente y una renovación simultánea del aire, con un coste más reducido y menos energía consumida.

  5. Saving 50% of energy in air conditioning and refrigeration; 50% de ahorro de energia en aire acondicionado y refrigeracion

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez De la Fuente, Rodolfo Javier [Instituto para la Proteccion Ambiental de Nuevo Leon-CAINTRA, Nuevo Leon (Mexico); Bolado Tamez, Jaime Antonio [Industrias AlEn S. A. de C. V., Monterrey (Mexico)

    1998-12-31

    Due to the fact that the air conditioning systems represent up to 70% of the energy consumption in our buildings, to the constant raise of the electric tariffs and to the increment of temperatures in Nuevo Leon State, as well as the restrictions on the use of some refrigerant fluids because of its potential damage to the ozone layer (Montreal Protocol) and the preferential use of refrigerants with low global heating potential (Kioto Protocol). The Camara de la Industria de la Transformacion de Nuevo Leon (Nuevo Leon`s Transformation Industry Chamber) through the Instituto para la Proteccion Ambiental de Nuevo Leon (Nuevo Leon`s Institute for Environmental Protection), create the program ECO-REFRIGERATION whose three missions are: Increase the efficiency of air conditioning and refrigeration equipment, promote the substitution of refrigerants and extend the benefits of these projects to the community in general. [Espanol] Debido a que los sistemas de climatizacion representan hasta el 70% de consumo energetico en nuestros inmuebles, al constante incremento de las tarifas electricas, el incremento de las temperaturas en Nuevo Leon, asi como la restriccion del uso de algunos refrigerantes por su potencial de dano de la capa de ozono (Protocolo de Montreal) y el uso preferente de refrigerantes con bajo potencial de calentamiento global (Protocolo de Kioto), la Camara de la Industria de la Transformacion de Nuevo Leon a traves del Instituto para la Proteccion Ambiental de Nuevo Leon crean el Programa ECO-REFRIGERACION cuyas tres misiones son: Incrementar la eficiencia de los equipos de aire acondicionado y refrigeracion, promover la sustitucion de refrigerantes y extender los beneficios de este proyecto a la comunidad en general.

  6. Saving 50% of energy in air conditioning and refrigeration; 50% de ahorro de energia en aire acondicionado y refrigeracion

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez De la Fuente, Rodolfo Javier [Instituto para la Proteccion Ambiental de Nuevo Leon-CAINTRA, Nuevo Leon (Mexico); Bolado Tamez, Jaime Antonio [Industrias AlEn S. A. de C. V., Monterrey (Mexico)

    1999-12-31

    Due to the fact that the air conditioning systems represent up to 70% of the energy consumption in our buildings, to the constant raise of the electric tariffs and to the increment of temperatures in Nuevo Leon State, as well as the restrictions on the use of some refrigerant fluids because of its potential damage to the ozone layer (Montreal Protocol) and the preferential use of refrigerants with low global heating potential (Kioto Protocol). The Camara de la Industria de la Transformacion de Nuevo Leon (Nuevo Leon`s Transformation Industry Chamber) through the Instituto para la Proteccion Ambiental de Nuevo Leon (Nuevo Leon`s Institute for Environmental Protection), create the program ECO-REFRIGERATION whose three missions are: Increase the efficiency of air conditioning and refrigeration equipment, promote the substitution of refrigerants and extend the benefits of these projects to the community in general. [Espanol] Debido a que los sistemas de climatizacion representan hasta el 70% de consumo energetico en nuestros inmuebles, al constante incremento de las tarifas electricas, el incremento de las temperaturas en Nuevo Leon, asi como la restriccion del uso de algunos refrigerantes por su potencial de dano de la capa de ozono (Protocolo de Montreal) y el uso preferente de refrigerantes con bajo potencial de calentamiento global (Protocolo de Kioto), la Camara de la Industria de la Transformacion de Nuevo Leon a traves del Instituto para la Proteccion Ambiental de Nuevo Leon crean el Programa ECO-REFRIGERACION cuyas tres misiones son: Incrementar la eficiencia de los equipos de aire acondicionado y refrigeracion, promover la sustitucion de refrigerantes y extender los beneficios de este proyecto a la comunidad en general.

  7. Controlled environment laboratory for the energy certification of refrigeration and air conditioning systems; Laboratorio de ambiente controlado para la certificacion energetica de sistemas de refrigeracion y aire acondicionado

    Energy Technology Data Exchange (ETDEWEB)

    Ambriz, Juan Jose; Romero Paredes, Hernando; Dorantes, Ruben [Universidad Autonoma Metropolitana, Mexico, D.F. (Mexico)

    1999-07-01

    In this paper the general characteristics of the Controlled Environment Laboratory (CELAB) are described and some of the possible tests that could be performed in this device to evaluate the energy efficiency in air conditioning systems, domestic refrigeration and industrial refrigeration, as well as tests to evaluate the hydrothermal comfort in national populations, are presented. [Spanish] En este trabajo se describen las caracteristicas generales del Laboratorio de Ambiente Controlado (LAB), y se presentan algunas de las posibles pruebas que podran ser desarrolladas en este dispositivo para evaluar la eficiencia energetica en sistemas de aire acondicionado, refrigeracion domestica y refrigeracion industrial, asi como para pruebas para evaluar el confort hidrotermico en poblaciones nacionales.

  8. SESSA: Expert system for the selection of air conditioning equipment; SESEAA: Sistema experto para la seleccion de equipos de aire acondicionado

    Energy Technology Data Exchange (ETDEWEB)

    Kemper Valverde, Nicolas; Cardenas Perez, Edgar [Laboratorio de Sistemas Inteligentes, Centro de Instrumentos de la Universidad Nacional Autonoma de Mexico (UNAM), Mexico, D. F. (Mexico)

    1998-12-31

    The problem of selecting air conditioning and refrigeration equipment is quite wide and complex, since it encompasses from the application of the basic principles of physics and of thermodynamics up to the classic engineering design problems; these in turn can be numberless since they vary from place to place depending on multiple factors such as the region geographic and economic conditions. On the other hand, account most be taken of several elements such as windows, walls, and its specific geographical orientation, roofs, floors, partitions, equipment, lighting, etc., all this exerts influence in the complexity that represents the selection process. This paper describes a useful informatics tool to make it easy the selection process in air conditioning installations, taking into account multiple saving and efficient use of energy criteria, reflected in the operation process of these installations. [Espanol] El problema de seleccion de sistemas de aire acondicionado y de refrigeracion es bastante amplio y complejo, ya que abarca desde la aplicacion de los principios basicos de la fisica y la termodinamica hasta los problemas clasicos de diseno de ingenieria; estos a la vez pueden ser innumerables ya que varian de un lugar a otro y de un proyecto a otro, dependiendo de multiples factores tales como las condiciones geograficas y economicas de la region. Por otra parte se deben tomar en cuenta diversos elementos como son: ventanas, muros y sus orientaciones especificas, techos, pisos, particiones, equipos, iluminacion, etc., todo esto influye en la complejidad que representa el proceso de seleccion. En el presente trabajo se describe una herramienta informatica para facilitar el proceso de seleccion de instalaciones de aire acondicionado, tomando en cuenta multiples criterios de ahorro y uso eficiente de energia que se reflejan durante el proceso de operacion de estas instalaciones.

  9. SESSA: Expert system for the selection of air conditioning equipment; SESEAA: Sistema experto para la seleccion de equipos de aire acondicionado

    Energy Technology Data Exchange (ETDEWEB)

    Kemper Valverde, Nicolas; Cardenas Perez, Edgar [Laboratorio de Sistemas Inteligentes, Centro de Instrumentos de la Universidad Nacional Autonoma de Mexico (UNAM), Mexico, D. F. (Mexico)

    1999-12-31

    The problem of selecting air conditioning and refrigeration equipment is quite wide and complex, since it encompasses from the application of the basic principles of physics and of thermodynamics up to the classic engineering design problems; these in turn can be numberless since they vary from place to place depending on multiple factors such as the region geographic and economic conditions. On the other hand, account most be taken of several elements such as windows, walls, and its specific geographical orientation, roofs, floors, partitions, equipment, lighting, etc., all this exerts influence in the complexity that represents the selection process. This paper describes a useful informatics tool to make it easy the selection process in air conditioning installations, taking into account multiple saving and efficient use of energy criteria, reflected in the operation process of these installations. [Espanol] El problema de seleccion de sistemas de aire acondicionado y de refrigeracion es bastante amplio y complejo, ya que abarca desde la aplicacion de los principios basicos de la fisica y la termodinamica hasta los problemas clasicos de diseno de ingenieria; estos a la vez pueden ser innumerables ya que varian de un lugar a otro y de un proyecto a otro, dependiendo de multiples factores tales como las condiciones geograficas y economicas de la region. Por otra parte se deben tomar en cuenta diversos elementos como son: ventanas, muros y sus orientaciones especificas, techos, pisos, particiones, equipos, iluminacion, etc., todo esto influye en la complejidad que representa el proceso de seleccion. En el presente trabajo se describe una herramienta informatica para facilitar el proceso de seleccion de instalaciones de aire acondicionado, tomando en cuenta multiples criterios de ahorro y uso eficiente de energia que se reflejan durante el proceso de operacion de estas instalaciones.

  10. Energy saving by means of air conditioning equipment replacement and the household application of thermal insulation; Ahorro de energia electrica por reemplazo de equipos de aire acondicionado y aplicacion de aislamiento termico en viviendas

    Energy Technology Data Exchange (ETDEWEB)

    Peralta Solorio, Jose Luis [Fideicomiso para el Ahorro de la Energia (Mexico)

    2005-07-15

    An extension study of the Financing Program for Energy Saving looked for the evaluation of the electric energy saving potential obtained by the replacement of air conditioning equipment and the application of thermal insulation in 30 houses of two Mexican cities with warmth climate. In a joint effort with Comision Federal de Electricidad the consumption files of the users were analyzed and field measurements of electric demand and of refrigeration were made. As a following step the change of the refrigeration necessities derived from the application of thermal insulation were evaluated as well as the energy efficiency improvement obtained by the substitution of the air conditioning equipment and the favorable results obtained by the implementation of both measures - thermal insulation and change of air conditioning equipment in a joint form. This way, as a conclusion, the optimum sequence of application of these measures is revealed. [Spanish] Un estudio extension del Programa de Financiamiento para el Ahorro de Energia Electrica busco evaluar el potencial de ahorro de energia electrica alcanzado por el reemplazo de equipos de aire acondicionado y la aplicacion de aislamiento termico en 30 viviendas de dos ciudades mexicanas con clima calido. En un esfuerzo conjunto con la Comision Federal de Electricidad se analizaron los historiales de consumo de los usuarios y se efectuaron las mediciones de campo de demanda electrica y de refrigeracion. Como paso siguiente se valoro el cambio en las necesidades de refrigeracion derivado de la aplicacion de aislamiento termico al igual que la mejora en eficiencia energetica obtenida por la sustitucion de aire acondicionado y se identificaron los resultados favorecedores arrojados por la implementacion de ambas medidas -aislamiento termico y cambio de equipo de aire acondicionado- en forma conjunta. De esta manera, como conclusion, se devela la mas optima secuencia de aplicacion de estas medidas.

  11. Evaluation of energy saving in pilot projects of window type air conditioning equipment in the domestic sector; Evaluacion del ahorro de energia en proyectos pilotos en equipos de aire acondicionado tipo ventana en el sector domestico

    Energy Technology Data Exchange (ETDEWEB)

    Duran Ramirez, Ricardo [Comision Nacional para el Ahorro de Energia, Mexico, D.F. (Mexico)

    2001-07-01

    The present work shows the energy saving when replacing low efficiency window type air conditioning equipment, for higher efficiency equipment, as well as the necessary parameters to identify the results obtained by the pilot projects of substitution of conventional equipment for other more efficient in the domestic sector. [Spanish] El presente trabajo muestra los ahorros de energia al sustituir equipos de aire acondicionado tipo ventana de baja eficiencia, por equipos de mayor eficiencia, asi como los parametros necesarios para identificar los resultados obtenidos, por los proyectos pilotos de sustitucion de equipos convencionales por otros mas eficientes en el sector domestico.

  12. Rational use of energy in air conditioning equipment, through an appropriate selection of the main equipment; Uso racional de la energia en equipos de aire acondicionado, mediante la eleccion apropiada del equipo principal

    Energy Technology Data Exchange (ETDEWEB)

    Reyes Zuniga, Jose de Jesus; Herrera Ramos, Manuel [Instituto Mexicano del Petroleo (Mexico)

    1996-07-01

    This paper presents an analysis to diminish the consumption of energy in central air conditioning equipment through an appropriate selection of the equipment. The analysis shows the levels of security and toxicity of the refrigerant, the operational, constructive and economic advantages of the equipment, taking as reference the cooling demand and expenses of energy consumption, as well as the ecological impact derived from the use of the refrigerant. Finally, an economic analysis is presented, involving the expenses of the equipment, operation, maintenance, costs of the consumption of used fluids, et cetera. [Spanish] Uso racional de la energia en equipos de aire acondicionado, mediante la eleccion apropiada del equipo principal. Este trabajo presenta un analisis para disminuir el consumo de energia en los equipos centrales de aire acondicionado mediante la seleccion apropiada del equipo. El analisis muestra los niveles de seguridad y toxicidad del refrigerante, las ventajas operativas, constructivas y economicas del equipo, tomando como referencia la demanda de enfriamiento y gastos de consumo de energia, asi como el impacto ecologico derivado de su empleo del refrigerante. Finalmente, se presenta un analisis economico, involucrando los gastos del equipo, operacion, mantenimiento, costos de consumos de fluidos utilizados, etcetera.

  13. Connectable solar air collectors

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.; Bosanac, M.

    2002-02-01

    The project has proved that it is possible to manufacture solar air collector panels, which in an easy way can be connected into large collector arrays with integrated ducting without loss of efficiency. The developed connectable solar air collectors are based on the use of matrix absorbers in the form of perforated metal sheets. Three interconnected solar air collectors of the above type - each with an transparent area of approx. 3 m{sup 2} - was tested and compared with parallel tests on two single solar air collectors also with a transparent area of approx. 3 m{sup 2} One of the single solar air collectors has an identical absorber as the connectable solar air collectors while the absorber of the other single solar air collector was a fibre cloth. The efficiency of the three solar air collectors proved to be almost identical in the investigated range of mass flow rates and temperature differences. The solar air collectors further proved to be very efficient - as efficient as the second most efficient solar air collectors tested in the IEA task 19 project Solar Air Systems. Some problems remain although to be solved: the pressure drop across especially the connectable solar air collectors is too high - mainly across the inlets of the solar air collectors. It should, however, be possible to considerably reduce the pressure losses with a more aerodynamic design of the inlet and outlet of the solar air collectors; The connectable solar air collectors are easy connectable but the air tightness of the connections in the present form is not good enough. As leakage leads to lower efficiencies focus should be put on making the connections more air tight without loosing the easiness in connecting the solar air collectors. As a spin off of the project a simple and easy way to determine the efficiency of solar, air collectors for pre-heating of fresh air has been validated. The simple method of determining the efficiency has with success been compared with an advance method

  14. Controlador Predictivo No Lineal para la Gestión Energética del Sistema Centralizado de Aire Acondicionado de un Inmueble Hotelero

    Directory of Open Access Journals (Sweden)

    Adriana Acosta

    2015-10-01

    Full Text Available Resumen: En este trabajo se reflejan los resultados obtenidos durante la sintonía de un controlador predictivo basado en modelo no lineal, para la gestión energética del sistema centralizado de climatización de una instalación hotelera. Con el objetivo de lograr eficiencia económica, el diseño del controlador emplea un modelo de predicción del comportamiento del consumo energético de las habitaciones a partir de los registros históricos del hotel. La predicción de la carga térmica de las habitaciones se calcula utilizando el método de series de tiempo radiantes (RTS. La sintonía y simulación del controlador fue realizada con MATLAB®. Abstract: In this work we show the results obtained from the tuning of a non-linear model based predictive controller, for the energy management of an air conditioning centralized system in a hotel installation. With the aim of reaching economic efficiency, the controller design employs a prediction model of the energy consumption behaviour of the rooms based on the historic data of the hotel. Prediction of the thermal load of the rooms is obtained using the Radiant Time Series (RTS method. The application was developed in Matlab® programming language. Palabras clave: Control predictivo basado en modelo, método RTS, carga térmica, consumo eléctrico, hotel, Keywords: Model based predictive control, RTS method, thermal load, electrical consumption, hotel.

  15. Development of a electrothermal model to scale to determine the energy behavior in buildings with air conditioning; Desarrollo de un modelo electrotermico a escala para determinar el comportamiento energetico en edificaciones con aire acondicionado

    Energy Technology Data Exchange (ETDEWEB)

    Acoltzi, Higinio [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2001-07-01

    determinar el comportamiento energetico de modulos de prueba a escala de edificios. El modelo determina la historia del consumo de energia electrica para mantener la condiciones de confort al interior de los modulos, respecto a la variacion de los materiales de los techos y ventanas; todo esto con el objeto de establecer criterios de aplicacion de dichos materiales en la industria de la edificacion. Se presenta los consumos de energia electrica para los modulos con techos de loza monolitica, vigueta y clabovedilla y ventanas con vidrios reflectasol, filtrasol y claro. Finalmente, se presentan los resultados preliminares de la aplicacion del modelo propuesto a un edificio de escala normal. Las mediciones en campo y el modelo electrotermico teorico desarrollado, presenta diferencias promedio de 16%. Los ahorros de energia electrica observados con la aplicacion del modelo electrotermico teorico son: 1) si se cambia el vidrio claro por vidrio filtrasol, se pueden lograr ahorros de energia hasta del 14.5% para la loza de vigueta y bovedilla y de 12.4% para la loza monolitica; o 2) si se cambia el vidrio claro por vidrio reflectasol se pueden obtener ahorros de energia hasta de 28.1% para el caso de loza de vigueta y bovedilla y de 16.8% para la loza monolitica. La mejor opcion es sustituir la loza monolitica y vidrio claro por la loza de vigueta y bovedilla y vidrio reflectasol para obtener hasta un 37% de ahorro. Se muestra el arreglo de dispositivo experimental con los 3 modulos acoplados al aire acondicionado, y una con paracion grafica entre el consumo de energia acumulada teorica y experimental del modulo con loza de vigueta y bovedilla para los vidrios reflectasol, filtrasol y claro. Se da un resumen de los consumos de energia electrica totales.Verificacion experimental para determinar el comportamiento energetico de modulos de prueba a escala de edificios. El modelo determina la historia del consumo de energia electrica para mantener la condiciones de confort al interior

  16. ANÁLISIS NUMÉRICO DEL COMPORTAMIENTO DEL AIRE EN UN SISTEMA DE DISTRIBUCIÓN DE AIRE ACONDICIONADO EMPLEANDO LOS MODELOS DE TURBULENCIA k-e, RNG k-e Y EL MODELO DE LAS TENSIONES DE REYNOLDS NUMERICAL ANALYSIS OF AIR BEHAVIOR IN AN AIR CONDITIONING DISTRIBUTION SYSTEM USING k-ε TURBULENCE, RNG k-ε AND REYNOLDS TENSIONS METHODS

    Directory of Open Access Journals (Sweden)

    Luz Rodríguez Collado

    2008-09-01

    Full Text Available En la presente investigación se empleó el método de los volúmenes finitos para simular numéricamente el comportamiento termofluidodinámico del aire en un sistema de distribución de aire acondicionado. Se describió el modelo matemático que rige el comportamiento del flujo de aire en el conducto de distribución y el sistema de ecuaciones obtenido fue cerrado mediante la aplicación un modelo de turbulencia o cierre: para ello se emplearon de forma individual el modelo k-ε, el modelo RNG k-ε y el modelo de las tensiones de Reynolds. Fueron simulados tres casos de estudio y los resultados obtenidos de esas simulaciones indican que el modelo k-ε presenta un mejor comportamiento numérico en el problema simulado, generando menores residuos en las variables de flujo y un menor costo computacional.In the present investigation the finite volumes method was used to numerically simulate the thermofluiddynamic behavior of air in an air conditioning distribution system. The mathematical model that governs the behavior of airflow in the distribution duct was described by means of applying a turbulence or closure model: for this purpose k-ε, RNG k-ε and Reynolds Tensions models were used individually. Three cases were simulated and the results obtained from these simulations indicate that the k-ε model shows a better numerical behavior in the simulated problem, generating smaller residues in the flow variables and a reduced computing cost.

  17. Solar air-conditioning. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Within the 3rd International Conference on solar air-conditioning in Palermo (Italy) at 30th September to 2nd October, 2009 the following lectures were held: (1) Removal of non-technological barriers to solar cooling technology across Southern European islands (Stefano Rugginenti); (2) The added economic and environmental value of solar thermal systems in microgrids with combined heat and power (Chris Marney); (3) Australian solar cooling interest group (Paul Kohlenbach); (4) Designing of a technology roadmap for solar assisted air conditioning in Austria (Hilbert Focke); (5) Solar cooling in the new context of renewable policies at European level (Raffaele Piria); (6) Prototype of a solar driven steam jet ejector chiller (Clemens Pollerberg); (7) New integrated solar air conditioning system (Joan Carlos Bruno); (8) Primary energy optimised operation of solar driven desiccant evaporative cooling systems through innovative control strategies; (9) Green chiller association (Uli Jakob); (10) Climate Well {sup registered} (Olof Hallstrom); (11) Low capacity absorption chillers for solar cooling applications (Gregor Weidner); (12) Solar cooling in residential, small scale commercial and industrial applications with adsorption technology (Walter Mittelbach); (13) French solar heating and cooling development programme based on energy performance (Daniel Mugnier); (14) Mirrox fresnel process heat collectors for industrial applications and solar cooling (Christian Zahler); (15) Modelling and analyzing solar cooling systems in polysun (Seyen Hossein Rezaei); (16) Solar cooling application in Valle Susa Italy (Sufia Jung); (17) Virtual case study on small solar cooling systems within the SolarCombi+Project (Bjoern Nienborg); (18) Design of solar cooling plants under uncertainty (Fernando Dominguez-Munoz); (19) Fast pre-design of systems using solar thermally driven chillers (Hans-Martin Henning); (20) Design of a high fraction solar heating and cooling plant in southern

  18. Energy saving: optimal use of air conditioning equipment by means of the solar control; Ahorro de energia: uso optimo de los acondicionadores de aire mediante el control solar

    Energy Technology Data Exchange (ETDEWEB)

    Mejia D, David; Morillon G, David; Rodriguez V, Luis [Universidad Nacional Autonoma de Mexico (Mexico)

    2001-09-01

    In this article the evaluation of the solar heat gains through the transparent parts of a building (houses of social interest) is presented; with the purpose of determining the heat gains through windows during summer time and under the following conditions: without solar protection, with the use of eaves, solar breakers and, finally, with the use of both elements. With the determined percentage of the diminution of heat gains, the considered potential of energy saving in air conditioning was obtained that would be available if the houses were constructed with solar control. [Spanish] En este articulo se presenta la evaluacion de las ganancias de calor solar a traves de las partes transparentes de un edificio (viviendas de interes social); con el objeto de determinar las ganancias de calor a traves de ventanas para la epoca de verano y bajo las siguientes condiciones: sin proteccion solar, con el empleo de aleros, con quiebrasoles y, finalmente, con el empleo de ambos elementos. Con el porcentaje determinado de la disminucion de ganancias de calor, se obtuvo el potencial estimado de ahorro de energia en aire acondicionado que se tendria si las viviendas se construyen con control solar.

  19. Low cost solar air heater

    International Nuclear Information System (INIS)

    Gill, R.S.; Singh, Sukhmeet; Singh, Parm Pal

    2012-01-01

    Highlights: ► Single glazed low cost solar air heater is more efficient during summer while double glazed is better in winter. ► For the same initial investment, low cost solar air heaters collect more energy than packed bed solar air heater. ► During off season low cost solar air heater can be stored inside as it is light in weight. - Abstract: Two low cost solar air heaters viz. single glazed and double glazed were designed, fabricated and tested. Thermocole, ultraviolet stabilised plastic sheet, etc. were used for fabrication to reduce the fabrication cost. These were tested simultaneously at no load and with load both in summer and winter seasons along with packed bed solar air heater using iron chips for absorption of radiation. The initial costs of single glazed and double glazed are 22.8% and 26.8% of the initial cost of packed bed solar air heater of the same aperture area. It was found that on a given day at no load, the maximum stagnation temperatures of single glazed and double glazed solar air heater were 43.5 °C and 62.5 °C respectively. The efficiencies of single glazed, double glazed and packed bed solar air heaters corresponding to flow rate of 0.02 m 3 /s-m 2 were 30.29%, 45.05% and 71.68% respectively in winter season. The collector efficiency factor, heat removal factor based on air outlet temperature and air inlet temperature for three solar air heaters were also determined.

  20. Heat pumping using the thermal earth gradient to produce air conditioned and hot water with savings of up to 70%; Bombeo de calor utilizando el gradiente termico de la tierra para producir aire acondicionado y agua caliente con ahorros de hasta un 70%

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Ramirez, Alejandro [Novaenergia de Mexico S.A. de C.V. (Mexico)

    2003-07-01

    The pumping of heat using the Earth heat as partial energy source bases its principle on which the energy of the ground is constant and the energy efficiency to produce air conditioning and hot water simultaneously is important, obtaining savings up to 70%, comparing itself with the traditional equipment and what these operate of separated way to produce each one of them the cold air and the hot water. The use of this technology presents an opportunity to reduce the energy costs of and the demand of the company. [Spanish] El bombeo de calor utilizando el calor de la tierra como fuente parcial de energia basa su principio en que la energia del suelo es constante y el rendimiento energetico para producir simultaneamente aire acondicionado y agua caliente es importante, obteniendose ahorros hasta de un 70%, comparandose con los equipos tradicionales y que estos operan de manera separada para producir cada uno de ellos el aire frio y el agua caliente. El uso de esta tecnologia presenta una oportunidad para reducir los costos de energia y demanda de la empresa.

  1. Solar air conditioning. Dresden colloquium; Solare Klimatisierung. Dresdner Kolloquium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Subjects: R + D activities in solar air conditioning; dessicative and evaporative cooling (DEC) - systems and components; Chances of solar air conditioning in Europe; Practical experience with solar-assisted air conditioning; Performance of a solar system at Lissabon; DEC system in the Alsenblock building, Berlin; Does solar air conditioning require specially designed buildings; Performance of solar heated adsorption refrigerators; Low-capacity absacity absorption systems for solar air conditioning. [German] Die Kolloquiumsschrift beinhaltet Unterlagen ueber die abgehandelten Themen. Sie lauten: F and E-Aktivitaeten im Bereich Solare Klimatisierung; SGK(DEC-Technik) - ausgefuehrte Anlagen und deren Komponenten; Chancen der solaren Klimatisierung in Europa; Erfahrungen mit der solarunterstuetzten Klimatisierung; Energieverbrauch und Regelung von SGK-Anlagen; Betriebserfahrungen einer Solaranlage in Lissabon; Realisierung der SGK im Alsenblock Berlin; Erfordert die solare Klimatisierung besondere Gebaeude?; Betriebserfahrungen mit solar beheizten Adsorptionskaeltemaschinen; Absorptionsanlagen kleiner Leistung fuer solare Klimatisierung. (orig.)

  2. Experimental Analysis on Solar Desiccant Air Conditioner

    OpenAIRE

    Dr. U. V. Kongre, C. M. Singh, A. B. Biswas

    2014-01-01

    The experiment investigated and evaluated the feasibility of an solar desiccant air conditioner. Its effectiveness as a possible air conditioner option used in household air conditioner or as an energy efficient and environmentally friendly alternative to conventional air conditioning units used in houses are evaluated. A solar water heater was used as heat gain. The model utilizes the technology of solar air conditioner system. The purpose in the long term wou...

  3. Solar air heaters and their applications

    Science.gov (United States)

    Selcuk, M. K.

    1977-01-01

    The solar air heater appears to be the most logical choice, as far as the ultimate application of heating air to maintain a comfortable environment is concerned. One disadvantage of solar air heaters is the need for handling larger volumes of air than liquids due to the low density of air as a working substance. Another disadvantage is the low thermal capacity of air. In cases where thermal storage is needed, water is superior to air. Design variations of solar air heaters are discussed along with the calculation of the efficiency of a flat plate solar air heater, the performance of various collector types, and the applications of solar air heaters. Attention is given to collectors with nonporous absorber plates, collectors with porous absorbers, the performance of flat plate collectors with finned absorbers, a wire mesh absorber, and an overlapped glass plate air heater.

  4. Application of a solar refrigeration system by absorption for the air conditioning of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Machielsen, Cees H. M [Delft University of Technology, Mekelweg (Netherlands); Hagendijk, Andre E [Consultancy and Research (Netherlands)

    2000-07-01

    This paper describes the Sofri project, a cooperation between Ceeran Ltd and The Delft University of Technology. The main objective of this project is to develop the necessary knowledge and experience to commercialize solar-assisted air conditioning and dehumidification systems in the Dutch Caribbean. The project is motivated by the present needs of the Dutch Caribbean for renewable energy sources and the fact that the Caribbean has a high and uniform insolation throughout the year. Furthermore, hotels and offices in this area use more than 40% of their energy for air-conditioning purposes. Therefore solar-assisted air conditioning systems are a logic approach in reducing the energy demand and to lower the peak electricity reducing the energy demands for the local power station. Ceeran Ltd has the objective to reach full commercialization of the proposed technologies in the Dutch Caribbean. The research is concentrated on liquid absorption machines and solar collection systems such as flat plates with selective surfaces, heat pipe evacuated tubes flat plate collectors, and Compound Parabolic Concentrators. The first demonstration unit is planned to be installed in an office building in Curacao. The installation consists of a 35 kW LiBr/H{sub 2}O absorption machine driven by 100 m{sup 2} flat pate collectors with a gas backup system. The system will provide comfort air-conditioning for this these type of office buildings during daytime. [Spanish] Este documento describe el proyecto SOFRI, una cooperacion entre Ceeran, Ltd, y la Universidad Tecnologica del Delft. El principal objetivo de este proyecto es el de desarrollar el conocimiento necesario y la experiencia para comercializar los sistemas de aire acondicionado y deshumidificacion ayudados por la energia solar en el Caribe Holandes. Este proyecto ha sido motivado por las actuales necesidades del Caribe Holandes de fuentes de energia renovable y por el hecho de que el Caribe tiene una alta y uniforme insolacion

  5. Movable air solar collector and its efficiency

    International Nuclear Information System (INIS)

    Lauva, A.; Aboltinš, A.; Palabinskis, J.; Karpova Sadigova, N.

    2008-01-01

    Implementing the guidelines of the Latvian National Programme for Energy in the field of alternative energy, intensive research shall be carried on regarding the use of solar energy, as it can be successfully used not only for the purposes of water heating and production of electrical energy, but also for air warming. The amount of heat necessary for the drying of rough forage and grain drying by active aeration in June, July and August can be obtained using solar radiation. The Latvian Guidelines for the Energy Development 2006-2016 state that the solar radiance in Latvia is of quite low intensity. The total amount of solar energy is 1109 kWh m -2 per year. The period of usage of the solar thermal energy is beginning from the last decade of April, when the intensity of radiation is 120 kWh m -2 , until the first decade of September. Within this period (approximately 1800 hours), it is possible to use the solar thermal energy by placing solar collectors. The usage of solar collectors for in drying of agricultural production is topical from the viewpoint of decreasing the consumption of energy used for the drying, as electrical energy and fossil energy resources become more expensive and tend to run out. In the processes that concern drying of agricultural production, efficiently enough solar radiation energy can be used. Due to this reason researching continues and expands in the field of usage of solar energy for the processes of drying and heating. The efficiency factor of the existing solar collectors is not high, but they are of simple design and cheep for production and exploitation. By improving the design of the solar collectors and choosing modern materials that absorb the solar radiation energy, it is possible the decrease the efficiency factor of solar collectors and decrease the production costs. In the scientific laboratory of grain drying and storage of Latvia University of Agriculture, a pilot device movable folding solar collector pilot device

  6. Design data brochure: Solar hot air heater

    Science.gov (United States)

    1978-01-01

    The design, installation, performance, and application of a solar hot air heater for residential, commercial and industrial use is reported. The system has been installed at the Concho Indian School in El Reno, Oklahoma.

  7. Solar-powered hot-air system

    Science.gov (United States)

    1979-01-01

    Solar-powered air heater supplies part or all of space heating requirements of residential or commercial buildings and is interfaced with air to water heat exchanger to heat domestic hot water. System has potential application in drying agricultural products such as cotton, lumber, corn, grains, and peanuts.

  8. Air loads on solar panels during launch

    NARCIS (Netherlands)

    Beltman, W.M.; van der Hoogt, Peter; Spiering, R.M.E.J.; Tijdeman, H.

    1996-01-01

    The dynamical behaviour of solar panels during launch is significantly affected by the thin layers of air trapped between the panels. For narrow gaps the air manifests itself not only as a considerable added mass, but its viscosity can result in a substantial amount of damping. A model has been

  9. Thermodynamic analysis of air solar collector

    International Nuclear Information System (INIS)

    Luminosu, Loan; Fara, Laurentiu

    2006-01-01

    The paper presents the experimental study of an air solar installation with a collecting area A c =4.2m 2 and variable working fluid flow rate in the range 0.02/0.06 kg/s. The experimental data are processed statistically through thermodynamic analysis using energy (semi-empirical and exergy methods. The aim of the paper is to establish the optimal air flow rate through this solar thermal system in order to ensure minimum irreversibility of the collecting-heating-cooling process under Romania's insolation conditions. The paper is also a demonstrative example of cost-effective and efficient use of solar energy for heating in Romania. It is experimentally proven that for this solar installation, the optimum air flow rate is of 0.04 kg/s. At a flow rate of 0.04 kg/s, irreversibility has the lowest values for all daytime hours with a maximum at noon (2640 W). For this flow rate the energy efficiency reaches the highest values. The maximum exergy efficiency value is 0 e x-max=0.197. In March 2000 the solar installation operated as an alternative thermal source for heating a garage, having an inner volume V=64.5 m 3 . The efficiency of the solar installation used for heating the garage is η=0.321. The economic ratio defined as the ratio between monetary benefit and financial investment is r=1.82. A value above 1 of ration r shows the economic utility of the solar installation for users who need thermal energy at low heat carrier levels. The study is useful to designers and users of solar thermal systems inCentral Europe as well as in other geographical areas where climatic conditions are comparable to those in South-Western Romania.(Author)

  10. Build Your Own Solar Air Heater.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    The solar air heater is a simple device for catching some of the sun's energy to heat a home. Procedures for making and installing such a heater are presented. Included is a materials list, including tools needed for constructing the heater, sources for obtaining further details, and a list of material specifications. (JN)

  11. The effects of air leaks on solar air heating systems

    Science.gov (United States)

    Elkin, R.; Cash, M.

    1979-01-01

    This paper presents the results of an investigation to determine the effects of leakages in collector and duct work on the system performance of a typical single-family residence solar air heating system. Positive (leakage out) and negative (leakage in) pressure systems were examined. Collector and duct leakage rates were varied from 10 to 30 percent of the system flow rate. Within the range of leakage rates investigated, solar contribution to heated space and domestic hot water loads was found to be reduced up to 30 percent from the no-leak system contribution with duct leakage equally divided between supply and return duct; with supply duct leakage greater than return leakage a reduction of up to 35 percent was noted. The negative pressure system exhibited a reduction in solar contribution somewhat larger than the positive pressure system for the same leakage rates.

  12. Performance Evaluation of Photovoltaic Solar Air Conditioning

    Directory of Open Access Journals (Sweden)

    Snegirjovs A.

    2016-12-01

    Full Text Available Information on the electrical-driven solar air conditioning (SAC is rather scanty. A considerable body of technical data mostly concerns large-scale photo-voltaic solar air conditioning (PV-SAC systems. Reliable information about the energy output has arisen only in recent years; however, it is still not easily accessible, and sometimes its sources are closed. Despite these facts, solar energy researchers, observers and designers devote special attention to this type of SAC systems. In this study, performance evaluation is performed for the PV-SAC technology, in which low-power (up to 15 kWp of cooling power on average systems are used. Such a system contains a PV electric-driven compression chiller with cold and heat sensible thermal storage capacities, and a rejected energy unit used for preheating domestic hot water (DHW. In a non-cooling season, it is possible to partly employ the system in the reverse mode for DHW production. In this mode, the ambient air serves as a heat source. Besides, free cooling is integrated in the PV-SAC concept.

  13. Performance Evaluation of Photovoltaic Solar Air Conditioning

    Science.gov (United States)

    Snegirjovs, A.; Shipkovs, P.; Lebedeva, K.; Kashkarova, G.; Migla, L.; Gantenbein, P.; Omlin, L.

    2016-12-01

    Information on the electrical-driven solar air conditioning (SAC) is rather scanty. A considerable body of technical data mostly concerns large-scale photo-voltaic solar air conditioning (PV-SAC) systems. Reliable information about the energy output has arisen only in recent years; however, it is still not easily accessible, and sometimes its sources are closed. Despite these facts, solar energy researchers, observers and designers devote special attention to this type of SAC systems. In this study, performance evaluation is performed for the PV-SAC technology, in which low-power (up to 15 kWp of cooling power on average) systems are used. Such a system contains a PV electric-driven compression chiller with cold and heat sensible thermal storage capacities, and a rejected energy unit used for preheating domestic hot water (DHW). In a non-cooling season, it is possible to partly employ the system in the reverse mode for DHW production. In this mode, the ambient air serves as a heat source. Besides, free cooling is integrated in the PV-SAC concept.

  14. Thermo-hydraulic performance enhancement of solar air heater ...

    African Journals Online (AJOL)

    DR OKE

    Keywords: Solar air heater; Nusselt number; thermal efficiency; multiple arcs with ... loss; and one or two covers of glass or transparent plastic provide resistance to ..... Methods of testing to determine the thermal performance of solar collectors.

  15. Design of direct solar PV driven air conditioner

    KAUST Repository

    Huang, Bin-Juine; Hou, Tung-Fu; Hsu, Po-Chien; Lin, Tse-Han; Chen, Yan-Tze; Chen, Chi-Wen; Li, Kang; Lee, K.Y.

    2015-01-01

    ). The measured OPB is found to be greater than 0.98 at instantaneous solar irradiation IT > 600 W m-2 if rpL > 1.71 RF approaches 1.0 (the air conditioner is run in 100% with solar power) at daily-total solar radiation higher than 13 MJ m-2 day-1, if rpL > 3.

  16. Design of direct solar PV driven air conditioner

    KAUST Repository

    Huang, Bin-Juine

    2015-12-05

    © 2015 Elsevier Ltd. Solar air conditioning system directly driven by stand-alone solar PV is studied. The air conditioning system will suffer from loss of power if the solar PV power generation is not high enough. It requires a proper system design to match the power consumption of air conditioning system with a proper PV size. Six solar air conditioners with different sizes of PV panel and air conditioners were built and tested outdoors to experimentally investigate the running probabilities of air conditioning at various solar irradiations. It is shown that the instantaneous operation probability (OPB) and the runtime fraction (RF) of the air conditioner are mainly affected by the design parameter rpL (ratio of maximum PV power to load power). The measured OPB is found to be greater than 0.98 at instantaneous solar irradiation IT > 600 W m-2 if rpL > 1.71 RF approaches 1.0 (the air conditioner is run in 100% with solar power) at daily-total solar radiation higher than 13 MJ m-2 day-1, if rpL > 3.

  17. Application of solar energy to air conditioning systems

    Science.gov (United States)

    Nash, J. M.; Harstad, A. J.

    1976-01-01

    The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.

  18. Solar Air Heaters with Thermal Heat Storages

    OpenAIRE

    Saxena, Abhishek; Goel, Varun

    2013-01-01

    Solar energy can be converted into different forms of energy, either to thermal energy or to electrical energy. Solar energy is converted directly into electrical power by photovoltaic modules, while solar collector converts solar energy into thermal energy. Solar collector works by absorbing the direct solar radiation and converting it into thermal energy, which can be stored in the form of sensible heat or latent heat or a combination of sensible and latent heats. A theoretical study has be...

  19. Interaction of regulation and innovation: Solar air heating collectors

    OpenAIRE

    Kramer, K.

    2012-01-01

    Solar Air Heating Collectors have still a very small share of 0.8% of the nominal installed capacity in the solar heating and cooling market (151.7 GWth) [1]. Although constituting a niche market, the potential of those kind of collectors to provide heat for industrial processes, processing food, room heating, air preheating, drying processes or air conditioning could be significant. However, the technical potentials of the various technological solutions are not easy to compare. Such a compa...

  20. Air solar collectors in building use - A review

    Science.gov (United States)

    Bejan, Andrei-Stelian; Labihi, Abdelouhab; Croitoru, Cristiana; Catalina, Tiberiu

    2018-02-01

    In the current energy and environmental context it is imperative to implement systems based on renewable energy sources in order to reduce energy consumptions worldwide. Solar collectors are studied by many years and many researchers are focusing their attention in order to increase their efficiency and cost-effectiveness. Water solar collectors are often implemented for domestic hot water, heating or industrial processes and already have a place on the market. A promising system which is not yet widely known is represented by air solar collectors that could represent an efficient way to use the solar energy with a lower investment cost, a system that can be used in order to preheat the fresh air required for heating, drying, or to maintain a minimum temperature during winter. This paper presents a comprehensive literature review on air solar collectors used mainly in buildings, acting as a solar wall. Air solar collectors are roughly classified into two types: glazed and opaque. The present study comprises the solar collector classification, applications and their main parameters with a special focus on opaque solar collectors.

  1. Air solar collectors in building use - A review

    Directory of Open Access Journals (Sweden)

    Bejan Andrei-Stelian

    2018-01-01

    Full Text Available In the current energy and environmental context it is imperative to implement systems based on renewable energy sources in order to reduce energy consumptions worldwide. Solar collectors are studied by many years and many researchers are focusing their attention in order to increase their efficiency and cost-effectiveness. Water solar collectors are often implemented for domestic hot water, heating or industrial processes and already have a place on the market. A promising system which is not yet widely known is represented by air solar collectors that could represent an efficient way to use the solar energy with a lower investment cost, a system that can be used in order to preheat the fresh air required for heating, drying, or to maintain a minimum temperature during winter. This paper presents a comprehensive literature review on air solar collectors used mainly in buildings, acting as a solar wall. Air solar collectors are roughly classified into two types: glazed and opaque. The present study comprises the solar collector classification, applications and their main parameters with a special focus on opaque solar collectors.

  2. Low cost bare-plate solar air collector

    Science.gov (United States)

    Maag, W. L.; Wenzler, C. J.; Rom, F. E.; Vanarsdale, D. R.

    1980-09-01

    A low cost, bare plate solar collector for preheating ambient air was developed. This type of solar heating system would be applicable for preheating ventilation air for public buildings or other commercial and industrial ventilation requirements. Two prototype collectors were designed, fabricated and installed into an instrumented test system. Tests were conducted for a period of five months. Results of the tests showed consistent operating efficiencies of 60 percent or greater with air preheat temperature uses up to 20 degrees for one of the prototypes. The economic analyses indicated that this type of solar system was economically viable. For the materials of construction and the type of fabrication and installation perceived, costs for the bare plate solar collector are attainable. Applications for preheating ventilation air for schools were evaluated and judged to be economically viable.

  3. Solar Thermal AIR Collector Based on New Type Selective Coating

    Directory of Open Access Journals (Sweden)

    Musiy, R.Y.

    2014-01-01

    Full Text Available Based on the best for optical performance and selective coating solar thermal air collector, which operates by solar power on the principle of simultaneous ventilation and heating facilities, is designed. It can be used for vacation homes, museums, wooden churches, warehouses, garages, houses, greenhouses etc.

  4. Humidification dehumidification desalination system using parabolic trough solar air collector

    International Nuclear Information System (INIS)

    Al-Sulaiman, Fahad A.; Zubair, M. Ifras; Atif, Maimoon; Gandhidasan, Palanichamy; Al-Dini, Salem A.; Antar, Mohamed A.

    2015-01-01

    This paper deals with a detailed thermodynamic analysis to assess the performance of an HDH system with an integrated parabolic trough solar collector (PTSC). The HDH system considered is an open air, open water, air heated system that uses a PTSC as an air heater. Two different configurations were considered of the HDH system. In the first configuration, the solar air heater was placed before the humidifier whereas in the second configuration the solar air heater was placed between the humidifier and the dehumidifier. The current study revealed that PTSCs are well suited for air heated HDH systems for high radiation location, such as Dhahran, Saudi Arabia. The comparison between the two HDH configurations demonstrates that the gained output ratio (GOR) of the first configuration is, on average, about 1.5 whereas for the second configuration the GOR increases up to an average value of 4.7. The study demonstrates that the HDH configuration with the air heater placed between the humidifier and the dehumidifier has a better performance and a higher productivity. - Highlights: • Thermodynamic analysis of an HDH system driven by a parabolic trough solar collector was conducted. • The first configuration reveals a GOR of 1.5 while the second configuration reveals a GOR of 4.7. • Effective heating of the HDH system was obtained through parabolic trough solar collector

  5. Exergy Based Performance Analysis of Double Flow Solar Air Heater with Corrugated Absorber

    OpenAIRE

    S. P. Sharma; Som Nath Saha

    2017-01-01

    This paper presents the performance, based on exergy analysis of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater based on energy balance equations has been presented and the results obtained have been compared with that of a conventional flat-plate solar air heater. The double flow corrugated absorber solar air heater performs thermally better than the flat plate double flow and conventional flat-plate solar air heate...

  6. Design of Solar Heat Sheet for Air Heaters

    Science.gov (United States)

    Priya, S. Shanmuga; Premalatha, M.; Thirunavukkarasu, I.

    2011-12-01

    The technique of harnessing solar energy for drying offers significant potential to dry agricultural products such as food grains, fruits, vegetables and medicinal plants, thereby eliminating many of the problems experienced with open-sun drying and industrial drying, besides saving huge quantities of fossil fuels. A great deal of experimental work over the last few decades has already demonstrated that agricultural products can be satisfactorily dehydrated using solar energy. Various designs of small scale solar dryers have been developed in the recent past, mainly for drying agricultural products. Major problems experienced with solar dryers are their non-reliability as their operation largely depends on local weather conditions. While back-up heaters and hybrid dryers partly solved this issue, difficulties in controlling the drying air temperature and flow rate remains a problem, and affects the quality of the dried product. This study is aimed at eliminating the fluctuations in the quality of hot air supplied by simple solar air heaters used for drying fruits, vegetables and other applications. It is an attempt to analyse the applicability of the combination of an glazed transpired solar collector (tank), thermal storage and a intake fan(suction fan) to achieve a steady supply of air at a different atmospheric temperature and flow rate for drying fruits and vegetables. Development of an efficient, low-cost and reliable air heating system for drying applications is done.

  7. Flat plate solar air heater with latent heat storage

    Science.gov (United States)

    Touati, B.; Kerroumi, N.; Virgone, J.

    2017-02-01

    Our work contains two parts, first is an experimental study of the solar air heater with a simple flow and forced convection, we can use thatlaste oneit in many engineering's sectors as solardrying, space heating in particular. The second part is a numerical study with ansys fluent 15 of the storage of part of this solar thermal energy produced,using latent heat by using phase change materials (PCM). In the experimental parts, we realize and tested our solar air heater in URER.MS ADRAR, locate in southwest Algeria. Where we measured the solarradiation, ambient temperature, air flow, thetemperature of the absorber, glasses and the outlet temperature of the solar air heater from the Sunrise to the sunset. In the second part, we added a PCM at outlet part of the solar air heater. This PCM store a part of the energy produced in the day to be used in peak period at evening by using the latent heat where the PCMs present a grateful storagesystem.A numerical study of the fusion or also named the charging of the PCM using ANSYS Fluent 15, this code use the method of enthalpies to solve the fusion and solidification formulations. Furthermore, to improve the conjugate heat transfer between the heat transfer fluid (Air heated in solar plate air heater) and the PCM, we simulate the effect of adding fins to our geometry. Also, four user define are write in C code to describe the thermophysicalpropriety of the PCM, and the inlet temperature of our geometry which is the temperature at the outflow of the solar heater.

  8. A solar air collector with integrated latent heat thermal storage

    Directory of Open Access Journals (Sweden)

    Klimes Lubomir

    2012-04-01

    Full Text Available Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data.

  9. Desarrollo y aplicación del diagnóstico y pronóstico técnico al mantenimiento de los sistemas centralizados de aire acondicionado. // Develop and application of diagnosis and technical prediction to maintenance of centralized air conditioned systems.

    Directory of Open Access Journals (Sweden)

    J. L. Sánchez Ávila

    2001-10-01

    Full Text Available Se expone la aplicación del mantenimiento por diagnóstico y pronóstico técnico al sistema centralizado de aireacondicionado con recuperación del calor del hotel LTI Bella Costa; como solución a los graves problemas a que seenfrenta la dirección de servicios técnicos de las instalaciones turísticas para realizar un mantenimiento con calidad y a unmenor costo. El desarrollo de un plan experimental, en las instalaciones del hotel, permitió obtener las curvas que expresanel comportamiento de la degradación de estos sistemas en el tiempo, así como determinar el momento más oportuno para larealización del mantenimiento.La aplicación de esta investigación permitió la implementación de un mantenimiento menoscostoso y de más calidad, aumentando la rentabilidad de la labor del mantenimiento, y lo que es decisivo en este tipo deinstalación: la seguridad en la explotación como garantía de un servicio sin fallas.Palabras claves: Mantenimiento, refrigeración, predictivo, diagnóstico, pronóstico.___________________________________________________________________Abstract:The application of maintenance by diagnosis and technical prediction to centralized system of conditioned air withrecovery of heat is exposed; as solution to the serious problems faces technical services of tourist facilities to carry outmaintenance with quality and smaller cost. The development of an experimental plan, in hotel facilities, allowed to obtaincurves that express the behavior of degradation of these systems in time, as well as to determine the most opportunemoment for the maintenance realization. Application of this investigation allowed the implementation of a less expensivemaintenance with more quality, increasing the profitability of maintenance work, and what is decisive in this type ofinstallation,: the security in the exploitation like guarantee of a service without flaws.Key words. Maintenance, refrigeration, prediction, diagnosis, air conditioned.

  10. Utilization of Solar Energy for Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Sutikno Juwari Purwo

    2018-01-01

    Full Text Available The purposes of this research are to do a system simulation of air conditioning utilizing solar energy with single effect absorption refrigeration method, analyze the coefficient of performance (COP for each absorbent-refrigerant variable and compare the effectivity of every absorbent-refrigerant variable used. COP is a constant that denotes the effeciency of a refrigeration system, that is ratio of work or useful output to the amount of work or energy input. The higher the number of COP, the more efficient the system is. Absorbent-refrigerant (working fluids variables used in this research depend on its chemical and thermodynamics properties. Steps in this research are including data collection and tabulation from literature and do a simulation of air conditioning system both commercial air conditioning system (using electrical energy and solar energy air conditioning system with Aspen Plus software. Next, run the simulation for each working fluid variables used and calculate the COP for each variable. Subsequently, analyze and compare the effectivity of all variables used from COP value and economical point of view with commercial air conditioning system. From the result of the simulation, can be concluded that solar air conditioning can achieve 98,85 % of energy savings than commercial air conditioning. Furthermore, from the calculation of COP, the highest COP value is achieved by solar conditioning system with LiNO3-NH3 as working fluid where 55% of the composition is the refrigerant and 45% of absorbent.

  11. Solar air heaters for industrial drying; Aquecedor solar de ar para secagem industrial

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Everaldo Mendes [Governo do Estado da Paraiba, Joao Pessoa, PB (Brazil). Secretaria de Planejamento e Gestao

    2008-07-01

    The objective of this study is to encourage the use of solar energy in industrial drying of fruits, with the producers poles, at the same time, promote the rational use of energy for heat, or replacing the hydroelectric and oil derivatives for this purpose. This study is presented in the following chapters: availability of solar energy; details of constructive solar heated air; drying fruit; market. (author)

  12. Experimental study of a combined system of solar Kang and solar air collector

    International Nuclear Information System (INIS)

    Wei, Wei; Ji, Jie; Chow, Tin-Tai; He, Wei; Chen, Haifei; Guo, Chao; Yu, Hancheng

    2015-01-01

    Highlights: • A combined system of solar Kang and solar air collector is proposed. • An experimental study on the combined system is made. • The mean air temperature reaches 18.5 °C and maintains above 18 °C for 13 h. • The corresponding mean indoor air temperature of the reference room is 8.9 °C. • The Kang surface temperature reaches 27 °C and maintains above 18 °C for 23 h. - Abstract: Chinese Kang is widely used as heated bed and for heat recovery of cooking stove in Northern China. However there are main drawbacks of indoor and outdoor air pollutant generation and heavy demands on solid fuel handling. A novel combined Kang system, which integrates solar Kang and solar air collector, is here proposed. Experiments were conducted to examine the alternative operating modes: (i) only solar air collector in service, (ii) only solar Kang in service, and (iii) both solar Kang and solar air collector in service. The results show that these three modes behave differently and have distinct effects on room thermal environment in winter. When this pollution-free system operates under the third combined mode, the room temperature increases significantly and the vertical temperature gradient reduces. The Kang surface temperature increases and its uniformity is improved. It is also found that the room air temperature is closely related to the Kang surface temperature. Furthermore, most of the time the thermal environment meets the occupant need. This paper reports the experimental work and investigates into the effects on indoor thermal environment as in rural residences in Northern China

  13. Performance characteristics of solar air heater with surface mounted obstacles

    International Nuclear Information System (INIS)

    Bekele, Adisu; Mishra, Manish; Dutta, Sushanta

    2014-01-01

    Highlights: • Solar air heater with delta shaped obstacles have been studied. • Obstacle angle of incidence strongly affects the thermo-hydraulic performance. • Thermal performance of obstacle mounted collectors is superior to smooth collectors. • Thermo-hydraulic performance of the present SAH is higher than those in previous studies. - Abstract: The performance of conventional solar air heaters (SAHs) can be improved by providing obstacles on the heated wall (i.e. on the absorber plate). Experiments have been performed to collect heat transfer and flow-friction data from an air heater duct with delta-shaped obstacles mounted on the absorber surface and having an aspect ratio 6:1 resembling the conditions close to the solar air heaters. This study encompassed for the range of Reynolds number (Re) from 2100 to 30,000, relative obstacle height (e/H) from 0.25 to 0.75, relative obstacle longitudinal pitch (P l /e) from 3/2 to 11/2, relative obstacle transverse pitch (P t /b) from 1 to 7/3 and the angle of incidence (α) varied from 30° to 90°. The thermo-hydraulic performance characteristics of SAH have been compared with the previous published works and the optimum range of the geometries have been explored for the better performance of such air-heaters compared to the other designs of solar air heaters

  14. Performance of cylindrical plastic solar collectors for air heating

    International Nuclear Information System (INIS)

    Abdullah, A.S.; Bassiouny, M.K.

    2014-01-01

    Highlights: • The study including the combined convective and radiative heat transfer analysis. • The solar collector is manufactured from LDPE films acting as a black absorber. • Comparisons between the experimental data and the theoretical methods have been made. • The thermal efficiency increases with decreasing the major axes of elliptic shape. • The Nusselt number between the absorber and the heated air is determined. - Abstract: A theoretical and experimental study including the combined convective and radiative heat transfer analysis of a flexible cylindrical type solar air-heater for agriculture crops dehydration as well as heating processes is presented. The solar collector is manufactured from LDPE films acting as a black absorber with a back insulation and double transparent covers sealed together along its edges. The collector is to be blown with a flow of pressurized air. The experiments are carried out with solar collectors of circular shapes having 0.5 m diameter and solar collectors of elliptic shapes having 0.55 m and 0.65 m major axis. Energy balance of the cover, absorber and air yield three simultaneous quadratic algebraic equations in the three unknowns namely, cover, absorber and outlet air temperatures. A computer program is written for calculating the outlet temperature using the Newton–Raphson method and the collector thermal efficiency in terms of its diameter, length, mass flow rate, inlet temperature and solar insolation. Moreover the Nusselt number between the absorber and the heated air is determined experimentally in relation with the Reynolds number. Comparisons between the experimental data and the theoretical methods for the collector efficiency demonstrate a good agreement. In addition of this, the present experimental results of Nusselt number are correlated and compared with a correlation of another authors

  15. Solar-Driven Air-Conditioning Cycles: A Review

    Directory of Open Access Journals (Sweden)

    A. M. Abu-Zour

    2007-12-01

    Full Text Available Most conventional cooling/refrigeration systems are driven by fossil fuel combustion, and therefore give rise to emission of environmentally damaging pollutants. In addition, many cooling systems employ refrigerants, which are also harmful to the environment in terms of their Global Warming Potential (GWP and Ozone Depletion Potential (ODP. Development of a passive or hybrid solar-driven air-conditioning system is therefore of interest as exploitation of such systems would reduce the demand for grid electricity particularly at times of peak load. This paper presents a review of various cooling cycles and summarises work carried out on solar-driven air-conditioning systems.

  16. Solar activity influence on air temperature regimes in caves

    Science.gov (United States)

    Stoeva, Penka; Mikhalev, Alexander; Stoev, Alexey

    Cave atmospheres are generally included in the processes that happen in the external atmosphere as circulation of the cave air is connected with the most general circulation of the air in the earth’s atmosphere. Such isolated volumes as the air of caves are also influenced by the variations of solar activity. We discuss cave air temperature response to climate and solar and geomagnetic activity for four show caves in Bulgaria studied for a period of 46 years (1968 - 2013). Everyday noon measurements in Ledenika, Saeva dupka, Snezhanka and Uhlovitsa cave have been used. Temperatures of the air in the zone of constant temperatures (ZCT) are compared with surface temperatures recorded at meteorological stations situated near about the caves - in the towns of Vratsa, Lovech, Peshtera and Smolyan, respectively. For comparison, The Hansen cave, Middle cave and Timpanogos cave from the Timpanogos Cave National Monument, Utah, USA situated nearly at the same latitude have also been examined. Our study shows that the correlation between cave air temperature time series and sunspot number is better than that between the cave air temperature and Apmax indices; that t°ZCT is rather connected with the first peak in geomagnetic activity, which is associated with transient solar activity (CMEs) than with the second one, which is higher and connected with the recurrent high speed streams from coronal holes. Air temperatures of all examined show caves, except the Ledenika cave, which is ice cave show decreasing trends. On the contrary, measurements at the meteorological stations show increasing trends in the surface air temperatures. The trend is decreasing for the Timpanogos cave system, USA. The conclusion is that surface temperature trends depend on the climatic zone, in which the cave is situated, and there is no apparent relation between temperatures inside and outside the caves. We consider possible mechanism of solar cosmic rays influence on the air temperatures in caves

  17. Feasibility of a solar-assisted winter air-conditioning system using evaporative air-coolers

    Energy Technology Data Exchange (ETDEWEB)

    El-Awad, Mohamed M. [Mechanical Engineering Department, the University of Khartoum, P.O. Box 321 Khartoum (Sudan)

    2011-07-01

    The paper presents a winter air-conditioning system which is suitable for regions with mildly cold but dry winters. The system modifies the evaporative air-cooler that is commonly used for summer air-conditioning in such regions by adding a heating process after the humidification process. The paper describes a theoretical model that is used to estimate the system's water and energy consumption. It is shown that a 150-LPD solar heater is adequate for air-conditioning a 500 ft3/min (14.4 m3/min) air flow rate for four hours of operation. The maximum air-flow rate that can be heated by a single solar water-heater for four hours of operation is about 900-cfm, unless a solar water heater large than a 250-LPD heater is used. For the 500 ft3/min air flow rate the paper shows that the 150, 200, 250 and 300 LPD solar water-heaters can provide air-conditioning for 4, 6, 8 and 10 hours, respectively, while consuming less energy than the equivalent refrigerated-type air-conditioner.

  18. Available online Efficiency potential of indirectly heated solar reforming with different types of solar air receivers

    International Nuclear Information System (INIS)

    Storch, Henrik von; Roeb, Martin; Stadler, Hannes; Sattler, Christian; Hoffschmidt, Bernhard

    2016-01-01

    Highlights: • A process for indirectly heated solar reforming of natural gas with air as heat transfer fluid is proposed. • Different solar receivers are modeled and implemented into the reforming process. • The overall efficiency of the process with different solar receivers is determined. • Optimum solar receiver characteristics for application in a solar reforming process are determined. - Abstract: In solar reforming, the heating value of natural gas is increased by utilization of concentrated solar radiation. Hence, it is a process for storing solar energy in a stable and transportable form that also permits further conversion into liquid fuels like methanol. This process has the potential to significantly decrease the natural gas consumption and the associated CO_2-emissions of methanol production with only few open questions to be addressed prior to commercialization. In the medium and long term, it has the potential to generate methanol as an environmentally friendly fuel for both transport as well as flexible electricity production in combined cycle gas turbines, when biogas is used as reactant. In a previous study the high potential of indirectly heated solar reforming with solar air receivers was shown; however, the efficiency is limited when using state of the art open volumetric receivers. Therefore, different types of air receivers are implemented into an indirectly heated solar reforming process and the overall efficiency potential is assessed in the present study. The implemented receivers are an open volumetric cavity receiver, a closed volumetric cavity receiver and a tubular cavity receiver. The open volumetric cavity receiver and tubular cavity receiver achieve the best results due to their capability of operating efficiently at temperatures well above 700 °C. For these receivers peak efficiencies up to 29% and 27% respectively are predicted. As the utilization of an open volumetric cavity receiver constitutes an open heat transfer

  19. Development of a solar-powered residential air conditioner

    Science.gov (United States)

    1975-01-01

    The initial objective of the program was the optimization (in terms of cost and performance) of a Rankine cycle mechanical refrigeration system which utilizes thermal energy from a flat solar collector for air conditioning residential buildings. However, feasibility investigations of the adsorption process revealed that a dessicant-type air conditioner offers many significant advantages. As a result, limited efforts were expended toward the optimization of such a system.

  20. Alternative air-conditioning with the use of solar energy

    International Nuclear Information System (INIS)

    Algarbi, N. M.

    2006-01-01

    The paper concerns the investigation of the alternative air condition systems on the basis of the open absorbtion cycle with the use of solar energy as a heat source. Schematic solution of systems has been carried. The design analysis of working characteristics was performed for a wide rang of initial parameters (teperature and humidity of ambient air, the type and concentration of liquid sorbents, etc.) and construction features of heat and mass transfer.(Author)

  1. A RADIANT AIR-CONDITIONING SYSTEM USING SOLAR-DRIVEN

    Directory of Open Access Journals (Sweden)

    S. A. ABDALLA

    2006-12-01

    Full Text Available Every air-conditioning system needs some fresh air to provide adequate ventilation air required to remove moisture, gases like ammonia and hydrogen sulphide, disease organisms, and heat from occupied spaces. However, natural ventilation is difficult to control because urban areas outside air is often polluted and cannot be supplied to inner spaces before being filtered. Besides the high electrical demand of refrigerant compression units used by most air-conditioning systems, and fans used to transport the cool air through the thermal distribution system draw a significant amount of electrical energy in comparison with electrical energy used by the building thermal conditioning systems. Part of this electricity heats the cooled air; thereby add to the internal thermal cooling peak load. In addition, refrigerant compression has both direct and indirect negative effects on the environment on both local and global scales. In seeking for innovative air-conditioning systems that maintain and improve indoor air quality under potentially more demanding performance criteria without increasing environmental impact, this paper presents radiant air-conditioning system which uses a solar-driven liquid desiccant evaporative cooler. The paper describes the proposed solar-driven liquid desiccant evaporative cooling system and the method used for investigating its performance in providing cold water for a radiant air-conditioning system in Khartoum (Central Sudan. The results of the investigation show that the system can operate in humid as well as dry climates and that employing such a system reduces air-conditioning peak electrical demands as compared to vapour compression systems.

  2. Thermal behaviour of solar air heater with compound parabolic concentrator

    International Nuclear Information System (INIS)

    Tchinda, Rene

    2008-01-01

    A mathematical model for computing the thermal performance of an air heater with a truncated compound parabolic concentrator having a flat one-sided absorber is presented. A computer code that employs an iterative solution procedure is constructed to solve the governing energy equations and to estimate the performance parameters of the collector. The effects of the air mass flow rate, the wind speed and the collector length on the thermal performance of the present air heater are investigated. Predictions for the performance of the solar heater also exhibit reasonable agreement, with experimental data with an average error of 7%

  3. Effect of Collector Aspect Ratio on the Thermal Performance of Wavy Finned Absorber Solar Air Heater

    OpenAIRE

    Abhishek Priyam; Prabha Chand

    2016-01-01

    A theoretical investigation on the effect of collector aspect ratio on the thermal performance of wavy finned absorber solar air heaters has been performed. For the constant collector area, the various performance parameters have been calculated for plane and wavy finned solar air heaters. It has been found that the performance of wavy finned solar air heater improved with the increase in the collector aspect ratio. The performance of wavy finned solar air heater has been found 30 percent hig...

  4. Design and experiment of a new solar air heating collector

    International Nuclear Information System (INIS)

    Shams, S.M.N.; Mc Keever, M.; Mc Cormack, S.; Norton, B.

    2016-01-01

    This paper presents the design and experiment of a CTAH (Concentrating Transpired Air Heating) system. A newly designed solar air heating collector comprised of an inverted perforated absorber and an asymmetric compound parabolic concentrator was applied to increase the intensity of solar radiation incident on the perforated absorber. An extensive literature review was carried out to find the vital factors to improve optical and thermal efficiency of solar air heating systems. A stationary optical concentrator has been designed and experimented. Experimental thermal efficiency remained high at higher air flow rates. The average thermal efficiency was found to be approximately 55%–65% with average radiation above 400 W/m"2 for flow rates in the range of 0.03 kg/s/m"2 to 0.09 kg/s/m"2. Experimental results at air flow rates of 0.03 kg/s/m"2 and 0.09 kg/s/m"2 showed temperature rise of 38 °C and 19.6 °C respectively at a solar radiation intensity of 1000 W/m"2. A comparative performance study shows the thermal performance of CTAH. As the absorber of the CTAH facing downward, it avoids radiation loss and the perforated absorber with tertiary concentrator reduces thermal losses from the system. - Highlights: • Literature review was carried out to improve SAH system performance. • Optimisation factors were optical efficiency; heat loss, weight and cost. • Concentrator was designed to concentrate radiation for 6–7 h. • The highest efficiency of CTAH can be 73%. • It can work as efficient as 60% for a temperature rise of 70 °C.

  5. Estimating surface solar radiation from upper-air humidity

    Energy Technology Data Exchange (ETDEWEB)

    Kun Yang [Telecommunications Advancement Organization of Japan, Tokyo (Japan); Koike, Toshio [University of Tokyo (Japan). Dept. of Civil Engineering

    2002-07-01

    A numerical model is developed to estimate global solar irradiance from upper-air humidity. In this model, solar radiation under clear skies is calculated through a simple model with radiation-damping processes under consideration. A sky clearness indicator is parameterized from relative humidity profiles within three atmospheric sublayers, and the indicator is used to connect global solar radiation under clear skies and that under cloudy skies. Model inter-comparisons at 18 sites in Japan suggest (1) global solar radiation strongly depends on the sky clearness indicator, (2) the new model generally gives better estimation to hourly-mean solar irradiance than the other three methods used in numerical weather predictions, and (3) the new model may be applied to estimate long-term solar radiation. In addition, a study at one site in the Tibetan Plateau shows vigorous convective activities in the region may cause some uncertainties to radiation estimations due to the small-scale and short life of convective systems. (author)

  6. Schottky Quantum Dot Solar Cells Stable in Air under Solar Illumination

    KAUST Repository

    Tang, Jiang

    2010-01-07

    (Figure Presented) The air stability and power conversion efficiency of solution-processed PbS quantum dot solar cells is dramatically improved by the insertion of 0.8 nm LiF between the PbS nanoparticle film and the Al contact. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA.

  7. Performance analysis of a hybrid photovoltaic thermal solar air heater

    International Nuclear Information System (INIS)

    Othman, Mohd Yusof; Yatim, Baharudin; Abu Bakar, Mohd Nazari; Sopian, Kamaruzzaman

    2006-01-01

    A photovoltaic (PV/T) air heater is a collector that combines thermal and photovoltaic systems in one single hybrid generating unit. It generators both thermal and electrical energies simultaneously. A new design of a double-pass photovoltaic-thermal solar air collector with CPC and fins was successfully developed and fabricated at Universiti Kebangsaam Malaysia. This collector tested under actual environmental conditions to study its performance over a range of operating conditions. The test set-up, instrumentation and measurement are described further. It was found that the performance of the collector was in agreement with the theoretical prediction. Results of the outdoors test are presented and discussed(Author)

  8. STUDY AND NUMERICAL SIMULATION OF SOLAR SYSTEM FOR AIR HEATING

    Directory of Open Access Journals (Sweden)

    M. Ghodbane

    2016-01-01

    Full Text Available The use of solar energy in sunny countries, is an effective outil for compensate the lack in the energy, their benefits are not related only to its economic benefits but especially for the environmental protection, so we must find solutions to the problems of pollution. This work is a theoretical study of a solar flat plate collector ; air is used as the heat transfer fluid. In this study, we established in first step the calculation of solar radiation in various sites in Algeria (Adrar, El Oued, Bechar, Biskra and Tamanrasset. The second step is the parameters influence study of the sites and climate on the performance of our collector. The results obtained are encouraging for the use of this type in the heating in the winter, also it can be used in different kinds of drying.

  9. A hybrid air conditioner driven by a hybrid solar collector

    Science.gov (United States)

    Al-Alili, Ali

    The objective of this thesis is to search for an efficient way of utilizing solar energy in air conditioning applications. The current solar Air Conditioners (A/C)s suffer from low Coefficient of Performance (COP) and performance degradation in hot and humid climates. By investigating the possible ways of utilizing solar energy in air conditioning applications, the bottlenecks in these approaches were identified. That resulted in proposing a novel system whose subsystem synergy led to a COP higher than unity. The proposed system was found to maintain indoor comfort at a higher COP compared to the most common solar A/Cs, especially under very hot and humid climate conditions. The novelty of the proposed A/C is to use a concentrating photovoltaic/thermal collector, which outputs thermal and electrical energy simultaneously, to drive a hybrid A/C. The performance of the hybrid A/C, which consists of a desiccant wheel, an enthalpy wheel, and a vapor compression cycle (VCC), was investigated experimentally. This work also explored the use of a new type of desiccant material, which can be regenerated with a low temperature heat source. The experimental results showed that the hybrid A/C is more effective than the standalone VCC in maintaining the indoor conditions within the comfort zone. Using the experimental data, the COP of the hybrid A/C driven by a hybrid solar collector was found to be at least double that of the current solar A/Cs. The innovative integration of its subsystems allows each subsystem to do what it can do best. That leads to lower energy consumption which helps reduce the peak electrical loads on electric utilities and reduces the consumer operating cost since less energy is purchased during the on peak periods and less solar collector area is needed. In order for the proposed A/C to become a real alternative to conventional systems, its performance and total cost were optimized using the experimentally validated model. The results showed that for an

  10. Numerical characterisation of one-step and three-step solar air heating collectors used for cocoa bean solar drying.

    Science.gov (United States)

    Orbegoso, Elder Mendoza; Saavedra, Rafael; Marcelo, Daniel; La Madrid, Raúl

    2017-12-01

    In the northern coastal and jungle areas of Peru, cocoa beans are dried using artisan methods, such as direct exposure to sunlight. This traditional process is time intensive, leading to a reduction in productivity and, therefore, delays in delivery times. The present study was intended to numerically characterise the thermal behaviour of three configurations of solar air heating collectors in order to determine which demonstrated the best thermal performance under several controlled operating conditions. For this purpose, a computational fluid dynamics model was developed to describe the simultaneous convective and radiative heat transfer phenomena under several operation conditions. The constructed computational fluid dynamics model was firstly validated through comparison with the data measurements of a one-step solar air heating collector. We then simulated two further three-step solar air heating collectors in order to identify which demonstrated the best thermal performance in terms of outlet air temperature and thermal efficiency. The numerical results show that under the same solar irradiation area of exposition and operating conditions, the three-step solar air heating collector with the collector plate mounted between the second and third channels was 67% more thermally efficient compared to the one-step solar air heating collector. This is because the air exposition with the surface of the collector plate for the three-step solar air heating collector former device was twice than the one-step solar air heating collector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Robins Air Force Base Solar Cogeneration Facility design

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, B.L.; Bodenschatz, C.A.

    1982-06-01

    A conceptual design and a cost estimate have been developed for a Solar Cogeneration Facility at Robins Air Force Base. This demonstration solar facility was designed to generate and deliver electrical power and process steam to the existing base distribution systems. The facility was to have the potential for construction and operation by 1986 and make use of existing technology. Specific objectives during the DOE funded conceptual design program were to: prepare a Solar Cogeneration Facility (overall System) Specification, select a preferred configuration and develop a conceptual design, establish the performance and economic characteristics of the facility, and prepare a development plan for the demonstration program. The Westinghouse team, comprised of the Westinghouse Advanced Energy Systems Division, Heery and Heery, Inc., and Foster Wheeler Solar Development Corporation, in conjunction with the U.S. Air Force Logistics Command and Georgia Power Company, has selected a conceptual design for the facility that will utilize the latest DOE central receiver technology, effectively utilize the energy collected in the application, operate base-loaded every sunny day of the year, and be applicable to a large number of military and industrial facilities throughout the country. The design of the facility incorporates the use of a Collector System, a Receiver System, an Electrical Power Generating System, a Balance of Facility - Steam and Feedwater System, and a Master Control System.

  12. Exergy storage to exploit solar energy in air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Navarrete-Gonzalez, J.J.; Torres-Reyes, E. [Guanajuato Univ., Guanajuato (Mexico). Inst. de Investigaciones Cientificas; Cervantes-de Gortari, J.G. [Univ. of Cuidad, Mexico City (Mexico). Dept. de Termoenergia y Mejoramiento Ambiental

    2006-07-01

    A thermodynamic procedure was developed to analyze the exergy of a rock bed thermal storage unit that used solar power to acclimatize a pig farm. Thermal behaviour was described by means of a control volume that included the entire system and assumed a unidirectional air flow and an adiabatic process. The thermodynamic properties of the system were determined as a function of the experimental temperature profiles developed during thermal storage from solar to thermal energy conversion provided by a solar collector at a fixed mass rate of air flow. Experimental data were used to calculate the energy yield and to determine the entropy generation inside the system. The aim of the study was to determine how well the thermodynamic model matched the real data obtained experimentally during normal operating conditions. Results indicated that an exergy accumulation existed inside the control volume, which was the net result of the energy gain during the heating process. However, entropy generation due to irreversibilities was studied for just 1 air flow. Further research is needed to establish a semi-empirical model of the process with the minimum of entropy generation. It was concluded that the thermal energy storage system was suitable for use in pig farms. 5 refs., 8 figs.

  13. Solar air heating system for combined DHW and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.; Bosanac, M.

    2002-12-01

    The project deals with the development and testing of a simple system for utilization of the summer excess heat from small solar air heating systems for preheating of fresh air. The principle of the system is to lead the heated air down around a domestic hot water tank letting the surface of the tank act as heat exchanger between the air and the water. In order to increase the heat transfer, coefficient fins into the air stream were mounted on the tank. A complete system with 3 m{sup 2} solar air collector, ductworks and a 85 litre storage were set up and extensively monitored. The air stream through the system was created by a fan connected directly to one or two PV-panels leading to a solar radiation dependent flow rate without the use of any other control. Based on monitoring results the system was characterized and a TRNSYS model of the system was developed and calibrated/validated. The monitoring and the simulations with the TRNSYS model revealed several interesting things about the system. The monitoring revealed that the system is capable of bringing the temperature of the water in the storage above 60 deg. C at warm days with clear sky conditions. The storage is very stratified, which is beneficial as usable hot water temperatures rather quickly are obtained. The performance was highly dependent on the airflow rate through the system. It can be concluded that the investigated system will have a performance in the order of 500 kWh during the winter, spring and autumn months and around 250 kWh during the four summer months - or in total a yearly performance of 750 kWh/m{sup 2}. A small traditional solar heating system for preheating of domestic hot water would have a higher performance during the four summer months, but no performance during the rest of the year if the system is installed in a summer house, which only is occupied during the summer. The parametric analysis further indicates that it is possible to further optimise the system when the thermal

  14. Performance Study of Solar Air Heater Having Absorber Plate with Half-Perforated Baffles

    OpenAIRE

    Maheshwari, B. K.; Karwa, Rajendra; Gharai, S. K.

    2011-01-01

    The paper presents a detailed mathematical model for performance prediction of a smooth duct solar air heater validated against the experimental results. Experimental study on a solar air heater having absorber plate with half-perforated baffles on the air flow side shows thermal efficiency enhancement of 28%–45% over that of the smooth duct solar air heater, which is attributed to the heat transfer enhancement (of the order of 180%–235%) due to the perforated baffles attached to the absorber...

  15. Desarrollo y aplicación del diagnóstico y pronóstico técnico al mantenimiento de los sistemas centralizados de aire acondicionado // Develop and application of the diagnosis and technical prediction to the maintenance of the centralized systems of conditi

    Directory of Open Access Journals (Sweden)

    J. L. Sánchez Ávila

    2000-10-01

    Full Text Available Se expone la aplicación del mantenimiento por diagnóstico y pronóstico técnico al sistema centralizado de aireacondicionado con recuperación del calor del hotel LTI Bella Costa; como solución a los graves problemas a que seenfrenta la dirección de servicios técnicos de las instalaciones turísticas para realizar un mantenimiento con calidad y a unmenor costo.El desarrollo de un plan experimental, en las instalaciones del hotel, permitió obtener las curvas que expresan elcomportamiento de la degradación de estos sistemas en el tiempo, así como determinar el momento más oportuno para larealización del mantenimiento.La aplicación de esta investigación permitió la implementación de un mantenimiento menos costoso y de más calidad,aumentando la rentabilidad de la labor del mantenimiento, y lo que es decisivo en este tipo de instalación: la seguridad en laexplotación como garantía de un servicio sin fallas.Palabras claves: mantenimiento, refrigeración, predictivo, diagnóstico, pronóstico.____________________________________________________________________Abstract:In this paper is exposed the application of the maintenance by diagnosis and technical prediction to the centralized systemof air conditioned with heat recovery of the hotel Beautiful LTI Costa; as a solution to the serious problems that thetechnical management services faces in the tourist facilities to carry out a maintenance with quality and whith smaller cost.The development of an experimental plan, in the hotel facilities, allowed to obtain the curves that express the behavior ofthe degradation of these systems in the time, as well as to determine the most opportune moment for the realization of themaintenance.The application of this investigation allowed the implementation of a less expensive maintenance and of more quality,increasing the profitability of the maintenance work, and what is decisive in this installation type: the security in theexploitation as a

  16. Solar assisted heat pump on air collectors: A simulation tool

    Energy Technology Data Exchange (ETDEWEB)

    Karagiorgas, Michalis; Galatis, Kostas; Tsagouri, Manolis [Department of Mechanical Engineering Educators, ASPETE, N. Iraklio, GR 14121 (Greece); Tsoutsos, Theocharis [Environmental Engineering Dept., Technical University of Crete, Technical University Campus, GR 73100, Chania (Greece); Botzios-Valaskakis, Aristotelis [Centre for Renewable Energy Sources (CRES), 19th km Marathon Ave., GR 19001, Pikermi (Greece)

    2010-01-15

    The heating system of the bioclimatic building of the Greek National Centre for Renewable Energy Sources (CRES) comprises two heating plants: the first one includes an air source heat pump, Solar Air Collectors (SACs) and a heat distribution system (comprising a fan coil unit network); the second one is, mainly, a geothermal heat pump unit to cover the ground floor thermal needs. The SAC configuration as well as the fraction of the building heating load covered by the heating plant are assessed in two operation modes; the direct (hot air from the collectors is supplied directly to the heated space) and the indirect mode (warm air from the SAC or its mixture with ambient air is not supplied directly to the heated space but indirectly into the evaporator of the air source heat pump). The technique of the indirect mode of heating aims at maximizing the efficiency of the SAC, saving electrical power consumed by the compressor of the heat pump, and therefore, at optimizing the coefficient of performance (COP) of the heat pump due to the increased intake of ambient thermal energy by means of the SAC. Results are given for three research objectives: assessment of the heat pump efficiency whether in direct or indirect heating mode; Assessment of the overall heating plant efficiency on a daily or hourly basis; Assessment of the credibility of the suggested simulation model TSAGAIR by comparing its results with the TRNSYS ones. (author)

  17. Effect of air flow on tubular solar still efficiency.

    Science.gov (United States)

    Thirugnanasambantham, Arunkumar; Rajan, Jayaprakash; Ahsan, Amimul; Kandasamy, Vinothkumar

    2013-01-01

    An experimental work was reported to estimate the increase in distillate yield for a compound parabolic concentrator-concentric tubular solar still (CPC-CTSS). The CPC dramatically increases the heating of the saline water. A novel idea was proposed to study the characteristic features of CPC for desalination to produce a large quantity of distillate yield. A rectangular basin of dimension 2 m × 0.025 m × 0.02 m was fabricated of copper and was placed at the focus of the CPC. This basin is covered by two cylindrical glass tubes of length 2 m with two different diameters of 0.02 m and 0.03 m. The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. THE EXPERIMENTAL STUDY WAS OPERATED WITH TWO MODES: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively.

  18. Solar collecting characteristics of regenerative solar air collector; Chikunetsushiki kuki shunetsuki no shunetsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, H; Takano, S; Kamitaira, T [Hachinohe Institute of Technology, Aomori (Japan)

    1997-11-25

    In order to develop a solar drying equipment for agricultural and marine products, a regenerative solar air collector was fabricated on a trial basis, which uses round stones as a heat storing material. Its heat collecting characteristics were discussed. The air heat collector was installed on a roof of the Hachinohe Engineering University facing due south. The inside of the air heat collector is lined with heat insulating material with a thickness of 30 mm, and black-painted round stones were laid as an heat insulating material on the floor and the north face. The collector is of a natural air circulating system in which outside air enters from an entrance open to atmosphere, and warmed air exits from upper exit. A selectively absorbing face plaque for accelerating the natural circulation was suspended on the upper part of the north face of the collector. An experiment was performed also on a case in which air is forcibly circulated by fan from the air exit hole. In the natural circulation system, high heat collecting efficiency is shown in the forenoon. However, heat loss increases as temperature in the equipment rises, and heat stored in the round stones during daytime was dissipated completely in the afternoon to night. In the case of the forced circulation system, heat collecting efficiency as high as about 90% was shown in sunny days. This is thought because of heat storage buffering action due to storage of heat in and its dissipation from the round stones, and because of suppression of heat dissipation from the glass surface. 1 ref., 9 figs.

  19. Automotive absorption air conditioner utilizing solar and motor waste heat

    Science.gov (United States)

    Popinski, Z. (Inventor)

    1981-01-01

    In combination with the ground vehicles powered by a waste heat generating electric motor, a cooling system including a generator for driving off refrigerant vapor from a strong refrigerant absorbant solution is described. A solar collector, an air-cooled condenser connected with the generator for converting the refrigerant vapor to its liquid state, an air cooled evaporator connected with the condenser for returning the liquid refrigerant to its vapor state, and an absorber is connected to the generator and to the evaporator for dissolving the refrigerant vapor in the weak refrigerant absorbant solution, for providing a strong refrigerant solution. A pump is used to establish a pressurized flow of strong refrigerant absorbant solution from the absorber through the electric motor, and to the collector.

  20. Thermal performance of an open thermosyphon using nanofluid for evacuated tubular high temperature air solar collector

    International Nuclear Information System (INIS)

    Liu, Zhen-Hua; Hu, Ren-Lin; Lu, Lin; Zhao, Feng; Xiao, Hong-shen

    2013-01-01

    Highlights: • A novel solar air collector with simplified CPC and open thermosyphon is designed and tested. • Simplified CPC has a much lower cost at the expense of slight efficiency loss. • Nanofluid effectively improves thermal performance of the above solar air collector. • Solar air collector with open thermosyphon is better than that with concentric tube. - Abstract: A novel evacuated tubular solar air collector integrated with simplified CPC (compound parabolic concentrator) and special open thermosyphon using water based CuO nanofluid as the working fluid is designed to provide air with high and moderate temperature. The experimental system has two linked panels and each panel includes an evacuated tube, a simplified CPC and an open thermosyphon. Outdoor experimental study has been carried out to investigate the actual solar collecting performance of the designed system. Experimental results show that air outlet temperature and system collecting efficiency of the solar air collector using nanofluid as the open thermosyphon’s working fluid are both higher than that using water. Its maximum air outlet temperature exceeds 170 °C at the air volume rate of 7.6 m 3 /h in winter, even though the experimental system consists of only two collecting panels. The solar collecting performance of the solar collector integrated with open thermosyphon is also compared with that integrated with common concentric tube. Experimental results show that the solar collector integrated with open thermosyphon has a much better collecting performance

  1. Theoretical study for solar air pretreatment collector/regenerator

    Energy Technology Data Exchange (ETDEWEB)

    Peng Donggen; Zhang Xiaosong; Yin Yonggao [School of Energy and Environment, Southeast Univ., Nanjing (China)

    2008-07-01

    A new liquid regeneration equipment - solar air pretreatment collector/regenerator for liquid desiccant cooling system is put forward in this paper, which is preferable to solution regeneration in hot and moist climate in South China. The equipment can achieve liquid regeneration in lower temperature. When the solution and the air are in ''match'' state in collector/ regenerator, a match air to salt mass ratio ASMR* is found by theoretical study in which there is the largest theoretical storage capacity SC{sub max}. After two new concepts of the effective solution proportion (EPS) and the effective storage capacity (ESC) are defined, it is found by theoretical calculation that when ESP drops from 100% to 67%, ESC raises lowly, not drops and liquid outlet concentration C{sub str} {sub sol} increases from 40% to 49% in which its increment totals to 90%. All these data explain fully that air pretreatment liquid regeneration equipment enables to improve the performance of liquid desiccant cooling system. (orig.)

  2. Solar air heating system: design and dynamic simulation

    Science.gov (United States)

    Bououd, M.; Hachchadi, O.; Janusevicius, K.; Martinaitis, V.; Mechaqrane, A.

    2018-05-01

    The building sector is one of the big energy consumers in Morocco, accounting for about 23% of the country’s total energy consumption. Regarding the population growth, the modern lifestyle requiring more comfort and the increase of the use rate of electronic devices, the energy consumption will continue to increase in the future. In this context, the introduction of renewable energy systems, along with energy efficiency, is becoming a key factor in reducing the energy bill of buildings. This study focuses on the design and dynamic simulation of an air heating system for the mean categories of the tertiary sector where the area exceeds 750 m3. Heating system has been designed via a dynamic simulation environment (TRNSYS) to estimate the produced temperature and airflow rate by one system consisting of three essential components: vacuum tube solar collector, storage tank and water-to-air finned heat exchanger. The performances estimation of this system allows us to evaluate its capacity to meet the heating requirements in Ifrane city based on the prescriptive approach according to the Moroccan Thermal Regulation. The simulation results show that in order to maintain a comfort temperature of 20°C in a building of 750m3, the places requires a thermal powers of approximately 21 kW, 29 kW and 32 kW, respectively, for hotels, hospitals, administrative and public-school. The heat generation is ensured by a solar collector areas of 5 m², 7 m² and 10 m², respectively, for hotels, hospitals, administrative and public-school spaces, a storage tank of 2 m3 and a finned heat exchanger with 24 tubes. The finned tube bundles have been modelled and integrated into the system design via a Matlab code. The heating temperature is adjusted via two controllers to ensure a constant air temperature of 20°C during the heating periods.

  3. Distributed Nonstationary Heat Model of Two-Channel Solar Air Heater

    International Nuclear Information System (INIS)

    Klychev, Sh. I.; Bakhramov, S. A.; Ismanzhanov, A. I.; Tashiev, N.N.

    2011-01-01

    An algorithm for a distributed nonstationary heat model of a solar air heater (SAH) with two operating channels is presented. The model makes it possible to determine how the coolant temperature changes with time along the solar air heater channel by considering its main thermal and ambient parameters, as well as variations in efficiency. Examples of calculations are presented. It is shown that the time within which the mean-day efficiency of the solar air heater becomes stable is significantly higher than the time within which the coolant temperature reaches stable values. The model can be used for investigation of the performances of solar water-heating collectors. (authors)

  4. Development of a solar powered residential air conditioner (General optimization)

    Science.gov (United States)

    Lowen, D. J.

    1976-01-01

    A commercially available 3-ton residential Lithium Bromide (LiBr) absorption air conditioner was modified for use with lower temperature solar heated water. The modification included removal of components such as the generator, concentration control chamber, liquid trap, and separator; and the addition of a Chrysler designed generator, an off-the-shelf LiBr-solution pump. The design goal of the modified unit was to operate with water as the heat-transfer fluid at a target temperature of 85 C (185 F), 29.4 C (85 F) cooling water inlet, producing 10.5 kW (3 tons) of cooling. Tests were performed on the system before and after modification to provide comparative data. At elevated temperatures (96 C, 205 F), the test results show that Lithium Bromide was carried into the condenser due to the extremely violent boiling and degraded the evaporator performance.

  5. Buffer thermal energy storage for an air Brayton solar engine

    Science.gov (United States)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    The application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine was studied. To demonstrate the effect of buffer thermal energy storage on engine operation, a computer program was written which models the recuperator, receiver, and thermal storage device as finite-element thermal masses. Actual operating or predicted performance data are used for all components, including the rotating equipment. Based on insolation input and a specified control scheme, the program predicts the Brayton engine operation, including flows, temperatures, and pressures for the various components, along with the engine output power. An economic parametric study indicates that the economic viability of buffer thermal energy storage is largely a function of the achievable engine life.

  6. Parametric simulation and experimental analysis of earth air heat exchanger with solar air heating duct

    Directory of Open Access Journals (Sweden)

    Sanjeev Jakhar

    2016-06-01

    Full Text Available Earth air heat exchanger (EAHE systems are insufficient to meet the thermal comfort requirements in winter conditions. The low heating potential of such systems can be improved by integrating the system with solar air heating duct (SAHD. The aim of this paper is to present a model to estimate the heating potential for EAHE system with and without SAHD. The model is generated using TRNSYS 17 simulation tool and validated against experimental investigation on an experimental set-up in Ajmer, India. The experiment was done during the winter season, where the system was evaluated for different inlet flow velocities, length and depth of buried pipe. From the experimentation, it was observed that the depth of 3.7 m is sufficient for pipe burial and the 34 m length of pipe is sufficient to get optimum EAHE outlet temperature. It is also observed that increase in flow velocity results in drop in EAHE outlet temperature, while room temperature is found to increase for higher velocities (5 m/s. The COP of the system also increased up to 6.304 when assisted with solar air heating duct. The results obtained from the experiment data are in good agreement with simulated results within the variation of up to 7.9%.

  7. Central air conditioning based on adsorption and solar energy

    International Nuclear Information System (INIS)

    Pralon Ferreira Leite, Antonio; Belo, Francisco Antonio; Martins, Moacir Machado; Bressan Riffel, Douglas

    2011-01-01

    This paper presents the characterization and the pre-dimensioning of an adsorption chiller as part of a 20 kW air conditioning central unit for cooling a set of rooms that comprises an area of 110 m 2 . The system is basically made up of a cold water storage tank supplied by an activated carbon-methanol adsorption chiller, a hot water storage tank, fed by solar energy and natural gas, and a fan-coil. During an acclimatization of 8 h (9-17 h), the following parameters were obtained for dimensioning the cooling system: 504 kg of activated carbon, 180 L of methanol, 7000 L of hot water, 10,300 L of cold water with its temperature varying in the fan-coil from 1 deg. C to 14 C. Considering the mean value of the total daily irradiation in Joao Pessoa (7 o 8'S, 34 o 50'WG), and a cover of regenerating heat supplied by solar energy equivalent to 70%, the adsorption chiller's expected coefficient of performance (COP) was found to be around 0.6.

  8. Assessing the potential of random forest method for estimating solar radiation using air pollution index

    International Nuclear Information System (INIS)

    Sun, Huaiwei; Gui, Dongwei; Yan, Baowei; Liu, Yi; Liao, Weihong; Zhu, Yan; Lu, Chengwei; Zhao, Na

    2016-01-01

    Highlights: • Models based on random forests for daily solar radiation estimation are proposed. • Three sites within different air pollution index conditions are considered. • Performance of random forests is better than that of empirical methodologies. • Special attention is given to the use of air pollution index. • The potential of air pollution index is assessed by random forest models. - Abstract: Simulations of solar radiation have become increasingly common in recent years because of the rapid global development and deployment of solar energy technologies. The effect of air pollution on solar radiation is well known. However, few studies have attempting to evaluate the potential of the air pollution index in estimating solar radiation. In this study, meteorological data, solar radiation, and air pollution index data from three sites having different air pollution index conditions are used to develop random forest models. We propose different random forest models with and without considering air pollution index data, and then compare their respective performance with that of empirical methodologies. In addition, a variable importance approach based on random forest is applied in order to assess input variables. The results show that the performance of random forest models with air pollution index data is better than that of the empirical methodologies, generating 9.1–17.0% lower values of root-mean-square error in a fitted period and 2.0–17.4% lower values of root-mean-square error in a predicted period. Both the comparative results of different random forest models and variance importance indicate that applying air pollution index data is improves estimation of solar radiation. Also, although the air pollution index values varied largely from season to season, the random forest models appear more robust performances in different seasons than different models. The findings can act as a guide in selecting used variables to estimate daily solar

  9. Reduced heat stress in offices in the tropics using solar powered drying of the supply air

    DEFF Research Database (Denmark)

    Gunnarsen, Lars; Santos, A M B

    2002-01-01

    air may facilitate personal cooling by increased evaporation of sweat. Heat acclimatized people with efficient sweating may in particular benefit from this cooling. A prototype solar powered supply system for dried-only air was made. Air from the system was mixed with room air, heated to six different...... content of room air, temperature of supply air and moisture content of supply air was developed based on the experiments. Reduction of moisture content in the supply air by 1.6 g/kg had the same effect as lowering the operative temperature by 1 degree C. The solar-powered system for supplying dry air...... is a low-cost alternative to traditional air conditioning in hot and humid regions....

  10. Modelación de un colector solar para calentamiento de aire; Modelling ofa solar collector for air heating

    Directory of Open Access Journals (Sweden)

    Amadou Koulibaly

    2015-09-01

    Full Text Available En este trabajo es desarrollada la modelación de un colector solar plano para calentamiento de aire operado con convección natural. El análisis del colector mediante balances de masa y energía no estacionarios aplicados a cada uno de los elementos componentes del colector permitió desarrollar un programa en Visual Basic que simula el comportamiento dinámico del colector ante variaciones de las condiciones de operación y variaciones de los parámetros de diseño (dimensiones del colector, tipo de material de cubierta y dimensiones, material de la placa absorbedora y sus dimensiones, eficiencia óptica y tipo y espesor de aislamiento. Los resultados muestran que el software puede ser empleado para el diseño de colectores para calentamiento de aire, además de poder ser empleado para obtener las temperaturas de cada componente del colector y el rendimiento térmico instantáneo. El software también ofrece los elementos para determinar la constante de tiempo que caracteriza la dinámica del colector.In this paper the modeling of a flat solar collector for air heating was developed. This collector works with natural convection. The analysis of the collector was made using unsteady mass and energy balances applied to each component of collector. The equations were solved usinga Visual Basic code with the target to simulate the dynamics performance of the collector when the operating conditions and the design parameters are modified. The dimensions of the collector, the material and dimensions of the covert, the material and dimensions of the absorber plate, the optic efficiency and the type and thin of the insulator are the fundamentals design parameters that can be varied. The results of the simulation show that the software can be used for the design of collectors for heating air. Additionally, the software permits to determine the temperature of each component, the instantaneous efficiency of the collector and offers the elements to obtain

  11. Optimum selection of solar collectors for a solar-driven ejector air conditioning system by experimental and simulation study

    International Nuclear Information System (INIS)

    Zhang Wei; Ma Xiaoli; Omer, S.A.; Riffat, S.B.

    2012-01-01

    Highlights: ► Three solar collectors have been compared to drive ejector air conditioning system. ► A simulation program was constructed to study the effect parameters. ► The outdoor test were conducted to validate the solar collector modeling. ► Simulation program was found to predict solar collector performance accurately. ► The optimal design of solar collector system was carried out. - Abstract: In this paper, three different solar collectors are selected to drive the solar ejector air conditioning system for Mediterranean climate. The performance of the three selected solar collector are evaluated by computer simulation and lab test. Computer model is incorporated with a set of heat balance equations being able to analyze heat transfer process occurring in separate regions of the collector. It is found simulation and test has a good agreement. By the analysis of the computer simulation and test result, the solar ejector cooling system using the evacuated tube collector with selective surface and high performance heat pipe can be most economical when operated at the optimum generating temperature of the ejector cooling machine.

  12. Performance Analysis of a Solar Dryer Equipped with a Recycling Air System and Desiccant Chamber

    Directory of Open Access Journals (Sweden)

    M.H Aghkhani

    2013-09-01

    Full Text Available Drying is a high energy consuming process. Solar drying is one of the most popular methods for dehydration of agricultural products. In the present study, the performance of a forced convection solar dryer equipped with recycling air system and desiccant chamber was investigated. The solar dryer is comprised of solar collector, drying chamber, silica jell desiccant chamber, air ducts, fan and measuring and controlling system. Drying rate and energy consumption in three levels of air temperature (40, 45 and 50 oC and two modes of drying (with recycling air and no-recycling with open duct system were measured and compared. The results showed that increasing the drying air temperature decreased the drying time and increased the energy consumption in the mode of non-recycling air system. The dryer efficiency and drying rate were better in the mode of recycling air system than open duct system. The highest dryer efficiency was obtained from drying air temperature of 50 oC and the mode of recycling air system. In general, the efficiency of solar collector and the highest efficiency of the dryer were 0.34 and 0.41, respectively.

  13. Discussion of mechanical design for pressured cavity-air-receiver in solar power tower system

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Zhilin; Zhang, Yaoming; Liu, Deyou; Wang, Jun; Liu, Wei [Hohai Univ., Nanjing (China). New Materials and Energy Sources Research and Exploitation Inst.

    2008-07-01

    In 2005, Hohai university and Nanjing Chunhui science and technology Ltd. of China, cooperating with Weizmann Institute of Science and EDIG Ltd. of Israel, built up a 70kWe solar power tower test plant in Nanjing, Jiangsu province, China, which was regarded as the first demonstration project to demonstrate the feasibility of solar power tower system in China. The system consists of heliostats field providing concentrated sunlight, a solar tower with a height of 33 meter, a pressured cavity-air-receiver transforming solar energy to thermal energy, a modified gas turbine adapting to solar power system, natural gas subsystem for solar-hybrid generation, cooling water subsystem for receiver and CPC, controlling subsystem for whole plant, et al. In this system, air acts as actuating medium and the system works in Brayton cycle. Testing results show that solar power tower system is feasible in China. To promote the development of solar powered gas turbine system and the pressured cavity-air-receiver technology in China, it is necessary to study the mechanical design for pressured Cavity-air-receiver. Mechanical design of pressured cavity-air-receiver is underway and some tentative principles for pressured cavity-air-receiver design, involving in power matching, thermal efficiency, material choosing, and equipment security and machining ability, are presented. At the same time, simplified method and process adapted to engineering application for the mechanical design of pressured cavity-air-receiver are discussed too. Furthermore, some design parameters and appearance of a test sample of pressured cavity-air-receiver designed in this way is shown. It is appealed that, in China, the research in this field should be intensified and independent knowledge patents for pivotal technological equipments such as receiver in solar power tower system should be formed. (orig.)

  14. Solar Desalination by Humidification-Dehumidification of Air

    Directory of Open Access Journals (Sweden)

    Moumouh J.

    2018-01-01

    Full Text Available The importance of supplying potable water can hardly be overstressed. In many arid zones, coastal or inlands, seawater or brackish water desalination may be the only solution to the shortage of fresh water. The process based on humidification-dehumidification of air (HDH principle mimic the natural water cycle. HDH technique has been subjected to many studies in recent years due to the low temperature, renewable energy use, simplicity, low cost installation and operation. An experimental test set-up has been fabricated and assembled. The prototype equipped with appropriate measuring and controlling devices. Detailed experiments have been carried out at various operating conditions. The heat and mass transfer coefficients have been obtained experimentally. The results of the investigation have shown that the system productivity increases with the increase in the mass flow rate of water through the unit. Water temperature at condenser exit increases linearly with water temperature at humidifier inlet and it decreases as water flow rate increases. HDH desalination systems realised on also work at atmospheric pressure; hence they do not need mechanical energy except for circulation pumps and fans. These kinds of systems are suitable for developing countries. The system is modular, it is possible to increase productivity with additional solar collectors and additional HDH cycles.

  15. Performance analysis of solar air heater with jet impingement on corrugated absorber plate

    Directory of Open Access Journals (Sweden)

    Alsanossi M. Aboghrara

    2017-09-01

    Full Text Available This paper deals with the experimental investigation outlet temperature and efficiency, of Solar Air heater (SAH. The experimental test set up designed and fabricated to study the effect of jet impingement on the corrugated absorber plate, through circular jets in a duct flow of solar air heater, and compared with conventional solar air heater on flat plat absorber. Under effect of mass flow rate (ṁ of air and solar radiation on outlet air temperature, and efficiency, are analyzed. Results show the flow jet impingement on corrugated plat absorber is a strong function of heat transfer enhancement. The present investigation concludes that the mass flow rate of air substantially influences the heat transfer on solar air heaters. And the thermal efficiency of proposed design duct is observed almost 14% more as compare to the smooth duct. At solar radiation 500–1000 (W/M2, 308 K ambient temperature and 0.01–0.03 (Kg/S mass flow rate

  16. Performance of a solar dryer using hot air from roof-integrated solar collectors for drying herbs and spices

    Energy Technology Data Exchange (ETDEWEB)

    Janjai, S.; Tung, P. [Silpakorn University, Pathom (Thailand). Dept. of Physics

    2005-11-01

    A solar dryer for drying herbs and spices using hot air from roof-integrated solar collectors was developed. The dryer is a bin type with a rectangular perforated floor. The bin has a dimension of 1.0 m x 2.0 m x 0.7 m. Hot air is supplied to the dryer from fiberglass-covered solar collectors, which also function as the roof of a farmhouse. The total area of the solar collectors is 72 m{sup 2}. To investigate its performance, the dryer was used to dry four batches of rosella flowers and three batches of lemon-grasses during the year 2002-2003. The dryer can be used to dry 200 kg of rosella flowers and lemon-grasses within 4 and 3 days, respectively. The products being dried in the dryer were completely protected from rains and insects and the dried products are of high quality. The solar air heater has an average daily efficiency of 35% and it performs well both as a solar collector and a roof of a farmhouse. (author)

  17. Performance advancement of solar air-conditioning through integrated system design for building

    International Nuclear Information System (INIS)

    Fong, K.F.; Lee, C.K.

    2014-01-01

    This study is to advance the energy performance of solar air-conditioning system through appropriate component integration from the absorption refrigeration cycle and proper high-temperature cooling. In the previous studies, the solar absorption air-conditioning using the working pair of water – lithium bromide (H 2 O–LiBr) is found to have prominent primary energy saving than the conventional compression air-conditioning for buildings in the hot-humid climate. In this study, three integration strategies have been generated for solar cooling, namely integrated absorption air-conditioning; integrated absorption-desiccant air-conditioning; and integrated absorption-desiccant air-conditioning for radiant cooling. To realize these ideas, the working pair of ammonia – water (NH 3 –H 2 O) was used in the absorption cycle, rather than H 2 O–LiBr. As such, the evaporator and the condenser can be separate from the absorption refrigeration cycle for the new configuration of various integrated design alternatives. Through dynamic simulation, the year-round primary energy saving of the proposed integration strategies for solar NH 3 –H 2 O absorption air-conditioning systems could be up to 50.6% and 25.5%, as compared to the conventional compression air-conditioning and the basic solar H 2 O–LiBr absorption air-conditioning respectively. Consequently, carbon reduction of building air-conditioning can be achieved more effectively through the integrated system design in the hot and humid cities. - Highlights: • Three integration strategies, IAAU, IADAU and IADAU-RC, are proposed to advance solar air-conditioning. • NH 3 –H 2 O is adopted for absorption refrigeration instead of H 2 O–LiBr. • Separate evaporator and condenser, desiccant cooling and radiant cooling are designed for IADAU-RC. • IADAU-RC can have 50.6% primary energy saving against the conventional air-conditioning

  18. Experimental test of a novel multi-surface trough solar concentrator for air heating

    International Nuclear Information System (INIS)

    Zheng Hongfei; Tao Tao; Ma Ming; Kang Huifang; Su Yuehong

    2012-01-01

    Highlights: ► We made a prototype novel multi-surface trough solar concentrator for air heating. ► Circular and rectangular types of receiver were chosen for air heating in the test. ► The changes of instantaneous system efficiency with different air flow were obtained. ► The system has the advantage of high collection temperature, which can be over 140 °C. ► The average efficiency can exceed 45% at the outlet temperature of above 60 °C. - Abstract: This study presents the experimental test of a novel multi-surface trough solar concentrator for air heating. Three receivers of different air flow channels are individually combined with the solar concentrator. The air outlet temperature and solar irradiance were recorded for different air flow rates under the real weather condition and used to determine the collection efficiency and time constant of the air heater system. The characteristics of the solar air heater with different airflow channels are compared, and the variation of the daily efficiency with the normalized temperature change is also presented. The testing results indicates that the highest temperature of the air heater with a circular glass receiver can be over 140 °C. When the collection temperature is around 60 °C, the collection efficiency can be over 45%. For the rectangular receivers, the system also has a considerable daily efficiency at a larger air flow rate. The air heater based on the novel trough solar concentrator would be suitable for space heating and drying applications.

  19. Analysis of Humid Air Turbine Cycle with Low- or Medium-Temperature Solar Energy

    International Nuclear Information System (INIS)

    Hongbin Zhao, H.; Yue, P.; Cao, L.

    2009-01-01

    A new humid air turbine cycle that uses low- or medium-temperature solar energy as assistant heat source was proposed for increasing the mass flow rate of humid air. Based on the combination of the first and second laws of thermodynamics, this paper described and compared the performances of the conventional and the solar HAT cycles. The effects of some parameters such as pressure ratio, turbine inlet temperature (TIT), and solar collector efficiency on humidity, specific work, cycle's exergy efficiency, and solar energy to electricity efficiency were discussed in detail. Compared with the conventional HAT cycle, because of the increased humid air mass flow rate in the new system, the humidity and the specific work of the new system were increased. Meanwhile, the solar energy to electricity efficiency was greatly improved. Additionally, the exergy losses of components in the system under the given conditions were also studied and analyzed.

  20. Thermodynamic characteristics of a novel wind-solar-liquid air energy storage system

    Science.gov (United States)

    Ji, W.; Zhou, Y.; Sun, Y.; Zhang, W.; Pan, C. Z.; Wang, J. J.

    2017-12-01

    Due to the nature of fluctuation and intermittency, the utilization of wind and solar power will bring a huge impact to the power grid management. Therefore a novel hybrid wind-solar-liquid air energy storage (WS-LAES) system was proposed. In this system, wind and solar power are stored in the form of liquid air by cryogenic liquefaction technology and thermal energy by solar thermal collector, respectively. Owing to the high density of liquid air, the system has a large storage capacity and no geographic constraints. The WS-LAES system can store unstable wind and solar power for a stable output of electric energy and hot water. Moreover, a thermodynamic analysis was carried out to investigate the best system performance. The result shows that the increases of compressor adiabatic efficiency, turbine inlet pressure and inlet temperature all have a beneficial effect.

  1. Performance evaluation for solar liquid desiccant air dehumidification system

    Directory of Open Access Journals (Sweden)

    Mohamed Elhelw

    2016-06-01

    In addition, the maximum solar thermal energy was determined to meet the regeneration demand according to the hourly average solar radiation data. For 220 m2 evacuated tube collector area, the maximum required heat energy is obtained as 38,286 kW h on December, while using solar energy, will save energy by 30.28% annual value.

  2. Arkansas Solar Retrofit Guide. Greenhouses, Air Heaters and Water Heaters.

    Science.gov (United States)

    Skiles, Albert; Rose, Mary Jo

    Solar retrofits are devices of structures designed to be attached to existing buildings to augment their existing heating sources with solar energy. An investigation of how solar retrofits should be designed to suit the climate and resources of Arkansas is the subject of this report. Following an introduction (section 1), section 2 focuses on…

  3. Hybrid system: Heat pump-solar air dryer for grains; Sistema hibrido: bomba de calor - calentador solar de aire para el secado de productos agricolas

    Energy Technology Data Exchange (ETDEWEB)

    Soto Gomez, Willfredo [Instituto Tecnologico de Tijuana, Tijuana (Mexico); Ortega Herrera, Jose Angel [Instituto Politecnico Nacional, Mexico, D.F. (Mexico)

    2000-07-01

    Design, building, operation and evaluation energy wise of a hybrid experimental type, with heat pump, that uses no chloride, does not destroy the ozone layer. It is solar air dryer for grains. In this research we dry rice. It has tree systems: 1.- A mechanical compression heat pump, 2.- An air solar heater, and 3.- An agriculture products dryer. The drying capacity is 20 pounds of grain /day, with a median daily solar radiation. The costs is approximately U.S. $ 6 000.00. The heat pump used 22 refrigerant first, and now works with refrigerant SUVA 9000. This refrigerant will be available this year in the I.S., it is one of the ecological class that substitutes the chlorofluorocarbonates. [Spanish] Se disena, construye, opera, y evalua energeticamente, un sistema hibrido tipo experimental, con bomba de calor que utiliza refrigerante que no contiene cloro, y no destruye la capa de ozono y un calentador solar de aire, para secar granos. En este trabajo secamos arroz. Se compone de tres sistemas: 1.- Bomba de calor por compresion mecanica, 2.- Calentador solar de aire, 3.- Secador de productos agricolas. La capacidad de secado es de 10 Kilos de granos/dia promedio. Tiene un costo aproximado de $ 60 000. La bomba de calor utiliza refrigerante 22 en una primera generacion, y actualmente opera con un refrigerante SUVA 9000, en una segunda generacion, este refrigerante se comercializara en este ano, en la Union Americana, pertenece a la familia de los llamados refrigerantes ecologicos, sustitutos de los clorofluorocarbonados.

  4. CONVERTER SOLAR RADIATION INTO ELECTRICITY TO SUPPLY THE AUTOMOTIVE SEMICONDUCTOR THERMOELECTRIC AIR CONDITIONING

    Directory of Open Access Journals (Sweden)

    T. A. Ismailov

    2015-01-01

    Full Text Available The article considers the possibility to increase the efficiency of converters of solar radiation into electricity by combining constructive photoelectric effect, See-beck thermoeffect and semiconductor solar cells, which will create integrated device to provide power semiconductor thermoelectric automobile air conditioner. 

  5. SolAir. Innovative solar collectors for efficient and cost-effective solar thermal power generation - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Barbato, M. C.; Haueter, Ph.; Bader, R.; Steinfeld, A.; Pedretti, A.

    2008-12-15

    This report presents the main results of the project. The project has been started at the end of 2007 and has been successfully finished in December 2008. The present project of ALE AirLight Energy aims at the engineering investigation and design of a novel concept of a solar collector system for efficient and cost-effective solar thermal power generation. The technology exploits an air-inflated reflective structure to concentrate solar radiation. This new arrangement reduces investment costs of the collector field and promises to be economically competitive. A first prototype, built in 2007, has been redesigned and heavily modified during this project. In the new configuration, by using secondary mirrors, the focal area is located close to the main structure and allows the integration of the receiver into the inflated structure. The topics developed in this document are as follows: (i) Design solutions for the concentrated energy receiver suitable for the revised SolAir concentrator concept. (ii) Solar flux simulation via Monte Carlo method. (iii) New version of the ALE AirLight Energy concentrator prototype. (iv) Prototype radiative flux measurements. (author)

  6. COMPORTAMIENTO DE LA TEMPERATURA DEL FLUJO DE AIRE EN UN ABSORBEDOR SOLAR BEHAVIOR OF THE TEMPERATURE OF THE FLOW OF AIR IN A SOLAR ABSORBER

    Directory of Open Access Journals (Sweden)

    GERARDO C CIFUENTES

    2009-12-01

    Full Text Available El presente trabajo evalúa el comportamiento de la temperatura del flujo de aire en un colector solar de lecho de rocas, mediante un modelo matemático que simula las temperaturas del flujo de aire a la entrada y salida del colector. El modelo relaciona la geometría, la radiación incidente en el colector y las constantes propias del colector determinadas experimentalmente. Para el análisis se realizaron tres pruebas en las que se midieron las temperaturas del ambiente, de entrada y salida en el colector y la radiación solar incidente.The present work evaluates the behavior of the temperature of the flow of air in a solar collector of channel of rocks, by means of a mathematical model that simulates the temperatures from the flow of air to the entrance and exit of the collector. The pattern relates the geometry, the incident radiation in the collector and the constants own collector determined experimentally. For the analysis they were carried out three tests in those that the temperatures of the atmosphere were measured, of entrance and exit in the collector and the solar incident radiation.

  7. Analysis of Humid Air Turbine Cycle with Low- or Medium-Temperature Solar Energy

    Directory of Open Access Journals (Sweden)

    Hongbin Zhao

    2009-01-01

    Full Text Available A new humid air turbine cycle that uses low- or medium-temperature solar energy as assistant heat source was proposed for increasing the mass flow rate of humid air. Based on the combination of the first and second laws of thermodynamics, this paper described and compared the performances of the conventional and the solar HAT cycles. The effects of some parameters such as pressure ratio, turbine inlet temperature (TIT, and sollar collector efficiency on humidity, specific work, cycle's exergy efficiency, and solar energy to electricity efficiency were discussed in detail. Compared with the conventional HAT cycle, because of the increased humid air mass flow rate in the new system, the humidity and the specific work of the new system were increased. Meanwhile, the solar energy to electricity efficiency was greatly improved. Additionally, the exergy losses of components in the system under the given conditions were also studied and analyzed.

  8. Integrating Solar Heating into an Air Handling Unit to Minimize Energy Consumption

    OpenAIRE

    Wilson, Scott A

    2010-01-01

    The purpose of this project was to test a method of integrating solar heating with a small commercial air handling unit (AHU). In order to accomplish this a heat exchanger was placed in the reheat position of the AHU and piped to the solar heating system. This heat exchanger is used to supplement or replace the existing electric reheat. This method was chosen for its ability to utilize solar energy on a more year round basis when compared to a traditional heating system. It allows solar h...

  9. Performance Assessment of a Solar-Assisted Desiccant-Based Air Handling Unit Considering Different Scenarios

    Directory of Open Access Journals (Sweden)

    Giovanni Angrisani

    2016-09-01

    Full Text Available In this paper, three alternative layouts (scenarios of an innovative solar-assisted hybrid desiccant-based air handling unit (AHU are investigated through dynamic simulations. Performance is evaluated with respect to a reference system and compared to those of the innovative plant without modifications. For each scenario, different collector types, surfaces and tilt angles are considered. The effect of the solar thermal energy surplus exploitation for other low-temperature uses is also investigated. The first alternative scenario consists of the recovery of the heat rejected by the condenser of the chiller to pre-heat the regeneration air. The second scenario considers the pre-heating of regeneration air with the warmer regeneration air exiting the desiccant wheel (DW. The last scenario provides pre-cooling of the process air before entering the DW. Results reveal that the plants with evacuated solar collectors (SC can ensure primary energy savings (15%–24% and avoid equivalent CO2 emissions (14%–22%, about 10 percentage points more than those with flat-plate collectors, when the solar thermal energy is used only for air conditioning and the collectors have the best tilt angle. If all of the solar thermal energy is considered, the best results with evacuated tube collectors are approximately 73% in terms of primary energy saving, 71% in terms of avoided equivalent CO2 emissions and a payback period of six years.

  10. Performance of evaporator-collector and air collector in solar assisted heat pump dryer

    International Nuclear Information System (INIS)

    Hawlader, M.N.A.; Rahman, S.M.A.; Jahangeer, K.A.

    2008-01-01

    A solar assisted heat pump dryer has been designed, fabricated and tested. This paper presents the performance of the evaporator-collector and the air collector when operated under the same meteorological conditions. ASHRAE standard procedure for collector testing has been followed. The evaporator-collector of the heat pump is acting directly as the solar collector, and the temperature of the refrigerant at the inlet to the evaporator-collector always remained below the ambient temperature. Because of the rejection of sensible and latent heats of air at the dehumidifier, the temperature at the inlet to the air collector is lower than that of the ambient air. Hence, the thermal efficiency of the air collector also increases due to a reduction of losses from the collector. The efficiencies of the evaporator-collector and the air collector were found to vary between 0.8-0.86 and 0.7-0.75, respectively, when operated under the meteorological conditions of Singapore

  11. Solar power from the supermarket. Water heating, space heating and air conditioning with solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    1976-08-01

    The different ways of utilizing solar energy are discussed. So far, top water heating is still the most practicable and most economical solution. Model houses with solar collectors, built by BBC and Philips, are dealt with in particular.

  12. Development of a solar-powered residential air conditioner: System optimization preliminary specification

    Science.gov (United States)

    Rousseau, J.; Hwang, K. C.

    1975-01-01

    Investigations aimed at the optimization of a baseline Rankine cycle solar powered air conditioner and the development of a preliminary system specification were conducted. Efforts encompassed the following: (1) investigations of the use of recuperators/regenerators to enhance the performance of the baseline system, (2) development of an off-design computer program for system performance prediction, (3) optimization of the turbocompressor design to cover a broad range of conditions and permit operation at low heat source water temperatures, (4) generation of parametric data describing system performance (COP and capacity), (5) development and evaluation of candidate system augmentation concepts and selection of the optimum approach, (6) generation of auxiliary power requirement data, (7) development of a complete solar collector-thermal storage-air conditioner computer program, (8) evaluation of the baseline Rankine air conditioner over a five day period simulating the NASA solar house operation, and (9) evaluation of the air conditioner as a heat pump.

  13. Analytical and Experimental Study of Recycling Baffled Double-Pass Solar Air Heaters with Attached Fins

    Directory of Open Access Journals (Sweden)

    Chun Sheng Lin

    2013-03-01

    Full Text Available The study of the heat transfer of solar air heaters with a new design using an absorbing plate with fins and baffles, which facilitate the recycling of flowing air, is reported. The mathematical formulation and analytical analysis for such a recyclic baffled double-pass solar air heater were developed theoretically. The performance of the device was studied experimentally as well. The theoretical predicted and experimental results were compared with another design, i.e., a downward-type single-pass solar air heater without recycle and double-pass operations reported in our previous work. Significant improvement in heat-transfer efficiency is achieved with the baffle and fin design due to the recycling heating and the extended heat transfer area. The effects of mass flow rate and recycle ratio on the heat-transfer efficiency enhancement as well as on the power consumption increment are also discussed.

  14. Absorption generator for solar-powered air-conditioner

    Science.gov (United States)

    Lowen, D. J.; Murray, J. G.

    1977-01-01

    Device passes solar-heated water through coils. Hot lithium Bromide/Water solution leaves through central stand-pipe, and water vapor leaves through refrigerant outlet at top. Matching generation temperature to collector efficiency helps cut costs.

  15. performance simulation of a natural circulation solar air

    African Journals Online (AJOL)

    User

    in a single glazed flat plate natural circulation solar a prepared in modules .... Nigerian Journal of Technology, used instead of ... boundary associated with the melting the phase ...... Mathematical Modeling of the Thin Layer Drying of Sweet ...

  16. Alternative for Summer Use of Solar Air Heaters in Existing Buildings

    Directory of Open Access Journals (Sweden)

    Sergio L. González-González

    2017-07-01

    Full Text Available Among solar thermal technologies for indoor heating, solar air heaters (SAH are appealing for implementation on existing buildings due to their simplicity, fewer risks related to the working fluid, and possible independence from the building structure. However, existing research work mainly focuses on winter use and still fails in providing effective solutions for yearly operation, which would enhance their interest. With the aim of analysing an alternative summer use, this work firstly characterises a double channel-single pass solar air collector through experimentation. From the obtained results, modelling and simulation tasks have been conducted to evaluate the possibilities of using hot air, provided by the SAH, while operating under summer conditions within a closed loop, to feed an air-to-water heat exchanger for domestic hot water (DHW production. The system is studied through simulation under two different configurations for a case study in Valladolid (Spain, during the period from May to September for different airflows in the closed loop. Results show that daily savings can vary from 27% to 85% among the different operating conditions; a configuration where make-up water is fed to the heat exchanger being preferable, with a dedicated water tank for the solar heated water storage of the minimum possible volume. The more favourable results for the harshest months highlight the interest of extending the use of the solar air heaters to the summer period.

  17. Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System

    Science.gov (United States)

    Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.

  18. Experimental and simulation studies on a single pass, double duct solar air heater

    Energy Technology Data Exchange (ETDEWEB)

    Forson, F.K. [Kwame Nkrumah Univ. of Science and Technology, Dept. of Mechanical Engineering, Kumasi (Ghana); Rajakaruna, H. [De Montfort Univ., School of Engineering and Technology, Leicester (United Kingdom)

    2003-05-01

    A mathematical model of a single pass, double duct solar air heater (SPDDSAH) is described. The model provides a design tool capable of predicting: incident solar radiation, heat transfer coefficients, mean air flow rates, mean air temperature and relative humidity at the exit. Results from the simulation are presented and compared with experimental ones obtained on a full scale air heater and a small scale laboratory one. Reasonable agreement between the predicted and measured values is demonstrated. Predicted results from a parametric study are also presented. It is shown that significant improvement in the SPDDSAH performance can be obtained with an appropriate choice of the collector parameters and the top to bottom channel depth ratio of the two ducts. The air mass flow rate is shown to be the dominant factor in determining the overall efficiency of the heater. (Author)

  19. Solar Air Collectors for Space Heating and Ventilation Applications—Performance and Case Studies under Romanian Climatic Conditions

    Directory of Open Access Journals (Sweden)

    Sanda Budea

    2014-06-01

    Full Text Available Solar air collectors have various applications: on the one hand, they can be used for air heating in cold seasons; on the other hand they can be used in summer to evacuate the warm and polluted air from residential, offices, industrial, and commercial buildings. The paper presents experimental results of a solar collector air, under the climatic conditions of the Southeastern Europe. The relationships between the direct solar irradiation, the resulting heat flow, the air velocity at the outlet, the air flow rate, the nominal regime of the collector and the efficiency of conversion of solar energy into thermal energy are all highlighted. Thus, it was shown that after a maximum 50 min, solar air collectors, with baffles and double air passage can reach over 50% efficiency for solar irradiation of 900–1000 W/m2. The article also presents a mathematical model and the results of a computational program that allows sizing solar collectors for the transfer of air, with the purpose of improving the natural ventilation of buildings. The article is completed with case studies, sizing the area to be covered with solar collectors, to ensure ventilation of a house with two floors or for an office building. In addition, the ACH (air change per hour coefficient was calculated and compared.

  20. Numerical evaluation of an innovative cup layout for open volumetric solar air receivers

    Science.gov (United States)

    Cagnoli, Mattia; Savoldi, Laura; Zanino, Roberto; Zaversky, Fritz

    2016-05-01

    This paper proposes an innovative volumetric solar absorber design to be used in high-temperature air receivers of solar power tower plants. The innovative absorber, a so-called CPC-stacked-plate configuration, applies the well-known principle of a compound parabolic concentrator (CPC) for the first time in a volumetric solar receiver, heating air to high temperatures. The proposed absorber configuration is analyzed numerically, applying first the open-source ray-tracing software Tonatiuh in order to obtain the solar flux distribution on the absorber's surfaces. Next, a Computational Fluid Dynamic (CFD) analysis of a representative single channel of the innovative receiver is performed, using the commercial CFD software ANSYS Fluent. The solution of the conjugate heat transfer problem shows that the behavior of the new absorber concept is promising, however further optimization of the geometry will be necessary in order to exceed the performance of the classical absorber designs.

  1. Development of air stable polymer solar cells using an inverted gold on top anode structure

    International Nuclear Information System (INIS)

    Sahin, Yuecel; Alem, Salima; Bettignies, Remi de; Nunzi, Jean-Michel

    2005-01-01

    We developed indium-tin-oxide/perylene diimide (or bathocuproine (BCP))/poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene (MEH-PPV) and [6,6]-phenyl C 60 butyric acid methyl ester (PCBM) blend/copper phthalocyanine (CuPc)/Au interpenetrated network polymer solar cells in order to improve air stability. The stability properties of the cells were characterized by current-voltage measurements under the influence of light and air. We achieved long lifetime solar cells which work at least 2 weeks under ambient air conditions without encapsulation. Solar energy conversion efficiency of the cells decrease 30% of the first day value at the end of 2 weeks. Photocurrent absorption properties of the devices were also investigated

  2. Entropy generation and thermodynamic analysis of solar air heaters with artificial roughness on absorber plate

    Directory of Open Access Journals (Sweden)

    Prasad Radha K.

    2017-09-01

    Full Text Available This paper presents mathematical modelling and numerical analysis to evaluate entropy generation analysis (EGA by considering pressure drop and second law efficiency based on thermodynamics for forced convection heat transfer in rectangular duct of a solar air heater with wire as artificial roughness in the form of arc shape geometry on the absorber plate. The investigation includes evaluations of entropy generation, entropy generation number, Bejan number and irreversibilities of roughened as well as smooth absorber plate solar air heaters to compare the relative performances. Furthermore, effects of various roughness parameters and operating parameters on entropy generation have also been investigated. Entropy generation and irreversibilities (exergy destroyed has its minimum value at relative roughness height of 0.0422 and relative angle of attack of 0.33, which leads to the maximum exergetic efficiency. Entropy generation and exergy based analyses can be adopted for the evaluation of the overall performance of solar air heaters.

  3. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater

    Directory of Open Access Journals (Sweden)

    Foued Chabane

    2014-03-01

    Full Text Available The thermal performance of a single pass solar air heater with five fins attached was investigated experimentally. Longitudinal fins were used inferior the absorber plate to increase the heat exchange and render the flow fluid in the channel uniform. The effect of mass flow rate of air on the outlet temperature, the heat transfer in the thickness of the solar collector, and the thermal efficiency were studied. Experiments were performed for two air mass flow rates of 0.012 and 0.016 kg s−1. Moreover, the maximum efficiency values obtained for the 0.012 and 0.016 kg s−1 with and without fins were 40.02%, 51.50% and 34.92%, 43.94%, respectively. A comparison of the results of the mass flow rates by solar collector with and without fins shows a substantial enhancement in the thermal efficiency.

  4. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater.

    Science.gov (United States)

    Chabane, Foued; Moummi, Noureddine; Benramache, Said

    2014-03-01

    The thermal performance of a single pass solar air heater with five fins attached was investigated experimentally. Longitudinal fins were used inferior the absorber plate to increase the heat exchange and render the flow fluid in the channel uniform. The effect of mass flow rate of air on the outlet temperature, the heat transfer in the thickness of the solar collector, and the thermal efficiency were studied. Experiments were performed for two air mass flow rates of 0.012 and 0.016 kg s(-1). Moreover, the maximum efficiency values obtained for the 0.012 and 0.016 kg s(-1) with and without fins were 40.02%, 51.50% and 34.92%, 43.94%, respectively. A comparison of the results of the mass flow rates by solar collector with and without fins shows a substantial enhancement in the thermal efficiency.

  5. Lowland rice yield estimates based on air temperature and solar radiation

    International Nuclear Information System (INIS)

    Pedro Júnior, M.J.; Sentelhas, P.C.; Moraes, A.V.C.; Villela, O.V.

    1995-01-01

    Two regression equations were developed to estimate lowland rice yield as a function of air temperature and incoming solar radiation, during the crop yield production period in Pindamonhangaba, SP, Brazil. The following rice cultivars were used: IAC-242, IAC-100, IAC-101 and IAC-102. The value of optimum air temperature obtained was 25.0°C and of optimum global solar radiation was 475 cal.cm -2 , day -1 . The best agrometeorological model was the one that related least deviation of air temperature and solar radiation in relation to the optimum value obtained through a multiple linear regression. The yield values estimated by the model showed good fit to actual yields of lowland rice (less than 10%). (author) [pt

  6. Numerical analysis and experimental validation of heat transfer characteristic for flat-plate solar air collector

    International Nuclear Information System (INIS)

    Hung, Tzu-Chen; Huang, Tsung-Jie; Lee, Duen-Sheng; Lin, Chih-Hung; Pei, Bau-Shei; Li, Zeng-Yao

    2017-01-01

    Highlights: • Various types of solar air collectors are discussed. • CFD has been used to validate the characteristics of heat transfer. • Solar Ray Tracing has been successfully used for thermal radiation flux. - Abstract: This study combines both concepts of solar ventilation technology and solar air collector. This is a quite innovative and potential facility to effectively use thermal energy and reduce the accumulation of heat in the indoor space simultaneously. The purpose of this study is to create a prototype and implement the experiments. Computational fluid dynamics (CFD) approach is employed to validate the characteristics of the flow and heat transfer. For the accuracy of numerical predictions, the method of Solar Ray Tracing was used for thermal radiation flux as boundary condition on the wall. The local heat transfer correlation was investigated to predict surrounding wind speed upon device cover. Three sorts of glasses and several aspect ratios of flow channels have been compared to conclude the optimal configuration. In addition, four important factors, such as the stagnant layer thickness, emissivity on the illustrated surface, mass flow rate and the height of the device, are also considered and discussed in detail. The result showed that the optimal design is dominated by the combination of an aspect ratio of 50 mm:10 mm, and appropriate mass flow rate to the height of the device. The present work on thermal energy collection can assist us in designing a powerful solar air collector in some potential applications.

  7. Possible schemes for solar-powered air-conditioning in 2-storey terrace houses

    International Nuclear Information System (INIS)

    Chu, C.M.; Bono, A.; Prabhakar, A.

    2006-01-01

    Space cooling is required all year round in the tropics, and probably accounts for a considerable proportion of the cost of electricity. Solar radiation can be channeled into cooling by photovoltaic powered systems and through the relatively new adsorption cycle technology. Two-storey terrace housing appear to have the greatest potential of introducing solar-powered cooling to residential homes. There are two schemes to cool a two-storey terrace housing: 1) By spraying water down the roof a tank, circulated by a pump powered by PV panels on the roof or 2) By replacing the roof with solar hot water collectors and use adsorption cooling chillers to produce air-conditioning for the entire block of terrace houses. In scheme number 1, a preliminary, rough technical evaluation showed that it is possible to pump water to the roof to flow down as a thin film and cool the roof by evaporation to about 40 degree C from about 70 degree C if without water evaporation at the highest insolation rate of the day. Scheme number 2, which uses adsorption chilling technology, requires communal sharing of the air-conditioning facility. The effect of collecting solar heat using the roof is two fold: to absorb solar energy for producing hot water and reducing excess heat input to the house. Preliminary costing demonstrates that solar-powered air-conditioning is within reach of commercialisation, bearing in mind that bulk purchases will dramatically lower the price of a product

  8. The climate and air-quality benefits of wind and solar power in the United States

    Science.gov (United States)

    Millstein, Dev; Wiser, Ryan; Bolinger, Mark; Barbose, Galen

    2017-09-01

    Wind and solar energy reduce combustion-based electricity generation and provide air-quality and greenhouse gas emission benefits. These benefits vary dramatically by region and over time. From 2007 to 2015, solar and wind power deployment increased rapidly while regulatory changes and fossil fuel price changes led to steep cuts in overall power-sector emissions. Here we evaluate how wind and solar climate and air-quality benefits evolved during this time period. We find cumulative wind and solar air-quality benefits of 2015 US$29.7-112.8 billion mostly from 3,000 to 12,700 avoided premature mortalities, and cumulative climate benefits of 2015 US$5.3-106.8 billion. The ranges span results across a suite of air-quality and health impact models and social cost of carbon estimates. We find that binding cap-and-trade pollutant markets may reduce these cumulative benefits by up to 16%. In 2015, based on central estimates, combined marginal benefits equal 7.3 ¢ kWh-1 (wind) and 4.0 ¢ kWh-1 (solar).

  9. Air and liquid solar heating system with heatpump, VP-SOL

    DEFF Research Database (Denmark)

    Kristiansen, Finn Harken; Jensen, Søren Østergaard

    1998-01-01

    For more than a year, measurements have been made on an air/fluid solar heating system with heat pump. The annual thermal performance of the system has been found and compared with simulations carried out by means of the simulation program KVIKSOL.The heat loss of the hot water tank is calculated...... be changed in such a way that the air is drawn through the solar collectors when the air temperature of the solar collectors is e.g. 5 K higher than the open air temperature.It has turned out that under the given conditions the system (compared to the simulations) performs as expected.If the heat pump...... is changed in such a way that it only heats the tank to max. 55ºC the net utilized solar energy of the system can be increased by approximately 30%.All things considered, it is estimated that the net utilized solar energy of the system can be increased by about 40% on condition that the proposed changes...

  10. Experimental investigation on the performance of an impinging jet solar air heater

    Directory of Open Access Journals (Sweden)

    T. Rajaseenivasan

    2017-03-01

    Full Text Available Investigation on an impinging jet solar air heater is performed and reported in this work. The air is supplied through an impinging jet pipe which contains the nozzles to distribute the air in the solar air heater. The air is released from the jet strikes the absorber plate which increases the heat transfer rate by creating turbulent flow in the collector. This study is focused on the parameters that affect the heat transfer characteristics and compared with conventional solar air heater. The system is examined by varying the angle of attack (0°, 10°, 20°, 30°, 60° and 90° and the nozzle diameter (3 mm, 5 mm and 7 mm in the air mass flow rate range of 0.012–0.016 kg/s. The study revealed that the highest performance is achieved with the 30° angle of attack, and the lowest performance is recorded with the 0°. The reduction in jet diameter increases the pressure loss in the collector. The better system performance is observed with the 5 mm diameter hole. The maximum thermal enhancement factor of 2.19 and efficiency of 55.8% are reached with the flow rate of 0.016 kg/s.

  11. Design of Air Ventilation System for Cargo Hold Vessels Using Solar Desiccant

    Directory of Open Access Journals (Sweden)

    Alam Baheramsyah

    2017-09-01

    Full Text Available One of the facilities and infrastructure of the vessel is the ventilation system in the cargo hold to maintain the quality. One attempt to avoid high moisture ratios is to provide a dry air supply by using desiccants. The purpose of this thesis is to design the system of air ventilation with solar desiccant by analysis the calculation with decrease air humidity ratio after passing desiccant rotor as well as fulfillment needs of heater and cooling system using heat of exhaust gas and seawater as well as fulfillment of electricity need using solar energy. From the result of analysis obtain to provide air supply in the cargo hold of 437.5 m3 / hour, the specification of rotor desiccant has a diameter of 550 mm with thickness 200 mm to decrease ratio of outside air humidity equal to 83.1% become 46.5%. Dehumidification air temperature of 47.7oC will be lowered to 35oC by using the sea water cooling media. As for the reactivation air heater requirement of 24.292 kW would be to fulfilled by utilizing the exhaust power of 498.12 kW. And for the electric power needs of the syetm is 34,488 wp will be supplied from the total solar module is 33 units with 345 wp per-capacity.

  12. new model for solar radiation estimation from measured air

    African Journals Online (AJOL)

    HOD

    RMSE) and correlation ... countries due to the unavailability of measured data in place [3-5]. ... models were used to predict solar radiation in Nigeria by. [12-15]. However ..... "Comparison of Gene Expression Programming with neuro-fuzzy and ...

  13. Air emissions due to wind and solar power.

    Science.gov (United States)

    Katzenstein, Warren; Apt, Jay

    2009-01-15

    Renewables portfolio standards (RPS) encourage large-scale deployment of wind and solar electric power. Their power output varies rapidly, even when several sites are added together. In many locations, natural gas generators are the lowest cost resource available to compensate for this variability, and must ramp up and down quickly to keep the grid stable, affecting their emissions of NOx and CO2. We model a wind or solar photovoltaic plus gas system using measured 1-min time-resolved emissions and heat rate data from two types of natural gas generators, and power data from four wind plants and one solar plant. Over a wide range of renewable penetration, we find CO2 emissions achieve approximately 80% of the emissions reductions expected if the power fluctuations caused no additional emissions. Using steam injection, gas generators achieve only 30-50% of expected NOx emissions reductions, and with dry control NOx emissions increase substantially. We quantify the interaction between state RPSs and NOx constraints, finding that states with substantial RPSs could see significant upward pressure on NOx permit prices, if the gas turbines we modeled are representative of the plants used to mitigate wind and solar power variability.

  14. Potential of roof-integrated solar collectors for preheating air at drying facilities in Northern Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Franz; Nagle, Marcus; Leis, Hermann; Mueller, Joachim [Institute of Agricultural Engineering 440e, University of Hohenheim, Garbenstrasse 9, 70599 Stuttgart (Germany); Janjai, Serm [Department of Physics, Silpakorn University, Nakhon Pathom (Thailand); Mahayothee, Busarakorn [Department of Food Technology, Silpakorn University, Nakhon Pathom (Thailand); Haewsungcharoen, Methinee [Department of Food Engineering, Chiang Mai University, Chiang Mai (Thailand)

    2009-07-15

    Longan is one of the most widely cropped fruits in Northern Thailand, where a significant amount of the annual harvest is commercially dried and exported as a commodity. Liquefied petroleum gas is generally used as the energy source for heating the drying air, but concern is growing as fuel prices are expected to increase for the foreseeable future. Meanwhile, with the ample solar radiation in Thailand, the roofs of drying facilities could be adapted to serve as solar collectors to preheat the drying air, thus reducing the energy requirement from fossil fuels. In this study, a simulation program for a flat-plate solar air heater was used to estimate the potential to preheat drying air given the conditions of several longan drying facilities. Results showed that solar collectors can replace up to 19.6% of the thermal energy demand during the drying season. Bigger collectors and smaller air channels result in more useful heat, but attention has to be paid to costs and pressure drop, respectively. Annual monetary savings can reach up to THB 56,000 ({approx}US$ 1800 at US$ 1 THB 31). (author)

  15. Residential solar air conditioning: Energy and exergy analyses of an ammonia–water absorption cooling system

    International Nuclear Information System (INIS)

    Aman, J.; Ting, D.S.-K.; Henshaw, P.

    2014-01-01

    Large scale heat-driven absorption cooling systems are available in the marketplace for industrial applications but the concept of a solar driven absorption chiller for air-conditioning applications is relatively new. Absorption chillers have a lower efficiency than compression refrigeration systems, when used for small scale applications and this restrains the absorption cooling system from air conditioning applications in residential buildings. The potential of a solar driven ammonia–water absorption chiller for residential air conditioning application is discussed and analyzed in this paper. A thermodynamic model has been developed based on a 10 kW air cooled ammonia–water absorption chiller driven by solar thermal energy. Both energy and exergy analyses have been conducted to evaluate the performance of this residential scale cooling system. The analyses uncovered that the absorber is where the most exergy loss occurs (63%) followed by the generator (13%) and the condenser (11%). Furthermore, the exergy loss of the condenser and absorber greatly increase with temperature, the generator less so, and the exergy loss in the evaporator is the least sensitive to increasing temperature. -- Highlights: • 10 kW solar thermal driven ammonia–water air cooled absorption chiller is investigated. • Energy and exergy analyses have been done to enhance the thermal performance. • Low driving temperature heat sources have been optimized. • The efficiencies of the major components have been evaluated

  16. An Evaluation of Solar Air Heating at United States Air Force Installations

    Science.gov (United States)

    2009-03-01

    market . UTCs are only one of the numerous options that are available for energy managers to consider. The specific problem addressed by this research...Force 899,143,000 9% Biogas, Biomass, Geothermal, Solar, Wind 4 Wells Fargo and Company 550,000,000 42% Wind 5 Whole Foods Market 509,104,786...100% Biogas, Solar, Wind 6 The Pepsi Bottling Group, Inc. 470,216,838 100% Various 7 Johnson & Johnson 434,854,733 38% Biomass, Small hydro, Solar

  17. The Solar Dynamic Buffer Zone (SDBZ) curtain wall: Validation and design of a solar air collector curtain wall

    Science.gov (United States)

    Richman, Russell Corey

    Given the increases in both the environmental and economic costs of energy, there is a need to design and building more sustainable and low-energy building systems now. Curtain wall assemblies show great promise---the spandrel panels within them can be natural solar collectors. By using a Solar Dynamic Buffer Zone (SDBZ) in the spandrel cavity, solar energy can be efficiently gathered using the movement of air. There is a need for a numerical model capable of predicting performance of an SDBZ Curtain Wall system. This research designed, constructed and quantified a prototype SDBZ curtain wall system through by experimental testing in a laboratory environment. The laboratory experiments focussed on three main variables: air flow through the system, incoming radiation and collector surface type. Results from the experimental testing were used to validate a one-dimensional numerical model of the prototype. Results from this research show a SDBZ curtain wall system as an effective means of reducing building heating energy consumption through the preheating of incoming exterior ventilation air during the heating season in cold climates. The numerical model showed good correlation with experimental results at higher operating flows and at lower flows when using an apparent velocity at the heat transfer boundary layer. A seasonal simulation for Toronto, ON predicted energy savings of 205 kWh/m2 with an average seasonal efficiency of 28%. This is considered in the upper range when compared to other solar air collectors. Given the lack of published literature for similar systems, this research acts to introduce a simple, innovative approach to collect solar energy that would otherwise be lost to the exterior using already existing components within a curtain wall. Specifically, the research has provided: results from experiments and simulation, a first generation numerical model, aspects of design and construction of the SDBZ curtain wall and specific directions for further

  18. Air-cooled LiBr-water absorption chillers for solar air conditioning in extremely hot weathers

    International Nuclear Information System (INIS)

    Kim, D.S.; Infante Ferreira, C.A.

    2009-01-01

    A low temperature-driven absorption cycle is theoretically investigated for the development of an air-cooled LiBr-water absorption chiller to be combined with low-cost flat solar collectors for solar air conditioning in hot and dry regions. The cycle works with dilute LiBr-water solutions so that risk of LiBr crystallization is less than for commercially available water-cooled LiBr-water absorption chillers even in extremely hot ambient conditions. Two-phase heat exchangers in the system were modelled taking account of the heat and mass transfer resistances in falling film flows by applying the film theory in thermal and concentration boundary layers. Both directly and indirectly air-cooled chillers were modelled by properly combining component models and boundary conditions in a matrix system and solved with an algebraic equation solver. Simulation results predict that the chillers would deliver chilled water around 7.0 deg. C with a COP of 0.37 from 90 deg. C hot water under 35 deg. C ambient condition. At 50 deg. C ambient temperature, the chillers retained about 36% of their cooling power at 35 deg. C ambient. Compared with the directly air-cooled chiller, the indirectly air-cooled chiller presented a cooling power performance reduction of about 30%

  19. Optimal study of a solar air heating system with pebble bed energy storage

    International Nuclear Information System (INIS)

    Zhao, D.L.; Li, Y.; Dai, Y.J.; Wang, R.Z.

    2011-01-01

    Highlights: → Use two kinds of circulation media in the solar collector. → Air heating and pebble bed heat storage are applied with different operating modes. → Design parameters of the system are optimized by simulation program. → It is found that the system can meet 32.8% of the thermal energy demand in heating season. → Annual solar fraction aims to be 53.04%. -- Abstract: The application of solar air collectors for space heating has attracted extensive attention due to its unique advantages. In this study, a solar air heating system was modeled through TRNSYS for a 3319 m 2 building area. This air heating system, which has the potential to be applied for space heating in the heating season (from November to March) and hot water supply all year around in North China, uses pebble bed and water storage tank as heat storage. Five different working modes were designed based on different working conditions: (1) heat storage mode, (2) heating by solar collector, (3) heating by storage bed, (4) heating at night and (5) heating by an auxiliary source. These modes can be operated through the on/off control of fan and auxiliary heater, and through the operation of air dampers manually. The design, optimization and modification of this system are described in this paper. The solar fraction of the system was used as the optimization parameter. Design parameters of the system were optimized by using the TRNSYS program, which include the solar collector area, installation angle of solar collector, mass flow rate through the system, volume of pebble bed, heat transfer coefficient of the insulation layer of the pebble bed and water storage tank, height and volume of the water storage tank. The TRNSYS model has been verified by data from the literature. Results showed that the designed solar system can meet 32.8% of the thermal energy demand in the heating season and 84.6% of the energy consumption in non-heating season, with a yearly average solar fraction of 53.04%.

  20. Collecting performance of an evacuated tubular solar high-temperature air heater with concentric tube heat exchanger

    International Nuclear Information System (INIS)

    Wang, Ping-Yang; Li, Shuang-Fei; Liu, Zhen-Hua

    2015-01-01

    Highlights: • A novel evacuated tube solar high temperature air heater is designed. • The solar air heater system consists of 30 linked collecting units. • Every unit consisted of a evacuated tube, a simplified CPC and concentric tube. • The flow air is heated over temperature of 200 °C. - Abstract: A set of evacuated tube solar high temperature air heaters with simplified CPC (compound parabolic concentrator) and concentric tube heat exchanger is designed to provide flow air with a temperature of 150–230 °C for industrial production. The solar air heater system consists of 30 linked collecting units. Each unit includes a simplified CPC and an all-glass evacuated tube absorber with a concentric copper tube heat exchanger installed inside. A stainless steel mesh layer with high thermal conductivity is filled between the evacuated tube and the concentric copper tube. Air passes through each collecting unit, and its temperature increases progressively. An experimental investigation of the thermal performance of the air heater is performed, and the experimental results demonstrate the presented high-temperature solar air heater has excellent collecting performance and large output power, even in the winter. The measured thermal efficiency corresponding to the air temperature of 70 °C reaches 0.52. With the increase of air temperature, thermal efficiency reaches 0.35 at an air temperature of 150 °C, and 0.21 at an air temperature of 220 °C.

  1. Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use

    International Nuclear Information System (INIS)

    Bouadila, Salwa; Kooli, Sami; Lazaar, Mariem; Skouri, Safa; Farhat, Abdelhamid

    2013-01-01

    Highlights: • A new solar air heater collector using a phase change material. • Experimental study of the new solar air heater collector with latent storage. • Energy and exergy analysis of the solar heater with latent storage collector. • Nocturnal use of solar air heater collector. - Abstract: An experimental study was conducted to evaluate the thermal performance of a new solar air heater collector using a packed bed of spherical capsules with a latent heat storage system. Using both first and second law of thermodynamics, the energetic and exegetic daily efficiencies were calculated in Closed/Opened and Opened cycle mode. The solar energy was stored in the packed bed through the diurnal period and extracted at night. The experimentally obtained results are used to analyze the performance of the system, based on temperature distribution in different localization of the collectors. The daily energy efficiency varied between 32% and 45%. While the daily exergy efficiency varied between 13% and 25%

  2. Instrumentation strategies for energy conservation in broiler barns with ventilation air solar pre-heaters

    Energy Technology Data Exchange (ETDEWEB)

    Cordeau, Sebastien; Barrington, Suzelle [Department of Bioresource Engineering, Macdonald Campus of McGill University, 21 111 Lakeshore, Ste Anne de Bellevue, Quebec H9X 3V9 (Canada)

    2010-08-15

    At the present consumption rate, world fossil-fuel reserves are expected to be depleted by 2050 unless their consumption is optimized and supplemented with renewable energy sources. The objective of this project was to evaluate the performance of a simple data acquisition system installed to conduct an energy balance and identify energy saving strategies in two commercial broilers barns with ventilation air solar pre-heaters. Located near Montreal, Canada, the two identical barns were instrumented for inside and outside air conditions, ventilation rate and energy recovery by the solar air pre-heaters. Whereas the temperature, relative humidity and radiation sensors were reliable, inside air temperature stratification complicated energy balance analyses and broiler heat production rate calculations. Lack of room air mixing resulted in the loss of 25 and 15% of the generated heater load and recovered solar energy. The proper monitoring of all environmental conditions required their measurement every 5 rather than 20 min. Instead of using a data transmission service found to be unreliable in rural areas, all data loggers were downloaded onto a portable computer every 45 days during regular instrument maintenance. Accordingly, room air mixing is recommended to facilitate energy balance studies and improve the efficient use of heating energies. (author)

  3. Optimal design and control of solar driven air gap membrane distillation desalination systems

    International Nuclear Information System (INIS)

    Chen, Yih-Hang; Li, Yu-Wei; Chang, Hsuan

    2012-01-01

    Highlights: ► Air gap membrane distillation unit was used in the desalination plants. ► Aspen Custom Molder was used to simulate each unit of desalination plants. ► Design parameters were investigated to obtain the minimum total annual cost. ► The control structure was proposed to operate desalination plants all day long. -- Abstract: A solar heated membrane distillation desalination system is constructed of solar collectors and membrane distillation devices for increasing pure water productivity. This technically and economically feasible system is designed to use indirect solar heat to drive membrane distillation processes to overcome the unstable supply of solar radiation from sunrise to sunset. The solar heated membrane distillation desalination system in the present study consisted of hot water storage devices, heat exchangers, air gap membrane distillation units, and solar collectors. Aspen Custom Molder (ACM) software was used to model and simulate each unit and establish the cost function of a desalination plant. From Design degree of freedom (DOF) analysis, ten design parameters were investigated to obtain the minimum total annual cost (TAC) with fixed pure water production rate. For a given solar energy density profile of typical summer weather, the minimal TAC per 1 m 3 pure water production can be found at 500 W/m 2 by varying the solar energy intensity. Therefore, we proposed two modes for controlling the optimal design condition of the desalination plant; day and night. In order to widen the operability range of the plant, the sensitivity analysis was used to retrofit the original design point to lower the effluent temperature from the solar collector by increasing the hot water recycled stream. The simulation results show that the pure water production can be maintained at a very stable level whether in sunny or cloudy weather.

  4. Development of a solar-powered residential air conditioner. Program review

    Science.gov (United States)

    1975-01-01

    Progress in the effort to develop a residential solar-powered air conditioning system is reported. The topics covered include the objectives, scope and status of the program. The results of state-of-art, design, and economic studies and component and system data are also presented.

  5. Thermal design of a modern, air-conditioned, single-floor, solar-powered desert house

    KAUST Repository

    Serag-Eldin, M. A.

    2011-01-01

    The paper presents a thermal analysis of a single-floor, solar-powered desert house. The house is air-conditioned and provides all modern comforts and facilities. Electrical power, which drives the entire energy system, is generated by roof

  6. Quasi-steady state thermal performance of a solar air heater

    African Journals Online (AJOL)

    2017-01-17

    Jan 17, 2017 ... two kind of solar air heaters are commonly used relates ...... step is then initialized with output temperature of the first ..... Where da is the diameter of the aluminum wire making the porous absorber mesh (da 0.45mm) and Dh ...

  7. Quasi-steady state thermal performances of a solar air heater with ...

    African Journals Online (AJOL)

    Quasi-steady state thermal performance of a solar air heater with a combined absorber is studied. The whole energy balance equations related to the system were articulated as a linear system of temperature equations. Solutions to this linear system were assessed from program based on an iterative process. The mean ...

  8. An energy and exergy study of a solar thermal air collector

    Directory of Open Access Journals (Sweden)

    Mohseni-Languri Ehsan

    2009-01-01

    Full Text Available A solar flat plate air collector was manufactured in the north of Iran, and connected to a room as the model to study the possibility of using such solar heating systems in the northern parts of Iran. This collector was tested as a solar air heater to see how good it could be for warming up the test room during the winter. The experimental data obtained through accurate measurements were analyzed using second law approach to find the optimum mass flow rate, which leads to the maximum exergy efficiency. It was found that for the test setup at the test location, a mass flow rate of 0.0011 kg/s is the optimum mass flow rate for tested conditions which leads to the highest second law efficiency.

  9. Life cycle assessment of a conventional and plastic solar collector in alternative air-conditioning

    International Nuclear Information System (INIS)

    Algarbi, N. M.

    2006-01-01

    Alternative solar systems include a large number of heat-and mass exchange apparatus (HMTA) with considerable size surfaces. Prequired for realization of the work processes. This result in the increase in the overall dimentions. and cost of the system. The possibility of using the principle of combining the working and auxiliary processes within the (HMTA) has been considred, and the calculation proving the working ability of the alternative system for solving the task of air-condition, obtaining comfort parameters by employing evaporative air-cooling methods only, and a solar system with flat solar collectors to provide for the absorbent regeneration, have been performed. The study shows the importance in using Live Cycle Assessment, study for renewable energy, technologies, where environmental performance is especially important.(Author)

  10. Thermal behaviour of a solar air heater with a compound parabolic concentrator

    International Nuclear Information System (INIS)

    Tchinda, R.

    2005-11-01

    A mathematical model for computing the thermal performance of an air heater with a truncated compound parabolic concentrator having a flat one-sided absorber is presented. A computed code that employs an iterative solution procedure is constructed to solve the governing energy equations and to estimate the performance parameters of the collector. The effects of the air mass flow rate, the wind speed and the collector length on the thermal performance of the present air heater are investigated. Prediction for the performance of the solar heater also exhibits reasonable agreement with experimental data with an average error of 7%. (author)

  11. The relationship between incoming solar radiation and daily air temperature

    International Nuclear Information System (INIS)

    Kpeglo, Daniel Kwasi

    2013-07-01

    Solar radiation is the ultimate source of energy for the planet. To predict the values of temperature and instant solar radiation when equipment are not readily available from obtained equations, a good knowledge and understanding of the disposition and distribution of solar radiation is a requirement for modelling earth’s weather and climate change variables. A pyranometer (CM3) in series with a PHYWE amplifier and a voltmeter were experimentally set-up and used to study the amount of solar radiation received at the Physics Department of the University of Ghana during the day. The temperature of the study area as well as the Relative Humidity was also recorded. Data was collected over a period of one month (from 2nd to 24th April, 2012). Days for which rain was recorded were ignored because rain could damage the pyranometer. The data obtained by the set-up were therefore used to compare with data obtained by a wireless weather station (Davis Vintage Pro). The data from these separate set-ups indicated that a perfect correlation existed between the solar radiation and temperature of the place. The data obtained by the experimental set-up was split into two separate sessions as morning and evening sessions. It was observed that the experimental set-up had a good correlation with that of the weather station on a particular day 11th April, 2012. The various Regression Coefficient (R"2) values for morning session were respectively R"2 = 0.96 and R"2 = 0.95 with their respective equations as I_W =136.22T_W - 40623 and I_p = 2.3198T_p - 678.14. The evening session also had good Regression Coefficient values of R"2 = 0.81 and R"2 = 0.97 with equations of 2.1098T_p - 625 and I_W = 161.31T_w - 4876.9. Similar analysis of the data from the separate set-ups gave a better correlation for that of the experimental set-up than that of the wireless station. The range of values of Regression Coefficient (R"2) for the experimental set-up was between 0.82 − 0.99 for the morning

  12. Energy and Greenhouse Gas Emission Assessment of Conventional and Solar Assisted Air Conditioning Systems

    Directory of Open Access Journals (Sweden)

    Xiaofeng Li

    2015-11-01

    Full Text Available Energy consumption in the buildings is responsible for 26% of Australia’s greenhouse gas emissions where cooling typically accounts for over 50% of the total building energy use. The aim of this study was to investigate the potential for reducing the cooling systems’ environmental footprint with applications of alternative renewable energy source. Three types of cooling systems, water cooled, air cooled and a hybrid solar-based air-conditioning system, with a total of six scenarios were designed in this work. The scenarios accounted for the types of power supply to the air-conditioning systems with electricity from the grid and with a solar power from highly integrated building photovoltaics (BIPV. Within and between these scenarios, systems’ energy performances were compared based on energy modelling while the harvesting potential of the renewable energy source was further predicted based on building’s detailed geometrical model. The results showed that renewable energy obtained via BIPV scenario could cover building’s annual electricity consumption for cooling and reduce 140 tonnes of greenhouse gas emissions each year. The hybrid solar air-conditioning system has higher energy efficiency than the air cooled chiller system but lower than the water cooled system.

  13. Techno-economic evaluation of a ventilation system assisted with exhaust air heat recovery, electrical heater and solar energy

    OpenAIRE

    Özyoğurtçu, Gamze; Mobedi, Moghtada; Özerdem, Barış

    2014-01-01

    The energy consumed to condition fresh air is considerable, particularly for the buildings such as cinema, theatre or gymnasium saloons. The aim of the present study is to design a ventilation system assisted with exhaust air heat recovery unit, electrical heater and stored solar energy, then to make an economical analysis based on life cycle cost (LCC) to find out its payback period. The system is able to recover thermal energy of exhaust air, store solar energy during the sunlight period an...

  14. Air-liquid solar collector for solar heating, combined heating and cooling, and hot water subsystems

    Science.gov (United States)

    1978-01-01

    A collection of quarterly reports consisting of the installation and layout design of the air collector system for commercial applications, completion of the preliminary design review, detailed design efforts, and preparation of the verification test plan are given. Performance specifications and performance testing of a prototype model of a two manifold, 144 tube air collector array is presented.

  15. An experimental evaluation of multi-pass solar air heaters

    Energy Technology Data Exchange (ETDEWEB)

    Satcunanathan, S.; Persad, P.

    1980-12-01

    Three collectors of identical dimensions but operating in the single-pass, two-pass and three-pass modes were tested simultaneously under ambient conditions. It was found that the two-pass air heater was consistently better than the single-pass air heater over the day for the range of mass flow rates considered. It was also found that at a mass flow rate of 0.0095 kg s/sup -1/ m/sup -2/, the thermal performances of the two-pass and three-pass collectors were identical, but at higher flow rates the two-pass collector was superior to the three-pass collector, the superiority decreasing with increasing mass flow rate.

  16. Solar Desalination by Humidification-Dehumidification of Air

    OpenAIRE

    Moumouh J.; Tahiri M.; Balli L.

    2018-01-01

    The importance of supplying potable water can hardly be overstressed. In many arid zones, coastal or inlands, seawater or brackish water desalination may be the only solution to the shortage of fresh water. The process based on humidification-dehumidification of air (HDH) principle mimic the natural water cycle. HDH technique has been subjected to many studies in recent years due to the low temperature, renewable energy use, simplicity, low cost installation and operation. An experimental tes...

  17. Numerical analysis of flow in a solar heater of air packing with shavings; Analisis numerico del flujo en un calentador solar de aire empacado con viruta

    Energy Technology Data Exchange (ETDEWEB)

    Lopez C, Raymundo; Morales G, Juan R; Diaz C, Alen; Lara V, Araceli; Lizardi R, Arturo [Universidad Autonoma Metropolitana-Azcapotzalco, Mexico, D.F. (Mexico); Vaca M, Mabel [UNAM, Mexico, D.F. (Mexico)

    2000-07-01

    The temperature distribution of air through a solar heater is determined by means of the equations of heat, mass, momentum, and energy conservation. The solution is obtained by means of the numeric model of finite volume, using the CFC2000 software, V. 3.3. The studied flow is laminar. The temperature distribution resulted quite similar for different Reynolds numbers; the greatest difference was less than 4 Celsius degrees, for similar ranges of solar radiation. The influence of the separation that exists between the clear cover and the free surface of the material used as thermal summit (b) was analyzed. A difference up to 41 Celsius degrees for a Reynolds number of 1000 and values of b between 3 and 7 cm. For a Reynolds of 2000, the difference was of 29 Celsius degrees, in the same range of b. [Spanish] Se determinan la distribucion de temperaturas del aire, a lo largo de un calentador solar, aplicando las ecuaciones de conservacion de masa, cantidad de movimiento y energia. La solucion se obtiene con el modelo numerico de volumen finito y la utilizacion del programa de computadora llamado CFC2000 version 3.3. El flujo estudiado es del tipo laminar. La distribucion de temperaturas resulto ser muy semejante para diferentes valores del numero de Reynolds, la diferencia mayor resulto menor a 4 grados Celsius, para rangos similares de radiacion solar. Se analizo la influencia de la separacion que existe entre la cubierta transparente y la superficie libre del material que sirve como almacen termico (b). Se encontro una diferencia maxima de hasta 41 grados celsius para un numero de Reynolds de 1000 y los valores de b entre 3 y 7 cm. Cuando el Reynolds fue de 2000 la diferencia fue de 29 grados Celsius, en el mismo rango de b.

  18. A review on the recent development of solar absorption and vapour compression based hybrid air conditioning with low temperature storage

    Directory of Open Access Journals (Sweden)

    Noor D. N.

    2016-01-01

    Full Text Available Conventional air conditioners or vapour compression systems are main contributors to energy consumption in modern buildings. There are common environmental issues emanating from vapour compression system such as greenhouse gas emission and heat wastage. These problems can be reduced by adaptation of solar energy components to vapour compression system. However, intermittence input of daily solar radiation was the main issue of solar energy system. This paper presents the recent studies on hybrid air conditioning system. In addition, the basic vapour compression system and components involved in the solar air conditioning system are discussed. Introduction of low temperature storage can be an interactive solution and improved economically which portray different modes of operating strategies. Yet, very few studies have examined on optimal operating strategies of the hybrid system. Finally, the findings of this review will help suggest optimization of solar absorption and vapour compression based hybrid air conditioning system for future work while considering both economic and environmental factors.

  19. Solar-aided air conditioning through sorption. Final report. Phase 2; Solar unterstuetzte Klimatisierung ueber Sorption. Endbericht zur Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Laevemann, E; Kessling, W; Peltzer, M

    1996-09-24

    The present article reports on possibilities of using solar energy for cooling buildings. It contains the following chapters: Current state of research and development; room air conditioning; planning and results of the studies; theory; experimental studies on the sorption dehumidifier; development of exchange surfaces; development of solution distributors; cooling of exchange surfaces; construction of a sorption dehumidifier. (HW) [Deutsch] Die Arbeit berichtet ueber Moeglichkeiten der Anwendung von Solarenergie zur Kuehlung von Gebaeuden. Die Arbeit enthaelt folgende Kapitel: - Stand der Forschung und Entwicklung - Raumklimatisierung - Planung und Ergebnis der Untersuchungen - Theorie - Experimentelle Untersuchungen am Sorptionsentfeuchter - Entwicklung von Austauschflaechen - Entwicklung von Loesungsverteilern - Kuehlung von Austauschflaechen - Konstruktion eines Sorptionsentfeuchters. (HW)

  20. Performance Analysis of a Shallow Duct Flat Plate Solar Air Heater with and without Porous Media

    Directory of Open Access Journals (Sweden)

    Haroun A.K. Shahad

    2016-12-01

    Full Text Available In this study a flat plate solar air heater with a shallow duct is analyzed experimentally. The collector consists of a 4.5m long air duct with a (20×5cm cross-sectional area. The air duct consists of four channels so that the collector becomes more compact. The collector is studied under the weather conditions of Hilla city – Iraq with latitude and longitude equal 32.3° N and 44.25° E respectively and it is tilted by 45° with the horizontal plane. The effect of the air mass flow rate on the collector performance is also studied.The performance of the collector is analyzed with and without porous media stuffing. The measured parameters are the air and absorber temperatures, air speed and pressure drop. The temperatures are measured by means of type (K thermocouples as this type covers the temperature range of the studied system. The values of the temperature are displayed by temperature data logger devices. The air speed and pressure drop are measured by digital anemometer and manometer devices respectively. The results of the studied system show that as the air mass flow rate increases, the temperature of both the flowing air and the absorber decrease, whilst the efficiency of the collector increases. The results also show that the addition of the steel wool porous material inside the air duct increases the temperature of both the flowing air and the absorber, and by that increases the efficiency of the collector. The porous media also caused an increase in the pressure drop between the outlet air and the atmosphere. This pressure drop increased with the increase in the air mass flow rate

  1. Competitividad en la cadena de suministro en la industria de aire acondicionado y refrigeracion: sintomas, reacciones y propuestas

    Directory of Open Access Journals (Sweden)

    Mayagoitia, G.

    2009-01-01

    Full Text Available The international markets are complete focus on the reduction of waste, this means increment of operative systems in matter to be at the top market competitiveness. From that perspective this paper will be present it as an alternative to the managers that includes into his daily agenda the continuous operative development. The balance between the customer requirements, the production capability and the procurement of the raw material, are element that impact the financial side of all companies and based on the achievement of these element will determinate the profit level and the increment of his competitiveness. The supply chain is tied to two key elements: 1 Quality & 2 Inventory, playing a critical role until the raw material is process to increment the add value, according the specification of the customers, and shipped, invoiced and pay from the customer based that the money always is a key issue. This paper will have 3 key elements: 1 Review of the current literature of inventory management, 2 symptoms analysis – and reactions of the companies with high inventory levels, plus the quality review and 3 Action plant to revert the phenomena and competitiveness achievements.

  2. Solar-assisted absorption air-conditioning systems in buildings: Control strategies and operational modes

    International Nuclear Information System (INIS)

    Shirazi, Ali; Pintaldi, Sergio; White, Stephen D.; Morrison, Graham L.; Rosengarten, Gary; Taylor, Robert A.

    2016-01-01

    Highlights: • A simulation model of a solar driven absorption chiller is developed in detail. • Three control strategies were proposed in the solar loop of the plant. • Series and parallel auxiliary heater arrangements were investigated. • The results showed the auxiliary-heater in parallel outperformed the series one. • Solar fraction can be increased by 20% by implementing the proposed configuration. - Abstract: Solar-assisted cooling technology has enormous potential for air-conditioning applications since both solar energy supply and cooling energy demand are well correlated. Unfortunately, market uptake of solar cooling technologies has been slow due to the high capital cost and limited design/operational experience. In the present work, different designs and operational modes for solar heating and cooling (SHC) absorption chiller systems are investigated and compared in order to identify the preferred design strategies for these systems. Three control scenarios are proposed for the solar collector loop. The first uses a constant flow pump, while the second and third control schemes employ a variable speed pump, where the solar collector (SC) set-point temperature could be either fixed or adjusted to the required demand. Series and parallel arrangements, between the auxiliary heater and the storage tank, have been examined in detail from an energy efficiency perspective. A simulation model for different system layouts is developed in the transient system simulation environment (TRNSYS, Version 17). Simulation results revealed that the total solar fraction of the plant is increased by up to 11% when a variable speed solar loop pump is used to achieve a collector set-point temperature adjusted according to the building load demand. Another significant finding of this study is that a parallel configuration for the auxiliary heater out-performs a conventional series configuration. The yearly performance of an auxiliary heater in parallel with the storage

  3. Analyses and Comparison of Solar Air Heater with Various Rib Roughness using Computational Fluid Dynamics (CFD)

    Science.gov (United States)

    Kumar, K. Ravi; Cheepu, Muralimohan; Srinivas, B.; Venkateswarlu, D.; Pramod Kumar, G.; Shiva, Apireddi

    2018-03-01

    In solar air heater, artificial roughness on absorber plate become prominent technique to improving heat transfer rate of air flowing passage as a result of laminar sublayer. The selection of rib geometries plays important role on friction characteristics and heat transfer rate. Many researchers studying the roughness shapes over the years to investigate the effect of geometries on the performance of friction factor and heat transfer of the solar air heater. The present study made an attempt to develop the different rib shapes utilised for creating artificial rib roughness and its comparison to investigate higher performance of the geometries. The use of computational fluid dynamics software resulted in correlation of friction factor and heat transfer rate. The simulations studies were performed on 2D computational fluid dynamics model and analysed to identify the most effective parameters of relative roughness of the height, width and pitch on major considerations of friction factor and heat transfer. The Reynolds number is varied in a range from 3000 to 20000, in the current study and modelling has conducted on heat transfer and turbulence phenomena by using Reynolds number. The modelling results showed the formation of strong vortex in the main stream flow due to the right angle triangle roughness over the square, rectangle, improved rectangle and equilateral triangle geometries enhanced the heat transfer extension in the solar air heater. The simulation of the turbulence kinetic energy of the geometry suggests the local turbulence kinetic energy has been influenced strongly by the alignments of the right angle triangle.

  4. Performance evaluation of a state-of-the-art solar air-heating system with auxiliary heat pump

    Science.gov (United States)

    1980-01-01

    The system in Solar House 2 consists of 57.9 sq. m. of Solaron Series 300 Collectors, 10.3 cu. m. of pebble bed storage, domestic water preheating capability and a Carrier air-to-air heat pump as an auxiliary heater. Although the control subsystem was specially constructed to facilitate experimental changes and data reduction, the balance of the solar system was assembled with off-the-shelf components. Since all components of the system are commercially available the system is considered to be a state of the art solar air-heating system. The system design is one that is recommended for residential and small office buildings.

  5. Combined desalination and solar-assisted air-conditioning system

    International Nuclear Information System (INIS)

    Gude, Veera Gnaneswar; Nirmalakhandan, Nagamany

    2008-01-01

    Analysis of a new desalination process utilizing low grade thermal energy is presented. In this process, fresh water is distilled from saline water under near-vacuum pressures created by passive means, enabling low-temperature distillation with lower energy requirements. The energy for low-temperature distillation is provided by a thermal energy storage (TES) system maintained at 55 deg. C utilizing any low grade waste heat source. In this study, heat rejected by the condenser of a modified absorption refrigeration system (ARS) is evaluated as a possible source to drive this desalination process. The energy for the generator of the ARS is provided by a combination of solar collector system and grid power. Results of this study show that the thermal energy rejected by an ARS of cooling capacity of 3.25 kW (0.975 tons of refrigeration) along with an additional energy input of 208 kJ/kg of desalinated water is adequate to produce desalinated water at an average rate of 4.5 kg/h. This energy consumption is competitive with that of the multi-stage flash distillation process of similar capacity (338 kJ/kg). An integrated process model and performance curves of the proposed approach are presented in this paper. Effects of process parameters on the performance of the system are also presented

  6. Efek Durasi Pencahayaan Pada Sistem HRAR Untuk Menurunkan Kandungan Minyak Solar Dalam Air Limbah

    Directory of Open Access Journals (Sweden)

    Dian Puspitasari

    2014-09-01

    Full Text Available Kandungan minyak di dalam air limbah industri perminyakan umumnya bersifat toksik terhadap mikroorganisme dan mengganggu proses pengolahan secara biologis. Sistem HRAR diperkirakan dapat mengatasi hambatan tersebut melalui proses fotosintesis untuk menghasilkan oksigen yang dibutuhkan mikroorganisme dalam mendegradasi senyawa hidrokarbon. Penelitian ini bertujuan mengkaji pengaruh perpanjangan waktu pencahayaan pada kemampuan HRAR dalam menurunkan kandungan minyak di dalam limbah. Variabel yang digunakan pada penelitian ini adalah variasi durasi pencahayaan dan variasi penambahan volume minyak solar yang ditambahkan ke dalam reaktor. Variasi durasi pencahayaan yang digunakan adalah pencahayaan selama 12 jam dan pencahayaan selama 24 jam. Sedangkan penambahan volume minyak solar ke dalam masing-masing reaktor adalah sebesar 346 ppm, 519 ppm dan 692 ppm. Hasil yang didapatkan dari penelitian ini adalah durasi pencahayaan selama 12 jam memiliki efek yang lebih baik terhadap penurunan konsentrasi minyak dibandingkan pencahayaan selama 24 jam. Hal ini dapat terlihat dari baiknya pertumbuhan alga dan bakteri di dalam reaktor serta tingginya penurunan konsentrasi minyak solar di dalamnya. Penurunan konsentrasi minyak solar terbaik terdapat pada reaktor dengan penambahan minyak solar sebesar 346 ppm. Pada reaktor dengan durasi pencahayaan selama 12 jam terjadi penurunan konsentrasi minyak sebesar 78,4%. Sedangkan penurunan kandungan minyak solar pada reaktor dengan durasi pencahayaan selama 24 jam adalah sebesar 73,9%.

  7. Comparison of Thermal Performances between Low Porosity Perforate Plate and Flat Plate Solar Air Collector

    Science.gov (United States)

    Chan, Hoy-Yen; Vinson, A. A.; Baljit, S. S. S.; Ruslan, M. H.

    2018-04-01

    Flat plate solar air collector is the most common collector design, which is relatively simpler to fabricate and lower cost. In the present study, perforated plate solar collector was developed to improve the system thermal performance. A glazed perforated plate of 6mm holes diameter with square geometry was designed and installed as the absorber of the collector. The influences of solar radiation intensity and mass flow rate on the thermal performance were investigated. The perforated collector was compared with the flat plate solar collector under the same operating conditions. The highest values of thermal efficiency in this study for the perforated plate (PP) and the flat plate (FP) solar collectors were 59% and 36% respectively, at solar radiation intensity of 846 Wm-2 and mass flow rate of 0.02 kgs-1. Furthermore, PP collector gave better thermal performance compared to FP collector; and compared to previous studies, the present perforated design was compatible with the flat plate with double pass designs.

  8. Simulation analysis on dynamic performance of a combined solar/air dual source heat pump water heater

    International Nuclear Information System (INIS)

    Deng, Weishi; Yu, Jianlin

    2016-01-01

    Highlights: • A modified direct expansion solar-assisted heat pump water heater is investigated. • An additional air source evaporator is used in parallel way in the M-DX-SHPWH system. • The M-DX-SHPWH system displays a higher performance at the low solar radiation. • Effects of solar radiation and air temperature on the performance are discussed. - Abstract: This paper investigated a combined solar/air dual source heat pump water heater system for domestic water heating application. In the dual source system, an additional air source evaporator is introduced in parallel way based on a conventional direct expansion solar-assisted heat pump water heaters (DX-SHPWH) system, which can improve the performance of the DX-SHPWH system at a low solar radiation. In the present study, a dynamic mathematical model based on zoned lump parameter approach is developed to simulate the performance of the system (i.e. a modified DX-SHPWH (M-DX-SHPWH) system). Using the model, the performance of M-DX-SHPWH system is evaluated and then compared with that of the conventional DX-SHPWH system. The simulation results show the M-DX-SHPWH system has a better performance than that of the conventional DX-SHPWH system. At a low solar radiation of 100 W/m"2, the heating time of the M-DX-SHPWH decreases by 19.8% compared to the DX-SHPWH when water temperature reaches 55 °C. Meanwhile, the COP on average increases by 14.1%. In addition, the refrigerant mass flow rate distribution in the air source evaporator and the solar collector of the system, the allocation between the air source evaporator and the solar collector areas and effects of solar radiation and ambient air temperature on the system performance are discussed.

  9. Design and development of an air humidifier using finite difference method for a solar desalination plant

    Science.gov (United States)

    Chiranjeevi, C.; Srinivas, T.

    2017-11-01

    Humidifier is an important component in air humidification-dehumidification desalination plant for fresh water production. Liquid to air flow rate ratio is optimization is reported for an industrial cooling towers but for an air humidifier it is not addressed. The current work is focused on the design and analysis of an air humidifier for solar desalination plant to maximize the yield with better humidification, using finite difference method (FDM). The outlet conditions of air from the humidifier are theoretically predicted by FDM with the given inlet conditions, which will be further used in the design calculation of the humidifier. Hot water to air flow rate ratio and inlet hot water temperature are identified as key operating parameters to evaluate the humidifier performance. The maximum and optimal values of mass flow rate ratio of water to air are found to be 2.15 and 1.5 respectively using packing function and Merkel Integral. The height of humidifier is constrained to 1.5 m and the diameter of the humidifier is found as 0.28m. The performance of humidifier and outlet conditions of air are simulated using FDM and compared with experimental results. The obtained results are within an agreeable range of deviation.

  10. An air-based corrugated cavity-receiver for solar parabolic trough concentrators

    International Nuclear Information System (INIS)

    Bader, Roman; Pedretti, Andrea; Barbato, Maurizio; Steinfeld, Aldo

    2015-01-01

    Highlights: • We analyze a novel tubular cavity-receiver for solar parabolic trough collectors. • Four-fold solar concentration ratio is reached compared to conventional receivers. • Efficient operation at up to 500 °C is possible. • The pumping power requirement is found to be acceptably low. - Abstract: A tubular cavity-receiver that uses air as the heat transfer fluid is evaluated numerically using a validated heat transfer model. The receiver is designed for use on a large-span (9 m net concentrator aperture width) solar parabolic trough concentrator. Through the combination of a parabolic primary concentrator with a nonimaging secondary concentrator, the collector reaches a solar concentration ratio of 97.5. Four different receiver configurations are considered, with smooth or V-corrugated absorber tube and single- or double-glazed aperture window. The collector’s performance is characterized by its optical efficiency and heat loss. The optical efficiency is determined with the Monte Carlo ray-tracing method. Radiative heat exchange inside the receiver is calculated with the net radiation method. The 2D steady-state energy equation, which couples conductive, convective, and radiative heat transfer, is solved for the solid domains of the receiver cross-section, using finite-volume techniques. Simulations for Sevilla/Spain at the summer solstice at solar noon (direct normal solar irradiance: 847 W m −2 , solar incidence angle: 13.9°) yield collector efficiencies between 60% and 65% at a heat transfer fluid temperature of 125 °C and between 37% and 42% at 500 °C, depending on the receiver configuration. The optical losses amount to more than 30% of the incident solar radiation and constitute the largest source of energy loss. For a 200 m long collector module operated between 300 and 500 °C, the isentropic pumping power required to pump the HTF through the receiver is between 11 and 17 kW

  11. The solar forcing on the 7Be-air concentration variability at ground level

    International Nuclear Information System (INIS)

    Talpos, Simona

    2004-01-01

    This paper analyses the correlation between the temporal and spatial variability of 7 Be-air concentration at ground level and the amount of precipitation. There were used the measured data from 26 stations distributed on North America, South America, Australia and Antarctica. The variability study was made using EOF and principal components analysis. The presented results show that the variability of 7 Be air concentration at ground level is simultaneously influenced by the solar cycle and some atmospheric processes like precipitation, turbulent transport, advection, etc. The solar forcing on the 7 Be variability at ground level was outlined for time-scales longer than 1 year and can be considered a global phenomenon. The atmospheric processes influence the 7 Be variability for scale shorter than one year and can be considered a local phenomenon. (author)

  12. Thermodynamic analysis of a novel hybrid wind-solar-compressed air energy storage system

    International Nuclear Information System (INIS)

    Ji, Wei; Zhou, Yuan; Sun, Yu; Zhang, Wu; An, Baolin; Wang, Junjie

    2017-01-01

    Highlights: • We present a novel hybrid wind-solar-compressed air energy storage system. • Wind and solar power are transformed into stable electric energy and hot water. • The system output electric power is 8053 kWh with an exergy efficiency of 65.4%. • Parametric sensitivity analysis is presented to optimize system performance. - Abstract: Wind and solar power have embraced a strong development in recent years due to the energy crisis in China. However, owing to their nature of fluctuation and intermittency, some power grid management problems can be caused. Therefore a novel hybrid wind-solar-compressed air energy storage (WS-CAES) system was proposed to solve the problems. The WS-CAES system can store unstable wind and solar power for a stable output of electric energy and hot water. Also, combined with organic Rankin cycle (ORC), the cascade utilization of energy with different qualities was achieved in the WS-CAES system. Aiming to obtain the optimum performance, the analysis of energy, exergy and parametric sensitivity were all conducted for this system. Furthermore, exergy destruction ratio of each component in the WS-CAES system was presented. The results show that the electric energy storage efficiency, round trip efficiency and exergy efficiency can reach 87.7%, 61.2% and 65.4%, respectively. Meanwhile, the parameters analysis demonstrates that the increase of ambient temperature has a negative effect on the system performance, while the increase of turbine inlet temperature has a positive effect. However, when the air turbine inlet pressure varies, there is a tradeoff between the system performance and the energy storage density.

  13. Experimental evaluation of a direct air-cooled lithium bromide-water absorption prototype for solar air conditioning

    International Nuclear Information System (INIS)

    Gonzalez-Gil, A.; Izquierdo, M.; Marcos, J.D.; Palacios, E.

    2011-01-01

    A new direct air-cooled single-effect LiBr-H 2 O absorption prototype is described and proposed for use in solar cooling. As distinguishing aspects, it presents: an adiabatic absorber using flat-fan sheets; an air-cooling system that directly refrigerates both the condenser and the absorber and; the possibility of being operated also as a double-effect unit. A solar facility comprising a 48 m 2 field of flat-plate collectors was used to test the single-effect operation mode of the prototype. Results from an experimental campaign carried out in Madrid during summer 2010 are shown and operation parameters corresponding to two typical summer days are detailed. The prototype worked efficiently, with COP values around 0.6. Cooling power varied from 2 kW to 3.8 kW, which represented about 85% of the prototype's nominal capacity. Chilled water temperatures mostly ranged between 14 o C and 16 o C, although the lowest measured value was of 12.8 o C. Condensation and absorption temperatures were under 50 o C and 46 o C, respectively, even with outdoor temperatures of 40 o C. Driving water temperature ranged between 85 o C and 110 o C. As a mean, the system was able to meet 65% of the cooling demand corresponding to a room of 40 m 2 . No signs of crystallization were observed during about a hundred hours of operation. - Highlights: → A novel direct air-cooled single-effect absorption prototype is described. → Feasibility of air-cooled technology for LiBr-H 2 O absorption cooling is proved. → An adiabatic absorber using flat-fan sheets avoids crystallization of the solution. → A field of flat-plate collectors powers the chiller at temperatures from 85 to 110 o C. → The prototype works with thermal COP about 0.6.

  14. Solar air-conditioning in buildings of houses; Climatizacion solar en edificios de viviendas

    Energy Technology Data Exchange (ETDEWEB)

    Rey, F. J.; Velasco, E.; Flores, F.; Gonzalez, A. B.

    2008-07-01

    In this work we analyze the behavior of the components of a thermal solar energy captation system that provides support to a climatization system with low energy consumption composed by radiating-refreshing ground in a single family dwelling. The combination of both system allows to increase the efficiency of the climatization and to reduce the energy domestic consumption. These aspects are included in regional an national strategies of saving and efficiency energy. tho this end, we shall use the software TRNSYS 16 for the energy systems simulation. (Author)

  15. Performance analysis of humid air turbine cycle with solar energy for methanol decomposition

    International Nuclear Information System (INIS)

    Zhao, Hongbin; Yue, Pengxiu

    2011-01-01

    According to the physical and chemical energy cascade utilization and concept of synthesis integration of variety cycle systems, a new humid air turbine (HAT) cycle with solar energy for methanol decomposition has been proposed in this paper. The solar energy is utilized for methanol decomposing as a heat source in the HAT cycle. The low energy level of solar energy is supposed to convert the high energy level of chemical energy through methanol absorption, realizing the combination of clean energy and normal chemical fuels as compared to the normal chemical recuperative cycle. As a result, the performance of normal chemical fuel thermal cycle can be improved to some extent. Though the energy level of decomposed syngas from methanol is decreased, the cascade utilization of methanol is upgraded. The energy level and exergy losses in the system are graphically displayed with the energy utilization diagrams (EUD). The results show that the cycle's exergy efficiency is higher than that of the conventional HAT cycle by at least 5 percentage points under the same operating conditions. In addition, the cycle's thermal efficiency, exergy efficiency and solar thermal efficiency respond to an optimal methanol conversion. -- Highlights: → This paper proposed and studied the humid air turbine (HAT) cycle with methanol through decomposition with solar energy. → The cycle's exergy efficiency is higher than that of the conventional HAT cycle by at least 5 percentage points. → It is estimated that the solar heat-work conversion efficiency is about 39%, higher than usual. → There is an optimal methanol conversation for the cycle's thermal efficiency and exergy efficiency at given π and TIT. → Using EUD, the exergy loss is decreased by 8 percentage points compared with the conventional HAT cycle.

  16. Solar Air Heating Metal Roofing for Reroofing, New Construction, and Retrofit

    Science.gov (United States)

    2013-06-01

    Fahrenheit ft2 square foot FY fiscal year GHG greenhouse gas HGL HydroGeoLogic, Inc. HVAC heating, ventilation and air-conditioning LPG Liquefied...Petroleum Gas O&M operations and maintenance PV photovaltaic TMY Typical Meteorological Year USACE U.S. Army Corps of Engineers USDA U.S...the greenhouse gas emission reductions; and 6. Document the performance of the solar roof as it compares to a reflective “Cool Roof.” Among the

  17. Investigations on the performance of a double pass, hybrid - type (PV/T) solar air heater

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, M.; Jayaraj, S. [Department of Mechanical Engineering, National Institute of Technology, Calicut-673601 (India)

    2013-07-01

    A solar hybrid energy system having photovoltaic and thermal (PV/T) devices, which produces both thermal and electrical energies simultaneously is considered for analysis. A double pass hybrid solar air (PV/T) heater with slats is designed and fabricated to study its thermal and electrical performance. Air as a heat removing fluid is made to flow through upper and lower channels of the collector. The collector is designed in such a way that the absorber plate is partially covered by solar cells. The raise in temperature of the solar cell is expected to decrease its electrical performance. Thin metallic strips called slats are attached longitudinally at the bottom side of the absorber plate to improve the system performance by increasing the cooling rate of the absorber plate. Thermal and electrical performances of the whole system at varying cooling conditions are presented. An artificial neural network model is used for forecasting the system performance at any desired conditions. The proposed model can be successfully used for evaluating the effect of different operating parameters under different ambient conditions for predicting the overall performance of the system.

  18. Variable structure TITO fuzzy-logic controller implementation for a solar air-conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Lygouras, J.N.; Pachidis, Th. [Laboratory of Electronics, School of Electrical and Computer Engineering, Democritus University of Thrace, GR-67100 Xanthi (Greece); Kodogiannis, V.S. [Centre for Systems Analysis, School of Computer Science, University of Westminster, London HA1 3TP (United Kingdom); Tarchanidis, K.N. [Department of Petroleum Technology, Technological Education Institute of Kavala, GR-65404, Kavala (Greece); Koukourlis, C.S. [Laboratory of Telecommunications, School of Electrical and Computer Engineering, Democritus University of Thrace, GR-67100 Xanthi (Greece)

    2008-04-15

    The design and implementation of a Two-Input/Two-Output (TITO) variable structure fuzzy-logic controller for a solar-powered air-conditioning system is described in this paper. Two DC motors are used to drive the generator pump and the feed pump of the solar air-conditioner. The first affects the temperature in the generator of the solar air-conditioner, while the second, the pressure in the power loop. The difficulty of Multi-Input/Multi-Output (MIMO) systems control is how to overcome the coupling effects among each degree of freedom. First, a traditional fuzzy-controller has been designed, its output being one of the components of the control signal for each DC motor driver. Secondly, according to the characteristics of the system's dynamics coupling, an appropriate coupling fuzzy-controller (CFC) is incorporated into a traditional fuzzy-controller (TFC) to compensate for the dynamic coupling among each degree of freedom. This control strategy simplifies the implementation problem of fuzzy control, but can also improve the control performance. This mixed fuzzy controller (MFC) can effectively improve the coupling effects of the systems, and this control strategy is easy to design and implement. Experimental results from the implemented system are presented. (author)

  19. Performance evaluation of a solar energy assisted hybrid desiccant air conditioner integrated with HDH desalination system

    International Nuclear Information System (INIS)

    Kabeel, A.E.; Abdelgaied, Mohamed; Zakaria, Yehya

    2017-01-01

    Highlights: • The performance of a solar hybrid air conditioner integrated with HDH desalination system is numerically investigated. • For increase the regeneration air from 70 to 130 m 3 /h, the distillate water productivity increases from 2.988 to 4.78 L/h. • For increase the regeneration air from 70 to 130 m 3 /h, COP overall daily decreases from 4.66 to 3.386. • For increases the regeneration air temperature from 75 to 95 °C, the distillate water increases from 3.1752 to 5.011 L/h. • For increases the regeneration air temperature from 75 to 95 °C, COP overall daily decreases from 4.392 to 3.636. - Abstract: In this study, the performances of a solar energy assisted hybrid desiccant air conditioning system integrated with humidification–dehumidification (HDH) desalination system are numerically investigated. The aim of this study is to benefit from the temperature rise of the regeneration air outside of the desiccant conditioning system as well as the water vapor content in this regeneration air by feeding it to the humidification-dehumidification water desalination unit to produce distillate water. The distillate water productivity, human thermal comfort issues, and energy saving represent the main objective of the present numerical study. The simulated results developed for subsystems are validated with the published experimental results. The effects of regeneration air temperature and flow rate on supply cooled air temperature, distillate water productivity, the cooling coefficient of performance and overall daily coefficient of performance of the proposed system are investigated. The results show that (i) the distillate water productivity increases from 3.175 to 5.011 L/h and overall daily coefficient of performance decreases from 4.392 to 3.636 with increasing the regeneration air temperature from 75 to 95 as (ii) the increase in the regeneration air flow rate from 70 to 130 m 3 /h, increases the distillate water productivity from 2.988 to 4

  20. Exergetic and Thermoeconomic Analyses of Solar Air Heating Processes Using a Parabolic Trough Collector

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Hernández-Román

    2014-08-01

    Full Text Available This paper presents a theoretical and practical analysis of the application of the thermoeconomic method. A furnace for heating air is evaluated using the methodology. The furnace works with solar energy, received from a parabolic trough collector and with electricity supplied by an electric power utility. The methodology evaluates the process by the first and second law of thermodynamics as the first step then the cost analysis is applied for getting the thermoeconomic cost. For this study, the climatic conditions of the city of Queretaro (Mexico are considered. Two periods were taken into account: from July 2006 to June 2007 and on 6 January 2011. The prototype, located at CICATA-IPN, Qro, was analyzed in two different scenarios i.e., with 100% of electricity and 100% of solar energy. The results showed that thermoeconomic costs for the heating process with electricity, inside the chamber, are less than those using solar heating. This may be ascribed to the high cost of the materials, fittings, and manufacturing of the solar equipment. Also, the influence of the mass flow, aperture area, length and diameter of the receiver of the solar prototype is a parameter for increasing the efficiency of the prototype in addition to the price of manufacturing. The optimum design parameters are: length is 3 to 5 m, mass flow rate is 0.03 kg/s, diameter of the receiver is around 10 to 30 mm and aperture area is 3 m2.

  1. Simulation and parameter analysis of a two-stage desiccant cooing/heating system driven by solar air collectors

    International Nuclear Information System (INIS)

    Li, H.; Dai, Y.J.; Köhler, M.; Wang, R.Z.

    2013-01-01

    Highlights: ► A solar desiccant cooling/heating system is simulation studied. ► The mean deviation is about 10.5% for temperature and 9.6% for humidity ratio. ► The 51.7% of humidity load and 76% of the total cooling can be handled. ► About 49.0% of heating load can be handled by solar energy. ► An optimization of solar air collector has been investigated. - Abstract: To increase the fraction of solar energy might be used in supplying energy for the operation of a building, a solar desiccant cooling and heating system was modeled in Simulink. First, base case performance models were programmed according to the configuration of the installed solar desiccant system and verified by the experimental data. Then, the year-round performance about the system was simulated. Last, design parameters of solar air collectors were optimized that include collector area, air leakage and thermal insulation. Comparison between numerical and experimental results shows good agreement. During the simulation, the humidity load for 63 days (51.7%) can be totally handled by the two-stage desiccant cooling unit. For seasonal total heating load, about 49.0% can be handled by solar energy. Based on optimized results, the thermal energy subsystem functioned to its expected performance in solar energy collection and thermal storage

  2. Effect of water and air flow on concentric tubular solar water desalting system

    International Nuclear Information System (INIS)

    Arunkumar, T.; Jayaprakash, R.; Ahsan, Amimul; Denkenberger, D.; Okundamiya, M.S.

    2013-01-01

    Highlights: ► We optimized the augmentation of condense by enhanced desalination methodology. ► We measured ambient together with solar radiation intensity. ► The effect of cooling air and water flowing over the cover was studied. -- Abstract: This work reports an innovative design of tubular solar still with a rectangular basin for water desalination with flowing water and air over the cover. The daily distillate output of the system is increased by lowering the temperature of water flowing over it (top cover cooling arrangement). The fresh water production performance of this new still is observed in Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore (11° North, 77° East), India. The water production rate with no cooling flow was 2050 ml/day (410 ml/trough). However, with cooling air flow, production increased to 3050 ml/day, and with cooling water flow, it further increased to 5000 ml/day. Despite the increased cost of the water cooling system, the increased output resulted in the cost of distilled water being cut in roughly half. Diurnal variations of a few important parameters are observed during field experiments such as water temperature, cover temperature, air temperature, ambient temperature and distillate output.

  3. Performance study of solar air heater duct having absorber plate with V down perforated baffles

    Directory of Open Access Journals (Sweden)

    Sunil Chamoli

    2014-04-01

    Full Text Available This paper presents results of a study of the performance of solar air heaters with V down perforated baffles as roughness on the air flow side of the absorber plate. Investigations have been carried out using a mathematical model to study the effects of ambient conditions, operating and design parameters on effective efficiency of such air heaters. The thermal and effective efficiencies differ only marginally at lower flow rates. With an increase in the flow rate, the difference between the thermal and effective efficiencies increases because of the increase in the pumping power. The results of the study are presented in the form of plots to show the effect of ambient, design and operating conditions on thermal and effective efficiency.

  4. ARIMA representation for daily solar irradiance and surface air temperature time series

    Science.gov (United States)

    Kärner, Olavi

    2009-06-01

    Autoregressive integrated moving average (ARIMA) models are used to compare long-range temporal variability of the total solar irradiance (TSI) at the top of the atmosphere (TOA) and surface air temperature series. The comparison shows that one and the same type of the model is applicable to represent the TSI and air temperature series. In terms of the model type surface air temperature imitates closely that for the TSI. This may mean that currently no other forcing to the climate system is capable to change the random walk type variability established by the varying activity of the rotating Sun. The result should inspire more detailed examination of the dependence of various climate series on short-range fluctuations of TSI.

  5. Single and double pass solar air heaters with wire mesh as packing bed

    Energy Technology Data Exchange (ETDEWEB)

    Aldabbagh, L.B.Y.; Egelioglu, F. [Mechanical Engineering Department, Eastern Mediterranean University, Magosa, Mersin 10 (Turkey); Ilkan, M. [School of Computing and Tecnology, Eastern Mediterranean University, Magosa, Mersin 10 (Turkey)

    2010-09-15

    The thermal performances of single and double pass solar air heaters with steel wire mesh layers are used instead of a flat absorber plate are investigated experimentally. The effects of mass flow rate of air on the outlet temperature and thermal efficiency were studied. The results indicate that the efficiency increases with increasing the mass flow rate for the range of the flow rate used in this work between 0.012 and 0.038 kg/s. For the same flow rate, the efficiency of the double pass is found to be higher than the single pass by 34-45%. Moreover, the maximum efficiencies obtained for the single and the double pass air collectors are 45.93 and 83.65% respectively for the mass flow rate of 0.038 kg/s. Comparison of the results of a packed bed collector with those of a conventional collector shows a substantial enhancement in the thermal efficiency. (author)

  6. An experimental study of solar desalination using free jets and an auxiliary hot air stream

    Science.gov (United States)

    Eid, Eldesouki I.; Khalaf-Allah, Reda A.; Dahab, Mohamed A.

    2018-04-01

    An experimental study for a solar desalination system based on jet-humidification with an auxiliary perpendicular hot air stream was carried out at Suez city, Egypt 29.9668°N, 32.5498°E. The tests were done from May to October 2016. The effects of nozzles situations and nozzle diameter with and without hot air stream on fresh water productivity were monitored. The results show that; the lateral and downward jets from narrow nozzles have more productivities than other situations. The hot air stream has to be adapted at a certain flow rate to get high values of productivity. The system productivity is (5.6 L/m 2 ), the estimated cost is (0.030063 / L) and the efficiency is 32.8%.

  7. Measuring Air Temperature in Glazed Ventilated Facades in the Presence of Direct Solar Radiation

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Zanghirella, Fabio; Heiselberg, Per

    2007-01-01

    A distinctive element of buildings with a double glazed façade is naturally or mechanically driven flow in a ventilated cavity. Accurate air temperature measurements in the cavity are crucial to evaluate the dynamic performance of the façade, to predict and control its behavior as a significant...... part of the complete ventilation system. Assessment of necessary cooling/heating loads and of the whole building energy performance will then depend on the accuracy of measured air temperature. The presence of direct solar radiation is an essential element for the façade operation, but it can heavily...... affect measurements of air temperature and may lead to errors of high magnitude using bare thermocouples and even adopting shielding devices. Two different research groups, from Aalborg University and Politecnico di Torino, tested separately various techniques to shield thermocouples from direct...

  8. Modeling and Simulation of Thermal Performance of Solar-Assisted Air Conditioning System under Iraq Climate

    Directory of Open Access Journals (Sweden)

    Najim Abid Jassim

    2016-08-01

    Full Text Available In Iraq most of the small buildings deployed a conventional air conditioning technology which typically uses electrically driven compressor systems which exhibits several clear disadvantages such as high energy consumption, high electricity at peak loads. In this work a thermal performance of air conditioning system combined with a solar collector is investigated theoretically. The hybrid air conditioner consists of a semi hermetic compressor, water cooled shell and tube condenser, thermal expansion valve and coil with tank evaporator. The theoretical analysis included a simulation for the solar assisted air-conditioning system using EES software to analyze the effect of different parameters on the power consumption of compressor and the performance of system. The results show that refrigeration capacity is increased from 2.7 kW to 4.4kW, as the evaporating temperature increased from 3 to 18 ºC. Also the power consumption is increased from 0.89 kW to 1.08 kW. So the COP of the system is increased from 3.068 to 4.117. The power consumption is increased from 0.897 kW to 1.031 kW as the condensing temperature increased from 35 ºC to 45 ºC. While the COP is decreased from 3.89 to 3.1. The power consumption is decreased from 1.05 kW to 0.7kW as the solar radiation intensity increased from 300 W/m2 to 1000 W/m2, while the COP is increased from 3.15 to 4.8. A comparison between the simulation and available experimental data showed acceptable agreement.

  9. Exergetic performance evaluation of a single pass baffled solar air heater

    International Nuclear Information System (INIS)

    Sabzpooshani, M.; Mohammadi, K.; Khorasanizadeh, H.

    2014-01-01

    In this study, the exergetic performance of a baffled type solar air heater has been evaluated theoretically. A detailed parametric study was done to investigate the effect of variation of fin and baffle parameters, number of glass covers, bottom insulation thickness and inlet air temperature at different mass flow rates on the exergy efficiency. The results indicated that attaching fins and baffles at low mass flow rates can lead to noticeable enhancement of the exergy efficiency. The results revealed that the trend of variation of the energy and exergy efficiencies are not the same and the exergy efficiency is the chief criterion for performance evaluation. Increasing the baffles width, reducing the distance between baffles and increasing the number of fins are effective at low mass flow rates, but at high mass flow rates the inverse trend is observable, such that exergy efficiency reduces sharply. The results showed that exergy efficiency increases with increasing the solar radiation intensity. By adding the second glass cover the exergy efficiency enhances at low mass flow rates. Increasing the insulation thickness over an optimum value doesn't improve the exergy efficiency. Increasing the inlet air temperature increases the exergy efficiency especially at high mass flow rates. - Highlights: • We study the exergetic performance of an upward type baffled solar air heater. • The effect of several design parameters on the performance is investigated. • Exergetic performance is very sensitive to the variation of baffles parameters. • Adding fins and baffles and increasing their parameters are efficient at low m . . • At high m . increment of baffles parameters causes decline of the exergy efficiency

  10. Estudio regional del potencial de secado con aire natural y energía solar

    Directory of Open Access Journals (Sweden)

    Jorge Domínguez P.

    1983-09-01

    Full Text Available En este artículo se presenta y aplica una metodología de trabajo basada en la técnica de simulación matemática y desarrollada con el fin de realizar estudios sobre el potencial de secado de productos agropecuarios con aire natural y energía solar de regiones tropicales. La metodología se basa en el uso de un programa de computador e Incluye otros elementos metodológicos en relación con el manejo de la información meteorológica, el patrón de operación del ventilador, el uso de energía solar y la interpretación de los resultados con el fin de optimizar el sistema. Se reportan los resultados del estudio del potencial de secado con aire natural y energía solar de Tuluá (Valle y se proporcionan recomendaciones específicas para la implementación de sistemas de secado a bala temperatura en la Reglón.

  11. Potencial de secado de yuca con aire natural y energía solar

    Directory of Open Access Journals (Sweden)

    Alfonso Parra Coronado

    1990-01-01

    Full Text Available En este trabajo se presentan los resultados de estudios del potencial de secado de productos agropecuarios con aire natural y energía solar de regiones tropicales, considerando el caso específico de la yuca. La evaluación del potencial de secado de una región se basa en el uso de un programa de computador  Simulación matemática, mediante el cual se obtienen los valores del caudal mínimo de aire requerido para secar el producto antes que éste alcance un nivel de deterioro preestablecido. Otros elementos metodológicos incluyen: manejo de la información meteorológica, mes crítico, patrón de agitación del producto, hora de iniciación del secado, patrón de operación del ventilador, uso de calor suplementario (energía solar e interpretación de los resultados con el fin de optimizar el sistema. Se presentan mapas para Colombia de líneas isocaudales e isoáreas de colector solar plano, con base en los cuales se puede obtener fácilmente la información requerida para el diseño de sistemas de secado de yuca a baja temperatura.

  12. Solar radiation estimation using sunshine hour and air pollution index in China

    International Nuclear Information System (INIS)

    Zhao, Na; Zeng, Xiaofan; Han, Shumin

    2013-01-01

    Highlights: • Aerosol can affect coefficients of A–P equation to estimate solar radiation. • Logarithmic model performed best, according to MBE, MABE, MPE, MAPE, RMSE and NSE. • Parameters of A–P model can be adjusted by API, geographical position and altitude. • A general equation to estimate solar radiation was established in China. - Abstract: Angström–Prescott (A–P) equation is the most widely used empirical relationship to estimate global solar radiation from sunshine hours. A new approach based on Air Pollution Index (API) data is introduced to adjust the coefficients of A–P equation in this study. Based on daily solar radiation, sunshine hours and API data at nine meteorological stations from 2001 to 2011 in China, linear, exponential and logarithmic models are developed and validated. When evaluated by performance indicators of mean bias error, mean absolute bias error, mean percentage error, mean absolute percentage error, root mean square error, and Nash–Sutcliffe Equation, it is demonstrated that logarithmic model performed better than the other models. Then empirical coefficients for three models are given for each station and the variations of these coefficients are affected by API, geographical position, and altitude. This indicates that aerosol can play an important role in estimation solar radiation from sunshine hours, especially in those highly polluted regions. Finally, a countrywide general equation is established based on the sunshine hour data, API and geographical parameters, which can be used to estimate the daily solar radiation in areas where the radiation data is not available

  13. An evaluation of thermodynamic solar plants with cylindrical parabolic collectors and air turbine engines with open Joule–Brayton cycle

    International Nuclear Information System (INIS)

    Ferraro, Vittorio; Marinelli, Valerio

    2012-01-01

    A performance analysis of innovative solar plants operating with cylindrical parabolic collectors and atmospheric air as heat transfer fluid in an open Joule–Brayton cycle, with and without intercooling and regeneration, is presented. The analysis was made for two operating modes of the plants: with variable air flow rate and constant inlet temperature to the turbine and with constant flow rate and variable inlet temperature to the turbine. The obtained results show a good performance of this type of solar plant, in spite of its simplicity; it seems able to compete well with other more complex plants operating with different heat transfer fluids. -- Highlights: ► Innovative CPS solar plants, operating with air in open Joule–Brayton cycle, are proposed. ► They are attractive for their simplicity and present interesting values of global efficiency. ► They seem able to compete well with other more complex solar plants.

  14. A Neural Network Based Intelligent Predictive Sensor for Cloudiness, Solar Radiation and Air Temperature

    Science.gov (United States)

    Ferreira, Pedro M.; Gomes, João M.; Martins, Igor A. C.; Ruano, António E.

    2012-01-01

    Accurate measurements of global solar radiation and atmospheric temperature, as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight and portable sensor was developed, using artificial neural network models as the time-series predictor mechanisms. These have been identified with the aid of a procedure based on the multi-objective genetic algorithm. As cloudiness is the most significant factor affecting the solar radiation reaching a particular location on the Earth surface, it has great impact on the performance of predictive solar radiation models for that location. This work also represents one step towards the improvement of such models by using ground-to-sky hemispherical colour digital images as a means to estimate cloudiness by the fraction of visible sky corresponding to clouds and to clear sky. The implementation of predictive models in the prototype has been validated and the system is able to function reliably, providing measurements and four-hour forecasts of cloudiness, solar radiation and air temperature. PMID:23202230

  15. Solar driven air conditioning and refrigeration systems corresponding to various heating source temperatures

    International Nuclear Information System (INIS)

    Wang, R.Z.; Xu, Z.Y.; Pan, Q.W.; Du, S.; Xia, Z.Z.

    2016-01-01

    Highlights: • Modular silica gel–water adsorption chiller was designed and tested. • Single/double effect LiBr–water absorption chiller was operated and tested. • 1.n effect LiBr–water absorption chiller was proposed, designed and tested. • CaCl_2/AC–ammonia adsorption refrigerator was introduced and tested. • NH_3–H_2O absorption ice maker with better internal heat recovery was introduced. - Abstract: Solar driven air conditioning systems can cope with solar collectors working in a wide range of temperatures. Sorption systems, including absorption and adsorption refrigeration systems, are among the best choices for solar cooling. Five systems including modular silica gel–water adsorption chiller, single/double effect LiBr–water absorption chiller, 1.n effect LiBr–water absorption chiller, CaCl_2/AC (activated carbon)–ammonia adsorption refrigerator, and the water–ammonia absorption ice maker with better internal heat recovery were presented. The above five sorption chillers/refrigerators work under various driven temperatures and fulfill different refrigeration demands. The thermodynamic design and system development of the systems were shown. All these systems have improvements in comparison with existing systems and may offer good options for high efficient solar cooling in the near future.

  16. Correlation of growth with solar radiation and air temperature on potted miniature rose

    International Nuclear Information System (INIS)

    Yu, W.; Arai, K.; Kato, K.; Imaida, K.; Nishimura, N.; Li, L.; Fukui, H.

    2006-01-01

    To establish systematic year-round production of potted miniature rose, rose growth and environmental factors such as solar radiation and air temperature were investigated for one year and the relationships of growth to these factors were analyzed. The period from the start to end of cultivation was longer in order of summer, spring and autumn cultivation. Leaf area, fresh weight of leaf and plant, leaf number and plant height as response variables were analyzed to explain the relation to environmental factors as explanatory variables using multiple linear regression analysis. The cumulative daily mean solar radiation, cumulative daytime and nighttime temperature within explanatory variables were significant main explanatory variables. Rose growth factors; leaf area, fresh weight of leaf and plant, leaf number and plant height showed close correlation with three environmental factors, respectively. Rose growth factors demonstrated significant multiple linear regressions using three environmental factors, and the parameters in multiple linear regression equations were also significant. Therefore, we demonstrated that the rose growth could be predicted using cumulative daily mean solar radiation, cumulative daytime and nighttime temperature and could be controlled by changing solar radiation and temperature

  17. Development of a solar-powered residential air conditioner: Screening analysis

    Science.gov (United States)

    1975-01-01

    Screening analysis aimed at the definition of an optimum configuration of a Rankine cycle solar-powered air conditioner designed for residential application were conducted. Initial studies revealed that system performance and cost were extremely sensitive to condensing temperature and to the type of condenser used in the system. Consequently, the screening analyses were concerned with the generation of parametric design data for different condenser approaches; i. e., (1) an ambient air condenser, (2) a humidified ambient air condenser (3) an evaporative condenser, and (4) a water condenser (with a cooling tower). All systems feature a high performance turbocompressor and a single refrigerant (R-11) for the power and refrigeration loops. Data were obtained by computerized methods developed to permit system characterization over a broad range of operating and design conditions. The criteria used for comparison of the candidate system approaches were (1) overall system COP (refrigeration effect/solar heat input), (2) auxiliary electric power for fans and pumps, and (3) system installed cost or cost to the user.

  18. Boost Converter Fed High Performance BLDC Drive for Solar PV Array Powered Air Cooling System

    Directory of Open Access Journals (Sweden)

    Shobha Rani Depuru

    2017-01-01

    Full Text Available This paper proposes the utilization of a DC-DC boost converter as a mediator between a Solar Photovoltaic (SPV array and the Voltage Source Inverters (VSI in an SPV array powered air cooling system to attain maximum efficiency. The boost converter, over the various common DC-DC converters, offers many advantages in SPV based applications. Further, two Brushless DC (BLDC motors are employed in the proposed air cooling system: one to run the centrifugal water pump and the other to run a fan-blower. Employing a BLDC motor is found to be the best option because of its top efficiency, supreme reliability and better performance over a wide range of speeds. The air cooling system is developed and simulated using the MATLAB/Simulink environment considering the steady state variation in the solar irradiance. Further, the efficiency of BLDC drive system is compared with a conventional Permanent Magnet DC (PMDC motor drive system and from the simulated results it is found that the proposed system performs better.

  19. Thermal design of a modern, air-conditioned, single-floor, solar-powered desert house

    KAUST Repository

    Serag-Eldin, M. A.

    2011-12-01

    The paper presents a thermal analysis of a single-floor, solar-powered desert house. The house is air-conditioned and provides all modern comforts and facilities. Electrical power, which drives the entire energy system, is generated by roof-mounted photovoltaic modules. The modules are fixed on special cradles which fold at night to expose the roof to the night sky, thereby enhancing night-time cooling, which is substantial in the desert environment. A detailed dynamic heat transfer analysis is conducted for the building envelope, coupled with a solar radiation model. Application to a typical Middle-Eastern desert site reveals that indeed such a design is feasible with present-day technology; and should be even more attractive with future advances in technology. © 2011 Copyright Taylor and Francis Group, LLC.

  20. Ozone changes under solar geoengineering: implications for UV exposure and air quality

    Science.gov (United States)

    Nowack, P. J.; Abraham, N. L.; Braesicke, P.; Pyle, J. A.

    2015-11-01

    Various forms of geoengineering have been proposed to counter anthropogenic climate change. Methods which aim to modify the Earth's energy balance by reducing insolation are often subsumed under the term Solar Radiation Management (SRM). Here, we present results of a standard SRM modelling experiment in which the incoming solar irradiance is reduced to offset the global mean warming induced by a quadrupling of atmospheric carbon dioxide. For the first time in an atmosphere-ocean coupled climate model, we include atmospheric composition feedbacks such as ozone changes under this scenario. Including the composition changes, we find large reductions in surface UV-B irradiance, with implications for vitamin D production, and increases in surface ozone concentrations, both of which could be important for human health. We highlight that both tropospheric and stratospheric ozone changes should be considered in the assessment of any SRM scheme, due to their important roles in regulating UV exposure and air quality.

  1. Influence of the atmospheric aerosol and air pollution on solar albedo of the earth. Vol. 4

    International Nuclear Information System (INIS)

    Mayhoub, A.B.; Mohamed, K.S.

    1996-01-01

    The effect of increasing atmospheric aerosol and air pollutant concentration on the solar albedo and consequently upon the heat budget near the earth's surface is studied. The magnitude of aerosol absorption coefficient to back-scattering coefficient B ab /B bs is calculated. This study will be used to estimate atmospheric stability categories and other meteorological parameters which are affected by thermal state radiation balance of the atmosphere as mixing and inversion height of Inshas nuclear reactor site. Consequently, concentration distribution of radioactive release from Inshas can be evaluated.. 4 figs., 5 tabs

  2. Optimum dry-cooling sub-systems for a solar air conditioner

    Science.gov (United States)

    Chen, J. L. S.; Namkoong, D.

    1978-01-01

    Dry-cooling sub-systems for residential solar powered Rankine compression air conditioners were economically optimized and compared with the cost of a wet cooling tower. Results in terms of yearly incremental busbar cost due to the use of dry-cooling were presented for Philadelphia and Miami. With input data corresponding to local weather, energy rate and capital costs, condenser surface designs and performance, the computerized optimization program yields design specifications of the sub-system which has the lowest annual incremental cost.

  3. Influence of the atmospheric aerosol and air pollution on solar albedo of the earth. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    Mayhoub, A B; Mohamed, K S [Mathematics and Theoretical Physics Department, Nuclear Research Center, Atomic Energy Auhtority, Cairo, (Egypt)

    1996-03-01

    The effect of increasing atmospheric aerosol and air pollutant concentration on the solar albedo and consequently upon the heat budget near the earth`s surface is studied. The magnitude of aerosol absorption coefficient to back-scattering coefficient B{sub ab}/B{sub bs} is calculated. This study will be used to estimate atmospheric stability categories and other meteorological parameters which are affected by thermal state radiation balance of the atmosphere as mixing and inversion height of Inshas nuclear reactor site. Consequently, concentration distribution of radioactive release from Inshas can be evaluated.. 4 figs., 5 tabs.

  4. Effect of solar activity on the concentration of Be-7 in air and precipitation

    International Nuclear Information System (INIS)

    Hoetzl, H.; Rosner, G.; Winkler, R.

    1993-01-01

    The time course of the activity concentration of the cosmogenic Be-7, measured in surface air and deposition since 1971, reflects a cyclic pattern of two frequency components. The well-known seasonal period with maxima in early summer is superimposed by a long-term period of about 11 years, which is obviously related to the effect of solar activity. By means of time series analysis using Fast-Fourier-Transformation and crosscorrelation, respectively, this relationship could be confirmed on a statistical basis for a period of two sun spot cycles (1971-1992). (orig.) [de

  5. A portable solar-powered air-cooling system based on phase-change materials for a vehicle cabin

    International Nuclear Information System (INIS)

    Qi, Lingfei; Pan, Hongye; Zhu, Xin; Zhang, Xingtian; Salman, Waleed; Zhang, Zutao; Li, Li; Zhu, Miankuan; Yuan, Yanping; Xiang, Bo

    2017-01-01

    Graphical abstract: This paper proposed a portable solar-powered air cooling system for a vehicle cabin based on Phase-change Materials. The cooling system contains three main parts: a solar-energy collection module, an energy-storage module and a phase-change cooling module. The operating principle can be described as follows. For energy input, the solar-energy-collection module harvests solar energy and converts it to electricity. The power-storage module stores the electrical energy in the supercapacitor to power the electrical equipment, mainly the air pump (AP) and water pump (WP) of the phase-change cooling module. Finally, the phase-change cooling module provides cold air for the vehicle cabin to create a comfortable vehicle interior in a hot summer. The proposed system is demonstrated through thermal simulations, which show the long-duration cooling effect of the system. Temperature drops of were obtained in field tests, predicting that the proposed cooling system is beneficial and practical for cooling vehicle cabins. - Highlights: • A novel portable air cooling system based on PCMs is presented. • Solar energy was adopted to power the proposed air cooling system. • This proposed system is used for cooling vehicle cabins exposed to the sun. • Experimental results show that the proposed system has a good cooling effect. - Abstract: In summer, the temperature is very high inside vehicles parked under the hot sun. This causes consuming more fossil energy to power the air conditioner and generation of harmful gases. There is currently no effective method to address this problem in an energy-saving and environmentally friendly manner. In this paper, a novel solar-powered air-cooling system for vehicle cabins is proposed based on Phase-change Materials (PCMs); the system prevents the temperature inside a vehicle cabin from rising too high when the vehicle is parked outdoor exposure to the sun. The proposed system consists of three main parts: a solar

  6. Experimental Study of a Novel Direct-Expansion Variable Frequency Finned Solar/Air-Assisted Heat Pump Water Heater

    Directory of Open Access Journals (Sweden)

    Jing Qin

    2018-01-01

    Full Text Available A novel direct expansion variable frequency finned solar/air-assisted heat pump water heater was fabricated and tested in the enthalpy difference lab with a solar simulator. A solar/air source evaporator-collector with an automatic lifting glass cover plate was installed on the system. The system could be operated in three modes, namely, air, solar, and dual modes. The effects of the ambient temperature, solar irradiation, compressor frequency, and operating mode on the performance of this system were studied in this paper. The experimental results show that the ambient temperature, solar irradiation, and operating mode almost have no effect on the energy consumption of the compressor. When the ambient temperature and the solar irradiation were increased, the COP was found to increase with decreasing heating time. Also, when the compressor frequency was increased, an increase in the energy consumption of the compressor and the heat gain of the evaporator were noted with a decrease in the heating time.

  7. An experimental investigation of a novel design air humidifier using direct solar thermal heating

    International Nuclear Information System (INIS)

    Abd-ur-Rehman, Hafiz M.; Al-Sulaiman, Fahad A.

    2016-01-01

    Highlights: • A novel solar driven multi-stage bubble column humidifier is developed and tested. • Single stage, two stage, and three stage configuration were tested. • Average day round absolute humidity is increased by 9% for 2 stage configuration. • Average day round absolute humidity is increased by 23% for 3 stage configuration. • Air absolute humidity increases up to 26% with the integration of Fresnel lens. - Abstract: In this study, a novel solar heated multi-stage bubble column humidifier is designed and tested. The overall objective of this work is to investigate the main operating parameters of the new humidifier. The study addresses the significance of the perforated plate geometric features, optimum balance of air superficial velocity and water column height, and the influence of inlet water temperature and inlet air relative humidity on the performance of the humidifier. The day round performance of the humidifier is investigated in single stage, two stage, and three stage configuration, in which each configuration was tested with and without the integration of the Fresnel lens. Findings show that the average day round absolute humidity, without Fresnel lens, increased up to 9% for the two stage configuration and 23% for the three stage configuration as compared to the single stage configuration of the humidifier. The integration of the Fresnel lens further increased the absolute humidity up to 25% as compared to the results obtained without the integration of the Fresnel lens under the same prevailing conditions, which is significant. Moreover, the current humidifier shows a higher humidification efficiency in the climatic conditions that have a lower inlet air relative humidity. Furthermore, the finding demonstrates that the newly developed multi-stage bubble column humidifier has better performance as compared to the conventional single stage bubble column humidifier. The findings from this study are of pivotal importance to understand

  8. Automated control of a solar microgrid-powered air compressor for use in a small-scale compressed air energy storage system

    OpenAIRE

    Williams, Joshua N.

    2017-01-01

    Approved for public release; distribution is unlimited As part of the Office of Naval Research's study of advanced energy technologies, this research examined the development and implementation of a control system for the compression phase of a small-scale compressed air energy storage system, using a solar-powered microgrid to store energy as compressed air for later use. The compression system is composed of numerous commercial-off-the-shelf components wherever possible. All electronic c...

  9. Theoretical storage capacity for solar air pretreatment liquid collector/regenerator

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Donggen; Zhang, Xiaosong; Yin, Yonggao [School of Energy and Environment, Southeast University, Nanjing 210096 (China)

    2008-08-15

    A new liquid regeneration equipment - solar air pretreatment collector/regenerator for liquid desiccant cooling system is put forward in this paper, which is preferable to solution regeneration in hot and moist climate in South China. The equipment can achieve liquid regeneration in lower temperature. When the solution and the air are in ''match'' state in collector/regenerator, a match air to salt mass ratio ASMR* is found by theoretical study in which there is the largest theoretical storage capacity SC{sub max}. At T{sub r} = 60{sup o}C and X{sub in} 2.33 kg/kg, theoretical calculation discovers when Y{sub in} drops from 29 to 14 g/kg, the SC{sub max} increase 50% compared with ASMR{sup *} being around 26-27. After two new concepts of the effective solution proportion (EPS) and the effective storage capacity (ESC) are defined, it is found by theoretical calculation that when ESP drops from 100% to 67%, ESC raises lowly, not drops and liquid outlet concentration C{sub str.sol} increases from 40% to 49% in which its increment totals to 90%. All these data explain fully that air pretreatment liquid regeneration equipment enables to improve the performance of liquid desiccant cooling system. (author)

  10. Performances of packed bed double pass solar air heater with different inclinations and transverse wire mesh with different intervals

    Directory of Open Access Journals (Sweden)

    Sugantharaj Gnanadurai Sam Stanley

    2016-01-01

    Full Text Available Solar air heating is a technology in which the solar energy from the sun is captured by an absorbing medium and used to heat the air flowing through the heater. In this study, thermal performance of a double pass solar air heater has been investigated experimentally at different conditions. The experiments were conducted with different inclinations of the collector, with and without wire mesh vertically fixed at the second pass in transverse direction and with different mass flow rates. The effect of air mass flow rate, wire mesh pitch and collector inclination on temperature rise and thermal efficiency have been studied. Results show that efficiency increases with mass flow rate. For the same mass flow rate, the thermal efficiency increases with the decrease in the wire mesh pitch. The maximum daily average efficiency of air heater was 79.8% at 0.025 kg/s mass flow rate, 10 cm wire mesh gap and 9º collector inclination facing south. The highest collector efficiency was observed in solar air heaters with 10 cm wire mesh gap.

  11. ZnO nanorods/AZO photoanode for perovskite solar cells fabricated in ambient air

    Science.gov (United States)

    La Ferrara, Vera; De Maria, Antonella; Rametta, Gabriella; Della Noce, Marco; Vittoria Mercaldo, Lucia; Borriello, Carmela; Bruno, Annalisa; Delli Veneri, Paola

    2017-08-01

    ZnO nanorods are a good candidate for replacing standard photoanodes, such as TiO2, in perovskite solar cells and in principle superseding the high performances already obtained. This is possible because ZnO nanorods have a fast electron transport rate due to their large surface area. An array of ZnO nanorods is grown by chemical bath deposition starting from Al-doped ZnO (AZO) used both as a seed layer and as an efficient transparent anode in the visible spectral range. In particular, in this work we fabricate methylammonium lead iodide (CH3NH3PbI3) perovskite solar cells using glass/AZO/ZnO nanorods/perovskite/Spiro-OMeTAD/Au as the architecture. The growth of ZnO nanorods has been optimized by varying the precursor concentrations, growth time and solution temperature. All the fabrication process and photovoltaic characterizations have been carried out in ambient air and the devices have not been encapsulated. Power conversion efficiency as high as 7.0% has been obtained with a good stability over 20 d. This is the highest reported value to the best of our knowledge and it is a promising result for the development of perovskite solar cells based on ZnO nanorods and AZO.

  12. Modeling and simulation of a solar powered two bed adsorption air conditioning system

    International Nuclear Information System (INIS)

    Li Yong; Sumathy, K.

    2004-01-01

    A simple lumped parameter model is established to investigate the performance of a solar powered adsorption air conditioning system driven by flat-type solar collectors with three different configurations of glazes: (i) single glazed cover; (ii) double glazed cover and (iii) transparent insulation material (TIM) cover. The dynamic performance of a continuous adsorption cycle using a double adsorber along with heat recovery is measured in terms of the temperature histories, gross solar coefficient of performance and specific cooling power. Also, the influences of some important design and operational parameters on the performance of the system are studied. It is found that the chosen three types of collector configurations make no big difference on the performance, but the adsorbent mass and lumped capacitance have significant effects on the system performance as well as on the system size. Simulation results indicate that the effect of overall heat transfer coefficient is not predominant if the cycle duration is longer. Also, there exists an optimum time to initiate the heating of the adsorbent bed in a day's operation

  13. Application of porous medium for efficiency improvement of a concentrated solar air heating system

    Science.gov (United States)

    Prasartkaew, Boonrit

    2018-01-01

    The objective of this study is to evaluate the thermal efficiency of a concentrated solar collector for a high temperature air heating system. The proposed system consists of a 25-m2 focused multi-flat-mirror solar heliostat equipped with a porous medium solar collector/receiver which was installed on the top of a 3-m tower, called ‘tower receiver’. To know how the system efficiency cloud be improved by using porous medium, the proposed system with and without porous medium were tested and the comparative study was performed. The experimental results reveal that, for the proposed system, application of porous medium is promising, the efficiency can be increased about 2 times compared to the conventional one. In addition, due to the porous medium used in this study was the waste material with very low cost. It can be summarized that the substantial efficiency improvement with very low investment cost of the proposed system seem to be a vital measures for addressing the energy issues.

  14. Daily efficiency of flat-plate solar air collectors for grain drying

    Energy Technology Data Exchange (ETDEWEB)

    Ting, K.C.; Shove, G.C.

    1983-01-01

    Single cover flat-plate solar collectors incorporated into walls and roofs of farm buildings have been used to heat ambient air for low temperature grain drying systems. Large surface area and high airflow rate are common features of these collectors. The drying period may range from several days to several weeks. Therefore, a knowledge of the variations of the collectors' daily efficiencies with respect to their design parameters would be helpful in applying solar collectors to grain drying. The objective of this study was to develop a simpler means of direct calculation of a collector's daily efficiency based on its design parameters. Many factors, such as configuration of the collector, airflow rate, weather conditions, etc. will affect the performance of solar collectors. A large number of varied conditions need to be tested in order to investigate the effect of different parameters on the collector performance. To facilitate this investigation, a computer simulation model developed by Ting was used to calculate the daily efficiencies of collectors under different operating conditions. The computer model was verified by Morrison's experimental data. Based on the simulation results, a functional relationship was developed between the daily efficiencies of collectors and their design parameters.

  15. Fuzzy logic controller implementation for a solar air-conditioning system

    International Nuclear Information System (INIS)

    Lygouras, J.N.; Botsaris, P.N.; Vourvoulakis, J.; Kodogiannis, V.

    2007-01-01

    The implementation of a variable structure fuzzy logic controller for a solar powered air conditioning system and its advantages are investigated in this paper. Two DC motors are used to drive the generator pump and the feed pump of the solar air-conditioner. Two different control schemes for the DC motors rotational speed adjustment are implemented and tested: the first one is a pure fuzzy controller, its output being the control signal for the DC motor driver. A 7 x 7 fuzzy matrix assigns the controller output with respect to the error value and the derivative of the error. The second scheme is a two-level controller. The lower level is a conventional PID controller, and the higher level is a fuzzy controller acting over the parameters of the low level controller. Step response of the two control loops are presented as experimental results. The contribution of this design is that in the control system, the fuzzy logic is implemented through software in a common, inexpensive, 16-bit microcontroller, which does not have special abilities for fuzzy control

  16. Characterization of Air-Based Photovoltaic Thermal Panels with Bifacial Solar Cells

    Directory of Open Access Journals (Sweden)

    P. Ooshaksaraei

    2013-01-01

    Full Text Available Photovoltaic (PV panels account for a majority of the cost of photovoltaic thermal (PVT panels. Bifacial silicon solar panels are attractive for PVT panels because of their potential to enhance electrical power generation from the same silicon wafer compared with conventional monofacial solar panels. This paper examines the performance of air-based bifacial PVT panels with regard to the first and second laws of thermodynamics. Four air-based bifacial PVT panels were designed. The maximum efficiencies of 45% to 63% were observed for the double-path-parallel bifacial PVT panel based on the first law of thermodynamics. Single-path bifacial PVT panel represents the highest exergy efficiency (10%. Double-path-parallel bifacial PVT panel is the second preferred design as it generates up to 20% additional total energy compared with the single-path panel. However, the daily average exergy efficiency of a double-path-parallel panel is 0.35% lower than that of a single-path panel.

  17. Fuzzy logic controller implementation for a solar air-conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Lygouras, J.N.; Vourvoulakis, J. [Laboratory of Electronics, School of Electrical and Computer Engineering, Democritus University of Thrace, Vas. Sofias 12, 67100 Xanthi (Greece); Botsaris, P.N. [Laboratory of Materials, Processes and Mechanical Design, School of Production and Management Engineering, Democritus University of Thrace 67100 Xanthi (Greece); Kodogiannis, V. [Centre for Systems Analysis, School of Computer Science, University of Westminster, London, HA1 3TP (United Kingdom)

    2007-12-15

    The implementation of a variable structure fuzzy logic controller for a solar powered air conditioning system and its advantages are investigated in this paper. Two DC motors are used to drive the generator pump and the feed pump of the solar air-conditioner. Two different control schemes for the DC motors rotational speed adjustment are implemented and tested: the first one is a pure fuzzy controller, its output being the control signal for the DC motor driver. A 7 x 7 fuzzy matrix assigns the controller output with respect to the error value and the derivative of the error. The second scheme is a two-level controller. The lower level is a conventional PID controller, and the higher level is a fuzzy controller acting over the parameters of the low level controller. Step response of the two control loops are presented as experimental results. The contribution of this design is that in the control system, the fuzzy logic is implemented through software in a common, inexpensive, 16-bit microcontroller, which does not have special abilities for fuzzy control. (author)

  18. Solar-Enhanced Air-Cooled Heat Exchangers for Geothermal Power Plants

    Directory of Open Access Journals (Sweden)

    Kamel Hooman

    2017-10-01

    Full Text Available This paper focuses on the optimization of a Solar-Enhanced Natural-Draft Dry-Cooling Tower (SENDDCT, originally designed by the Queensland Geothermal Energy Centre of Excellence (QGECE, as the air-cooled condenser of a geothermal power plant. The conventional method of heat transfer augmentation through fin-assisted area extension is compared with a metal foam-wrapped tube bundle. Both lead to heat-transfer enhancement, albeit at the expense of a higher pressure drop when compared to the bare tube bundle as our reference case. An optimal design is obtained through the use of a simplified analytical model and existing correlations by maximizing the heat transfer rate with a minimum pressure drop goal as the constraint. Sensitivity analysis was conducted to investigate the effect of sunroof diameter, as well as tube bundle layouts and tube spacing, on the overall performance of the system. Aiming to minimize the flow and thermal resistances for a SENDDCT, an optimum design is presented for an existing tower to be equipped with solar panels to afterheat the air leaving the heat exchanger bundles, which are arranged vertically around the tower skirt. Finally, correlations are proposed to predict the total pressure drop and heat transfer of the extended surfaces considered here.

  19. IEA SHC Task 38 'Solar air-conditioning and refrigeration'. Danish participation 2007-2010. Appendix; IEA SHC Task 38 'Solar air-conditioning and refrigeration'. Dansk deltagelse 2007-2010. Bilag

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K. (Ellehauge og Kildemoes, Aarhus (Denmark)); Muenster, E. (PlanEnergi, Skoerping (Denmark)); Reinholdt, L. (Teknologisk Institut, Aarhus (Denmark)); Munds, S. (AC-Sun Aps, Horsens (Denmark))

    2011-03-15

    IEA SHC Task 38 'Solar Air-Conditioning and Refrigeration' ran from October 2006 to December 2010. Denmark was represented in the task from January 2007 to December 2010. The aim of the task was to encourage use of solar powered refrigeration and air conditioning systems in particular at residential, commercial and industrial sectors. Furthermore, the aim was to contribute to new research and development activities on new systems and concepts. The appendix contains the publications prepared by the Danish project group.(LN)

  20. IEA SHC Task 38 'Solar air-conditioning and refrigeration'. Danish participation 2007-2010. Appendix; IEA SHC Task 38 'Solar air-conditioning and refrigeration'. Dansk deltagelse 2007-2010. Bilag

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K [Ellehauge og Kildemoes, Aarhus (Denmark); Muenster, E [PlanEnergi, Skoerping (Denmark); Reinholdt, L [Teknologisk Institut, Aarhus (Denmark); Munds, S [AC-Sun Aps, Horsens (Denmark)

    2011-03-15

    IEA SHC Task 38 'Solar Air-Conditioning and Refrigeration' ran from October 2006 to December 2010. Denmark was represented in the task from January 2007 to December 2010. The aim of the task was to encourage use of solar powered refrigeration and air conditioning systems in particular at residential, commercial and industrial sectors. Furthermore, the aim was to contribute to new research and development activities on new systems and concepts. The appendix contains the publications prepared by the Danish project group.(LN)

  1. Thermo-hydraulic performance of solar air heater having multiple v-shaped rib roughness on absorber plates

    Directory of Open Access Journals (Sweden)

    Dhananjay Kumar

    2018-03-01

    Full Text Available This paper presents the performance analysis of the effect of geometrical parameters having multiple v-shaped rib roughness on the airflow side of the absorber plates. Mathematical approach and solution procedure for the analysis of such a solar air heater has been developed theoretically and MATLAB code generated for the solution of the mathematical equations. The effect of parameters such as flow Reynolds number and Relative roughness height on the thermohydraulic performance have been examined and compared with the conventional flat plate solar air heater. A substantial improvement in thermal efficiency of roughened solar air heater as compared to smooth one due to appreciable enhancement in heat transfer coefficient. The enhancement in heat transfer coefficient is also accompanied by a considerable enhancement in pumping power requirement due to the increase in friction factor.

  2. Device Performance Improvement of Double-Pass Wire Mesh Packed Solar Air Heaters under Recycling Operation Conditions

    Directory of Open Access Journals (Sweden)

    Chii-Dong Ho

    2016-01-01

    Full Text Available The improvement of device performance of a recycling solar air heater featuring a wire mesh packing was investigated experimentally and theoretically. The application of the wire mesh packing and recycle-effect concept to the present study were proposed aiming to strengthen the convective heat-transfer coefficient due to increased turbulence. Comparisons were made among different designs, including the single-pass, flat-plate double-pass and recycling double-pass wire mesh packed operations. The collector efficiency of the recycling double-pass wire mesh packed solar air heater was much higher than that of the other configurations for various recycle ratios and mass flow rates scenarios. The power consumption increment due to implementing wire mesh in solar air heaters was also discussed considering the economic feasibility. A fairly good agreement between theoretical predictions and experimental measurements was achieved with an analyzed error of 1.07%–9.32%.

  3. A parametric study on a humidification–dehumidification (HDH) desalination unit powered by solar air and water heaters

    International Nuclear Information System (INIS)

    Yıldırım, Cihan; Solmuş, İsmail

    2014-01-01

    Highlights: • A time dependent humidification–dehumidification desalination process is investigated. • Fourth-order Runge–Kutta method is used to simulate the problem. • Daily and annual performance are examined. • Various operational parameters are investigated. - Abstract: The performance of a solar powered humidification–dehumidification desalination system is theoretically investigated for various operating and design parameters of the system under climatological conditions of Antalya, Turkey. The primary components of the system are a flat plate solar water heater, a flat plate double pass solar air heater, a humidifier, a dehumidifier and a storage tank. The mathematical model of the system is developed and governing conservation equations are numerically solved by using the Fourth order Runge–Kutta method. Daily and annual yields are calculated for different configurations of the system such as only water heating, only air heating and water–air heating

  4. Automated Control of a Solar Microgrid-Powered Air Compressor for Use in a Small-Scale Compressed Air Energy Storage System

    Science.gov (United States)

    2017-06-01

    26 xii Figure 21. Simplified Control Program Flowchart .....................................................30 Figure 22...for manual operation. Figure 21 shows the overall control program flowchart . The details of the PLC and the HMI programs are contained in Appendix C...Figure 21. Simplified Control Program Flowchart 31 3. Solar Power Production Status Since the air compressor cannot function without

  5. The air quality and regional climate effects of widespread solar power generation under a changing regulatory environment

    Science.gov (United States)

    Millstein, D.; Zhai, P.; Menon, S.

    2011-12-01

    Over the past decade significant reductions of NOx and SOx emissions from coal burning power plants in the U.S. have been achieved due to regulatory action and substitution of new generation towards natural gas and wind power. Low natural gas prices, ever decreasing solar generation costs, and proposed regulatory changes, such as to the Cross State Air Pollution Rule, promise further long-run coal power plant emission reductions. Reduced power plant emissions have the potential to affect ozone and particulate air quality and influence regional climate through aerosol cloud interactions and visibility effects. Here we investigate, on a national scale, the effects on future (~2030) air quality and regional climate of power plant emission regulations in contrast to and combination with policies designed to aggressively promote solar electricity generation. A sophisticated, economic and engineering based, hourly power generation dispatch model is developed to explore the integration of significant solar generation resources (>10% on an energy basis) at various regions across the county, providing detailed estimates of substitution of solar generation for fossil fuel generation resources. Future air pollutant emissions from all sectors of the economy are scaled based on the U.S. Environmental Protection Agency's National Emission Inventory to account for activity changes based on population and economic projections derived from county level U.S. Census data and the Energy Information Administration's Annual Energy Outlook. Further adjustments are made for technological and regulatory changes applicable within various sectors, for example, emission intensity adjustments to on-road diesel trucking due to exhaust treatment and improved engine design. The future year 2030 is selected for the emissions scenarios to allow for the development of significant solar generation resources. A regional climate and air quality model (Weather Research and Forecasting, WRF model) is

  6. Numerical study on optical and electric-thermal performance for solar concentrating PV/T air system

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Hybrid photovoltaic/thermal(PV/T)system with solar concentrator is an effective way to improve solar energy conversion efficiency.In this work,a single-pass PV/T air system with a three-trough compound parabolic concentrator(CPC)of concentration ratio 2.0 is designed and the solar incident distributions at the solar cell surface are calculated by ray tracing method.Based on energy balance,the heat transfer models of all main components in this system are developed.The effects of some main designing and operational parameters on the electric-thermal performance of the system are analyzed. The results show that the solar radiation intensity can be higher than 1200 W/m 2 at most area of the cell surface.The temperature of the air and cell surface increases along the length of the system.Thus the system efficiency of the CPC is higher than that of the system without the CPC.The thermal efficiency, exergy and electrical efficiency of this CPC system increase with increasing of the air mass flow rate and the length of the system.With increasing packing fraction the electrical efficiency increases,but the thermal efficiency decreases.The exergy efficiency increases slightly with the packing fraction rising.The data obtained in this work are valuable for the design and operation for this kind of solar concentrating PV/T systems.

  7. A computational study on the performance of a solar air-conditioning system with a partitioned storage tank

    International Nuclear Information System (INIS)

    Li, Z.F.; Sumathy, K.

    2003-01-01

    This paper reports the performance of a modified solar powered air-conditioning system, which is integrated with a partitioned storage tank. In addition, the effect of two main parameters that influence the system performance is presented and discussed. The study shows that by partitioning the storage tank, the solar cooling effect can be realized much earlier and could attain a total solar cooling COP of 12% higher compared to the conventional whole-tank mode. Simulation results also indicate that there exists an optimum ratio of storage tank volume over collector area

  8. Potential air quality benefits from increased solar photovoltaic electricity generation in the Eastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Abel, David; Holloway, Tracey; Harkey, Monica; Rrushaj, Arber; Brinkman, Greg; Duran, Phillip; Janssen, Mark; Denholm, Paul

    2018-02-01

    We evaluate how fine particulate matter (PM2.5) and precursor emissions could be reduced if 17% of electricity generation was replaced with solar photovoltaics (PV) in the Eastern United States. Electricity generation is simulated using GridView, then used to scale electricity-sector emissions of sulfur dioxide (SO2) and nitrogen oxides (NOX) from an existing gridded inventory of air emissions. This approach offers a novel method to leverage advanced electricity simulations with state-of-the-art emissions inventories, without necessitating recalculation of emissions for each facility. The baseline and perturbed emissions are input to the Community Multiscale Air Quality Model (CMAQ version 4.7.1) for a full accounting of time- and space-varying air quality changes associated with the 17% PV scenario. These results offer a high-value opportunity to evaluate the reduced-form AVoided Emissions and geneRation Tool (AVERT), while using AVERT to test the sensitivity of results to changing base-years and levels of solar integration. We find that average NOX and SO2 emissions across the region decrease 20% and 15%, respectively. PM2.5 concentrations decreased on average 4.7% across the Eastern U.S., with nitrate (NO3-) PM2.5 decreasing 3.7% and sulfate (SO42-) PM2.5 decreasing 9.1%. In the five largest cities in the region, we find that the most polluted days show the most significant PM2.5 decrease under the 17% PV generation scenario, and that the greatest benefits are accrued to cities in or near the Ohio River Valley. We find summer health benefits from reduced PM2.5 exposure estimated as 1424 avoided premature deaths (95% Confidence Interval (CI): 284 deaths, 2 732 deaths) or a health savings of $13.1 billion (95% CI: $0.6 billion, $43.9 billion) These results highlight the potential for renewable energy as a tool for air quality managers to support current and future health-based air quality regulations.

  9. Potential air quality benefits from increased solar photovoltaic electricity generation in the Eastern United States

    Science.gov (United States)

    Abel, David; Holloway, Tracey; Harkey, Monica; Rrushaj, Arber; Brinkman, Greg; Duran, Phillip; Janssen, Mark; Denholm, Paul

    2018-02-01

    We evaluate how fine particulate matter (PM2.5) and precursor emissions could be reduced if 17% of electricity generation was replaced with solar photovoltaics (PV) in the Eastern United States. Electricity generation is simulated using GridView, then used to scale electricity-sector emissions of sulfur dioxide (SO2) and nitrogen oxides (NOX) from an existing gridded inventory of air emissions. This approach offers a novel method to leverage advanced electricity simulations with state-of-the-art emissions inventories, without necessitating recalculation of emissions for each facility. The baseline and perturbed emissions are input to the Community Multiscale Air Quality Model (CMAQ version 4.7.1) for a full accounting of time- and space-varying air quality changes associated with the 17% PV scenario. These results offer a high-value opportunity to evaluate the reduced-form AVoided Emissions and geneRation Tool (AVERT), while using AVERT to test the sensitivity of results to changing base-years and levels of solar integration. We find that average NOX and SO2 emissions across the region decrease 20% and 15%, respectively. PM2.5 concentrations decreased on average 4.7% across the Eastern U.S., with nitrate (NO3-) PM2.5 decreasing 3.7% and sulfate (SO42-) PM2.5 decreasing 9.1%. In the five largest cities in the region, we find that the most polluted days show the most significant PM2.5 decrease under the 17% PV generation scenario, and that the greatest benefits are accrued to cities in or near the Ohio River Valley. We find summer health benefits from reduced PM2.5 exposure estimated as 1424 avoided premature deaths (95% Confidence Interval (CI): 284 deaths, 2 732 deaths) or a health savings of 13.1 billion (95% CI: 0.6 billion, 43.9 billion) These results highlight the potential for renewable energy as a tool for air quality managers to support current and future health-based air quality regulations.

  10. EXPERIMENTAL STUDY ON DOUBLE PASS SOLAR AIR HEATER WITH MESH LAYERS AS ABSORBER PLATE

    Directory of Open Access Journals (Sweden)

    Raheleh Nowzaria

    2014-01-01

    Full Text Available The double pass solar air heater is constructed and tested for thermal efficiency at a geographic location of Cyprus in the city of Famagusta. The absorber plate was replaced by fourteen steel wire mesh layers, 0.2 × 0.2 cm in cross section opening, and they were fixed in the duct parallel to the glazing. The distance between each set of wire mesh layers is 0.5cm to reduce the pressure drop. The wire mesh layers were painted with black before installing them into the collector. The obtained results show that as the mass flow rate increases, the efficiency of the system also increases. The temperature difference (ΔT between the inlet and outlet air through the system increases as the mass flow rate decreases. The maximum ΔT (53°C is achieved at the flow rate of 0.011 kg/s. The range of the mass flow rate used in this work is between 0.011 and 0.037 kg/s. It is also found that the average efficiency obtained for the double pass air collector is 53.7% for the mass flow rate of 0.037 kg/s.

  11. Impact of aspect ratio and solar heating on street canyon air temperature

    International Nuclear Information System (INIS)

    Memon, R.A.; Lal, K.

    2011-01-01

    The results obtained from RNG (Re-Normalization Group) version of k-and turbulence model are reported in this study. The model is adopted to elucidate the impact of different building aspect ratios (i.e., ratio of building-height-to-street-canyon-width) and solar heating on temperatures in street canyon. The validation of Navier-Stokes and energy an sport equations showed that the model prediction for air-temperature and ambient wind provides reasonable accuracy. The model was applied on AR (Aspect Ratios) one to eight and surface temperature difference (delta and theta/sub s-a/)) of 2 -8. Notably, air-temperatures were higher in high AR street canyons in particular on the leeward side of the street canyon. Further investigation showed that the difference between the air-temperature 'high and low AR street canyons (AR) was positive and high with higher delta and theta/sub s-a/) conversely, the AR become negative and low gradually with lower values of delta and theta(/sub s-a/). These results could be very beneficial for the city and regional planners, civil engineers Id HVAC experts who design street canyons and strive for human thermal comfort with minimum possible energy requirements. (author)

  12. Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans

    Energy Technology Data Exchange (ETDEWEB)

    Ozgen, Filiz; Esen, Mehmet; Esen, Hikmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey)

    2009-11-15

    This study experimentally investigates a device for inserting an absorbing plate made of aluminium cans into the double-pass channel in a flat-plate solar air heater (SAH). This method substantially improves the collector efficiency by increasing the fluid velocity and enhancing the heat-transfer coefficient between the absorber plate and air. These types of collectors had been designed as a proposal to use aluminium materials to build absorber plates of SAHs at a suitable cost. The collector had been covered with a 4-mm single glass plate, in order to reduce convective loses to the atmosphere. Three different absorber plates had been designed and tested for experimental study. In the first type (Type I), cans had been staggered as zigzag on absorber plate, while in Type II they were arranged in order. Type III is a flat plate (without cans). Experiments had been performed for air mass flow rates of 0.03 kg/s and 0.05 kg/s. The highest efficiency had been obtained for Type I at 0.05 kg/s. Also, comparison between the thermal efficiency of the SAH tested in this study with the ones reported in the literature had been presented, and a good agreement had been found. (author)

  13. Impact of Aspect Ratio and Solar Heating on Street Conyn Air Temperature

    Directory of Open Access Journals (Sweden)

    Rizwan Ahmed Memon

    2011-01-01

    Full Text Available The results obtained from RNG (Re-Normalization Group version of k-? turbulence model are reported in this study. The model is adopted to elucidate the impact of different building aspect ratios (i.e., ratio of building-height-to-street-canyon-width and solar heating on temperatures in street canyon. The validation of Navier-Stokes and energy transport equations showed that the model prediction for air-temperature and ambient wind provides reasonable accuracy. The model was applied on AR (Aspect Ratios one to eight and surface temperature difference (??s-a of 2 -8. Notably, air-temperatures were higher in high AR street canyons in particular on the leeward side of the street canyon. Further investigation showed that the difference between the air-temperature of high and low AR street canyons ( AR was positive and high with higher ??s-a. Conversely, the AR become negative and low gradually with lower values of ??s-a. These results could be very beneficial for the city and regional planners, civil engineers and HVAC experts who design street canyons and strive for human thermal comfort with minimum possible energy requirements.

  14. Sensitivity of a soil-plant-atmosphere model to changes in air temperature, dew point temperature, and solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Luxmoore, R.J. (Oak Ridge National Lab.,TN); Stolzy, J.L.; Holdeman, J.T.

    1981-01-01

    Air temperature, dew point temperature and solar radiation were independently varied in an hourly soil-plant-atmosphere model in a sensitivity analysis of these parameters. Results suggested that evapotranspiration in eastern Tennessee is limited more by meteorological conditions that determine the vapor-pressure gradient than by the necessary energy to vaporize water within foliage. Transpiration and soil water drainage were very sensitive to changes in air and dew point temperature and to solar radiation under low atmospheric vapor-pressure deficit conditions associated with reduced air temperature. Leaf water potential and stomatal conductance were reduced under conditions having high evapotranspiration. Representative air and dew point temperature input data for a particular application are necessary for satisfactory results, whereas irradiation may be less well characterized for applications with high atmospheric vapor-pressure deficit. The effects of a general rise in atmospheric temperature on forest water budgets are discussed.

  15. Solar-Powered Air Stripping at the Rocky Flats Site, Colorado - 12361

    Energy Technology Data Exchange (ETDEWEB)

    Boylan, John A. [S.M. Stoller Corporation, Rocky Flats Site, 11025 Dover Street, Suite 1000, Westminster, Colorado 80021 (United States)

    2012-07-01

    effluent. Initially, several alternatives such as commercial air strippers and cascade aerators were evaluated; resulting cost estimates exceeded $100,000. After several simpler alternatives were considered and prototype testing was conducted, the existing effluent metering manhole was converted to house a spray-nozzle based, solar-powered air stripper, at a cost of approximately $20,000. About two-thirds of this cost was for the solar power system, which was initially designed to only provide power for 12 hours per day. Performance data are being collected and adjustments made to optimize the design, determine maintenance requirements, and establish power needs for continuous operation. Analytical data confirm the air stripper is sharply reducing concentrations of residual contaminants. (authors)

  16. A method of exploration of the atmosphere of Titan. [hot air balloon heated by solar radiation or planetary thermal flux

    Science.gov (United States)

    Blamont, J.

    1978-01-01

    A hot-air balloon, with the air heated by natural sources, is described. Buoyancy is accomplished by either solar heating or by utilizing the IR thermal flux of the planet to heat the gas in the balloon. Altitude control is provided by a valve which is opened and closed by a barometer. The balloon is made of an organic material which has to absorb radiant energy and to emit as little as possible.

  17. Collector Efficiency in Downward-Type Internal-Recycle Solar Air Heaters with Attached Fins

    Directory of Open Access Journals (Sweden)

    Chii-Dong Ho

    2013-10-01

    Full Text Available The internal-recycle operation effect on collector efficiency in downward-type rectangular solar air heaters with attached fins is theoretically investigated. It is found that considerable collector efficiency is obtainable if the collector has attached fins and the operation is carried out with internal recycling. The recycling operation increases the fluid velocity to decrease the heat transfer resistance, compensating for the undesirable effect of decreasing the heat transfer driving force (temperature difference due to remixing. The attached fins provide an enlarged heat transfer area. The order of performance in a device of same size is: double pass with recycle and fins > double pass with recycle but without fins > single pass without recycle and fins.

  18. An experimental investigation of performance of a double pass solar air heater with thermal storage medium

    Directory of Open Access Journals (Sweden)

    Ali Hafiz Muhammad

    2015-01-01

    Full Text Available The performance of a double pass solar air heater was experimentally investigated using four different configurations. First configuration contained only absorber plate whereas copper tubes filled with thermal storage medium (paraffin wax were added on the absorber plate in the second configuration. Aluminum and steel rods as thermal enhancer were inserted in the middle of paraffin wax of each tube for configurations three and four respectively. Second configuration provided useful heat for about 1.5 hours after the sunset compared to first configuration. Configurations three and four provided useful heat for about 2 hours after the sunset. The maximum efficiency of about 96% was achieved using configuration three (i.e. using Aluminum rods in the middle of copper tubes filled with paraffin wax.

  19. The thermal performance of the two-pass, two-glass-cover solar air heater

    Energy Technology Data Exchange (ETDEWEB)

    Persad, P.; Sateunanathan, S.

    1983-08-01

    Analytic models are developed for the performance prediction of a two-glass-cover solar air heater operated in both the single-pass and two-pass modes. It is shown that the two-pass mode of operation is superior to the single-pass mode of operation over the range of collector inlet temperatures considered. This is seen to be mainly due to the fact that, in the two-pass mode of operation, the outer glass cover is cooled by the working fluid, thereby reducing the top losses. It is also shown that the performance in the two-pass mode of operation is independent of length, over the range of collector lengths considered, and that a critical plate spacing, dependent on the temperature level of operation of the collector, is indicated. Predicted values of performance are in good agreement with experimental results.

  20. Reduction of solar photovoltaic resources due to air pollution in China.

    Science.gov (United States)

    Li, Xiaoyuan; Wagner, Fabian; Peng, Wei; Yang, Junnan; Mauzerall, Denise L

    2017-11-07

    Solar photovoltaic (PV) electricity generation is expanding rapidly in China, with total capacity projected to be 400 GW by 2030. However, severe aerosol pollution over China reduces solar radiation reaching the surface. We estimate the aerosol impact on solar PV electricity generation at the provincial and regional grid levels in China. Our approach is to examine the 12-year (2003-2014) average reduction in point-of-array irradiance (POAI) caused by aerosols in the atmosphere. We apply satellite-derived surface irradiance data from the NASA Clouds and the Earth's Radiant Energy System (CERES) with a PV performance model (PVLIB-Python) to calculate the impact of aerosols and clouds on POAI. Our findings reveal that aerosols over northern and eastern China, the most polluted regions, reduce annual average POAI by up to 1.5 kWh/m 2 per day relative to pollution-free conditions, a decrease of up to 35%. Annual average reductions of POAI over both northern and eastern China are about 20-25%. We also evaluate the seasonal variability of the impact and find that aerosols in this region are as important as clouds in winter. Furthermore, we find that aerosols decrease electricity output of tracking PV systems more than those with fixed arrays: over eastern China, POAI is reduced by 21% for fixed systems at optimal angle and 34% for two-axis tracking systems. We conclude that PV system performance in northern and eastern China will benefit from improvements in air quality and will facilitate that improvement by providing emission-free electricity. Published under the PNAS license.

  1. Stratospheric ozone changes under solar geoengineering: implications for UV exposure and air quality

    Directory of Open Access Journals (Sweden)

    P. J. Nowack

    2016-03-01

    Full Text Available Various forms of geoengineering have been proposed to counter anthropogenic climate change. Methods which aim to modify the Earth's energy balance by reducing insolation are often subsumed under the term solar radiation management (SRM. Here, we present results of a standard SRM modelling experiment in which the incoming solar irradiance is reduced to offset the global mean warming induced by a quadrupling of atmospheric carbon dioxide. For the first time in an atmosphere–ocean coupled climate model, we include atmospheric composition feedbacks for this experiment. While the SRM scheme considered here could offset greenhouse gas induced global mean surface warming, it leads to important changes in atmospheric composition. We find large stratospheric ozone increases that induce significant reductions in surface UV-B irradiance, which would have implications for vitamin D production. In addition, the higher stratospheric ozone levels lead to decreased ozone photolysis in the troposphere. In combination with lower atmospheric specific humidity under SRM, this results in overall surface ozone concentration increases in the idealized G1 experiment. Both UV-B and surface ozone changes are important for human health. We therefore highlight that both stratospheric and tropospheric ozone changes must be considered in the assessment of any SRM scheme, due to their important roles in regulating UV exposure and air quality.

  2. Stratospheric ozone changes under solar geoengineering: implications for UV exposure and air quality

    Science.gov (United States)

    Nowack, Peer Johannes; Abraham, Nathan Luke; Braesicke, Peter; Pyle, John Adrian

    2016-03-01

    Various forms of geoengineering have been proposed to counter anthropogenic climate change. Methods which aim to modify the Earth's energy balance by reducing insolation are often subsumed under the term solar radiation management (SRM). Here, we present results of a standard SRM modelling experiment in which the incoming solar irradiance is reduced to offset the global mean warming induced by a quadrupling of atmospheric carbon dioxide. For the first time in an atmosphere-ocean coupled climate model, we include atmospheric composition feedbacks for this experiment. While the SRM scheme considered here could offset greenhouse gas induced global mean surface warming, it leads to important changes in atmospheric composition. We find large stratospheric ozone increases that induce significant reductions in surface UV-B irradiance, which would have implications for vitamin D production. In addition, the higher stratospheric ozone levels lead to decreased ozone photolysis in the troposphere. In combination with lower atmospheric specific humidity under SRM, this results in overall surface ozone concentration increases in the idealized G1 experiment. Both UV-B and surface ozone changes are important for human health. We therefore highlight that both stratospheric and tropospheric ozone changes must be considered in the assessment of any SRM scheme, due to their important roles in regulating UV exposure and air quality.

  3. Numerical study on optical and electric-thermal performance for solar concentrating PV/T air system

    Institute of Scientific and Technical Information of China (English)

    SUN Jian; SHI MingHeng

    2009-01-01

    Hybrid photovoltaic/thermsl(PV/T)system with solar concentrator is an effective way to improve solar energy conversion efficiency.In this work,a single-pass PV/T sir system with a three-trough compound parabolic concentrator(CPC)of concentration ratio 2.0 is designed and the solar incident distributions at the solar cell surface are calculated by ray tracing method.Based on energy balance,the heat transfer models of all main components in this system are developed.The effects of some main designing and operational parameters on the electric-thermal performance of the system are analyzed.The results show that the solar radiation intensity can be higher than 1200 W/m~2 at most area of the cell surface.The temperature of the air and cell surface increases along the length of the system.Thus the system efficiency of the CPC is higher than that of the system without the CPC.The thermal efficiency,exergy and electrical efficiency of this CPC system increase with increasing of the air mass flow rate and the length of the system.With increasing packing fraction the electrical efficiency increases,but the thermal efficiency decreases.The exergy efficiency increases slightly with the packing fraction rising.The data obtained in this work are valuable for the design and operation for this kind of solar concentrating PV/T systems.

  4. A simulation study on the operating performance of a solar-air source heat pump water heater

    International Nuclear Information System (INIS)

    Xu Guoying; Zhang Xiaosong; Deng Shiming

    2006-01-01

    A simulation study on the operating performance of a new type of solar-air source heat pump water heater (SAS-HPWH) has been presented. The SAS-HPWH used a specially designed flat-plate heat collector/evaporator with spiral-finned tubes to obtain energy from both solar irradiation and ambient air for hot water heating. Using the meteorological data in Nanjing, China, the simulation results based on 150 L water heating capacity showed that such a SAS-HPWH can heat water up to 55 deg. C efficiently under various weather conditions all year around. In this simulation study, the influences of solar radiation, ambient temperature and compressor capacity on the performance of the SAS-HPWH were analyzed. In order to improve the overall operating performance, the use of a variable-capacity compressor has been proposed

  5. Theoretical study on air flow in a solar chimney with real insulation conditions; Estudo teorico do escoamento de ar em uma chamine solar com condicoes reais de insolacao

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Andre Guimaraes; Cortez, Marcio Fonte-Boa; Molina Valle, Ramon; Brasil, Cristiana Santiago [Minas Gerais Univ., Belo Horizonte, MG, (Brazil). Dept. de Engenharia Mecanica]. E-mail: ferreira@demec.ufmg.br

    2000-07-01

    This paper presents a theoretical analysis of the turbulent air flow with real conditions of insulation inside a solar chimney. The flow is described by the mass, momentum and energy conservation equations, besides the transport equations of the quantities in the turbulence model (k and epsilon). Dimensionless parameters are presented at way out the device, as function of time and the insulation conditions, represented by the soil and the roof heating.

  6. Correlation of trace element content in air particulates with solar meteorological data in the atmosphere of Athens

    International Nuclear Information System (INIS)

    Kanias, G.D.; Grimanis, A.P.; Viras, L.G.

    2003-01-01

    Relation between the trace element content in air particulates and solar meteorological data in the atmospheric environment of Athens, Greece, was studied. For this purpose, Sm, Br, As, Na, K, La, Ce, Cr, Ag, Sc, Fe, Zn, Co, Sb, Th were determined by INAA in respirable aerosols collected during winter 1993-1994. The results showed that the average cloudiness, sunshine, and the total solar radiation (sun and sky) on a horizontal surface, (3 variables) have no relation with trace element variation. However, diffuse solar radiation (sun and sky) on a horizontal surface seems to have statistically significant relationship with some of the trace element variation. It forms a single component with some trace elements after the application of the factor analysis. The increase of the same solar variable in the Athens City center, is one of the factors which cannot permit the emission of trace elements in the atmospheric environment from dust soil and car tires. (author)

  7. Effects of Delta-Shaped Obstacles on the Thermal Performance of Solar Air Heater

    Directory of Open Access Journals (Sweden)

    Adisu Bekele

    2011-01-01

    Full Text Available An experimental investigation has been carried out to study the effect of delta-shaped obstacles mounted on the absorber surface of an air heater duct with an aspect ratio 6 : 1 resembling the conditions close to solar air heaters. This study encompassed the Reynolds number (Re ranging from 3400 to 27600, longitudinal pitch of the obstacle (Pl/e varied from 3/2 to 11/2, and relative obstacle height (e/H varied from 0.25 to 0.75. The relative obstacle transverse pitch (Pt/b=7/3 and the angle of attack of flow on obstacle = 90° are kept constant during the whole experimentation. By comparing the heat transfer data obtained from the obstacle-mounted duct with that of smooth duct under similar geometrical and flow conditions, the obstacle-mounted duct enhances the heat transfer by 3.6-times at Re = 7276.82, Pl/e=3/2, and e/H=0.75.

  8. Construction test modules to reduce the air conditioning consumption; Modulos de prueba de edificaciones para reducir el consumo de aire acondicionado

    Energy Technology Data Exchange (ETDEWEB)

    Acoltzi, Higinio [Instituto de Investigaciones Electricas, (Mexico); Alvarez, Gabriela [CENIDET (Mexico)

    2002-09-01

    In this work a mathematical model of the energy behavior of test modules to scale and its experimental verification is presented. The model determines the electrical energy consumption history, necessary to maintain the comfort conditions in the interior of the modules, with respect to the variation of the materials of the ceilings and windows, to establish the application criteria of these materials in the construction industry. Also are presented the measured results of energy consumption accumulated for the modules with ceilings, of monolithic slab as well as of joist and small arches, with wooden window frames and reflectasol filtrasol and clear glasses. [Spanish] En este trabajo se presenta un modelo matematico del comportamiento energetico de modulos de prueba a escala y su verificacion experimental. El modelo determina la historia del consumo de energia electrica, necesario para mantener las condiciones de confort al interior de los modulos, con respecto a la variacion de los materiales de los techos y ventanas, para establecer criterios de aplicacion de dichos materiales en la industria de la construccion. Tambien se presenta los resultados medidos del consumo de energia acumulada para los modulos con techos, tanto de losa monolitica como de vigueta y bovedilla, con ventanas de marco de madera y vidrios reflectasol, filtrasol y claro.

  9. Solar Hot Air Balloons: A Low Cost, Multi-hour Flight System for Lightweight Scientific Instrumentation Packages

    Science.gov (United States)

    Bowman, D. C.; Albert, S.; Dexheimer, D.; Murphy, S.; Mullen, M.

    2017-12-01

    Existing scientific ballooning solutions for multi hour flights in the upper troposphere/lower stratosphere are expensive and/or technically challenging. In contrast, solar hot air balloons are inexpensive and simple to construct. These balloons, which rely solely on sunlight striking a darkened envelope, can deliver payloads to 22 km altitude and maintain level flight until sunset. We describe an experimental campaign in which five solar hot air balloons launched in 45 minutes created a free flying infrasound (low frequency sound) microphone network that remained in the air for over 12 hours. We discuss the balloons' trajectory, maximum altitude, and stability as well as present results from the infrasound observations. We assess the performance and limitations of this design for lightweight atmospheric instrumentation deployments that require multi-hour flight times. Finally, we address the possibilities of multi day flights during the polar summer and on other planets.

  10. Citywide Impacts of Cool Roof and Rooftop Solar Photovoltaic Deployment on Near-Surface Air Temperature and Cooling Energy Demand

    Science.gov (United States)

    Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Martilli, A.

    2016-10-01

    Assessment of mitigation strategies that combat global warming, urban heat islands (UHIs), and urban energy demand can be crucial for urban planners and energy providers, especially for hot, semi-arid urban environments where summertime cooling demands are excessive. Within this context, summertime regional impacts of cool roof and rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy demand are examined for the two major USA cities of Arizona: Phoenix and Tucson. A detailed physics-based parametrization of solar photovoltaic panels is developed and implemented in a multilayer building energy model that is fully coupled to the Weather Research and Forecasting mesoscale numerical model. We conduct a suite of sensitivity experiments (with different coverage rates of cool roof and rooftop solar photovoltaic deployment) for a 10-day clear-sky extreme heat period over the Phoenix and Tucson metropolitan areas at high spatial resolution (1-km horizontal grid spacing). Results show that deployment of cool roofs and rooftop solar photovoltaic panels reduce near-surface air temperature across the diurnal cycle and decrease daily citywide cooling energy demand. During the day, cool roofs are more effective at cooling than rooftop solar photovoltaic systems, but during the night, solar panels are more efficient at reducing the UHI effect. For the maximum coverage rate deployment, cool roofs reduced daily citywide cooling energy demand by 13-14 %, while rooftop solar photovoltaic panels by 8-11 % (without considering the additional savings derived from their electricity production). The results presented here demonstrate that deployment of both roofing technologies have multiple benefits for the urban environment, while solar photovoltaic panels add additional value because they reduce the dependence on fossil fuel consumption for electricity generation.

  11. Characterisation of a smartphone image sensor response to direct solar 305nm irradiation at high air masses.

    Science.gov (United States)

    Igoe, D P; Amar, A; Parisi, A V; Turner, J

    2017-06-01

    This research reports the first time the sensitivity, properties and response of a smartphone image sensor that has been used to characterise the photobiologically important direct UVB solar irradiances at 305nm in clear sky conditions at high air masses. Solar images taken from Autumn to Spring were analysed using a custom Python script, written to develop and apply an adaptive threshold to mitigate the effects of both noise and hot-pixel aberrations in the images. The images were taken in an unobstructed area, observing from a solar zenith angle as high as 84° (air mass=9.6) to local solar maximum (up to a solar zenith angle of 23°) to fully develop the calibration model in temperatures that varied from 2°C to 24°C. The mean ozone thickness throughout all observations was 281±18 DU (to 2 standard deviations). A Langley Plot was used to confirm that there were constant atmospheric conditions throughout the observations. The quadratic calibration model developed has a strong correlation between the red colour channel from the smartphone with the Microtops measurements of the direct sun 305nm UV, with a coefficient of determination of 0.998 and very low standard errors. Validation of the model verified the robustness of the method and the model, with an average discrepancy of only 5% between smartphone derived and Microtops observed direct solar irradiances at 305nm. The results demonstrate the effectiveness of using the smartphone image sensor as a means to measure photobiologically important solar UVB radiation. The use of ubiquitous portable technologies, such as smartphones and laptop computers to perform data collection and analysis of solar UVB observations is an example of how scientific investigations can be performed by citizen science based individuals and groups, communities and schools. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Climate, Air Quality, and Human Health Benefits of Various Solar Photovoltaic Development Scenarios in China in 2030

    Science.gov (United States)

    Yang, J.; Mauzerall, D. L.; Wagner, F.; Li, X.

    2016-12-01

    Solar photovoltaic (PV) technology can greatly reduce both air pollution and GHG emissions from the power sector. The Chinese government has plans to scale up solar PV installation between now and 2030. However, there is little analysis of how deployment strategies will influence the range of benefits. Here we conduct the first integrated assessment study that quantifies the climate, air quality, and related human health benefits of various solar PV development strategies in 2030 China. Our results indicate that both the location of PV deployment, which coal power plants are replaced, and the extent of inter-provincial transmission greatly influence the co-benefits. We compare CO2 and PM2.5 reductions from two PV installation scenarios both with the 2030 government target of 400 GW national installed capacity. First, we assume all solar PV is utilized within the province in which it is generated and that it can not exceed 30% of total provincial electricity generation. We find that deploying more solar PV in locations near load centers via distributed PV systems has larger benefits and could lead to approximately 20,500 (between 8000 - 32,400, high and low bounds) annual avoided premature deaths, 15% more than building utility-scale solar PV plants in the sunny, yet sparsely populated northwest. The difference occurs because in the northwest a lower population and cleaner air leads to smaller reductions in air pollution related premature mortalities. Also greater potential for PV curtailment exists in the west. In terms of CO2 reduction, deploying PV near load centers leads to 12% greater reductions in CO2 emissions from the power sector - approximately 5% of China's total CO2 emission in 2030. Second, we enable inter-provincial transmission of PV electricity within each of China's six regional grids which allows greater use of abundant sunlight in the northwest. Our results for 2030 show that by expanding to the regional grid, curtailment rates in the northwest

  13. An evaluation of the performance of an integrated solar combined cycle plant provided with air-linear parabolic collectors

    International Nuclear Information System (INIS)

    Amelio, Mario; Ferraro, Vittorio; Marinelli, Valerio; Summaria, Antonio

    2014-01-01

    An evaluation of the performance of an innovative solar system integrated in a combined cycle plant is presented, in which the heat transfer fluid flowing in linear parabolic collectors is the same oxidant air that is introduced into the combustion chamber of the plant. This peculiarity allows a great simplification of the plant. There is a 22% saving of fossil fuel results in design conditions and 15.5% on an annual basis, when the plant works at nominal volumetric flow rate in the daily hours. The net average year efficiency is 60.9% against the value of 51.4% of a reference combined cycle plant without solar integration. Moreover, an economic evaluation of the plant is carried out, which shows that the extra-cost of the solar part is recovered in about 5 years. - Highlights: • A model to calculate an innovative ISCCS (Integrated solar Combined Cycle Systems) solar plant is presented. • The plant uses air as heat transfer fluid as well as oxidant in the combustor. • The plant presents a very high thermodynamic efficiency. • The plant is very simple in comparison with existing ISCCS

  14. Thermo-Hydraulic Analysis of Heat Storage Filled with the Ceramic Bricks Dedicated to the Solar Air Heating System.

    Science.gov (United States)

    Nemś, Magdalena; Nemś, Artur; Kasperski, Jacek; Pomorski, Michał

    2017-08-12

    This article presents the results of a study into a packed bed filled with ceramic bricks. The designed storage installation is supposed to become part of a heating system installed in a single-family house and eventually to be integrated with a concentrated solar collector adapted to climate conditions in Poland. The system's working medium is air. The investigated temperature ranges and air volume flow rates in the ceramic bed were dictated by the planned integration with a solar air heater. Designing a packed bed of sufficient parameters first required a mathematical model to be constructed and heat exchange to be analyzed, since heat accumulation is a complex process influenced by a number of material properties. The cases discussed in the literature are based on differing assumptions and different formulas are used in calculations. This article offers a comparison of various mathematical models and of system operating parameters obtained from these models. The primary focus is on the Nusselt number. Furthermore, in the article, the thermo-hydraulic efficiency of the investigated packed bed is presented. This part is based on a relationship used in solar air collectors with internal storage.

  15. Thermo-Hydraulic Analysis of Heat Storage Filled with the Ceramic Bricks Dedicated to the Solar Air Heating System

    Science.gov (United States)

    Nemś, Magdalena; Nemś, Artur; Kasperski, Jacek; Pomorski, Michał

    2017-01-01

    This article presents the results of a study into a packed bed filled with ceramic bricks. The designed storage installation is supposed to become part of a heating system installed in a single-family house and eventually to be integrated with a concentrated solar collector adapted to climate conditions in Poland. The system’s working medium is air. The investigated temperature ranges and air volume flow rates in the ceramic bed were dictated by the planned integration with a solar air heater. Designing a packed bed of sufficient parameters first required a mathematical model to be constructed and heat exchange to be analyzed, since heat accumulation is a complex process influenced by a number of material properties. The cases discussed in the literature are based on differing assumptions and different formulas are used in calculations. This article offers a comparison of various mathematical models and of system operating parameters obtained from these models. The primary focus is on the Nusselt number. Furthermore, in the article, the thermo-hydraulic efficiency of the investigated packed bed is presented. This part is based on a relationship used in solar air collectors with internal storage. PMID:28805703

  16. Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates

    International Nuclear Information System (INIS)

    Akpinar, Ebru Kavak; Kocyigit, Fatih

    2010-01-01

    This study experimentally investigates performance analysis of a new flat-plate solar air heater (SAH) with several obstacles (Type I, Type II, Type III) and without obstacles (Type IV). Experiments were performed for two air mass flow rates of 0.0074 and 0.0052 kg/s. The first and second laws of efficiencies were determined for SAHs and comparisons were made among them. The values of first law efficiency varied between 20% and 82%. The values of second law efficiency changed from 8.32% to 44.00%. The highest efficiency were determined for the SAH with Type II absorbent plate in flow channel duct for all operating conditions, whereas the lowest values were obtained for the SAH without obstacles (Type IV). The results showed that the efficiency of the solar air collectors depends significantly on the solar radiation, surface geometry of the collectors and extension of the air flow line. The largest irreversibility was occurring at the SAH without obstacles (Type IV) collector in which collector efficiency is smallest. At the end of this study, the energy and exergy relationships are delivered for different SAHs.

  17. Air shower simulation for WASAVIES: warning system for aviation exposure to solar energetic particles

    International Nuclear Information System (INIS)

    Sato, T.; Kataoka, R.; Yasuda, H.; Yashiro, S.; Kuwabara, T.; Shiota, D.; Kubo, Y.

    2014-01-01

    WASAVIES, a warning system for aviation exposure to solar energetic particles (SEPs), is under development by collaboration between several institutes in Japan and the USA. It is designed to deterministically forecast the SEP fluxes incident on the atmosphere within 6 h after flare onset using the latest space weather research. To immediately estimate the aircrew doses from the obtained SEP fluxes, the response functions of the particle fluxes generated by the incidence of monoenergetic protons into the atmosphere were developed by performing air shower simulations using the Particle and Heavy Ion Transport code system. The accuracy of the simulation was well verified by calculating the increase count rates of a neutron monitor during a ground-level enhancement, combining the response function with the SEP fluxes measured by the PAMELA spectrometer. The response function will be implemented in WASAVIES and used to protect air crews from additional SEP exposure. When galactic cosmic rays (GCRs) or solar energetic particles (SEPs) are incident on the atmosphere, they can induce air showers by producing various secondary particles. These secondary particles can reach conventional flight altitudes (∼12 km); hence, air crews are exposed to enhanced levels of radiation. The most important difference between GCR and SEP exposure arises from their temporal variations and dose rates; GCRs induce continuous exposure with low dose rates, usually up to several μSv h -1 , whereas SEPs produce pulsed exposure with high dose rates, occasionally >1 mSv h -1 , though such severe events rarely occur. Thus, subsequent evaluation is sufficient for estimating the aircrew dose due to GCR exposure, whereas forecasting is desirable for SEP exposure. Several calculation codes, e.g. CARI-6(3), EPCARD(4), JISCARD-EX(5), and PCAIRE(6), have been developed for post-exposure evaluation of GCR doses. On the other hand, empirical and phenomenological models have been developed for real-time or

  18. An experimental study on the application of polyalcohol solid-solid phase change materials in solar drying with cross-corrugated solar air collectors

    Science.gov (United States)

    Gao, W. F.; Lin, W. X.; Liu, T.; Li, M.

    2017-11-01

    In this paper, two identical solar driers with the same cross-corrugated solar air collectors and drying chamber were developed, one with phase-change materials (PCMs) and the other without PCMs. These two solar drying systems were tested in typical sunny and cloudy days in Kunming and their thermal performances were analyzed. The experimental results show that the temperature changing is smoother in the collector with the PCMs, which is beneficial for the drying as the useful drying time was prolonged. The same trend was also found in the chamber with the PCMs. The PCMs in solar drying system was found to play a role in temperature regulating. There were several cycles of heat charging-discharging in a cloudy testing day while the temperatures on collectors and in chambers with the polyalcohol PCMs is higher than each phase-change temperature. Nevertheless, there was only one cycle of heat charging-discharging in a sunny testing day. The collector with PCMs has higher daily useful heat gain than the collector without PCMs.

  19. The Effect of Solar Reflective Cover on Soak Air Temperature and Thermal Comfort of Car Parked under the Sun

    Directory of Open Access Journals (Sweden)

    Lahimer A.A.

    2017-01-01

    Full Text Available Parking a vehicle under the sun for a short period of time can rapidly increase the interior air cabin temperature no matter in clear sky days or even in partially cloudy days. These circumstances can be anxieties to car occupants upon entry. The aim of this paper is to evaluate experimentally the effect of solar reflective cover (SRC on vehicle air temperature and cabin thermal comfort. Experimental measurements of parked cars were conducted in UKM, Bangi city, Malaysia (latitude of 2.9° N and longitude of 101.78° E under partially cloudy day where average ambient temperature is 33°C. The experimental measurements cover the following cases: case (I: car with/ without SRC (at different measurement time; Case (II: using two identical cars concurrently (SRC versus baseline; Case (III: using two identical cars concurrently (solar reflective film (SRF versus baseline and Case (IV: using two identical cars concurrently (SRF versus SRC. Experimental results dedicated to case (I revealed that the maximum cabin air temperature with SRC (39.6°C is significantly lower than that of baseline case (57.3°C. This leads to temperature reduction improvement of 31% and the difference between the cabin and the ambient air temperature was minimized by approximately 73%. In addition, the results revealed that the air temperature at breath level of car with SRC dropped to comfort temperature (27°C after 7 min while baseline car reached comfort temperature after 14 min. Results of the other cases are discussed inside the paper. Overall, it is learned that SRC is found superior as an efficient thermal insulation system limits solar radiation transmission into the cabin through the glass; keeps cabin air temperature close to the ambient temperature; and provide acceptable thermal environment to the occupants as they settle into their parked car.

  20. The Effect of Solar Reflective Cover on Soak Air Temperature and Thermal Comfort of Car Parked under the Sun

    Science.gov (United States)

    Lahimer, A. A.; Alghoul, M. A.; Sopian, K.; Khrit, N. G.

    2017-11-01

    Parking a vehicle under the sun for a short period of time can rapidly increase the interior air cabin temperature no matter in clear sky days or even in partially cloudy days. These circumstances can be anxieties to car occupants upon entry. The aim of this paper is to evaluate experimentally the effect of solar reflective cover (SRC) on vehicle air temperature and cabin thermal comfort. Experimental measurements of parked cars were conducted in UKM, Bangi city, Malaysia (latitude of 2.9° N and longitude of 101.78° E) under partially cloudy day where average ambient temperature is 33°C. The experimental measurements cover the following cases: case (I): car with/ without SRC (at different measurement time); Case (II): using two identical cars concurrently (SRC versus baseline); Case (III): using two identical cars concurrently (solar reflective film (SRF) versus baseline) and Case (IV): using two identical cars concurrently (SRF versus SRC). Experimental results dedicated to case (I) revealed that the maximum cabin air temperature with SRC (39.6°C) is significantly lower than that of baseline case (57.3°C). This leads to temperature reduction improvement of 31% and the difference between the cabin and the ambient air temperature was minimized by approximately 73%. In addition, the results revealed that the air temperature at breath level of car with SRC dropped to comfort temperature (27°C) after 7 min while baseline car reached comfort temperature after 14 min. Results of the other cases are discussed inside the paper. Overall, it is learned that SRC is found superior as an efficient thermal insulation system limits solar radiation transmission into the cabin through the glass; keeps cabin air temperature close to the ambient temperature; and provide acceptable thermal environment to the occupants as they settle into their parked car.

  1. Delta XTE Spacecraft Solar Panel Deployment, Hangar AO at Cape Canaveral Air Station

    Science.gov (United States)

    1995-01-01

    The footage shows technicians in the clean room checking and adjusting the deployment mechanism of the solar panel for XTE spacecraft. Other scenes show several technicians making adjustments to software for deployment of the solar panels.

  2. Air Temperature Error Correction Based on Solar Radiation in an Economical Meteorological Wireless Sensor Network.

    Science.gov (United States)

    Sun, Xingming; Yan, Shuangshuang; Wang, Baowei; Xia, Li; Liu, Qi; Zhang, Hui

    2015-07-24

    Air temperature (AT) is an extremely vital factor in meteorology, agriculture, military, etc., being used for the prediction of weather disasters, such as drought, flood, frost, etc. Many efforts have been made to monitor the temperature of the atmosphere, like automatic weather stations (AWS). Nevertheless, due to the high cost of specialized AT sensors, they cannot be deployed within a large spatial density. A novel method named the meteorology wireless sensor network relying on a sensing node has been proposed for the purpose of reducing the cost of AT monitoring. However, the temperature sensor on the sensing node can be easily influenced by environmental factors. Previous research has confirmed that there is a close relation between AT and solar radiation (SR). Therefore, this paper presents a method to decrease the error of sensed AT, taking SR into consideration. In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the numerical correspondence between AT error (ATE) and SR. This corresponding relation was used to calculate real-time ATE according to real-time SR and to correct the error of AT in other months.

  3. Air Temperature Error Correction Based on Solar Radiation in an Economical Meteorological Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Xingming Sun

    2015-07-01

    Full Text Available Air temperature (AT is an extremely vital factor in meteorology, agriculture, military, etc., being used for the prediction of weather disasters, such as drought, flood, frost, etc. Many efforts have been made to monitor the temperature of the atmosphere, like automatic weather stations (AWS. Nevertheless, due to the high cost of specialized AT sensors, they cannot be deployed within a large spatial density. A novel method named the meteorology wireless sensor network relying on a sensing node has been proposed for the purpose of reducing the cost of AT monitoring. However, the temperature sensor on the sensing node can be easily influenced by environmental factors. Previous research has confirmed that there is a close relation between AT and solar radiation (SR. Therefore, this paper presents a method to decrease the error of sensed AT, taking SR into consideration. In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the numerical correspondence between AT error (ATE and SR. This corresponding relation was used to calculate real-time ATE according to real-time SR and to correct the error of AT in other months.

  4. Entransy analysis on the thermal performance of flat plate solar air collectors

    Institute of Scientific and Technical Information of China (English)

    Jie Deng; Xudong Yang; Yupeng Xu; Ming Yang

    2017-01-01

    Based on the thermo-electric analogy (the so-called thermal entransy analysis), the unified airside convective heat transfer coefficient for different sorts of flat plate solar air collectors (FPSACs) is identified in terms of colector aperture area. In addition, the colector thermodynamic characteristic matching coefficient is defined to depict the matching property of collector thermal performance between the collector airside heat transfer and the total heat losses. It is found that the airside convective heat transfer coefficient can be experimentally determined by collector thermal performance test method to compare the airside thermal performances of FPSACs with different types of airflow structures. Moreover, the smaler the colector thermodynamic characteristic matching coefficient is, the better the thermodynamic perfect degree of a FPSAC is. The minimum limit value of the collector thermodynamic matching coefficient is close to zero but it can not vanish in practical engineering. Parameter sensitivity analysis on the total entransy dissipation and the entransy increment of a general FPSAC is also undertaken. The results indicate that the effective way of decreasing total entransy dissipation and enhancing the useful entransy increment is improving the efficiency intercept of the FPSAC. This is equivalent to the cognition result of thermal analysis. However, the evaluation indices identified by the thermal entransy analysis can not be extracted by singular thermal analysis.

  5. Thermal Hydraulic Performance in a Solar Air Heater Channel with Multi V-Type Perforated Baffles

    Directory of Open Access Journals (Sweden)

    Anil Kumar

    2016-07-01

    Full Text Available This article presents heat transfer and fluid flow characteristics in a solar air heater (SAH channel with multi V-type perforated baffles. The flow passage has an aspect ratio of 10. The relative baffle height, relative pitch, relative baffle hole position, flow attack angle, and baffle open area ratio are 0.6, 8.0, 0.42, 60°, and 12%, respectively. The Reynolds numbers considered in the study was in the range of 3000–10,000. The re-normalization group (RNG k-ε turbulence model has been used for numerical analysis, and the optimum relative baffle width has been investigated considering relative baffle widths of 1.0–7.0.The numerical results are in good agreement with the experimental data for the range considered in the study. Multi V-type perforated baffles are shown to have better thermal performance as compared to other baffle shapes in a rectangular passage. The overall thermal hydraulic performance shows the maximum value at the relative baffle width of 5.0.

  6. An economic optimization of evaporator and air collector area in a solar assisted heat pump drying system

    International Nuclear Information System (INIS)

    Rahman, S.M.A.; Saidur, R.; Hawlader, M.N.A.

    2013-01-01

    Highlights: • The optimum combination will provide around 89% of the total load. • The system has a savings during the life cycle with least payback period of 4.37 year. • The optimal system is insensitive to the variation in fuel inflation and discount rate. - Abstract: This paper presents an economic optimization of evaporator and air collector area of a solar assisted heat pump drying system. Economic viability of solar heating systems is usually made by comparing the cost flows recurring throughout the lifetime of the solar and conventional alternative systems. Therefore, identification of optimum variables by using a simulation program and an economic analysis based on payback period of the system are presented in this paper. FORTRAN language is used to run the simulation. Effect of load and different economic variables on payback period is also investigated. Economic analysis reveals that system has sufficient amount of savings during the life cycle with a minimum payback period of about 4 years

  7. Heat transfer and friction correlations for artificially roughened solar air heater duct with discrete W-shaped ribs

    International Nuclear Information System (INIS)

    Kumar, Arvind; Bhagoria, J.L.; Sarviya, R.M.

    2009-01-01

    An experimental investigation has been carried out to study the heat transfer and friction characteristics in solar air heater by using discrete W-shaped roughness on one broad wall of solar air heater with an aspect ratio of 8:1, the roughened wall being heated while the remaining three walls are insulated. The experiment encompassed Reynolds number (Re) range from 3000 to 15,000, relative roughness height (e/D h ) in the range of 0.0168-0.0338, relative roughness pitch (p/e) 10 and the angle of attack (α) in the range of 30-75 deg. The effect of parameters on the heat transfer and friction are compared with the result of smooth duct under similar flow conditions. Correlations for heat transfer and friction have been developed as a function of roughness and flow parameters.

  8. Exploitation of humid air latent heat by means of solar assisted heat pumps operating below the dew point

    International Nuclear Information System (INIS)

    Scarpa, Federico; Tagliafico, Luca A.

    2016-01-01

    Highlights: • The opportunity of humid air latent heat exploitation by DX-SAHP is investigated. • A set of experimental tests confirms this opportunity and quantifies it as relevant. • A parametric analysis is performed, via simulation, to deepen the subject. • The energy gain is relevant during both night and daytime. - Abstract: Nowadays, the exploitation of environmental exergy resources for heating purposes (solar energy, convection heat transfer from ambient air, moist air humidity condensation) by means of properly designed heat pump systems is a possible opportunity. In particular, the use of direct expansion solar assisted heat pumps (DX-SAHP) is investigated in this study, when a bare external plate (the solar collector) is kept at temperatures lower than the dew point temperature of ambient air, so that condensation takes place on it. The potential of this technology is settled and an instrumented prototype of a small DX-SAHP system is used to verify the actual performance of the system, in terms of specific thermal energy delivered to the user, efficiency and regulation capabilities. Results clearly show that the contribution of the condensation is significant (20%–30% of the total harvested energy) overnight or in cloudy days with very low or no solar irradiation, and must be taken into account in a system model devoted to describe the DX-SAHP behavior. During daytime, the percentage gain decreases but is still consistent. By investigating along these lines, the heat due to condensation harvested by the collector is found to be a function of the dew-point temperature alone.

  9. Performance evaluation of a natural-convection solar air-heater with a rectangular-finned absorber plate

    International Nuclear Information System (INIS)

    Fakoor Pakdaman, M.; Lashkari, A.; Basirat Tabrizi, H.; Hosseini, R.

    2011-01-01

    This paper deals with an experimental investigation to evaluate different thermal characteristics of a natural-convection flat-plate solar air-heater with longitudinal rectangular fins array. Having determined the thermal performance of the system a Nusselt number correlation is presented for such finned duct devices. In the presented empirical model which may have industrial applications, solar radiation and ambient temperature have been considered as independent parameters. Other characteristics of the system such as different dimensionless variables, plates and outflow temperatures, efficiency, and mass flow rate have been empirically modeled based on these variables. The particular difference in this study in comparison with the other similar studies is the presentation of an empirical model for rectangular-finned solar air-heaters. This model proposes design concepts and rules of thumb, and demonstrates the calculations of the design parameters. Based on the order of magnitude analysis, solar radiation has been found to be the main parameter which characterizes the thermal behavior of the system. Besides, exergy analysis has been carried out, and optimum conditions in which the system has the highest performance have been determined.

  10. Evaluation of Solar Air Heater Performance with Artificial Rib Roughness over the Absorber Plate using Finite Element Modelling Analysis

    Science.gov (United States)

    Kumar, K. Ravi; Nikhil Varma, P.; Jagadeesh, N.; Sandeep, J. V.; Cheepu, Muralimohan; Venkateswarlu, D.; Srinivas, B.

    2018-03-01

    Among the different renewable energy resources, solar energy is widely used due to its quantitative intensity factor. Solar air heater is cheap, simple in design and has got wide range of applications. A modest solar air heater has a lower in heat transfer and thermal performance as it has heat transfer coefficient lower in between coated absorber plate and the carrier fluid. This low thermal performance can be reduced to a greater extent by introducing the artificially created roughness over the absorber plate of the solar heater. In the present study, the combination of various geometries and roughness’s on the absorber plate are reported. Methods have been developed and implemented in order to improve the rate of the heat transfer. A comparison is drawn among different geometries to select the most effective absorber plate roughness. For flow analysis k-ω SST model was used and the constant heat flux was taken as 1100 W/m2. The Reynolds number is varied in a range from 3000 to 20000. The variation of different parameters temperature, Nusselt number, turbulence kinetic energy and heat transfer coefficient with Reynolds number were examined and discussed.

  11. Experimental Study of the Performance of Air Source Heat Pump Systems Assisted by Low-Temperature Solar-Heated Water

    Directory of Open Access Journals (Sweden)

    Jinshun Wu

    2013-01-01

    Full Text Available Due to the low temperatures, the heating efficiency of air source heat pump systems during the winter is very low. To address this problem, a low-temperature solar hot water system was added to a basic air source heat pump system. Several parameters were tested and analyzed. The heat collection efficiency of the solar collector was analyzed under low-temperature conditions. The factors that affect the performance of the heat pumps, such as the fluid temperature, pressure, and energy savings, were analyzed for cases where the solar energy auxiliary heat pump and the air source heat pump are used independently. The optimal heating temperature and the changes in the fluid temperature were determined. The influence of the compression ratio and the coefficient of performance (COP were investigated theoretically. The results revealed the parameters that are important to the performance of the system. Several measures for improving the COP of the heat pump units are provided for other applications and future research.

  12. Augmentation of Effective Thermal Gain of Solar Air Heater using a Novel Turbulator Design- A CFD Study

    Directory of Open Access Journals (Sweden)

    Dhagat Animesh

    2018-01-01

    Full Text Available Augmentation of thermal performance of solar air heater has been the focus of many researchers over the last decades and the use of turbulator or artificial roughness to provide increased fluid mixing in order to achieve augmented heat transfer has been a widely accepted technique. This work aims to evaluate the effect of a novel turbulator design on the effective thermal performance of solar air heater using the methodology of computational fluid dynamics (CFD. A two dimensional CFD analysis is carried out to evaluate the thermal characteristics of solar air heater at various flow Reynolds number conditions for different geometric parameters of the proposed turbulator design. The pitch of the turbulator is varied as 10mm, 20mm, 30mm, 40mm and 50mm for a fixed turbulator height of 2 mm. The Reynolds number is varied from 6,000 to 27,000. The analysis shows that the lower values of pitch produces higher improvement in heat transfer. The maximum increase in Nusselt number is found to be about 2.98 times as compared to the base model for the flow Reynolds number of about 6000. The highest increase in the friction factor is found to be about 3.05 times relative to the base model. The maximum thermal enhancement factor is found to be about 1.99 for the pitch value of 10 mm at a flow Reynolds number of about 6000.

  13. [Response of indica rice spikelet differentiation and degeneration to air temperature and solar radiation of different sowing dates].

    Science.gov (United States)

    Wang, Ya Liang; Zhang, Yu Ping; Xiang, Jing; Wang, Lei; Chen, Hui Zhe; Zhang, Yi Kai; Zhang, Wen Qian; Zhu, De Feng

    2017-11-01

    In this study, three rice varieties, including three-line hybrid indica rice Wuyou308 and Tianyouhuazhan, and inbred indica rice Huanghuazhan were used to investigate the effects of air temperature and solar radiation on rice growth duration and spikelet differentiation and degeneration. Ten sowing-date treatments were conducted in this field experiment. The results showed that the growth duration of three indica rice varieties were more sensitive to air temperature than to day-length. With average temperature increase of 1 ℃, panicle initiation advanced 1.5 days, but the panicle growth duration had no significant correlation with the temperature and day-length. The number of spikelets and differentiated spikelets revealed significant differences among different sowing dates. Increases in average temperature, maximum temperature, minimum temperature, effective accumulated temperature, temperature gap and the solar radiation benefited dry matter accumulation and spikelet differentiation of all varieties. With increases of effective accumulated temperature, diurnal temperature gap and solar radiation by 50 ℃, 1 ℃, 50 MJ·m -2 during panicle initiation stage, the number of differentiated spikelets increased 10.5, 14.3, 17.1 respectively. The rate of degenerated spikelets had a quadratic correlation with air temperature, extreme high and low temperature aggravated spikelets degeneration, and low temperature stress made worse effect than high temperature stress. The rate of spikelet degeneration dramatically rose with the temperature falling below the critical temperature, the critical effective accumulated temperature, daily average temperature, daily maximum temperature and minimum temperature during panicle initiation were 550-600 ℃, 24.0-26.0 ℃, 32.0-34.0 ℃, 21.0-23.0 ℃, respectively. In practice, the natural condition of appropriate high temperature, large diurnal temperature gap and strong solar radiation were conducive to spikelet differentiation

  14. Recent changes in solar irradiance and infrared irradiance related with air temperature and cloudiness at the King Sejong Station, Antarctica

    Science.gov (United States)

    Jung, Y.; Kim, J.; Cho, H.; Lee, B.

    2006-12-01

    The polar region play a critical role in the surface energy balance and the climate system of the Earth. The important question in the region is that what is the role of the Antarctic atmospheric heat sink of global climate. Thus, this study shows the trends of global solar irradiance, infrared irradiance, air temperature and cloudiness measured at the King Sejong station, Antarctica, during the period of 1996-2004 and determines their relationship and variability of the surface energy balance. Annual average of solar radiation and cloudiness is 81.8 Wm-2 and 6.8 oktas and their trends show the decrease of -0.24 Wm-2yr-1(-0.30 %yr-1) and 0.02 oktas yr-1(0.30 %yr-1). The change of solar irradiance is directly related to change of cloudiness and decrease of solar irradiance presents radiative cooling at the surface. Monthly mean infrared irradiance, air temperature and specific humidity shows the decrease of -2.11 Wm^{- 2}yr-1(-0.75 %yr-1), -0.07 'Cyr-1(-5.15 %yr-1) and -0.044 gkg-1yr-1(-1.42 %yr-1), respectively. Annual average of the infrared irradiance is 279.9 Wm-2 and correlated with the air temperature, specific humidity and cloudiness. A multiple regression model for estimation of the infrared irradiance using the components has been developed. Effects of the components on the infrared irradiance changes show 52 %, 19 % and 10 % for air temperature, specific humidity and cloudiness, respectively. Among the components, air temperature has a great influence on infrared irradiance. Despite the increase of cloudiness, the decrease in the infrared irradiance is due to the decrease of air temperature and specific humidity which have a cooling effect. Therefore, the net radiation of the surface energy balance shows radiative cooling of negative 11-24 Wm^{- 2} during winter and radiative warming of positive 32-83 Wm-2 during the summer. Thus, the amount of shortage and surplus at the surface is mostly balanced by turbulent flux of sensible and latent heat.

  15. Thermal Performance Evaluation of the 200 kWth Sol Air Volumetric Solar Receiver

    International Nuclear Information System (INIS)

    Tellez Sufrategui, F. M.

    2003-01-01

    The goal of the Solair project is the design and test of a fully modular, high efficient and durable open volumetric high-flux receiver, which can be easily and safely operated at mean air outlet temperatures of up to 800 degree centigree. The project was thought in two phases, in the first one an advanced 200 kW HitRec receiver called Solair 200 was designed and tested. The Solair 200 was built like one single receiver module (subassembly), to test the thermal performance of the receiver as well as the receiver module behavior. Out of a set of these receiver modules have been developed to assemble the 3 MW t h receiver in the second phase of the project. This report describes the used procedure or methodology for data processing for thermal performance evaluation purposes and the data processing results for the first phase of the project. Test campaign started in March 2002 and produced fifty data sheets (each corresponding to a test day) and ended in February 2003. During the test phase three absorber material types (or configurations) have been tested during the test campaign. The data processing and evaluation results show that performance goals for the receiver have been fluffy accomplished: Temperatures of more than 800 degree centigree were achieved for the first two configurations in five test days. For the two absorber configurations for which incident solar power was measured the estimated efficiency at 700 degree centigree was 81 (±6)% for configuration 1 and 83 (±6) % for configuration 2 of the absorber. (Author) 20 refs

  16. Energy and Exergy Analysis of Dual Channel Solar Air Collector with Different Absorber Plates Geometry

    Directory of Open Access Journals (Sweden)

    Najim A. Jassim

    2018-04-01

    Full Text Available Flat-plate collector considers most common types of collectors, for ease of manufacturing and low price compared with other collectors. The main aim of the present work is to increase the efficiency of the collector, which can be achieved by improving the heat transfer and minimize heat loss experimentally. Five types of solar air collectors have been tested, which conventional channel with a smooth absorber plate (model I, dual channel with a smooth absorber plate (model II, dual channel with perforating “V” corrugated absorber plate (model III, dual channel with internal attached wire mesh (model Ⅳ, and dual channel with absorber sheet of transparent honeycomb, (model Ⅴ. The dual channel collector used for increasing heat transfer area and heat removal factor to improve thermal performance. The outdoor test was conducted during the period December (2016 to February (2017 at different mass flow rates 0.0217 kg/s, 0.0271 kg/s and 0.0325 kg/s. The experiments were carried out from 8:30 AM to 3:00 PM for clear days. Experimental results show that the average thermal efficiency was (72.2 % for model (III, (40.2 % for model (I, (51.6 % for model (II, (65.1 % for model (Ⅳ and (59.7 % for model (Ⅴ. At the last part of the study, the exergy analyses were derived for both collectors. The results of this part showed that the conventional channel model (I is having largest irreversibility, and the dual channel collector model (III is having a greatest exergetic efficiency.

  17. Thermal Performance Evaluation of the 200kWth SolAir Volumetric Solar Receiver

    Energy Technology Data Exchange (ETDEWEB)

    Tellez Sufrategui, F. M.

    2003-07-01

    The goal of the Solair project the design and test of a fully modular, high efficient and durable open volumetric high-flux receiver, which can be easily and safety operated at mean air outlet temperatures of up to 800 degree centigree. The project was thought in two phases, in the first one an advanced 200 kW Hitrec receiver called Solair 200 was designed and tested. The Solair 200 was built like one single receiver module (subassembly), to test the thermal performance of the receiver as well as the receiver module behavior. Out of a set of these receiver modules have been developed to assemble the 3 MWth receiver in the second phase of the project. This report describes the used procedure or methodology for data processing for thermal performance evaluation purposes and the data processing results for the first phase of the project. Test campaign started in March 2002 and produced fifty data sheets (each corresponding to a test day) and ended in February 2003. During the test phase three absorber material types (or configurations) have been tested during the test campaign. The data processing and evaluation results show that performance goals for the receiver have been fully accomplished. Temperatures of more than 800 degree centigree were achieved for the first two configurations in five test days. For the two absorber configurations for which incident solar power was measured the estimated efficiency at 700 degree centigree was 81 ({+-}6)% for configuration 1 and 83({+-}6)% for configuration 2 of the absorber. (Author). 20 refs.

  18. Modeling of solar heating and air conditioning. Progress report, October 31, 1974--December 31, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Duffie, J.A.; Beckman, W.A.

    1975-12-31

    The principal objective of the research is to develop the means to identify and optimize practical systems for heating and cooling of buildings with solar energy in the United States. This will be done through simulation methods. Secondary objectives are to: extend and refine TRNSYS (a modular solar energy system simulation program); develop the means of supporting TRNSYS users in other laboratories; use TRNSYS (and other simulation programs) to develop design procedures for solar heating and cooling processes; design and evaluate an experimental solar heating system on a Wisconsin farm residence.

  19. Experimental investigation and thermodynamic performance analysis of a solar dryer using an evacuated-tube air collector

    International Nuclear Information System (INIS)

    Lamnatou, Chr.; Papanicolaou, E.; Belessiotis, V.; Kyriakis, N.

    2012-01-01

    Highlights: ► We evaluate an evacuated-tube solar air collector and use it to develop a novel dryer. ► Apple, carrot and apricot thin-layer drying experiments are conducted. ► Best overall fitting among several available thin-layer drying models is pursued. ► Thermodynamic analysis yields optimal collector area, energy utilization/exergy loss. ► The proposed dryer has a capacity for drying larger quantities of products. -- Abstract: The present work presents a thermodynamic performance analysis of a solar dryer with an evacuated-tube collector. Drying experiments for apples, carrots and apricots were conducted, after a preliminary stage of the investigation which included measurements for the determination of the collector efficiency. These results showed that the warm outlet air of the collector attains temperature levels suitable for drying of agricultural products without the need of preheating. Thus, the present collector was used as the heat source for a drying chamber in the frame of the development of a novel, convective, indirect solar dryer; given the fact that in the literature there are only a few studies about this type of collectors in conjunction with solar drying applications. Thin-layer drying models were fitted to the experimental drying curves, including the recent model of Diamante et al. which showed good correlation coefficients for all the tested products. Drying parameters such as moisture ratio and drying rates were calculated. Furthermore, an energetic/exergetic analysis of the dryer was also conducted and performance coefficients such as pick-up and exergy efficiencies, energy utilization ratio, exergy losses were determined for several configurations such as single and double-trays and several drying air velocities. On the other hand, an optimal collector surface area study was conducted, based on laws for minimum entropy generation. Design parameters such as optimum collector area were determined based on the minimum entropy

  20. Performance analysis of solar air cooled double effect LiBr/H2O absorption cooling system in subtropical city

    International Nuclear Information System (INIS)

    Li, Zeyu; Ye, Xiangyang; Liu, Jinping

    2014-01-01

    Highlights: • The meteorological data during the working period of air conditioning was measured. • The suitable working range of collector temperature of system was gotten. • The characteristic of hourly and monthly total efficiency of system were obtained. • The yearly performance of system was calculated. - Abstract: Due to the absence of cooling tower and independent on water, the air cooled solar double effect LiBr/H 2 O absorption cooling system is more convenient to be used in commercial building and household use. The performance with collector temperature is an important field for such system. The paper mainly deals with the performance with collector temperature for the solar air cooled double effect LiBr/H 2 O absorption cooling system in subtropical city. The parameters of system are: aperture area of collector array is 27 m 2 , tilted angle of collector with respect to the horizontal plane is 20 toward to south evaporator temperature is 5 °C and the cooling capacity is 20 kW. The simulation is based on the meteorological data of monthly typical day which was summarized from a year round measured data. A corresponding parametric model was developed. The hourly and average performance with the collector temperature for monthly typical day was obtained and discussed. It was found that the suitable working range of inlet temperature of collector is 110–130 °C to improve performance and lower the risk of crystallization. The difference of hourly total efficiency in 9:00–16:00 is less, and the monthly total efficiency from May to October is approximate. The yearly performance of system including total efficiency, cooling capacity per area of collector and solar fraction was given. Furthermore, the effect of effectiveness of heat exchanger and pressure drop on total efficiency and solar fraction was studied and compared. The paper can serve as a preliminary investigation of solar air cooled double effect LiBr/H 2 O absorption cooling system in

  1. Assessing the transferability of support vector machine model for estimation of global solar radiation from air temperature

    International Nuclear Information System (INIS)

    Chen, Ji-Long; Li, Guo-Sheng; Xiao, Bei-Bei; Wen, Zhao-Fei; Lv, Ming-Quan; Chen, Chun-Di; Jiang, Yi; Wang, Xiao-Xiao; Wu, Sheng-Jun

    2015-01-01

    Highlights: • Transferability of SVM in estimation of solar radiation is investigated. • Radiation at estimation site could be well estimated by SVM developed at source site. • A strategy for selecting a suitable source site is presented. • SVM accuracy is affected by distance and temperature difference between two sites. • RMSE of SVM shows logarithm or linearly relationship with altitude of source site. - Abstract: Exploring novel methods for estimation of global solar radiation from air temperature has been being a focus in many studies. This paper evaluates the transferability of support vector machines (SVM) for estimation of solar radiation in subtropical zone in China. Results suggest that solar radiation at one site (estimation site) could be well estimated by SVM model developed at another site (source site). The accuracy of estimation is affected by the distance and temperature difference between two sites, and altitude of source site. Higher correlations between RMSE of SVM and distance, and temperature differences are observed in northeastern region, increasing the reliability and confidence of SVM model developed at nearby stations. While lower correlations between RMSE and distance, and temperature differences are observed in southwest plateau region. When the altitude of estimation site is lower than 1200 m, RMSE show logarithm relationship with altitude of source sites where the altitude are lower than that of estimation site. Otherwise, RMSE show linearly relationship with altitude of source sites where the altitude are higher than 200 m but lower than that of the estimation site. This result suggests that solar radiation could be also estimated using SVM model developed at the site with similar but lower altitude. Based on these results, a strategy that takes into account the climatic conditions, topography, distance, and altitude for selecting a suitable source site is presented. The findings can guide and ease the appropriate choice of

  2. Study on the Optimizing Operation of Exhaust Air Heat Recovery and Solar Energy Combined Thermal Compensation System for Ground-Coupled Heat Pump

    Directory of Open Access Journals (Sweden)

    Kuan Wang

    2017-01-01

    Full Text Available This study proposed an exhaust air heat recovery and solar energy combined thermal compensation system (ESTC for ground-coupled heat pumps. Based on the prediction of the next day’s exhaust air temperature and solar irradiance, an optimized thermal compensation (OTC method was developed in this study as well, in which the exhaust air heat recovery compensator and solar energy compensator in the ESTC system run at high efficiency throughout various times of day. Moreover, a modified solar term similar days group (STSDG method was proposed to improve the accuracy of solar irradiance prediction in hazy weather. This modified STSDG method was based on air quality forecast and AQI (air quality index correction factors. Through analyzing the operating parameters and the simulation results of a case study, the ESTC system proved to have good performance and high efficiency in eliminating the heat imbalance by using the OTC method. The thermal compensation quantity per unit energy consumption (TEC of ESTC under the proposed method was 1.25 times as high as that under the traditional operation method. The modified STSDG method also exhibited high accuracy. For the accumulated solar irradiance of the four highest daily radiation hours, the monthly mean absolute percentage error (MAPE between the predicted values and the measured values was 6.35%.

  3. Energetic performances of an optimized passive Solar Heating Prototype used for Tunisian buildings air-heating application

    International Nuclear Information System (INIS)

    Mehdaoui, Farah; Hazami, Majdi; Naili, Nabiha; Farhat, Abdelhamid

    2014-01-01

    Highlights: • The study of a Solar Heating Prototype to prevail the buildings air-heating needs. • A parametric study of the system was achieved by means of the TRNSYS program. • The monthly internal temperature during cold months ranges between 22 and 25 °C. • The results shows that the relative humidity inside the monozone room of about 40%. - Abstract: This paper deals with the energetic performances of a Solar Heating Prototype (SHP) conceived in our laboratory to prevail the Tunisian households’ air-heating needs. The conceived SHP mainly consists of a flat-plate solar collector, solar hot water tank and an active layer integrated inside a single room. Firstly, a complete model is formulated taking into account various modes of heat transfer in the SHP by means of the TRNSYS simulation program. To validate the TRNSYS model, experimental tests under local weather conditions were performed for 2 days spread over 2 months (March and April 2013). Predicted results were compared to the measurements in order to determine the accuracy of the simulation program. A parametric study was then achieved by means of the TRNSYS program in order to optimize SHP design parameters (Collector area, collector mass flow rate, floor mass flow rate, storage tank volume and thickness of the active layer). The optimization of all design parameters shows that to achieve a maximum performances from the SHP it is essential to use a solar collector with an area equal to 6 m 2 area, a collector mass flow rate equal to 100 kg h −1 and a hot water storage tank with a capacity equal to 450 l. Concerning the floor heating, the optimal values of mass flow rate and the active layer thickness are 200 kg h −1 and 0.06 m, respectively. The long-term SHP performances were afterward evaluated by means of the Typical Meteorological Year (TMY) data relative to Tunis, Tunisia. Results showed that for an annual total solar insolation of about 6493.37 MJ m −2 the average solar fraction

  4. Study on the optium operation of the solar assisted air-source heat pump system. Part 5. ; Fundamental performance of a SOL-AIR PANEL effected by environmental condition that can be controlled artifically. SOL-AIR heat pump system no saiteki untenho ni kansuru kenkyu. 5. ; Jinko kankyo joken hendo ni uoru shuhonetsu panel no kiso tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Y; Ohashi, K; Kasuya, A [Kogauin Univ., Tokyo (Japan); Shiraishi, K; Hino, T [Kajima Institute of Construction Technology, Tokyo (Japan)

    1990-12-06

    This paper follows the privious paper which reports about the experimental system of the solar air panel and the experimental conditions in the artificial environmental room. In this paper the basic performance of heat exchange of a solar panel related to the difference of the artificial enviromental conditions such as the wind speed, the wind direction, the radiation, and the dry or wet surface of the solar air panel, and the results of its analysis are presented. As a result of the experiment, the following were determined: wind direction affects the heat exchange characteristics of the solar air panel; the slits lead to improved heat conduction on both sides of the panel; and when the flat surface of the panel is wet the amount of all the heat exchange increases, due to increased air circulation and evaporation. It is possible to estimate the total quantity of heat exchange, and to determine the fundamental performance of a solar air panel. 7 refs., 10 figs.

  5. Data acquisition and analysis of passive solar cooling effects by storage of out door air in the middle of the night; Shin'ya gaiki chikurei ni yoru shizen reibo koka no jissoku to kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, H.; Kasutani, A. [Komazawa Womens Junior College, Tokyo (Japan); Koizumi, H.

    1998-12-05

    Passive cooling by storing coolness of out door air in the middle of the night in rock bed is realized by air type solar system without any additional equipment. The advantage of the passive cooling is confirmed with measuring performance of the passive cooling effect of air type solar system equipped in our Komazawa Womens Junior College last year. (author)

  6. The effect of fan speed control system on the inlet air temperature uniformity in a solar dryer

    Directory of Open Access Journals (Sweden)

    S. F Mousavi

    2015-09-01

    Full Text Available Introduction: Drying process of agricultural products, fruits and vegetables are highly energy demanding and hence are the most expensive postharvest operation. Nowadays, the application of control systems in different area of science and engineering plays a key role and is considered as the important and inseparable parts of any industrial process. The review of literature indicates that enormous efforts have been donefor the intelligent control of solar driers and in this regard some simulation models are used through computer programming. However, because of the effect of air velocity on the inlet air temperature in dryers, efforts have been made to control the fan speed based ont he temperature of the absorber plate in this study, and the behavior of this system was compared with an ordinary dryer without such a control system. Materials and methods: In this study, acabinet type solar dryer with forced convection and 5kg capacity of fresh herbs was used. The dryer was equipped with a fan in the outlet chamber (the chimney for creating air flow through the dryer. For the purpose of research methods and automatic control of fan speed and for adjusting the temperature of the drying inlet air, a control system consisting of a series of temperature and humidity sensors and a microcontroller was designed. To evaluatethe effect of the system with fan speed control on the uniformity of air temperature in the drying chamber and hence the trend of drying process in the solar dryer, the dryer has been used with two different modes: with and without the control of fan speed, each in twodays (to minimize the errors of almost the same ambient temperature. The ambient air temperature during the four days of experiments was obtained from the regional Meteorological Office. Some fresh mint plants (Mentha longifolia directly harvested from the farm in the morning of the experiment days were used as the drying materials. Each experimental run continued for 9

  7. Thermal Performance of Solar Air Heater Having Absorber Plate with V-Down Discrete Rib Roughness for Space-Heating Applications

    Directory of Open Access Journals (Sweden)

    Rajendra Karwa

    2013-01-01

    Full Text Available The paper presents results of thermal performance analysis of a solar air heater with v-down discrete rib roughness on the air flow side of the absorber plate, which supplies heated air for space heating applications. The air heater operates in a closed loop mode with inlet air at a fixed temperature of 295 K from the conditional space. The ambient temperature varied from 278 K to 288 K corresponding to the winter season of Western Rajasthan, India. The results of the analysis are presented in the form of performance plots, which can be utilized by a designer for calculating desired air flow rate at different ambient temperature and solar insolation values.

  8. Climate, air quality and human health benefits of various solar photovoltaic deployment scenarios in China in 2030

    Science.gov (United States)

    Yang, Junnan; Li, Xiaoyuan; Peng, Wei; Wagner, Fabian; Mauzerall, Denise L.

    2018-06-01

    Solar photovoltaic (PV) electricity generation can greatly reduce both air pollutant and greenhouse gas emissions compared to fossil fuel electricity generation. The Chinese government plans to greatly scale up solar PV installation between now and 2030. However, different PV development pathways will influence the range of air quality and climate benefits. Benefits depend on how much electricity generated from PV is integrated into power grids and the type of power plant displaced. Using a coal-intensive power sector projection as the base case, we estimate the climate, air quality, and related human health benefits of various 2030 PV deployment scenarios. We use the 2030 government goal of 400 GW installed capacity but vary the location of PV installation and the extent of inter-provincial PV electricity transmission. We find that deploying distributed PV in the east with inter-provincial transmission maximizes potential CO2 reductions and air quality-related health benefits (4.2% and 1.2% decrease in national total CO2 emissions and air pollution-related premature deaths compared to the base case, respectively). Deployment in the east with inter-provincial transmission results in the largest benefits because it maximizes displacement of the dirtiest coal-fired power plants and minimizes PV curtailment, which is more likely to occur without inter-provincial transmission. We further find that the maximum co-benefits achieved with deploying PV in the east and enabling inter-provincial transmission are robust under various maximum PV penetration levels in both provincial and regional grids. We find large potential benefits of policies that encourage distributed PV deployment and facilitate inter-provincial PV electricity transmission in China.

  9. Correlation between the time-series of air temperature and incident solar radiation at Port Harcourt, Nigeria

    International Nuclear Information System (INIS)

    Adjepong, S.K.; Okujagu, C.

    1987-12-01

    We present the preliminary results of an investigation of the correlation between the temporal variations of the time-series of ground air temperature and incident solar radiation recorded at Port Harcourt (lat. 4 deg. 51' N, long. 7 deg. 01' E), Nigeria, during a five-year period (1981 through 1985). Computed cross-correlation functions of the daily time-series reveal correlation at time lags which are approximate harmonics of the 27-day solar rotation cycle. The cross-correlation function of the mean monthly series shows correlation at a time lag of 12 months implying a dominant annual-cycle component in the variation of either series. (author). 12 refs, 2 figs

  10. Development of residential solar air conditioning system for electricity power peak cut 3

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Gwon Jong [Korea Inst. of Energy and Resources, Daeduk (Korea, Republic of)

    1995-12-31

    In this research, the converter rectifier unit of the inverter air conditioner is substituted into the bidirectional PWM converter. The DC/DC power converter is established on the DC link between the photovoltaic array and the inverter air conditioner, and the photovoltaic air conditioning system which can be parallel driven which utility is developed. (author). 35 ref., 112 figs.

  11. Modelling the thermodynamic performance of a concentrated solar power plant with a novel modular air-cooled condenser

    International Nuclear Information System (INIS)

    Moore, J.; Grimes, R.; Walsh, E.; O'Donovan, A.

    2014-01-01

    This paper aims at developing a novel air-cooled condenser for concentrated solar power plants. The condenser offers two significant advantages over the existing state-of-the-art. Firstly, it can be installed in a modular format where pre-assembled condenser modules reduce installation costs. Secondly, instead of using large fixed speed fans, smaller speed controlled fans are incorporated into the individual modules. This facility allows the operating point of the condenser to change and continuously maximise plant efficiency. A thorough experimental analysis was performed on a number of prototype condenser designs. This analysis investigated the validly and accuracy of correlations from literature in predicting the thermal and aerodynamic characteristics of different designs. These measurements were used to develop a thermodynamic model to predict the performance of a 50 MW CSP (Concentrated Solar Power) plant with various condenser designs installed. In order to compare different designs with respect to the specific plant capital cost, a techno-economic analysis was performed which identified the optimum size of each condenser. The results show that a single row plate finned tube design, a four row, and a two row circular finned tube design are all similar in terms of their techno-economic performance and offer significant savings over other designs. - Highlights: • A novel air cooled condenser for CSP (Concentrated Solar Power) applications is proposed. • A thorough experimental analysis of various condenser designs was performed. • Heat transfer and flow friction correlations validated for fan generated air flow. • A thermodynamic model to calculate CSP plant output is presented. • Results show the proposed condenser design can continually optimise plant output

  12. High temperature collecting performance of a new all-glass evacuated tubular solar air heater with U-shaped tube heat exchanger

    International Nuclear Information System (INIS)

    Wang, Pin-Yang; Guan, Hong-Yang; Liu, Zhen-Hua; Wang, Guo-San; Zhao, Feng; Xiao, Hong-Sheng

    2014-01-01

    Highlights: • A novel solar air heater with simplified CPC and U-type heat exchanger is designed and tested. • The system is made up of 10 linked collecting panels. • Simplified CPC has a much lower cost at the expense of slight efficiency loss. • The air heater can propose the heated air exceeding 200 °C with great air flow rate. - Abstract: Experiment and simulation are conducted on a new-type all-glass evacuated tubular solar air heater with simplified compound parabolic concentrator (CPC). The system is made up of 10 linked collecting panels and each panel includes a simplified CPC and an all-glass evacuated tube with a U-shaped copper tube heat exchanger installed inside. Air is gradually heated when passing through each U-shaped copper tube. The heat transfer model of the solar air heater is established and the outlet air temperature, the heat power and heat efficiency are calculated. Calculated and experimental results show that the present experimental system can provide the heated air exceeding 200 °C. The whole system has an outstanding high-temperature collecting performance and the present heat transfer model can meet the general requirements of engineering calculations

  13. Perspective: Maintaining surface-phase purity is key to efficient open air fabricated cuprous oxide solar cells

    International Nuclear Information System (INIS)

    Hoye, Robert L. Z.; Ievskaya, Yulia; MacManus-Driscoll, Judith L.; Brandt, Riley E.; Buonassisi, Tonio; Heffernan, Shane; Musselman, Kevin P.

    2015-01-01

    Electrochemically deposited Cu 2 O solar cells are receiving growing attention owing to a recent doubling in efficiency. This was enabled by the controlled chemical environment used in depositing doped ZnO layers by atomic layer deposition, which is not well suited to large-scale industrial production. While open air fabrication with atmospheric pressure spatial atomic layer deposition overcomes this limitation, we find that this approach is limited by an inability to remove the detrimental CuO layer that forms on the Cu 2 O surface. Herein, we propose strategies for achieving efficiencies in atmospherically processed cells that are equivalent to the high values achieved in vacuum processed cells

  14. Experimental study on a solar air heater with various perforated covers

    Indian Academy of Sciences (India)

    Raheleh Nowzari

    2017-08-08

    Aug 8, 2017 ... ... counter-flow collectors. The average efficiencies of the double-pass solar collector with ...... and thermal performance of a three-dimensional compound parabolic concentrator for spherical absorber. Sadhana—. Acad. Proc.

  15. Energy and exergy analysis in double-pass solar air heater

    Indian Academy of Sciences (India)

    P VELMURUGAN

    mesh) in the second pass, and also by mounting longitudinal fins in the back side of the absorber plate ( ... energy sources. ... indoor solar simulator test facility photographically shown ..... El-khawajah et al [19] who employed multiple parallel.

  16. Environmental Assessment for the Solar Photovoltaic Array at Eglin Air Force Base, Florida

    Science.gov (United States)

    2014-01-24

    fire hazard to solar panel array. ● Where applicable, reduce erosion using rough grade slopes or terrace slopes. ● Identify areas of existing...method would entail the installation of numerous smaller solar PV systems on the roofs of various buildings on the base. This alternative was...panel array.  Where applicable, reduce erosion using rough grade slopes or terrace slopes.  Identify areas of existing vegetation that the proponent

  17. Solar cooking

    Science.gov (United States)

    Over two billion people face fuel wood shortages, causing tremendous personal and environmental stress. Over 4 million people die prematurely from indoor air pollution. Solar cooking can reduce fuel wood consumption and indoor air pollution. Solar cooking has been practiced and published since th...

  18. Thermal performance of solar air collection-storage system with phase change material based on flat micro-heat pipe arrays

    International Nuclear Information System (INIS)

    Wang, Teng-yue; Diao, Yan-hua; Zhu, Ting-ting; Zhao, Yao-hua; Liu, Jing; Wei, Xiang-qian

    2017-01-01

    Highlights: • A new type of solar air collection-storage thermal system with PCM is proposed. • Flat micro-heat pipe array is used as the core heat transfer element. • Air volume flow rate influence charging and discharging time obviously. • Air-side thermal resistance dominates during charging and discharging. - Abstract: In this study, a new type of solar air collection-storage thermal system (ACSTS) with phase change material (PCM) is designed using flat micro-heat pipe arrays (FMHPA) as the heat transfer core element. The solar air collector comprises FMHPA and vacuum tubes. The latent thermal storage device (LTSD) utilizes lauric acid, which is a type of fatty acid, as PCM. The experiments test the performance of collector efficiency and charging and discharging time of thermal storage device through different air volume flow rates. After a range of tests, high air volume flow rate is concluded to contribute to high collector efficiency and short charging and discharging time and enhance instantaneous heat transfer, whereas an air volume flow rate of 60 m"3/h during discharging provides a steady outlet temperature. The cumulative heat transfer during discharging is between 4210 and 4300 kJ.

  19. Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

    2013-04-01

    The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

  20. Shelf life stability comparison in air for solution processed pristine PDPP3T polymer and doped spiro-OMeTAD as hole transport layer for perovskite solar cell

    Directory of Open Access Journals (Sweden)

    Ashish Dubey

    2016-06-01

    Full Text Available This data in brief includes forward and reverse scanned current density–voltage (J–V characteristics of perovskite solar cells with PDPP3T and spiro-OMeTAD as HTL, stability testing conditions of perovskite solar cell shelf life in air for both PDPP3T and spiro-OMeTAD as HTL as per the description in Ref. [1], and individual J–V performance parameters acquired with increasing time exposed in ambient air are shown for both type of devices using PDPP3T and spiro-OMeTAD as HTL. The data collected in this study compares the device stability with time for both PDPP3T and spiro-OMeTAD based perovskite solar cells and is directly related to our research article “solution processed pristine PDPP3T polymer as hole transport layer for efficient perovskite solar cells with slower degradation” [2].

  1. Analysis of Long-Term Global Solar Radiation, Sunshine Duration and Air Temperature Data of Ankara and Modeling with Curve Fitting Methods

    Directory of Open Access Journals (Sweden)

    Mehmet YEŞİLBUDAK

    2018-03-01

    Full Text Available The information about solar parameters is important in the installation of photovoltaic energy systems that are reliable, environmentally friendly and sustainable. In this study, initially, long-term global solar radiation, sunshine duration and air temperature data of Ankara are analyzed on the annual, monthly and daily basis, elaborately. Afterwards, three different empirical methods that are polynomial, Gaussian and Fourier are used for the purpose of modeling long-term monthly total global solar radiation, monthly total sunshine duration and monthly mean air temperature data. The coefficient of determination and the root mean square error are computed as statistical test metrics in order to compare data modeling performance of the mentioned empirical methods. The empirical methods that provide the best results enable to model the solar characteristics of Ankara more accurately and the achieved outcomes constitute the significant resource for other locations with similar climatic conditions.

  2. Energy performance of solar-assisted liquid desiccant air-conditioning system for commercial building in main climate zones

    International Nuclear Information System (INIS)

    Qi, Ronghui; Lu, Lin; Huang, Yu

    2014-01-01

    Highlights: • Simulation of solar liquid desiccant AC system in four climate regions was conducted. • System performance was determined by relationship of sensible and latent cooling load. • For humid area, saving amount is large by handling latent load with solar energy. • For dry area, electricity saving rate is considerable due to the high COP of chillers. • For buildings with mild SHR, the system performance was not as good as others. - Abstract: Liquid desiccant air-conditioning (LDAC) system, which consists of a liquid desiccant ventilation system for dehumidification and an air-handling unit for cooling, has become a promising alternative for conventional technology. To evaluate its feasibility and applicability, the simulation of solar-assisted LDAC (SLDAC) in commercial buildings in five cities of four main climate regions were conducted, including Singapore in Tropical, Houston and Beijing in Temperate, Boulder in Arid and Los Angeles in Mediterranean. Results showed that the system’s performance was seriously affected by the ratios of building’s sensible and latent cooling load. For buildings located in humid areas with low sensible-total heat ratio (SHR), the electricity energy reduction of SLDAC was high, about 450 MW h in Houston and Singapore, which accounted for 40% of the total energy consumption in cooling seasons. The cost payback period was as short as approximately 7 years. The main reason is that the energy required for handling the moisture could be saved by liquid desiccant dehumidification, and the regeneration heat could be covered by solar collectors. For buildings in dry climate with high SHR, the total cooling load was low, but up to 45% electricity of AC system could be saved in Boulder because the chiller COP could be significantly improved during more than 70% operation time. The cost payback period was around 22 years, which was acceptable. However, for the buildings with mild SHR, such as those in Beijing and Los

  3. Air-processed organic tandem solar cells on glass: toward competitive operating lifetimes

    DEFF Research Database (Denmark)

    Adams, Jens; Spyropoulos, George D.; Salvador, Michael

    2015-01-01

    efficiencies of more than 10% the rather limited stability of this type of devices raises concerns towards future commercialization. The tandem concept allows for both absorbing a broader range of the solar spectrum and reducing thermalization losses. We designed an organic tandem solar cell with an inverted...... device geometry comprising environmentally stable active and charge-selecting layers. Under continuous white light irradiation, we demonstrate an extrapolated, operating lifetime in excess of one decade. We elucidate that for the current generation of organic tandem cells one critical requirement...... for long operating lifetimes consists of periodic UV light treatment. These results suggest that new material approaches towards UV-resilient active and interfacial layers may enable efficient organic tandem solar cells with lifetimes competitive with traditional inorganic photovoltaics....

  4. Large scale deployment of polymer solar cells on land, on sea and in the air

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; Hösel, Markus; Jørgensen, Mikkel

    2014-01-01

    With the development of patterns that connect all cells in series, organic photovoltaics have leapt a step forward being ahead of other solar and even other energy technologies in terms of manufacturing speed and energy density. The important questions of how they are meant to be installed...... for producing power and what the requirements are yet to be explored. We present here the installation of organic solar cell modules in different settings (terrestrial, marine and airborne). For the evaluation of these installations deployed at DTU, we have used the life cycle assessment tools, and calculated...... key parameters in order to assess their environmental impact. The novel technology when installed in a solar park system can generate more than 1300 kW h kWp-1 of electricity a year, which means that the whole system can pay the energy invested back before the first year of operation, in 320 days...

  5. A simple nanostructured polymer/ZnO hybrid solar cell - preparation and operation in air

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Thomann, Yi; Thomann, Ralf

    2008-01-01

    without notable loss in efficiency. The devices do not require any form of encapsulation to gain stability, while a barrier for mechanical protection may be useful. The devices are based on soluble zinc oxide nanoparticles mixed with the thermocleavable conjugated polymer poly-(3-(2-methylhexan-2-yl......A detailed description is given of the preparation of a polymer solar cell and its characterization. The solar cell can be prepared entirely in the ambient atmosphere by solution processing without the use of vacuum coating steps, and it can be operated in the ambient atmosphere with good...

  6. Solar panels as air Cherenkov detectors for extremely high energy cosmic rays

    International Nuclear Information System (INIS)

    Cecchini, S.; D'Antone, I.; Degli Esposti, L.; Giacomelli, G.; Guerra, M.; Lax, I.; Mandrioli, G.; Parretta, A.; Sarno, A.; Schioppo, R.; Sorel, M.; Spurio, M.

    2000-01-01

    Increasing interest towards the observation of the highest energy cosmic rays has motivated the development of new detection techniques. The properties of the Cherenkov photon pulse emitted in the atmosphere by these very rare particles indicate low-cost semiconductor detectors as good candidates for their optical read-out. The aim of this paper is to evaluate the viability of solar panels for this purpose. The experimental framework resulting from measurements performed with suitably-designed solar cells and large conventional photovoltaic areas is presented. A discussion on the obtained and achievable sensitivities follows

  7. An improved model to evaluate thermodynamic solar plants with cylindrical parabolic collectors and air turbine engines in open Joule–Brayton cycle

    International Nuclear Information System (INIS)

    Ferraro, Vittorio; Imineo, Francesco; Marinelli, Valerio

    2013-01-01

    An improved model to analyze the performance of solar plants operating with cylindrical parabolic collectors and atmospheric air as heat transfer fluid in an open Joule–Brayton cycle is presented. In the new model, the effect of the incident angle modifier is included, to take into account the variation of the optical efficiency with the incidence angle of the irradiance, and the effect of the reheating of the fluid also has been studied. The analysis was made for two operating modes of the plants: with variable air flow rate and constant inlet temperature to the turbine and with constant flow rate and variable inlet temperature to the turbine, with and without reheating of the fluid in the solar field. When reheating is used, the efficiency of the plant is increased. The obtained results show a good performance of this type of solar plant, in spite of its simplicity; it is able to compete well with other more complex plants operating with different heat transfer fluids. - Highlights: ► An improved model to calculate an innovative CPS solar plant is presented. ► The plant works with air in an open Joule–Brayton cycle. ► The reheating of the air increases the thermodynamic efficiency. ► The plant is very simple and competes well with other more complex solar plants

  8. Solar heating of air used for the drying at medium and large scale, of forestry, fishery, agriculture, cattle and industrial products

    International Nuclear Information System (INIS)

    Gutierrez, F.

    1991-01-01

    The drying process and/or preservation of grains is improved through the previous heating of air. In many cases it is enough to raise the temperature only a few degrees (from 10 to 15 Centigrade), in order to increase their capacity to absorb dampness. This can be done using very simple solar captors. A massive use of solar energy in the drying process of products, by means of hot air, can only be done with very expensive equipment. For this reason, it is recommended the use of lower thermic heaters, which will have a lower cost too. (Author)

  9. Experimental Study of the Slit Spacing and Bed Height on the Thermal Performance of Slit-Glazed Solar Air Heater

    Directory of Open Access Journals (Sweden)

    Seyyed Mahdi Taheri Mousavi

    2017-01-01

    Full Text Available The thermal performances of three slit-glazed solar air heaters (SGSAHs were investigated experimentally. Three SGSAHs with different bed heights (7 cm, 5 cm, and 3 cm were fabricated with multiple glass panes used for glazing. The length, width, and thickness of each pane were 154 cm, 6 cm, and 0.4 cm, respectively. Ambient air was continuously withdrawn through the gaps between the glass panes by fans. The experiments were conducted for four different gap distances between the glass panes (0.5 mm, 1 mm, 2 mm, and 3 mm and the air mass flow rate was varied between 0.014 kg/s and 0.057 kg/s. The effects of air mass flux on the outlet temperature and thermal efficiency were studied. For the SGSAH with bed height of 7 cm and glass pane gap distance of 0.5 mm, the highest efficiency was obtained as 82% at a mass flow rate of 0.057 kg/s and the air temperature difference between the inlet and the outlet (∆T was maximum (27°C when the mass flow rate was least. The results demonstrate that for lower mass flow rates and larger gaps, the performance of SGSAH with a bed height of 3 cm was better compared to that of others. However, for higher mass flow rates, the SGSAH with 7 cm bed height performed better.

  10. Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control

    Science.gov (United States)

    2012-11-01

    reading Current transformer Regen and conditioner Continental Controls CTS-0750-30 1 % of reading Pyranometer Horizontal Campbell...indoor comfort conditions. A pyranometer was used to quantify the efficiency of the solar collector array. Two measurements of electric energy were

  11. Numerical analysis of the influence of spherical turbulence generators on heat transfer enhancement of flat plate solar air heater

    International Nuclear Information System (INIS)

    Manjunath, M.S.; Karanth, K.Vasudeva; Sharma, N.Yagnesh

    2017-01-01

    This paper presents the influence of spherical turbulence generators on thermal efficiency and thermohydraulic performance of flat plate solar air heater. The analysis is carried out for the Reynolds number range of 4000–25000. The thermal performance is investigated for various diameter (D) of sphere consisting of 5,10,15,20 and 25 mm and relative roughness pitch (P/D) of 3, 6 and 12. The simulation is carried out using solar insolation as heat input at 12 noon conditions for the global position of Manipal (74.786°E, 13.343°N) obtained through the solar load model, a feature available in the software tool used for the analysis and Discrete Ordinates radiation model is used to compute the radiation heat interactions within the computational domain. The CFD results for the base model are validated against experimental results and are found to have good agreement. The thermal efficiency is found to increase with increasing sphere diameter and reducing relative roughness pitch. The maximum average percentage increase in thermal efficiency is found to be about 23.4% as compared to the base model for D = 25 mm and P/D = 3. The highest increase in the Nusselt number is found to be 2.5 times higher as compared to the base model for D = 25 mm and P/D = 3 at Re = 23560. The analysis shows that the relative roughness pitch and size of the spherical turbulator have significant influence on the thermohydraulic performance of solar air heater. - Highlights: • Spherical turbulators used create intense turbulent mixing in the vicinity of absorber. • Nusselt number peaks on the upstream surface of spherical turbulators. • Peak thermal efficiency occurs at lower pitch and higher diameter conditions. • Higher diameter and lower pitch values also impose greater pumping power penalty. • Diameter and pitch of spherical turbulator strongly influence the effective efficiency.

  12. Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses

    International Nuclear Information System (INIS)

    Michalsky, Ronald; Parman, Bryon J.; Amanor-Boadu, Vincent; Pfromm, Peter H.

    2012-01-01

    Ammonia is an important input into agriculture and is used widely as base chemical for the chemical industry. It has recently been proposed as a sustainable transportation fuel and convenient one-way hydrogen carrier. Employing typical meteorological data for Palmdale, CA, solar energy is considered here as an inexpensive and renewable energy alternative in the synthesis of NH 3 at ambient pressure and without natural gas. Thermodynamic process analysis shows that a molybdenum-based solar thermochemical NH 3 production cycle, conducted at or below 1500 K, combined with solar thermochemical H 2 production from water may operate at a net-efficiency ranging from 23 to 30% (lower heating value of NH 3 relative to the total energy input). Net present value optimization indicates ecologically and economically sustainable NH 3 synthesis at above about 160 tons NH 3 per day, dependent primarily on heliostat costs (varied between 90 and 164 dollars/m 2 ), NH 3 yields (ranging from 13.9 mol% to stoichiometric conversion of fixed and reduced nitrogen to NH 3 ), and the NH 3 sales price. Economically feasible production at an optimum plant capacity near 900 tons NH 3 per day is shown at relative conservative technical assumptions and at a reasonable NH 3 sales price of about 534 ± 28 dollars per ton NH 3 . -- Highlights: ► Conceptual reactant and process improvements of solar-driven NH 3 synthesis at 1 bar. ► Thermodynamic underpinnings of a Molybdenum reactant. ► Process analysis determining energy and materials requirements and the net-efficiency. ► Net present value analysis accounting for yield, investment, and sales price variations.

  13. Final Environmental Assessment for a Solar Power System at Davis-Monthan Air Force Tucson, Arizona

    Science.gov (United States)

    2009-09-01

    to the following factors depending on the corresponding years. Year 2005 through 2009: VOCE = .016 * Trips NOxE = .015 * Trips PM10E = .0022...Trips COE = .262 * Trips Year 2010 and beyond: VOCE = .012 * Trips NOxE = .013 * Trips PM10E = .0022 * Trips COE = .262 * Trips FINAL...ENVIRONMENTAL ASSESSMENT B-8 Solar Power System (SPS) at Davis-Monthan AFB To convert from pounds per day to tons per year: VOC (tons/yr) = VOCE * DPYII/2000

  14. IEA SHC Task 38 'Solar air-conditioning and refrigeration'. Danish participation 2007-2010; IEA SHC Task 38 'Solar air-conditioning and refrigeration'. Dansk deltagelse 2007-2010

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K. (Ellehauge og Kildemoes, Aarhus (Denmark)); Muenster, E. (PlanEnergi, Skoerping (Denmark)); Reinholdt, L. (Teknologisk Institut, Aarhus (Denmark)); Minds, S. (AC-Sun Aps, Horsens (Denmark))

    2011-03-15

    IEA SHC Task 38 'Solar Air-Conditioning and Refrigeration' ran from October 2006 to December 2010. Denmark was represented in the task from January 2007 to December 2010. The aim of the task was to encourage use of solar powered refrigeration and air conditioning systems in particular at residential, commercial and industrial sectors. Furthermore, the aim was to contribute to new research and development activities on new systems and concepts. Solar cooling is an energy efficient way to cool buildings, which can also be used in Denmark as there is a high correlation between solar radiation and the need for air conditioning. Part of the Danish team has also been the company AC Sun which in the period has worked with developing a new and revolutionary thermo-cooling technology. IEA SHC Task 38 Solar Air-Conditioning and Refrigeration was divided into 4 subtask: 1) Subtask A: Pre-engineered systems for residential and small commercial applications 2) Subtask B: Custom-made systems for large non-residential buildings and industrial applications 3) Subtask C: Modelling and fundamental analysis 4) Subtask D: Market transfer activities. The Danish participation consisted of: 1) Ellehauge and Kildemoes (Klaus Ellehauge), project management and overall information. Participated in the subtask A and C and D. 2) AC-Sun (Soeren Minds) participated in subtask A, C and D. 3) PlanEnergi (Ebbe Muenster) participated in subtask B and C. 4) Technological Institute (Lars Reinholdt) participated in subtask A, B and C. The main findings of the task are given in the new handbook that will be published in summer 2011. This report summarises some of the results in Danish and in particular the Danish effort. The Danish project group has provided input to the international reports of the task. A number of the materials prepared by the project are attached as annexes. PlanEnergi was involved in analysis of measurements of the absorption system of 105 kW established year 2007 in

  15. Soil solarization in open air with experimental and biodegradable plastic films [Apulia

    International Nuclear Information System (INIS)

    Russo, G.; Scarascia Mugnozza, G.; Frisullo, S.

    2004-01-01

    The use of biodegradable materials is a sustainable solution to the problem of high amounts of plastic films that must be disposed for soil solarization, since biodegradable films can be degraded directly in soil. The comparison of Mater-B biodegradable film with EVA and Polydac film for soil solarization and phythopatological tests in field is the aim of the present research. Experimental field tests were carried out in Borgo Cervaro (FG) in June and July 2002. A data logger connected with sensors was used to measure and collect climatic parameters. During field tests, climatic parameters and soil temperatures at different depth for soil under the different materials were evaluated. The performances of plastic materials were investigated measuring laceration and tensile strength and radiometric properties every 15 days. Soil samples were analysed in order to verify the reduction of infesting load of soilborne pathogens during soil solarization. The tests, although affected by adverse climatic conditions, show the capacity of the biodegradable film to obtain similar performances compared to traditional films. The traditional films produced higher temperatures in soil, longer duration and a higher number of hours with temperature higher than 40 deg C. Phytopathological results showed a higher sterilising effect for EVA and Polydac films in comparison to the Mater-B one [it

  16. Techno-economic analysis of a roof-integrated solar air heating system for drying fruit and vegetables

    Energy Technology Data Exchange (ETDEWEB)

    Sreekumar, A. [Dept. of Physics, Cochin University of Science and Technology, Kochi 682 022 (India)

    2010-11-15

    The solar air heater was 46 m{sup 2} and recorded a maximum temperature of 76.6 C. The dryer was loaded with 200 kg of fresh pineapple slices 5 mm thick. The initial moisture content of 82% was reduced to the desired level (<10%) within 8 h. The performance of the dryer was analyzed in detail by three methods namely annualized cost, present worth of annual savings, and present worth of cumulative savings. The cost of drying 1 kg pineapple worked out to Rs. 11 which was roughly half of that of an electric dryer. The payback period worked out to 0.54 year, much less than the estimated life of the system (20 years). (author)

  17. Collector Efficiency in Downward-Type Double-Pass Solar Air Heaters with Attached Fins and Operated by External Recycle

    Directory of Open Access Journals (Sweden)

    Chii-Dong Ho

    2012-07-01

    Full Text Available The collector efficiency in a downward-type double-pass external-recycle solar air heater with fins attached on the absorbing plate has been investigated theoretically. Considerable improvement in collector efficiency is obtainable if the collector is equipped with fins and the operation is carried out with an external recycle. Due to the recycling, the desirable effect of increasing the heat transfer coefficient compensates for the undesirable effect of decreasing the driving force (temperature difference of heat transfer, while the attached fins provide an enlarged heat transfer area. The order of performances in the devices of same size is: double pass with recycle and fins > double pass with recycle but without fins > single pass without recycle and fins.

  18. Optimization of thermal performance of a smooth flat-plate solar air heater using teaching–learning-based optimization algorithm

    Directory of Open Access Journals (Sweden)

    R. Venkata Rao

    2015-12-01

    Full Text Available This paper presents the performance of teaching–learning-based optimization (TLBO algorithm to obtain the optimum set of design and operating parameters for a smooth flat plate solar air heater (SFPSAH. The TLBO algorithm is a recently proposed population-based algorithm, which simulates the teaching–learning process of the classroom. Maximization of thermal efficiency is considered as an objective function for the thermal performance of SFPSAH. The number of glass plates, irradiance, and the Reynolds number are considered as the design parameters and wind velocity, tilt angle, ambient temperature, and emissivity of the plate are considered as the operating parameters to obtain the thermal performance of the SFPSAH using the TLBO algorithm. The computational results have shown that the TLBO algorithm is better or competitive to other optimization algorithms recently reported in the literature for the considered problem.

  19. Perspective: Maintaining surface-phase purity is key to efficient open air fabricated cuprous oxide solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hoye, Robert L. Z., E-mail: rlzh2@cam.ac.uk, E-mail: jld35@cam.ac.uk; Ievskaya, Yulia; MacManus-Driscoll, Judith L., E-mail: rlzh2@cam.ac.uk, E-mail: jld35@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Brandt, Riley E.; Buonassisi, Tonio [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Heffernan, Shane [Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Musselman, Kevin P. [Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2015-02-01

    Electrochemically deposited Cu{sub 2}O solar cells are receiving growing attention owing to a recent doubling in efficiency. This was enabled by the controlled chemical environment used in depositing doped ZnO layers by atomic layer deposition, which is not well suited to large-scale industrial production. While open air fabrication with atmospheric pressure spatial atomic layer deposition overcomes this limitation, we find that this approach is limited by an inability to remove the detrimental CuO layer that forms on the Cu{sub 2}O surface. Herein, we propose strategies for achieving efficiencies in atmospherically processed cells that are equivalent to the high values achieved in vacuum processed cells.

  20. Cost Analysis of an Air Brayton Receiver for a Solar Thermal Electric Power System in Selected Annual Production Volumes

    Science.gov (United States)

    1981-01-01

    Pioneer Engineering and Manufacturing Company estimated the cost of manufacturing and Air Brayton Receiver for a Solar Thermal Electric Power System as designed by the AiResearch Division of the Garrett Corporation. Production costs were estimated at annual volumes of 100; 1,000; 5,000; 10,000; 50,000; 100,000 and 1,000,000 units. These costs included direct labor, direct material and manufacturing burden. A make or buy analysis was made of each part of each volume. At high volumes special fabrication concepts were used to reduce operation cycle times. All costs were estimated at an assumed 100% plant capacity. Economic feasibility determined the level of production at which special concepts were to be introduced. Estimated costs were based on the economics of the last half of 1980. Tooling and capital equipment costs were estimated for ach volume. Infrastructure and personnel requirements were also estimated.

  1. Techno-economic analysis of a roof-integrated solar air heating system for drying fruit and vegetables

    International Nuclear Information System (INIS)

    Sreekumar, A.

    2010-01-01

    The solar air heater was 46 m 2 and recorded a maximum temperature of 76.6 deg. C. The dryer was loaded with 200 kg of fresh pineapple slices 5 mm thick. The initial moisture content of 82% was reduced to the desired level (<10%) within 8 h. The performance of the dryer was analyzed in detail by three methods namely annualized cost, present worth of annual savings, and present worth of cumulative savings. The cost of drying 1 kg pineapple worked out to Rs. 11 which was roughly half of that of an electric dryer. The payback period worked out to 0.54 year, much less than the estimated life of the system (20 years).

  2. Study on heat collector of the solar system utilizing outdoor air. Experimental results in cases of cold and warm regions; Gaiki donyushiki solar system no shunetsubu ni kansuru kenkyu. Kanreichi to ondanchi ni okeru shunetsu jikken to kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Komano, S; Ebara, Y [OM Solar Association, Shizuoka (Japan); Wada, H [Wada Building Constructors Co. Ltd., Hokkaido (Japan)

    1996-10-27

    An experiment on heat collection was made in the heat collector of a solar system utilizing outdoor air in cold and warm regions. In this system, outdoor air is heated by the air circulation layer on the roof exposed to solar radiation. The heated air is supplied to the object space for heating and ventilation. In the experiment in a cold region, the heat collection characteristics can be adjusted by putting a baffle plate in the air duct according to the experiment of a glass heat collector. The heat collecting air layer on only the iron roof may leak or freeze in the region subject to coldness or heavy snowfall. Therefore, preheat forms the space of a garret, and the preheat temperature comparatively becomes low. The data in which the heat collection characteristics can be adjusted using only a glass heat collector is required corresponding to the regional situation. In the experiment in a warm region, an experiment was made inclusive of the preheat for which outdoor air is absorbed at the eaves. As a result, the heat collection characteristics of preheat were improved. Moreover, a heat collection temperature of about 60{degree}C was obtained on the heat collection surface including the preheat. 1 ref., 12 figs., 3 tabs.

  3. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air

    Science.gov (United States)

    Kaltenbrunner, Martin; Adam, Getachew; Głowacki, Eric Daniel; Drack, Michael; Schwödiauer, Reinhard; Leonat, Lucia; Apaydin, Dogukan Hazar; Groiss, Heiko; Scharber, Markus Clark; White, Matthew Schuette; Sariciftci, Niyazi Serdar; Bauer, Siegfried

    2015-10-01

    Photovoltaic technology requires light-absorbing materials that are highly efficient, lightweight, low cost and stable during operation. Organolead halide perovskites constitute a highly promising class of materials, but suffer limited stability under ambient conditions without heavy and costly encapsulation. Here, we report ultrathin (3 μm), highly flexible perovskite solar cells with stabilized 12% efficiency and a power-per-weight as high as 23 W g-1. To facilitate air-stable operation, we introduce a chromium oxide-chromium interlayer that effectively protects the metal top contacts from reactions with the perovskite. The use of a transparent polymer electrode treated with dimethylsulphoxide as the bottom layer allows the deposition--from solution at low temperature--of pinhole-free perovskite films at high yield on arbitrary substrates, including thin plastic foils. These ultra-lightweight solar cells are successfully used to power aviation models. Potential future applications include unmanned aerial vehicles--from airplanes to quadcopters and weather balloons--for environmental and industrial monitoring, rescue and emergency response, and tactical security applications.

  4. Modeling and Simulation of Turbulent Flows through a Solar Air Heater Having Square-Sectioned Transverse Rib Roughness on the Absorber Plate

    Directory of Open Access Journals (Sweden)

    Anil Singh Yadav

    2013-01-01

    Full Text Available Solar air heater is a type of heat exchanger which transforms solar radiation into heat energy. The thermal performance of conventional solar air heater has been found to be poor because of the low convective heat transfer coefficient from the absorber plate to the air. Use of artificial roughness on a surface is an effective technique to enhance the rate of heat transfer. A CFD-based investigation of turbulent flow through a solar air heater roughened with square-sectioned transverse rib roughness has been performed. Three different values of rib-pitch (P and rib-height (e have been taken such that the relative roughness pitch (P/e=14.29 remains constant. The relative roughness height, e/D, varies from 0.021 to 0.06, and the Reynolds number, Re, varies from 3800 to 18,000. The results predicted by CFD show that the average heat transfer, average flow friction, and thermohydraulic performance parameter are strongly dependent on the relative roughness height. A maximum value of thermohydraulic performance parameter has been found to be 1.8 for the range of parameters investigated. Comparisons with previously published work have been performed and found to be in excellent agreement.

  5. Modeling and simulation of turbulent flows through a solar air heater having square-sectioned transverse rib roughness on the absorber plate.

    Science.gov (United States)

    Yadav, Anil Singh; Bhagoria, J L

    2013-01-01

    Solar air heater is a type of heat exchanger which transforms solar radiation into heat energy. The thermal performance of conventional solar air heater has been found to be poor because of the low convective heat transfer coefficient from the absorber plate to the air. Use of artificial roughness on a surface is an effective technique to enhance the rate of heat transfer. A CFD-based investigation of turbulent flow through a solar air heater roughened with square-sectioned transverse rib roughness has been performed. Three different values of rib-pitch (P) and rib-height (e) have been taken such that the relative roughness pitch (P/e = 14.29) remains constant. The relative roughness height, e/D, varies from 0.021 to 0.06, and the Reynolds number, Re, varies from 3800 to 18,000. The results predicted by CFD show that the average heat transfer, average flow friction, and thermohydraulic performance parameter are strongly dependent on the relative roughness height. A maximum value of thermohydraulic performance parameter has been found to be 1.8 for the range of parameters investigated. Comparisons with previously published work have been performed and found to be in excellent agreement.

  6. Simulación matemática y optimización del secado de productos agropecuarios con aire natural y energía solar

    Directory of Open Access Journals (Sweden)

    Jorge H. Domínguez

    1983-05-01

    Full Text Available En este trabajo se discuten las principales características de los sistemas de secado de productos agropecuarios con aire natural y energía solar y se presenta un programa de computador con el cual es posible simular, simultáneamente, la variación meteorológica, el proceso de secado y el proceso de deterioración de productos agropecuarios y optimizar el diseño de sistemas de secado solar y natural. EI programa constituye una herramienta básica que forma parte de una metodología de trabajo desarrollada por los autores para el estudio y evaluación desde el punto de vista técnico del potencial de secado con aire natural y energía solar de regiones tropicales.

  7. Solar India - 82: national solar energy convention

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This document is the proceedings of the Solar India - 82 conference, which was held 17-19 December 1982. The papers are organized into functional groupings which include: (1) solar radiation, (2) flat plate solar collectors and solar water heaters, (3) solar concentrators, (4) solar air heaters and dryers, (5) solar ponds and energy storage, (6) solar cookers, (7) solar stills, (8) selective coatings, (9) photovoltaics, (10) space heating and cooling, (11) bio-energy, and (12) miscellaneous papers. The vast majority of the papers describe work carried out in India, the vast majority of the papers also contain relatively readable abstracts.

  8. Solar photovoltaic research and development program of the Air Force Aero Propulsion Laboratory. [silicon solar cell applicable to satellite power systems

    Science.gov (United States)

    Wise, J.

    1979-01-01

    Progress is reported in the following areas: laser weapon effects, solar silicon solar cell concepts, and high voltage hardened, high power system technology. Emphasis is placed on solar cells with increased energy conversion efficiency and radiation resistance characteristics for application to satellite power systems.

  9. Environmental Assessment for the Construction of a Photovoltaic Solar Array at Laughlin Air Force Base, Texas

    Science.gov (United States)

    2011-10-01

    Softball Field FAMCamp Golf Course Club House Tennis Court GENERAL PLAN Update | Laughlin Air Force Base, Texas 4-9 CoMPonEnT PLAns Legend[ FIGuRE 4-3...Golf Course, FAMCamp RV Park, several baseball/ softball fields, a paintball field, an outdoor skeet shooting range, a multi-sport track and field

  10. Drying of fruits and vegetables using a flat plate solar collector with convective air flow

    International Nuclear Information System (INIS)

    Mansoor, K.K.; Hanif, M.

    2011-01-01

    This paper presents the analysis of drying of different fruits and vegetables dried by a flat plate solar collector developed at the Department of Agricultural Mechanization, Khyber PukhtunKhwa Agricultural University Peshawar, Pakistan. A small flat plate solar collector is designed and tested for its maximum performance in terms of efficiency with different convective flow rates. The collector assembly is divided into two parts. The flat plate solar collector and the drying chamber. The materials used for flat plate solar collector are wood, steel sheet, Insulation materials, and glass sheet as covering material. The insulation box (0.9 x 1.8 x 0.3 meter) is made up of wood of popular and deodar, to be fully isolated with the help of polystyrene. The absorber is black painted v-corrugated steel sheet. Collector has a tilt angle of 34 deg. (Equivalent to the latitude of Peshawar). The covering material is (0.9 x 1.8 meter) and 5 mm thick glass sheet placed at the top of the wooden box. The collector is supported and tilted with the help of a frame made up of iron angled arms. While the drying chamber is a (1 X 0.5 x 0.3 meter) wooden box connected to the outlet duct of the collector with the help of polyvinylchloride pipe. Experiments were conducted different fruits and vegetables and different parameters like moisture lost by the products in each hour, drying rate at each hour of drying, humidity and temperature of the drying chamber. It was observed that the products such as bitter guard and onion were dried in 10 to 2 hours up to moisture content less then 8%. These two product lost 8% to 10% moisture during each hour of drying. While grapes and Green chili are dried in 24 to 25 hours up to moisture content less then 8%. These two products lost 4% to 5% moisture in each hour of drying. The drying rate of all the products dried was very much consistent. It was observed that onion and bitter guard showed a good drying rate of 0.03[g(H/sub 2/O)/g(d.m).cm/ 2 hr] to

  11. Development of technique for air coating and nickel and copper metalization of solar cells

    Science.gov (United States)

    1982-01-01

    Solar cells were made with a variety of base metal screen printing inks applied over silicon nitride AR coating and copper electroplated. Fritted and fritless nickel and fritless tin base printing inks were evaluated. Conversion efficiencies as high as 9% were observed with fritted nickel ink contacts, however, curve shapes were generally poor, reflecting high series resistance. Problems encountered in addition to high series reistance included loss of adhesion of the nickel contacts during plating and poor adhesion, oxidation and inferior curve shapes with the tin base contacts.

  12. Experimental Investigation of Thermohydraulic Performance of a Rectangular Solar Air Heater Duct Equipped with V-Shaped Perforated Blocks

    Directory of Open Access Journals (Sweden)

    Tabish Alam

    2014-01-01

    Full Text Available This paper presents the thermohydraulic performance of rectangular solar air heater duct equipped with V-shaped rectangular perforated blocks attached to the heated surface. The V-shaped perforated blocks are tested for downstream (V-down to the air flow at Reynolds number from 2000 to 20000. The perforated blocks have relative pitch ratio (P/e from 4 to 12, relative blockage height ratio (e/H from 0.4 to 1.0, and open area ration from 5% to 25% at a fixed value of angle of attack of 60∘ in a rectangular duct having duct aspect ratio (W/H of 12. Thermohydraulic performance is compared at different geometrical parameters of V-shaped perforated blocks for equal pumping power which shows that maximum performance is observed at a relative pitch of 8, relative rib height of 0.8, and open area ration of 20%. It is also observed that the performance of V-shaped perforated blocks was better than transverse-perforated blocks.

  13. Analysis of an open-air swimming pool solar heating system by using an experimentally validated TRNSYS model

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Elisa; Martinez, Pedro J. [Universidad Miguel Hernandez - Edificio Torreblanca, Avda. de la Universidad s/n, 03202 Elche (Spain)

    2010-01-15

    In the case of private outdoor swimming pools, seldom larger than 100 m{sup 2}, conventional auxiliary heating systems are being installed less and less. Solar heating is an option to extend the swimming season. The temperature evolution of an open-air swimming pool highly depends on the wind speed directly on the water surface, which at the same time is influenced by the surroundings of the pool. In this paper, the TRNSYS model of a private open-air pool with a 50-m{sup 2} surface was validated by registering the water temperature evolution and the meteorological data at the pool site. Evaporation is the main component of energy loss in swimming pools. Six different sets of constants found in literature were considered to evaluate the evaporative heat transfer coefficient with the purpose of finding the most suitable one for the TRNSYS pool model. In order to do that, the evolution of the pool water temperature predicted by the TRNSYS pool model was compared with the experimentally registered one. The simulation with TRNSYS of the total system, including the swimming pool and the absorber circuit integrated into the existing filter circuit, provided information regarding the increase of the pool temperature for different collector areas during the swimming season. This knowledge, together with the economic costs, support the decision about the absorber field size. (author)

  14. Estimador de la carga (aire-GNC) aspirada por el motor de combustión interna duranrte condiciones transitorias de operación.

    OpenAIRE

    Barbieri, Andrés; Samat, David; Molina, Héctor

    2005-01-01

    Durante las operaciones transitorias de un motor, se requiere de una exacta relación aire combustible, a los efectos de optimizar la eficiencia y reducir las emisiones. Motores que de fabrica no están acondicionados para funcionar con gas y son transformados para funcionar con combustibles gaseosos (GNC) en los que se utiliza para su dosado mezcladores tipo Venturi, no brindan una respuesta satisfactoria para las condiciones antes expuestas. El presente trabajo describe y desarrol...

  15. Irreversibility Analysis of Non Isothermal Flat Plate Solar Collectors for Air Heating with a Dimensionless Model

    Directory of Open Access Journals (Sweden)

    Baritto-Loreto Miguel Leonardo

    2013-04-01

    Full Text Available En el presente trabajo, el modelo adimensional desarrollado y validado por Baritto y Bracamonte (2012 para describir el comportamiento térmico de colectores solares de placas planas sin cubierta transparente, se complementa con la ecuación adimensional de balance de entropía para un elemento diferencial de colector solar. El modelo se resuelve para un amplio rango de valores de relaciones de aspecto y número de flujo de masa. A partir de los resultados del modelo se desarrolla un análisis detallado de la influencia de estos parámetros sobre la distribución de irreversibilidades internas a lo largo del colector. Adicionalmente se estudia la influencia de estos parámetros sobre los números de generación de entropía por fricción viscosa, por transferencia de calor y total. Se encuentra que existen combinaciones de los parámetros antes mencionados, para los cuales, la operación del colector es termodinámicamente óptima para números de flujo de masa elevados.

  16. Procedimiento para el diseño de un sistema de calentamiento solar-mixto de aire que utiliza agua como fluido de trabajo

    Directory of Open Access Journals (Sweden)

    Luis Francisco Boada E.

    1983-05-01

    Full Text Available En este artículo se describe un sistema solar-mixto de calefacción de aire que incorpora colectores planos calentadores del agua, un tanque acumulador de calor y un dispositivo para el intercambio de calor agua-aire. Se presentan los ensayos que determinaron la disposición óptima del equipo para el intercambio de calor con flujo de agua por termosifón y el comportamiento térmico para diferentes flujos de aire, así como los ensayos para conocer el comportamiento del sistema de calentamiento solar de agua. Finalmente, el diseño se efectúa mediante un programa de computador adaptado para tal fin.

  17. Experimental investigation and feasibility analysis on a capillary radiant heating system based on solar and air source heat pump dual heat source

    International Nuclear Information System (INIS)

    Zhao, M.; Gu, Z.L.; Kang, W.B.; Liu, X.; Zhang, L.Y.; Jin, L.W.; Zhang, Q.L.

    2017-01-01

    Graphical abstract: (a) Vertical temperature gradient in Case 3, (b) PMV and PPD of the test room in Case 3, (c) operating time of SPCTS and ASHP systems in Case 3 and (d) the proportion of SPCTS operating time. - Highlights: • A capillary heating system based on solar and air source heat pump was developed. • Influence of supply water temperature on solar energy saving rate was investigated. • Heating performance and thermal comfort of capillary heating system were analyzed. • Low temperature heating with capillary is suitable for solar heating system. - Abstract: Due to sustainable development, solar energy has drawn much attention and been widely applied in buildings. However, the application of solar energy is limited because of its instability, intermittency and low energy density in winter. In order to use low density and instable solar energy source for heating and improve the utilization efficiency of solar energy, a solar phase change thermal storage (SPCTS) heating system using a radiant-capillary-terminal (RCT) to effectively match the low temperature hot water, a phase change thermal storage (PCTS) to store and continuously utilize the solar energy, and an air source heat pump (ASHP) as an alternate energy, was proposed and set up in this research. Series of experiments were conducted to obtain the relation between the solar radiation utilization rate and the heating supply temperatures, and to evaluate the performance of the RCT module and the indoor thermal environment of the system for its practical application in a residential building in the north-western City of Xi’an, China. The results show that energy saving of the solar heating system can be significantly improved by reducing the supplied water temperature, and the supplied water temperature of the RCT would be no more than 35 °C. The capillary radiation heating can adopt a lower water temperature and create a good thermal comfort environment as well. These results may lead to the

  18. Effect of inter-cooling on the performance and economics of a solar energy assisted hybrid air conditioning system with six stages one-rotor desiccant wheel

    International Nuclear Information System (INIS)

    Elzahzby, Ali M.; Kabeel, A.E.; Bassuoni, M.M.; Abdelgaied, Mohamed

    2014-01-01

    Highlights: • Development of a mathematical model for predicting the performance of solar energy assisted hybrid air conditioning system. • The model uses a one-rotor six-stage rotary silica gel desiccant wheel. • Theoretical model results are in good agreement with experimental data. • The influences of main operating parameters on optimal rotational speed are discussed. • A life cycle cost analysis of the proposed system has been investigated. - Abstract: In this study, a mathematical model for predicting the performance of solar energy assisted hybrid air conditioning system (SEAHACS) was considered. The desiccant wheels used honeycombed silica gel–haloids composite material. This one-rotor desiccant wheel is divided into six stages, in which two-stage dehumidification process, two-stage pre-cooling process and two-stage regeneration process are realized. Three air streams are involved in the present system. The mathematical model has been validated with the experimental data. As the key operating and design parameter, the range of process air inlet temperature from 27.5 to 45 °C, range of humidity ratio of the inlet process air from 9 to 21 g/kg, process air inlet velocity from 1.5 to 5.5 m/s have been examined for a range of rotation speed from 6 to 20 rev/h. the optimization of this parameters is conducted based on the moisture removal capacity D, relative moisture removal capacity, dehumidification coefficient of performance, thermal coefficient of performance, and supply air temperature and humidity ratio. At last, the influences of these main parameters on optimal rotational speed are discussed. Eventually, the life cycle cost analysis of the solar energy assisted hybrid air conditioning system has been investigated

  19. Feasibility evaluation of two solar cooling systems applied to a cuban hotel. Comparative analysis; Evaluación de factibilidad del uso dos sistemas climatización solar aplicado a un hotel cubano. Análisis comparativo

    Directory of Open Access Journals (Sweden)

    Yamile Díaz Torres

    2015-12-01

    Full Text Available The article presents an analysis of technical and economic feasibility of using two configurations of solar cooling in a Cuban hotel. HVAC hybrid schemes are: a cooler of ice water vapor compression (chiller interconnected in parallel with a smaller capacity chiller, first with a solar-powered absorption cooling system (SACS, and then with a photovoltaic cooling system(PSC. Both were simulated taking into account the weather conditions in the region, thermodynamic calculation methodologies and principles that govern thesetechnologies. The results show that the use of these alternatives contributes to reducing energy consumption and the environmental impact of heating, ventilation and air conditioning systems (HVAC. Economic analysishighlights that PCS is more favorable than the SACS taking into account the cooling cost generation (CCG but energy assessment indicates that SACS has higher thermal performance for the case study to which it isapplied.El artículo presenta un análisis de factibilidad técnica y económica de uso de dos configuraciones de climatización solar en un hotel cubano. Los esquemas de climatización híbridas son: una enfriadora de agua helada de compresión de vapor (chiller interconectada en paralelo con una enfriadora de absorción asistida con energía solar térmica (SACS, siglas en inglés, y posteriormente con un chiller asistido por un sistema solar fotovoltaico (PSC, siglas en ingles. Ambos fueron simulados teniendo en cuenta las condiciones meteorológicas de la región, metodologías de cálculo y principios termodinámicos que gobiernan estossistemas. Los resultados muestran que el uso de estas alternativas contribuye a la reducción del consumo energético y el impacto ambiental de los sistemas calefacción, ventilación y aire acondicionado (HVAC, siglas en inglés. El análisis económico resalta que PCS es más favorable que el SACS, teniendo en cuenta el costo de generación de frío (CCG, siglas en ingl

  20. Development of a solar-powered residential air conditioner: Economic analysis

    Science.gov (United States)

    1975-01-01

    The results of investigations aimed at the development of cost models to be used in the economic assessment of Rankine-powered air conditioning systems for residential application are summarized. The rationale used in the development of the cost model was to: (1) collect cost data on complete systems and on the major equipment used in these systems; (2) reduce these data and establish relationships between cost and other engineering parameters such as weight, size, power level, etc; and (3) derive simple correlations from which cost-to-the-user can be calculated from performance requirements. The equipment considered in the survey included heat exchangers, fans, motors, and turbocompressors. This kind of hardware represents more than 2/3 of the total cost of conventional air conditioners.

  1. Influence of air exposure duration and a-Si capping layer thickness on the performance of p-BaSi{sub 2}/n-Si heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Takabe, Ryota; Yachi, Suguru; Tsukahara, Daichi; Takeuchi, Hiroki; Toko, Kaoru; Suemasu, Takashi, E-mail: suemasu@bk.tsukuba.ac.jp [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Du, Weijie [Key Laboratory of Optoelectronic Material and Device, College of Mathematics and Science, Shanghai Normal University, Shanghai 200234 (China)

    2016-08-15

    Fabrication of p-BaSi{sub 2}(20 nm)/n-Si heterojunction solar cells was performed with different a-Si capping layer thicknesses (d{sub a-Si}) and varying air exposure durations (t{sub air}) prior to the formation of a 70-nm-thick indium-tin-oxide electrode. The conversion efficiencies (η) reached approximately 4.7% regardless of t{sub air} (varying from 12–150 h) for solar cells with d{sub a-Si} = 5 nm. In contrast, η increased from 5.3 to 6.6% with increasing t{sub air} for those with d{sub a-Si} = 2 nm, in contrast to our prediction. For this sample, the reverse saturation current density (J{sub 0}) and diode ideality factor decreased with t{sub air}, resulting in the enhancement of η. The effects of the variation of d{sub a-Si} (0.7, 2, 3, and 5 nm) upon the solar cell performance were examined while keeping t{sub air} = 150 h. The η reached a maximum of 9.0% when d{sub a-Si} was 3 nm, wherein the open-circuit voltage and fill factor also reached a maximum. The series resistance, shunt resistance, and J{sub 0} exhibited a tendency to decrease as d{sub a-Si} increased. These results demonstrate that a moderate oxidation of BaSi{sub 2} is a very effective means to enhance the η of BaSi{sub 2} solar cells.

  2. Design and Analysis of a Solar-Powered Compressed Air Energy Storage System

    Science.gov (United States)

    2016-12-01

    sized PV panel arrays. Kim et al. [49] and Manfrida et al. [50] proposed that a SS-AA- CAES system using COTS parts could be made more economical by...directly improve system efficiency. Furthermore, the power formulas derived using this approach can easily be used to both size the compressor based on...48] Villela, D., Kasinathan, V., De Valle, S., 2010, “Compressed-Air Energy Storage Systems for Stand-Alone Off-Grid Photovoltaic Modules

  3. Thermal modeling of a pressurized air cavity receiver for solar dish Stirling system

    Science.gov (United States)

    Zou, Chongzhe; Zhang, Yanping; Falcoz, Quentin; Neveu, Pierre; Li, Jianlan; Zhang, Cheng

    2017-06-01

    A solar cavity receiver model for the dish collector system is designed in response to growing demand of renewable energy. In the present research field, no investigations into the geometric parameters of a cavity receiver have been performed. The cylindrical receiver in this study is composed of an enclosed bottom at the back, an aperture at the front, a helical pipe inside the cavity and an insulation layer on the external surface of the cavity. The influence of several critical receiver parameters on the thermal efficiency is analyzed in this paper: cavity inner diameter and cavity length. The thermal model in this paper is solved considering the cavity dimensions as variables. Implementing the model into EES, each parameter influence is separately investigated, and a preliminary optimization method is proposed.

  4. Modeling and numerical simulation of a novel solar-powered absorption air conditioning system driven by a bubble pump with energy storage

    Institute of Scientific and Technical Information of China (English)

    QIU Jia; LIANG Jian; CHEN GuangMing; DU RuXu

    2009-01-01

    This paper presents a novel solar-powered absorption air conditioning system driven by a bubble pump with energy storage. It solves the problem of unreliable solar energy supply by storing the working fluids and hence, functions 24 h per day. First, the working principles are described and the dynamic models for the primary energy storage components are developed. Then, the system is evaluated based on a numerical simulation. Based on the meteorological data of a typical day in a subtropical area, with the area of a solar collector being set at 19.15 m2, whilst the initial charging mass, mass fraction and temperature of the solution are respectively set at 379.5 kg, 54.16% and 34.5 ℃, it is found that the respective coefficients of performance (COP) of the air conditioning system and the en-tire system (including the solar panel) are 0.7771 and 0.4372. In particular, the energy storage density of the system is 206.69 MJ/m3 which is much greater than those of chilled water or hot water storage systems under comparable conditions. This makes the new system much more compact and efficient. Finally, an automatic control strategy is given to achieve the highest COP when solar energy fluctuates.

  5. Behavior of a thermoelectric power generation device based on solar irradiation and the earth’s surface-air temperature difference

    International Nuclear Information System (INIS)

    Zhang, Zhe; Li, Wenbin; Kan, Jiangming

    2015-01-01

    Highlights: • A technical solution to the power supply of wireless sensor networks is presented. • The low voltage produced by TEG is boosted from less than 1 V to more than 4 V. • An output current and voltage of TEG device is acquired as 21.47 mA and 221 mV. • The device successfully provides output power 4.7 mW in no electricity conditions. • The thermo-economic value of TEG device is demonstrated. - Abstract: Motivated by the limited power supply of wireless sensors used to monitor the natural environment, for example, in forests, this study presents a technical solution by recycling solar irradiation heat using thermoelectric generators. Based on solar irradiation and the earth’s surface-air temperature difference, a new type of thermoelectric power generation device has been devised, the distinguishing features of which include the application of an all-glass heat-tube-type vacuum solar heat collection pipe to absorb and transfer solar energy without a water medium and the use of a thin heat dissipation tube to cool the earth surface air temperature. The effects of key parameters such as solar illumination, air temperature, load resistance, the proportional coefficient, output power and power generation efficiency for thermoelectric energy conversion are analyzed. The results of realistic outdoor experiments show that under a state of regular illumination at 3.75 × 10 4 lx, using one TEG module, the thermoelectric device is able to boost the voltage obtained from the natural solar irradiation from 221 mV to 4.41 V, with an output power of 4.7 mW. This means that the electrical energy generated can provide the power supply for low power consumption components, such as low power wireless sensors, ZigBee modules and other low power loads

  6. Interrelations of UV-global/global/diffuse solar irradiance components and UV-global attenuation on air pollution episode days in Athens, Greece

    International Nuclear Information System (INIS)

    Koronakis, P.S.; Sfantos, G.K.

    2002-01-01

    An investigation of global ultraviolet (G UV ), global (G) and diffuse (G d ) solar intensities, continuously recorded over a period of five years at a station in Athens, Greece, and stored on the basis of hourly time intervals since 1996, has revealed the following: (a) UV-global irradiation, associated with the 290-395 nm wavelength region, constitutes 4.1% of global solar. (b) UV-global irradiance ranges from an average minimum of 2.4 W m -2 and 3.1% of global solar in January to an average maximum of 45 W m -2 and 7.8%, respectively, in June, both considered at 13:00, solar time. (c) There exists a good correlation among the two dimensionless irradiance ratios G UV /G d and G d /G in the form of an exponential relationship. (d) UV-global monthly irradiation data show evidence of temporal variability in Athens, from 1996 to 2000. (e) Anthropogenic and photochemical atmospheric pollutant agents (O 3 , CO, SO 2 , NO x , smoke) causing air pollution episodes seem to affect differently solar irradiance components. The main results of analysis (measurements within ± 2 h from solar noon) indicate that a buildup of O 3 and NO x inside the urban Athens plume during cloudless and windless warm days could cause: (i) UV-global irradiance depletion between 5.4% and 14.4%. (ii) Diffuse solar irradiance enhancement up to 38.1%. (iii) Global solar irradiance attenuation ranging up to 6.3%. (author)

  7. Air

    International Nuclear Information System (INIS)

    Gugele, B.; Scheider, J.; Spangl, W.

    2001-01-01

    In recent years several regulations and standards for air quality and limits for air pollution were issued or are in preparation by the European Union, which have severe influence on the environmental monitoring and legislation in Austria. This chapter of the environmental control report of Austria gives an overview about the legal situation of air pollution control in the European Union and in specific the legal situation in Austria. It gives a comprehensive inventory of air pollution measurements for the whole area of Austria of total suspended particulates, ozone, volatile organic compounds, nitrogen oxides, sulfur dioxide, carbon monoxide, heavy metals, benzene, dioxin, polycyclic aromatic hydrocarbons and eutrophication. For each of these pollutants the measured emission values throughout Austria are given in tables and geographical charts, the environmental impact is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental pollution control are discussed. In particular the impact of fossil-fuel power plants on the air pollution is analyzed. (a.n.)

  8. Surpassing 10% Efficiency Benchmark for Nonfullerene Organic Solar Cells by Scalable Coating in Air from Single Nonhalogenated Solvent

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Long [Department of Physics, Organic and Carbon Electronics Lab (ORaCEL), North Carolina State University, Raleigh NC 27695 USA; Xiong, Yuan [Department of Physics, Organic and Carbon Electronics Lab (ORaCEL), North Carolina State University, Raleigh NC 27695 USA; Zhang, Qianqian [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill NC 27599 USA; Li, Sunsun [Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 P. R. China; Wang, Cheng [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley CA 94720 USA; Jiang, Zhang [Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Hou, Jianhui [Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 P. R. China; You, Wei [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill NC 27599 USA; Ade, Harald [Department of Physics, Organic and Carbon Electronics Lab (ORaCEL), North Carolina State University, Raleigh NC 27695 USA

    2018-01-10

    The commercialization of nonfullerene organic solar cells (OSCs) relies critically on the response under typical operating conditions (for instance, temperature, humidity) and the ability of scale-up. Despite the rapid increase in power conversion efficiency (PCE) of spin-coated devices fabricated in a protective atmosphere, the device efficiencies of printed nonfullerene OSC devices by blade-coating are still lower than 6%. This slow progress significantly limits the practical printing of high-performance nonfullerene OSCs. Here, a new and stable nonfullerene combination was introduced by pairing a commercially available nonfluorinated acceptor IT-M with the polymeric donor FTAZ. Over 12%-efficiency can be achieved in spincoated FTAZ:IT-M devices using a single halogen-free solvent. More importantly, chlorinefree, in air blade-coating of FTAZ:IT-M is able to yield a PCE of nearly 11%, despite a humidity of ~50%. X-ray scattering results reveal that large π-π coherence lengths, high degree of faceon orientation with respect to the substrate, and small domain spacings of ~20 nm are closely correlated with such high device performance. Our material system and approach yields the highest reported performance for nonfullerene OSC devices by a coating technique approximating scalable fabrication methods and holds great promise for the development of low-cost, low-toxicity, and high-efficiency OSCs by high-throughput production.

  9. Energy Converter with Inside Two, Three, and Five Connected H2/Air Swirling Combustor Chambers: Solar and Combustion Mode Investigations

    Directory of Open Access Journals (Sweden)

    Angelo Minotti

    2016-06-01

    Full Text Available This work reports the performance of an energy converter characterized by an emitting parallelepiped element with inside two, three, or five swirling connected combustion chambers. In particular, the idea is to adopt the heat released by H2/air combustion, occurring in the connected swirling chambers, to heat up the emitting surfaces of the thermally-conductive emitting parallelepiped brick. The final goal consists in obtaining the highest emitting surface temperature and the highest power delivered to the ambient environment, with the simultaneous fulfillment of four design constraints: dimension of the emitting surface fixed to 30 × 30 mm2, solar mode thermal efficiency greater than 20%, emitting surface peak temperature T > 1000 K, and its relative ∆T < 100 K in the combustion mode operation. The connected swirling meso-combustion chambers, inside the converter, differ only in their diameters. Combustion simulations are carried out adopting 500 W of injected chemical power, stoichiometric conditions, and detailed chemistry. All provide high chemical efficiency, η > 99.9%, and high peak temperature, but the emitting surface ∆T is strongly sensitive to the geometrical configuration. The present work is related to the “EU-FP7-HRC-Power” project, aiming at developing micro-meso hybrid sources of power, compatible with a thermal/electrical conversion by thermo-photovoltaic cells.

  10. Thermal energy storages analysis for high temperature in air solar systems

    International Nuclear Information System (INIS)

    Andreozzi, Assunta; Buonomo, Bernardo; Manca, Oronzio; Tamburrino, Salvatore

    2014-01-01

    In this paper a high temperature thermal storage in a honeycomb solid matrix is numerically investigated and a parametric analysis is accomplished. In the formulation of the model it is assumed that the system geometry is cylindrical, the fluid and the solid thermo physical properties are temperature independent and radiative heat transfer is taken into account whereas the effect of gravity is neglected. Air is employed as working fluid and the solid material is cordierite. The evaluation of the fluid dynamic and thermal behaviors is accomplished assuming the honeycomb as a porous medium. The Brinkman–Forchheimer–extended Darcy model is used in the governing equations and the local thermal non equilibrium is assumed. The commercial CFD Fluent code is used to solve the governing equations in transient regime. Numerical simulations are carried out with storage medium for different mass flow rates of the working fluid and different porosity values. Results in terms of temperature profiles, temperatures fields and stored thermal energy as function of time are presented. The effects of storage medium, different porosity values and mass flow rate on stored thermal energy and storage time are shown. - Highlights: • HTTES in a honeycomb solid matrix is numerically investigated. • The numerical analysis is carried out assuming the honeycomb as a porous medium. • The Brinkman–Forchheimer–extended Darcy model is used in the governing equations. • Results are carried out for different mass flow rates and porosity values. • The main effect is due to the porosity which set the thermal energy storage value

  11. Design of a high altitude long endurance flying-wing solar-powered unmanned air vehicle

    Science.gov (United States)

    Alsahlani, A. A.; Johnston, L. J.; Atcliffe, P. A.

    2017-06-01

    The low-Reynolds number environment of high-altitude §ight places severe demands on the aerodynamic design and stability and control of a high altitude, long endurance (HALE) unmanned air vehicle (UAV). The aerodynamic efficiency of a §ying-wing configuration makes it an attractive design option for such an application and is investigated in the present work. The proposed configuration has a high-aspect ratio, swept-wing planform, the wing sweep being necessary to provide an adequate moment arm for outboard longitudinal and lateral control surfaces. A design optimization framework is developed under a MATLAB environment, combining aerodynamic, structural, and stability analysis. Low-order analysis tools are employed to facilitate efficient computations, which is important when there are multiple optimization loops for the various engineering analyses. In particular, a vortex-lattice method is used to compute the wing planform aerodynamics, coupled to a twodimensional (2D) panel method to derive aerofoil sectional characteristics. Integral boundary-layer methods are coupled to the panel method in order to predict §ow separation boundaries during the design iterations. A quasi-analytical method is adapted for application to flyingwing con¦gurations to predict the wing weight and a linear finite-beam element approach is used for structural analysis of the wing-box. Stability is a particular concern in the low-density environment of high-altitude flight for flying-wing aircraft and so provision of adequate directional stability and control power forms part of the optimization process. At present, a modified Genetic Algorithm is used in all of the optimization loops. Each of the low-order engineering analysis tools is validated using higher-order methods to provide con¦dence in the use of these computationally-efficient tools in the present design-optimization framework. This paper includes the results of employing the present optimization tools in the design of a

  12. Results from an International Measurement Round Robin of III-V Triple Junction Solar Cells under Air Mass Zero

    Science.gov (United States)

    Jenkins, Phillip; Scheiman, Chris; Goodbody, Chris; Baur, Carsten; Sharps, Paul; Imaizumi, Mitsuru; Yoo, Henry; Sahlstrom, Ted; Walters, Robert; Lorentzen, Justin; hide

    2006-01-01

    This paper reports the results of an international measurement round robin of monolithic, triple-junction, GaInP/GaAs/Ge space solar cells. Eight laboratories representing national labs, solar cell vendors and space solar cell consumers, measured cells using in-house reference cells and compared those results to measurements made where each lab used the same set of reference cells. The results show that most of the discrepancy between laboratories is likely due to the quality of the standard cells rather than the measurement system or solar simulator used.

  13. Energy problems of the central systems of air conditioning; Problemas energeticos de los sistemas centrales de climatizacion

    Energy Technology Data Exchange (ETDEWEB)

    Cardero Corria, Gaspar [Cubanacan, S.A., Varadero (Cuba)

    2003-07-01

    The central systems of air conditioning are widely used in air conditioning production for several reasons among which excel: 1) Better aesthetic of the building, 2) Less noise in the air conditioning premises and 3) Greater yield of the consumed energy. This is indeed the third reason in which this paper will try to contribute with elements that will allow reveal the problem and to identify some possible causes that originate it. The centralized systems of air conditioning must produce conditioned air with lesser power cost than the individual systems, it is that saving which allows to recover an investment that normally surpasses them in 3 to 5 times. Nevertheless, the real numbers do not demonstrate that. [Spanish] Los sistemas centrales de climatizacion son ampliamente usados en la produccion de aire acondicionado por varias razones entre las que sobresalen: 1) Mejor estetica del edificio, 2) Menor ruido en los locales climatizados y 3) Mayor rendimiento de la energia consumida. Es precisamente la tercera razon en la cual este trabajo intentara aportar elementos que permitan develar el problema e identificar algunas posibles causas que lo originan. Los sistemas centralizados de climatizacion deben producir aire acondicionado con un menor gasto energetico que los sistemas individuales, es precisamente ese ahorro lo que permite recuperar una inversion que normalmente los supera en 3 a 5 veces. Sin embargo, los numeros reales no demuestran eso.

  14. Solutions Network Formulation Report. NASA's Potential Contributions for Using Solar Ultraviolet Radiation in Conjunction with Photocatalysis for Urban Air Pollution Mitigation and Increasing Air Quality

    Science.gov (United States)

    Underwood, Lauren; Ryan, Robert E.

    2007-01-01

    This Candidate Solution is based on using NASA Earth science research on atmospheric ozone and aerosols data as a means to predict and evaluate the effectiveness of photocatalytically created surfaces (building materials like glass, tile and cement) for air pollution mitigation purposes. When these surfaces are exposed to near UV light, organic molecules, like air pollutants and smog precursors, will degrade into environmentally friendly compounds. U.S. EPA (Environmental Protection Agency) is responsible for forecasting daily air quality by using the Air Quality Index (AQI) that is provided by AIRNow. EPA is partnered with AIRNow and is responsible for calculating the AQI for five major air pollutants that are regulated by the Clean Air Act. In this Solution, UV irradiance data acquired from the satellite mission Aura and the OMI Surface UV algorithm will be used to help understand both the efficacy and efficiency of the photocatalytic decomposition process these surfaces facilitate, and their ability to reduce air pollutants. Prediction models that estimate photocatalytic function do not exist. NASA UV irradiance data will enable this capability, so that air quality agencies that are run by state and local officials can develop and implement programs that utilize photocatalysis for urban air pollution control and, enable them to make effective decisions about air pollution protection programs.

  15. A Dynamic Evaluation Of A Model And An Estimate Of The Air Quality And Regional Climate Impacts Of Enhanced Solar Power Generation

    Science.gov (United States)

    Millstein, D.; Brown, N. J.; Zhai, P.; Menon, S.

    2012-12-01

    We use the WRF/Chem model (Weather Research and Forecasting model with chemistry) and pollutant emissions based on the EPA National Emission Inventories from 2005 and 2008 to model regional climate and air quality over the continental United States. Additionally, 2030 emission scenarios are developed to investigate the effects of future enhancements to solar power generation. Modeling covered 6 summer and 6 winter weeks each year. We model feedback between aerosols and meteorology and thus capture direct and indirect aerosol effects. The grid resolution is 25 km and includes no nesting. Between 2005 and 2008 significant emission reductions were reported in the National Emission Inventory. The 2008 weekday emissions over the continental U.S. of SO2 and NO were reduced from 2005 values by 28% and 16%, respectively. Emission reductions of this magnitude are similar in scale to the potential emission reductions from various energy policy initiatives. By evaluating modeled and observed air quality changes from 2005 to 2008, we analyze how well the model represents the effects of historical emission changes. We also gain insight into how well the model might predict the effects of future emission changes. In addition to direct comparisons of model outputs to ground and satellite observations, we compare observed differences between 2005 and 2008 to corresponding modeled differences. Modeling was extended to future scenarios (2030) to simulate air quality and regional climate effects of large-scale adoption of solar power. The 2030-year was selected to allow time for development of solar generation infrastructure. The 2030 emission scenario was scaled, with separate factors for different economic sectors, from the 2008 National Emissions Inventory. The changes to emissions caused by the introduction of large-scale solar power (here assumed to be 10% of total energy generation) are based on results from a parallel project that used an electricity grid model applied over

  16. Solar-powered single-and double-effect directly air-cooled LiBr–H2O absorption prototype built as a single unit

    International Nuclear Information System (INIS)

    Izquierdo, M.; González-Gil, A.; Palacios, E.

    2014-01-01

    Highlights: • This work presents a novel solar cooling air-cooled absorption prototype for buildings. • The solution (LiB r –H 2 O) and the refrigerant (H 2 O) are cooled directly by air. • The cooling is produced from solar energy when operates in single-effect mode. • If the demand is not met the prototype is able to operate in double-effect mode. - Abstract: This work describes an installation in Madrid, Spain, designed to test a new solar-powered air-cooled absorption refrigeration system. This installation essentially consists of a-48 m 2 field of flat-plate solar collectors, a 1500-L hot water storage tank and a single and-double effect air-cooled lithium bromide absorption prototype. Designed and built by our research group, this prototype is able to operate either as a single-effect unit (4.5 kW) or as a double-effect unit (7 kW). In operation as single-effect mode, the prototype is driven by solar energy, whereas in operation as a double effect mode, an external energy source may be used. The prototype’s evaporator is connected to a fan-coil placed inside an 80-m 2 laboratory that represent the average size of a Spanish housing unit. In August 2009, the cooling system was tested in the single-effect operation mode. The results show that the system is able to meet approximately 65% of the laboratory’s seasonal cooling demand, although 100% may be reached for a few days. The prototype can also operate in double-effect mode to meet the cooling demand. In that case, the prototype is fed by thermal oil, which is warmed until it reaches the process temperature in the high-temperature generator. The prototype can operate in either single-effect mode or in double-effect mode or can also operate simultaneously both modes using the components common to both modes, namely, the absorber, evaporator, condenser, solution pumps and control equipment. This paper reports the experimental results from the prototype operating separately in single-effect and

  17. Smart Control System to Optimize Time of Use in a Solar-Assisted Air-Conditioning by Ejector for Residential Sector

    Directory of Open Access Journals (Sweden)

    Giovanna Avedian-González

    2018-02-01

    Full Text Available The present work provides a series of theoretical improvements of a control strategy in order to optimize the time of use of solar air-conditioning by an ejector distributed in multiple solar collectors of vacuum tubes for the residential sector, which will allow us to reduce carbon-dioxide emissions, costs and electrical energy consumption. In a solar ejector cooling system, the instability of the solar source of energy causes an operational conflict between the solar thermal system and ejector cooling cycle. A fuzzy control structure for the supervisory ejector cycle and multi-collector control system is developed: the first control is applied to control the mass flow of the generator and the evaporator for different cooling capacities (3, 3.5, 4, 4.5 and 5 kW and set a temperature reference according to the operating conditions; the second is applied to keep a constant temperature power source that feeds the low-grade ejector cooling cycle using R134aas refrigerant. For the present work, the temperature of the generator oscillates between 65 °C and 90 °C, a condenser temperature of 30 °C and an evaporator temperature of 10 °C. For the purpose of optimization, there are different levels of performance for time of use: the Mode 0 (economic gives a performance of 17.55 h, Mode 5 (maximum cooling power 14.86 h and variable mode (variable mode of capacities 16.25 h, on average. Simulations are done in MATLAB-Simulink applying fuzzy logic for a mathematical model of the thermal balance. They are compared with two different types of solar radiation: real radiation and disturbed radiation.

  18. Influence of air exposure duration and a-Si capping layer thickness on the performance of p-BaSi2/n-Si heterojunction solar cells

    Directory of Open Access Journals (Sweden)

    Ryota Takabe

    2016-08-01

    Full Text Available Fabrication of p-BaSi2(20nm/n-Si heterojunction solar cells was performed with different a-Si capping layer thicknesses (da-Si and varying air exposure durations (tair prior to the formation of a 70-nm-thick indium-tin-oxide electrode. The conversion efficiencies (η reached approximately 4.7% regardless of tair (varying from 12–150 h for solar cells with da-Si = 5 nm. In contrast, η increased from 5.3 to 6.6% with increasing tair for those with da-Si = 2 nm, in contrast to our prediction. For this sample, the reverse saturation current density (J0 and diode ideality factor decreased with tair, resulting in the enhancement of η. The effects of the variation of da-Si (0.7, 2, 3, and 5 nm upon the solar cell performance were examined while keeping tair = 150 h. The η reached a maximum of 9.0% when da-Si was 3 nm, wherein the open-circuit voltage and fill factor also reached a maximum. The series resistance, shunt resistance, and J0 exhibited a tendency to decrease as da-Si increased. These results demonstrate that a moderate oxidation of BaSi2 is a very effective means to enhance the η of BaSi2 solar cells.

  19. Watergy. A moist air solar collector system with an integrated brine circuit for te heating of buildings; Watergy. Ein Feuchtluft-Solarkollektorsystem mit integriertem Solekreislauf zur Gebaeudeheizung

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Martin; Buchholz, Reiner; Geyer, Philipp; Schmidt, Marco [Technische Univ. Berlin (Germany). Fachgebiet Gebaeudetechnik und Entwerfen

    2010-07-01

    Due to the Renewable Energy Law 2009, the proportion of renewable energies in the overall energy consumption of the European Union increased to 20 %. Currently, the proportion of the total heat energy consumption in Germany amounts nearly 40 %. Previous concepts for the storage of heat in the summer for use in winter are not convincing. The improvement of the efficiency of solar collectors and an increase in the collector surface result in increased investment costs and costs for heat supply. Thus, solar collector systems should be optimized for the operation of heaters. This is done for example by reducing the mean collector temperature using a combination of solar collectors with a heat pump. However, heat pumps are operated by means of electrical energy. Electrical energy can not be saved in the summer in order to be used in the winter. Under this aspect, the authors of the contribution under consideration report on the Watergy concept - a moist air solar collector system with an integrated brine circuit for heating of buildings.

  20. Enhancement of Nutrient Removal in a Hybrid Constructed Wetland Utilizing an Electric Fan Air Blower with Renewable Energy of Solar and Wind Power

    Directory of Open Access Journals (Sweden)

    Dong Jin Lee

    2015-01-01

    Full Text Available The sewage treatment efficiency of hybrid constructed wetlands (CWs was evaluated under different ventilation methods. The removal efficiencies of biochemical oxygen demand (BOD, total nitrogen (TN, and total phosphorus (TP in the vertical flow- (VF- horizontal flow (HF CWs using an electric fan air blower by the renewable energy of solar and wind power were higher than those by natural ventilation, excluding only suspended solids (SS. The TN treatment efficiency in the CW using the air blower especially increased rapidly by 16.6% in comparison with the CW employing natural ventilation, since the VF bed provided suitable conditions (aerobic for nitrification to occur. The average removal efficiencies of BOD, SS, TN, and TP in the effluent were 98.8, 97.4, 58.0, and 48.3% in the CW using an electric fan air blower, respectively. The treatment performance of the CWs under different ventilation methods was assessed, showing TN in the CW using an electric fan air blower to be reduced by 57.5~58.6% for inlet TN loading, whereas reduction by 19.0~53.3% was observed in the CW with natural ventilation. Therefore, to increase the removal of nutrients in CWs, an improved ventilation system, providing ventilation via an electric fan air blower with the renewable energy, is recommended.

  1. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier

    KAUST Repository

    Ip, Alexander H.; Labelle, André J.; Sargent, Edward H.

    2013-01-01

    Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells. © 2013 AIP Publishing LLC.

  2. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier

    KAUST Repository

    Ip, Alexander H.

    2013-12-23

    Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells. © 2013 AIP Publishing LLC.

  3. Reducing a solar-assisted air-conditioning system’s energy consumption by applying real-time occupancy sensors and chilled water storage tanks throughout the summer: A case study

    International Nuclear Information System (INIS)

    Rosiek, S.; Batlles, F.J.

    2013-01-01

    Highlights: • We present an innovative occupancy and chilled water storage-based operation mode. • This mode was implemented to the solar-assisted air-conditioning system. • It permits to save 42% of total electrical energy during one cooling period. • It allows storing the excess cooling capacity of the absorption chiller. • It prevents the sudden start/stop (on/off cycles) of the absorption chiller. - Abstract: This study describes an innovative occupancy and chilled-water storage-based operation sequence implemented in a solar-assisted air-conditioning system. The core purpose of this solar-assisted air-conditioning system is to handle the cooling and heating load of the Solar Energy Research Centre (CIESOL), thus minimising its environmental impact. In this study, the cooling mode was investigated with special attention focused on the chilled-water storage circuit. The critical concern is that the solar-assisted air-conditioning system should always operate considering the actual load conditions, not using an abstract maximum load that is predetermined during the system’s design process, which can lead to energy waste during periods of low occupancy. Thus, the fundamental problem is to identify the optimum operation sequence for the solar-assisted air-conditioning system that provides the best energy performance. The significance of this work lies in the demonstration of a new operation strategy that utilises real-time occupancy monitoring and chilled-water storage tanks to improve the efficiency of solar-assisted air-conditioning systems, thereby reducing their electricity consumption. Adopting this strategy resulted in a large energy-saving potential. The results demonstrate that during one cooling period, it is possible to conserve approximately 42% of the total electrical energy consumed by the system prior to the adoption of this operation strategy

  4. Conocimientos y prácticas frente a la exposición solar y tamizaje de cáncer de piel. Medellín, mayo - junio de 2000

    Directory of Open Access Journals (Sweden)

    Marta Gaviria

    2001-04-01

    Full Text Available

    El melanoma maligno cutáneo ha mostrado en las últimas décadas un aumento en su incidencia; para 1992 ésta fue de 1:105, ientras que para el año 2000 se esperaba una incidencia de 1:75. Aunque estudios epidemiológicos internacionales evidencian que la exposición a la radiación solar constituye la principal causa de melanoma en poblaciones de piel blanca, la distribución de éste por sitio corporal o está estrechamente relacionada con las áreas de máxima exposición sino que compromete áreas intermitentemente expuestas. Para que se desarrolle el cáncer de piel se requiere una combinación de factores constitucionales y ambientales. Entre las características
    fenotípicas se encuentran: el color claro de la piel, la incapacidad para broncearse, cabello de color rojo o amarillo y la presencia de efélides en la infancia. En cuanto a los factores ambientales, la depleción de la capa de ozono por los clorofluorocarbonos liberados hacia la atmósfera por los envases de aerosol, los aires acondicionados y los
    refrigeradores, puede aumentar la cantidad de radiación ultravioleta ue alcanza la superficie terrestre incrementando la incidencia de estos tumores. en personas con trabajos al aire libre y alta exposición recreativa al sol; en dichas personas se encuentra una mayor incidencia de cáncer de piel, disminuyendo progresivamente la edad de aparición de esta enfermedad.

     

     

  5. An adaptive dual-optimal path-planning technique for unmanned air vehicles with application to solar-regenerative high altitude long endurance flight

    Science.gov (United States)

    Whitfield, Clifford A.

    2009-12-01

    A multi-objective technique for Unmanned Air Vehicle (UAV) path and trajectory autonomy generation, through task allocation and sensor fusion has been developed. The Dual-Optimal Path-Planning (D-O.P-P.) Technique generates on-line adaptive flight paths for UAVs based on available flight windows and environmental influenced objectives. The environmental influenced optimal condition, known as the driver' determines the condition, within a downstream virtual window of possible vehicle destinations and orientation built from the UAV kinematics. The intermittent results are pursued by a dynamic optimization technique to determine the flight path. This sequential optimization technique is a multi-objective optimization procedure consisting of two goals, without requiring additional information to combine the conflicting objectives into a single-objective. An example case-study and additional applications are developed and the results are discussed; including the application to the field of Solar Regenerative (SR) High Altitude Long Endurance (HALE) UAV flight. Harnessing solar energy has recently been adapted for use on high altitude UAV platforms. An aircraft that uses solar panels and powered by the sun during the day and through the night by SR systems, in principle could sustain flight for weeks or months. The requirements and limitations of solar powered flight were determined. The SR-HALE UAV platform geometry and flight characteristics were selected from an existing aircraft that has demonstrated the capability for sustained flight through flight tests. The goals were to maintain continual Situational Awareness (SA) over a case-study selected Area of Interest (AOI) and existing UAV power and surveillance systems. This was done for still wind and constant wind conditions at altitude along with variations in latitude. The characteristics of solar flux and the dependence on the surface location and orientation were established along with fixed flight maneuvers for

  6. Floatable, Self-Cleaning, and Carbon-Black-Based Superhydrophobic Gauze for the Solar Evaporation Enhancement at the Air-Water Interface.

    Science.gov (United States)

    Liu, Yiming; Chen, Jingwei; Guo, Dawei; Cao, Moyuan; Jiang, Lei

    2015-06-24

    Efficient solar evaporation plays an indispensable role in nature as well as the industry process. However, the traditional evaporation process depends on the total temperature increase of bulk water. Recently, localized heating at the air-water interface has been demonstrated as a potential strategy for the improvement of solar evaporation. Here, we show that the carbon-black-based superhydrophobic gauze was able to float on the surface of water and selectively heat the surface water under irradiation, resulting in an enhanced evaporation rate. The fabrication process of the superhydrophobic black gauze was low-cost, scalable, and easy-to-prepare. Control experiments were conducted under different light intensities, and the results proved that the floating black gauze achieved an evaporation rate 2-3 times higher than that of the traditional process. A higher temperature of the surface water was observed in the floating gauze group, revealing a main reason for the evaporation enhancement. Furthermore, the self-cleaning ability of the superhydrophobic black gauze enabled a convenient recycling and reusing process toward practical application. The present material may open a new avenue for application of the superhydrophobic substrate and meet extensive requirements in the fields related to solar evaporation.

  7. Facile and Scalable Fabrication of Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells in Air Using Gas Pump Method.

    Science.gov (United States)

    Ding, Bin; Gao, Lili; Liang, Lusheng; Chu, Qianqian; Song, Xiaoxuan; Li, Yan; Yang, Guanjun; Fan, Bin; Wang, Mingkui; Li, Chengxin; Li, Changjiu

    2016-08-10

    Control of the perovskite film formation process to produce high-quality organic-inorganic metal halide perovskite thin films with uniform morphology, high surface coverage, and minimum pinholes is of great importance to highly efficient solar cells. Herein, we report on large-area light-absorbing perovskite films fabrication with a new facile and scalable gas pump method. By decreasing the total pressure in the evaporation environment, the gas pump method can significantly enhance the solvent evaporation rate by 8 times faster and thereby produce an extremely dense, uniform, and full-coverage perovskite thin film. The resulting planar perovskite solar cells can achieve an impressive power conversion efficiency up to 19.00% with an average efficiency of 17.38 ± 0.70% for 32 devices with an area of 5 × 2 mm, 13.91% for devices with a large area up to 1.13 cm(2). The perovskite films can be easily fabricated in air conditions with a relative humidity of 45-55%, which definitely has a promising prospect in industrial application of large-area perovskite solar panels.

  8. Performance assessment of a solar-powered air quality and weather station placed on a school rooftop in Hong Kong

    Science.gov (United States)

    Emerging air pollution measurement technologies that require minimal infrastructure to deploy may lead to new insights on air pollution spatial variability in urban areas. Through a collaboration between the USEPA and HKEPD, this study evaluates the performance of a compact, roo...

  9. Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control: Report and Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, J.; Kozubal, E.; Herrmann, L.; Miller, J.; Lowenstein, A.; Barker, G.; Slayzak, S.

    2012-11-01

    The primary objective of this project was to demonstrate the capabilities of a new high-performance, liquid-desiccant dedicated outdoor air system (DOAS) to enhance cooling efficiency and comfort in humid climates while substantially reducing electric peak demand at Tyndall Air Force Base (AFB), which is 12 miles east of Panama City, Florida.

  10. U.S. Light-duty Vehicle Air Conditioning Fuel Use and the Impact of Four Solar/Thermal Control Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, John P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kekelia, Bidzina [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kreutzer, Cory J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Titov, Eugene V [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-28

    The U.S. uses 7.6 billion gallons of fuel per year for vehicle air conditioning (A/C), equivalent to 5.7 percent of the total national light-duty vehicle (LDV) fuel use. This equates to 30 gallons/year per vehicle, or 23.5 grams (g) of carbon dioxide (CO2) per mile, for an average U.S. vehicle. A/C is a significant contribution to national fuel use; therefore, technologies that reduce A/C loads may reduce operational costs, A/C fuel use, and CO2 emissions. Since A/C is not operated during standard EPA fuel economy testing protocols, EPA provides off-cycle credits to encourage OEMs to implement advanced A/C technologies that reduce fuel use in the real world. NREL researchers assessed thermal/solar off-cycle credits available in the U.S. Environmental Protection Agency's (EPA's) Final Rule for Model Year 2017 and Later Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy. Credits include glazings, solar reflective paint, and passive and active cabin ventilation. Implementing solar control glass reduced CO2 emissions by 2.0 g/mi, and solar reflective paint resulted in a reduction of 0.8 g/mi. Active and passive ventilation strategies only reduced emissions by 0.1 and 0.2 g/mi, respectively. The national-level analysis process is powerful and general; it can be used to determine the impact of a wide range of new vehicle thermal technologies on fuel use, EV range, and CO2 emissions.

  11. Estabilidade sensorial de suco de maracujá pronto para beber acondicionado em latas de aço Sensorial stability of ready-to-drink passion fruit juice packaged in tinplate cans

    Directory of Open Access Journals (Sweden)

    Elisabete Segantini Saron

    2007-12-01

    Full Text Available O estudo teve por objetivo avaliar a preservação das características sensoriais e físico-químicas de suco de maracujá pronto para beber acondicionado em latas de três peças em folha-de-flandres eletrossoldadas, com diferentes condições de envernizamento interno do corpo e costura lateral, através de teste de estocagem. O suco de maracujá foi acondicionado em latas com camada nominal interna de 2,0 g de Sn.m-2, com três sistemas de revestimento orgânico interno e condicionado a 25 e 35 °C durante 360 dias. Ocorreu um acentuado decréscimo do conteúdo de ácido ascórbico até os 180 dias, mantendo-se estável até 360 dias em todas as condições estudadas. A avaliação de cor demonstrou o escurecimento do suco até os 120 dias e posteriormente sua descoloração, entre os 300 e 360 dias, nas duas temperaturas estudadas. A avaliação sensorial durante a estocagem demonstrou desempenho similar para todas as latas, sendo inferior apenas para a lata Pó a 35 °C. As principais alterações verificadas no produto ao longo da estocagem foram associadas às alterações intrínsecas à bebida e não à interação suco/embalagem. O estudo permitiu concluir que os três sistemas de envernizamento das latas estudadas podem ser utilizados no acondicionamento de suco de maracujá pronto para beber para uma vida-de-prateleira mínima de 12 meses.The purpose of this work was to evaluate the preservation of the sensorial and physicochemical characteristics of ready-to-drink passion fruit juice packaged in three-piece welded tinplate cans with different internal coatings of the body and side strips, based on a storage test. The product evaluated was ready-to-drink passion fruit juice packaged in cans with an internal layer of 2.0 g.m-2 of tin, with three inner organic coating systems, stored at 25 and 35 °C for 360 days. A sharp decrease in ascorbic acid content was recorded up to day 180, after which it remained constant until the end of

  12. Hybrid Solar-Geothermal Energy Absorption Air-Conditioning System Operating with NaOH-H2O—Las Tres Vírgenes (Baja California Sur), “La Reforma” Case

    OpenAIRE

    Yuridiana Rocio Galindo-Luna; Efraín Gómez-Arias; Rosenberg J. Romero; Eduardo Venegas-Reyes; Moisés Montiel-González; Helene Emmi Karin Unland-Weiss; Pedro Pacheco-Hernández; Antonio González-Fernández; Jorge Díaz-Salgado

    2018-01-01

    Solar and geothermal energies are considered cleaner and more useful energy sources that can be used to avoid the negative environmental impacts caused by burning fossil fuels. Several works have reported air-conditioning systems that use solar energy coupled to geothermal renewable energy as a thermal source. In this study, an Absorption Air-Conditioning System (AACS) used sodium hydroxide-water (NaOH-H2O) instead of lithium bromide-water to reduce the cost. Low enthalpy geothermal heat was ...

  13. MoO3–Au composite interfacial layer for high efficiency and air-stable organic solar cells

    DEFF Research Database (Denmark)

    Pan, Hongbin; Zuo, Lijian; Fu, Weifei

    2013-01-01

    Efficient and stable polymer bulk-heterojunction solar cells based on regioregular poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC61BM) blend active layer have been fabricated with a MoO3–Au co-evaporation composite film as the anode interfacial layer (AIL). The optical...

  14. Study on heat and mass transfer between a greenhouse considered as a solar air heater and a rock packed bed as ambient control system

    International Nuclear Information System (INIS)

    Ajona Maeztu, J.I.

    1990-01-01

    A general study on heat transfer in dry packed beds is made, with special emphasis in comparing different transient models and in identifying the required conditions by which the attained results are equivalent. The differences in thermal behaviour on packed beds, when simultaneous heat mass transfer occurs as wet air is used as heat transfer fluid and exchanges heat and water with the solid in the bed, is analyzed. We modelize wet packed beds considering them as one dimension adsorbents beds, with dispersive and non-dispersive models, where adsorption, condensation-evaporation and liquid water downward flow from condensate phenomena are present. Models were solved numerically and experiments with a rock bed with dry and wet air through it, were made to test assumptions and to further understand the behavior of the system, obtaining a pretty good agreement between expected and measured profiles of the temperature evolution within the packed bed. As a possible application of the wet rock bed for storage purposes, a forced ventilation greenhouse was characterized as a wet air solar heater and analyzed the energetic potential of storing the heat that has to be rejected during daytime to control the crop ambient conditions, in a rock bed for later use at night for heating. (author)

  15. Photocatalytic removal of nitrogen oxides from ambient air using solar energy; Taiyo energy wo riyoshita taikichu no NOx no hikari shokubai jokyo

    Energy Technology Data Exchange (ETDEWEB)

    Fukaya, M; Taoda, H; Watanabe, E; Nonami, T; Iseda, K; Kato, K [National Industrial Research Institute of Nagoya, Nagoya (Japan); Kunieda, S [NGK Insulators, Ltd., Nagoya (Japan); Kato, S

    1997-11-25

    Experiment was made on removal of NOx from ambient air using ceramic blocks coated with a newly developed easy-to- handle TiO2 film photocatalyst. After TiO2 sol was prepared by hydrolyzing titanium tetraisopropoxide, the photocatalytic blocks were prepared through drying and sintering after immersing the blocks in TiO2 sol. The effect of the number of coating on catalytic performance was studied using the single-coated and triple-coated blocks. Artificial solar light of 1mW/cm{sup 2} was used as light source for flowing reaction experiment of air (containing NOx) in a laboratory. NOx concentration rapidly decreased with irradiation, and 94% and 98% of NOx were removed by the single- and triple-coated blocks, respectively. NOx was completely oxidized to HNO3 through NO2 by triple-coated blocks. The demonstration test of removal of NOx from ambient air in Okazaki city showed a removal rate of nearly 90% in noonday and 40% or more in average, while not 0% but 5-20% even in the nighttime. The latter is probably derived from adsorption by the porous photocatalytic blocks. 2 figs., 4 tabs.

  16. Rational energy utilization and utilization of solar energy in the open-air swimming pool and in the multiple purpose hall at Wiehl. Final report. Pt. G

    Energy Technology Data Exchange (ETDEWEB)

    Bouillon, H; Jensch, K; Jensch, W; Biasin, K; Dreisbach, K; Fruehauf, H J

    1982-12-01

    The research- and demonstration project in Wiehl consists mainly of an open-air swimming pool heated by solar energy and of a multiple purpose hall which is chiefly used as an ice-sport hall. The ice-field is cooled by means of a refrigeration system. The waste heat developing during freezing is used for water heating, space heating and hall-air heating for the multiple purpose hall and for after-heating of the pool water in the open-air swimming pool. In artificial ice-fields operated without interruptions during quite a long time, the subsoil may freeze. In this case there is the risk of the field constructions being damaged by the tensile forces of the frozen subsoil. In order to avoid this heating coils are installed below the fields in many cases today, due to which part of the waste heat developing during ice-production can be used to heat the field subsoil and thus avoid the risk of destruction.

  17. Efficient and stable CH3NH3PbI3-x(SCN)x planar perovskite solar cells fabricated in ambient air with low-temperature process

    Science.gov (United States)

    Zhang, Zongbao; Zhou, Yang; Cai, Yangyang; Liu, Hui; Qin, Qiqi; Lu, Xubing; Gao, Xingsen; Shui, Lingling; Wu, Sujuan; Liu, Jun-Ming

    2018-02-01

    Planar perovskite solar cells (PSCs) based on CH3NH3PbI3-x(SCN)x (SCN: thiocyanate) active layer and low-temperature processed TiO2 films are fabricated by a sequential two-step method in ambient air. Here, alkali thiocyanates (NaSCN, KSCN) are added into Pb(SCN)2 precursor to improve the microstructure of CH3NH3PbI3-x(SCN)x perovskite layers and performance of the as-prepared PSCs. At the optimum concentrations of alkali thiocyanates as additives, the as-prepared NaSCN-modified and KSCN-modified PSCs demonstrate the efficiencies of 16.59% and 15.63% respectively, being much higher than 12.73% of the reference PSCs without additives. This improvement is primarily ascribed to the enhanced electron transport, reduced recombination rates and much improved microstructures with large grain size and low defect density at grain boundaries. Importantly, it is revealed that the modified PSCs at the optimized concentrations of alkali thiocyanates additives exhibit remarkably improved stability than the reference PSCs against humid circumstance, and a continuous exposure to humid air without encapsulation over 45 days only records about 5% degradation of the efficiency. These findings provide a facile approach to fabricate efficient and stable PSCs by low processing temperature in ambient air, both of which are highly preferred for future practical applications of PSCs.

  18. Irreversibility analysis of non isothermal flat plate solar collectors for air heating with a dimensionless model; Analisis de las irreversibilidades en colectores solares de placas planas no isotermicos para calentamiento de aire utilizando un modelo adimensional

    Energy Technology Data Exchange (ETDEWEB)

    Bracamonte-Baran, Johane Hans; Baritto-Loreto, Miguel Leonardo [Universidad Central de Venezuela (Venezuela)]. E-mails: johanehb@gmail.com; johane.bracamonte@ucv.ve; miguel.baritto@ucv.ve

    2013-04-15

    The dimensionless model developed and validated by Baritto and Bracamonte (2012) for the thermal behavior of flat plate solar collector without glass cover is improved by adding the entropy balance equation in a dimensionless form. The model is solved for a wide range of aspect ratios and mass flow numbers. A parametric study is developed and the distribution of internal irreversibilities along the collector is analyzed. The influence of the design parameters on the entropy generation by fluid friction and heat transfer is analyzed and it is found that for certain combinations of these parameters optimal thermodynamic operation can be achieved. [Spanish] En el presente trabajo, el modelo adimensional desarrollado y validado por Baritto y Bracamonte (2012) para describir el comportamiento termico de colectores solares de placas planas sin cubierta transparente, se complementa con la ecuacion adimensional de balance de entropia para un elemento diferencial de colector solar. El modelo se resuelve para un amplio rango de valores de relaciones de aspecto y numero de flujo de masa. A partir de los resultados del modelo se desarrolla un analisis detallado de la influencia de estos parametros sobre la distribucion de irreversibilidades internas a lo largo del colector. Adicionalmente se estudia la influencia de estos parametros sobre los numeros de generacion de entropia por friccion viscosa, por transferencia de calor y total. Se encuentra que existen combinaciones de los parametros antes mencionados, para los cuales, la operacion del colector es termodinamicamente optima para numeros de flujo de masa elevados.

  19. NASA's Potential Contributions for Using Solar Ultraviolet Radiation in Conjunction with Photocatalysis for Urban Air Pollution Mitigation

    Science.gov (United States)

    Ryan, robert E.; Underwood, Lauren W.

    2007-01-01

    More than 75 percent of the U.S. population lives in urban communities where people are exposed to levels of smog or pollution that exceed the EPA (U.S. Environmental Protection Agency) safety standards. Urban air quality presents a unique problem because of a number of complex variables, including traffic congestion, energy production, and energy consumption activities, all of which can contribute to and affect air pollution and air quality in this environment. In environmental engineering, photocatalysis is an area of research whose potential for environmental clean-up is rapidly developing popularity and success. Photocatalysis, a natural chemical process, is the acceleration of a photoreaction in the presence of a catalyst. Photocatalytic agents are activated when exposed to near UV (ultraviolet) light (320-400 nm) and water. In recent years, surfaces coated with photocatalytic materials have been extensively studied because pollutants on these surfaces will degrade when the surfaces are exposed to near UV light. Building materials, such as tiles, cement, glass, and aluminum sidings, can be coated with a thin film of a photocatalyst. These coated materials can then break down organic molecules, like air pollutants and smog precursors, into environmentally friendly compounds. These surfaces also exhibit a high affinity for water when exposed to UV light. Therefore, not only are the pollutants decomposed, but this superhydrophilic nature makes the surface self-cleaning, which helps to further increase the degradation rate by allowing rain and/or water to wash byproducts away. According to the Clean Air Act, each individual state is responsible for implementing prevention and regulatory programs to control air pollution. To operate an air quality program, states must adopt and/or develop a plan and obtain approval from the EPA. Federal approval provides a means for the EPA to maintain consistency among different state programs and ensures that they comply with the

  20. A New Type of Complex System of Solar Energy Air Source Heat Pump Water Heater%一种新型的太阳能——空气源复合热泵热水器系统

    Institute of Scientific and Technical Information of China (English)

    王军军

    2011-01-01

    基于太阳能热利用技术、空气源热泵热水器理论,介绍了一种将太阳能与空气源相结合的双热源热泵热水器系统。该系统可充分利用太阳能加热生活用热水,辅以空气源热泵来满足太阳辐射照度不足时的用热水需求,同时用太阳能辅助加热来解决低温环境下空气源热泵运行工况恶劣的问题。系统充分利用了低品位的太阳能,保证稳定性,又可提高夏季阴雨天气、过渡季节及冬季太阳能热水器的热水温度,对于节约能源和环境保护具有重要意义。%Based on the technology of solar thermal and the theory of air-source heat pump water heater, a combined water heater system about solar and air source heat pump was introduced. The system Could make full use of solar energy to heat domestic hot water, combined with air-source heat pump to meet the shortage of solar irradiance when the hot water demand, and the auxiliary heating with solar energy to solve the problems of air source heat pump operating conditions in low temperature. The system took full use of the low-grade solar energy, and stability could be assured. And it could improve the temperature of the water in solar water heaters in rainy summers, transition seasons and winters. The system had significance for energy conservation and environmental protection.

  1. Energy from solar balloons

    Energy Technology Data Exchange (ETDEWEB)

    Grena, Roberto [C. R. Casaccia, via Anguillarese 301, 00123 Roma (Italy)

    2010-04-15

    Solar balloons are hot air balloons in which the air is heated directly by the sun, by means of a black absorber. The lift force of a tethered solar balloon can be used to produce energy by activating a generator during the ascending motion of the balloon. The hot air is then discharged when the balloon reaches a predefined maximum height. A preliminary study is presented, along with an efficiency estimation and some considerations on possible realistic configurations. (author)

  2. FY 1977 Annual report on Sunshine Project results. Research on solar energy systems for air conditioning and hot water supply; 1977 nendo taiyo netsu reidanbo kyuto system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at research and development of utilization of solar energy for air conditioning and hot water supply, as part of the researches on systems under Sunshine Project for utilization of solar energy. This project is focused on the research items, selected from those pursued by the 3-year project beginning in FY1974 as the ones considered to be important for the future diffusion and promotion of the systems for utilization of solar energy. The 3-year project has produced the software and hardware results, based on development of the devices and construction of a solar house. At this stage of time, it is pointed out that studies on economic viability of the system, development of the software for diffusion of the solar systems, and development of new, more suitable systems and methods for utilization of solar energy are important. In this fiscal year, the four themes (studies on economic viability of the conceptual solar system designs, simplified methods for designing the systems, evaluation of system performance, and studies on energy-saving effects and economic viability) are taken up, viewed from development of the software for diffusion and promotion of the systems for utilizing solar energy, based on the results obtained by the previous 3-year project. (NEDO)

  3. Effects on annual cost of solar/air-heat utilization system of carbon tax and interest rate for a residential house; Jutakuyo taiyo/taikinetsu riyo system no nenkan keihi ni oyobosu tansozei kinri no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Q; Kenmoku, Y; Sakakibara, T [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S [Maizuru National College of Technology, Kyoto (Japan); Kawamoto, T [Shizuoka University, Shizuoka (Japan). Faculty of Engineering

    1996-10-27

    In recent years, a system has been proposed that utilizes river heat, air-heat, exhaust heat from a cooler, etc., in addition to natural energy for the heat pump. With the introduction of such system, the amount of energy used and that of CO2 exhaust will be greatly reduced, but annual expenses will be increased as it stands. In order to improve the cost efficiency of the system, a proposal has been made for the introduction of an economic policy such as the carbon tax and a low interest financing system. With these matters in the background, the subject study predicts the production of solar cells in the future and, on the basis of this production, determines the price, conversion efficiency and equipment energy of solar cells in the future. Using these values and taking into consideration the introduction of the carbon tax and the low interest financing system, the optimum area was determined for solar cells and heat concentrators in a future residential solar/air-heat energy system. The carbon tax, being imposed on all CO2 discharges, had a large effect. Moreover, as the tax increased, annual expenses decreased for the solar/air-heat system. 3 refs., 6 figs.

  4. CFD Analysis to Study Effect of Circular Vortex Generator Placed in Inlet Section to Investigate Heat Transfer Aspects of Solar Air Heater

    Directory of Open Access Journals (Sweden)

    Vipin B. Gawande

    2014-01-01

    Full Text Available CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤ P/e ≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate.

  5. CFD analysis to study effect of circular vortex generator placed in inlet section to investigate heat transfer aspects of solar air heater.

    Science.gov (United States)

    Gawande, Vipin B; Dhoble, A S; Zodpe, D B

    2014-01-01

    CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤ P/e ≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D) is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF) with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate.

  6. Solar Schematic

    Science.gov (United States)

    1979-01-01

    The home shown at right is specially designed to accommodate solar heating units; it has roof planes in four directions, allowing placement of solar collectors for best exposure to the sun. Plans (bottom) and complete working blueprints for the solar-heated house are being marketed by Home Building Plan Service, Portland, Oregon. The company also offers an inexpensive schematic (center) showing how a homeowner only moderately skilled in the use of tools can build his own solar energy system, applicable to new or existing structures. The schematic is based upon the design of a low-cost solar home heating system built and tested by NASA's Langley Research Center; used to supplement a warm-air heating system, it can save the homeowner about 40 percent of his annual heating bill for a modest investment in materials and components. Home Building Plan Service saved considerable research time by obtaining a NASA technical report which details the Langley work. The resulting schematic includes construction plans and simplified explanations of solar heat collection, collectors and other components, passive heat factors, domestic hot water supply and how to work with local heating engineers.

  7. Fundamentals of Solar Heating. Correspondence Course.

    Science.gov (United States)

    Sheet Metal and Air Conditioning Contractors National Association, Vienna, VA.

    This course is designed for the use of employees of the air conditioning industry, and offers supervised correspondence instruction about solar technology. The following aspects of applied solar technology are covered: solar heating and cooling, solar radiation, solar collectors, heat storage control devices and specialty items, sizing solar…

  8. Prototype Pompa Air Portable Tenaga Surya

    OpenAIRE

    Taufik, Mohammad

    2016-01-01

    Makalah ini menyajikan purwarupa pompa air portable tenaga surya. Sistem pompa air portable terdiri atas pompa air, panel surya, solar charge controller, battery, solar frame, tiang, dan box. Sistem dapat dirangkai, sehingga bersifat portable. Pompa air portable ini berguna untuk kolam, irigasi, dan penyediaan air bersih. Hasil optimasi memberikan spesifikasi pompa air berdaya 50 Watt dan tegangan 12 VDC, solar panel berdaya 50 Wp, battery berkapasitas 50 Ah dan tegangan 12 VDC, da...

  9. The Application Research of the Solar Energy Combines with Air Source Heat Pump System%太阳能结合空气源热泵系统应用研究

    Institute of Scientific and Technical Information of China (English)

    王文周

    2014-01-01

    太阳能结合空气源热泵系统作为生活热水、低温采暖热源、空调冷源,通过系统智能化优化控制及精准控温运行模式,完全采集太阳能、空气能免费能源,实现了工程上的节能、经济运行。%Solar energy combines with air source heat pump system as domestic hot water, low temperature heat sources for heating, and air conditioning cold source, which achieve the project on energy saving and economic operation through the intel igent optimization control system and precise temperature control operation mode with the completely col ection of solar energy and free air source energy.

  10. A comprehensive, multi-objective optimization of solar-powered absorption chiller systems for air-conditioning applications

    International Nuclear Information System (INIS)

    Shirazi, Ali; Taylor, Robert A.; Morrison, Graham L.; White, Stephen D.

    2017-01-01

    Highlights: • Multi-objective optimization of solar single/multi-effect absorption chillers was conducted. • Primary energy consumption and total annual cost were considered as the objectives. • Optimized designs of the alternative configurations were compared. • A detailed sensitivity analysis of the Pareto optimal solutions was investigated. - Abstract: Solar heating and cooling (SHC) systems are currently under rapid development and deployment due to their potential to reduce the use of fossil fuel resources and to alleviate greenhouse gas emissions in the building sector – a sector which is responsible for ∼40% of the world energy use. Absorption chiller technology (traditionally powered by natural gas in large buildings), can easily be retrofitted to run on solar energy. However, numerous non-intuitive design choices must be analyzed to achieve the best techno-economic performance of these systems. To date, there has been little research into the optimal configurations among the long list of potential solar-driven absorption chiller systems. To address this lack of knowledge, this paper presents a systematic simulation-based, multi-objective optimization of three common, commercially available lithium bromide-water absorption chillers – single-effect, double-effect and triple-effect – powered by evacuated tube collectors (ETCs), evacuated flat plate collectors (EFPCs), and concentrating parabolic trough collectors (PTCs), respectively. To the best of authors’ knowledge, this is the first study of its kind that compares the optimized designs of the most promising configurations of solar-assisted absorption chillers against a common set of energy, economic, and environmental metrics from a holistic perspective. A simulation model of these three configurations is developed using TRNSYS 17. A combined energy, economic, and environmental analysis of the modeled systems is conducted to calculate the primary energy use as well as the levelized total

  11. Air/liquid collectors

    DEFF Research Database (Denmark)

    Jensen, Søren Østergaard; Olesen, Ole; Kristiansen, Finn Harken

    1997-01-01

    this kind of collectors. The modified simulation program has been used for the determination of the surplus in performance which solar heating systems with this type of solar collectors for combined preheating of ventilation air and domestic hot water will have. The simulation program and the efficiency......This report determine efficiency equations for combined air/liquid solar collectors by measurements on to different air/liquid collectors. Equations which contain all relevant informations on the solar collectors. A simulation program (Kviksol) has been modified in order to be able to handle...

  12. A mathematical correlation between variations in solar radiation parameters. 2. Global radiation, air temperature and specific humidity

    International Nuclear Information System (INIS)

    Njau, E.C.

    1988-06-01

    We derive from first principles, an equation which expresses global radiation as a function of specific humidity and air temperature at screen height. The practical validity of this equation is tested by using humidity, air temperature and global radiation data from Tanzania. It is shown that global radiation values calculated on the basis of the derived equation agree with measured radiation values to within ± 8% as long as the prevalent (horizontal) winds are either calm or light. It is noted that the equation is equally valid at times of strong horizontal winds provided that the temperature and humidity measuring site is sufficiently shielded from the winds. This implies that meteorological stations that are (for some unavoidable reasons) unable to stock pyranometers can still procure reasonable estimates of local global radiation as long as they can, at least, stock the relatively cheaper barometers and wet- and dry-bulb psychrometers. (author). 12 refs, 1 fig., 4 tabs

  13. Imaging the Spatial Evolution of Degradation in Perovskite/Si Tandem Solar Cells After Exposure to Humid Air

    KAUST Repository

    Song, Zhaoning

    2017-09-14

    Monolithically integrated two-terminal perovskite/Si tandem solar cells promise to achieve high power conversion efficiency. However, there is a concern that the stability of the perovskite top cell will limit the long-term performance of tandem devices. To investigate the impact of perovskite cell degradation on the photocurrent generation and collection in the individual subcells, we employed light beam induced current mapping to spatially resolve the photocurrent under controlled humidity conditions. The evolution of the device behavior is consistent with the formation of an optically transparent hydrated perovskite phase that allows the bottom Si cell to continue to generate photocurrent at the probing wavelength (532 nm). Additional measurements were performed on perovskite thin films on glass substrates to verify the interpretation.

  14. An Air-conditioned Global Warming. The Description of Settings in Ian McEwan’s Solar

    Directory of Open Access Journals (Sweden)

    Elisa Bolchi

    2016-12-01

    Full Text Available The three main settings of McEwan’s Solar, a novel described as “the first great global-warming novel” (Walsh 2010 are significant: from London, to the Artic Pole, up to the desert in New Mexico, these places are all described through the interior monologue of the anti-hero Michael Beard, a character allegorical of humanity’s greed for selfish over-consumption. As Beard moves in the real environment only through the non-places of supermodernity (Augé, the paper ana¬lyses the descriptions of settings to underline how McEwan uses them to write about climate- change in a new “novelistic” way (McEwan.

  15. Performance Assessment of a Hybrid Solar-Geothermal Air Conditioning System for Residential Application: Energy, Exergy, and Sustainability Analysis

    Directory of Open Access Journals (Sweden)

    Yasser Abbasi

    2016-01-01

    Full Text Available This paper investigates the performance of a ground source heat pump that is coupled with a photovoltaic system to provide cooling and heating demands of a zero-energy residential building. Exergy and sustainability analyses have been conducted to evaluate the exergy destruction rate and SI of different compartments of the hybrid system. The effects of monthly thermal load variations on the performance of the hybrid system are investigated. The hybrid system consists of a vertical ground source heat exchanger, rooftop photovoltaic panels, and a heat pump cycle. Exergetic efficiency of the solar-geothermal heat pump system does not exceed 10 percent, and most exergy destruction takes place in photovoltaic panel, condenser, and evaporator. Although SI of PV system remains constant during a year, SI of GSHP varies depending on cooling and heating mode. The results also show that utilization of this hybrid system can reduce CO2 emissions by almost 70 tons per year.

  16. Imaging the Spatial Evolution of Degradation in Perovskite/Si Tandem Solar Cells After Exposure to Humid Air

    KAUST Repository

    Song, Zhaoning; Werner, Jeremie; Watthage, Suneth C.; Sahli, Florent; Shrestha, Niraj; De Wolf, Stefaan; Niesen, Bjorn; Phillips, Adam B.; Ballif, Christophe; Ellingson, Randy J.; Heben, Michael J.

    2017-01-01

    Monolithically integrated two-terminal perovskite/Si tandem solar cells promise to achieve high power conversion efficiency. However, there is a concern that the stability of the perovskite top cell will limit the long-term performance of tandem devices. To investigate the impact of perovskite cell degradation on the photocurrent generation and collection in the individual subcells, we employed light beam induced current mapping to spatially resolve the photocurrent under controlled humidity conditions. The evolution of the device behavior is consistent with the formation of an optically transparent hydrated perovskite phase that allows the bottom Si cell to continue to generate photocurrent at the probing wavelength (532 nm). Additional measurements were performed on perovskite thin films on glass substrates to verify the interpretation.

  17. EVALUACIÓN DE ALTERNATIVAS PARA CLIMATIZACIÓN DE ESTANQUES CON ENERGÍA SOLAR PARA CULTIVO DE TILAPIA ROJA (Oreochromis sp, LOCALIZADOS EN LA ZONA FRÍA DEL VALLE DEL CAUCA, COLOMBIA EVALUATION OF ALTERNATIVES FOR AIR CONDITIONING OF PONDS WITH SOLAR ENERGY FOR CULTIVATION OF RED TILAPIA (Oreochromis sp, LOCATED IN THE COLD AREA OF THE CAUCA VALLEY, COLOMBIA

    Directory of Open Access Journals (Sweden)

    Francisco Javier Borja Gallardo

    2006-06-01

    Full Text Available La investigación fue desarrollada para que la tilapia roja (Oreochromis sp, especie de pez mÁs producida en Colombia, pueda ser explotada en lugares donde las condiciones óptimas para su normal desarrollo no son las adecuadas, como son las regiones altas con temperaturas por debajo de los 24 °C, aplicando metodologías relacionadas con el aprovechamiento de la energía solar. Las técnicas evaluadas fueron: climatización por medio de colectores solares, climatización por medio de manta térmica, climatización por medio de mangueras térmicas y climatización por medio de resistencias eléctricas. Se analizaron factores como funcionalidad, mantenimiento, limitaciones organizativas, espaciales, y costos.The research was developed so that the red tilapia (Oreochromis sp, fish species that more taken place in Colombia can be exploited in regions where the good conditions for its normal development are not the appropriate ones as in the high regions with temperatures below the 24 °C, applying methodologies related with the use of the solar energy. The evaluated methodologies were: air conditioning by means of solar collectors, air conditioning by means of thermal blanket, air conditioning by means of thermal hoses and air conditioning by means of electric resistances. Factors like functionality, maintenance, organizational and space limitations, and costs were analized.

  18. Solar Water-Heater Design and Installation

    Science.gov (United States)

    Harlamert, P.; Kennard, J.; Ciriunas, J.

    1982-01-01

    Solar/Water heater system works as follows: Solar--heated air is pumped from collectors through rock bin from top to bottom. Air handler circulates heated air through an air-to-water heat exchanger, which transfers heat to incoming well water. In one application, it may reduce oil use by 40 percent.

  19. Studies of flat-plate solar air collectors with absorber plates made of amorphous silicon photovoltaic modules; Amorphous taiyo denchi module wo shunetsuban to shita heibangata kukishiki shunetsuki no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K; Ito, S; Miura, N [Kanagawa Institute of Technology, Kanagawa (Japan)

    1996-10-27

    A light/heat hybrid air type heat collector has been developed in which heat is collected by solar cell panels. In Type 1 heat collector provided with a glass cover, two modules are connected in series and placed under a glass cover to serve as a heat collecting plate, each module built of a steel plate and two thin-film amorphous solar cells bonded to the steel plate. Air runs under the heat collecting plate. Type 2 heat collector is a Type 1 heat collector minus the glass cover. Air is taken in by a fan, runs in a vinyl chloride tube, and then through the heat collector where it is heated by the sun, and goes out at the exit. Heat collecting performance was subjected to theoretical analysis. This heat collector approximated in point of heat collection a model using a board painted black, which means that the new type functions effectively as an air-type heat collector. Operating as a photovoltaic power generator, the covered type generated approximately 20% less than the uncovered type under 800W/m{sup 2} insolation conditions. Type 1 has been in service for five months, and Type 2 for 2 months. At present, both are free of troubles such as deformation and the amorphous solar cell modules have deteriorated but a little. 4 refs., 9 figs.

  20. Environmental impact of the programs of substitution of room type air conditioning equipment; Impacto ambiental de los programas de sustitucion de equipos de aire tipo cuarto

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon Aleman, Jose Mauricio [OLADE, Quito (Ecuador)

    2002-09-01

    The present article approaches in a general way the relation that exists between the environment and the saving of electrical energy, especially in the Programs of Demand Side Management (DSM). In particular form the potential environmental impacts are described, derived of the use and the discard of the room type air conditioning equipment, goes deep into the characteristics of their cooling fluids, as well as in the relation that these keep with the protocols of Montreal and Kyoto. Finally, this article comments the incidence which have, the manufacturers as the institutions that implement DSM programs, on the environmental part of the programs of substitution of room type air conditioning equipment. In addition it is briefly described, the pilot program developed by Fideicomiso para el Ahorro de Energia Electrica (FIDE) as a successful case. [Spanish] En forma general, el presente articulo aborda la relacion que existe entre el medio ambiente y el ahorro de energia electrica, especialmente en los Programas de Administracion por el Lado de la Demanda (ALD). En forma particular se describen los impactos ambientales potenciales, derivados del uso y desecho de los equipos de aire acondicionado tipo cuarto, se ahonda en las caracteristicas de sus refrigerantes, asi como en la relacion que estos guardan con los protocolos de Montreal y Kioto. Finalmente, se comenta la incidencia que tienen, tanto los fabricantes como las instituciones que implementan programas de ALD, sobre la parte ambiental de los programas de sustitucion de equipos de aire acondicionado tipo cuarto. Ademas se describe brevemente, el programa piloto desarrollado por el Fideicomiso para el Ahorro de Energia Electrica (FIDE) como un caso exitoso.

  1. FY 1977 Annual report on Sunshine Project results. Research and development of solar energy systems for air conditioning and hot water supply (Research and development of solar systems for condominiums); 1977 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Shugo jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-06-01

    This project is aimed at technological development of economical solar energy systems for air conditioning and hot water supply for condominiums. The major items for the FY 1977 programs include (1) designs and fabrication of equipment for a test building, (2) development of the equipment materials, and (3) system analysis. The jobs for item (1) include management of the designs and construction, placing an order for the building, and fabrication of an air conditioner expander and heat pump; those for item (2) include simplification of a condensing type and plate type heat collector structures, weather-resistance of the plate type heat collector structure, and materials for selective absorbing membranes and reflectors; and those for item (3) include estimation of heat loads in a model building, first to third floors as the test building, and fourth to 14th floors as the conventional box-shaped building. The heat collector installation area is investigated for a multistory building, for which solar radiation intensity at the heat-receiving plane and the like are taken into account. It is found that the solar system can be installed, when an area of 50m{sup 2} can be allocated to the system in each story. There is a limit to story number for the solar system to economically work for air conditioning and hot water supply. Sufficient insulation of the system and reduction in pipe length by zoning are the necessary measures against heat losses. (NEDO)

  2. Efficient and Air-Stable Planar Perovskite Solar Cells Formed on Graphene-Oxide-Modified PEDOT:PSS Hole Transport Layer

    Science.gov (United States)

    Luo, Hui; Lin, Xuanhuai; Hou, Xian; Pan, Likun; Huang, Sumei; Chen, Xiaohong

    2017-10-01

    As a hole transport layer, PEDOT:PSS usually limits the stability and efficiency of perovskite solar cells (PSCs) due to its hygroscopic nature and inability to block electrons. Here, a graphene-oxide (GO)-modified PEDOT:PSS hole transport layer was fabricated by spin-coating a GO solution onto the PEDOT:PSS surface. PSCs fabricated on a GO-modified PEDOT:PSS layer exhibited a power conversion efficiency (PCE) of 15.34%, which is higher than 11.90% of PSCs with the PEDOT:PSS layer. Furthermore, the stability of the PSCs was significantly improved, with the PCE remaining at 83.5% of the initial PCE values after aging for 39 days in air. The hygroscopic PSS material at the PEDOT:PSS surface was partly removed during spin-coating with the GO solution, which improves the moisture resistance and decreases the contact barrier between the hole transport layer and perovskite layer. The scattered distribution of the GO at the PEDOT:PSS surface exhibits superior wettability, which helps to form a high-quality perovskite layer with better crystallinity and fewer pin holes. Furthermore, the hole extraction selectivity of the GO further inhibits the carrier recombination at the interface between the perovskite and PEDOT:PSS layers. Therefore, the cooperative interactions of these factors greatly improve the light absorption of the perovskite layer, the carrier transport and collection abilities of the PSCs, and especially the stability of the cells.

  3. An investigation of heat transfer augmentation and friction characteristics in solar air heater duct with V-shaped wire as artificial roughness on absorber plate

    Energy Technology Data Exchange (ETDEWEB)

    Madhukeshwara, N. [Department of Mechanical Engineering, B.I.E.T, Davanagere, Karnataka (India); Prakash, E.S. [Department of Studies in Mechanical Engineering, U.B.D.T.C.E, Davanagere, Karnataka (India)

    2013-07-01

    An experimental investigation of heat transfer augmentation and friction characteristics of fully developed turbulent flow in a rectangular duct of solar air heater with absorber plate having V-shaped wire ribs as artificial roughness on its underside is carried out. The investigation covers wide range of different parameters of wire ribbed roughness: relative roughness pitch (p/e) from 10 to 40, relative roughness height (e/Dh) from 0.01 to 0.04 and angle of attack of flow from 20° to 90°. Duct aspect ratio (W/B) is kept 5 and Reynolds number (Re) is varied from 2,500 to 8,500. The heat transfer and friction factor values obtained are compared with those of smooth duct under similar flow conditions. Expressions are developed for Nusselt number and friction factor for the roughness geometry. Enhancement of Nusselt number and friction factor for roughened duct are 1.5 and 2.7 times of smooth duct respectively.

  4. Parametric Study on the Thermal Performance and Optimal Design Elements of Solar Air Heater Enhanced with Jet Impingement on a Corrugated Absorber Plate

    Directory of Open Access Journals (Sweden)

    Alsanossi M. Aboghrara

    2018-01-01

    Full Text Available Previous works revealed that cross-corrugated absorber plate design and jet impingement on a flat absorber plate resulted in a significant increase in the performance of a solar air heater (SAH. Involving these two designs into one continuous design to improve the SAH performance remains absent in the literature. This study aimed to evaluate the achieved enhancement on performance parameters of a SAH with jet impingement on a corrugated absorber plate. An energy balance model was developed to compare the performance parameters of the proposed SAH with the other two SAHs. At a clear sky day and a mass flow rate of 0.04 kg/s, the hourly results revealed that the max fluid outlet temperatures for the proposed SAH, jet-to-flat plate SAH, and cross-corrugated plate SAH are 321, 317, and 313 K, respectively; the max absorber plate temperatures are 323.5, 326.5, and 328 K, respectively; the maximum temperature differences between the absorber plate and fluid outlet are ~3, 9, and 15 K, respectively; the max efficiencies are 65.7, 64.8, and 60%, respectively. Statistical t-test results confirmed significant differences between the mean efficiency of the proposed SAH and SAH with jet-to-flat plate. Hence, the proposed design is considered superior in improving the performance parameters of SAH compared to other designs.

  5. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor

    KAUST Repository

    Holliday, Sarah

    2016-06-09

    Solution-processed organic photovoltaics (OPV) offer the attractive prospect of low-cost, light-weight and environmentally benign solar energy production. The highest efficiency OPV at present use low-bandgap donor polymers, many of which suffer from problems with stability and synthetic scalability. They also rely on fullerene-based acceptors, which themselves have issues with cost, stability and limited spectral absorption. Here we present a new non-fullerene acceptor that has been specifically designed to give improved performance alongside the wide bandgap donor poly(3-hexylthiophene), a polymer with significantly better prospects for commercial OPV due to its relative scalability and stability. Thanks to the well-matched optoelectronic and morphological properties of these materials, efficiencies of 6.4% are achieved which is the highest reported for fullerene-free P3HT devices. In addition, dramatically improved air stability is demonstrated relative to other high-efficiency OPV, showing the excellent potential of this new material combination for future technological applications.

  6. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor

    KAUST Repository

    Holliday, Sarah; Ashraf, Raja Shahid; Wadsworth, Andrew; Baran, Derya; Yousaf, Syeda Amber; Nielsen, Christian B.; Tan, Ching-Hong; Dimitrov, Stoichko D.; Shang, Zhengrong; Gasparini, Nicola; Alamoudi, Maha; Laquai, Fré dé ric; Brabec, Christoph J.; Salleo, Alberto; Durrant, James R.; McCulloch, Iain

    2016-01-01

    Solution-processed organic photovoltaics (OPV) offer the attractive prospect of low-cost, light-weight and environmentally benign solar energy production. The highest efficiency OPV at present use low-bandgap donor polymers, many of which suffer from problems with stability and synthetic scalability. They also rely on fullerene-based acceptors, which themselves have issues with cost, stability and limited spectral absorption. Here we present a new non-fullerene acceptor that has been specifically designed to give improved performance alongside the wide bandgap donor poly(3-hexylthiophene), a polymer with significantly better prospects for commercial OPV due to its relative scalability and stability. Thanks to the well-matched optoelectronic and morphological properties of these materials, efficiencies of 6.4% are achieved which is the highest reported for fullerene-free P3HT devices. In addition, dramatically improved air stability is demonstrated relative to other high-efficiency OPV, showing the excellent potential of this new material combination for future technological applications.

  7. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor

    Science.gov (United States)

    Holliday, Sarah; Ashraf, Raja Shahid; Wadsworth, Andrew; Baran, Derya; Yousaf, Syeda Amber; Nielsen, Christian B.; Tan, Ching-Hong; Dimitrov, Stoichko D.; Shang, Zhengrong; Gasparini, Nicola; Alamoudi, Maha; Laquai, Frédéric; Brabec, Christoph J.; Salleo, Alberto; Durrant, James R.; McCulloch, Iain

    2016-01-01

    Solution-processed organic photovoltaics (OPV) offer the attractive prospect of low-cost, light-weight and environmentally benign solar energy production. The highest efficiency OPV at present use low-bandgap donor polymers, many of which suffer from problems with stability and synthetic scalability. They also rely on fullerene-based acceptors, which themselves have issues with cost, stability and limited spectral absorption. Here we present a new non-fullerene acceptor that has been specifically designed to give improved performance alongside the wide bandgap donor poly(3-hexylthiophene), a polymer with significantly better prospects for commercial OPV due to its relative scalability and stability. Thanks to the well-matched optoelectronic and morphological properties of these materials, efficiencies of 6.4% are achieved which is the highest reported for fullerene-free P3HT devices. In addition, dramatically improved air stability is demonstrated relative to other high-efficiency OPV, showing the excellent potential of this new material combination for future technological applications. PMID:27279376

  8. Enhanced efficiency and air-stability of NiOX-based perovskite solar cells via PCBM electron transport layer modification with Triton X-100.

    Science.gov (United States)

    Lee, Kisu; Ryu, Jaehoon; Yu, Haejun; Yun, Juyoung; Lee, Jungsup; Jang, Jyongsik

    2017-11-02

    We modified phenyl-C61-butyric acid methyl ester (PCBM) for use as a stable, efficient electron transport layer (ETL) in inverted perovskite solar cells (PSCs). PCBM containing a surfactant Triton X-100 acts as the ETL and NiO X nanocrystals act as a hole transport layer (HTL). Atomic force microscopy and scanning electron microscopy images showed that surfactant-modified PCBM (s-PCBM) forms a high-quality, uniform, and dense ETL on the rough perovskite layer. This layer effectively blocks holes and reduces interfacial recombination. Steady-state photoluminescence and electrochemical impedance spectroscopy analyses confirmed that Triton X-100 improved the electron extraction performance of PCBM. When the s-PCBM ETL was used, the average power conversion efficiency increased from 10.76% to 15.68%. This improvement was primarily caused by the increases in the open-circuit voltage and fill factor. s-PCBM-based PSCs also showed good air-stability, retaining 83.8% of their initial performance after 800 h under ambient conditions.

  9. Solar Hydrogen Reaching Maturity

    Directory of Open Access Journals (Sweden)

    Rongé Jan

    2015-09-01

    Full Text Available Increasingly vast research efforts are devoted to the development of materials and processes for solar hydrogen production by light-driven dissociation of water into oxygen and hydrogen. Storage of solar energy in chemical bonds resolves the issues associated with the intermittent nature of sunlight, by decoupling energy generation and consumption. This paper investigates recent advances and prospects in solar hydrogen processes that are reaching market readiness. Future energy scenarios involving solar hydrogen are proposed and a case is made for systems producing hydrogen from water vapor present in air, supported by advanced modeling.

  10. Solar photoelectro-Fenton degradation of the antibiotic metronidazole using a flow plant with a Pt/air-diffusion cell and a CPC photoreactor

    International Nuclear Information System (INIS)

    Pérez, Tzayam; Garcia-Segura, Sergi; El-Ghenymy, Abdellatif; Nava, José L.; Brillas, Enric

    2015-01-01

    Highlights: • Degradation of metronidazole solutions at pH 3.0 by EF and SPEF in a flow plant. • High recalcitrance of the antibiotic and its products to be destroyed by ·OH radicals. • Only 53% mineralization by the most potent SPEF process at 55.4 mA cm −2 . • 5 heterocyclic products, 12 hydroxylated derivatives and 2 carboxylic acids were found. • Release of NO 3 − ion and generation of persistent N-products and N-volatile species. - Abstract: The degradation of 10 dm 3 of solutions of the heterocyclic antibiotic metronidazole in 0.10 mol dm −3 Na 2 SO 4 of pH 3.0 has been comparatively studied by electro-Fenton (EF) and solar photoelectro-Fenton (SPEF). Experiments were performed in a solar flow plant equipped with a Pt/air-diffusion cell and coupled to a compound parabolic collector (CPC) photoreactor. A very weak mineralization was found for the EF process in the dark, indicating a large recalcitrance of heterocyclic compounds to be destroyed by hydroxyl radicals formed at the Pt anode from water oxidation and mainly in the bulk from Fenton's reaction between added Fe 2+ and cathodically generated H 2 O 2 . The quick photolysis of intermediates by UV radiation from sunlight enhanced largely the mineralization process by SPEF. The effect of applied current density and Fe 2+ and drug contents on the SPEF treatment was examined. The best process was found for 1.39 mmol dm −3 metronidazole with 0.50 mmol dm −3 Fe 2+ at 55.4 mA cm −2 giving 53% mineralization, 36% mineralization current efficiency and 0.339 kWh (g DOC) −1 in 300 min. Metrodinazole was completely removed and its decay obeyed a pseudo-first-order kinetics. LC-MS analysis allowed identifying five heterocyclic products and twelve hydroxylated derivatives. Ion-exclusion HPLC analysis revealed that final oxalic and oxamic acids were practically removed at the end of electrolysis due to the efficient photolysis of their Fe(III) complexes by sunlight. The initial N of

  11. Indium oxide/n-silicon heterojunction solar cells

    Science.gov (United States)

    Feng, Tom; Ghosh, Amal K.

    1982-12-28

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  12. Solar Indices - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  13. Solar Indices - Solar Ultraviolet

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  14. Solar Indices - Solar Corona

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  15. Solar Indices - Solar Irradiance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  16. Proposal for energy saving in air conditioning equipment; Propuesta para ahorro energetico en acondicionadores de aire

    Energy Technology Data Exchange (ETDEWEB)

    Solis Recendez, Daniel H [Division de Ingenieria Electrica, Universidad Nacional Autonoma de Mexico (Mexico)

    2008-10-15

    In the last decades, the air conditioning systems have become a crucial part in the search from comfort in extreme climates. Nevertheless, they have also become one of the greatest energy consumers. In this article it is proposed that the final conditions that the air conditioning equipment looks for not to be fixed, but variable in respect to a certain comfort zone. This zone is a variation of the used one in the bio-climatic chart of Olgyay that considers the rapidity whereupon the reached conditions tend to leave the comfort zone. It is analyzed how to choose the point on the zone that costs less energy in arriving to it. [Spanish] En las ultimas decadas, los sistemas de aire acondicionado se han vuelto una parte crucial en la busqueda de confort en climas extremosos. Sin embargo, tambien se han vuelto de los mayores consumidores de energia. En este articulo se propone que las condiciones finales que busquen lograr los acondicionadores no sean fijas, si no variables respecto a una determinada zona de confort. Dicha zona es una variacion de la utilizada en la carta bioclimatica de Olgyay, que considera la rapidez con que las condiciones alcanzadas tienden a abandonar la zona de confort. Se discute como elegir el punto sobre la zona que cueste menos energia en llegara el.

  17. Simple air collectors for preheating fresh air

    NARCIS (Netherlands)

    Hensen, J.L.M.; Wit, de M.H.; Ouden, den C.

    1984-01-01

    In dwellings with mechanical ventilation systems the fresh air can easily be preheated by means of simple solar air systems. These can be an integral part of the building facade or roof and the costs are expected to be low. By means of computer experiments a large number of systems were evaluated.

  18. Mars Solar Balloon Lander, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Solar Balloon Lander (MSBL) is a novel concept which utilizes the capability of solar-heated hot air balloons to perform soft landings of scientific...

  19. NEW MODEL FOR SOLAR RADIATION ESTIMATION FROM ...

    African Journals Online (AJOL)

    NEW MODEL FOR SOLAR RADIATION ESTIMATION FROM MEASURED AIR TEMPERATURE AND ... Nigerian Journal of Technology ... Solar radiation measurement is not sufficient in Nigeria for various reasons such as maintenance and ...

  20. The 1995 total solar eclipse: an overview.

    Science.gov (United States)

    Singh, J.

    A number of experiments were conducted during the total solar eclipse of October 24, 1995. First time efforts were made to photograph the solar corona using IAF jet aircrafts and transport planes ad hot air balloons.

  1. Comportamento pós-colheita de mamões Formosa 'Tainung 01' acondicionados em diferentes embalagens para o transporte Post harvest behavior of Papaya Formosa 'Tainung 01' conditioned in different packings for transportation

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Magalhães dos Santos

    2008-06-01

    Full Text Available O objetivo deste trabalho foi avaliar a comportamento pós-colheita de mamões do grupo Formosa híbrido 'Tainung 01', submetidos a diferentes formas de acondicionamento para o transporte rodoviário, desde o local da produção até o mercado atacadista. Foram utilizados mamões colhidos nos estádios 1 (até 10% da área superficial da casca com cor amarela e 3 (25 a 40% da área superficial da casca com cor amarela, acondicionados sob diferentes formas: a granel, em caixas de madeira, em caixas de papelão ondulado e em caixas plásticas forradas com plástico-bolha (controle, e transportados a Viçosa-MG, distante 750 km da produção, onde os frutos foram avaliados. Após seleção e novo acondicionamento, os frutos foram armazenamento a 24,5 ± 2ºC por 8 dias, com amostragens a cada 2 dias, para avaliação de índice de cor da casca, perda de massa fresca, taxa respiratória, firmeza da polpa e o índice de injúrias mecânicas. Os resultados evidenciaram os efeitos depreciativos das injúrias mecânicas na qualidade final do mamão, sendo que o transporte de frutos a granel, em relação ao controle, promoveu alterações na qualidade pós-colheita dos frutos, com aumento do índice de cor da casca, redução na firmeza da polpa, elevada perda de massa fresca e taxa respiratória, e maiores percentagens de área da casca injuriada, nos dois estádios de coloração estudados (1,14 e 1,21%, respectivamente. As caixas de papelão ondulado e caixas plásticas forradas com plástico-bolha mantiveram baixa a percentagem de área injuriada em relação aos transportados a granel, constituindo-se em alternativas promissoras na manutenção da qualidade pós-colheita de mamão Formosa destinado ao mercado interno.The aim of this study was to evaluate the post harvest behavior of papaya from the hybrid group Formosa 'TAINUNG 01' stored in different packages for road transportation, from the farm to the wholesale market. It was used papaya picked

  2. 太阳能一空气双热源复合热泵系统性能研究%Studying of the System Performance of the Solar - air Dual - source Heat Pump

    Institute of Scientific and Technical Information of China (English)

    张超; 赵晓丹; 周光辉

    2011-01-01

    太阳能—空气双热源复合热泵技术能有效解决空气源热泵室外温度低时蒸发器易结霜、系统性能降低的缺点.本文在课题组前期研究的基础上,针对一种新型的太阳能—空气双热源复合热泵系统,采用分布参数法建立了系统的数学模型.利用数学模拟的方法对单一空气源热泵系统和太阳能—空气双热源复合热泵系统在三种不同工况下的制热量和COP进行了模拟,并对模拟结果进行了对比分析.%The problems such as the easily frosting of the evaporator and the poor system performance in low outdoor temperature can be effectively solved with the solar-air dual-source heat pump technology. In this paper, based on the previous working of the research group, the steady distributed parameter method has been adopted to establish the mathematical model of a new solar-air dual-source heat pump system. The system performance of the single air source heat pump system and the solar-air dual-source heat pump system in three operation conditions have been studied with the mathematical simulation method, and the simulated results have been analyzed.

  3. Comprehensive Planning for Passive Solar Architectural Retrofit

    Science.gov (United States)

    1980-05-01

    technical information, and the natural environ- ment. Since the Air Force Energy plan stresses Passive Solar (Architecture) before using Active Solar...retrofitted by-1990, and the Air Force Energy Plan stresses Passive Solar Applications. Bdcause of this requirement, you must consider the following retrofit...OF THI SUN AT NOON ON O CUMIN 21 EXAWMKU[ AT 3M. AN I S - W Figure 12-4 12-3 Skylight- use a reflector ,with horizontal skylights to ,iincrease solar

  4. Solar building

    OpenAIRE

    Zhang, Luxin

    2014-01-01

    In my thesis I describe the utilization of solar energy and solar energy with building integration. In introduction it is also mentioned how the solar building works, trying to make more people understand and accept the solar building. The thesis introduces different types of solar heat collectors. I compared the difference two operation modes of solar water heating system and created examples of solar water system selection. I also introduced other solar building applications. It is conv...

  5. Hybrid utilization of solar energy. Part 2. Performance analyses of heating system with air hybrid collector; Taiyo energy no hybrid riyo ni kansuru kenkyu. 2. Kuki shunetsu hybrid collector wo mochiita danbo system no seino hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, M; Okumiya, M [Nagoya University, Nagoya (Japan)

    1996-10-27

    For the effective utilization of solar energy at houses, a heating system using an air hybrid collector (capable of simultaneously performing heat collection and photovoltaic power generation). As the specimen house, a wooden house of a total floor area of 120m{sup 2} was simulated. Collected air is fanned into a crushed stone heat accumulator (capable of storing one day`s collection) or into a living room. The output of solar cell arrays is put into a heat pump (capable of handling a maximum hourly load of 36,327kJ/h) via an inverter so as to drive the fan (corresponding to average insolation on the heat collecting plate of 10.7MJ/hm{sup 2} and heat collecting efficiency of 40%), and shortage in power if any is supplied from the system interconnection. A hybrid collector, as compared with the conventional air collector, is lower in thermal efficiency but the merit that it exhibits with respect to power generation is far greater than what is needed to counterbalance the demerit. When the hybrid system is in heating operation, there is an ideal heat cycle of collection, accumulation, and radiation when the load is light, but the balance between accumulation and radiation is disturbed when the load is heavy. 4 refs., 8 figs., 3 tabs.

  6. Emerging Solar Technologies: Perovskite Solar Cell

    Indian Academy of Sciences (India)

    energy technologies and ... cost-effective and feasible non-silicon solar cell technologies. ..... storing in the air for long periods, and the stability reached up to .... [12] Y Liu, L A Renna, M Bag, Z A Page, P Kim, J Choi, T Emrick, D Venkatara-.

  7. Solar energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role solar energy may have in the energy future of the US. The topics discussed in the chapter include the solar resource, solar architecture including passive solar design and solar collectors, solar-thermal concentrating systems including parabolic troughs and dishes and central receivers, photovoltaic cells including photovoltaic systems for home use, and environmental, health and safety issues

  8. Effects of Cd{sub 1-x}Zn{sub x}S alloy composition and post-deposition air anneal on ultra-thin CdTe solar cells produced by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, A.J., E-mail: Andrew.J.Clayton@Swansea.ac.uk [Centre for Solar Energy Research, College of Engineering, Swansea University, OpTIC, St. Asaph, LL17 0JD (United Kingdom); Baker, M.A.; Babar, S.; Grilli, R. [The Surface Analysis Laboratory, Department of Mechanical Engineering Sciences, University of Surrey, Guildford, GU2 7XH (United Kingdom); Gibson, P.N. [Institute for Health and Consumer Protection, Joint Research Centre of the European Commission, 21027, Ispra, VA (Italy); Kartopu, G.; Lamb, D.A. [Centre for Solar Energy Research, College of Engineering, Swansea University, OpTIC, St. Asaph, LL17 0JD (United Kingdom); Barrioz, V. [Engineering and Environment, Department of Physics and Electrical Engineering, Northumbria University, Newcastle, NE1 8ST (United Kingdom); Irvine, S.J.C. [Centre for Solar Energy Research, College of Engineering, Swansea University, OpTIC, St. Asaph, LL17 0JD (United Kingdom)

    2017-05-01

    Ultra-thin CdTe:As/Cd{sub 1-x}Zn{sub x}S photovoltaic solar cells with an absorber thickness of 0.5 μm were deposited by metal-organic chemical vapour deposition on indium tin oxide coated boro-aluminosilicate substrates. The Zn precursor concentration was varied to compensate for Zn leaching effects after CdCl{sub 2} activation treatment. Analysis of the solar cell composition and structure by X-ray photoelectron spectroscopy depth profiling and X-ray diffraction showed that higher concentrations of Zn in the Cd{sub 1-x}Zn{sub x}S window layer resulted in suppression of S diffusion across the CdTe/Cd{sub 1-x}Zn{sub x}S interface after CdCl{sub 2} activation treatment. Excessive Zn content in the Cd{sub 1-x}Zn{sub x}S alloy preserved the spectral response in the blue region of the solar spectrum, but increased series resistance for the solar cells. A modest increase in the Zn content of the Cd{sub 1-x}Zn{sub x}S alloy together with a post-deposition air anneal resulted in an improved blue response and an enhanced open circuit voltage and fill factor. This device yielded a mean efficiency of 8.3% over 8 cells (0.25 cm{sup 2} cell area) and best cell efficiency of 8.8%. - Highlights: • CdCl{sub 2} anneal treatment resulted in S diffusing to the back contact. • High Zn levels created mixed cubic/hexagonal structure at the p-n junction. • Increased Zn in Cd{sub 1-x}Zn{sub x}S supressed S diffusion into CdTe. • Device V{sub oc} was enhanced overall with an additional back surface air anneal.

  9. Engineering Design and Economic Analysis of Air Source Heat Pump Assisted Solar Water Heating System%热泵+太阳能热水系统的工程设计与经济分析

    Institute of Scientific and Technical Information of China (English)

    李永华

    2013-01-01

    以空气源热泵为辅助热源的太阳能集中热水系统,不仅节能效率高,而且能保证全天候连续热水供应,是近年来太阳能利用的发展方向之一。淮海工学院学生浴室采用了空气源热泵辅助太阳能热水系统,设计用水人数17000人,日需热水量184 t。介绍了该热水系统的工作原理及设计计算,并对5种热水工程方案从初期投资和运行费用方面进行了详细的经济性分析,结果表明:以空气源热泵为辅助热源的热水方案较其他方案具有更好的经济、环保效益。%The high energy-efficient solar energy water heating system in conjunction with air source heat pump, supplying all-weather continuous hot water, is one of the developing direction of solar energy utilization in recent years. Students ’ Bathroom of Huaihai Institute of Technology use solar water heating system assisted with air source heat pump for 17000 students, requiring 184 tons of hot water every day. The working principle and design calculation of hot water system are expounded with detailed analysis of the initial investment and operating costs for five kinds of heating water engineering solutions. Results show that air source heat pump as auxiliary heat source has better economic and environmental benefits.

  10. Discussion of the Integrate Designs between Solar Energy Water Heating System and Air-source Heat Pump%空气源热泵与太阳能热水系统集成设计探讨

    Institute of Scientific and Technical Information of China (English)

    王伟; 南晓红; 马俊; 李飞

    2011-01-01

    对不同地区应用的几种不同形式空气源热泵辅助型太阳能热水系统设计方案进行介绍探讨,并以其为基础提出一种新的空气源热泵与太阳能热水系统集成的多功能系统设计方案。总结了不同地区、不同形式空气源热泵辅助型太阳能热水系统的设计方案、特点及新集成系统运行模式等,为我国不同地区应用此类系统时选择具体设计方案提供参考。%In this paper,different designs of the solar energy water heating system aided by air-source heat pump(SEWH-ASHP) are introduced and discussed,then a new integrate design between solar energy water heating system and air-source heat pump is given.Characters of different designs of the solar energy water heating system aided by air-source heat pump in different area are summed and the operational modes of the integrate system are analysed,which would be a useful reference to chose for designing and using the system of SEWH-ASHP and integrate system in different areas in China.

  11. Solar Walls in tsbi3

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne

    tsbi3 is a user-friendly and flexible computer program, which provides support to the design team in the analysis of the indoor climate and the energy performance of buildings. The solar wall module gives tsbi3 the capability of simulating solar walls and their interaction with the building....... This version, C, of tsbi3 is capable of simulating five types of solar walls say: mass-walls, Trombe-walls, double Trombe-walls, internally ventilated walls and solar walls for preheating ventilation air. The user's guide gives a description of the capabilities and how to simulate solar walls in tsbi3....

  12. Estimativa da produtividade de arroz irrigado em função da radiação solar global e da temperatura mínima do ar Rice yield estimates based on global solar radiation and minimum air temperature

    Directory of Open Access Journals (Sweden)

    Silvio Steinmetz

    2013-02-01

    Full Text Available Considerando-se a importância da produção do arroz irrigado no Estado do Rio Grande do Sul e que o seu desempenho é influenciado pelas condições meteorológicas, o objetivo deste trabalho foi estimar a produtividade de grãos dessa cultura em função da radiação solar global e da temperatura mínima do ar, usando procedimentos de análise de regressão linear simples e múltipla. Realizou-se um experimento de campo, em Capão do Leão, RS, durante três anos agrícolas. Empregaram-se, em cada ano agrícola, seis datas de semeadura e oito cultivares de diferentes grupos de comprimento de ciclo. Dez colmos principais de cada cultivar foram marcados, para determinarem-se os principais estádios de desenvolvimento. A variável dependente (Y foi a média da produtividade de quatro repetições, de cada época de semeadura, e as variáveis independentes foram: a média da radiação solar global (X¹, a média da temperatura mínima do ar (X² e a média da temperatura mínima do ar elevada ao quadrado (X³, computadas em quatro períodos de desenvolvimento da planta para a radiação solar global e em três períodos para a temperatura mínima do ar. A maioria das variáveis, quando testadas isoladamente, apresentou uma relação linear significativa com a produtividade, mas os coeficientes de determinação (r² foram mais elevados nas regressões lineares múltiplas envolvendo as principais variáveis. Modelos de regressão que utilizam como variáveis preditoras a radiação solar global e a temperatura mínima do ar, em diferentes períodos de desenvolvimento da planta, mostram-se adequados para a estimativa da produtividade de grãos de arroz irrigado.Considering the importance of irrigated rice production in the State of Rio Grande do Sul and that its performance is influenced by the weather conditions, the objective of this study was to estimate the grain yield of this crop as a function of global solar radiation and minimum air

  13. Solar thermal energy / exhaust air heat pump / wood pellet furnace for a sustainable heat supply of low energy buildings in older buildings; Solarthermie / Abluft-Waermepumpe / Pelletofen. Kombisysteme zur nachhaltigen Waermeversorgung von Niedrigenergiehaeusern im Gebaeudebestand

    Energy Technology Data Exchange (ETDEWEB)

    Diefenbach, Nikolaus; Born, Rolf [Institut Wohnen und Umwelt GmbH, Darmstadt (Germany); Staerz, Norbert [Ingenieurbuero inPlan, Pfungstadt (Germany)

    2009-11-13

    The research project under consideration reports on combination systems for a sustainable heat supply for low-energy buildings in older building. For this, a central and decentralized system configuration consisting of solar thermal energy, exhaust air heat pump and wood pellet furnace are presented. Solutions for an interaction of these three heat suppliers in one plant are designated regarding the control strategy. The fundamentals of the computerized simulations for the central and decentralized system are presented. A cost estimate with both variants of the combination system as well as a comparison with conventional energy-saving heat supply systems follow.

  14. PV solar system feasibility study

    International Nuclear Information System (INIS)

    Ashhab, Moh’d Sami S.; Kaylani, Hazem; Abdallah, Abdallah

    2013-01-01

    Highlights: ► This research studies the feasibility of PV solar systems. ► The aim is to develop the theory and application of a hybrid system. ► Relevant research topics are reviewed and some of them are discussed in details. ► A prototype of the PV solar system is designed and built. - Abstract: This research studies the feasibility of PV solar systems and aims at developing the theory and application of a hybrid system that utilizes PV solar system and another supporting source of energy to provide affordable heating and air conditioning. Relevant research topics are reviewed and some of them are discussed in details. Solar heating and air conditioning research and technology exist in many developed countries. To date, the used solar energy has been proved to be inefficient. Solar energy is an abundant source of energy in Jordan and the Middle East; with increasing prices of oil this source is becoming more attractive alternative. A good candidate for the other system is absorption. The overall system is designed such that it utilizes solar energy as a main source. When the solar energy becomes insufficient, electricity or diesel source kicks in. A prototype of the PV solar system that operates an air conditioning unit is built and proper measurements are collected through a data logging system. The measured data are plotted and discussed, and conclusions regarding the system performance are extracted.

  15. Analysis and design of a dish/Stirling system for solar electric generation with a 2.7 kW air-cooled engine; Analisis y diseno de un sistema de generacion electrica termosolar con concentrador de disco parabolico y motor Stirling de 2.7 kW enfriado por aire

    Energy Technology Data Exchange (ETDEWEB)

    Beltran-Chacon, R.; Velazquez-Limon, N. [Universidad Autonoma de Baja California, Baja California (Mexico)]. E-mails: rbeltran1@uabc.edu.mx; nicolas.velazquez@uabc.edu.mx; Sauceda-Carvajal, D. [Universidad Politecnica de Baja California, Baja California (Mexico)]. E-mail: dsaucedac@upbc.edu.mx

    2012-01-15

    This paper presents a mathematical modeling, simulation and design of a solar power system of a parabolic dish with an air-cooled Stirling engine of 2.7 kW. The model used for the solar concentrator, the cavity and the Stirling engine were successfully validated against experimental data. Based on a parametric study, the design of the components of the engine is carried out. The study shows that as system capacity increases, the overall efficiency is limited by the power required by the fan, since the design of the cooler needs greater amounts of heat removal by increasing the air flow without affecting the internal conditions of the process (mass flow of working gas and internal dimensions of the same). The system was optimized and achieves an overall efficiency of solar to electric energy conversion of 26.7%. This study shows that the use of an air-cooled Stirling engine is potentially attractive for power generation at low capacities. [Spanish] Este trabajo presenta un modelado matematico, la simulacion y diseno de un sistema de generacion electrica termosolar de disco parabolico con motor Stirling de 2.7 kW enfriado directamente por aire. El modelo utilizado para el concentrador, la cavidad y el motor Stirling, fueron validados satisfactoriamente con datos experimentales. Con base en un estudio parametrico se realizo el dimensionamiento de los componentes del motor. El estudio realizado muestra que conforme se incrementa la capacidad del sistema, la eficiencia global se ve limitada por la potencia requerida por el ventilador, dado que el diseno del enfriador necesita retirar mayores cantidades de calor aumentando el flujo de aire, sin afectar las condiciones internas del proceso (flujo masico del gas de trabajo y dimensiones internas del mismo). El sistema fue optimizado obteniendo una eficiencia global de conversion de energia solar a electrica de 26.7%. Este estudio muestra que el uso de un motor Stirling enfriado directamente por aire es potencialmente

  16. CERN... Solar Style

    CERN Multimedia

    2001-01-01

    Inventor William van Sprolant presenting the Solar Club's latest invention, the solar fountain. The CERN Solar Club is giving new meaning to the phrase 'fun in the sun' with their most recently developed contraption, the Solar Fountain. The Fountain was presented to the public just outside of Restaurant 1 on Wednesday October, 17th and uses solar energy to run a water pump at its base to propel a golden plastic ball up into the air. As lovely as the fountain is, the funny thing about it is that the height of the water jet and the ball are an artistic method of measuring the amount of solar power being captured by the photovoltaique panel (no batteries included). The day it was presented started out cloudy, but as the afternoon wore on, the weather brightened and the fountain jumped to life. William van Sprolant, the Solar Fountain's inventor, had great fun with the fountain in front of a group of visiting children swiveling the solar panel in multiple directions. 'Everyone who installs solar panels worrie...

  17. Solar Energy Demonstrations

    Science.gov (United States)

    1979-01-01

    Solar energy furnishes all of the heating and hot water needs, plus 80 percent of the air conditioning, for the two-story Reedy Creek building. A unique feature of this installation is that the 16 semi-cylindrical solar collectors (center photo on opposite page with closeup of a single collector below it) are not mounted atop the roof as is customary, they actually are the roof. This arrangement eliminates the usual trusses, corrugated decking and insulating concrete in roof construction; that, in turn, reduces overall building costs and makes the solar installation more attractive economically. The Reedy Creek collectors were designed and manufactured by AAI Corporation of Baltimore, Maryland.

  18. Solar Imagery - White Light - ISOON

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Improved Solar Observing Optical Network (ISOON) project is a collaboration between the Air Force Research Laboratory Space Vehicles Directorate and the National...

  19. Project of air conditioning system by absorption of water-lithium bromide using solar energy and simulation of its operation under several conditions; Projeto de sistema para condicionamento de ar por absorcao de agua-brometo de litio utilizando energia solar e simulacao de sua operacao sob condicoes diversas

    Energy Technology Data Exchange (ETDEWEB)

    Sbravati, Alan; Figueiredo, Jose Ricardo [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]. E-mails: alan@fem.unicamp.br; jrfigue@fem.unicamp.br

    2000-07-01

    This article presents computational models for water - lithium bromide absorption air conditioning systems, verifying the use of solar energy as source of heat for the cycle. Four different models were elaborated for the cycle, changing the configurations and hypotheses. In each model two algorithms were elaborated: the first one accomplished the calculations of the heat and mass flows and a estimative of the areas heat transfer, a project of a system, and another which, based on the answers of the first, simulate the behavior of this system when the conditions of initial project are changed, keeping constant the constructive parameters. As in the project a numeric procedure has been used for solution of non lineal systems based on the algorithm of Newton-Raphson. The main alteration among the models went to substitution of the expansion device and evaporator, and, in the fourth model, was increased a procedure for calculation of the solar collector performance. (author)

  20. Application of Air Source Heat Pump plus Solar Energy in Domestic Hot Water Preparation System%空气源热泵+太阳能在热水制备系统中的应用

    Institute of Scientific and Technical Information of China (English)

    李超; 卢强; 郭萌; 赵勇

    2015-01-01

    This paper analyzes the commonly used heating modes and gives a detailed introduction of both air source heat pump technology and solar heating technology. Combined with the actual project, the steam heating system of hot water is changed into air source heat pump plus solar heating. By analyzing the actual enetgy consumption data, we obtain the energy -saving value, thus achieve the goal of energy efficiency.%通过对常用供热方式的分析,并对空气源热泵技术、太阳能制热技术原理的介绍,结合工程实际情况,将原蒸汽加热制热水方式改造为空气源热泵+太阳能制热。通过对实际能耗数据的经济分析,得出改造后的节能价值,达到了节约能源的目的。

  1. The Design of Hot Water Supply System of Solar Energy and Air Source Heat Pump%太阳能+空气源热泵的热水供应系统设计

    Institute of Scientific and Technical Information of China (English)

    卢春萍

    2015-01-01

    太阳能集中热水系统受到天气的影响难以全天候运行,需要设置辅助加热装置。以广州市宾馆热水供应为例,对太阳能空气源热泵的热水系统进行设计,包括空气源热泵热水机组选型计算、太阳能集热管面积计算、储热水箱的确定、集热循环水泵的确定。%Influenced by weather condition,it is difficult to run for hot water supply system of solar en-ergy all the time,and the auxiliary heating device need setting.Taking hot water supply in a hotel of Guangzhou city as an example in this paper,the heat pump system of solar energy and air source was designed,including the calculation of equipment selection of the air source heat pump, the calculation of the collector area,the determination of the heat storage tank,and the determina-tion of the circulating pump of the heat collection.

  2. Effect of heat-insulating wall on input energy of a photovoltaic/solar/air-heat system for a residence; Jutaku no kodannetsuka ni yoru taiyoko netsu/taiki netsu system no donyu energy sakugen koka

    Energy Technology Data Exchange (ETDEWEB)

    Kenmoku, Y; Sakakibara, T [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S [Maizuru College of Technology, Kyoto (Japan)

    1996-10-27

    A proposal was made to introduce a photovoltaic/solar/air-heat system which positively utilizes natural energy in order to curtail consumption of fossil energy, corroborating that the system has greatly reduced energy input in the primary energy level in a house. This paper examines the effect of curtailment of energy input in the case of reducing the load of air conditioning through the high heat insulation of a house. The energy input was evaluated by calculating additional equipment energy needed newly for the high heat insulation. The system performance and the energy load varied greatly depending on weather conditions. The subject system consisted of solar cells, inverter, heat concentrator, heat storage tank, heat pump and gas hot-water supply device. The thickening of the insulation sharply reduced heating load in the house, thereby decreasing fuel energy substantially. An insulation material of 100mm thick was capable of reducing energy input by 16-23% compared with that of 50mm thick. 5 refs., 5 figs, 3 tabs.

  3. Hybrid Solar-Geothermal Energy Absorption Air-Conditioning System Operating with NaOH-H2O—Las Tres Vírgenes (Baja California Sur, “La Reforma” Case

    Directory of Open Access Journals (Sweden)

    Yuridiana Rocio Galindo-Luna

    2018-05-01

    Full Text Available Solar and geothermal energies are considered cleaner and more useful energy sources that can be used to avoid the negative environmental impacts caused by burning fossil fuels. Several works have reported air-conditioning systems that use solar energy coupled to geothermal renewable energy as a thermal source. In this study, an Absorption Air-Conditioning System (AACS used sodium hydroxide-water (NaOH-H2O instead of lithium bromide-water to reduce the cost. Low enthalpy geothermal heat was derived from two shallow wells, 50 and 55 m deep. These wells are of interest due to the thermal recovery (temperature vs. time of 56.2 °C that was possible at the maximum depth, which can be used for the first stage of the process. These wells were coupled with solar energy as a geothermal energy application for direct uses such as air-conditioning systems. We studied the performance of an absorption cooling system operating with a NaOH-H2O mixture and using a parabolic trough plant coupled with a low enthalpy geothermal heat system as a hybrid heat source, as an alternative process that can help reduce operating costs and carbon dioxide emissions. The numerical heat transfer results showed the maximum convective heat transfer coefficient, as function of fluid velocity, and maximum temperature for a depth higher than 40 m. The results showed that the highest temperatures occur at low fluid velocities of less than or equal to 5.0 m/s. Under these conditions, reaching temperatures between 51.0 and 56.2 °C in the well was possible, which is required of the geothermal energy for the solar energy process. A water stream was used as the working fluid in the parabolic trough collector field. During the evaluation stage, the average experimental storage tank temperature achieved by the parabolic trough plant was 93.8 °C on October 23 and 92.9 °C on October 25, 2017. The numerical simulation used to evaluate the performance of the absorption cycle used a generator

  4. Solar Features - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A solar flare is a short-lived sudden increase in the intensity of radiation emitted in the neighborhood of sunspots. For many years it was best monitored in the...

  5. Minimum maintenance solar pump | Assefa | Zede Journal

    African Journals Online (AJOL)

    A minimum maintenance solar pump (MMSP), Fig 1, has been simulated for Addis Ababa, taking solar meteorological data of global radiation, diffuse radiation and ambient air temperature as input to a computer program that has been developed. To increase the performance of the solar pump, by trapping the long-wave ...

  6. Solar storms; Tormentas solares

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: Pereira Cuesta, S.; Pereira Pagan, B.

    2016-08-01

    Solar storms begin with an explosion, or solar flare, on the surface of the sun. The X-rays and extreme ultraviolet radiation from the flare reach the Earths orbit minutes later-travelling at light speed. The ionization of upper layers of our atmosphere could cause radio blackouts and satellite navigation errors (GPS). Soon after, a wave of energetic particles, electrons and protons accelerated by the explosion crosses the orbit of the Earth, and can cause real and significant damage. (Author)

  7. Photovoltaic assisted solar drying system

    International Nuclear Information System (INIS)

    Ruslan, M.H.; Othman, M.Y.; Baharuddin Yatim; Kamaruzzaman Sopian; Ali, M.I.; Ibarahim, Z.

    2006-01-01

    A photovoltaic assisted solar drying system has been constructed at the Solar Energy Research Park, Universiti Kebangsaan Malaysia. This drying system uses a custom designed parallel flow V-groove type collector. A fan powered by photovoltaic source assists the air flow through the drying system. A funnel with increasing diameter towards the top with ventilator turbine is incorporated into the system to facilitate the air flow during the absence of photovoltaic energy source. This drying system is designed with high efficiency and portability in mind so that it can readily be used at plantation sites where the crops are harvested or produced. A daily mean efficiency about 44% with mean air flow rate 0.16 kgs -1 has been achieved at mean daily radiation intensity of 800 Wm -2 . daily mean temperature of air drying chamber under the above conditions is 46 o C. Study has shown that the air flow and air temperature increase with the increase of solar radiation intensity. On a bright sunny day with instantaneous solar intensity about 600 Wm -2 , the temperature of air entering the drying chamber of 45 o C has been measured. In the absence of photovoltaic or in natural convection flow, the instantaneous efficiency decreased when solar radiation increased. The instantaneous efficiency recorded are 35% and 27% respectively at 570 Wm -2 and 745 Wm -2 of solar radiation. The temperature of drying chamber for the same amount of solar radiation are 42 o C and 48 o C respectively. Thus, the solar dryer shows a great potential for application in drying process of agricultural produce

  8. Solar powered dugout aeration

    International Nuclear Information System (INIS)

    Murrell, S.

    2001-10-01

    Pasture dugouts are a significant source of water for livestock on the Canadian Prairies and as such, must maintain the best water quality possible. Aeration improves the water quality and is part of a good management plan to reduce overall water treatment costs. Although dugouts can be aerated naturally through wind and wave action and photosynthesis, this generally aerates only the top portion of the dugout. Artificial aeration by air injection into the lowest point of the dugout ensures that the water is oxygenated throughout the entire dugout. Solar aeration can be used in remote areas where grid power is not practical. With solar powered aeration systems, solar panels are used to generate the electrical power needed to run the compressor while storing excess energy in batteries. A solar aeration system includes solar panels, deep cycle batteries to store excess power, a control board with a regulator, a compressor, a weighed feeder hose, and an air diffuser. This publication presented the design of a solar aeration system and its cost. 1 tab., 3 figs

  9. Solar energy for Europe

    International Nuclear Information System (INIS)

    Berkmann, Rainer

    1998-01-01

    The virtues of solar energy are extolled. The greenhouse gas aspect is mentioned but the main thrust of the paper is the technology and applications such as domestic water heating, combined water and space heating, swimming pools, industrial heating and air conditioning. Statistical data for the present European market, sales and installed collector area are given. (UK)

  10. Job creation potential of solar

    International Nuclear Information System (INIS)

    McMonagle, R.

    2005-01-01

    This document defines the size of the job market within Canada's solar industry and presents a preliminary forecast of the employment opportunities through to 2025. The issue of job potential within Canada's solar technologies is complicated by the wide range of different fields and technologies within the solar industry. The largest energy generator of the solar technologies is passive solar, but the jobs in this sector are generally in the construction trades and window manufacturers. The Canadian Solar Industries Association estimates that there are about 360 to 500 firms in Canada with the primary business of solar technologies, employing between 900 to 1,200 employees. However, most solar manufacturing jobs in Canada are for products exports as demonstrated by the 5 main solar manufacturers in Canada who estimate that 50 to 95 per cent of their products are exported. The main reason for their high export ratio is the lack of a Canadian market for their products. The 3 categories of job classifications within the solar industry include manufacturing, installation, and operations and maintenance. The indirect jobs include photovoltaic system hardware, solar hot water heating, solar air ventilation, and glass/metal framing. 17 refs., 3 tabs., 2 figs

  11. Method for forming indium oxide/n-silicon heterojunction solar cells

    Science.gov (United States)

    Feng, Tom; Ghosh, Amal K.

    1984-03-13

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  12. Solar Energy.

    Science.gov (United States)

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  13. Solar energy

    Science.gov (United States)

    Rapp, D.

    1981-01-01

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  14. Solar Combisystems

    DEFF Research Database (Denmark)

    Thür, Alexander

    2006-01-01

    This note first introduces what is a solar combisystem, the structure how a solar combisystem is build up and what are criteria’s to evaluate a solar combisystem concept. Further on the main components of a solar combisystem, the main characteristics and possible advantages and disadvantages...... compared to each other are described. It is not the goal of this note to explain the technical details how to design all components of a solar combisystem. This is done during other lectures of the solar course and in other basic courses as well. This note tries to explain how a solar combisystem...

  15. Solar Systems

    Science.gov (United States)

    1979-01-01

    The solar collectors shown are elements of domestic solar hot water systems produced by Solar One Ltd., Virginia Beach, Virginia. Design of these systems benefited from technical expertise provided Solar One by NASA's Langley Research Center. The company obtained a NASA technical support package describing the d e sign and operation of solar heating equipment in NASA's Tech House, a demonstration project in which aerospace and commercial building technology are combined in an energy- efficient home. Solar One received further assistance through personal contact with Langley solar experts. The company reports that the technical information provided by NASA influenced Solar One's panel design, its selection of a long-life panel coating which increases solar collection efficiency, and the method adopted for protecting solar collectors from freezing conditions.

  16. Performance analysis of a soil-based thermal energy storage system using solar-driven air-source heat pump for Danish buildings sector

    DEFF Research Database (Denmark)

    Jradi, M.; Veje, C.; Jørgensen, B. N.

    2017-01-01

    and the economic and environmental aspects. However, the intermittent nature of solar energy and the lack of high solar radiation intensities in various climates favour the use of various energy storage techniques to eliminate the discrepancy between energy supply and demand. The current work presents an analysis......, Denmark, in addition to charging the soil storage medium in summer months when excess electric power is generated. The stored heat is discharged in December and January to provide the space heating and domestic hot water demands of the residential project without the utilization of an external heating...... losses and the surrounding soil temperature variation throughout the year. It was found that the overall system heating coefficient of performance is around 4.76, where the reported energetic efficiency is 5.88% for the standalone PV system, 19.1% for the combined PV-ASHP system, and 22...

  17. Solar energy: Technology and applications

    Science.gov (United States)

    Williams, J. R.

    1974-01-01

    It is pointed out that in 1970 the total energy consumed in the U.S. was equal to the energy of sunlight received by only 0.15% of the land area of the continental U.S. The utilization of solar energy might, therefore, provide an approach for solving the energy crisis produced by the consumption of irreplaceable fossil fuels at a steadily increasing rate. Questions regarding the availability of solar energy are discussed along with the design of solar energy collectors and various approaches for heating houses and buildings by utilizing solar radiation. Other subjects considered are related to the heating of water partly or entirely with solar energy, the design of air conditioning systems based on the use of solar energy, electric power generation by a solar thermal and a photovoltaic approach, solar total energy systems, industrial and agricultural applications of solar energy, solar stills, the utilization of ocean thermal power, power systems based on the use of wind, and solar-energy power systems making use of geosynchronous power plants.

  18. Solar radiophysics

    International Nuclear Information System (INIS)

    McLean, D.J.; Labrum, N.R.

    1985-01-01

    This book treats all aspects of solar radioastronomy at metre wavelengths, particularly work carried out on the Australian radioheliograph at Culgoora, with which most of the authors have been associated in one way or another. After an introductory section on historical aspects, the solar atmosphere, solar flares, and coronal radio emission, the book deals with instrumentation, theory, and details of observations and interpretations of the various aspects of metrewave solar radioastronomy, including burst types, solar storms, and the quiet sun. (U.K.)

  19. Air Conditioner/Dehumidifier

    Science.gov (United States)

    1986-01-01

    An ordinary air conditioner in a very humid environment must overcool the room air, then reheat it. Mr. Dinh, a former STAC associate, devised a heat pipe based humidifier under a NASA Contract. The system used heat pipes to precool the air; the air conditioner's cooling coil removes heat and humidity, then the heat pipes restore the overcooled air to a comfortable temperature. The heat pipes use no energy, and typical savings are from 15-20%. The Dinh Company also manufactures a "Z" coil, a retrofit cooling coil which may be installed on an existing heater/air conditioner. It will also provide free hot water. The company has also developed a photovoltaic air conditioner and solar powered water pump.

  20. A novel design for a cheap high temperature solar collector: The rotating solar boiler

    NARCIS (Netherlands)

    Luijtelaer, van J.P.H.; Kroon, M.C.

    2009-01-01

    In this work a novel type of high temperature solar collector is designed: the rotating solar boiler. This rotating solar boiler consists of two concentric tubes. The inner tube, called absorber, absorbs sunlight and boils water. The outer transparent tube, called cover, is filled with air. The

  1. Study on Energy-saving Solar Air-source Heat Pump Multifunctional Machine%节能型太阳能空气源热泵多功能机研究

    Institute of Scientific and Technical Information of China (English)

    王天舒

    2018-01-01

    随着科技的进步和经济的发展,节能和环保问题使得人们越来越重视清洁能源的利用,太阳能有其独特的优越性但是受限于太阳因素.而热泵技术作为节能型制冷供热热水技术与太阳能结合具有良好的性能.本文主要介绍了节能型太阳能空气源热泵多功能机的工作原理、应用领域.%With the progress of science and technology and development of economy, people pay more and more attention to the utilization of clean energy due to the problems of energy saving and environmental protection. Heat pump technology, as an energy saving refrigeration and heating hot water technology combined with solar energy, has good performance. This paper introduces the working principle and application field of energy-saving solar air-source heat pump multifunctional machine.

  2. Final Environmental Assessment, Outgrant for Construction and Operation of a Solar Photovoltaic System in Area I, Nellis Air Force Base, Clark County, Nevada

    Science.gov (United States)

    2011-03-01

    publico, etc. Se alienta tambien. Su opinion es una parte lmportante del proceso Nacional de Medio Ambiente el cumplimiento Ia Ley de Polltica. Por...Nacional de Medio Ambients el cumpllmiento Ia Ley de Politica. Por favor escriba sus preguntas, comentarios o sugerencias sobre el espacio de abajo. Si...2-5 Table 3-1. National Ambient Air Quality Standards

  3. Market opportunities for solar drying

    International Nuclear Information System (INIS)

    Voskens, R.G.J.H.; Out, P.G.; Schulte, B.

    2000-01-01

    One of the most promising applications for solar heating is the drying of agricultural products. The drying of agricultural products requires large quantities of low temperature air, in many cases, on a year-round basis. Low cost air-based collectors can provide heated air at solar collection efficiencies of 30 to 70%. In 1998/1999 a study was commissioned to better understand the technical and economic potential for solar drying of agricultural products in the world. The practical potential for solar drying was then determined for 59 crops and 22 regions. The world market for solar drying can be divided into three market segments: 1) mechanical drying T 50 deg. C; 3) sun drying. The most promising market for solar drying is generally market segment 1. For this segment the potential amount of energy displaced by solar is in between 216 770 PJ (World-wide). For Western Europe this potential is estimated between 23 88 PJ and for Eastern Europe between 7 and 13 PJ. A different market introduction strategy is required for each market segment. A total of 13 combinations of crops and regions are selected that appear to have the highest practical potential for solar drying. In the Netherlands a programme of activities was carried out by Ecofys and other organisations, to identify and develop the market potential for solar (assisted) drying of agricultural products. A promotional campaign for the use of renewable energy in the (promising) flower bulb sector is planned on a short-term basis to speed up market developments. It can be concluded that there is a large market for solar drying in the World as well as in Europe. (au)

  4. Solar energy

    International Nuclear Information System (INIS)

    Kruisheer, N.

    1992-01-01

    In five brief articles product information is given on solar energy applications with special attention to the Netherlands. After an introduction on solar energy availability in the Netherlands the developments in solar boiler techniques are dealt with. Solar water heaters have advantages for the environment, and government subsidies stimulate different uses of such water heaters. Also the developments of solar cells show good prospects, not only for developing countries, but also for the industrialized countries. In brief the developments in solar energy storage and the connection of solar equipment to the grid are discussed. Finally attention is paid to the applications of passive solar energy in the housing construction, the use of transparent thermal insulation and the developments of translucent materials. 18 figs., 18 ills

  5. Solar Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar photographic and illustrated datasets contributed by a number of national and private solar observatories located worldwide....

  6. Solar Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar feature datasets contributed by a number of national and private solar observatories located worldwide.

  7. Solar Indices

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  8. Solar Special

    International Nuclear Information System (INIS)

    Van Roekel, A.; Osborne, J.; Schroeter, S.; De Jong, R.; De Saint Jacob, Y.

    2009-01-01

    Solar power is growing much faster than most policymakers and analysts realise. As costs come down and feed-in tariffs go up across Europe, a number of countries have started in pursuit of market leader Germany. But in Germany criticism is growing of the multi-billion-euro support schemes that keep the solar industry booming. In this section of the magazine several articles are dedicated to developments in solar energy in Europe. The first article is an overview story on the strong growing global market for solar cells, mainly thanks to subsidy schemes. The second article is on the position of foreign companies in the solar market in Italy. Article number three is dedicated to the conditions for solar technology companies to establish themselves in the German state of Saxony. Also the fifth article deals with the development of solar cells in Saxony: scientists, plant manufacturers and module producers in Saxony are working on new technologies that can be used to produce solar electricity cost-effectively. The goal is to bring the price down to match that of conventionally generated electricity within the next few years. The sixth article deals with the the solar power market in Belgium, which may be overheated or 'oversubsidized'. Article seven is on France, which used to be a pioneer in solar technology, but now produces only a fraction of the solar output of market leader Germany. However, new attractive feed-in-tariffs are changing the solar landscape drastically

  9. EDITORIAL Solar harvest Solar harvest

    Science.gov (United States)

    Demming, Anna

    2010-12-01

    into the charge transport mechanism and trap distribution in these composites [3]. An advantage of investigating solar cell technology based on organic materials rather than silicon is that silicon photovoltaics requires high-purity silicon, whereas the material demands of organic technology are not nearly so strict. Work by researchers in Denmark and Germany highlights the simplicity and tolerance to ambient conditions of organic photovoltaic fabrication in the demonstration of a nanostructured polymer solar cell made from a thermocleavable polymer material and zinc oxide nanoparticles. All the manipulations during device preparation could be carried out in air at around 20 °C and 35% humidity [4]. A possible route to enhancing cell performance is through the improvment of the transport efficiency. Researchers in Taiwan demonstrate how effectively this can be implemented in a hybrid device comprising TiO2 nanorods and poly[2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) [5]. In addition, inorganic semiconductor nanocrystals that have tunable optical bandgaps can be combined with organic semiconductors for the fabrication of hybrid photovoltaic devices with broad spectral sensitivity. A collaboration of researchers in the UK and the US has now developed a near-infrared sensitive hybrid photovoltaic system with PbS nanocrystals and C60. The reported improvement in device performance is attributed to increased carrier mobility of the PbS nanocrystal film [6]. In this issue, Patrick G Nicholson and Fernando A Castro from the National Physical Laboratory in the UK present a topical review on the principles and techniques for the characterization of organic photovoltaics [7]. The review presents a comprehensive picture of the current state-of-the-art understanding of the working mechanisms behind organic solar cells, and also describes electronic morphological considerations relevant to optimizing the devices, as well as different nanoscale techniques for

  10. Ant-nest corrosion of copper tubing in air-conditioning units

    Directory of Open Access Journals (Sweden)

    Bastidas, D. M.

    2006-10-01

    Full Text Available Ant-nest corrosion is a specific type of premature failure (2-3 months of copper tubes used in air-conditioning units causing the loss of refrigerant liquid and the consequent environment pollution. It is known that attack requires the simultaneous presence of moisture, oxygen and a corrodent, usually an organic acid, such as formic, acetic, propionic or butyric acid or other volatile organic substances like methanol, ethanol, formaldehyde or acetoaldehyde. Approximately 10% of all premature failures of copper tubes used in the heating, ventilation and air-conditioning (HVAC industry are the result of ant-nest corrosion. This type of corrosion usually occurs in thin-wall copper pipes, especially when copper is de-sulphurised, and is known by several names: formicary corrosion, unusual corrosion, branched pits, pinhole corrosion, etc.

    Corrosión por “nido de hormigas” es un tipo específico de fallo prematuro (2-3 meses que tiene lugar en tubos de cobre utilizados en sistemas de aire acondicionado originando la pérdida de líquido refrigerante y la consecuente contaminación ambiental. Es conocido que este tipo de ataque requiere la presencia simultánea de humedad, oxígeno y un medio agresivo, habitualmente un ácido orgánico, como fórmico, acético  propiónico o butírico u otras sustancias orgánicas volátiles tales como metanol, etanol, formaldehido o acetoaldehido. Aproximadamente el 10% de los fallos prematuros en tubos de cobre utilizados en calefacción, ventilación y en la industria de aire acondicionado son el resultado de corrosión por nido de hormigas. Frecuentemente, este tipo de corrosión tiene lugar en tubos de cobre de pared delgada, especialmente cuando el cobre es del tipo desulfurizado, y se conoce con varios nombres: corrosión por ácido fórmico, corrosión no habitual, picaduras ramificadas, corrosión con forma de alfiler, etc.

  11. Solar Flare Studies

    Science.gov (United States)

    1982-03-20

    Feldman, U., and Dere, K. P.:ý 1978, Astophys. /. 224, 1017. Underwood, J. H., Milligan, !. C., dc Loach , A. C. and Hoover, R. B.:, 1977, Applied... Loach , A. C., Hoose~r, R. B., and MlcGuire, J. P.: 19 75,Solar Phys. 45, 377. N , Sheridan, K. V.. Jackson, B. V., hict-can, EX. I , and Sulk, G. A...Sacramento Peak Observatory, Ken Nicolas at NRL and Dean Jacobs at UCSD. This research was sponsored by the Air Force Office of Scientific Research, Air Force

  12. Solar Indices - Solar Radio Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  13. Molded polymer solar water heater

    Science.gov (United States)

    Bourne, Richard C.; Lee, Brian E.

    2004-11-09

    A solar water heater has a rotationally-molded water box and a glazing subassembly disposed over the water box that enhances solar gain and provides an insulating air space between the outside environment and the water box. When used with a pressurized water system, an internal heat exchanger is integrally molded within the water box. Mounting and connection hardware is included to provide a rapid and secure method of installation.

  14. Rational energy utilization and utilization of solar energy in the open-air swimming pool and in the multiple purpose hall at Wiehl. Final report. Pt. E

    Energy Technology Data Exchange (ETDEWEB)

    Bouillon, H; Jensch, K; Pentenrieder, J; Biasin, K; Dreisbach, K; Fruehauf, H J

    1982-12-01

    The test operation in Wiehl has shown that the waste heat utilization of an ice-sport ground especially in connection with the heat supply of an open-air swimming pool can be technically and functionally performed. Unter the given operating conditions annual cost savings of approx. 45.000 DM are yielded as against conventional systems. In addition to this advantage regarding works-economy the heat pump system also offers the advantage of considerable primary energy conservation. Apart from these very important findings also essential knowledge of details with regard to design, control, energy consumption and behaviour of the individual systems of this complex system have been obtained.

  15. Coupled solar still, solar heater

    Energy Technology Data Exchange (ETDEWEB)

    Davison, R R; Harris, W B; Moor, D H; Delyannis, A; Delyannis, E [eds.

    1976-01-01

    Computer simulation of combinations of solar stills and solar heaters indicates the probable economic advantage of such an arrangement in many locations if the size of the heater is optimized relative to that of the still. Experience with various low cost solar heaters is discussed.

  16. Solar Sailing

    Science.gov (United States)

    Johnson, Les

    2009-01-01

    Solar sailing is a topic of growing technical and popular interest. Solar sail propulsion will make space exploration more affordable and offer access to destinations within (and beyond) the solar system that are currently beyond our technical reach. The lecture will describe solar sails, how they work, and what they will be used for in the exploration of space. It will include a discussion of current plans for solar sails and how advanced technology, such as nanotechnology, might enhance their performance. Much has been accomplished recently to make solar sail technology very close to becoming an engineering reality and it will soon be used by the world s space agencies in the exploration of the solar system and beyond. The first part of the lecture will summarize state-of-the-art space propulsion systems and technologies. Though these other technologies are the key to any deep space exploration by humans, robots, or both, solar-sail propulsion will make space exploration more affordable and offer access to distant and difficult destinations. The second part of the lecture will describe the fundamentals of space solar sail propulsion and will describe the near-, mid- and far-term missions that might use solar sails as a propulsion system. The third part of the lecture will describe solar sail technology and the construction of current and future sailcraft, including the work of both government and private space organizations.

  17. Nanostructuring of Solar Cell Surfaces

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    Solar energy is by far the most abundant renewable energy source available, but the levelized cost of solar energy is still not competitive with that of fossil fuels. Therefore there is a need to improve the power conversion effciency of solar cells without adding to the production cost. The main...... objective of this PhD thesis is to develop nanostructured silicon (Si) solar cells with higher power conversion efficiency using only scalable and cost-efficient production methods. The nanostructures, known as 'black silicon', are fabricated by single-step, maskless reactive ion etching and used as front...... texturing of different Si solar cells. Theoretically the nanostructure topology may be described as a graded refractive index in a mean-field approximation between air and Si. The optical properties of the developed black Si were simulated and experimentally measured. Total AM1.5G-weighted average...

  18. Mineralization of phthalic acid by solar photoelectro-Fenton with a stirred boron-doped diamond/air-diffusion tank reactor: Influence of Fe3+ and Cu2+ catalysts and identification of oxidation products

    International Nuclear Information System (INIS)

    Garcia-Segura, Sergi; Salazar, Ricardo; Brillas, Enric

    2013-01-01

    Highlights: • Almost total mineralization of phthalic acid by solar photoelectro-Fenton with Fe 3+ , Cu 2+ and Fe 3+ –Cu 2+ mixtures. • Hydroxyl radical generation from photo-Fenton reaction under solar radiation. • Enhancement of the mineralization rate using Fe 3+ and small amounts of Cu 2+ . • Detection of eleven aromatic intermediates and six short-linear carboxylic acids. • Oxidation of Cu(II)-carboxylate complexes with ·OH and photolysis of Fe(III)-carboxylate species. -- Abstract: Here, the substrate decay and mineralization rate for 100 cm 3 of a 2.0 mM phthalic acid solution in 0.10 M Na 2 SO 4 of pH 3.0 have been studied by electro-Fenton (EF) and solar photoelectro-Fenton (SPEF). The electrochemical cell was a stirred tank reactor containing a 3 cm 2 boron-doped diamond (BDD) anode and a 3 cm 2 air-diffusion cathode that generates H 2 O 2 . Cu 2+ and/or Fe 3+ were added as catalysts with total concentration of 0.50 mM and a constant current density of 33.3 mA cm −2 was applied. In EF with Cu 2+ or Fe 3+ alone and SPEF with only Cu 2+ , phthalic acid decayed slowly and poor mineralization was reached because the main oxidant was ·OH produced at the BDD surface from water oxidation. In contrast, the substrate destruction was largely enhanced using SPEF with 0.50 mM Fe 3+ since a high quantity of oxidant ·OH was produced in the bulk induced by photo-Fenton reaction. This treatment led to an almost total mineralization by the photolysis of generated Fe(III)-carboxylate complexes. In all cases, the decay of phthalic acid obeyed a pseudo-first-order reaction. The combination of Cu 2+ and Fe 3+ as catalysts accelerated the mineralization process in SPEF because Cu(II)-carboxylate complexes were also removed with ·OH formed from photo-Fenton reaction. The best SPEF process was found for 0.125 mM Cu 2+ + 0.375 mM Fe 3+ , giving rise to 99% mineralization with 40% current efficiency and 0.294 kWh g −1 TOC energy consumption. Eleven aromatics

  19. Air Research

    Science.gov (United States)

    EPA's air research provides the critical science to develop and implement outdoor air regulations under the Clean Air Act and puts new tools and information in the hands of air quality managers and regulators to protect the air we breathe.

  20. Residential solar hot water

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    This report examines the feasibility of using solar energy to preheat domestic water coming from the city supply at a temperature of approximately 4{degree}C. Four solar collectors totalling 7 m{sup 2} were installed on a support structure facing south at an angle of 60{degree} from the horizontal. The system worked most efficiently in the spring and early summer when the combination of long hours of sunshine, clean air and clear skies allowed for maximum availability of solar radiation. Performance dropped in late summer and fall mainly due to cloudier weather conditions. The average temperature in the storage tank over the 10 months of operation was 42{degree}C, ranging from a high of 83{degree}C in July to a low of 6{degree}C in November. The system provided a total of 7.1 GJ, which is approximately one-third the annual requirement for domestic hot water heating. At the present time domestic use of solar energy to heat water does not appear to be economically viable. High capital costs are the main problem. As a solar system with present day technology can only be expected to meet half to two-thirds of the hot water energy demand the savings are not sufficient for the system to pay for itself within a few years. 5 figs.

  1. Mississauga solar house (Mississauga, Ontario, Canada)

    National Research Council Canada - National Science Library

    Sasaki, J. R

    1978-01-01

    .... Winter space heating is favoured over annual water heating. A description is given of system components, including flat plate collectors, a solar heat exchanger, a water-to-air heat pump and concrete water tanks for heat storage...

  2. Solar collector performance evaluated outdoors at NASA-Lewis Research Center

    Science.gov (United States)

    Vernon, R. W.

    1974-01-01

    The study of solar reflector performance reported is related to a project in which solar collectors are to be provided for the solar heating and cooling system of an office building at NASA's Langley Research Center. The solar collector makes use of a liquid consisting of 50% ethylene glycol and 50% water. A conventional air-liquid heat exchanger is employed. Collector performance and solar insolation data are recorded along with air temperature, wind speed and direction, and relative humidity.

  3. Unconventional device concepts for polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Veenstra, S.C.; Slooff, L.H.; Verhees, W.J.H.; Cobussen-Pool, E.M.; Lenzmann, F.O.; Kroon, J.M. [ECN Solar Energy, Petten (Netherlands); Sessolo, M.; Bolink, H.J. [Instituto de Ciencia Molecular, Universidad de Valencia, Valencia (Spain)

    2009-09-15

    The inclusion of metal-oxide layers in polymer solar cells enables the fabrication of a series of unconventional device architectures. These devices include: semi-transparent polymer solar cells, devices with inverted polarity, as well as devices with air stable electrodes. A proof-of-principle of these devices is presented. The anticipated benefits of these novel device structures over conventional polymer solar cells are discussed.

  4. Solar Photovoltaic

    OpenAIRE

    Wang, Chen; Lu, Yuefeng

    2016-01-01

    In the 21st century, human demand for new energy sources is urgent, because the traditional fossil energy is unable to meet human needs, and the fossil resource will make pollution, in this situation, solar energy gradually into the vision of scientists. As science advances, humans can already extensive use of solar energy to generate electricity. Solar energy is an inexhaustible and clean energy. In the global energy crisis, environmental pollution is the growing problem of today. The us...

  5. Solar magnetohydrodynamics

    International Nuclear Information System (INIS)

    Priest, E.R.

    1982-01-01

    The book serves several purposes. First set of chapters gives a concise general introduction to solar physics. In a second set the basic methods of magnetohydrodynamics are developed. A third set of chapters is an account of current theories for observed phenomena. The book is suitable for a course in solar physics and it also provides a comprehensive review of present magnetohydrodynamical models in solar physics. (SC)

  6. Solar constraints

    International Nuclear Information System (INIS)

    Provost, J.

    1984-01-01

    Accurate tests of the theory of stellar structure and evolution are available from the Sun's observations. The solar constraints are reviewed, with a special attention to the recent progress in observing global solar oscillations. Each constraint is sensitive to a given region of the Sun. The present solar models (standard, low Z, mixed) are discussed with respect to neutrino flux, low and high degree five-minute oscillations and low degree internal gravity modes. It appears that actually there do not exist solar models able to fully account for all the observed quantities. (Auth.)

  7. Solar Simulator

    Science.gov (United States)

    1981-01-01

    Oriel Corporation's simulators have a high pressure xenon lamp whose reflected light is processed by an optical system to produce a uniform solar beam. Because of many different types of applications, the simulators must be adjustable to replicate many different areas of the solar radiation spectrum. Simulators are laboratory tools for such purposes as testing and calibrating solar cells, or other solar energy systems, testing dyes, paints and pigments, pharmaceuticals and cosmetic preparations, plant and animal studies, food and agriculture studies and oceanographic research.

  8. Experimental investigation of the effect of variously-shaped ribs on local heat transfer on the outer wall of the turning portion of a U-channel inside solar air heater

    Science.gov (United States)

    Salameh, Tareq; Alami, Abdul Hai; Sunden, Bengt

    2016-03-01

    In the present work, an experimental investigation of convective heat transfer and pressure drop was carried out for the turning portion of a U-channel where the outer wall was equipped with ribs. The shape of the ribs was varied. The investigation aims to give guidelines for improving the thermo-hydraulic performance of a solar air heater at the turning portion of a U-channel. Both the U-channel and the ribs were made in acrylic material to allow optical access for measuring the surface temperature by using a high-resolution technique based on narrow band thermochromic liquid crystals (TLC R35C5 W) and a CCD camera placed to face the turning portion of the U-channel. The uncertainties were estimated to 5 and 7 % for the Nusselt number and friction factor, respectively. The pressure drop was approximately the same for all the considered shapes of the ribs while the dimpled rib case gave the highest heat transfer coefficient while the grooved rib presented the highest performance index.

  9. A solar absorption refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Kurbanov, N.; Daykhanov, S.; Khandurdyev, A.

    1982-01-01

    An assembly is described which is designed primarily for air conditioning. This device contains a transformer heated by solar energy, a heat exchanger generator with strong and weak solution lines connected to the irrigator and absorber vessel, respectively, and an evaporator. In order to reduce the metal consumption, the absorber and the evaporator are built in the form of a single indirectly air-cooled device with vertical dry and wet channels for primary and auxillary air respectively. The absorber irrigator is manufactured in a multisectional configuration with its sections located in the upper half of the front section of each dry channel, with the lower sections of these areas manufactured as a weak solution vessel separated from the remaining sections containing the dry channels by barriers.

  10. Huge opportunity for solar cooling

    International Nuclear Information System (INIS)

    Rowe, Daniel

    2014-01-01

    In Europe more than 400 solar cooling systems have been installed. By contrast, only a small number of solar cooling installations exist in Australia - primarily adsorption and absorption systems for commercial and hospitals - although these systems are growing. As with other renewable energy technologies, cost is a challenge. However solar cooling is currently competitive with other technologies, with some suggesting that system costs have been decreasing by about 20% per annum in recent times. Australia is also leading efforts in the development of residential solar desiccant technology, currently commercialising Australian-developed technology. Commercial and industrial enterprises are increasingly aware of the impact of demand charges, the potential to install technology as a hedge against future energy price rises and opportunities associated with increased on-site generation and reduced reliance on the grid, often necessitating on-site demand reduction and management. They are also driven by environmental and corporate social responsibility objectives as well as the opportunity for energy independence and uninterruptible operation. Interestingly, many of these interests are mirrdred at residential level, inspiring CSIRO's commercialisation of a domestic scale solar air conditioner with Australian manufacturer Brevis Climate Systems. Australia and other countries are increasingly aware of solar cooling as technology which can reduce or replace grid-powered cooling, particularly in applications where large building thermal energy requirements exist. In these applications, heating, cooling and hot water are generated and used in large amounts and the relative amounts of each can be varied dynamically, depending on building requirements. Recent demonstrations of solar cooling technology in Australia include Hunter TAFE's Solar Desiccant Cooling System - which provides heating, cooling and hot water to commercial training kitchens and classrooms - GPT

  11. performance evaluation of a pebble bed solar crop dryer abstract

    African Journals Online (AJOL)

    Dr Obe

    The open-air sun drying is prevalent and very common in the rural areas. Farmers spread their agricultural produce such as maize, cassava, pepper, tomatoes etc. ... drying system. The abundance of solar radiation in. Nigeria could make crop drying with solar dryers very easy and simple. Economic appraisal of solar drying ...

  12. Solar Sprint

    Science.gov (United States)

    Tabor, Richard; Anderson, Stephen

    2007-01-01

    In the "Solar Sprint" activity, students design, test, and race a solar-powered car built with Legos. The use of ratios is incorporated to simulate the actual work of scientists and engineers. This method encourages fourth-grade students to think about multiple variables and stimulates their curiosity when an activity doesn't come out as…

  13. Solar thermal

    International Nuclear Information System (INIS)

    Jones, J.

    2006-01-01

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m 3 - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become increasingly important as

  14. Solar thermal

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.

    2006-07-15

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m{sup 3} - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become

  15. Solar energy: photovoltaics

    International Nuclear Information System (INIS)

    Goetzberger, A.; Voss, B.; Knobloch, J.

    1994-01-01

    This textbooks covers the following topics: foundations of photovoltaics, solar energy, P-N junctions, physics of solar cells, high-efficiency solar cells, technology of Si solar cells, other solar cells, photovoltaic applications. (orig.)

  16. Air Pollution

    Science.gov (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  17. Solar Newsletter | Solar Research | NREL

    Science.gov (United States)

    more about work by this consortium, which crosses national laboratories, on new materials and designs information on NREL's research and development of solar technologies. To receive new issues by email prize, focused on solar energy technologies, and will release the prize rules and open registration

  18. Solar electricity and solar fuels

    Science.gov (United States)

    Spiers, David J.

    1989-04-01

    The nature of solar radiation and its variation with location is described. The distribution of energy in the solar spectrum places immediate limits on the theoretical efficiency of conversion processes, since practical absorbers cannot convert all wavelengths received to useful energy. The principles of solar energy conversion methods are described. Absorption of solar energy can give rise to direct electrical generation, heating, or chemical change. Electrical generation from sunlight can be achieved by photovoltaic systems directly or by thermal systems which use solar heat to drive a heat engine and generator. The technology used and under research for promising ways of producing electricity or fuel from solar energy is described. Photovoltaic technology is established today for remote area, small power applications, and photovoltaic module sales alone are over 100 million dollars per year at present. The photovoltaic market has grown steadily since the mid-1970's, as prices have fallen continuously. Future energy options are briefly described. The merits of a sustainable energy economy, based on renewable energy resources, including solar energy, are emphasized, as this seems to provide the only hope of eliminating the problems caused by the build-up of atmospheric carbon dioxide, acid rain pollution and nuclear waste disposal. There is no doubt that clean fuels which were derived from solar energy and either did not involve carbon dioxide and used atmospheric carbon dioxide as the source dioxide as the source of carbon would be a worthy ideal. Methods described could one day achieve this.

  19. Solar Plus: A Holistic Approach to Distributed Solar PV

    Energy Technology Data Exchange (ETDEWEB)

    O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ardani, Kristen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-25

    Solar 'plus' refers to an emerging approach to distributed solar photovoltaic (PV) deployment that uses energy storage and controllable devices to optimize customer economics. The solar plus approach increases customer system value through technologies such as electric batteries, smart domestic water heaters, smart air-conditioner (AC) units, and electric vehicles We use an NREL optimization model to explore the customer-side economics of solar plus under various utility rate structures and net metering rates. We explore optimal solar plus applications in five case studies with different net metering rates and rate structures. The model deploys different configurations of PV, batteries, smart domestic water heaters, and smart AC units in response to different rate structures and customer load profiles. The results indicate that solar plus improves the customer economics of PV and may mitigate some of the negative impacts of evolving rate structures on PV economics. Solar plus may become an increasingly viable model for optimizing PV customer economics in an evolving rate environment.

  20. Solar Plus: A Holistic Approach to Distributed Solar PV

    Energy Technology Data Exchange (ETDEWEB)

    OShaughnessy, Eric J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ardani, Kristen B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cutler, Dylan S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-06-08

    Solar 'plus' refers to an emerging approach to distributed solar photovoltaic (PV) deployment that uses energy storage and controllable devices to optimize customer economics. The solar plus approach increases customer system value through technologies such as electric batteries, smart domestic water heaters, smart air-conditioner (AC) units, and electric vehicles We use an NREL optimization model to explore the customer-side economics of solar plus under various utility rate structures and net metering rates. We explore optimal solar plus applications in five case studies with different net metering rates and rate structures. The model deploys different configurations of PV, batteries, smart domestic water heaters, and smart AC units in response to different rate structures and customer load profiles. The results indicate that solar plus improves the customer economics of PV and may mitigate some of the negative impacts of evolving rate structures on PV economics. Solar plus may become an increasingly viable model for optimizing PV customer economics in an evolving rate environment.