WorldWideScience

Sample records for aircraft structural components

  1. Dedicated Solutions for Structural Health Monitoring of Aircraft Components

    OpenAIRE

    Pitropakis, Ioannis

    2015-01-01

    Aircraft structures, like any other mechanical structure, are subjected to various external factors that influence their lifetime. Mechanicalnbsp;and the environment are only some of the factors that can degrade the structure of aircraft components. Monitoring of these degradations by regular inspections or automated data recording is vital for the structural health of the critical components of an aircraft. This research proposes a number of dedicated solutions for structural health monitori...

  2. Electron beam welding of structural aircraft components

    International Nuclear Information System (INIS)

    Illustrations of how electron beam (EB) welding is currently being used in the manufacture of large complex aircraft structures are reviewed. Starting with a general description of the process, its advantages and limitations and then tracing the evolution of the equipment from the sizes being used as recently as 1969 having vacuum chamber capacities of approximately 64 cubic feet to those presently in production having chamber capacities over 2500 cubic feet. A parallel growth is outlined in the application of the process to larger structures, beginning with the basic data on mechanical properties obtained with small element testing, through the testing of sub and full scale structures. Welding parameters for some typical joints are presented together with the mechanical properties being achieved, including tensile, fatigue, and fracture toughness properties. Pre and post weld processing are described which are being used to optimize these properties. Several examples are reviewed including the Grumman F-14 wing center section and wing outer panels, Boeing Vertol UTTAS Helicopter swashplates, Messerschmitt-Bolkow- Blohm, Multi-Role Combat Aircraft wing center section and the Dassault Mirage G8A wing panel. The final portion describes general guidelines in designing structures for EB welding, with particular emphasis on accessibility for visual, x-ray, ultrasonic, and dye penetrant inspection

  3. NASA service experience with composite components. [for aircraft structures

    Science.gov (United States)

    Dexter, H. B.; Chapman, A. J.

    1980-01-01

    NASA Langley has been active in sponsoring flight service programs with advanced composites during the past decade. A broad data base and confidence in the durability of composite structures are being developed. Flight service experience is reported for more than 140 composite aircraft components with up to 8 years service and almost two million successful component flight hours. Composite components are being evaluated on Boeing, Douglas, and Lockheed transport aircraft. Components are currently under development for service evaluation on Bell and Sikorsky helicopters. Design concepts and inspection and maintenance results are reported for components currently in service. Components under development in the NASA Aircraft Energy Efficiency (ACEE) program are discussed. Results of flight, outdoor ground, and controlled laboratory environmental tests on composite materials used in the flight service programs are also presented.

  4. Structural Weight Optimization of Aircraft Wing Component Using FEM Approach.

    OpenAIRE

    Arockia Ruban M,; Kaveti Aruna

    2015-01-01

    One of the main challenges for the civil aviation industry is the reduction of its environmental impact by better fuel efficiency by virtue of Structural optimization. Over the past years, improvements in performance and fuel efficiency have been achieved by simplifying the design of the structural components and usage of composite materials to reduce the overall weight of the structure. This paper deals with the weight optimization of transport aircraft with low wing configuratio...

  5. Structural Weight Optimization of Aircraft Wing Component Using FEM Approach.

    Directory of Open Access Journals (Sweden)

    Arockia Ruban M,

    2015-06-01

    Full Text Available One of the main challenges for the civil aviation industry is the reduction of its environmental impact by better fuel efficiency by virtue of Structural optimization. Over the past years, improvements in performance and fuel efficiency have been achieved by simplifying the design of the structural components and usage of composite materials to reduce the overall weight of the structure. This paper deals with the weight optimization of transport aircraft with low wing configuration. The Linear static and Normal Mode analysis were carried out using MSc Nastran & Msc Patran under different pressure conditions and the results were verified with the help of classical approach. The Stress and displacement results were found and verified and hence arrived to the conclusion about the optimization of the wing structure.

  6. Methods of saving energy and materials in the manufacture of integrated aircraft structure components

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, J.C.; Welschof, K.; Janssen, W.; Mahlke, M.; Sprangers, W.; Binding, J.

    1987-11-01

    In the framework of a special research unit, methods for saving energy and raw materials are investigated for selected production processes. Integral construction components of the aircraft industry which today are mostly produced by metal-cutting processes, are the basis of the joint research work of six of the total of nineteen participating projects. Research is carried out on the possibilities for reducing the expenditure of material and energy by the application of alternative production processes in the field of primary shaping, deforming and joining as well as by structural optimization. By means of a computer-aided evaluation of the possible production methods, the alternatives can be compared with regard to their energy and raw material requirements.

  7. Composite components on commercial aircraft

    Science.gov (United States)

    Dexter, H. B.

    1980-01-01

    The paper considers the use of composite components in commercial aircraft. NASA has been active in sponsoring flight service programs with advanced composites for the last 10 years, with 2.5 million total composite component hours accumulated since 1970 on commercial transports and helicopters with no significant degradation in residual strength of composite components. Design, inspection, and maintenance procedures have been developed; a major NASA/US industry technology program has been developed to reduce fuel consumption of commercial transport aircraft through the use of advanced composites.

  8. Structural Diagnostics of CFRP Composite Aircraft Components by Ultrasonic Guided Waves and Built-In Piezoelectric Transducers

    Energy Technology Data Exchange (ETDEWEB)

    Howard M. Matt

    2007-02-15

    To monitor in-flight damage and reduce life-cycle costs associated with CFRP composite aircraft, an autonomous built-in structural health monitoring (SHM) system is preferred over conventional maintenance routines and schedules. This thesis investigates the use of ultrasonic guided waves and piezoelectric transducers for the identification and localization of damage/defects occurring within critical components of CFRP composite aircraft wings, mainly the wing skin-to-spar joints. The guided wave approach for structural diagnostics was demonstrated by the dual application of active and passive monitoring techniques. For active interrogation, the guided wave propagation problem was initially studied numerically by a semi-analytical finite element method, which accounts for viscoelastic damping, in order to identify ideal mode-frequency combinations sensitive to damage occurring within CFRP bonded joints. Active guided wave tests across three representative wing skin-to-spar joints at ambient temperature were then conducted using attached Macro Fiber Composite (MFC) transducers. Results from these experiments demonstrate the importance of intelligent feature extraction for improving the sensitivity to damage. To address the widely neglected effects of temperature on guided wave base damage identification, analytical and experimental analyses were performed to characterize the influence of temperature on guided wave signal features. In addition, statistically-robust detection of simulated damage in a CFRP bonded joint was successfully achieved under changing temperature conditions through a dimensionally-low, multivariate statistical outlier analysis. The response of piezoceramic patches and MFC transducers to ultrasonic Rayleigh and Lamb wave fields was analytically derived and experimentally validated. This theory is useful for designing sensors which possess optimal sensitivity toward a given mode-frequency combination or for predicting the frequency dependent

  9. Structural integrity in aircraft.

    Science.gov (United States)

    Hardrath, H. F.

    1973-01-01

    The paper reviews briefly the current design philosophies for achieving long, efficient, and reliable service in aircraft structures. The strengths and weaknesses of these design philosophies and their demonstrated records of success are discussed. The state of the art has not been developed to the point where designing can be done without major test inspection and maintenance programs. A broad program of research is proposed through which a viable computerized design scheme will be provided during the next decade. The program will organize and correlate existing knowledge on fatigue and fracture behavior, identify gaps in this knowledge, and guide specific research to upgrade design capabilities.

  10. Smart structure application for the Challenger aircraft

    Science.gov (United States)

    Grenier, L.; Blaha, Franz A.

    1994-09-01

    The Challenger aircraft fleet of the Canadian Forces will fly demanding missions, requiring the implementation of a fatigue management program based on the monitoring of in-flight aircraft load conditions. Conventional sensing techniques experience problems arising from severe electromagnetic interference (EMI). This paper describes the development of an EMI- insensitive smart-structure sensing concept for loads monitoring. Fiber-optic strain sensors, incorporated at critical structural locations, are used to monitor the fatigue life of the aircraft wing, fuselage, and empennage. A fiber-optic accelerometer is also incorporated in the system. A long-term plan is presented for the development of an advanced smart-structure concept which can support the continuous monitoring of fatigue-prone components, and provide the aircraft with near real-time damage location and assessment.

  11. Aircraft wing structure detail design

    Science.gov (United States)

    Sager, Garrett L.; Roberts, Ron; Mallon, Bob; Alameri, Mohamed; Steinbach, Bill

    1993-01-01

    The provisions of this project call for the design of the structure of the wing and carry-through structure for the Viper primary trainer, which is to be certified as a utility category trainer under FAR part 23. The specific items to be designed in this statement of work were Front Spar, Rear Spar, Aileron Structure, Wing Skin, and Fuselage Carry-through Structure. In the design of these parts, provisions for the fuel system, electrical system, and control routing were required. Also, the total weight of the entire wing planform could not exceed 216 lbs. Since this aircraft is to be used as a primary trainer, and the SOW requires a useful life of 107 cycles, it was decided that all of the principle stresses in the structural members would be kept below 10 ksi. The only drawback to this approach is a weight penalty.

  12. Structural health monitoring and impact detection for primary aircraft structures

    Science.gov (United States)

    Kosters, Eric; van Els, Thomas J.

    2010-04-01

    The increasing use of thermoplastic carbon fiber-reinforced plastic (CFRP) materials in the aerospace industry for primary aircraft structures, such as wing leading-edge surfaces and fuselage sections, has led to rapid growth in the field of structural health monitoring (SHM). Impact, vibration, and load can all cause failure, such as delamination and matrix cracking, in composite materials. Moreover, the internal material damage can occur without being visible to the human eye, making inspection of and clear insight into structural integrity difficult using currently available evaluation methods. Here, we describe the detection of impact and its localization in materials and structures by high-speed interrogation of multiple-fiber Bragg grating (FBG) sensors mounted on a composite aircraft component.

  13. Challenges for the aircraft structural integrity program

    Science.gov (United States)

    Lincoln, John W.

    1994-01-01

    Thirty-six years ago the United States Air Force established the USAF Aircraft Structural Integrity Program (ASIP) because flight safety had been degraded by fatigue failures of operational aircraft. This initial program evolved, but has been stable since the issuance of MIL-STD-1530A in 1975. Today, the program faces new challenges because of a need to maintain aircraft longer in an environment of reduced funding levels. Also, there is increased pressure to reduce cost of the acquisition of new aircraft. It is the purpose of this paper to discuss the challenges for the ASIP and identify the changes in the program that will meet these challenges in the future.

  14. Wireless microsensors for health monitoring of aircraft structures

    Science.gov (United States)

    Varadan, Vijay K.

    2003-01-01

    The integration of MEMS, IDTs (interdigital transducers) and required microelectronics and conformal antennas to realize programmable, robust and low cost passive microsensors suitable for many military structures and systems including aircraft, missiles and munitions is presented in this paper. The technology is currently being applied to the structural health monitoring of critical aircraft components. The approach integrates acoustic emission, strain gauges, MEMS accelerometers, gyroscopes and vibration monitoring devices with signal processing electronics to provide real-time indicators of incipient failure of aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ Aircraft structural health monitoring (ASHM) system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensors and MEMS for structural applications including load, vibration and acoustics characterization and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. Additionally a range of sensor types can be integrated onto a single chip with built-in electronics and ASIC (Application Specific Integrated Circuit), providing a low power Microsystems. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State smart electronics or wireless communication systems suitable for condition monitoring of aircraft structures in-flight. A hybrid accelerometer and gyroscope in a single chip suitable for inertial

  15. Low-Cost Composite Materials and Structures for Aircraft Applications

    Science.gov (United States)

    Deo, Ravi B.; Starnes, James H., Jr.; Holzwarth, Richard C.

    2003-01-01

    A survey of current applications of composite materials and structures in military, transport and General Aviation aircraft is presented to assess the maturity of composites technology, and the payoffs realized. The results of the survey show that performance requirements and the potential to reduce life cycle costs for military aircraft and direct operating costs for transport aircraft are the main reasons for the selection of composite materials for current aircraft applications. Initial acquisition costs of composite airframe components are affected by high material costs and complex certification tests which appear to discourage the widespread use of composite materials for aircraft applications. Material suppliers have performed very well to date in developing resin matrix and fiber systems for improved mechanical, durability and damage tolerance performance. The next challenge for material suppliers is to reduce material costs and to develop materials that are suitable for simplified and inexpensive manufacturing processes. The focus of airframe manufacturers should be on the development of structural designs that reduce assembly costs by the use of large-scale integration of airframe components with unitized structures and manufacturing processes that minimize excessive manual labor.

  16. Integrated cost/weight optimization of aircraft structures

    OpenAIRE

    Kaufmann, Markus; Zenkert, Dan; Wennhage, Per

    2010-01-01

    A methodology for a combined cost/weight optimization of aircraft components is proposed. The objective function is formed by a simplified form of direct operating cost, i.e. by a weighted sum of the manufacturing costs and the component weight. Hence, the structural engineer can perform the evaluation of a design solution based on economical values rather than pure cost or weight targets.The parameter that governs the balance between manufacturing cost and weight is called weight penalty and...

  17. Structural ballistic armour for transport aircraft

    OpenAIRE

    Horsfall, I; Austin, S J; Bishop, W.

    2000-01-01

    This paper describes the structural response of a current ceramic-faced composite armour system and a proposed structural armour system for aircraft use. The proposed structural ballistic armour system is shown to be capable of providing significant structural integrity even after ballistic impact whilst providing ballistic protection equivalent to an existing applique system. The addition of a carbon fibre reinforced plastic front panel to the existing ceramic faced composite armour system i...

  18. Development and characterization of fatigue resistant Aramid reinforced aluminium laminates (ARALL) for fatigue Critical aircraft components

    International Nuclear Information System (INIS)

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced ALuminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft

  19. Development and characterization of fatigue resistant aramid reinforced aluminium laminates (ARALL) for fatigue critical aircraft components

    International Nuclear Information System (INIS)

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced Aluminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft. (author)

  20. Structural analysis at aircraft conceptual design stage

    Science.gov (United States)

    Mansouri, Reza

    In the past 50 years, computers have helped by augmenting human efforts with tremendous pace. The aircraft industry is not an exception. Aircraft industry is more than ever dependent on computing because of a high level of complexity and the increasing need for excellence to survive a highly competitive marketplace. Designers choose computers to perform almost every analysis task. But while doing so, existing effective, accurate and easy to use classical analytical methods are often forgotten, which can be very useful especially in the early phases of the aircraft design where concept generation and evaluation demands physical visibility of design parameters to make decisions [39, 2004]. Structural analysis methods have been used by human beings since the very early civilization. Centuries before computers were invented; the pyramids were designed and constructed by Egyptians around 2000 B.C, the Parthenon was built by the Greeks, around 240 B.C, Dujiangyan was built by the Chinese. Persepolis, Hagia Sophia, Taj Mahal, Eiffel tower are only few more examples of historical buildings, bridges and monuments that were constructed before we had any advancement made in computer aided engineering. Aircraft industry is no exception either. In the first half of the 20th century, engineers used classical method and designed civil transport aircraft such as Ford Tri Motor (1926), Lockheed Vega (1927), Lockheed 9 Orion (1931), Douglas DC-3 (1935), Douglas DC-4/C-54 Skymaster (1938), Boeing 307 (1938) and Boeing 314 Clipper (1939) and managed to become airborne without difficulty. Evidencing, while advanced numerical methods such as the finite element analysis is one of the most effective structural analysis methods; classical structural analysis methods can also be as useful especially during the early phase of a fixed wing aircraft design where major decisions are made and concept generation and evaluation demands physical visibility of design parameters to make decisions

  1. Determinations of H(10) and its dose components onboard aircraft.

    Science.gov (United States)

    Lindborg, L; Beck, P; Bottolier-Depois, J F; Latocha, M; Lillhök, J; Rollet, S; Roos, H; Roth, J; Schraube, H; Spurny, F; Stehno, G; Trompier, F; Wissmann, F

    2007-01-01

    Aircrew is in general receiving a higher average annual dose than other occupationally exposed personnel, and about half of the effective dose is deposited by high-LET neutron secondaries. A recent investigation of the cancer incidence following the atomic bombs at Hiroshima and Nagasaki has put forward the possibility that the relative biological efficiency for neutrons could be underestimated. If so, the effective dose to aircrew from this component would increase and the estimation of this component will become even more important. Different ambient dose equivalent measurement techniques and calculation methods have recently been compared on a dedicated flight. The experimental results are compared with calculations made with the codes EPCARD 3.2 and an updated version of FLUKA and different galactic proton spectra. The aircraft circulated within the target areas at two constant altitudes with a flight route variation of only about 1 degrees in longitude and latitude to reduce the influence from variations in atmospheric and geomagnetic shielding. The instrumentation consisted of tissue-equivalent proportional counters (TEPC) and a silicon diode spectrometer. Measurements were performed for 2 h to reduce the statistical uncertainties in the results. The TEPCs were evaluated either according to single-event analysis techniques or the variance-covariance method. Besides the total ambient dose equivalent, the instruments can be evaluated to reveal the low- and high-LET components. The EPCARD and FLUKA simulations can determine the contribution from each type of particle directly. The ratio between the calculated and the measured average value of the ambient dose equivalent rate was 1.00 +/- 0.08 with all instruments included for EPCARD and 0.97 +/- 0.07 when FLUKA was used. The measured high-LET component and the calculated neutron component are not quite identical, but should be similar. The agreement was always within 20%. The high-LET component contributed with

  2. Structural design for aircraft impact loading

    International Nuclear Information System (INIS)

    The distribution of military aircraft and proximity to commercial air routes requires the analysis of aircraft impact effect on nuclear power plant facilities in Europe. The 'hardened-building' approach has led to the consideration of severe shock and vibration caused by the aircraft impact and development of corresponding floor response spectra for component design. The reactor auxiliary system building allows a more defensive alternate in the form of a partially softened design. In this approach the equipment layout is arranged such that equipment performing either safety functions or having the potential for significant release of radioctivity (upon destruction) is located in the central area of the plant and is enclosed in thick concrete walls for shielding and protection purposes. The non-safety class equipment is arranged in the area peripheral to the hardened central area and enclosed in thin concrete walls. Since the kinetic energy of the impacting aircraft is absorbed by the collapsed thin walls and ceilings, the vibrational effect on the safety class equipment is drastically reduced. In order to achieve the objective of absorbing high kinetic energy and yet reduce the shock and vibration effects, the softened exterior walls require low resistance and high ductility. In order not to increase the construction cost, and yet to assure the safety of the plant, some dynamic tests of conventionally reinforced slabs have to be performed all the way to collapse. These calculations have assumptions of achieving the maximum velocity instantaneously after impact, and take into account the kinetic energy in the broken wall. Nonlinear equations of motion are also formulated and solved. The results indicate that the phantom jet would go through the first wall. The second wall would stop the jet, but would sustain some permanent deformation and damage

  3. Fracture control procedures for aircraft structural integrity

    Science.gov (United States)

    Wood, H. A.

    1972-01-01

    The application of applied fracture mechanics in the design, analysis, and qualification of aircraft structural systems are reviewed. Recent service experiences are cited. Current trends in high-strength materials application are reviewed with particular emphasis on the manner in which fracture toughness and structural efficiency may affect the material selection process. General fracture control procedures are reviewed in depth with specific reference to the impact of inspectability, structural arrangement, and material on proposed analysis requirements for safe crack growth. The relative impact on allowable design stress is indicated by example. Design criteria, material, and analysis requirements for implementation of fracture control procedures are reviewed together with limitations in current available data techniques. A summary of items which require further study and attention is presented.

  4. Influence of environmental factors on corrosion damage of aircraft structure

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Corrosion is one of the important structural integrity concerns of aging aircraft, and it is estimated that a significant portion of airframe maintenance budgets is directed towards corrosion-related problems for both military and commercial aircraft. In order to better understand how environmental factors influence the corrosion damage initiation and propagation on aircraft structure and to predict pre-corrosion test pieces of fatigue life and structural integrity of an effective approach, this paper uses ...

  5. Durability of commercial aircraft and helicopter composite structures

    International Nuclear Information System (INIS)

    The development of advanced composite technology during the past decade is discussed. Both secondary and primary components fabricated with boron, graphite, and Kevlar composites are evaluated. Included are spoilers, rudders, and fairings on commercial transports, boron/epoxy reinforced wing structure on C-130 military transports, and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on commercial helicopters. The development of composite structures resulted in advances in design and manufacturing technology for secondary and primary composite structures for commercial transports. Design concepts and inspection and maintenance results for the components in service are reported. The flight, outdoor ground, and controlled laboratory environmental effects on composites were also determined. Effects of moisture absorption, ultraviolet radiation, aircraft fuels and fluids, and sustained tensile stress are included. Critical parameters affecting the long term durability of composite materials are identified

  6. Durability of commercial aircraft and helicopter composite structures

    Science.gov (United States)

    Dexter, H. B.

    1982-01-01

    The development of advanced composite technology during the past decade is discussed. Both secondary and primary components fabricated with boron, graphite, and Kevlar composites are evaluated. Included are spoilers, rudders, and fairings on commercial transports, boron/epoxy reinforced wing structure on C-130 military transports, and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on commercial helicopters. The development of composite structures resulted in advances in design and manufacturing technology for secondary and primary composite structures for commercial transports. Design concepts and inspection and maintenance results for the components in service are reported. The flight, outdoor ground, and controlled laboratory environmental effects on composites were also determined. Effects of moisture absorption, ultraviolet radiation, aircraft fuels and fluids, and sustained tensile stress are included. Critical parameters affecting the long term durability of composite materials are identified.

  7. Aircraft Structural Analysis, Design Optimization, and Manufacturing Tool Integration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative research is proposed in integrating fundamental aircraft design processes with an emphasis on composite structures. Efficient, lightweight composite...

  8. Component nuclear containment structure

    International Nuclear Information System (INIS)

    The invention described is intended for use primarily as a nuclear containment structure. Such structures are required to surround the nuclear steam supply system and to contain the effects of breaks in the nuclear steam supply system, or i.e. loss of coolant accidents. Nuclear containment structures are required to withstand internal pressure and temperatures which result from loss of coolant accidents, and to provide for radiation shielding during operation and during the loss of coolant accident, as well as to resist all other applied loads, such as earthquakes. The nuclear containment structure described herein is a composite nuclear containment structure, and is one which structurally combines two previous systems; namely, a steel vessel, and a lined concrete structure. The steel vessel provides strength to resist internal pressure and accommodate temperature increases, the lined concrete structure provides resistance to internal pressure by having a liner which will prevent leakage, and which is in contact with the concrete structure which provides the strength to resist the pressure

  9. MULTI-CONTROLLER STRUCTURE OF SUPERMANEUVERABLE AIRCRAFT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper proposes a method of using multi-controllers to control supermaneuverable aircraft. A nonlinear dynamic-inversion controller is used for supermaneuver. A gain-scheduled controller is used for routine maneuver. A switch algorithm is designed to switch the controllers. The flight envelopes of the controllers are different but have a common area in which the controllers are switched from one to the other. In the common area, some special boundaries are selected to decide switch conditions. The controllers all use vector-thrust for lower velocity maneuver control. Unlike the variation-structure theory to use a single boundary, this paper uses two boundaries for switching between the two controllers. One boundary is used for switching from dynamic-inversion to gain-scheduling, while the other is used for switching from gain-scheduling to dynamic-inversion. This can effectively avoid the system vibration caused by switching repeatedly at a single boundary. The method is very easy for engineering. It can reduce the risk of design of the supermaneuverable aircraft.

  10. Structural resource of the aircraft IAR-99 SOIM

    OpenAIRE

    Radu BISCA; Dorin LOZICI-BRINZEI

    2012-01-01

    Aircraft structure fatigue monitoring has been developed over decades presently reaching the stage where it became mandatory for all combat aircraft to be equipped with an airborne fatigue monitoring system. These systems usually collect operational data for calculating the safe fatigue life or inspection interval for the aircraft structure. This paper presents an analysis of the current state of fatigue monitoring systems on the IAR-99 SOIM based on the experience of international fatigue mo...

  11. Application of supersonic particle deposition to enhance the structural integrity of aircraft structures

    Science.gov (United States)

    Matthews, N.; Jones, R.; Sih, G. C.

    2014-01-01

    Aircraft metal components and structures are susceptible to environmental degradation throughout their original design life and in many cases their extended lives. This paper summarizes the results of an experimental program to evaluate the ability of Supersonic Particle Deposition (SPD), also known as cold spray, to extend the limit of validity (LOV) of aircraft structural components and to restore the structural integrity of corroded panels. In this study [LU1]the potential for the SPD to seal the mechanically fastened joints and for this seal to remain intact even in the presence of multi-site damage (MSD) has been evaluated. By sealing the joint the onset of corrosion damage in the joint can be significantly retarded, possibly even eliminated, thereby dramatically extending the LOV of mechanically fastened joints. The study also shows that SPD can dramatically increase the damage tolerance of badly corroded wing skins.

  12. Determinations of H*(10) and its dose components onboard aircraft

    Czech Academy of Sciences Publication Activity Database

    Lindborg, L.; Beck, P.; Bottollier-Depois, J. F.; Latocha, M.; Lillhök, J.; Rollet, S.; Roos, H.; Roth, J.; Schraube, H.; Spurný, František; Stehno, G.; Trompier, F.; Wissmann, F.

    2007-01-01

    Roč. 126, 1-4 (2007), s. 577-580. ISSN 0144-8420 R&D Projects: GA MŠk 1P05OC032 Institutional research plan: CEZ:AV0Z10480505 Keywords : determination of H*(10) * aircraft * measurements Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.528, year: 2007

  13. Optimal Aircraft Control Upset Recovery With and Without Component Failures

    Science.gov (United States)

    Sparks, Dean W.; Moerder, Daniel D.

    2002-01-01

    This paper treats the problem of recovering sustainable nondescending (safe) flight in a transport aircraft after one or more of its control effectors fail. Such recovery can be a challenging goal for many transport aircraft currently in the operational fleet for two reasons. First, they have very little redundancy in their means of generating control forces and moments. These aircraft have, as primary control surfaces, a single rudder and pairwise elevators and aileron/spoiler units that provide yaw, pitch, and roll moments with sufficient bandwidth to be used in stabilizing and maneuvering the airframe. Beyond this, throttling the engines can provide additional moments, but on a much slower time scale. Other aerodynamic surfaces, such as leading and trailing edge flaps, are only intended to be placed in a position and left, and are, hence, very slow-moving. Because of this, loss of a primary control surface strongly degrades the controllability of the vehicle, particularly when the failed effector becomes stuck in a non-neutral position where it exerts a disturbance moment that must be countered by the remaining operating effectors. The second challenge in recovering safe flight is that these vehicles are not agile, nor can they tolerate large accelerations. This is of special importance when, at the outset of the recovery maneuver, the aircraft is flying toward the ground, as is frequently the case when there are major control hardware failures. Recovery of safe flight is examined in this paper in the context of trajectory optimization. For a particular transport aircraft, and a failure scenario inspired by an historical air disaster, recovery scenarios are calculated with and without control surface failures, to bring the aircraft to safe flight from the adverse flight condition that it had assumed, apparently as a result of contact with a vortex from a larger aircraft's wake. An effort has been made to represent relevant airframe dynamics, acceleration limits

  14. An artificial intelligence-based structural health monitoring system for aging aircraft

    Science.gov (United States)

    Grady, Joseph E.; Tang, Stanley S.; Chen, K. L.

    1993-01-01

    To reduce operating expenses, airlines are now using the existing fleets of commercial aircraft well beyond their originally anticipated service lives. The repair and maintenance of these 'aging aircraft' has therefore become a critical safety issue, both to the airlines and the Federal Aviation Administration. This paper presents the results of an innovative research program to develop a structural monitoring system that will be used to evaluate the integrity of in-service aerospace structural components. Currently in the final phase of its development, this monitoring system will indicate when repair or maintenance of a damaged structural component is necessary.

  15. Analysis of Navy aircraft engine and engine component warranties

    OpenAIRE

    Andrews, Melissa S.; Hickey, Suzanne Christine.

    1993-01-01

    Approved for public release; distribution is unlimited. Since the enactment of Title 10, Section 2403 of the United States Code in 1985, written warranty clauses have been mandated for the procurement of all major weapon systems. This thesis discusses the aircraft engine warranty program established by the Naval Air Systems Command in response to that warranty legislation. Warranty procedures and issues are examined during procurement, contract negotiations, and in the daily operations of ...

  16. Reengineering Aircraft Structural Life Prediction Using a Digital Twin

    Directory of Open Access Journals (Sweden)

    Eric J. Tuegel

    2011-01-01

    Full Text Available Reengineering of the aircraft structural life prediction process to fully exploit advances in very high performance digital computing is proposed. The proposed process utilizes an ultrahigh fidelity model of individual aircraft by tail number, a Digital Twin, to integrate computation of structural deflections and temperatures in response to flight conditions, with resulting local damage and material state evolution. A conceptual model of how the Digital Twin can be used for predicting the life of aircraft structure and assuring its structural integrity is presented. The technical challenges to developing and deploying a Digital Twin are discussed in detail.

  17. Aircraft vulnerability modeling and computation methods based on product structure and CATIA

    Institute of Scientific and Technical Information of China (English)

    Li Jun; Yang Wei; Zhang Yugang; Pei Yang; Ren Yunsong; Wang Wei

    2013-01-01

    Survivability strengthening/vulnerability reduction designs have become one of the most important design disciplines of military aircraft now.Due to progressiveness and complexity of modern combat aircraft,the existing vulnerability modeling and computation methods cannot meet the current engineering application requirements.Therefore,a vulnerability modeling and computation method based on product structure and CATIA is proposed in sufficient consideration of the design characteristics of modern combat aircraft.This method directly constructs the aircraft vulnerability model by CATIA or the digital model database,and manages all the product components of the vulnerability model via aircraft product structure.Using CAA second development,the detailed operations and computation methods of vulnerability analysis are integrated into CATIA software environment.Comprehensive assessment data and visual kill probability Iso-contours can also be presented,which meet the vulnerability analysis requirements of modern combat aircraft effectively.The intact vulnerability model of one hypothetical aircraft is constructed,and the effects of redundant technology to the aircraft vulnerability are assessed,which validate the engineering practicality of the method.

  18. Effects of aircraft noise on flight and ground structures

    Science.gov (United States)

    Mixson, J. S.; Mayes, W. H.; Willis, C. M.

    1976-01-01

    Acoustic loads measured on jet-powered STOL configurations are presented for externally blown and upper surface blown flap models ranging in size from a small laboratory model up to a full-scale aircraft model. The implications of the measured loads for potential acoustic fatigue and cabin noise are discussed. Noise transmission characteristics of light aircraft structures are presented. The relative importance of noise transmission paths, such as fuselage sidewall and primary structure, is estimated. Acceleration responses of a historic building and a residential home are presented for flyover noise from subsonic and supersonic aircraft. Possible effects on occupant comfort are assessed. The results from these three examples show that aircraft noise can induce structural responses that are large enough to require consideration in the design or operation of the aircraft.

  19. Reengineering Aircraft Structural Life Prediction Using a Digital Twin

    OpenAIRE

    Eric J. Tuegel; Ingraffea, Anthony R.; Eason, Thomas G.; S. Michael Spottswood

    2011-01-01

    Reengineering of the aircraft structural life prediction process to fully exploit advances in very high performance digital computing is proposed. The proposed process utilizes an ultrahigh fidelity model of individual aircraft by tail number, a Digital Twin, to integrate computation of structural deflections and temperatures in response to flight conditions, with resulting local damage and material state evolution. A conceptual model of how the Digital Twin can be used for predicting the lif...

  20. Variable Geometry Aircraft Pylon Structure and Related Operation Techniques

    Science.gov (United States)

    Shah, Parthiv N. (Inventor)

    2014-01-01

    An aircraft control structure can be utilized for purposes of drag management, noise control, or aircraft flight maneuvering. The control structure includes a high pressure engine nozzle, such as a bypass nozzle or a core nozzle of a turbofan engine. The nozzle exhausts a high pressure fluid stream, which can be swirled using a deployable swirl vane architecture. The control structure also includes a variable geometry pylon configured to be coupled between the nozzle and the aircraft. The variable geometry pylon has a moveable pylon section that can be deployed into a deflected state to maintain or alter a swirling fluid stream (when the swirl vane architecture is deployed) for drag management purposes, or to assist in the performance of aircraft flight maneuvers.

  1. Dichotomic Structure of DAEs Solutions for the Aircraft Control

    Directory of Open Access Journals (Sweden)

    Sorin Ştefan RADNEF

    2009-09-01

    Full Text Available The paper has its roots in earlier studies focused on DAEs solutions, for the aircraft flight control and intends to be a synthesis of them. The main goal is to structure the solution for the control laws so as to derive its components, which control any significant mechanical phenomenon for the controlled flight. The basic method used becomes from a unified manner of finding the solution of DAEs using a rigorous guideline stated as “necessary and sufficient condition” in an algebraic equation form that is used in an algorithmic procedure and for statement of the equations, which emphasises the dichotomic structure. The viewpoint considers an extended DAE system, including the differential equations of control variables, that allows to formulate this question as an inverse problem and to regard the algebraic equation, for constraints, as a singular implicit solution of the differential subsystem. Stating the necessary and sufficient condition for an implicit equation be a singular implicit solution of the extended differential system, we use it to approach the solution for flight control and for its dichotomic structure with additive components.

  2. Probabilistic Remaining Useful Life Prediction of Composite Aircraft Components Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Probabilistic Fatigue Damage Assessment Network (PFDAN) toolkit for Abaqus will be developed for probabilistic life management of a laminated composite structure...

  3. Advanced manufacturing development of a composite empennage component for L-1011 aircraft

    Science.gov (United States)

    Alva, T.; Henkel, J.; Johnson, R.; Carll, B.; Jackson, A.; Mosesian, B.; Brozovic, R.; Obrien, R.; Eudaily, R.

    1982-01-01

    This is the final report of technical work conducted during the fourth phase of a multiphase program having the objective of the design, development and flight evaluation of an advanced composite empennage component manufactured in a production environment at a cost competitive with those of its metal counterpart, and at a weight savings of at least 20 percent. The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes front and rear spars. During Phase 4 of the program, production quality tooling was designed and manufactured to produce three sets of covers, ribs, spars, miscellaneous parts, and subassemblies to assemble three complete ACVF units. Recurring and nonrecurring cost data were compiled and documented in the updated producibility/design to cost plan. Nondestruct inspections, quality control tests, and quality acceptance tests were performed in accordance with the quality assurance plan and the structural integrity control plan. Records were maintained to provide traceability of material and parts throughout the manufacturing development phase. It was also determined that additional tooling would not be required to support the current and projected L-1011 production rate.

  4. Integrated Control with Structural Feedback to Enable Lightweight Aircraft

    Science.gov (United States)

    Taylor, Brian R.

    2011-01-01

    This presentation for the Fundamental Aeronautics Program Technical Conference covers the benefits of active structural control, related research areas, and focuses on the use of optimal control allocation for the prevention of critical loads. Active control of lightweight structures has the potential to reduce aircraft weight and fuel burn. Sensor, control law, materials, control effector, and system level research will be necessary to enable active control of lightweight structures. Optimal control allocation with structural feedback has been shown in simulation to be feasible in preventing critical loads and is one example of a control law to enable future lightweight aircraft.

  5. Force Feedback for Assembly of Aircraft Structures

    OpenAIRE

    Jonsson, Marie; Murray, Tom; Robertsson, Anders; Stolt, Andreas; Ossbahr, Gilbert; Nilsson, Klas

    2010-01-01

    Variability in composite manufacture and the limitations in positional accuracy of common industrial robots have hampered automation of assembly tasks within aircraft manufacturing. One way to handle geometry variations and robot compliancy is to use force control. Force control technology utilizes a sensor mounted on the robot to feedback force data to the controller system so instead of being position driven, i.e. programmed to achieve a certain position with the tool, the robot can be prog...

  6. Structural Integrity Evaluation of the Lear Fan 2100 Aircraft

    Science.gov (United States)

    Kan, H. P.; Dyer, T. A.

    1996-01-01

    An in-situ nondestructive inspection was conducted to detect manufacturing and assembly induced defects in the upper two wing surfaces (skin s) and upper fuselage skin of the Lear Fan 2100 aircraft E009. The effects of the defects, detected during the inspection, on the integrity of the structure was analytically evaluated. A systematic evaluation was also conducted to determine the damage tolerance capability of the upper wing skin against impact threats and assembly induced damage. The upper wing skin was divided into small regions for damage tolerance evaluations. Structural reliability, margin of safety, allowable strains, and allowable damage size were computed. The results indicated that the impact damage threat imposed on composite military aircraft structures is too severe for the Lear Fan 2100 upper wing skin. However, the structural integrity is not significantly degraded by the assembly induced damage for properly assembled structures, such as the E009 aircraft.

  7. Inelastic behavior of structural components

    Science.gov (United States)

    Hussain, N.; Khozeimeh, K.; Toridis, T. G.

    1980-01-01

    A more accurate procedure was developed for the determination of the inelastic behavior of structural components. The actual stress-strain curve for the mathematical of the structure was utilized to generate the force-deformation relationships for the structural elements, rather than using simplified models such as elastic-plastic, bilinear and trilinear approximations. relationships were generated for beam elements with various types of cross sections. In the generational of these curves, stress or load reversals, kinematic hardening and hysteretic behavior were taken into account. Intersections between loading and unloading branches were determined through an iterative process. Using the inelastic properties obtained, the plastic static response of some simple structural systems composed of beam elements was computed. Results were compared with known solutions, indicating a considerable improvement over response predictions obtained by means of simplified approximations used in previous investigations.

  8. Adaptive structures for fixed and rotary wing aircraft

    Science.gov (United States)

    Martin, Willi; Jänker, Peter; Siemetzki, Markus; Lorkowski, Thomas; Grohmann, Boris; Maier, Rudolf; Maucher, Christoph; Klöppel, Valentin; Enenkl, Bernhard; Roth, Dieter; Hansen, Heinz

    2007-07-01

    Since more than 10 years EADS Innovation Works, which is the corporate research centre of EADS (European Aeronautic Defence and Space Company), is investigating smart materials and adaptive structures for aircraft in cooperation with EADS business units. Focus of research efforts are adaptive systems for shape control, noise reduction and vibration control of both fixed and rotary wing aircraft as well as for lift optimisation of fixed wing aircraft. Two outstanding adaptive systems which have been pushed ahead in cooperation with Airbus Germany and Eurocopter Germany are adaptive servo flaps for helicopter rotor blades and innovative high lift devices for fixed wing aircraft which both were tested in flight for the first time representing world premieres. In this paper various examples of adaptive systems are presented which were developed and realized by EADS in recent years.

  9. Federal Aviation Administration (FAA) airworthiness certification for ceramic matrix composite components in civil aircraft systems

    OpenAIRE

    Gonczy Stephen T.

    2015-01-01

    Ceramic matrix composites (CMCs) are being designed and developed for engine and exhaust components in commercial aviation, because they offer higher temperature capabilities, weight savings, and improved durability compared to metals. The United States Federal Aviation Administration (FAA) issues and enforces regulations and minimum standards covering the safe manufacture, operation, and maintenance of civil aircraft. As new materials, these ceramic composite components will have to meet the...

  10. Structural resource of the aircraft IAR-99 SOIM

    Directory of Open Access Journals (Sweden)

    Radu BISCA

    2012-03-01

    Full Text Available Aircraft structure fatigue monitoring has been developed over decades presently reaching the stage where it became mandatory for all combat aircraft to be equipped with an airborne fatigue monitoring system. These systems usually collect operational data for calculating the safe fatigue life or inspection interval for the aircraft structure. This paper presents an analysis of the current state of fatigue monitoring systems on the IAR-99 SOIM based on the experience of international fatigue monitoring programs and analysis of structure resource improvement.Aspects related to strain gauge and calibration, flight parameter data gathering, data integrity, comparison with fatigue test results and fatigue damage models are also investigated by means of flight tests.

  11. Aircraft fiber optic structural health monitoring

    Science.gov (United States)

    Mrad, Nezih

    2012-06-01

    Structural Health Monitoring (SHM) is a sought after concept that is expected to advance military maintenance programs, increase platform operational safety and reduce its life cycle cost. Such concept is further considered to constitute a major building block of any Integrated Health Management (IHM) capability. Since 65% to 80% of military assets' Life Cycle Cost (LCC) is devoted to operations and support (O&S), the aerospace industry and military sectors continue to look for opportunities to exploit SHM systems, capability and tools. Over the past several years, countless SHM concepts and technologies have emerged. Among those, fiber optic based systems were identified of significant potential. This paper introduces the elements of an SHM system and investigates key issues impeding the commercial implementation of fiber optic based SHM capability. In particular, this paper presents an experimental study of short gauge, intrinsic, spectrometric-based in-fiber Bragg grating sensors, for potential use as a component of an SHM system. Fiber optic Bragg grating sensors are evaluated against resistance strain gauges for strain monitoring, sensitivity, accuracy, reliability, and fatigue durability. Strain field disturbance is also investigated by "embedding" the sensors under a photoelastic coating in order to illustrate sensor intrusiveness in an embedded configuration.

  12. Nuclear containment structure subjected to commercial and fighter aircraft crash

    International Nuclear Information System (INIS)

    Highlights: • Nuclear containment response has been studied against aircraft crash. • Concrete damaged plasticity and Johnson–Cook elasto-viscoplastic models were employed. • Boeing 747-400 and Boeing 767-400 aircrafts caused global failure of containment. • Airbus A320 and Boeing 707-320 aircrafts caused local damage. • Tension damage of concrete was found more prominent compared to compression damage. -- Abstract: The response of a boiling water reactor (BWR) nuclear containment vessel has been studied against commercial and fighter aircraft crash using a nonlinear finite element code ABAQUS. The aircrafts employed were Boeing 747-400, Boeing 767-400, Airbus A-320, Boeing 707-320 and Phantom F4. The containment was modeled as a three-dimensional deformable reinforced concrete structure while the loading of aircraft was assigned using the respective reaction–time curve. The location of strike was considered near the junction of dome and cylinder, and the angle of incidence, normal to the containment surface. The material behavior of the concrete was incorporated using the damaged plasticity model while that of the reinforcement, the Johnson–Cook elasto-viscoplastic model. The containment could not sustain the impact of Boeing 747-400 and Boeing 767-400 aircrafts and suffered rupture of concrete around the impact region leading to global failure. On the other hand, the maximum local deformation at the point of impact was found to be 0.998 m, 0.099 m, 0.092 m, 0.089 m, and 0.074 m against Boeing 747-400, Phantom F4, Boeing 767, Boeing 707-320 and Airbus A-320 aircrafts respectively. The results of the present study were compared with those of the previous analytical and numerical investigations with respect to the maximum deformation and overall behavior of the containment

  13. Nuclear containment structure subjected to commercial and fighter aircraft crash

    Energy Technology Data Exchange (ETDEWEB)

    Sadique, M.R., E-mail: rehan.sadique@gmail.com; Iqbal, M.A., E-mail: iqbalfce@iitr.ernet.in; Bhargava, P., E-mail: bhpdpfce@iitr.ernet.in

    2013-07-15

    Highlights: • Nuclear containment response has been studied against aircraft crash. • Concrete damaged plasticity and Johnson–Cook elasto-viscoplastic models were employed. • Boeing 747-400 and Boeing 767-400 aircrafts caused global failure of containment. • Airbus A320 and Boeing 707-320 aircrafts caused local damage. • Tension damage of concrete was found more prominent compared to compression damage. -- Abstract: The response of a boiling water reactor (BWR) nuclear containment vessel has been studied against commercial and fighter aircraft crash using a nonlinear finite element code ABAQUS. The aircrafts employed were Boeing 747-400, Boeing 767-400, Airbus A-320, Boeing 707-320 and Phantom F4. The containment was modeled as a three-dimensional deformable reinforced concrete structure while the loading of aircraft was assigned using the respective reaction–time curve. The location of strike was considered near the junction of dome and cylinder, and the angle of incidence, normal to the containment surface. The material behavior of the concrete was incorporated using the damaged plasticity model while that of the reinforcement, the Johnson–Cook elasto-viscoplastic model. The containment could not sustain the impact of Boeing 747-400 and Boeing 767-400 aircrafts and suffered rupture of concrete around the impact region leading to global failure. On the other hand, the maximum local deformation at the point of impact was found to be 0.998 m, 0.099 m, 0.092 m, 0.089 m, and 0.074 m against Boeing 747-400, Phantom F4, Boeing 767, Boeing 707-320 and Airbus A-320 aircrafts respectively. The results of the present study were compared with those of the previous analytical and numerical investigations with respect to the maximum deformation and overall behavior of the containment.

  14. Aircraft

    Science.gov (United States)

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  15. Structural Integrity Assessment of Reactor Containment Subjected to Aircraft Crash

    International Nuclear Information System (INIS)

    When an accident occurs at the NPP, containment building which acts as the last barrier should be assessed and analyzed structural integrity by internal loading or external loading. On many occasions that can occur in the containment internal such as LOCA(Loss Of Coolant Accident) are already reflected to design. Likewise, there are several kinds of accidents that may occur from the outside of containment such as earthquakes, hurricanes and strong wind. However, aircraft crash that at outside of containment is not reflected yet in domestic because NPP sites have been selected based on the probabilistic method. After intentional aircraft crash such as World Trade Center and Pentagon accident in US, social awareness for safety of infrastructure like NPP was raised world widely and it is time for assessment of aircraft crash in domestic. The object of this paper is assessment of reactor containment subjected to aircraft crash by FEM(Finite Element Method). In this paper, assessment of structural integrity of containment building subjected to certain aircraft crash was carried out. Verification of structure integrity of containment by intentional severe accident. Maximum stress 61.21MPa of horizontal shell crash does not penetrate containment. Research for more realistic results needed by steel reinforced concrete model

  16. A mathematical model of aircraft for evaluating the effects of shielding structure on aircrew exposure

    International Nuclear Information System (INIS)

    To investigate the influence of the aircraft structures and contents on the exposure of aircrew to the galactic component of cosmic rays, a mathematical model of an aeroplane has been developed. The irradiation of the mathematical model in the cosmic ray environment has been simulated using the Monte Carlo transport code FLUKA. Effective dose and ambient dose-equivalent rates have been determined inside the aircraft at several locations along the fuselage at a typical civil aviation altitude. A significant effect of the shielding of aircraft structures has been observed on the ambient dose-equivalent rates, while the impact on the effective dose rates seems to be minor. Care should be taken in positioning the detectors onboard when the measurements are aimed at validating the codes. (authors)

  17. Structural analysis of nuclear components

    International Nuclear Information System (INIS)

    THe report describes the activities accomplished in the project 'Structural Analysis Project of Nuclear Power Plant Components' during the years 1974-1982 in the Nuclear Engineering Laboratory at the Technical Research Centre of Finland. The objective of the project has been to develop Finnish expertise in structural mechanics related to nuclear engineering. The report describes the starting point of the research work, the organization of the project and the research activities on various subareas. Further the work done with computer codes is described and also the problems which the developed expertise has been applied to. Finally, the diploma works, publications and work reports, which are mainly in Finnish, are listed to give a view of the content of the project. (author)

  18. Structural Configuration Systems Analysis for Advanced Aircraft Fuselage Concepts

    Science.gov (United States)

    Mukhopadhyay, Vivek; Welstead, Jason R.; Quinlan, Jesse R.; Guynn, Mark D.

    2016-01-01

    Structural configuration analysis of an advanced aircraft fuselage concept is investigated. This concept is characterized by a double-bubble section fuselage with rear mounted engines. Based on lessons learned from structural systems analysis of unconventional aircraft, high-fidelity finite-element models (FEM) are developed for evaluating structural performance of three double-bubble section configurations. Structural sizing and stress analysis are applied for design improvement and weight reduction. Among the three double-bubble configurations, the double-D cross-section fuselage design was found to have a relatively lower structural weight. The structural FEM weights of these three double-bubble fuselage section concepts are also compared with several cylindrical fuselage models. Since these fuselage concepts are different in size, shape and material, the fuselage structural FEM weights are normalized by the corresponding passenger floor area for a relative comparison. This structural systems analysis indicates that an advanced composite double-D section fuselage may have a relative structural weight ratio advantage over a conventional aluminum fuselage. Ten commercial and conceptual aircraft fuselage structural weight estimates, which are empirically derived from the corresponding maximum takeoff gross weight, are also presented and compared with the FEM- based estimates for possible correlation. A conceptual full vehicle FEM model with a double-D fuselage is also developed for preliminary structural analysis and weight estimation.

  19. Active Structural Control for Aircraft Efficiency with the X-56A Aircraft

    Science.gov (United States)

    Ouellette, Jeffrey

    2015-01-01

    The X-56A Multi-Utility Technology Testbed is an experimental aircraft designed to study active control of flexible structures. The vehicle is easily reconfigured to allow for testing of different configurations. The vehicle is being used to study new sensor, actuator, modeling and controls technologies. These new technologies will allow for lighter vehicles and new configurations that exceed the efficiency currently achievable. A description of the vehicle and the current research efforts that it enables are presented.

  20. Analysis and design technology for high-speed aircraft structures

    Science.gov (United States)

    Starnes, James H., Jr.; Camarda, Charles J.

    1992-01-01

    Recent high-speed aircraft structures research activities at NASA Langley Research Center are described. The following topics are covered: the development of analytical and numerical solutions to global and local thermal and structural problems, experimental verification of analysis methods, identification of failure mechanisms, and the incorporation of analysis methods into design and optimization strategies. The paper describes recent NASA Langley advances in analysis and design methods, structural and thermal concepts, and test methods.

  1. Preliminary analysis of the J-52 aircraft engine Component Improvement Program

    OpenAIRE

    Butler, Randall Scott

    1992-01-01

    Approved for public release; distribution is unlimited Increasing budgetary constraints have required program managers within the Naval Air Systems Command to justify their programs as never before. This thesis presents a preliminary analysis of the J-52 aircraft engine Component Improvement Program (CIP). The objectives of the research were to scrutinize the association of the CIP with promised improvements and benefits pertaining to the J-52 engine and to determine the obstacles that e...

  2. Statistical analysis of the time and fatigue strength of aircraft wing structures

    Science.gov (United States)

    Kaul, Hans W

    1941-01-01

    The results from stress measurements in flight operation afford data for analyzing the frequency of appearance of certain parts of the static breaking strength during a specified number of operating hours. Appropriate frequency evaluations furnish data for the prediction of the required strength under repeated stress in the wing structures of aircraft of the different stress categories for the specified number of operating hours demanded during the life of a component.

  3. Federal Aviation Administration (FAA airworthiness certification for ceramic matrix composite components in civil aircraft systems

    Directory of Open Access Journals (Sweden)

    Gonczy Stephen T.

    2015-01-01

    Full Text Available Ceramic matrix composites (CMCs are being designed and developed for engine and exhaust components in commercial aviation, because they offer higher temperature capabilities, weight savings, and improved durability compared to metals. The United States Federal Aviation Administration (FAA issues and enforces regulations and minimum standards covering the safe manufacture, operation, and maintenance of civil aircraft. As new materials, these ceramic composite components will have to meet the certification regulations of the FAA for “airworthiness”. The FAA certification process is defined in the Federal Aviation Regulations (Title 14 of the Code of Federal Regulations, FAA policy statements, orders, advisory circulars, technical standard orders, and FAA airworthiness directives. These regulations and documents provide the fundamental requirements and guidelines for design, testing, manufacture, quality assurance, registration, operation, inspection, maintenance, and repair of aircraft systems and parts. For metallic parts in aircraft, the FAA certification and compliance process is well-established for type and airworthiness certification, using ASTM and SAE standards, the MMPDS data handbook, and FAA advisory circulars. In a similar manner for polymer matrix composites (PMC, the PMC industry and the FAA have jointly developed and are refining parallel guidelines for polymer matrix composites (PMCs, using guidance in FAA circulars and the CMH-17 PMC handbook. These documents discuss design methods and codes, material testing, property data development, life/durability assessment, production processes, QA procedures, inspection methods, operational limits, and repairs for PMCs. For ceramic composites, the FAA and the CMC and aerospace community are working together (primarily through the CMH-17 CMC handbook to define and codify key design, production, and regulatory issues that have to be addressed in the certification of CMC components in

  4. Status of Advanced Stitched Unitized Composite Aircraft Structures

    Science.gov (United States)

    Jegley, Dawn C.; Velicki, Alex

    2013-01-01

    NASA has created the Environmentally Responsible Aviation (ERA) Project to explore and document the feasibility, benefits and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift-to-drag ratios, reduced drag, and lower community noise levels. The primary structural concept being developed under the ERA project in the Airframe Technology element is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. This paper describes how researchers at NASA and The Boeing Company are working together to develop fundamental PRSEUS technologies that could someday be implemented on a transport size aircraft with high aspect ratio wings or unconventional shapes such as a hybrid wing body airplane design.

  5. Low velocity blunt impacts on composite aircraft structures

    OpenAIRE

    Whisler, Daniel A.

    2009-01-01

    As composites are increasingly used for primary structures in commercial aircrafts, it is necessary to understand damage initiation for composites subject to low velocity impacts from service conditions, maintenance, and other ground equipment mishaps. In particular, collisions with ground vehicles can present a wide area, blunt impact. Therefore, the effects of bluntness of an impactor are of interest as this is related to both the external visual detectability of an impact event, as well as...

  6. Graphene/Epoxy Coating as Multifunctional Material for Aircraft Structures

    OpenAIRE

    Tullio Monetta; Annalisa Acquesta; Francesco Bellucci

    2015-01-01

    Recently, the use of graphene as a conductive nanofiller in the preparation of inorganic/polymer nanocomposites has attracted increasing interest in the aerospace field. The reason for this is the possibility of overcoming problems strictly connected to the aircraft structures, such as electrical conductivity and thus lightning strike protection. In addition, graphene is an ideal candidate to enhance the anti-corrosion properties of the resin, since it absorbs most of the light and provides ...

  7. Feedback Linearized Aircraft Control Using Dynamic Cell Structure

    Science.gov (United States)

    Jorgensen, C. C.

    1998-01-01

    A Dynamic Cell Structure (DCS ) Neural Network was developed which learns a topology representing network (TRN) of F-15 aircraft aerodynamic stability and control derivatives. The network is combined with a feedback linearized tracking controller to produce a robust control architecture capable of handling multiple accident and off-nominal flight scenarios. This paper describes network and its performance for accident scenarios including differential stabilator lock, soft sensor failure, control, stability derivative variation, and turbulence.

  8. Development of Textile Reinforced Composites for Aircraft Structures

    Science.gov (United States)

    Dexter, H. Benson

    1998-01-01

    NASA has been a leader in development of composite materials for aircraft applications during the past 25 years. In the early 1980's NASA and others conducted research to improve damage tolerance of composite structures through the use of toughened resins but these resins were not cost-effective. The aircraft industry wanted affordable, robust structures that could withstand the rigors of flight service with minimal damage. The cost and damage tolerance barriers of conventional laminated composites led NASA to focus on new concepts in composites which would incorporate the automated manufacturing methods of the textiles industry and which would incorporate through-the-thickness reinforcements. The NASA Advanced Composites Technology (ACT) Program provided the resources to extensively investigate the application of textile processes to next generation aircraft wing and fuselage structures. This paper discusses advanced textile material forms that have been developed, innovative machine concepts and key technology advancements required for future application of textile reinforced composites in commercial transport aircraft. Multiaxial warp knitting, triaxial braiding and through-the-thickness stitching are the three textile processes that have surfaced as the most promising for further development. Textile reinforced composite structural elements that have been developed in the NASA ACT Program are discussed. Included are braided fuselage frames and window-belt reinforcements, woven/stitched lower fuselage side panels, stitched multiaxial warp knit wing skins, and braided wing stiffeners. In addition, low-cost processing concepts such as resin transfer molding (RTM), resin film infusion (RFI), and vacuum-assisted resin transfer molding (VARTM) are discussed. Process modeling concepts to predict resin flow and cure in textile preforms are also discussed.

  9. ADVANCED ACOUSTIC EMISSION SOURCE LOCATION IN COMPLEX AIRCRAFT STRUCTURE

    Czech Academy of Sciences Publication Activity Database

    Blaháček, Michal; Převorovský, Zdeněk

    Krakow: University of Technology Krakov, 2008 - (Kanji, O.), s. 172-177 ISBN 978-83-7242-478-5. [European Conference on Acoustic Emission Testing EWGAE /28./. Krakow (PL), 17.09.2008-19.09.2008] R&D Projects: GA ČR GA101/07/1518 Institutional research plan: CEZ:AV0Z20760514 Keywords : source location * aircraft structure * fuzzy Subject RIV: BI - Acoustics

  10. On structural health monitoring of aircraft adhesively bonded repairs

    Science.gov (United States)

    Pavlopoulou, Sofia

    The recent interest in life extension of ageing aircraft and the need to address the repair challenges in the new age composite ones, led to the investigation of new repair methodologies such as adhesively bonded repair patches. The present thesis focuses on structural health monitoring aspects of the repairs, evaluating their performance with guided ultrasonic waves aiming to develop a monitoring strategy which would eliminate unscheduled maintenance and unnecessary inspection costs. To address the complex nature of the wave propagation phenomena, a finite element based model identified the existing challenges by exploring the interaction of the excitation waves with different levels of damage. The damage sensitivity of the first anti-symmetric mode was numerically investigated. An external bonded patch and a scarf repair, were further tested in static and dynamic loadings, and their performance was monitored with Lamb waves, excited by surface-bonded piezoelectric transducers.. The response was processed by means of advanced pattern recognition and data dimension reduction techniques such as novelty detection and principal component analysis. An optimisation of these tools enabled an accurate damage detection under complex conditions. The phenomena of mode isolation and precise arrival time determination under a noisy environment and the problem of inadequate training data were investigated and solved through appropriate transducer arrangements and advanced signal processing respectively. The applicability of the established techniques was demonstrated on an aluminium repaired helicopter tail stabilizer. Each case study utilised alternative non-destructive techniques for validation such as 3D digital image correlation, X-ray radiography and thermography. Finally a feature selection strategy was developed through the analysis of the instantaneous properties of guided waves for damage detection purposes..

  11. Development of Stitched Composite Structure for Advanced Aircraft

    Science.gov (United States)

    Jegley, Dawn; Przekop, Adam; Rouse, Marshall; Lovejoy, Andrew; Velicki, Alex; Linton, Kim; Wu, Hsi-Yung; Baraja, Jaime; Thrash, Patrick; Hoffman, Krishna

    2015-01-01

    NASA has created the Environmentally Responsible Aviation Project to develop technologies which will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations. NASA and The Boeing Company are working together to develop a structural concept that is lightweight and an advancement beyond state-of-the-art composites. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is an integrally stiffened panel design where elements are stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. With the PRSEUS concept, through-the-thickness stitches are applied through dry fabric prior to resin infusion, and replace fasteners throughout each integral panel. Through-the-thickness reinforcement at discontinuities, such as along flange edges, has been shown to suppress delamination and turn cracks, which expands the design space and leads to lighter designs. The pultruded rod provides stiffening away from the more vulnerable skin surface and improves bending stiffness. A series of building blocks were evaluated to explore the fundamental assumptions related to the capability and advantages of PRSEUS panels. These building blocks addressed tension, compression, and pressure loading conditions. The emphasis of the development work has been to assess the loading capability, damage arrestment features, repairability, post-buckling behavior, and response of PRSEUS flat panels to out-of plane pressure loading. The results of this building-block program from coupons through an 80%-scale pressure box have demonstrated the viability of a PRSEUS center body for the Hybrid Wing Body (HWB) transport aircraft. This development program shows that the PRSEUS benefits are also applicable to traditional tube-andwing aircraft, those of advanced configurations, and other

  12. Numerical simulation of two-dimensional heat transfer in composite bodies with application to de-icing of aircraft components. Ph.D. Thesis. Final Report

    Science.gov (United States)

    Chao, D. F. K.

    1983-01-01

    Transient, numerical simulations of the de-icing of composite aircraft components by electrothermal heating were performed for a two dimensional rectangular geometry. The implicit Crank-Nicolson formulation was used to insure stability of the finite-difference heat conduction equations and the phase change in the ice layer was simulated using the Enthalpy method. The Gauss-Seidel point iterative method was used to solve the system of difference equations. Numerical solutions illustrating de-icer performance for various composite aircraft structures and environmental conditions are presented. Comparisons are made with previous studies. The simulation can also be used to solve a variety of other heat conduction problems involving composite bodies.

  13. Damage tolerant wing-fuselage integration structural design applicable to future BWB transport aircraft

    OpenAIRE

    Sodzi, P.

    2009-01-01

    Wing joint design is one of the most critical areas in aircraft structures. Efficient and damage tolerant wing-fuselage integration structure, applicable to the next generation of transport aircraft, will facilitate the realisation of the benefits offered by new aircraft concepts. The Blended Wing Body (BWB) aircraft concept represents a potential revolution in subsonic transport efficiency for large airplanes. Studies have shown the BWB to be superior to conventional airframes...

  14. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    Science.gov (United States)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  15. Structured Sparse Principal Component Analysis

    OpenAIRE

    R. Jenatton; G. Obozinski; Bach, F.

    2009-01-01

    We present an extension of sparse PCA, or sparse dictionary learning, where the sparsity patterns of all dictionary elements are structured and constrained to belong to a prespecified set of shapes. This \\emph{structured sparse PCA} is based on a structured regularization recently introduced by [1]. While classical sparse priors only deal with \\textit{cardinality}, the regularization we use encodes higher-order information about the data. We propose an efficient and simple optimization proced...

  16. Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts

    Science.gov (United States)

    Mukhopadhyay, Vivek; Sorokach, Michael R.

    2015-01-01

    NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.

  17. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles, summary. [aircraft design of aircraft fuel systems

    Science.gov (United States)

    Pirrello, C. J.; Baker, A. H.; Stone, J. E.

    1976-01-01

    A detailed analytical study was made to investigate the effects of fuselage cross section (circular and elliptical) and the structural arrangement (integral and nonintegral tanks) on aircraft performance. The vehicle was a 200 passenger, liquid hydrogen fueled Mach 6 transport designed to meet a range goal of 9.26 Mn (5000 NM). A variety of trade studies were conducted in the area of configuration arrangement, structural design, and active cooling design in order to maximize the performance of each of three point design aircraft: (1) circular wing-body with nonintegral tanks, (2) circular wing-body with integral tanks and (3) elliptical blended wing-body with integral tanks. Aircraft range and weight were used as the basis for comparison. The resulting design and performance characteristics show that the blended body integral tank aircraft weights the least and has the greatest range capability, however, producibility and maintainability factors favor nonintegral tank concepts.

  18. Brazilian Air Force aircraft structural integrity program: An overview

    Directory of Open Access Journals (Sweden)

    Alberto W. S. Mello Junior

    2009-01-01

    Full Text Available This paper presents an overview of the activities developed by the Structural Integrity Group at the Institute of Aeronautics and Space - IAE, Brazil, as well as the status of ongoing work related to the life extension program for aircraft operated by the Brazilian Air Force BAF. The first BAF-operated airplane to undergo a DTA-based life extension was the F-5 fighter, in the mid 1990s. From 1998 to 2001, BAF worked on a life extension project for the BAF AT- 26 Xavante trainer. All analysis and tests were performed at IAE. The fatigue critical locations (FCLs were presumed based upon structural design and maintenance data and also from exchange of technical information with other users of the airplane around the world. Following that work, BAF started in 2002 the extension of the operational life of the BAF T-25 “Universal”. The T-25 is the basic training airplane used by AFA - The Brazilian Air Force Academy. This airplane was also designed under the “safe-life” concept. As the T-25 fleet approached its service life limit, the Brazilian Air Force was questioning whether it could be kept in flight safely. The answer came through an extensive Damage Tolerance Analysis (DTA program, briefly described in this paper. The current work on aircraft structural integrity is being performed for the BAF F-5 E/F that underwent an avionics and weapons system upgrade. Along with the increase in weight, new configurations and mission profiles were established. Again, a DTA program was proposed to be carried out in order to establish the reliability of the upgraded F-5 fleet. As a result of all the work described, the BAF has not reported any accident due to structural failure on aircraft submitted to Damage Tolerance Analysis.

  19. Aircraft Engine Sensor/Actuator/Component Fault Diagnosis Using a Bank of Kalman Filters

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L. (Technical Monitor)

    2003-01-01

    In this report, a fault detection and isolation (FDI) system which utilizes a bank of Kalman filters is developed for aircraft engine sensor and actuator FDI in conjunction with the detection of component faults. This FDI approach uses multiple Kalman filters, each of which is designed based on a specific hypothesis for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, from which a specific fault is isolated. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The performance of the FDI system is evaluated against a nonlinear engine simulation for various engine faults at cruise operating conditions. In order to mimic the real engine environment, the nonlinear simulation is executed not only at the nominal, or healthy, condition but also at aged conditions. When the FDI system designed at the healthy condition is applied to an aged engine, the effectiveness of the FDI system is impacted by the mismatch in the engine health condition. Depending on its severity, this mismatch can cause the FDI system to generate incorrect diagnostic results, such as false alarms and missed detections. To partially recover the nominal performance, two approaches, which incorporate information regarding the engine s aging condition in the FDI system, will be discussed and evaluated. The results indicate that the proposed FDI system is promising for reliable diagnostics of aircraft engines.

  20. Aircraft wing structural design optimization based on automated finite element modelling and ground structure approach

    Science.gov (United States)

    Yang, Weizhu; Yue, Zhufeng; Li, Lei; Wang, Peiyan

    2016-01-01

    An optimization procedure combining an automated finite element modelling (AFEM) technique with a ground structure approach (GSA) is proposed for structural layout and sizing design of aircraft wings. The AFEM technique, based on CATIA VBA scripting and PCL programming, is used to generate models automatically considering the arrangement of inner systems. GSA is used for local structural topology optimization. The design procedure is applied to a high-aspect-ratio wing. The arrangement of the integral fuel tank, landing gear and control surfaces is considered. For the landing gear region, a non-conventional initial structural layout is adopted. The positions of components, the number of ribs and local topology in the wing box and landing gear region are optimized to obtain a minimum structural weight. Constraints include tank volume, strength, buckling and aeroelastic parameters. The results show that the combined approach leads to a greater weight saving, i.e. 26.5%, compared with three additional optimizations based on individual design approaches.

  1. Equivalent plate modeling for conceptual design of aircraft wing structures

    Science.gov (United States)

    Giles, Gary L.

    1995-01-01

    This paper describes an analysis method that generates conceptual-level design data for aircraft wing structures. A key requirement is that this data must be produced in a timely manner so that is can be used effectively by multidisciplinary synthesis codes for performing systems studies. Such a capability is being developed by enhancing an equivalent plate structural analysis computer code to provide a more comprehensive, robust and user-friendly analysis tool. The paper focuses on recent enhancements to the Equivalent Laminated Plate Solution (ELAPS) analysis code that significantly expands the modeling capability and improves the accuracy of results. Modeling additions include use of out-of-plane plate segments for representing winglets and advanced wing concepts such as C-wings along with a new capability for modeling the internal rib and spar structure. The accuracy of calculated results is improved by including transverse shear effects in the formulation and by using multiple sets of assumed displacement functions in the analysis. Typical results are presented to demonstrate these new features. Example configurations include a C-wing transport aircraft, a representative fighter wing and a blended-wing-body transport. These applications are intended to demonstrate and quantify the benefits of using equivalent plate modeling of wing structures during conceptual design.

  2. Smart aircraft composite structures with embedded small-diameter optical fiber sensors

    Science.gov (United States)

    Takeda, Nobuo; Minakuchi, Shu

    2012-02-01

    This talk describes the embedded optical fiber sensor systems for smart aircraft composite structures. First, a summary of the current Japanese national project on structural integrity diagnosis of aircraft composite structures is described with special emphasis on the use of embedded small-diameter optical fiber sensors including FBG sensors. Then, some examples of life-cycle monitoring of aircraft composite structures are presented using embedded small-diameter optical fiber sensors for low-cost and reliable manufacturing merits.

  3. Brazilian Air Force aircraft structural integrity program: An overview

    OpenAIRE

    Alberto W. S. Mello Junior; Abílio Neves Garcia; Ribeiro Fabrício N.; Daniel Ferreira V. Mattos

    2009-01-01

    This paper presents an overview of the activities developed by the Structural Integrity Group at the Institute of Aeronautics and Space - IAE, Brazil, as well as the status of ongoing work related to the life extension program for aircraft operated by the Brazilian Air Force BAF. The first BAF-operated airplane to undergo a DTA-based life extension was the F-5 fighter, in the mid 1990s. From 1998 to 2001, BAF worked on a life extension project for the BAF AT- 26 Xavante trainer. All analysis ...

  4. Optimization of structures and components

    CERN Document Server

    Muñoz-Rojas, Pablo Andrés

    2013-01-01

    Written by an international group of active researchers in the field, this volume presents innovative formulations and applied procedures for sensitivity analysis and structural design optimization. Eight chapters discuss subjects ranging from recent developments in the determination and application of topological gradients, to the use of evolutionary algorithms and meta-models to solve practical engineering problems. With such a comprehensive set of contributions, the book is a valuable source of information for graduate students and researchers entering or working in the matter.

  5. Experimental study on mechanical properties of aircraft honeycomb sandwich structures

    Directory of Open Access Journals (Sweden)

    Talebi Mazraehshahi H.

    2010-06-01

    Full Text Available Mechanical behaviour of sandwich panels under different conditions have been exprimentally studied in this research to increase the knowledge of aircraft sandwich panel structures and facilitate design criteria for aircraft structures. Tests were concentrated on the honeycomb sandwich structures under different loads including flexural, insert shear, flat wise tension and compression loads. Furthermore, effect of core density and face material on mechanical behavior of different samples were investigated and compared with analytical and FEM method. Effects of skin thickness on strength of honycomb sandwhich panels under shear pull out and moments have also been considerd in this study. According to this investigation, insert strength and flexural test under different load conditions is strongly affected by face thickness, but compression and tearoff (falt wise tensile properties of a sandwich panel depends on core material. The study concludes that the correlation between experimental results and the analytical predictions will enable the designer to predict the mechanical behaviour and strength of a sandwich beam; however, applied formula may lead engineers to unreliable results for shear modulus.

  6. Monte Carlo simulation methodology for the reliabilty of aircraft structures under damage tolerance considerations

    Science.gov (United States)

    Rambalakos, Andreas

    Current federal aviation regulations in the United States and around the world mandate the need for aircraft structures to meet damage tolerance requirements through out the service life. These requirements imply that the damaged aircraft structure must maintain adequate residual strength in order to sustain its integrity that is accomplished by a continuous inspection program. The multifold objective of this research is to develop a methodology based on a direct Monte Carlo simulation process and to assess the reliability of aircraft structures. Initially, the structure is modeled as a parallel system with active redundancy comprised of elements with uncorrelated (statistically independent) strengths and subjected to an equal load distribution. Closed form expressions for the system capacity cumulative distribution function (CDF) are developed by expanding the current expression for the capacity CDF of a parallel system comprised by three elements to a parallel system comprised with up to six elements. These newly developed expressions will be used to check the accuracy of the implementation of a Monte Carlo simulation algorithm to determine the probability of failure of a parallel system comprised of an arbitrary number of statistically independent elements. The second objective of this work is to compute the probability of failure of a fuselage skin lap joint under static load conditions through a Monte Carlo simulation scheme by utilizing the residual strength of the fasteners subjected to various initial load distributions and then subjected to a new unequal load distribution resulting from subsequent fastener sequential failures. The final and main objective of this thesis is to present a methodology for computing the resulting gradual deterioration of the reliability of an aircraft structural component by employing a direct Monte Carlo simulation approach. The uncertainties associated with the time to crack initiation, the probability of crack detection, the

  7. The Philosophy which underlies the structural tests of a supersonic transport aircraft with particular attention to the thermal cycle

    Science.gov (United States)

    Ripley, E. L.

    1972-01-01

    The information presented is based on data obtained from the Concorde. Much of this data also applies to other supersonic transport aircraft. The design and development of the Concorde is a joint effort of the British and French, and the structural test program is shared, as are all the other activities. Vast numbers of small specimens have been tested to determine the behavior of the materials used in the aircraft. Major components of the aircraft structure, totalling almost a complete aircraft, have been made and are being tested to help the constructors in each country in the design and development of the structure. Tests on two complete airframes will give information for the certification of the aircraft. A static test was conducted in France and a fatigue test in the United Kingdom. Fail-safe tests are being made to demonstrate the crack-propagation characteristics of the structure and its residual strength. Aspects of the structural test program are described in some detail, dealing particularly with the problems associated with the thermal cycle. The biggest of these problems is the setting up of the fatigue test on the complete airframe; therefore, this is covered more extensively with a discussion about how the test time can be shortened and with a description of the practical aspects of the test.

  8. Titanium honeycomb structure. [for supersonic aircraft wing structure

    Science.gov (United States)

    Davis, R. A.; Elrod, S. D.; Lovell, D. T.

    1972-01-01

    A brazed titanium honeycomb sandwich system for supersonic transport wing cover panels provides the most efficient structure spanwise, chordwise, and loadwise. Flutter testing shows that high wing stiffness is most efficient in a sandwich structure. This structure also provides good thermal insulation if liquid fuel is carried in direct contact with the wing structure in integral fuel tanks.

  9. Performance analysis of bonded composite doublers on aircraft structures

    Energy Technology Data Exchange (ETDEWEB)

    Roach, D.

    1995-08-01

    Researchers contend that composite repairs (or structural reinforcement doublers) offer numerous advantages over metallic patches including corrosion resistance, light weight, high strength, elimination of rivets, and time savings in installation. Their use in commercial aviation has been stifled by uncertainties surrounding their application, subsequent inspection and long-term endurance. The process of repairing or reinforcing airplane structures is time consuming and the design is dependent upon an accompanying stress and fatigue analysis. A repair that is too stiff may result in a loss of fatigue life, continued growth of the crack being repaired, and the initiation of a new flaw in the undesirable high stress field around the patch. Uncertainties in load spectrums used to design repairs exacerbates these problems as does the use of rivets to apply conventional doublers. Many of these repair or structural reinforcement difficulties can be addressed through the use of composite doublers. Primary among unknown entities are the effects of non-optimum installations and the certification of adequate inspection procedures. This paper presents on overview of a program intended to introduce composite doubler technology to the US commercial aircraft fleet. In this project, a specific composite application has been chosen on an L-1011 aircraft in order to focus the tasks on application and operation issues. Through the use of laboratory test structures and flight demonstrations on an in-service L-1011 airplane, this study is investigating composite doubler design, fabrication, installation, structural integrity, and non-destructive evaluation. In addition to providing an overview of the L-1011 project, this paper focuses on a series of fatigue and strength tests which have been conducted in order to study the damage tolerance of composite doublers. Test results to-date are presented.

  10. Mobile HTS SQUID System for Nondestructive Evaluation of Aircraft Structures

    Science.gov (United States)

    Krause, Hans-Joachim; Hohmann, Rainer; Grueneklee, Michael; Zhang, Yi; Braginski, Alex I.

    1997-03-01

    For the detection of deep-lying flaws in aircraft structures, a mobile eddy-current system is being developed in conjunction with a high-temperature superconductor (Yba_2Cu_3O_7) thin-film HTS SQUID gradiometer. The challenge is to operate the SQUID sensor during movement in strong ambient fields, independent of orientation. A planar rf double hole gradiometer with a gradient sensitivity of 500 fT/(cm √Hz) was designed for that purpose. Two different cooling concepts were successfully implemented: the SQUID operation in the vacuum region of a lightweight nitrogen cryostat, constructed for operation in any orientation, and the use of a commercial Joule-Thomson cryocooler for liquid-nitrogen-free SQUID cooling. With a SQUID integration scheme using a sapphire cold finger, motion-related additional noise is nearly eliminated. Using a system equipped with a differential eddy current excitation, two-dimensional scans were performed to find fatigue cracks and corrosion pits hidden below several layers of aluminum. For demonstration in the Lufthansa maintenance facility at Frankfurt Airport, the system was used to detect flaws in aircraft wheels. Work in progress includes developing longer base gradiometers for detection of deep flaws.

  11. Comparison of Response between RC and SC Containment Structures Subjected to Aircraft Impact

    International Nuclear Information System (INIS)

    Since the aircraft terror to the World Trade Center (WTC) on September 11, 2001, an aircraft impact problem has been increasingly interested. The possibilities of aircraft impacts against nuclear power plants are one of important category. To date, the impact load of the analysis on aircraft impacts has been applied to target structures in local areas by using the impact force-time history function of Riera. However, Riera forcing function is not recommended at the expectation of unreasonable damage or perforation to target structures. The numerical analysis of rc and sc containment structures subjected to aircraft impact is performed by using the AUTODYN-3D. It is carried out the four different types for RC and SC structures. Thus, in this study, the different behaviors of containment structures and the safety of SC structure are expected

  12. Reaction-time relationship and structural design of reinforced concrete slabs and shells for aircraft impact

    International Nuclear Information System (INIS)

    This paper outlines a rational procedure by which reinforced concrete structures such as slabs and shells may be designed to retain the required structural integrity after an aircraft impact. The paper presents a new estimate of the reaction-time relationship for impacting aircraft. A new estimate of the punching shear capacity is proposed. In addition, a simple, rotational design procedure is presented. (Auth.)

  13. Aircraft Structural Mass Property Prediction Using Conceptual-Level Structural Analysis

    Science.gov (United States)

    Sexstone, Matthew G.

    1998-01-01

    This paper describes a methodology that extends the use of the Equivalent LAminated Plate Solution (ELAPS) structural analysis code from conceptual-level aircraft structural analysis to conceptual-level aircraft mass property analysis. Mass property analysis in aircraft structures has historically depended upon parametric weight equations at the conceptual design level and Finite Element Analysis (FEA) at the detailed design level. ELAPS allows for the modeling of detailed geometry, metallic and composite materials, and non-structural mass coupled with analytical structural sizing to produce high-fidelity mass property analyses representing fully configured vehicles early in the design process. This capability is especially valuable for unusual configuration and advanced concept development where existing parametric weight equations are inapplicable and FEA is too time consuming for conceptual design. This paper contrasts the use of ELAPS relative to empirical weight equations and FEA. ELAPS modeling techniques are described and the ELAPS-based mass property analysis process is detailed. Examples of mass property stochastic calculations produced during a recent systems study are provided. This study involved the analysis of three remotely piloted aircraft required to carry scientific payloads to very high altitudes at subsonic speeds. Due to the extreme nature of this high-altitude flight regime, few existing vehicle designs are available for use in performance and weight prediction. ELAPS was employed within a concurrent engineering analysis process that simultaneously produces aerodynamic, structural, and static aeroelastic results for input to aircraft performance analyses. The ELAPS models produced for each concept were also used to provide stochastic analyses of wing structural mass properties. The results of this effort indicate that ELAPS is an efficient means to conduct multidisciplinary trade studies at the conceptual design level.

  14. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications

    OpenAIRE

    Raffaella Di Sante

    2015-01-01

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same s...

  15. Aircraft impact qualification of RBMK systems and components. Technical report. Rev. 00, May 1999

    International Nuclear Information System (INIS)

    In the present report, the problem of qualification procedures of electrical equipment with respect to the dynamic excitation subsequent to an aircraft impact (ACC) on a Nuclear Power Plant (NPP) is approached, within the context of IAEA Benchmark on vulnerability of equipment and structures of RBMK-type NPP against the aircraft impact. After a short description of the main objectives of the work and the relevant area of concern (Chapter 1), the safety related equipment more commonly installed in a NPP are grouped in few classes, according to widely accepted classification criteria and the relevant failure modes are described (Chapter 2). Taking as reference a deeply studied RBMK reactor (Ignalina NPP), an overview of its main characteristics and of the equipment ensemble housed in is given in Chapter 3. An overview of the worldwide most used qualification standards for safety related equipment for NPPs is reported in Chapter 4, and a comparison of the practices used in Europe for the qualification of safety related electrical and I and C equipment is described with special attention to seismic and impact qualification (Chapter 5). In the hypothesis that the equipment to qualify against impact excitation has been already qualified against seismic excitation, the problems relevant to the different nature of earthquake and shock phenomena are listed, together with the main criteria to implement a procedure which, based on standardized shock pulses, could be applied for ACC qualification purposes (Chapter 6). Consequently, a possible ACC qualification procedure is outlined (Chapter 7) and the interface data (data coming from numerical analysis and seismic qualification, to be used for ACC qualification purposes) are listed (Chapter 8). Finally, the main conclusions of the work are described (Chapter 9). The main references are listed in Chapter 10. (author)

  16. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications.

    Science.gov (United States)

    Di Sante, Raffaella

    2015-01-01

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques. PMID:26263987

  17. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications

    Directory of Open Access Journals (Sweden)

    Raffaella Di Sante

    2015-07-01

    Full Text Available In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

  18. Special Issue: Adaptive/Smart Structures and Multifunctional Materials with Application to Morphing Aircraft

    Directory of Open Access Journals (Sweden)

    Rafic Ajaj

    2014-12-01

    Full Text Available Recent advances in smart structures and multifunctional materials have facilitated many novel aerospace technologies such as morphing aircraft. A morphing aircraft, bio-inspired by natural fliers, has gained a lot of interest as a potential technology to meet the ambitious goals of the Advisory Council for Aeronautics Research in Europe (ACARE Vision 2020 and the FlightPath 2050 documents. A morphing aircraft continuously adjusts its wing geometry to enhance flight performance, control authority, and multi-mission capability.[...

  19. The NASA Aircraft Energy Efficiency program

    Science.gov (United States)

    Klineberg, J. M.

    1979-01-01

    A review is provided of the goals, objectives, and recent progress in each of six aircraft energy efficiency programs aimed at improved propulsive, aerodynamic and structural efficiency for future transport aircraft. Attention is given to engine component improvement, an energy efficient turbofan engine, advanced turboprops, revolutionary gains in aerodynamic efficiency for aircraft of the late 1990s, laminar flow control, and composite primary aircraft structures.

  20. Local damage to Ultra High Performance Concrete structures caused by an impact of aircraft engine missiles

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, Werner [Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institute, Eckerstrasse 4, D-79104 Freiburg (Germany); Noeldgen, Markus, E-mail: mnoeldgen@schuessler-plan.d [Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institute, Eckerstrasse 4, D-79104 Freiburg (Germany); Schuessler-Plan Engineering Ltd., St.-Franziskus-Str. 148, D-40470 Duesseldorf (Germany); Strassburger, Elmar; Thoma, Klaus [Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institute, Eckerstrasse 4, D-79104 Freiburg (Germany); Fehling, Ekkehard [University of Kassel, Chair of Structural Concrete, Kurt-Wolters Str. 3, D-34109 Kassel (Germany)

    2010-10-15

    Research highlights: {yields} Experimental series on UHPC panels subjected to aircraft engine impact. {yields} Improved ballistic limit of fiber reinforced UHPC in comparison to conventional R/C. {yields} Detailed investigation of failure mechanisms of fiber reinforced UHPC panel. - Abstract: The impact of an aircraft engine missile causes high stresses, deformations and a severe local damage to conventional reinforced concrete. As a consequence the design of R/C protective structural elements results in components with rather large dimensions. Fiber reinforced Ultra High Performance Concrete (UHPC) is a concrete based material which combines ultra high strength, high packing density and an improved ductility with a significantly increased energy dissipation capacity due to the addition of fiber reinforcement. With those attributes the material is potentially suitable for improved protective structural elements with a reduced need for material resources. The presented paper reports on an experimental series of scaled aircraft engine impact tests with reinforced UHPC panels. The investigations are focused on the material behavior and the damage intensity in comparison to conventional concrete. The fundamental work of is taken as reference for the evaluation of the results. The impactor model of a Phantom F4 GE-J79 engine developed and validated by Sugano et al. is used as defined in the original work. In order to achieve best comparability, the experimental configuration and method are adapted for the UHPC experiments. With 'penetration', 'scabbing' and 'perforation' all relevant damage modes defined in are investigated so that a full set of results are provided for a representative UHPC structural configuration.

  1. Local damage to Ultra High Performance Concrete structures caused by an impact of aircraft engine missiles

    International Nuclear Information System (INIS)

    Research highlights: → Experimental series on UHPC panels subjected to aircraft engine impact. → Improved ballistic limit of fiber reinforced UHPC in comparison to conventional R/C. → Detailed investigation of failure mechanisms of fiber reinforced UHPC panel. - Abstract: The impact of an aircraft engine missile causes high stresses, deformations and a severe local damage to conventional reinforced concrete. As a consequence the design of R/C protective structural elements results in components with rather large dimensions. Fiber reinforced Ultra High Performance Concrete (UHPC) is a concrete based material which combines ultra high strength, high packing density and an improved ductility with a significantly increased energy dissipation capacity due to the addition of fiber reinforcement. With those attributes the material is potentially suitable for improved protective structural elements with a reduced need for material resources. The presented paper reports on an experimental series of scaled aircraft engine impact tests with reinforced UHPC panels. The investigations are focused on the material behavior and the damage intensity in comparison to conventional concrete. The fundamental work of is taken as reference for the evaluation of the results. The impactor model of a Phantom F4 GE-J79 engine developed and validated by Sugano et al. is used as defined in the original work. In order to achieve best comparability, the experimental configuration and method are adapted for the UHPC experiments. With 'penetration', 'scabbing' and 'perforation' all relevant damage modes defined in are investigated so that a full set of results are provided for a representative UHPC structural configuration.

  2. Dedicated system for structural health monitoring of aircraft Hardware system based on V-cycle model

    OpenAIRE

    Zedek, Sabeha; Zedek, Sabeha Fettouma; Escriba, Christophe; Fourniols, Jean-Yves

    2015-01-01

    Our main subject of interest is the Structural Health Monitoring in aeronautics. Most of our works are dedicated to the detection of delamination disbonds and cracks in heterogeneous (Composite) and homogenous (aluminum 2024) structures of an aircraft structure. To successfully combine detection and alert generation we based our approach on the use of new generation of chip called SoC (System on Chip). We tried to develop an autonomous system able to detect damages on aircraft structure. Acco...

  3. A Knowledge Based Approach for Automated Modelling of Extended Wing Structures in Preliminary Aircraft Design

    OpenAIRE

    Dorbath, Felix; Nagel, Björn; Gollnick, Volker

    2011-01-01

    This paper introduces the concept of the ELWIS model generator for Finite Element models of aircraft wing structures. The physical modelling of the structure is extended beyond the wing primary structures, to increase the level of accuracy for aircraft which diverge from existing configurations. Also the impact of novel high lift technologies on structural masses can be captured already in the early stages of design by using the ELWIS models. The ELWIS model generator is able to c...

  4. A study on the utilization of advanced composites in commercial aircraft wing structure: Executive summary

    Science.gov (United States)

    Watts, D. J.

    1978-01-01

    The overall wing study objectives are to study and plan the effort by commercial transport aircraft manufacturers to accomplish the transition from current conventional materials and practices to extensive use of advanced composites in wings of aircraft that will enter service in the 1985-1990 time period. Specific wing study objectives are to define the technology and data needed to support an aircraft manufacturer's commitment to utilize composites primary wing structure in future production aircraft and to develop plans for a composite wing technology program which will provide the needed technology and data.

  5. Principal component analysis within nuclear structure

    CERN Document Server

    Al-Sayed, A

    2015-01-01

    The principal component analysis (PCA) of different parameters affecting collectivity of nuclei predicted to be candidate of the interacting boson model dynamical symmetries are performed. The results show that, the use of PCA within nuclear structure can give us a simple way to identify collectivity together with the parameters simultaneously affecting it.

  6. Evaluation of modal-based damage detection techniques for composite aircraft sandwich structures

    Science.gov (United States)

    Oliver, J. A.; Kosmatka, J. B.

    2005-05-01

    Composite sandwich structures are important as structural components in modern lightweight aircraft, but are susceptible to catastrophic failure without obvious forewarning. Internal damage, such as disbonding between skin and core, is detrimental to the structures' strength and integrity and thus must be detected before reaching critical levels. However, highly directional low density cores, such as Nomex honeycomb, make the task of damage detection and health monitoring difficult. One possible method for detecting damage in composite sandwich structures, which seems to have received very little research attention, is analysis of global modal parameters. This study will investigate the viability of modal analysis techniques for detecting skin-core disbonds in carbon fiber-Nomex honeycomb sandwich panels through laboratory testing. A series of carbon fiber prepreg and Nomex honeycomb sandwich panels-representative of structural components used in lightweight composite airframes-were fabricated by means of autoclave co-cure. All panels were of equal dimensions and two were made with predetermined sizes of disbonded areas, created by substituting areas of Teflon release film in place of epoxy film adhesive during the cure. A laser vibrometer was used to capture frequency response functions (FRF) of all panels, and then real and imaginary FRFs at different locations on each plate and operating shapes for each plate were compared. Preliminary results suggest that vibration-based techniques hold promise for damage detection of composite sandwich structures.

  7. Theory of Economic Life Prediction and Reliability Assessment of Aircraft Structures

    Institute of Scientific and Technical Information of China (English)

    YAN Chuliang; LIU Kege

    2011-01-01

    The theory of economic life prediction and reliability assessment of aircraft structures has a significant effect on safety of aircraft structures.It is based on the two-stage theory of fatigue process and can guarantee the safety and reliability of structures.According to the fatigue damage process, the fatigue scatter factors of crack initiation stage and crack propagation stage are given respectively.At the same time, mathematical models of fatigue life prediction are presented by utilizing the fatigue scatter factors and full scale test results of aircraft structures.Furthermore, the economic life model is put forward.The model is of significant scientific value for products to provide longer economic life, higher reliability and lower cost.The theory of economic life prediction and reliability assessment of aircraft structures has been successfully applied to determining and extending the structural life for thousands of airplanes.

  8. New developments for experimental modal analysis of aircraft structures

    Directory of Open Access Journals (Sweden)

    Vayssettes Jérémy

    2015-01-01

    Full Text Available This article presents an identification algorithm dedicated to the modal analysis of aircraft structures during flight-tests. More specifically, this algorithm was designed to process short duration tests carried out with multi-input excitations. The identification problem is solved in the frequency domain and the limit effects are considered so as to avoid transient effects with short data sequences. To minimise the effects of the noise, a non-linear gradient-based optimisation method is used. Its performance is improved by the use of an appropriate over-parametrised matrix fraction descriptions. Because the cost function to be minimised is non-convex, this method is however sensitive to the initialisation. For this reason, an iterative instrumental variable method is used to find an initial estimate. This one gives a value of the cost-function sufficiently close to its global minimum so as to ensure a fast convergence of the optimisation. Thus, the algorithm presented in this article is a combination of two iterative methods that gives accurate mode estimations even with high level of noise, as shown on an illustrative example.

  9. Graphene/Epoxy Coating as Multifunctional Material for Aircraft Structures

    Directory of Open Access Journals (Sweden)

    Tullio Monetta

    2015-06-01

    Full Text Available Recently, the use of graphene as a conductive nanofiller in the preparation of inorganic/polymer nanocomposites has attracted increasing interest in the aerospace field. The reason for this is the possibility of overcoming problems strictly connected to the aircraft structures, such as electrical conductivity and thus lightning strike protection. In addition, graphene is an ideal candidate to enhance the anti-corrosion properties of the resin, since it absorbs most of the light and provides hydrophobicity for repelling water. An important aspect of these multifunctional materials is that all these improvements can be realized even at very low filler loadings in the polymer matrix. In this work, graphene nanoflakes were incorporated into a water-based epoxy resin, and then the hybrid coating was applied to Al 2024-T3 samples. The addition of graphene considerably improved some physical properties of the hybrid coating as demonstrated by Electrochemical Impedance Spectroscopy (EIS analysis, ameliorating anti-corrosion performances of raw material. DSC measurements and Cross-cut Test showed that graphene did not affect the curing process or the adhesion properties. Moreover, an increment of water contact angle was displayed.

  10. Modeling accelerator structures and RF components

    International Nuclear Information System (INIS)

    Computer modeling has become an integral part of the design and analysis of accelerator structures RF components. Sophisticated 3D codes, powerful workstations and timely theory support all contributed to this development. We will describe our modeling experience with these resources and discuss their impact on ongoing work at SLAC. Specific examples from R ampersand D on a future linear collide and a proposed e+e- storage ring will be included

  11. Modeling accelerator structures and RF components

    Energy Technology Data Exchange (ETDEWEB)

    Ko, K., Ng, C.K.; Herrmannsfeldt, W.B.

    1993-03-01

    Computer modeling has become an integral part of the design and analysis of accelerator structures RF components. Sophisticated 3D codes, powerful workstations and timely theory support all contributed to this development. We will describe our modeling experience with these resources and discuss their impact on ongoing work at SLAC. Specific examples from R&D on a future linear collide and a proposed e{sup +}e{sup {minus}} storage ring will be included.

  12. Ageing management for systems, structures and components

    International Nuclear Information System (INIS)

    During operation, ageing will influence the quality of systems, structures and components (SSC). Experts make a distinction between the phenomena of conceptional ageing, technological ageing and physical ageing. The quality of SSC may be influenced by conceptional ageing, quality, technological or physical ageing. The contribution outlines the preconditions for a comprehensive, standardized ageing management of nuclear power stations in the Federal Republic of Germany. (orig.)

  13. Proceedings of the Symposium on Welding, Bonding, and Fastening. [production engineering for aircraft and spacecraft structures

    Science.gov (United States)

    Stein, B. A. (Compiler); Buckley, J. D. (Compiler)

    1972-01-01

    Various technological processes to achieve lightweight reliable joining systems for structural elements of aircraft and spacecraft are considered. Joining methods, combinations of them, and nondestructive evaluation and quality assurance are emphasized.

  14. Aeroelasticity of Axially Loaded Aerodynamic Structures for Truss-Braced Wing Aircraft

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Lebofsky, Sonia

    2015-01-01

    This paper presents an aeroelastic finite-element formulation for axially loaded aerodynamic structures. The presence of axial loading causes the bending and torsional sitffnesses to change. For aircraft with axially loaded structures such as the truss-braced wing aircraft, the aeroelastic behaviors of such structures are nonlinear and depend on the aerodynamic loading exerted on these structures. Under axial strain, a tensile force is created which can influence the stiffness of the overall aircraft structure. This tension stiffening is a geometric nonlinear effect that needs to be captured in aeroelastic analyses to better understand the behaviors of these types of aircraft structures. A frequency analysis of a rotating blade structure is performed to demonstrate the analytical method. A flutter analysis of a truss-braced wing aircraft is performed to analyze the effect of geometric nonlinear effect of tension stiffening on the flutter speed. The results show that the geometric nonlinear tension stiffening effect can have a significant impact on the flutter speed prediction. In general, increased wing loading results in an increase in the flutter speed. The study illustrates the importance of accounting for the geometric nonlinear tension stiffening effect in analyzing the truss-braced wing aircraft.

  15. Optimal design of a flying-wing aircraft inner wing structure configuration

    OpenAIRE

    HUANG, HAIDONG

    2012-01-01

    Flying-wing aircraft are considered to have great advantages and potentials in aerodynamic performance and weight saving. However, they also have many challenges in design. One of the biggest challenges is the structural design of the inner wing (fuselage). Unlike the conventional fuselage of a tube configuration, the flying-wing aircraft inner wing cross section is limited to a noncircular shape, which is not structurally efficient to resist the internal pressure load. In o...

  16. Structural integrity of engineering components made of functionally graded materials

    OpenAIRE

    Oyekoya, Oyedele O.

    2008-01-01

    Functionally graded materials (FGM) are composite materials with microstructure gradation optimized for the functioning of engineering components. For the case of fibrous composites, the fibre density is varied spatially, leading to variable material properties tailored to specific optimization requirements. There is an increasing demand for the use of such intelligent materials in space and aircraft industries. The current preferred methods to study engineering components made...

  17. From Basis Components to Complex Structural Patterns

    Czech Academy of Sciences Publication Activity Database

    Phan, A. H.; Cichocki, A.; Tichavský, Petr; Zdunek, R.; Lehky, S.

    Vancouver : IEEE, 2013, s. 3228-3232. ISBN 978-1-4799-0355-9. [IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP 2013. Vancouver (CA), 27.05.2013-31.05.2013] R&D Projects: GA ČR GA102/09/1278 Institutional support: RVO:67985556 Keywords : tensor factorization * parafac * Kronecker product Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2013/SI/tichavsky-from basis components to complex structural patterns.pdf

  18. A KBE-enabled design framework for cost/weight optimization study of aircraft composite structures

    Science.gov (United States)

    Wang, H.; La Rocca, G.; van Tooren, M. J. L.

    2014-10-01

    Traditionally, minimum weight is the objective when optimizing airframe structures. This optimization, however, does not consider the manufacturing cost which actually determines the profit of the airframe manufacturer. To this purpose, a design framework has been developed able to perform cost/weight multi-objective optimization of an aircraft component, including large topology variations of the structural configuration. The key element of the proposed framework is a dedicated knowledge based engineering (KBE) application, called multi-model generator, which enables modelling very different product configurations and variants and extract all data required to feed the weight and cost estimation modules, in a fully automated fashion. The weight estimation method developed in this research work uses Finite Element Analysis to calculate the internal stresses of the structural elements and an analytical composite plate sizing method to determine their minimum required thicknesses. The manufacturing cost estimation module was developed on the basis of a cost model available in literature. The capability of the framework was successfully demonstrated by designing and optimizing the composite structure of a business jet rudder. The study case indicates the design framework is able to find the Pareto optimal set for minimum structural weight and manufacturing costin a very quick way. Based on the Pareto set, the rudder manufacturer is in conditions to conduct both internal trade-off studies between minimum weight and minimum cost solutions, as well as to offer the OEM a full set of optimized options to choose, rather than one feasible design.

  19. Current and Future Research in Active Control of Lightweight, Flexible Structures Using the X-56 Aircraft

    Science.gov (United States)

    Ryan, John J.; Bosworth, John T.; Burken, John J.; Suh, Peter M.

    2014-01-01

    The X-56 Multi-Utility Technology Testbed aircraft system is a versatile experimental research flight platform. The system was primarily designed to investigate active control of lightweight flexible structures, but is reconfigurable and capable of hosting a wide breadth of research. Current research includes flight experimentation of a Lockheed Martin designed active control flutter suppression system. Future research plans continue experimentation with alternative control systems, explore the use of novel sensor systems, and experiments with the use of novel control effectors. This paper describes the aircraft system, current research efforts designed around the system, and future planned research efforts that will be hosted on the aircraft system.

  20. Role of structural noise in aircraft pressure cockpit from vibration action of new-generation engines

    Science.gov (United States)

    Baklanov, V. S.

    2016-07-01

    The evolution of new-generation aircraft engines is transitioning from a bypass ratio of 4-6 to an increased ratio of 8-12. This is leading to substantial broadening of the vibration spectrum of engines with a shift to the low-frequency range due to decreased rotation speed of the fan rotor, in turn requiring new solutions to decrease structural noise from engine vibrations to ensure comfort in the cockpits and cabins of aircraft.

  1. Structural testing of concorde aircraft: Further report on United Kingdom tests

    Science.gov (United States)

    Harpur, N.

    1972-01-01

    A summary of tests conducted on the Concorde aircraft nacelle structure is presented. The tests were conducted as a part of the structural development and certification program. The nacelle structural specimens are described. The problems associated with the intake testing and engine-bay and nozzle testing are discussed.

  2. The use of neutron imaging for the study of honeycomb structures in aircraft

    International Nuclear Information System (INIS)

    Highly maneuverable aircraft, such as the CF188 Hornet, have several flight control surfaces on both the leading and the trailing edges of the wing surfaces. They are composed of composite panels constructed of aluminum honeycomb core usually covered with graphite epoxy skins. Although very light and structurally stiff, they are being compromised by water ingress. The trapped water degrades their structural integrity by interacting with the adhesive. Various studies are underway to understand the movement of water in the honeycomb core as well as to determine a method of removing the water. With a vertical neutron beam tube at Royal Military College (RMC), the component can be positioned horizontally and the pooled water in each honeycomb cell can be imaged. These images have been compared with those from a horizontal beam and thus vertical placement of the structure at Pennsylvania State University Radiation Science and Engineer Center's Breazeale reactor. Thereby, both the filet bond between the honeycomb and the skin as well as the node bond between the honeycomb cells can be studied to determine their contribution to the movement of water throughout the structure. Moreover, the exit path for water has been visualized as part of developing a drying procedure for these flight control surfaces.

  3. The use of neutron imaging for the study of honeycomb structures in aircraft

    Science.gov (United States)

    Hungler, P. C.; Bennett, L. G. I.; Lewis, W. J.; Brenizer, J. S.; Heller, A. K.

    2009-06-01

    Highly maneuverable aircraft, such as the CF188 Hornet, have several flight control surfaces on both the leading and the trailing edges of the wing surfaces. They are composed of composite panels constructed of aluminum honeycomb core usually covered with graphite epoxy skins. Although very light and structurally stiff, they are being compromised by water ingress. The trapped water degrades their structural integrity by interacting with the adhesive. Various studies are underway to understand the movement of water in the honeycomb core as well as to determine a method of removing the water. With a vertical neutron beam tube at Royal Military College (RMC), the component can be positioned horizontally and the pooled water in each honeycomb cell can be imaged. These images have been compared with those from a horizontal beam and thus vertical placement of the structure at the Pennsylvania State University Radiation Science and Engineer Center's Breazeale reactor. Thereby, both the filet bond between the honeycomb and the skin as well as the node bond between the honeycomb cells can be studied to determine their contribution to the movement of water throughout the structure. Moreover, the exit path for water has been visualized as part of developing a drying procedure for these flight control surfaces.

  4. Robust Damage-Mitigating Control of Aircraft for High Performance and Structural Durability

    Science.gov (United States)

    Caplin, Jeffrey; Ray, Asok; Joshi, Suresh M.

    1999-01-01

    This paper presents the concept and a design methodology for robust damage-mitigating control (DMC) of aircraft. The goal of DMC is to simultaneously achieve high performance and structural durability. The controller design procedure involves consideration of damage at critical points of the structure, as well as the performance requirements of the aircraft. An aeroelastic model of the wings has been formulated and is incorporated into a nonlinear rigid-body model of aircraft flight-dynamics. Robust damage-mitigating controllers are then designed using the H(infinity)-based structured singular value (mu) synthesis method based on a linearized model of the aircraft. In addition to penalizing the error between the ideal performance and the actual performance of the aircraft, frequency-dependent weights are placed on the strain amplitude at the root of each wing. Using each controller in turn, the control system is put through an identical sequence of maneuvers, and the resulting (varying amplitude cyclic) stress profiles are analyzed using a fatigue crack growth model that incorporates the effects of stress overload. Comparisons are made to determine the impact of different weights on the resulting fatigue crack damage in the wings. The results of simulation experiments show significant savings in fatigue life of the wings while retaining the dynamic performance of the aircraft.

  5. StructuralComponents: a software system for conceptual structural design

    NARCIS (Netherlands)

    Van de Weerd, B.; Rolvink, A.; Coenders, J.L.

    2012-01-01

    Conceptual design is the starting point of the design process. The conceptual design stage comprises the formation of several ideas or design concepts to meet the imposed constraints. StructuralComponents is a software application that attempts to provide the designing engineer with a suitable set o

  6. Application of variable structure system theory to aircraft flight control. [AV-8A and the Augmentor Wing Jet STOL Research Aircraft

    Science.gov (United States)

    Calise, A. J.; Kadushin, I.; Kramer, F.

    1981-01-01

    The current status of research on the application of variable structure system (VSS) theory to design aircraft flight control systems is summarized. Two aircraft types are currently being investigated: the Augmentor Wing Jet STOL Research Aircraft (AWJSRA), and AV-8A Harrier. The AWJSRA design considers automatic control of longitudinal dynamics during the landing phase. The main task for the AWJSRA is to design an automatic landing system that captures and tracks a localizer beam. The control task for the AV-8A is to track velocity commands in a hovering flight configuration. Much effort was devoted to developing computer programs that are needed to carry out VSS design in a multivariable frame work, and in becoming familiar with the dynamics and control problems associated with the aircraft types under investigation. Numerous VSS design schemes were explored, particularly for the AWJSRA. The approaches that appear best suited for these aircraft types are presented. Examples are given of the numerical results currently being generated.

  7. Advanced composites structural concepts and materials technologies for primary aircraft structures: Design/manufacturing concept assessment

    Science.gov (United States)

    Chu, Robert L.; Bayha, Tom D.; Davis, HU; Ingram, J. ED; Shukla, Jay G.

    1992-01-01

    Composite Wing and Fuselage Structural Design/Manufacturing Concepts have been developed and evaluated. Trade studies were performed to determine how well the concepts satisfy the program goals of 25 percent cost savings, 40 percent weight savings with aircraft resizing, and 50 percent part count reduction as compared to the aluminum Lockheed L-1011 baseline. The concepts developed using emerging technologies such as large scale resin transfer molding (RTM), automatic tow placed (ATP), braiding, out-of-autoclave and automated manufacturing processes for both thermoset and thermoplastic materials were evaluated for possible application in the design concepts. Trade studies were used to determine which concepts carry into the detailed design development subtask.

  8. Measurements of the high energy neutron component of cosmic radiation fields in aircraft using etched track dosemeters

    International Nuclear Information System (INIS)

    Measurements of the complex cosmic radiation field in aircraft at altitude are madewith a passive survey meter comprising routine-use thermoluminescent detectors and etched track detectors. The energy dependence of response of the etched track detectors used to determine the neutron component has been characterized, partly, up to a neutron energy of 180 MeV. The neutron detectors are routinely calibrated in the CERN/EC Reference Field. The 15% determination level fortotal dose equivalent is 100μSv. The evidence is that the passive survey meter provides a reliable determination of route dose

  9. Decommissioning of underground structures, systems and components

    International Nuclear Information System (INIS)

    A large number of operational and shut down nuclear installations have underground systems, structures and components such as pipes, tanks or vaults. This practice of incorporating such features into the design of nuclear facilities has been in use for an extended period of time during which decommissioning was not perceived as a serious issue and was rarely considered in plant design and construction. Underground features can present formidable decontamination and/or dismantling issues, and these are addressed in this report. Decommissioning issues include, among others, difficulty of access, the possible need for remotely operated technologies, leakage of the contents and the resulting contamination of foundations and soil, as well as issues such as problematic radiological characterization. Although to date there have been more than 40 IAEA publications on decommissioning, none of them has ever addressed this subject. Although cases of decommissioning of such facilities have been described in the technical literature, no systematic treatment of relevant decommissioning strategies and technologies is currently available. It was perhaps assumed that generic decontamination and dismantling approaches would also be adequate for these 'difficult' facilities. This may be only partly true due to a number of unique physical, layout and radiological characteristics. With growing experience in the decommissioning field, it is timely to address this subject in a systematic and comprehensive fashion. Practical guidance is given in this report on relevant decommissioning strategies and technologies for underground features of facilities. Also described are alternative design and construction approaches that could facilitate a smoother path forward through the decommissioning process. The objective of this report is to highlight important points in the decommissioning of underground systems, structures or components for policy makers, operators, waste managers and other

  10. Structural Acoustic Characteristics of Aircraft and Active Control of Interior Noise

    Science.gov (United States)

    Fuller, C. R.

    1998-01-01

    The reduction of aircraft cabin sound levels to acceptable values still remains a topic of much research. The use of conventional passive approaches has been extensively studied and implemented. However performance limits of these techniques have been reached. In this project, new techniques for understanding the structural acoustic behavior of aircraft fuselages and the use of this knowledge in developing advanced new control approaches are investigated. A central feature of the project is the Aircraft Fuselage Test Facility at Va Tech which is based around a full scale Cessna Citation III fuselage. The work is divided into two main parts; the first part investigates the use of an inverse technique for identifying dominant fuselage vibrations. The second part studies the development and implementation of active and active-passive techniques for controlling aircraft interior noise.

  11. Flight parameters monitoring system for tracking structural integrity of rotary-wing aircraft

    Science.gov (United States)

    Mohammadi, Jamshid; Olkiewicz, Craig

    1994-01-01

    Recent developments in advanced monitoring systems used in conjunction with tracking structural integrity of rotary-wing aircraft are explained. The paper describes: (1) an overview of rotary-wing aircraft flight parameters that are critical to the aircraft loading conditions and each parameter's specific requirements in terms of data collection and processing; (2) description of the monitoring system and its functions used in a survey of rotary-wing aircraft; and (3) description of the method of analysis used for the data. The paper presents a newly-developed method in compiling flight data. The method utilizes the maneuver sequence of events in several pre-identified flight conditions to describe various flight parameters at three specific weight ranges.

  12. Multifractal Modelling of Aircraft Echoes from Low-resolution Radars Based on Structural Functions

    Directory of Open Access Journals (Sweden)

    Qiu Sheng Li

    2013-09-01

    Full Text Available As a kind of complex targets, the nonrigid vibration and attitude change of an aircraft as well as the rotation of its rotating parts will induce complex nonlinear modulation on its echo from low-resolution radars. If one performs the multifractal analysis of measures on an aircraft echo, it may offer a fine description of the dynamic characteristics which induce the echo structure. On basis of introducing multifractal theory based on structural functions, the paper models real recorded aircraft echo data from a low-resolution radar by using the random walk process and the incremental process respectively, and investigates the application of echo multifractal characteristics in aircraft target classification with low-resolution radars. The analysis shows that aircraft echoes from low-resolution radars have clear multifractal characteristics, and one should take an aircraft echo series as a random walk process to perform the multifractal analysis. The experimental results validate the classification method based on multifractal signatures.Defence Science Journal, 2013, 63(5, pp.515-520, DOI:http://dx.doi.org/10.14429/dsj.63.3773

  13. Flight-service evaluation of composite structural components

    Science.gov (United States)

    Dexter, H. B.

    1973-01-01

    A review of programs aimed at flight-service evaluation of composite materials in various applications is presented. These flight-service programs are expected to continue for up to 5 years and include selective reinforcement of an airplane center wing box a helicopter tail cone, and composite replacements for commercial aircraft spoilers and fairings. These longtime flight-service programs will help provide the necessary information required by commercial airlines to commit advanced composites to aircraft structures with confidence. Results of these programs will provide information concerning the stability of composite materials when subjected to various flight environments.

  14. Investigation on strain sensing properties of carbon-based nanocomposites for structural aircraft applications

    Science.gov (United States)

    Lamberti, Patrizia; Spinelli, Giovanni; Tucci, Vincenzo; Guadagno, Liberata; Vertuccio, Luigi; Russo, Salvatore

    2016-05-01

    The mechanical and electrical properties of a thermosetting epoxy resin particularly indicated for the realization of structural aeronautic components and reinforced with multiwalled carbon nanotubes (MWCNTs, at 0.3 wt%) are investigated for specimens subjected to cycles and different levels of applied strain (i.e. ɛ) loaded both in axial tension and flexural mode. It is found that the piezoresistive behavior of the resulting nanocomposite evaluated in terms of variation of the electrical resistance is strongly affected by the applied mechanical stress mainly due to the high sensibility and consequent rearrangement of the electrical percolating network formed by MWCNTs in the composite at rest or even under a small strain. In fact, the variations in electrical resistance that occur during the mechanical stress are correlated to the deformation exhibited by the nanocomposites. In particular, the overall response of electrical resistance of the composite is characterized by a linear increase with the strain at least in the region of elastic deformation of the material in which the gauge factor (i.e. G.F.) of the sensor is usually evaluated. Therefore, the present study aims at investigating the possible use of the nanotechnology for application of embedded sensor systems in composite structures thus having capability of self-sensing and of responding to the surrounding environmental changes, which are some fundamental requirements especially for structural aircraft monitoring applications.

  15. Numerical simulation of aircraft crash on nuclear containment structure

    International Nuclear Information System (INIS)

    Highlights: ► The deformation was more localised at the center of cylindrical portion. ► The peak deflection at the junction of dome and cylinder was found to be 67 mm. ► The peak deflection at midpoint of the cylindrical portion was found to be 88.9 mm. ► The strain rate was found to be an important parameter to effect the deformation. ► The model without strain rate and 290 s−1 strain rate predicted very high deformations. - Abstract: Numerical simulations were carried with ABAQUS/Explicit finite element code in order to predict the response of BWR Mark III type nuclear containment against Boeing 707-320 aircraft crash. The load of the aircraft was applied using and force history curve. The damaged plasticity model was used to predict the behavior of concrete while the Johnson–Cook elasto-viscoplastic material model was used to incorporate the behavior of steel reinforcement. The crash was considered to occur at two different locations i.e., the midpoint of the cylindrical portion and the junction of dome and cylinder. The midpoint of the cylindrical portion experienced more deformation. The strain rate in the material model was varied and found to have a significant effect on the response of containment. The results of the present investigation were compared with those of the studies available in literature and a close agreement with the previous results was found in terms of maximum target deformation.

  16. Comparison of Requirements for Composite Structures for Aircraft and Space Applications

    Science.gov (United States)

    Raju, Ivatury S.; Elliot, Kenny B.; Hampton, Roy W.; Knight, Norman F., Jr.; Aggarwal, Pravin; Engelstad, Stephen P.; Chang, James B.

    2010-01-01

    In this report, the aircraft and space vehicle requirements for composite structures are compared. It is a valuable exercise to study composite structural design approaches used in the airframe industry and to adopt methodology that is applicable for space vehicles. The missions, environments, analysis methods, analysis validation approaches, testing programs, build quantities, inspection, and maintenance procedures used by the airframe industry, in general, are not transferable to spaceflight hardware. Therefore, while the application of composite design approaches from aircraft and other industries is appealing, many aspects cannot be directly utilized. Nevertheless, experiences and research for composite aircraft structures may be of use in unexpected arenas as space exploration technology develops, and so continued technology exchanges are encouraged.

  17. StructuralComponents: a software system for conceptual structural design

    OpenAIRE

    De Weerd, B.; Rolvink, A.; Coenders, J.L.

    2012-01-01

    Conceptual design is the starting point of the design process. The conceptual design stage comprises the formation of several ideas or design concepts to meet the imposed constraints. StructuralComponents is a software application that attempts to provide the designing engineer with a suitable set of tools for this stage. It facilitates the exploration of the early design space with the proper balance between accuracy and the ability to explore. Using parametric-associative modelling, a struc...

  18. Aircraft noise reduction technology. [to show impact on individuals and communities, component noise sources, and operational procedures to reduce impact

    Science.gov (United States)

    1973-01-01

    Aircraft and airport noise reduction technology programs conducted by NASA are presented. The subjects discussed are: (1) effects of aircraft noise on individuals and communities, (2) status of aircraft source noise technology, (3) operational procedures to reduce the impact of aircraft noise, and (4) NASA relations with military services in aircraft noise problems. References to more detailed technical literature on the subjects discussed are included.

  19. Control Design Strategies to Enhance Long-Term Aircraft Structural Integrity

    Science.gov (United States)

    Newman, Brett A.

    1999-01-01

    Over the operational lifetime of both military and civil aircraft, structural components are exposed to hundreds of thousands of low-stress repetitive load cycles and less frequent but higher-stress transient loads originating from maneuvering flight and atmospheric gusts. Micro-material imperfections in the structure, such as cracks and debonded laminates, expand and grow in this environment, reducing the structural integrity and shortening the life of the airframe. Extreme costs associated with refurbishment of critical load-bearing structural components in a large fleet, or altogether reinventoring the fleet with newer models, indicate alternative solutions for life extension of the airframe structure are highly desirable. Increased levels of operational safety and reliability are also important factors influencing the desirability of such solutions. One area having significant potential for impacting crack growth/fatigue damage reduction and structural life extension is flight control. To modify the airframe response dynamics arising from command inputs and gust disturbances, feedback loops are routinely applied to vehicles. A dexterous flight control system architecture senses key vehicle motions and generates critical forces/moments at multiple points distributed throughout the airframe to elicit the desired motion characteristics. In principle, these same control loops can be utilized to influence the level of exposure to harmful loads during flight on structural components. Project objectives are to investigate and/or assess the leverage control has on reducing fatigue damage and enhancing long-term structural integrity, without degrading attitude control and trajectory guidance performance levels. In particular, efforts have focused on the effects inner loop control parameters and architectures have on fatigue damage rate. To complete this research, an actively controlled flexible aircraft model and a new state space modeling procedure for crack growth

  20. A study on the utilization of advanced composites in commercial aircraft wing structure

    Science.gov (United States)

    Watts, D. J.

    1978-01-01

    A study was conducted to define the technology and data needed to support the introduction of advanced composite materials in the wing structure of future production aircraft. The study accomplished the following: (1) definition of acceptance factors, (2) identification of technology issues, (3) evaluation of six candidate wing structures, (4) evaluation of five program options, (5) definition of a composite wing technology development plan, (6) identification of full-scale tests, (7) estimation of program costs for the total development plan, (8) forecast of future utilization of composites in commercial transport aircraft and (9) identification of critical technologies for timely program planning.

  1. Robust Fault Detection for Aircraft Using Mixed Structured Singular Value Theory and Fuzzy Logic

    Science.gov (United States)

    Collins, Emmanuel G.

    2000-01-01

    The purpose of fault detection is to identify when a fault or failure has occurred in a system such as an aircraft or expendable launch vehicle. The faults may occur in sensors, actuators, structural components, etc. One of the primary approaches to model-based fault detection relies on analytical redundancy. That is the output of a computer-based model (actually a state estimator) is compared with the sensor measurements of the actual system to determine when a fault has occurred. Unfortunately, the state estimator is based on an idealized mathematical description of the underlying plant that is never totally accurate. As a result of these modeling errors, false alarms can occur. This research uses mixed structured singular value theory, a relatively recent and powerful robustness analysis tool, to develop robust estimators and demonstrates the use of these estimators in fault detection. To allow qualitative human experience to be effectively incorporated into the detection process fuzzy logic is used to predict the seriousness of the fault that has occurred.

  2. Evaluation of Braided Stiffener Concepts for Transport Aircraft Wing Structure Applications

    Science.gov (United States)

    Deaton, Jerry W.; Dexter, H. Benson (Editor); Markus, Alan; Rohwer, Kim

    1995-01-01

    Braided composite materials have potential for application in aircraft structures. Stiffeners, wing spars, floor beams, and fuselage frames are examples where braided composites could find application if cost effective processing and damage requirements are met. Braiding is an automated process for obtaining near-net shape preforms for fabrication of components for structural applications. Previous test results on braided composite materials obtained at NASA Langley indicate that damage tolerance requirements can be met for some applications. In addition, the braiding industry is taking steps to increase the material through-put to be more competitive with other preform fabrication processes. Data are presented on the compressive behavior of three braided stiffener preform fabric constructions as determined from individual stiffener crippling test and three stiffener wide panel tests. Stiffener and panel fabrication are described and compression data presented for specimens tested with and without impact damage. In addition, data are also presented on the compressive behavior of the stitched stiffener preform construction currently being used by McDonnell Douglas Aerospace in the NASA ACT wing development program.

  3. Numerical simulation of aircraft crash on nuclear containment structure

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, M.A., E-mail: iqbalfce@iitr.ernet.in [Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Rai, S.; Sadique, M.R.; Bhargava, P. [Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer The deformation was more localised at the center of cylindrical portion. Black-Right-Pointing-Pointer The peak deflection at the junction of dome and cylinder was found to be 67 mm. Black-Right-Pointing-Pointer The peak deflection at midpoint of the cylindrical portion was found to be 88.9 mm. Black-Right-Pointing-Pointer The strain rate was found to be an important parameter to effect the deformation. Black-Right-Pointing-Pointer The model without strain rate and 290 s{sup -1} strain rate predicted very high deformations. - Abstract: Numerical simulations were carried with ABAQUS/Explicit finite element code in order to predict the response of BWR Mark III type nuclear containment against Boeing 707-320 aircraft crash. The load of the aircraft was applied using and force history curve. The damaged plasticity model was used to predict the behavior of concrete while the Johnson-Cook elasto-viscoplastic material model was used to incorporate the behavior of steel reinforcement. The crash was considered to occur at two different locations i.e., the midpoint of the cylindrical portion and the junction of dome and cylinder. The midpoint of the cylindrical portion experienced more deformation. The strain rate in the material model was varied and found to have a significant effect on the response of containment. The results of the present investigation were compared with those of the studies available in literature and a close agreement with the previous results was found in terms of maximum target deformation.

  4. Structural Load Alleviation Applied to Next Generation Aircraft and Wind Turbines

    Science.gov (United States)

    Frost, Susan

    2011-01-01

    Reducing the environmental impact of aviation is a goal of the Subsonic Fixed Wing Project under the Fundamental Aeronautics Program of NASAs Aeronautics Research Mission Directorate. Environmental impact of aviation is being addressed by novel aircraft configurations and materials that reduce aircraft weight and increase aerodynamic efficiency. NASA is developing tools to address the challenges of increased airframe flexibility created by wings constructed with reduced structural material and novel light-weight materials. This talk will present a framework and demonstration of a flight control system using optimal control allocation with structural load feedback and constraints to achieve safe aircraft operation. As wind turbines age, they become susceptible to many forms of blade degradation. Results will be presented on work in progress that uses adaptive contingency control for load mitigation in a wind turbine simulation with blade damage progression modeled.

  5. Inservice inspections for structural integrity of structures, systems, and components

    International Nuclear Information System (INIS)

    Monitoring of facility systems and equipment through predictive means such as inservice inspections is an important part of Aging Management and the demonstration of structural integrity. The primary objective of an Inservice Inspection (ISI) Program is to ensure the continued integrity and operability of important systems and components throughout their service lifetimes. DOE facilities are designed for a wide array of service conditions and environments. Each facility faces unique challenges against which an ISI program must provide a high level of confidence of integrity. For the purpose of this paper an ISI program is defined as all planned periodic examinations, tests, observations, measurements and analysis performed on structures, systems, and components, including their supports to detect material aging (degradation) and analyze its effect(s) on facility performance, safety or reliability. Formal ISI programs provide the capability to trend material and component performance versus predicted Design and Operations parameters. ISI also provides the facility a means to identify and resolve material aging problems unique to the facility in a cost effective manner. In addition ISI provides the necessary information required for cost benefit decision models to determine continued or extended service as referenced in DOE Order 4320.2, 'Capital Asset Management Process'

  6. Probabilistic analysis of aircraft crashes with explicit analysis of the building structure perforation; Probabilistische Analyse von Flugzeugabstuerzen mit expliziter Analyse der Perforation von Gebaeudestrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, Mathias; Pacharzina, Benedykt; Oberste-Schemmann, Andre; Sassen, Felix [Westinghouse Electric Germany GmbH, Mannheim (Germany)

    2012-11-01

    For probabilistic safety analyses (PSA) the estimation of aircraft crash induced core damage frequencies is required. Westinghouse developed a methodology for a realistic evaluation of accident sequences caused by aircraft crashes. The analysis includes two steps: the analysis of sequence of accident events and the analysis of damage mechanisms. For the aircraft crash induced accident sequences new detailed event trees were prepared for application in the PSA. The damage mechanisms include kerosene combustion, by building structures transferred vibrations with direct or mediated effects on safety systems, and direct impacts due to the penetration of building structures. The presented methodology evaluates solely the direct impact by penetration of building structures by simulation of the aircraft crash. It was assumed that the other damage mechanisms do not yield significant contributions to the non-availability of safety system components. It was shown that the calculated core damage frequencies for hypothetical aircraft crashes using the new methodology are about one magnitude lower than the results of conservative methods.

  7. Full-Scale Structural and NDI Validation Tests of Bonded Composite Doublers for Commercial Aircraft Applications

    Energy Technology Data Exchange (ETDEWEB)

    Roach, D.; Walkington, P.

    1999-02-01

    Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is possible to bond a single Boron-Epoxy composite doubler to the damaged structure. Most of the concerns surrounding composite doubler technology pertain to long-term survivability, especially in the presence of non-optimum installations, and the validation of appropriate inspection procedures. This report focuses on a series of full-scale structural and nondestructive inspection (NDI) tests that were conducted to investigate the performance of Boron-Epoxy composite doublers. Full-scale tests were conducted on fuselage panels cut from retired aircraft. These full-scale tests studied stress reductions, crack mitigation, and load transfer capabilities of composite doublers using simulated flight conditions of cabin pressure and axial stress. Also, structures which modeled key aspects of aircraft structure repairs were subjected to extreme tension, shear and bending loads to examine the composite laminate's resistance to disbond and delamination flaws. Several of the structures were loaded to failure in order to determine doubler design margins. Nondestructive inspections were conducted throughout the test series in order to validate appropriate techniques on actual aircraft structure. The test results showed that a properly designed and installed composite doubler is able to enhance fatigue life, transfer load away from damaged structure, and avoid the introduction of new stress risers (i.e. eliminate global reduction in the fatigue life of the structure). Comparisons with test data obtained prior to the doubler installation revealed that stresses in the parent material can be reduced 30%--60% through the use of the composite doubler. Tests to failure demonstrated that the bondline is able to transfer plastic strains into the doubler and that

  8. Aircraft health and usage monitoring system for in-flight strain measurement of a wing structure

    Science.gov (United States)

    Kim, Jin-Hyuk; Park, Yurim; Kim, Yoon-Young; Shrestha, Pratik; Kim, Chun-Gon

    2015-10-01

    This paper presents an aircraft health and usage monitoring system (HUMS) using fiber Bragg grating (FBG) sensors. This study aims to implement and evaluate the HUMS for in-flight strain monitoring of aircraft structures. An optical-fiber-based HUMS was developed and applied to an ultralight aircraft that has a rectangular wing shape with a strut-braced configuration. FBG sensor arrays were embedded into the wing structure during the manufacturing process for effective sensor implementation. Ground and flight tests were conducted to verify the integrity and availability of the installed FBG sensors and HUMS devices. A total of 74 flight tests were conducted using the HUMS implemented testbed aircraft, considering various maneuvers and abnormal conditions. The flight test results revealed that the FBG-based HUMS was successfully implemented on the testbed aircraft and operated normally under the actual flight test environments as well as providing reliable in-flight strain data from the FBG sensors over a long period of time.

  9. Application of fracture mechanics and half-cycle theory to the prediction of fatigue life of aerospace structural components

    Science.gov (United States)

    Ko, William L.

    1989-01-01

    The service life of aircraft structural components undergoing random stress cycling was analyzed by the application of fracture mechanics. The initial crack sizes at the critical stress points for the fatigue crack growth analysis were established through proof load tests. The fatigue crack growth rates for random stress cycles were calculated using the half-cycle method. A new equation was developed for calculating the number of remaining flights for the structural components. The number of remaining flights predicted by the new equation is much lower than that predicted by the conventional equation. This report describes the application of fracture mechanics and the half-cycle method to calculate the number of remaining flights for aircraft structural components.

  10. Imaging Ultrasonic Sensor System SWISS completed 60.000 simulated flight hours to check structural integrity of aircraft subcomponent

    Science.gov (United States)

    Kress, Klaus-Peter; Baderschneider, Hans J.; Guse, Guenther

    2003-08-01

    Many military platforms such as fighter aircraft are nowadays operated for several decades under sometimes varying missions. Additional requirements resulting from more severe fatigue spectra or extended life for these platforms may require additional means of ensuring structural integrity. It is then important to gain the maximum usage (fatigue life) of aircraft components most efficiently still ensuring structural integrity at all times. Conventional structural health monitoring systems are typically based on loads and usage monitoring. Together with modern non destructive damage detection techniques it could be possible to safely operate even aged platforms. This goal is achieved by periodic examinations in order to ensure that a structural item is free of damage. However, the dismantling of structures for the purpose of non destructive testing can be very costly, time intensive and sometimes harmful to the surrounding structure itself. Therefore integrated, reliable and affordable damage detection techniques are needed to avoid disassembly where economically or technically justified. Especially for well known hot spots an integrated damage sensor could provide an alternative solution to conventional procedures. SWISS (Smart Wide area Imaging Sensor System) is an ultrasonic imaging approach. A small sensor is permanently surface mounted on the component that is to be monitored. Typically the sensor is activated on ground and interrogated via cables that are built into the platform. These sensors facilitate the examination of the internal structure of a subcomponent. The ultrasonic beam is electronically controlled in order to scan the most critical areas from a fixed position. Functionality aspects as well as practicability issues of such a technology had to be addressed and solved. As a result of this study, simulated fatigue tests on a real complex fitting structure have proven the reliability of the imaging ultrasonic sensor under laboratory conditions for

  11. Temperature-compensated strain measurement of full-scale small aircraft wing structure using low-cost FBG interrogator

    Science.gov (United States)

    Kim, J. H.; Lee, Y. G.; Park, Y.; Kim, C. G.

    2013-04-01

    Recently, health and usage monitoring systems (HUMS) are being studied to monitor the real-time condition of aircrafts during flight. HUMSs can prevent aircraft accidents and reduce inspection time and cost. Fiber Bragg grating (FBG) sensors are widely used for aircraft HUMSs with many advantages such as light weight, small size, easy-multiplexing, and EMI immunity. However, commercial FBG interrogators are too expensive to apply for small aircrafts. Generally the cost of conventional FBG interrogators is over 20,000. Therefore, cost-effective FBG interrogation systems need to be developed for small aircraft HUMSs. In this study, cost-effective low speed FBG interrogator was applied to full-scale small aircraft wing structure to examine the operational applicability of the low speed FBG interrogator to the monitoring of small aircrafts. The cost of the developed low speed FBG interrogator was about 10,000, which is an affordable price for a small aircraft. 10 FBG strain sensors and 1 FBG temperature sensor were installed on the surface of the full-scale wing structure. Load was applied to the tip of the wing structure, and the low speed interrogator detected the change in the center wavelength of the FBG sensors at the sampling rate of 10Hz. To assess the applicability of the low-cost FBG interrogator to full-scale small aircraft wing structure, a temperature-compensated strain measurement algorithm was verified experimentally under various loading conditions of the wing structure with temperature variations.

  12. INTEGRATING ANALYTICAL AEROELASTIC INSTABILITY ANALYSIS INTO DESIGN OPTIMIZATION OF AIRCRAFT WING STRUCTURES

    OpenAIRE

    , Pinar Acar

    2011-01-01

    Two analytical flutter solution approaches have been developed to optimize two and three dimensional aircraft wing structures with design criteria based on aeroelastic instabilities. The first approach uses open loop structural dynamics and stability analysis for a two dimensional wing model in order to obtain the critical speeds of flutter, divergence and control reversal for optimization process. The second approach involves a flutter solution for three dimensional wing structures by using ...

  13. Structural Analysis Approach to Fault Diagnosis with Application to Fixed-wing Aircraft Motion

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh

    2001-01-01

    The paper presents a structural analysis based method for fault diagnosis purposes. The method uses the structural model of the system and utilizes the matching idea to extract system's inherent redundant information. The structural model is represented by a bipartite directed graph. FDI Possibil...... Possibilities are examined by further analysis of the obtained information. The method is illustrated by applying on the LTI model of motion of a fixed-wing aircraft....

  14. Structural Analysis Approach to Fault Diagnosis with Application to Fixed-wing Aircraft Motion

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh

    2002-01-01

    The paper presents a structural analysis based method for fault diagnosis purposes. The method uses the structural model of the system and utilizes the matching idea to extract system's inherent redundant information. The structural model is represented by a bipartite directed graph. FDI Possibil...... Possibilities are examined by further analysis of the obtained information. The method is illustrated by applying on the LTI model of motion of a fixed-wing aircraft....

  15. Transport jet aircraft noise abatement in foreign countries: Growth, structure, impact. Volume 1: Europe, July 1980

    Science.gov (United States)

    Spencer, F. A.

    1980-01-01

    The development and implementation of aircraft noise control regulations in various European states are described. The countries include the United Kingdom, France, Switzerland, Federal Republic of Germany, Sweden, Denmark, and the Netherlands. Topics discussed include noise monitoring, airport curfews, land use planning, and the government structure for noise regulation.

  16. User's guide for ENSAERO: A multidisciplinary program for fluid/structural/control interaction studies of aircraft (release 1)

    Science.gov (United States)

    Guruswamy, Guru P.

    1994-01-01

    Strong interactions can occur between the flow about an aerospace vehicle and its structural components resulting in several important aeroelastic phenomena. These aeroelastic phenomena can significantly influence the performance of the vehicle. At present, closed-form solutions are available for aeroelastic computations when flows are in either the linear subsonic or supersonic range. However, for aeroelasticity involving complex nonlinear flows with shock waves, vortices, flow separations, and aerodynamic heating, computational methods are still under development. These complex aeroelastic interactions can be dangerous and limit the performance of aircraft. Examples of these detrimental effects are aircraft with highly swept wings experiencing vortex-induced aeroelastic oscillations, transonic regime at which the flutter speed is low, aerothermoelastic loads that play a critical role in the design of high-speed vehicles, and flow separations that often lead to buffeting with undesirable structural oscillations. The simulation of these complex aeroelastic phenomena requires an integrated analysis of fluids and structures. This report presents a summary of the development, applications, and procedures to use the multidisciplinary computer code ENSAERO. This code is based on the Euler/Navier-Stokes flow equations and modal/finite-element structural equations.

  17. Study on utilization of advanced composites in commercial aircraft wing structures. Volume 1: Executive summary

    Science.gov (United States)

    Sakata, I. F.; Ostrom, R. B.; Cardinale, S. V.

    1978-01-01

    The effort required by commercial transport manufacturers to accomplish the transition from current construction materials and practices to extensive use of composites in aircraft wings was investigated. The engineering and manufacturing disciplines which normally participate in the design, development, and production of an aircraft were employed to ensure that all of the factors that would enter a decision to commit to production of a composite wing structure were addressed. A conceptual design of an advanced technology reduced energy aircraft provided the framework for identifying and investigating unique design aspects. A plan development effort defined the essential technology needs and formulated approaches for effecting the required wing development. The wing development program plans, resource needs, and recommendations are summarized.

  18. Structural development of laminar flow control aircraft chordwise wing joint designs

    Science.gov (United States)

    Fischler, J. E.; Jerstad, N. M.; Gallimore, F. H., Jr.; Pollard, T. J.

    1989-01-01

    For laminar flow to be achieved, any protuberances on the surface must be small enough to avoid transition to turbulent flow. However, the surface must have joints between the structural components to allow assembly or replacement of damaged parts, although large continuous surfaces can be utilized to minimize the number the number of joints. Aircraft structural joints usually have many countersunk bolts or rivets on the outer surface. To maintain no mismatch on outer surfaces, it is desirable to attach the components from the inner surface. It is also desirable for the panels to be interchangeable, without the need for shims at the joint, to avoid surface discontinuities that could cause turbulence. Fabricating components while pressing their outer surfaces against an accurate mold helps to ensure surface smoothness and continuity at joints. These items were considered in evaluating the advantages and disadvantages of the joint design concepts. After evaluating six design concepts, two of the leading candidates were fabricated and tested using many small test panels. One joint concept was also built and tested using large panels. The small and large test panel deflections for the leading candidate designs at load factors up to +1.5 g's were well within the step and waviness requirements for avoiding transition.The small panels were designed and tested for compression and tension at -65 F, at ambient conditions, and at 160 F. The small panel results for the three-rib and the sliding-joint concepts indicated that they were both acceptable. The three-rib concept, with tapered splice plates, was considered to be the most practical. A modified three-rib joint that combined the best attributes of previous candidates was designed, developed, and tested. This improved joint met all of the structural strength, surface smoothness, and waviness criteria for laminar flow control (LFC). The design eliminated all disadvantages of the initial three-rib concept except for

  19. Enhanced Imaging of Corrosion in Aircraft Structures with Reverse Geometry X-ray(registered tm)

    Science.gov (United States)

    Winfree, William P.; Cmar-Mascis, Noreen A.; Parker, F. Raymond

    2000-01-01

    The application of Reverse Geometry X-ray to the detection and characterization of corrosion in aircraft structures is presented. Reverse Geometry X-ray is a unique system that utilizes an electronically scanned x-ray source and a discrete detector for real time radiographic imaging of a structure. The scanned source system has several advantages when compared to conventional radiography. First, the discrete x-ray detector can be miniaturized and easily positioned inside a complex structure (such as an aircraft wing) enabling images of each surface of the structure to be obtained separately. Second, using a measurement configuration with multiple detectors enables the simultaneous acquisition of data from several different perspectives without moving the structure or the measurement system. This provides a means for locating the position of flaws and enhances separation of features at the surface from features inside the structure. Data is presented on aircraft specimens with corrosion in the lap joint. Advanced laminographic imaging techniques utilizing data from multiple detectors are demonstrated to be capable of separating surface features from corrosion in the lap joint and locating the corrosion in multilayer structures. Results of this technique are compared to computed tomography cross sections obtained from a microfocus x-ray tomography system. A method is presented for calibration of the detectors of the Reverse Geometry X-ray system to enable quantification of the corrosion to within 2%.

  20. Compression strength of composite primary structural components

    Science.gov (United States)

    Johnson, Eric R.

    1994-01-01

    The linear elastic response is determined for an internally pressurized, long circular cylindrical shell stiffened on the inside by a regular arrangement of identical stringers and identical rings. Periodicity of this configuration permits the analysis of a portion of the shell wall centered over a generic stringer-ring joint; i.e., a unit cell model. The stiffeners are modeled as discrete beams, and the stringer is assumed to have a symmetrical cross section and the ring an asymmetrical section. Asymmetery causes out-of-plane bending and torsion of the ring. Displacements are assumed as truncated double Fourier series plus simple terms in the axial coordinate to account for the closed and pressure vessel effect (a non-periodic effect). The interacting line loads between the stiffeners and the inside shell wall are Lagrange multipliers in the formulation, and they are also assumed as truncated Fourier series. Displacement continuity constraints between the stiffeners and shell along the contact lines are satisfied point-wise. Equilibrium is imposed by the principle of virtual work. A composite material crown panel from the fuselage of a large transport aircraft is the numerical example. The distributions of the interacting line loads, and the out-of-plane bending moment and torque in the ring, are strongly dependent on modeling the deformations due to transverse shear and cross-sectional warping of the ring in torsion. This paper contains the results from the semiannual report on research on 'Pressure Pillowing of an Orthogonally Stiffened Cylindrical Shell'. The results of the new work are illustrated in the included appendix.

  1. Evaluation of structural design concepts for an arrow-wing supersonic cruise aircraft

    Science.gov (United States)

    Sakata, I. F.; Davis, G. W.

    1977-01-01

    An analytical study was performed to determine the best structural approach for design of primary wing and fuselage structure of a Mach 2.7 arrow wing supersonic cruise aircraft. Concepts were evaluated considering near term start of design. Emphasis was placed on the complex interactions between thermal stress, static aeroelasticity, flutter, fatigue and fail safe design, static and dynamic loads, and the effects of variations in structural arrangements, concepts and materials on these interactions. Results indicate that a hybrid wing structure incorporating low profile convex beaded and honeycomb sandwich surface panels of titanium alloy 6Al-4V were the most efficient. The substructure includes titanium alloy spar caps reinforced with boron polyimide composites. The fuselage shell consists of hat stiffened skin and frame construction of titanium alloy 6Al-4V. A summary of the study effort is presented, and a discussion of the overall logic, design philosophy and interaction between the analytical methods for supersonic cruise aircraft design are included.

  2. Estimators for variance components in structured stair nesting models

    Science.gov (United States)

    Monteiro, Sandra; Fonseca, Miguel; Carvalho, Francisco

    2016-06-01

    The purpose of this paper is to present the estimation of the components of variance in structured stair nesting models. The relationship between the canonical variance components and the original ones, will be very important in obtaining that estimators.

  3. Fatigue crack monitoring in multi-layered aircraft structures using guided ultrasonic waves

    OpenAIRE

    Koston, E.

    2010-01-01

    The detection of fatigue cracks at fasteners in the sub layers of multi-layered aircraft structures can be problematic using conventional nondestructive testing methods. In this thesis the sensitivity of low frequency guided ultrasonic waves to detect these defects is studied. Guided ultrasonic waves typically have energy distributed through the thickness of such structures and allow for defect detection in all sub-layers, but have wavelengths larger than commonly used in bulk wave ...

  4. Study on utilization of advanced composites in commercial aircraft wing structures, volume 2

    Science.gov (United States)

    Sakata, I. F.; Ostrom, R. B.

    1978-01-01

    A plan is defined for a composite wing development effort which will assist commercial transport manufacturers in reaching a level of technology readiness where the utilization of composite wing structure is a cost competitive option for a new aircraft production plan. The recommended development effort consists of two programs: a joint government/industry material development program and a wing structure development program. Both programs are described in detail.

  5. Modal content based damage indicators and phased array transducers for structural health monitoring of aircraft structures using ultrasonic guided waves

    Science.gov (United States)

    Ren, Baiyang

    Composite materials, especially carbon fiber reinforced polymers (CFRP), have been widely used in the aircraft industry because of their high specific strength and stiffness, resistance to corrosion and good fatigue life. Due to their highly anisotropic material properties and laminated structures, joining methods like bolting and riveting are no longer appropriate for joining CFRP since they initiate defects during the assembly and severely compromise the integrity of the structure; thus new techniques for joining CFRP are highly demanded. Adhesive bonding is a promising method because it relieves stress concentration, reduces weight and provides smooth surfaces. Additionally, it is a low-cost alternative to the co-cured method which is currently used to manufacture components of aircraft fuselage. Adhesive defects, disbonds at the interface between adherend and adhesive layer, are focused on in this thesis because they can be initialized by either poor surface preparation during the manufacturing or fatigue loads during service. Aircraft need structural health monitoring (SHM) systems to increase safety and reduce loss, and adhesive bonds usually represent the hotspots of the assembled structure. There are many nondestructive evaluation (NDE) methods for bond inspection. However, these methods cannot be readily integrated into an SHM system because of the bulk size and weight of the equipment and requirement of accessibility to one side of the bonded joint. The first objective of this work is to develop instruments, actuators, sensors and a data acquisition system for SHM of bond lines using ultrasonic guided waves which are well known to be able to cover large volume of the structure and inaccessible regions. Different from widely used guided wave sensors like PZT disks, the new actuators, piezoelectric fiber composite (PFC) phased array transducers0 (PAT), can control the modal content of the excited waves and the new sensors, polyvinylidene fluoride (PVDF

  6. Mechanical Behaviour of Inconel 718 Thin-Walled Laser Welded Components for Aircraft Engines

    OpenAIRE

    Enrico Lertora; Chiara Mandolfino; Carla Gambaro

    2014-01-01

    Nickel alloys are very important in many aerospace applications, especially to manufacture gas turbines and aero engine components, where high strength and temperature resistance are necessary. These kinds of alloys have to be welded with high energy density processes, in order to preserve their high mechanical properties. In this work, CO2 laser overlap joints between Inconel 718 sheets of limited thickness in the absence of postweld heat treatment were made. The main application of this kin...

  7. Application of component mode synthesis in structural dynamics

    Science.gov (United States)

    Craig, R. R.

    1986-01-01

    The principal analytical techniques used for component mode synthesis (CMS) of undamped systems and their application to structural dynamics are discussed. In the CMS, a system is divided into components or substructures, and for each of these components, the number of degrees of freedom is reduced by expressing the physical coordinates in terms of a reduced set of component modal coordinates. Among a number of component modes, a new form of component mode, called an applied force attachment mode, is described. Consideration is given to literature studies of damped structures and recent combined analytical/experimental studies.

  8. Cradle-to-Grave Monitoring of Composite Aircraft Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen is proposing a simple yet powerful damage identification technique for advanced composite structures. We propose to develop a damage index based on...

  9. Finite element thermal analysis of convectively-cooled aircraft structures

    Science.gov (United States)

    Wieting, A. R.; Thornton, E. A.

    1981-01-01

    The design complexity and size of convectively-cooled engine and airframe structures for hypersonic transports necessitate the use of large general purpose computer programs for both thermal and structural analyses. Generally thermal analyses are based on the lumped-parameter finite difference technique, and structural analyses are based on the finite element technique. Differences in these techniques make it difficult to achieve an efficient interface. It appears, therefore, desirable to conduct an integrated analysis based on a common technique. A summary is provided of efforts by NASA concerned with the development of an integrated thermal structural analysis capability using the finite element method. Particular attention is given to the development of conduction/forced-convection finite element methodology and applications which illustrate the capabilities of the developed concepts.

  10. Weibull-Based Design Methodology for Rotating Aircraft Engine Structures

    Science.gov (United States)

    Zaretsky, Erwin; Hendricks, Robert C.; Soditus, Sherry

    2002-01-01

    The NASA Energy Efficient Engine (E(sup 3)-Engine) is used as the basis of a Weibull-based life and reliability analysis. Each component's life and thus the engine's life is defined by high-cycle fatigue (HCF) or low-cycle fatigue (LCF). Knowing the cumulative life distribution of each of the components making up the engine as represented by a Weibull slope is a prerequisite to predicting the life and reliability of the entire engine. As the engine Weibull slope increases, the predicted lives decrease. The predicted engine lives L(sub 5) (95 % probability of survival) of approximately 17,000 and 32,000 hr do correlate with current engine maintenance practices without and with refurbishment. respectively. The individual high pressure turbine (HPT) blade lives necessary to obtain a blade system life L(sub 0.1) (99.9 % probability of survival) of 9000 hr for Weibull slopes of 3, 6 and 9, are 47,391 and 20,652 and 15,658 hr, respectively. For a design life of the HPT disks having probable points of failure equal to or greater than 36,000 hr at a probability of survival of 99.9 %, the predicted disk system life L(sub 0.1) can vary from 9,408 to 24,911 hr.

  11. A variable structure approach to robust control of VTOL aircraft

    Science.gov (United States)

    Calise, A. J.; Kramer, F. S.

    1984-01-01

    This paper examines the application of variable structure control theory to the design of a flight control system for the AV-8A Harrier in a hover mode. The objective in variable structure design is to confine the state trajectories to a subspace of the total state space. The motion in this subspace is insensitive to system parameter variations and external disturbances that lie in the range space of the control. A switching type of control law results from the design procedure. The control system was designed to track a vector-valued velocity command. For comparison, a proportional controller was designed using optimal linear regulator theory. Both controllers were evaluated for their transient response performance using a linear model; then a nonlinear simulation study of a hovering approach to landing was conducted. The variable structure controller outperformed its linear counterpart in the presence of wind disturbances and plant parameter uncertainties afforded by the simulation.

  12. A numerical model for bird strike on sidewall structure of an aircraft nose

    Directory of Open Access Journals (Sweden)

    Liu Jun

    2014-06-01

    Full Text Available In order to examine the potential of using the coupled smooth particles hydrodynamic (SPH and finite element (FE method to predict the dynamic responses of aircraft structures in bird strike events, bird-strike tests on the sidewall structure of an aircraft nose are carried out and numerically simulated. The bird is modeled with SPH and described by the Murnaghan equation of state, while the structure is modeled with finite elements. A coupled SPH–FE method is developed to simulate the bird-strike tests and a numerical model is established using a commercial software PAM-CRASH. The bird model shows no signs of instability and correctly modeled the break-up of the bird into particles. Finally the dynamic response such as strains in the skin is simulated and compared with test results, and the simulated deformation and fracture process of the sidewall structure is compared with images recorded by a high speed camera. Good agreement between the simulation results and test data indicates that the coupled SPH–FE method can provide a very powerful tool in predicting the dynamic responses of aircraft structures in events of bird strike.

  13. Compliant load-bearing skins and structures for morphing aircraft applications

    Science.gov (United States)

    Olympio, Kingnide Raymond

    Aircraft morphing has the potential to significantly improve the performance of an aircraft over its flight envelope and expand its ight capability to allow it to perform dramatically different missions. The multiple projects carried on in the past three decades have considerably helped improve the designing of actuation systems and the utilization of smart materials for morphing aircraft structures. However, morphing aircraft and especially aircraft undergoing large shape change still face some significant technical issues. Among them, the skin covering the morphing structure must meet challenging requirements that no current conventional material fully satisfy. The design of such skin, which should be able to undergo large deformations and to carry air-loads, has received some attention in the last several years but no satisfactory solution has been found yet. In the current study, the design of compliant cellular structures and flexible skins for morphing aircraft structures is investigated for two different morphing deformations. The first morphing deformation considered corresponds to one-dimensional morphing which is representative of a wing or blade changing its chord or span. The second morphing deformation considered is shear-compression morphing which can be found in some morphing wing undergoing change in area, sweep and chord such as NextGen Aeronautics' morphing wing. Topologies of compliant cellular structures which can be used for these two types of structures are first calculated using a multi-objective approach. These topologies are calculated based on linear kinematics but the effect of geometric nonlinearities is also investigated. Then, ways to provide a smooth surface were investigated by considering a general honeycomb substructure with infill, bonded face-sheet or scales. This allowed justifying an overall skin concept made of a cellular substructure with a bonded face-sheet. Lastly, the design of an improved skin for NextGen Aeronautics

  14. Synthesis of aircraft structures using integrated design and analysis methods

    Science.gov (United States)

    Sobieszczanski-Sobieski, J.; Goetz, R. C.

    1978-01-01

    A systematic research is reported to develop and validate methods for structural sizing of an airframe designed with the use of composite materials and active controls. This research program includes procedures for computing aeroelastic loads, static and dynamic aeroelasticity, analysis and synthesis of active controls, and optimization techniques. Development of the methods is concerned with the most effective ways of integrating and sequencing the procedures in order to generate structural sizing and the associated active control system, which is optimal with respect to a given merit function constrained by strength and aeroelasticity requirements.

  15. Mechanical Behaviour of Inconel 718 Thin-Walled Laser Welded Components for Aircraft Engines

    Directory of Open Access Journals (Sweden)

    Enrico Lertora

    2014-01-01

    Full Text Available Nickel alloys are very important in many aerospace applications, especially to manufacture gas turbines and aero engine components, where high strength and temperature resistance are necessary. These kinds of alloys have to be welded with high energy density processes, in order to preserve their high mechanical properties. In this work, CO2 laser overlap joints between Inconel 718 sheets of limited thickness in the absence of postweld heat treatment were made. The main application of this kind of joint is the manufacturing of a helicopter engine component. In particular the aim was to obtain a specific cross section geometry, necessary to overcome the mechanical stresses found in these working conditions without failure. Static and dynamic tests were performed to assess the welds and the parent material fatigue life behaviour. Furthermore, the life trend was identified. This research pointed out that a full joint shape control is possible by choosing proper welding parameters and that the laser beam process allows the maintenance of high tensile strength and ductility of Inconel 718 but caused many liquation microcracks in the heat affected zone (HAZ. In spite of these microcracks, the fatigue behaviour of the overlap welds complies with the technical specifications required by the application.

  16. Loading tests of a wing structure for a hypersonic aircraft

    Science.gov (United States)

    Fields, R. A.; Reardon, L. F.; Siegel, W. H.

    1980-01-01

    Room-temperature loading tests were conducted on a wing structure designed with a beaded panel concept for a Mach 8 hypersonic research airplane. Strain, stress, and deflection data were compared with the results of three finite-element structural analysis computer programs and with design data. The test program data were used to evaluate the structural concept and the methods of analysis used in the design. A force stiffness technique was utilized in conjunction with load conditions which produced various combinations of panel shear and compression loading to determine the failure envelope of the buckling critical beaded panels The force-stiffness data did not result in any predictions of buckling failure. It was, therefore, concluded that the panels were conservatively designed as a result of design constraints and assumptions of panel eccentricities. The analysis programs calculated strains and stresses competently. Comparisons between calculated and measured structural deflections showed good agreement. The test program offered a positive demonstration of the beaded panel concept subjected to room-temperature load conditions.

  17. Evaluation of aging degradation of structural components

    International Nuclear Information System (INIS)

    Irradiation embrittlement of the neutron shield tank (NST) A212 Grade B steel from the Shippingport reactor, as well as thermal embrittlement of CF-8 cast stainless steel components from the Shippingport and KRB reactors, has been characterized. Increases in Charpy transition temperature (CTT), yield stress, and hardness of the NST material in the low-temperature low-flux environment are consistent with the test reactor data for irradiations at 8 n/cm2·s at the low operating temperature of the Shippingport NST, i.e., 55 degrees C. This suggest that radiation damage in Shippingport NST and HFIR surveillance samples may be different because of the neutron spectra and/or Cu and Ni content of the two materials. Cast stainless steel components show relatively modest decreases in fracture toughness and Charpy-impact properties and a small increase in tensile strength. Correlations for estimating mechanical properties of cast stainless steels predict accurate or slightly conservative values for Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and JIC of the materials. The kinetics of thermal embrittlement and degree of embrittlement at saturation, i.e., the minimum impact energy achieved after long-term aging, were established from materials that were aged further in the laboratory. The results were consistent with the estimates. The correlations successfully predict the mechanical properties of the Ringhals 2 reactor hot- and crossover-leg elbows (CF-8M steel) after service of ∼15 y

  18. A single frequency component-based re-estimated MUSIC algorithm for impact localization on complex composite structures

    Science.gov (United States)

    Yuan, Shenfang; Bao, Qiao; Qiu, Lei; Zhong, Yongteng

    2015-10-01

    The growing use of composite materials on aircraft structures has attracted much attention for impact monitoring as a kind of structural health monitoring (SHM) method. Multiple signal classification (MUSIC)-based monitoring technology is a promising method because of its directional scanning ability and easy arrangement of the sensor array. However, for applications on real complex structures, some challenges still exist. The impact-induced elastic waves usually exhibit a wide-band performance, giving rise to the difficulty in obtaining the phase velocity directly. In addition, composite structures usually have obvious anisotropy, and the complex structural style of real aircrafts further enhances this performance, which greatly reduces the localization precision of the MUSIC-based method. To improve the MUSIC-based impact monitoring method, this paper first analyzes and demonstrates the influence of measurement precision of the phase velocity on the localization results of the MUSIC impact localization method. In order to improve the accuracy of the phase velocity measurement, a single frequency component extraction method is presented. Additionally, a single frequency component-based re-estimated MUSIC (SFCBR-MUSIC) algorithm is proposed to reduce the localization error caused by the anisotropy of the complex composite structure. The proposed method is verified on a real composite aircraft wing box, which has T-stiffeners and screw holes. Three typical categories of 41 impacts are monitored. Experimental results show that the SFCBR-MUSIC algorithm can localize impact on complex composite structures with an obviously improved accuracy.

  19. Full-scale testing and progressive damage modeling of sandwich composite aircraft fuselage structure

    Science.gov (United States)

    Leone, Frank A., Jr.

    A comprehensive experimental and computational investigation was conducted to characterize the fracture behavior and structural response of large sandwich composite aircraft fuselage panels containing artificial damage in the form of holes and notches. Full-scale tests were conducted where panels were subjected to quasi-static combined pressure, hoop, and axial loading up to failure. The panels were constructed using plain-weave carbon/epoxy prepreg face sheets and a Nomex honeycomb core. Panel deformation and notch tip damage development were monitored during the tests using several techniques, including optical observations, strain gages, digital image correlation (DIC), acoustic emission (AE), and frequency response (FR). Additional pretest and posttest inspections were performed via thermography, computer-aided tap tests, ultrasound, x-radiography, and scanning electron microscopy. The framework to simulate damage progression and to predict residual strength through use of the finite element (FE) method was developed. The DIC provided local and full-field strain fields corresponding to changes in the state-of-damage and identified the strain components driving damage progression. AE was monitored during loading of all panels and data analysis methodologies were developed to enable real-time determination of damage initiation, progression, and severity in large composite structures. The FR technique has been developed, evaluating its potential as a real-time nondestructive inspection technique applicable to large composite structures. Due to the large disparity in scale between the fuselage panels and the artificial damage, a global/local analysis was performed. The global FE models fully represented the specific geometries, composite lay-ups, and loading mechanisms of the full-scale tests. A progressive damage model was implemented in the local FE models, allowing the gradual failure of elements in the vicinity of the artificial damage. A set of modifications

  20. Dynamic structural aeroelastic stability testing of the XV-15 tilt rotor research aircraft

    Science.gov (United States)

    Schroers, L. G.

    1982-01-01

    For the past 20 years, a significant effort has been made to understand and predict the structural aeroelastic stability characteristics of the tilt rotor concept. Beginning with the rotor-pylon oscillation of the XV-3 aircraft, the problem was identified and then subjected to a series of theoretical studies, plus model and full-scale wind tunnel tests. From this data base, methods were developed to predict the structural aeroelastic stability characteristics of the XV-15 Tilt Rotor Research Aircraft. The predicted aeroelastic characteristics are examined in light of the major parameters effecting rotor-pylon-wing stability. Flight test techniques used to obtain XV-15 aeroelastic stability are described. Flight test results are summarized and compared to the predicted values. Wind tunnel results are compared to flight test results and correlated with predicted values.

  1. Hidden corrosion detection in aircraft aluminum structures using laser ultrasonics and wavelet transform signal analysis.

    Science.gov (United States)

    Silva, M Z; Gouyon, R; Lepoutre, F

    2003-06-01

    Preliminary results of hidden corrosion detection in aircraft aluminum structures using a noncontact laser based ultrasonic technique are presented. A short laser pulse focused to a line spot is used as a broadband source of ultrasonic guided waves in an aluminum 2024 sample cut from an aircraft structure and prepared with artificially corroded circular areas on its back surface. The out of plane surface displacements produced by the propagating ultrasonic waves were detected with a heterodyne Mach-Zehnder interferometer. Time-frequency analysis of the signals using a continuous wavelet transform allowed the identification of the generated Lamb modes by comparison with the calculated dispersion curves. The presence of back surface corrosion was detected by noting the loss of the S(1) mode near its cutoff frequency. This method is applicable to fast scanning inspection techniques and it is particularly suited for early corrosion detection. PMID:12782263

  2. An automatic 3D CAD model errors detection method of aircraft structural part for NC machining

    Directory of Open Access Journals (Sweden)

    Bo Huang

    2015-10-01

    Full Text Available Feature-based NC machining, which requires high quality of 3D CAD model, is widely used in machining aircraft structural part. However, there has been little research on how to automatically detect the CAD model errors. As a result, the user has to manually check the errors with great effort before NC programming. This paper proposes an automatic CAD model errors detection approach for aircraft structural part. First, the base faces are identified based on the reference directions corresponding to machining coordinate systems. Then, the CAD models are partitioned into multiple local regions based on the base faces. Finally, the CAD model error types are evaluated based on the heuristic rules. A prototype system based on CATIA has been developed to verify the effectiveness of the proposed approach.

  3. Base isolation strategies for structures and components

    International Nuclear Information System (INIS)

    In the present report the effect of laminated rubber bearing (LRB) system on the dynamic response of the structure was studied. A LRB system was designed and tested in the laboratory for its dynamic characteristics. Finite element analysis was also performed and based on this analysis, isolator for PHWR nuclear power plant was designed. Analysis of the building was performed with and without isolator. Comparison of responses was made in terms of frequencies, accelerations and displacements and floor response spectra. (author)

  4. Structural capacity assessment of a generic pre-stressed concrete containment structure under aircraft impact

    International Nuclear Information System (INIS)

    The studied containment expressed adequate capacity to resist impact loads in the upper range of the studied diapason. The aircraft impact capacity of the containment for impact in the upper part of the cylindrical shell is about 25‐30% higher than the capacity for impact in the middle part of the cylindrical shell. The obtained fragility curves reefed to MoA can be then used for various additional calculations in the safety assessment of nuclear facilities under aircraft impact

  5. Aircraft-crash-protected steel reactor building roof structure for the European market

    International Nuclear Information System (INIS)

    This paper recommends the use of all steel roof structures for the reactor building of European Boiling Water Reactor (BWR) plants. This change would make the advanced US BWR designs more compatible with European requirements. Replacement of the existing concrete roof slab with a sufficiently thick steel plate would eliminate the concrete spelling resulting from a postulated aircraft crash, potentially damaging the drywell head or the spent fuel pool

  6. Structural Optimization and Design of a Strut-Braced Wing Aircraft

    OpenAIRE

    Naghshineh-Pour, Amir H.

    1998-01-01

    A significant improvement can be achieved in the performance of transonic transport aircraft using Multidisciplinary Design Optimization (MDO) by implementing truss-braced wing concepts in combination with other advanced technologies and novel design innovations. A considerable reduction in drag can be obtained by using a high aspect ratio wing with thin airfoil sections and tip-mounted engines. However, such wing structures could suffer from a significant weight penalty. Thus, the use of an ...

  7. Molecular Component Structures Mediated Formation of Self-assemblies

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Molecular recognition directed self-assemblies from complementary molecular components, melamine and barbituric acid derivatives were studied by means of NMR, fluorescence, and TEM. It was found that both the process of the self-assembly and the morphologies of the result ed self-assemblies could be mediated by modifying the structures of the molecular components used. The effect of the structures of the molecular components on the formation of the self-as semblies was discussed in terms of intermolecular interactions.

  8. Nonthermal Components in the Large Scale Structure

    Science.gov (United States)

    Miniati, Francesco

    2004-12-01

    I address the issue of nonthermal processes in the large scale structure of the universe. After reviewing the properties of cosmic shocks and their role as particle accelerators, I discuss the main observational results, from radio to γ-ray and describe the processes that are thought be responsible for the observed nonthermal emissions. Finally, I emphasize the important role of γ-ray astronomy for the progress in the field. Non detections at these photon energies have already allowed us important conclusions. Future observations will tell us more about the physics of the intracluster medium, shocks dissipation and CR acceleration.

  9. Conceptual Design and Structural Optimization of NASA Environmentally Responsible Aviation (ERA) Hybrid Wing Body Aircraft

    Science.gov (United States)

    Quinlan, Jesse R.; Gern, Frank H.

    2016-01-01

    Simultaneously achieving the fuel consumption and noise reduction goals set forth by NASA's Environmentally Responsible Aviation (ERA) project requires innovative and unconventional aircraft concepts. In response, advanced hybrid wing body (HWB) aircraft concepts have been proposed and analyzed as a means of meeting these objectives. For the current study, several HWB concepts were analyzed using the Hybrid wing body Conceptual Design and structural optimization (HCDstruct) analysis code. HCDstruct is a medium-fidelity finite element based conceptual design and structural optimization tool developed to fill the critical analysis gap existing between lower order structural sizing approaches and detailed, often finite element based sizing methods for HWB aircraft concepts. Whereas prior versions of the tool used a half-model approach in building the representative finite element model, a full wing-tip-to-wing-tip modeling capability was recently added to HCDstruct, which alleviated the symmetry constraints at the model centerline in place of a free-flying model and allowed for more realistic center body, aft body, and wing loading and trim response. The latest version of HCDstruct was applied to two ERA reference cases, including the Boeing Open Rotor Engine Integration On an HWB (OREIO) concept and the Boeing ERA-0009H1 concept, and results agreed favorably with detailed Boeing design data and related Flight Optimization System (FLOPS) analyses. Following these benchmark cases, HCDstruct was used to size NASA's ERA HWB concepts and to perform a related scaling study.

  10. Computer-aided methods for analysis and synthesis of supersonic cruise aircraft structures

    Science.gov (United States)

    Giles, G. L.

    1976-01-01

    Computer-aided methods are reviewed which are being developed by Langley Research Center in-house work and by related grants and contracts. Synthesis methods to size structural members to meet strength and stiffness (flutter) requirements are emphasized and described. Because of the strong interaction among the aerodynamic loads, structural stiffness, and member sizes of supersonic cruise aircraft structures, these methods are combined into systems of computer programs to perform design studies. The approaches used in organizing these systems to provide efficiency, flexibility of use in an iterative process, and ease of system modification are discussed.

  11. Certification of Discontinuous Composite Material Forms for Aircraft Structures

    Science.gov (United States)

    Arce, Michael Roger

    New, high performance chopped, discontinuous, or short fiber composites (DFCs), DFCs, such as HexMC and Lytex, made by compression molding of randomly oriented pre-impregnated unidirectional tape, can be formed into complex geometry while retaining mechanical properties suitable for structural use. These DFCs provide the performance benefits of Continuous Fiber Composites (CFCs) in form factors that were previously unavailable. These materials demonstrate some notably different properties from continuous fiber composites, especially with respect to damage tolerance and failure behavior. These behaviors are not very well understood, and fundamental research efforts are ongoing to better characterize the material and to ease certification for future uses. Despite this, these new DFCs show such promise that they are already in service in the aerospace industry, for instance in the Boeing 787. Unfortunately, the relative novelty of these parts means that they needed to be certified by “point design”, an excess of physical testing, rather than by a mix of physical testing and finite element analysis, which would be the case for CFCs or metals. In this study, one particular approach to characterizing both linear-elastic and failure behaviors are considered. The Stochastic Laminate Analogy, which represents a novel approach to modeling DFCs, and its combination with a Ply Discount scheme. Owing to limited available computational resources, only preliminary results are available, but those results are quite promising and warrant further investigation.

  12. Computation of aircraft component flow fields at transonic Mach numbers using a three-dimensional Navier-Stokes algorithm

    Science.gov (United States)

    Shrewsbury, George D.; Vadyak, Joseph; Schuster, David M.; Smith, Marilyn J.

    1989-01-01

    A computer analysis was developed for calculating steady (or unsteady) three-dimensional aircraft component flow fields. This algorithm, called ENS3D, can compute the flow field for the following configurations: diffuser duct/thrust nozzle, isolated wing, isolated fuselage, wing/fuselage with or without integrated inlet and exhaust, nacelle/inlet, nacelle (fuselage) afterbody/exhaust jet, complete transport engine installation, and multicomponent configurations using zonal grid generation technique. Solutions can be obtained for subsonic, transonic, or hypersonic freestream speeds. The algorithm can solve either the Euler equations for inviscid flow, the thin shear layer Navier-Stokes equations for viscous flow, or the full Navier-Stokes equations for viscous flow. The flow field solution is determined on a body-fitted computational grid. A fully-implicit alternating direction implicit method is employed for the solution of the finite difference equations. For viscous computations, either a two layer eddy-viscosity turbulence model or the k-epsilon two equation transport model can be used to achieve mathematical closure.

  13. Reaction-time relationship and structural design of reinforced concrete slabs and shells for aircraft impact

    International Nuclear Information System (INIS)

    The reaction-time relationship for a deformable aircraft impacting on a rigid wall is derived. The resulting expression is compared to the expression presently in the literature and it is found that this new expression gives peak values of the reaction significantly less (approximately 40%) than the presently used expression The reaction-time relationships for aircraft typical of a business jet, fighter-bomber and jet transport are evaluated. The peak value of the reaction-time relationship is very sensitive to changes in the initial impact velocity and the peak value of the weight distribution and relatively insensitive to changes in the crushing strength distribution and modifications of the weight distribution that do not change the peak value of the weight distribution. A structure is required to prevent penetration by any part of the aircraft. Severe damage is to be expected. The structure will be considered to have retained its structural integrity, if it does not collapse. It is assumed that only a region of the slab or shell in the near vicinity of the region of impact participates in energy absorption. For slabs, the maximum resistance is given as the collapse load for a concentrated load. For shells with large dimensions, the same value is used as a conservative estimate. The dynamic effect are estimated using the method of Biggs. The ratio of the peak allowable force to the maximum resistance (F/R) is greater than unity as long as the participating material has a radius equal to or greater than that of the fuselage of the impacting aircraft. For any particular radius of participating material, the increase in (F/R) as a function of allowable ductility ratio is also shown. The punching shear capacity is determined by taking account of the reinforcement steel and yield line pattern

  14. NASA-UVa Light Aerospace Alloy and Structures Technology Program: Aluminum-Based Materials for High Speed Aircraft

    Science.gov (United States)

    Starke, E. A., Jr. (Editor)

    1996-01-01

    This report is concerned with 'Aluminum-Based Materials for High Speed Aircraft' which was initiated to identify the technology needs associated with advanced, low-cost aluminum base materials for use as primary structural materials. Using a reference baseline aircraft, these materials concept will be further developed and evaluated both technically and economically to determine the most attractive combinations of designs, materials, and manufacturing techniques for major structural sections of an HSCT. Once this has been accomplished, the baseline aircraft will be resized, if applicable, and performance objectives and economic evaluations made to determine aircraft operating costs. The two primary objectives of this study are: (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials, and (2) to assess these materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT.

  15. An integrated approach to the probabilistic assessments of aircraft strikes and structural mode of damages to nuclear power plants

    International Nuclear Information System (INIS)

    The possibilities of an aircraft striking a Canadian nuclear power plant in the vicinity of an airport and of inducing structural failure modes have been evaluated. This evaluation, together with other studies, may enhance

  16. Design for Manufacturing of Composite Structures for Commercial Aircraft : The Development of a DFM strategy at SAAB Aerostructures

    OpenAIRE

    Andersson, Frida; Hagqvist, Astrid; Sundin, Erik; Björkman, Mats

    2014-01-01

    Within the aircraft industry, the use of composite materials such as carbon fiber reinforced plastics (CFRPs) is steadily increasing, especially in structural parts. Manufacturability needs to be considered in aircraft design to ensure a cost-effective manufacturing process. The aim of this paper is to describe the development of a new strategy for how SAAB Aerostructures addressing manufacturability issues during the development of airframe composite structures. Through literature review, be...

  17. Safety classification of nuclear power plant systems, structures and components

    International Nuclear Information System (INIS)

    The Safety Classification principles used for the systems, structures and components of a nuclear power plant are detailed in the guide. For classification, the nuclear power plant is divided into structural and operational units called systems. Every structure and component under control is included into some system. The Safety Classes are 1, 2 and 3 and the Class EYT (non-nuclear). Instructions how to assign each system, structure and component to an appropriate safety class are given in the guide. The guide applies to new nuclear power plants and to the safety classification of systems, structures and components designed for the refitting of old nuclear power plants. The classification principles and procedures applying to the classification document are also given

  18. An Improved Gaussian Mixture Model for Damage Propagation Monitoring of an Aircraft Wing Spar under Changing Structural Boundary Conditions.

    Science.gov (United States)

    Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Fang, Fang

    2016-01-01

    Structural Health Monitoring (SHM) technology is considered to be a key technology to reduce the maintenance cost and meanwhile ensure the operational safety of aircraft structures. It has gradually developed from theoretic and fundamental research to real-world engineering applications in recent decades. The problem of reliable damage monitoring under time-varying conditions is a main issue for the aerospace engineering applications of SHM technology. Among the existing SHM methods, Guided Wave (GW) and piezoelectric sensor-based SHM technique is a promising method due to its high damage sensitivity and long monitoring range. Nevertheless the reliability problem should be addressed. Several methods including environmental parameter compensation, baseline signal dependency reduction and data normalization, have been well studied but limitations remain. This paper proposes a damage propagation monitoring method based on an improved Gaussian Mixture Model (GMM). It can be used on-line without any structural mechanical model and a priori knowledge of damage and time-varying conditions. With this method, a baseline GMM is constructed first based on the GW features obtained under time-varying conditions when the structure under monitoring is in the healthy state. When a new GW feature is obtained during the on-line damage monitoring process, the GMM can be updated by an adaptive migration mechanism including dynamic learning and Gaussian components split-merge. The mixture probability distribution structure of the GMM and the number of Gaussian components can be optimized adaptively. Then an on-line GMM can be obtained. Finally, a best match based Kullback-Leibler (KL) divergence is studied to measure the migration degree between the baseline GMM and the on-line GMM to reveal the weak cumulative changes of the damage propagation mixed in the time-varying influence. A wing spar of an aircraft is used to validate the proposed method. The results indicate that the crack

  19. Local Impact Simulation of SC Wall Structures using Aircraft Engine Projectile

    International Nuclear Information System (INIS)

    SC wall structure developed for nuclear power plant buildings consists of plain concrete and two steel plates on both surface of the concrete, while RC structure consists of re bar and concrete. SC structure has higher scabbing resistance than RC structure due to the action of steel plate on the rear side of impact. Therefore SC structure is known as more effective structure from the viewpoint of aircraft crash than RC structure. However, most of the recent researches and experiments about local impact damage deal with RC structures, and the effect of re bar and steel plate is not considered reasonably. Although Walter et al. and Make-work et al. suggested a formula for evaluating perforation depth of steel plate covered RC walls, most of the previous researches about SC structure are focused on perforation and scabbing due to the impact of hard projectile, rather than soft projectile such as an aircraft. In this research a soft projectile, i. e. aircraft engine, is utilized for impact simulation of RC and SC walls. To evaluate local damage of SC wall structures, parametric study with the variables of wall thickness and steel ratio of the cover plate is performed, and the results are compared with those of RC structures. Since scabbing was prevented by the steel plates, penetration mode of damage was observed in SC walls while scabbing damage was occurred in RC walls. It is confirmed that the rear steel plate not only contains concrete debris, but also reduces the internal damage of the concrete walls. Penetration depth of SC walls did not largely vary due to the increasing steel ratio, and similar results to RC walls were observed when the wall thickness is larger than a certain value since the impact resistance of SC wall is mainly governed by the thickness of concrete part. Therefore, it is expected that similar level of impact resistance to RC structure can be produced with the minimum thickness of steel plates of SC structure. According to these results, SC

  20. Experimental study on hollow structural component by explosive welding

    International Nuclear Information System (INIS)

    Highlights: • This paper relates to a study on a thin double-layers hollow structural component by using an explosive welding technology. • This thin double-layer hollow structural component is an indispensable component required for certain core equipment of thermonuclear experimental reactor. • An adjusted explosive welding technology for manufacturing an inconel625 hollow structural component was developed which cannot be made by common technology. • The result shows that a metallurgical bonding was realized by the ribs and slabs of the hollow sheet. • The shearing strength of bonding interface exceeds that of the parent metal. - Abstract: A large thin-walled hollow structural component with sealed channels is required for the vacuum chamber of a thermonuclear experimental reactor, with inconel625 as its fabrication material. This hollow structural component is rarely manufactured by normal machining method, and its manufacture is also problematic in the field of explosive welding. With this in mind, we developed an adjusted explosive welding technology which involves a two-step design, setting and annealing technology. The joints were evaluated using optical microscope and scanning electron microscope, and a mechanical experiment was conducted, involving micro-hardness test, cold helium leak test and hydraulic pressure test. The results showed that a metallurgical bonding was realized by the ribs and slabs, and the shearing strength of the bonding interface exceeded that of the parent metal. Hence, the hollow structural component has a good comprehensive mechanical performance and sealing property

  1. Advanced technology for future regional transport aircraft

    Science.gov (United States)

    Williams, L. J.

    1982-01-01

    In connection with a request for a report coming from a U.S. Senate committee, NASA formed a Small Transport Aircraft Technology (STAT) team in 1978. STAT was to obtain information concerning the technical improvements in commuter aircraft that would likely increase their public acceptance. Another area of study was related to questions regarding the help which could be provided by NASA's aeronautical research and development program to commuter aircraft manufacturers with respect to the solution of technical problems. Attention is given to commuter airline growth, current commuter/region aircraft and new aircraft in development, prospects for advanced technology commuter/regional transports, and potential benefits of advanced technology. A list is provided of a number of particular advances appropriate to small transport aircraft, taking into account small gas turbine engine component technology, propeller technology, three-dimensional wing-design technology, airframe aerodynamics/propulsion integration, and composite structure materials.

  2. Smart Intelligent Aircraft Structures (SARISTU) : Proceedings of the Final Project Conference

    CERN Document Server

    Papadopoulos, Michael

    2016-01-01

    The book includes the research papers presented in the final conference of the EU funded SARISTU (Smart Intelligent Aircraft Structures) project, held at Moscow, Russia between 19-21 of May 2015. The SARISTU project, which was launched in September 2011, developed and tested a variety of individual applications as well as their combinations. With a strong focus on actual physical integration and subsequent material and structural testing, SARISTU has been responsible for important progress on the route to industrialization of structure integrated functionalities such as Conformal Morphing, Structural Health Monitoring and Nanocomposites. The gap- and edge-free deformation of aerodynamic surfaces known as conformal morphing has gained previously unrealized capabilities such as inherent de-icing, erosion protection and lightning strike protection, while at the same time the technological risk has been greatly reduced. Individual structural health monitoring techniques can now be applied at the part-manufacturin...

  3. Tekla Structures custom component : Puurakenteinen välipohjaelementti

    OpenAIRE

    Hakulinen, Simo

    2013-01-01

    Opinnäytetyön tarkoituksena oli luoda Tekla Structures -ohjelmaan custom component -työkalu puurakenteisten välipohjaelementtien mallintamiseen. Työkalulla on tarkoitus nopeuttaa rakennesuunnittelijan mallinnustyötä välipohjaelementtien osalta. Työssä tarkasteltiin tavanomaisen puurakenteisen välipohjaelementin rakennetta ja toiminnallisuutta, minkä pohjalta suunniteltiin työkalu 3D-mallintamiseen. Tekla Structures -ohjelmassa työkalu toteutettiin custom component part (osa) -toiminnolla,...

  4. 3D printed components with ultrasonically arranged microscale structure

    OpenAIRE

    Llewellyn-Jones, Thomas M; Drinkwater, Bruce W; Trask, Richard S

    2016-01-01

    This paper shows the first application of in situ manipulation of discontinuous fibrous structure mid-print, within a 3D printed polymeric composite architecture. Currently, rapid prototyping methods (fused filament fabrication, stereolithography) are gaining increasing popularity within the engineering commnity to build structural components. Unfortunately, the full potential of these components is limited by the mechanical properties of the materials used. The aim of this study is to create...

  5. Block-Krylov component synthesis method for structural model reduction

    Science.gov (United States)

    Craig, Roy R., Jr.; Hale, Arthur L.

    1988-01-01

    A new analytical method is presented for generating component shape vectors, or Ritz vectors, for use in component synthesis. Based on the concept of a block-Krylov subspace, easily derived recurrence relations generate blocks of Ritz vectors for each component. The subspace spanned by the Ritz vectors is called a block-Krylov subspace. The synthesis uses the new Ritz vectors rather than component normal modes to reduce the order of large, finite-element component models. An advantage of the Ritz vectors is that they involve significantly less computation than component normal modes. Both 'free-interface' and 'fixed-interface' component models are derived. They yield block-Krylov formulations paralleling the concepts of free-interface and fixed-interface component modal synthesis. Additionally, block-Krylov reduced-order component models are shown to have special disturbability/observability properties. Consequently, the method is attractive in active structural control applications, such as large space structures. The new fixed-interface methodology is demonstrated by a numerical example. The accuracy is found to be comparable to that of fixed-interface component modal synthesis.

  6. Probabilistic structural analysis methods for space propulsion system components

    Science.gov (United States)

    Chamis, Christos C.

    1987-01-01

    The development of a three-dimensional inelastic analysis methodology for the Space Shuttle main engine (SSME) structural components is described. The methodology is composed of: (1) composite load spectra, (2) probabilistic structural analysis methods, (3) the probabilistic finite element theory, and (4) probabilistic structural analysis. The methodology has led to significant technical progress in several important aspects of probabilistic structural analysis. The program and accomplishments to date are summarized.

  7. Active structural acoustic control of aircraft interior flow noise via the use of active trim panels

    OpenAIRE

    Mahnken, Brian W.

    1996-01-01

    Modem jet aircraft interior noise can be categorized into two main types: tonal noise caused by engine imbalance or blade passage, and mid frequency broadband noise resulting from turbulent flow. This project addresses aircraft interior flow noise caused by a flow separation over the crown of the aircraft. The noise control approach is to mount piezoelectric actuators to the aircraft interior cockpit crown trim panel and use them to actively control aircraft interior noise with...

  8. Design study of structural concepts for an arrow-wing supersonic-cruise aircraft

    Science.gov (United States)

    Sakata, I. F.; Davis, G. W.; Robinson, J. C.; Yates, E. C., Jr.

    1975-01-01

    An analytical study was performed to determine the best structural approach for design of primary wing and fuselage structure of a Mach number 2.7 arrow-wing supersonic cruise aircraft. Concepts were evaluated considering near-term start-of-design. Emphasis was placed on the complex interactions between thermal stress, static aeroelasticity, flutter, fatigue and fail-safe design, static and dynamic loads, and the effects of variations in structural arrangements, concepts and materials on these interactions. Results indicate that a hybrid wing structure incorporating low-profile convex-beaded and honeycomb sandwich surface panels of titanium alloy 6Al-4V were the most efficient. The substructure includes titanium alloy spar caps reinforced with Boron-polyimide composites. The fuselage shell is a closed-hat stiffened skin and frame construction of titanium alloy 6Al-4V. This paper presents an executive summary of the study effort, and includes a discussion of the overall study logic, design philosophy and interaction between the analytical methods for supersonic cruise aircraft design.

  9. Analysis and Testing of a Metallic Repair Applicable to Pressurized Composite Aircraft Structure

    Science.gov (United States)

    Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.

    2014-01-01

    Development of repair technology is vital to the long-term application of new structural concepts on aircraft structure. The design, analysis, and testing of a repair concept applicable to a stiffened composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure was recently completed. The damage scenario considered was a mid-bay to mid-bay saw-cut with a severed stiffener, flange, and skin. A bolted metallic repair was selected so that it could be easily applied in the operational environment. The present work describes results obtained from tension and pressure panel tests conducted to validate both the repair concept and finite element analysis techniques used in the design effort. Simulation and experimental strain and displacement results show good correlation, indicating that the finite element modeling techniques applied in the effort are an appropriate compromise between required fidelity and computational effort. Static tests under tension and pressure loadings proved that the proposed repair concept is capable of sustaining load levels that are higher than those resulting from the current working stress allowables. Furthermore, the pressure repair panel was subjected to 55,000 pressure load cycles to verify that the design can withstand a life cycle representative for a transport category aircraft. These findings enable upward revision of the stress allowables that had been kept at an overly-conservative level due to concerns associated with repairability of the panels. This conclusion enables more weight efficient structural designs utilizing the composite concept under investigation.

  10. Characterization of damped structural connections for multi-component systems

    Science.gov (United States)

    Lawrence, Charles; Huckelbridge, Arthur A.

    1989-01-01

    The inability to model connections adequately has historically limited the ability to predict overall system dynamic response. Connections between structural components are often mechanically complex and difficult to accurataely model analytically. Improved analytical models for connections are needed to improve system dynamic predictions. This study explores combining Component Mode Synthesis methods for coupling structural components with Parameter Identification procedures for improving the analytical modeling of the connections. Improvements in the connection stiffness and damping properties are computed in terms of physical parameters so the physical characteristics of the connections can be better understood, in addition to providing improved input for the system model.

  11. Vibrational behavior of adaptive aircraft wing structures modelled as composite thin-walled beams

    Science.gov (United States)

    Song, O.; Librescu, L.; Rogers, C. A.

    1992-01-01

    The vibrational behavior of cantilevered aircraft wings modeled as thin-walled beams and incorporating piezoelectric effects is studied. Based on the converse piezoelectric effect, the system of piezoelectric actuators conveniently located on the wing yield the control of its associated vertical and lateral bending eigenfrequencies. The possibility revealed by this study enabling one to increase adaptively the eigenfrequencies of thin-walled cantilevered beams could play a significant role in the control of the dynamic response and flutter of wing and rotor blade structures.

  12. Biomimetic FAA-certifiable, artificial muscle structures for commercial aircraft wings

    International Nuclear Information System (INIS)

    This paper is centered on a new form of adaptive material which functions much in the same way as skeletal muscle tissue, is structurally modeled on plant actuator cells and capable of rapidly expanding or shrinking by as much as an order of magnitude in prescribed directions. Rapid changes of plant cell shape and sizes are often initiated via ion-transport driven fluid migration and resulting turgor pressure variation. Certain plant cellular structures like those in Mimosa pudica (sensitive plant), Albizia julibrissin (Mimosa tree), or Dionaea muscipula (Venus Flytrap) all exhibit actuation physiology which employs such turgor pressure manipulation. The paper begins with dynamic micrographs of a sectioned basal articulation joint from A. julibrissin. These figures show large cellular dimensional changes as the structure undergoes foliage articulation. By mimicking such structures in aircraft flight control mechanisms, extremely lightweight pneumatic control surface actuators can be designed. This paper shows several fundamental layouts of such surfaces with actuator elements made exclusively from FAA-certifiable materials, summarizes their structural mechanics and shows actuator power and energy densities that are higher than nearly all classes of conventional adaptive materials available today. A sample flap structure is shown to possess the ability to change its shape and structural stiffness as its cell pressures are manipulated, which in turn changes the surface lift-curve slope when exposed to airflows. Because the structural stiffness can be altered, it is also shown that the commanded section lift-curve slope can be similarly controlled between 1.2 and 6.2 rad−1. Several aircraft weight reduction principles are also shown to come into play as the need to concentrate loads to pass through point actuators is eliminated. The paper concludes with a summary of interrelated performance and airframe-level improvements including enhanced gust rejection, load

  13. Biomimetic FAA-certifiable, artificial muscle structures for commercial aircraft wings

    Science.gov (United States)

    Barrett, Ronald M.; Barrett, Cassandra M.

    2014-07-01

    This paper is centered on a new form of adaptive material which functions much in the same way as skeletal muscle tissue, is structurally modeled on plant actuator cells and capable of rapidly expanding or shrinking by as much as an order of magnitude in prescribed directions. Rapid changes of plant cell shape and sizes are often initiated via ion-transport driven fluid migration and resulting turgor pressure variation. Certain plant cellular structures like those in Mimosa pudica (sensitive plant), Albizia julibrissin (Mimosa tree), or Dionaea muscipula (Venus Flytrap) all exhibit actuation physiology which employs such turgor pressure manipulation. The paper begins with dynamic micrographs of a sectioned basal articulation joint from A. julibrissin. These figures show large cellular dimensional changes as the structure undergoes foliage articulation. By mimicking such structures in aircraft flight control mechanisms, extremely lightweight pneumatic control surface actuators can be designed. This paper shows several fundamental layouts of such surfaces with actuator elements made exclusively from FAA-certifiable materials, summarizes their structural mechanics and shows actuator power and energy densities that are higher than nearly all classes of conventional adaptive materials available today. A sample flap structure is shown to possess the ability to change its shape and structural stiffness as its cell pressures are manipulated, which in turn changes the surface lift-curve slope when exposed to airflows. Because the structural stiffness can be altered, it is also shown that the commanded section lift-curve slope can be similarly controlled between 1.2 and 6.2 rad-1. Several aircraft weight reduction principles are also shown to come into play as the need to concentrate loads to pass through point actuators is eliminated. The paper concludes with a summary of interrelated performance and airframe-level improvements including enhanced gust rejection, load

  14. Californium-based neutron radiography for corrosion detection in aircraft

    International Nuclear Information System (INIS)

    In support of an overall program aimed at minimizing disassembly and reducing inspection time during aircraft maintenance, a series of projects has been carried out to determine the feasibility of applying neutron radiographic techniques to the nondestructive (NDT) inspection of aircraft and aircraft components. These investigations have clearly demonstrated the superiority of neutron radiography over all other NDT techniques in its ability to detect surface and subsurface corrosion in aircraft structure. This capability is particularly significant where the corrosion is hidden behind thick metallic structural members. The neutron radiographic technique has been applied successfully to detect corrosion in the wing tank of E-2C, C-130, and DC-9 aircraft; rear stabilators of F-4 and F-111 aircraft; aft spar, starboard and port wing, and rudder of the F-8; fuselage skin of the 727; rotary blades of AH-1 and SH-3 helicopters; rotary tail flaps of the UH-2 helicopter; and nose landing gear of A-7 aircraft

  15. Structure learning by pruning in independent component analysis

    DEFF Research Database (Denmark)

    Nielsen, Andreas Brinch; Hansen, Lars Kai

    We discuss pruning as a means of structure learning in independent component analysis (ICA). Learning the structure is attractive in both signal processing and in analysis of abstract data, where it can assist model interpretation, generalizability and reduce computation. We derive the relevant...

  16. Protein structure similarity from principle component correlation analysis

    Directory of Open Access Journals (Sweden)

    Chou James

    2006-01-01

    Full Text Available Abstract Background Owing to rapid expansion of protein structure databases in recent years, methods of structure comparison are becoming increasingly effective and important in revealing novel information on functional properties of proteins and their roles in the grand scheme of evolutionary biology. Currently, the structural similarity between two proteins is measured by the root-mean-square-deviation (RMSD in their best-superimposed atomic coordinates. RMSD is the golden rule of measuring structural similarity when the structures are nearly identical; it, however, fails to detect the higher order topological similarities in proteins evolved into different shapes. We propose new algorithms for extracting geometrical invariants of proteins that can be effectively used to identify homologous protein structures or topologies in order to quantify both close and remote structural similarities. Results We measure structural similarity between proteins by correlating the principle components of their secondary structure interaction matrix. In our approach, the Principle Component Correlation (PCC analysis, a symmetric interaction matrix for a protein structure is constructed with relationship parameters between secondary elements that can take the form of distance, orientation, or other relevant structural invariants. When using a distance-based construction in the presence or absence of encoded N to C terminal sense, there are strong correlations between the principle components of interaction matrices of structurally or topologically similar proteins. Conclusion The PCC method is extensively tested for protein structures that belong to the same topological class but are significantly different by RMSD measure. The PCC analysis can also differentiate proteins having similar shapes but different topological arrangements. Additionally, we demonstrate that when using two independently defined interaction matrices, comparison of their maximum

  17. Effect of noise reducing components on nose landing gear stability for a mid-size aircraft coupled with vortex shedding and freeplay

    Science.gov (United States)

    Eret, Petr; Kennedy, John; Bennett, Gareth J.

    2015-10-01

    In the pursuit of quieter aircraft, significant effort has been dedicated to airframe noise identification and reduction. The landing gear is one of the main sources of airframe noise on approach. The addition of noise abatement technologies such as fairings or wheel hub caps is usually considered to be the simplest solution to reduce this noise. After touchdown, noise abatement components can potentially affect the inherently nonlinear and dynamically complex behaviour (shimmy) of landing gear. Moreover, fairings can influence the aerodynamic load on the system and interact with the mechanical freeplay in the torque link. This paper presents a numerical study of nose landing gear stability for a mid-size aircraft with low noise solutions, which are modelled by an increase of the relevant model structural parameters to address a hypothetical effect of additional fairings and wheel hub caps. The study shows that the wheel hub caps are not a threat to stability. A fairing has a destabilising effect due to the increased moment of inertia of the strut and a stabilising effect due to the increased torsional stiffness of the strut. As the torsional stiffness is dependent on the method of attachment, in situations where the fairing increases the torsional inertia with little increase to the torsional stiffness, a net destabilising effect can result. Alternatively, it is possible that for the case that if the fairing were to increase equally both the torsional stiffness and the moment of inertia of the strut, then their effects could be mutually negated. However, it has been found here that for small and simple fairings, typical of current landing gear noise abatement design, their implementation will not affect the dynamics and stability of the system in an operational range (Fz ≤ 50 000 N, V ≤ 100 m/s). This generalisation is strictly dependent on size and installation methods. The aerodynamic load, which would be influenced by the presence of fairings, was modelled

  18. Adaptive Multigrid Methods for Fluid-Structure Interaction (FSI) Optimization in an Aircraft and Design of Integrated Structural Health Monitoring (SHM) Systems

    OpenAIRE

    Ebna Hai, Bhuiyan Shameem Mahmood; Bause, Markus

    2013-01-01

    Nowadays, advanced composite materials such as carbon fiber reinforced plastics (CFRP) are being applied to many aircraft structures in order to improve performance and reduce weight. Most composites have strong, stiff fibres in a matrix which is weaker and less stiff. However, aircraft wings can break due to Fluid-Structure Interaction (FSI) oscillations or material fatigue. Material inspection by piezoelectric induced ultrasonic waves is a relatively new and an intelligent technique to moni...

  19. Structural Design Optimization of a Tiltrotor Aircraft Composite Wing to Enhance Whirl Flutter Stability

    DEFF Research Database (Denmark)

    Kim, Taeseong; Kim, Jaehoon; Shin, Sang Joon;

    2013-01-01

    In order to enhance the aeroelastic stability of a tiltrotor aircraft, a structural optimization framework is developed by applying a multi-level optimization approach. Each optimization level is designed to achieve a different purpose; therefore, relevant optimization schemes are selected for each...... level. Enhancement of the aeroelastic stability is selected as an objective in the upper-level optimization. This is achieved by seeking the optimal structural properties of a composite wing, including its mass, vertical, chordwise, and torsional stiffness. In the upper-level optimization, the response...... surface method (RSM), is selected. On the other hand, lower-level optimization seeks to determine the local detailed cross-sectional parameters, such as the ply orientation angles and ply thickness, which are relevant to the wing structural properties obtained at the upper-level. To avoid manufacturing...

  20. Effects of reinforcement ratio and arrangement on the structural behavior of a nuclear building under aircraft impact

    Energy Technology Data Exchange (ETDEWEB)

    Thai, Duc-Kien; Kim, Seung-Eock, E-mail: sekim@sejong.ac.kr; Lee, Hyuk-Kee

    2014-09-15

    Highlights: • Numerical analysis of RC nuclear building model under aircraft impact was conducted. • The analysis result shows similar behavior as compared to the Riera function. • The effects of reinforcement ratio and arrangement were enumerated. • The appropriate number of layer of longitudinal rebar was recommended. - Abstract: This study presents the effectiveness of the rebar ratio and the arrangement of reinforced concrete (RC) structures on the structural behavior of nuclear buildings under aircraft impact using a finite element (FE) approach. A simplified model of a fictitious nuclear building using RC structures was fully modeled. The aircraft model of a Boeing 767-400 was used for impact simulation and was developed and verified with a conventional impact force–time history curve. The IRIS Punching test was used to validate the damage prediction capabilities of the RC wall under impact loading. With regard to the different rebar ratios and rebar arrangements of a nuclear RC building, the structural behavior of a building under aircraft impact was investigated. The structural behavior investigated included plastic deformation, displacement, energy dissipation, perforation/penetration depth and scabbing area. The results showed that the rebar ratio has a significant effect on withstanding aircraft impact and reducing local damage. With four layers of rebar, the RC wall absorbed and dissipated the impact energy more than once with only two layers of rebar for the same rebar ratio.

  1. Effects of reinforcement ratio and arrangement on the structural behavior of a nuclear building under aircraft impact

    International Nuclear Information System (INIS)

    Highlights: • Numerical analysis of RC nuclear building model under aircraft impact was conducted. • The analysis result shows similar behavior as compared to the Riera function. • The effects of reinforcement ratio and arrangement were enumerated. • The appropriate number of layer of longitudinal rebar was recommended. - Abstract: This study presents the effectiveness of the rebar ratio and the arrangement of reinforced concrete (RC) structures on the structural behavior of nuclear buildings under aircraft impact using a finite element (FE) approach. A simplified model of a fictitious nuclear building using RC structures was fully modeled. The aircraft model of a Boeing 767-400 was used for impact simulation and was developed and verified with a conventional impact force–time history curve. The IRIS Punching test was used to validate the damage prediction capabilities of the RC wall under impact loading. With regard to the different rebar ratios and rebar arrangements of a nuclear RC building, the structural behavior of a building under aircraft impact was investigated. The structural behavior investigated included plastic deformation, displacement, energy dissipation, perforation/penetration depth and scabbing area. The results showed that the rebar ratio has a significant effect on withstanding aircraft impact and reducing local damage. With four layers of rebar, the RC wall absorbed and dissipated the impact energy more than once with only two layers of rebar for the same rebar ratio

  2. Linear Quadratic Tracking Design for a Generic Transport Aircraft with Structural Load Constraints

    Science.gov (United States)

    Burken, John J.; Frost, Susan A.; Taylor, Brian R.

    2011-01-01

    When designing control laws for systems with constraints added to the tracking performance, control allocation methods can be utilized. Control allocations methods are used when there are more command inputs than controlled variables. Constraints that require allocators are such task as; surface saturation limits, structural load limits, drag reduction constraints or actuator failures. Most transport aircraft have many actuated surfaces compared to the three controlled variables (such as angle of attack, roll rate & angle of side slip). To distribute the control effort among the redundant set of actuators a fixed mixer approach can be utilized or online control allocation techniques. The benefit of an online allocator is that constraints can be considered in the design whereas the fixed mixer cannot. However, an online control allocator mixer has a disadvantage of not guaranteeing a surface schedule, which can then produce ill defined loads on the aircraft. The load uncertainty and complexity has prevented some controller designs from using advanced allocation techniques. This paper considers actuator redundancy management for a class of over actuated systems with real-time structural load limits using linear quadratic tracking applied to the generic transport model. A roll maneuver example of an artificial load limit constraint is shown and compared to the same no load limitation maneuver.

  3. Testing and Analysis of a Composite Non-Cylindrical Aircraft Fuselage Structure . Part II; Severe Damage

    Science.gov (United States)

    Przekop, Adam; Jegley, Dawn C.; Lovejoy, Andrew E.; Rouse, Marshall; Wu, Hsi-Yung T.

    2016-01-01

    The Environmentally Responsible Aviation Project aimed to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration were not sufficient to achieve the desired metrics. One airframe concept identified by the project as having the potential to dramatically improve aircraft performance was a composite-based hybrid wing body configuration. Such a concept, however, presented inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses a finite element analysis and the testing of a large-scale hybrid wing body center section structure developed and constructed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. Part II of the paper considers the final test to failure of the test article in the presence of an intentionally inflicted severe discrete source damage under the wing up-bending loading condition. Finite element analysis results are compared with measurements acquired during the test and demonstrate that the hybrid wing body test article was able to redistribute and support the required design loads in a severely damaged condition.

  4. Accelerated corrosion test and corrosion failure distribution model of aircraft structural aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    LIU Wen-lin; MU Zhi-tao; JIN Ping

    2006-01-01

    Based on corrosion damage data of 10 years for a type of aircraft aluminum alloy, the statistical analysis was conducted by Gumbel, Normal and two parameters Weibull distribution function. The results show that aluminum alloy structural member has the corrosion history of pitting corrosion-intergranular corrosion-exfoliation corrosion, and the maximum corrosion depth is in conformity to normal distribution. The accelerated corrosion test was carried out with the complied equivalent airport accelerated environment spectrum. The corrosion damage failure modes of aluminum alloy structural member indicate that the period of validity of the former protective coating is about 2.5 to 3 years, and that of the novel protective coating is about 4.0 to 4.5 years. The corrosion kinetics law of aluminum spar flange was established by fitting corrosion damage test data. The law indicates two apparent corrosion stages of high strength aluminum alloy section material: pitting corrosion and intergranular corrosion/exfoliation corrosion.The test results agree with the statistical fit result of corrosion data collected from corrosion member in service. The fractional error is 5.8% at the same calendar year. The accelerated corrosion test validates the corrosion kinetics law of aircraft aluminum alloy in service.

  5. Structural Components of Creative Potential of University Pedagogical Personnel

    OpenAIRE

    Isyanova, Alfia; USMANOVA, Shoira

    2015-01-01

    The article deals with the specifics of professional activity of pedagogical personnel and structural components of creative potential have been marked; specific statistically significant criteria of evaluation have been found out, pedagogical reserves of educational process of improving and developing of creative potential of pedagogical personnel. Conditionally components of creative potential of pedagogical personnel have been marked, creative potential of pedagogical personnel have been e...

  6. Gamma dose rate mapping of APSARA structural components for decommissioning

    International Nuclear Information System (INIS)

    APSARA was a swimming pool type research reactor operated using Highly Enriched Uranium fuel. The reactor pool water was used as coolant, moderator, reflector and radiological shielding. Graphite and beryllium oxide encased in aluminum boxes were used as in-core reflector. The reactor had a maximum power level of 1 MW and was mostly operated up to 400 KW. APSARA was shut down for major refurbishment in 2009. Defuelling and partial decommissioning of reactor was carried out. The core structure and other reactor components were dismantled and shifted to Waste Management site. 'Second stage decommissioning' planned further consists of dismantling and disposal of various components like thermal column, shielding racks, graphite blocks, stainless steel liner of pool and the pool block itself. Detailed gamma dose rate mapping study served in localizing and identifying hotspots of activation product activity in structural components of the APSARA reactor in order to plan the strategy for dismantling of the pool structure. In-situ gamma spectrometry of the structural components was carried out for qualitative and semi quantitative characterization of the bulk structural materials in pool walls, SS and aluminum liners, shield racks, graphite blocks etc., to plan the dismantling and demolition of large structures. This study has also served in comparing the performance of different radiation measuring instruments used for such large area insitu dose rate measurements and mapping

  7. Nonlinear Finite Element Analysis of a Composite Non-Cylindrical Pressurized Aircraft Fuselage Structure

    Science.gov (United States)

    Przekop, Adam; Wu, Hsi-Yung T.; Shaw, Peter

    2014-01-01

    The Environmentally Responsible Aviation Project aims to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration are not sufficient to achieve the desired metrics. One of the airframe concepts that might dramatically improve aircraft performance is a composite-based hybrid wing body configuration. Such a concept, however, presents inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses a nonlinear finite element analysis of a large-scale test article being developed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. There are specific reasons why geometrically nonlinear analysis may be warranted for the hybrid wing body flat panel structure. In general, for sufficiently high internal pressure and/or mechanical loading, energy related to the in-plane strain may become significant relative to the bending strain energy, particularly in thin-walled areas such as the minimum gage skin extensively used in the structure under analysis. To account for this effect, a geometrically nonlinear strain-displacement relationship is needed to properly couple large out-of-plane and in-plane deformations. Depending on the loading, this nonlinear coupling mechanism manifests itself in a distinct manner in compression- and tension-dominated sections of the structure. Under significant compression, nonlinear analysis is needed to accurately predict loss of stability and postbuckled deformation. Under significant tension, the nonlinear effects account for suppression of the out-of-plane deformation due to in-plane stretching. By comparing the present results with the previously

  8. Advanced manufacturing development of a composite empennage component for L-1011 aircraft. Phase 3: Production readiness verification testing

    Science.gov (United States)

    Jackson, A.; Sandifer, J.; Sandorff, P.; Vancleave, R.

    1984-01-01

    Twenty-two specimens of each of two key structural elements of the Advance Composite Vertical Fin (ACVF) were fabricated and tested. One element represented the front spar at the fuselage attachment area and the other element represented the cover at the fuselage joint area. Ten specimens of each element were selected for static testing. The coefficient of variation resulting from the tests was 3.28 percent for the ten cover specimens and 6.11 percent for the ten spar specimens, which compare well with metallic structures. The remaining twelve cover and twelve spar specimens were durability tested in environmental chambers which permitted the temperature and humidity environment to be cycled as well as the applied loads. Results of the durability tests indicated that such components will survive the service environment.

  9. Evaluation of a large capacity heat pump concept for active cooling of hypersonic aircraft structure

    Science.gov (United States)

    Pagel, L. L.; Herring, R. L.

    1978-01-01

    Results of engineering analyses assessing the conceptual feasibility of a large capacity heat pump for enhancing active cooling of hypersonic aircraft structure are presented. A unique heat pump arrangement which permits cooling the structure of a Mach 6 transport to aluminum temperatures without the aid of thermal shielding is described. The selected concept is compatible with the use of conventional refrigerants, with Freon R-11 selected as the preferred refrigerant. Condenser temperatures were limited to levels compatible with the use of conventional refrigerants by incorporating a unique multipass condenser design, which extracts mechanical energy from the hydrogen fuel, prior to each subsequent pass through the condenser. Results show that it is technically feasible to use a large capacity heat pump in lieu of external shielding. Additional analyses are required to optimally apply this concept.

  10. Topological structures of vortex flow on a flying wing aircraft, controlled by a nanosecond pulse discharge plasma actuator

    Science.gov (United States)

    Du, Hai; Shi, Zhiwei; Cheng, Keming; Wei, Dechen; Li, Zheng; Zhou, Danjie; He, Haibo; Yao, Junkai; He, Chengjun

    2016-06-01

    Vortex control is a thriving research area, particularly in relation to flying wing or delta wing aircraft. This paper presents the topological structures of vortex flow on a flying wing aircraft controlled by a nanosecond plasma dielectric barrier discharge actuator. Experiments, including oil flow visualization and two-dimensional particle image velocimetry (PIV), were conducted in a wind tunnel with a Reynolds number of 0.5 × 106. Both oil and PIV results show that the vortex can be controlled. Oil topological structures on the aircraft surface coincide with spatial PIV flow structures. Both indicate vortex convergence and enhancement when the plasma discharge is switched on, leading to a reduced region of separated flow.

  11. Probabilistic structural analysis methods for critical SSME propulsion components

    Science.gov (United States)

    Chamis, C. C.

    1986-01-01

    The development of a three-dimensional inelastic analysis methodology for the Space Shuttle main engine (SSME) structural components is described. The methodology is composed of: (1) composite load spectra, (2) probabilistic structural analysis methods, (3) the probabilistic finite element theory, and (4) probabilistic structural analysis. The progress in the development of generic probabilistic models for various individual loads which consist of a steady state load, a periodic load, a random load, and a spike, is discussed. The capabilities of the Numerical Evaluation of Stochastic Structures Under Stress finite element code designed for probabilistic structural analysis of the SSME are examined. Variation principles for formulation probabilistic finite elements and a structural analysis for evaluating the geometric and material properties tolerances on the structural response of turbopump blades are being designed.

  12. Optimum Design of Aerospace Structural Components Using Neural Networks

    Science.gov (United States)

    Berke, L.; Patnaik, S. N.; Murthy, P. L. N.

    1993-01-01

    The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires a trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network using the code NETS. Optimum designs for new design conditions were predicted using the trained network. Neural net prediction of optimum designs was found to be satisfactory for the majority of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.

  13. Identification of structural interface characteristics using component mode synthesis

    Science.gov (United States)

    Huckelbridge, A. A.; Lawrence, C.

    1989-01-01

    The inability to adequately model connections has limited the ability to predict overall system dynamic response. Connections between structural components are often mechanically complex and difficult to accurately model analytically. Improved analytical models for connections are needed to improve system dynamic predictions. This study explores combining Component Mode synthesis methods for coupling structural components with Parameter Identification procedures for improving the analytical modeling of the connections. Improvements in the connection properties are computed in terms of physical parameters so the physical characteristics of the connections can be better understood, in addition to providing improved input for the system model. Two sample problems, one utilizing simulated data, the other using experimental data from a rotor dynamic test rig, are presented.

  14. Experimental component mode synthesis of structures with sloppy joints

    Science.gov (United States)

    Blackwood, Gary H.; Von Flotow, A. H.

    1988-01-01

    The accuracy of component mode synthesis is investigated experimentally for substructures coupled by nonideal joints. The work is based upon a segmented experimental beam for which free-interface frequency response matrices are measured for each segment. These measurements are used directly in component mode synthesis to predict the behavior of the assembled structure; the segments are then physically joined, and the resulting frequency response of the superstructure is compared to the prediction. Rotational freeplay is then introduced into the connecting joint, and the new superstructure frequency response is compared to the original linear component mode synthesis prediction. The level of accuracy to be expected in component mode synthesis is discussed in terms of the degree of nonlinearity in the joints, mode number, and mode shapes.

  15. Vibro-acoustic modelling of aircraft double-walls with structural links using Statistical Energy Analysis

    Science.gov (United States)

    Campolina, Bruno L.

    The prediction of aircraft interior noise involves the vibroacoustic modelling of the fuselage with noise control treatments. This structure is composed of a stiffened metallic or composite panel, lined with a thermal and acoustic insulation layer (glass wool), and structurally connected via vibration isolators to a commercial lining panel (trim). The goal of this work aims at tailoring the noise control treatments taking design constraints such as weight and space optimization into account. For this purpose, a representative aircraft double-wall is modelled using the Statistical Energy Analysis (SEA) method. Laboratory excitations such as diffuse acoustic field and point force are addressed and trends are derived for applications under in-flight conditions, considering turbulent boundary layer excitation. The effect of the porous layer compression is firstly addressed. In aeronautical applications, compression can result from the installation of equipment and cables. It is studied analytically and experimentally, using a single panel and a fibrous uniformly compressed over 100% of its surface. When compression increases, a degradation of the transmission loss up to 5 dB for a 50% compression of the porous thickness is observed mainly in the mid-frequency range (around 800 Hz). However, for realistic cases, the effect should be reduced since the compression rate is lower and compression occurs locally. Then the transmission through structural connections between panels is addressed using a four-pole approach that links the force-velocity pair at each side of the connection. The modelling integrates experimental dynamic stiffness of isolators, derived using an adapted test rig. The structural transmission is then experimentally validated and included in the double-wall SEA model as an equivalent coupling loss factor (CLF) between panels. The tested structures being flat, only axial transmission is addressed. Finally, the dominant sound transmission paths are

  16. Structure Learning by Pruning in Independent Component Analysis

    DEFF Research Database (Denmark)

    Kjems, Andreas; Hansen, Lars Kai

    2006-01-01

    We discuss pruning as a means of structure learning in independent component analysis. Sparse models are attractive in both signal processing and in analysis of abstract data, they can assist model interpretation, generalizability and reduce computation. We derive the relevant saliency expressions...

  17. Elastomeric Structural Attachment Concepts for Aircraft Flap Noise Reduction - Challenges and Approaches to Hyperelastic Structural Modeling and Analysis

    Science.gov (United States)

    Sreekantamurthy, Thammaiah; Turner, Travis L.; Moore, James B.; Su, Ji

    2014-01-01

    Airframe noise is a significant part of the overall noise of transport aircraft during the approach and landing phases of flight. Airframe noise reduction is currently emphasized under the Environmentally Responsible Aviation (ERA) and Fixed Wing (FW) Project goals of NASA. A promising concept for trailing-edge-flap noise reduction is a flexible structural element or link that connects the side edges of the deployable flap to the adjacent main-wing structure. The proposed solution is distinguished by minimization of the span-wise extent of the structural link, thereby minimizing the aerodynamic load on the link structure at the expense of increased deformation requirement. Development of such a flexible structural link necessitated application of hyperelastic materials, atypical structural configurations and novel interface hardware. The resulting highly-deformable structural concept was termed the FLEXible Side Edge Link (FLEXSEL) concept. Prediction of atypical elastomeric deformation responses from detailed structural analysis was essential for evaluating feasible concepts that met the design constraints. The focus of this paper is to describe the many challenges encountered with hyperelastic finite element modeling and the nonlinear structural analysis of evolving FLEXSEL concepts. Detailed herein is the nonlinear analysis of FLEXSEL concepts that emerged during the project which include solid-section, foamcore, hollow, extended-span and pre-stressed concepts. Coupon-level analysis performed on elastomeric interface joints, which form a part of the FLEXSEL topology development, are also presented.

  18. Beyond lamins other structural components of the nucleoskeleton.

    Science.gov (United States)

    Zhong, Zhixia; Wilson, Katherine L; Dahl, Kris Noel

    2010-01-01

    The nucleus is bordered by a double bilayer nuclear envelope, communicates with the cytoplasm via embedded nuclear pore complexes, and is structurally supported by an underlying nucleoskeleton. The nucleoskeleton includes nuclear intermediate filaments formed by lamin proteins, which provide major structural and mechanical support to the nucleus. However, other structural proteins also contribute to the function of the nucleoskeleton and help connect it to the cytoskeleton. This chapter reviews nucleoskeletal components beyond lamins and summarizes specific methods and strategies useful for analyzing nuclear structural proteins including actin, spectrin, titin, linker of nucleoskeleton and cytoskeleton (LINC) complex proteins, and nuclear spindle matrix proteins. These components can localize to highly specific functional subdomains at the nuclear envelope or nuclear interior and can interact either stably or dynamically with a variety of partners. These components confer upon the nucleoskeleton a functional diversity and mechanical resilience that appears to rival the cytoskeleton. To facilitate the exploration of this understudied area of biology, we summarize methods useful for localizing, solubilizing, and immunoprecipitating nuclear structural proteins, and a state-of-the-art method to measure a newly-recognized mechanical property of nucleus. PMID:20816232

  19. Aircraft measurements of the mean and turbulent structure of marine stratocumulus clouds during FIRE

    Science.gov (United States)

    Albrecht, Bruce A.; Kloesel, Kevin A.; Moyer, Kerry A.; Nucciarone, Jefferey J.; Young, George

    1990-01-01

    The mean and turbulent structure of marine stratocumulus clouds is defined from data that were collected from 10 flights made with the National Center for Atmospheric Research (NCAR) Electra during the First ISCCP Regional Experiment (FIRE). The number of cases sampled is sufficiently large that researchers can compare the boundary layer structure obtained (1) for solid and broken cloud conditions, (2) for light and strong surface wind conditions, (3) for different sea-surface temperatures, and (4) on day and night flights. Researchers will describe the cloud and synoptic conditions present at the time of the Electra flights and show how those flights were coordinated with the operations of other aircraft and with satellite overpasses. Mean thermodynamic and wind profiles and the heat, moisture, and momentum fluxes obtained from data collected during these flights will be compared. Variations in the cloud-top structure will be quantified using LIDAR data collected during several of the Electra flights. The spatial structure of cloud-top height and the cloud-base height will be compared with the turbulent structure in the boundary layer as defined by spectra and cospectra of the wind, temperature, and moisture.

  20. Improved Joining of Metal Components to Composite Structures

    Science.gov (United States)

    Semmes, Edmund

    2009-01-01

    Systems requirements for complex spacecraft drive design requirements that lead to structures, components, and/or enclosures of a multi-material and multifunctional design. The varying physical properties of aluminum, tungsten, Invar, or other high-grade aerospace metals when utilized in conjunction with lightweight composites multiply system level solutions. These multi-material designs are largely dependent upon effective joining techAn improved method of joining metal components to matrix/fiber composite material structures has been invented. The method is particularly applicable to equipping such thin-wall polymer-matrix composite (PMC) structures as tanks with flanges, ceramic matrix composite (CMC) liners for high heat engine nozzles, and other metallic-to-composite attachments. The method is oriented toward new architectures and distributing mechanical loads as widely as possible in the vicinities of attachment locations to prevent excessive concentrations of stresses that could give rise to delaminations, debonds, leaks, and other failures. The method in its most basic form can be summarized as follows: A metal component is to be joined to a designated attachment area on a composite-material structure. In preparation for joining, the metal component is fabricated to include multiple studs projecting from the aforementioned face. Also in preparation for joining, holes just wide enough to accept the studs are molded into, drilled, or otherwise formed in the corresponding locations in the designated attachment area of the uncured ("wet') composite structure. The metal component is brought together with the uncured composite structure so that the studs become firmly seated in the holes, thereby causing the composite material to become intertwined with the metal component in the joining area. Alternately, it is proposed to utilize other mechanical attachment schemes whereby the uncured composite and metallic parts are joined with "z-direction" fasteners. The

  1. Maintenance optimization methods for NPP critical systems, structures and components

    International Nuclear Information System (INIS)

    Considerable progress has been made in the development and implementation of the plant life management (PLiM) program with formal processes to identify systematically and evaluate the major critical systems, structures and components (CSSCs) in the station, and a plan to ensure that the plant surveillance, operation, and maintenance programs monitor and control component degradation well within the original design specifications essential for the plant life attainment. The paper presents a brief description of most important aspects of the methods used to identify the CSSCs taking into account maintenance activities. The system structures and components (SSCs) that influence decisively the NPP reliability are considered as critical. Also, for the accident conditions, the SSCs, which have a major influence to the system availability/operability, are considered also as critical. PSA techniques serve as a basis for maintenance optimization. In the paper a case of association between operating events and CSSC is presented. The main reference was the PSA study for Cernavoda NPP, Unit 1 CPSE B+. From this study it was selected and presented: - the contribution diagram for the occurrence of one accident (small LOCA) with some severe consequence (e.g. PDS 1 - 2 - early core damage); - dominant accident sequence analyzed; - the initial event that generated the possible dominant sequence; - the most important accident events; - qualitative and quantitative results; - main CSSC identification; - results validation and proposals for system operation performance improving; - documentation of the analysis. For the critical components, if periodical maintenance operations are needed, the maintenance activities must be optimized. In order to ensure these, some sensitivity studies have to be performed. In the system probabilistic models the associated events for the critical components could be the failure events of the components and also the unavailability due to component

  2. Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities

    Science.gov (United States)

    Katnam, K. B.; Da Silva, L. F. M.; Young, T. M.

    2013-08-01

    Advanced composite materials have gained popularity in high-performance structural designs such as aerospace applications that require lightweight components with superior mechanical properties in order to perform in demanding service conditions as well as provide energy efficiency. However, one of the major challenges that the aerospace industry faces with advanced composites - because of their inherent complex damage behaviour - is structural repair. Composite materials are primarily damaged by mechanical loads and/or environmental conditions. If material damage is not extensive, structural repair is the only feasible solution as replacing the entire component is not cost-effective in many cases. Bonded composite repairs (e.g. scarf patches) are generally preferred as they provide enhanced stress transfer mechanisms, joint efficiencies and aerodynamic performance. With an increased usage of advanced composites in primary and secondary aerospace structural components, it is thus essential to have robust, reliable and repeatable structural bonded repair procedures to restore damaged composite components. But structural bonded repairs, especially with primary structures, pose several scientific challenges with the current existing repair technologies. In this regard, the area of structural bonded repair of composites is broadly reviewed - starting from damage assessment to automation - to identify current scientific challenges and future opportunities.

  3. Probabilistic structural analysis methods for select space propulsion system components

    Science.gov (United States)

    Millwater, H. R.; Cruse, T. A.

    1989-01-01

    The Probabilistic Structural Analysis Methods (PSAM) project developed at the Southwest Research Institute integrates state-of-the-art structural analysis techniques with probability theory for the design and analysis of complex large-scale engineering structures. An advanced efficient software system (NESSUS) capable of performing complex probabilistic analysis has been developed. NESSUS contains a number of software components to perform probabilistic analysis of structures. These components include: an expert system, a probabilistic finite element code, a probabilistic boundary element code and a fast probability integrator. The NESSUS software system is shown. An expert system is included to capture and utilize PSAM knowledge and experience. NESSUS/EXPERT is an interactive menu-driven expert system that provides information to assist in the use of the probabilistic finite element code NESSUS/FEM and the fast probability integrator (FPI). The expert system menu structure is summarized. The NESSUS system contains a state-of-the-art nonlinear probabilistic finite element code, NESSUS/FEM, to determine the structural response and sensitivities. A broad range of analysis capabilities and an extensive element library is present.

  4. Optimal design of a composite wing structure for a flying-wing aircraft subject to multi-constraint

    OpenAIRE

    Xu, Rongxin

    2012-01-01

    This thesis presents a research project and results of design and optimization of a composite wing structure for a large aircraft in flying wing configuration. The design process started from conceptual design and preliminary design, which includes initial sizing and stressing followed by numerical modelling and analysis of the wing structure. The research was then focused on the minimum weight optimization of the /composite wing structure /subject to multiple design /constraints. The modelli...

  5. Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures

    Science.gov (United States)

    Vlahopoulos, Nickolas; Schiller, Noah H.

    2011-01-01

    The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations. The global system of EFEA equations is solved numerically and the vibration levels within the entire system can be computed. The new EFEA formulation for modeling composite laminate structures is validated through comparison to test data collected from a representative composite aircraft fuselage that is made out of a composite outer shell and composite frames and stiffeners. NASA Langley constructed the composite cylinder and conducted the test measurements utilized in this work.

  6. Experimental component mode systhesis of structures with nonlinear joints

    Science.gov (United States)

    Blackwood, Gary H.; Vonflotow, A. H.

    1988-01-01

    The accuracy of component mode synthesis is investigated experimentally for substructures coupled by non-ideal joints. The work is based upon a segmented experimental beam for which the free-interface frequency response matrices are measured for each segment. These measurements are used directly in component mode synthesis to predict the behavior of the assembled structure; the segments are then physically joined and the resulting frequency response of the superstructure is compared to the prediction. Rotational freeplay is then introduced into the connecting joint and the new superstructure frequency response is compared to the original linear CMS prediction. The level of accuracy to be expected in component mode synthesis is discussed in terms of the degree of nonlinearity in the joints, mode number and mode shapes.

  7. Structural integrity evaluation for HIP bonded fusion DEMO reactor component

    International Nuclear Information System (INIS)

    HIP (Hot Isostatic Pressing) is applicable to fabrication technology for in-vessel components of fusion DEMO reactor, which has been fabricated by ferritic steel F82H. Verification of structural integrity of HIP bonded joint is one of the most important subjects on the development of fusion DEMO reactor component. Even now structural integrity evaluation method for HIP bonded joint is not enough estimated. This paper describes the results of low cycle fatigue test and inelastic analysis using HIP-element model under the bending load of fusion DEMO reactor. Low cycle fatigue strength and fracture/deformation mode has been obtained. SEM-observation was performed at the fracture surface of HIP-element model and the bonded joints between cooling tubes and plate were inspected. (author)

  8. Identification of chitin as a structural component of Giardia cysts.

    OpenAIRE

    Ward, H D; Alroy, J.; Lev, B. I.; Keusch, G T; Pereira, M.E.

    1985-01-01

    The intestinal parasite Giardia lamblia is a significant cause of diarrheal disease, which is perpetuated by the infective cyst form of the parasite. Although a rational approach to the control of giardiasis would be to inhibit cyst formation, nothing is known of the chemical composition of the cyst wall or of its biosynthesis. In these studies, we have shown that chitin is a major structural component of G. lamblia and G. muris cyst walls. This conclusion is based on the finding that chitina...

  9. Mechanical and materials engineering of modern structure and component design

    CERN Document Server

    Altenbach, Holm

    2015-01-01

    This book presents the latest findings on mechanical and materials engineering as applied to the design of modern engineering materials and components. The contributions cover the classical fields of mechanical, civil and materials engineering, as well as bioengineering and advanced materials processing and optimization. The materials and structures discussed can be categorized into modern steels, aluminium and titanium alloys, polymers/composite materials, biological and natural materials, material hybrids and modern nano-based materials. Analytical modelling, numerical simulation, state-of-the-art design tools and advanced experimental techniques are applied to characterize the materials’ performance and to design and optimize structures in different fields of engineering applications.

  10. Seismic fragility analysis of structural components for HFBR facilities

    International Nuclear Information System (INIS)

    The paper presents a summary of recently completed seismic fragility analyses of the HFBR facilities. Based on a detailed review of past PRA studies, various refinements were made regarding the strength and ductility evaluation of structural components. Available laboratory test data were analysed to evaluate the formulations used to predict the ultimate strength and deformation capacities of steel, reinforced concrete and masonry structures. The biasness and uncertainties were evaluated within the framework of the fragility evaluation methods widely accepted in the nuclear industry. A few examples of fragility calculations are also included to illustrate the use of the presented formulations

  11. [Structural components and peculiarities of Pseudomonas aeruginosa biofilm organization].

    Science.gov (United States)

    Balko, O B; Avdieieva, L V

    2010-01-01

    Peculiarities of the structural organization of bacterial biofilm during its formation and disintegration have been investigated on the model of Pseudomonas aeruginosa UCM B-900 (ATCC 9027). It was shown, that development of the biofilm in a stationary system on glass was a two-vector process with changes in time and space. P. aeruginosa UCM B-900 biofilm is formed from single cells, passes through the stages of base components, net structure, islands and comes to the end with integration into a complete monolayer. The biofilm degradation repeats the stages of its formation in the reverse sequence. PMID:20812507

  12. Nominal and Structural Subtyping in Component-Based Programming

    DEFF Research Database (Denmark)

    Ostermann, Klaus

    2007-01-01

    type. We analyze structural and different flavors of nominal subtyping from the perspective of component-based programming, where issues such as blame assignment and modular extensibility are important. Our analysis puts various existing subtyping mechanisms into a common frame of reference......In nominal type systems, the subtype relation is between names of types, and subtype links are explicitly declared. In structural type systems, names are irrelevant; in determining type compatibility, only the structure of types is considered, and a type name is just an abbreviation for the full...... and delineates the frontiers of the subtyping design space. In addition, we propose a new subtyping definition in one particularly interesting corner of the design space which combines the safety of nominal subtyping with the flexibility of structural subtyping....

  13. NASA-UVa light aerospace alloy and structures technology program supplement: Aluminum-based materials for high speed aircraft

    Science.gov (United States)

    Starke, E. A., Jr. (Editor)

    1995-01-01

    This report on the NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from July 1, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) Ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) Powder metallurgy 2XXX alloys, (3) Rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) Discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  14. Structural Analysis and Optimization of a Composite Fan Blade for Future Aircraft Engine

    Science.gov (United States)

    Coroneos, Rula M.

    2012-01-01

    This report addresses the structural analysis and optimization of a composite fan blade sized for a large aircraft engine. An existing baseline solid metallic fan blade was used as a starting point to develop a hybrid honeycomb sandwich construction with a polymer matrix composite face sheet and honeycomb aluminum core replacing the original baseline solid metallic fan model made of titanium. The focus of this work is to design the sandwich composite blade with the optimum number of plies for the face sheet that will withstand the combined pressure and centrifugal loads while the constraints are satisfied and the baseline aerodynamic and geometric parameters are maintained. To satisfy the requirements, a sandwich construction for the blade is proposed with composite face sheets and a weak core made of honeycomb aluminum material. For aerodynamic considerations, the thickness of the core is optimized whereas the overall blade thickness is held fixed so as to not alter the original airfoil geometry. Weight is taken as the objective function to be minimized by varying the core thickness of the blade within specified upper and lower bounds. Constraints are imposed on radial displacement limitations and ply failure strength. From the optimum design, the minimum number of plies, which will not fail, is back-calculated. The ply lay-up of the blade is adjusted from the calculated number of plies and final structural analysis is performed. Analyses were carried out by utilizing the OpenMDAO Framework, developed at NASA Glenn Research Center combining optimization with structural assessment.

  15. Computer-aided design of antenna structures and components

    Science.gov (United States)

    Levy, R.

    1976-01-01

    This paper discusses computer-aided design procedures for antenna reflector structures and related components. The primary design aid is a computer program that establishes cross sectional sizes of the structural members by an optimality criterion. Alternative types of deflection-dependent objectives can be selected for designs subject to constraints on structure weight. The computer program has a special-purpose formulation to design structures of the type frequently used for antenna construction. These structures, in common with many in other areas of application, are represented by analytical models that employ only the three translational degrees of freedom at each node. The special-purpose construction of the program, however, permits coding and data management simplifications that provide advantages in problem size and execution speed. Size and speed are essentially governed by the requirements of structural analysis and are relatively unaffected by the added requirements of design. Computation times to execute several design/analysis cycles are comparable to the times required by general-purpose programs for a single analysis cycle. Examples in the paper illustrate effective design improvement for structures with several thousand degrees of freedom and within reasonable computing times.

  16. System, structure, and component evaluation for life-cycle management

    International Nuclear Information System (INIS)

    In recent years, many nuclear organizations and utilities have studied the possibility of extending the service life of nuclear power plants beyond the original license period. From these studies, recommendations have resulted for maintaining the option of future decisions concerning operating license renewal. Several of the recommendations are considered beneficial to the management and operation of nuclear plants in meeting many of their near-term goals. In 1986, Public Service Electric and Gas (PSE and G) concluded that a full-scale nuclear plant license renewal program for their Salem 1 and 2 and Hope Creek nuclear stations was not cost-effective at that time. Rather, it would be better served if the nuclear plant life extension (PLEX) option were maintained for future consideration. To help plan for the life extension option, a strategic 5-yr life cycle management (LCM) program was begun. In support of the LCM program, evaluations for the following Salem structures and components were performed: (1) intake structures, (2) reactor vessel support, (3) containment liner, and (4) containment structure (below grade). This paper discusses the systems, structures, and components (SSC) evaluation methodology and, as an example, discusses the evaluation performed for reactor vessel support

  17. Effects of air blast on power plant structures and components

    Energy Technology Data Exchange (ETDEWEB)

    Kot, C.A.; Valentin, R.A.; McLennan, D.A.; Turula, P.

    1978-10-01

    The effects of air blast from high explosives detonation on selected power plant structures and components are investigated analytically. Relying on a synthesis of state of the art methods estimates of structural response are obtained. Similarly blast loadings are determined from compilations of experimental data reported in the literature. Plastic-yield line analysis is employed to determine the response of both concrete and steel flat walls (plates) under impulsive loading. Linear elastic theory is used to investigate the spalling of concrete walls and mode analysis methods predict the deflection of piping. The specific problems considered are: the gross deformation of reinforced concrete shield and containment structures due to blast impulse, the spalling of concrete walls, the interaction or impact of concrete debris with steel containments and liners, and the response of exposed piping to blast impulse. It is found that for sufficiently close-in detonations and/or large explosive charge weights severe damage or destruction will result. This is particularly true for structures or components directly exposed to blast impulse.

  18. Structural design optimization of vehicle components using Cuckoo Search Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, Ali Riza [Bursa Technical Univ., Bursa (Turkey). Dept. of Mechanical Engineering; Durgun, Ismail

    2012-07-01

    In order to meet today's vehicle design requirements and to improve the cost and fuel efficiency, there is an increasing interest to design light-weight and cost-effective vehicle components. In this research, a new optimization algorithm, called the Cuckoo Search Algorithm (CS) algorithm, is introduced for solving structural design optimization problems. This research is the first application of the CS to the shape design optimization problems in the literature. The CS algorithm is applied to the structural design optimization of a vehicle component to illustrate how the present approach can be applied for solving structural design problems. Results show the ability of the CS to find better optimal structural design. [German] Um heutige Anforderungen an das Fahrzeugdesign zu beruecksichtigen und um die Kosten- und Kraftstoffeffektivitaet zu erhoehen, nimmt das Interesse am Design leichter und kosteneffektiver Fahrzeugkomponenten weiterhin zu. In der diesem Beitrag zugrunde liegenden Studie wurde ein neuer Optimierungsalgorithmus angewendet, der so genannte Cuckoo Suchalgorithmus (CS). Es handelt sich um die erste CS-Applikation fuer das Formdesign in der Literatur. Der CS-Algorithmus wird hierbei zur Strukturdesignoptimierung einer Fahrzeugkomponente angewendet, um zu zeigen, wie er bei der Loesung von Strukturdesignaufgaben angewendet werden kann. Die Ergebnisse zeigen, wie damit ein verbessertes Design erreicht werden kann.

  19. The maintenance optimization of structural components in nuclear power plants

    International Nuclear Information System (INIS)

    An optimization process, called 'OMF-Structures', is developed by Electricite de France (EDF) in order to extend the current 'OMF' Reliability Centered Maintenance to piping structural components. The Auxiliary Feedwater System of a 900 MW French nuclear plant has been studied in order to lay the foundations of the method. This paper presents the currently proposed principles of the process. The principles of the OMF-Structures process include 'Risk-Based Inspection' concepts within an RCM process. Two main phases are identified: The purpose of the first phase is to select the risk-significant failure modes and associated elements. This phase consists of two major steps: potential consequences evaluation and reliability performance evaluation. The second phase consists of the definition of preventive maintenance programs for piping elements that are associated with risk-significant failure modes. (author)

  20. NDE: An effective approach to improved reliability and safety. A technology survey. [nondestructive testing of aircraft structures

    Science.gov (United States)

    Carpenter, J. L., Jr.; Stuhrke, W. F.

    1976-01-01

    Technical abstracts are presented for about 100 significant documents relating to nondestructive testing of aircraft structures or related structural testing and the reliability of the more commonly used evaluation methods. Particular attention is directed toward acoustic emission; liquid penetrant; magnetic particle; ultrasonics; eddy current; and radiography. The introduction of the report includes an overview of the state-of-the-art represented in the documents that have been abstracted.

  1. Lightning effects on aircraft

    Science.gov (United States)

    1977-01-01

    Direct and indirect effects of lightning on aircraft were examined in relation to aircraft design. Specific trends in design leading to more frequent lightning strikes were individually investigated. These trends included the increasing use of miniaturized, solid state components in aircraft electronics and electric power systems. A second trend studied was the increasing use of reinforced plastics and other nonconducting materials in place of aluminum skins, a practice that reduces the electromagnetic shielding furnished by a conductive skin.

  2. An integrated approach to the probabilistic assessments of aircraft strikes and structural mode of damages to nuclear power plants

    International Nuclear Information System (INIS)

    The possibilities of an aircraft striking a Canadian nuclear power plant in the vicinity of an airport and of inducing structural failure modes have been evaluated. This evaluation, together with other studies, may enhance decisions in the development of general criteria for the siting of reactors near airports. The study made use, for assessment, of the probabilistic approach and made judicious applications of the finite Canadian, French, German, American and English resources that were available. The tools, techniques and methods used for achieving the above, form what may be called an integrated approach. This method of approach requires that the study be made in six consecutive steps as follows: the qualitative evaluation of having an aircraft strike on a site situated near an airport with the use of the logic model technique; the statistical data gathering on aircraft movements and accidents; evaluating the probability distribution and calculating the basic event probabilities; evaluating the probability of an aircraft strike and the application of the sensitivity approach; generating the probability density distribution versus strike impact energy, that is, the evaluation of the energy envelope; and the probabilistic evaluation of structural failure mode inducements

  3. Optimized reinforcement of nuclear power plant structures for aircraft impact forces

    International Nuclear Information System (INIS)

    Reactor buildings of nuclear power plants and, to some extent also other buildings of the plant, according to the present safety requirements, have to be able to withstand aircraft impact forces. The building has to withstand this loading only once since afterwards it will be out of use. Accordingly, other criteria for design and the necessary safety measures are valid than in the case of service loads. Large deformations and the development of large cracks due to such loadings are insignificant from a construction point of view for reinforced concrete structures i.e. the stresses can build up to the ultimate load carrying capacity. From the nuclear safety point of view, however, some restrictions are possible in this regard e.g. to obstruct the penetration of fuel through the cracks. Basically all mild steels, with large ducility and without brittle fracture under sudden load increase, are suitable for this purpose. High stresses in the structure would, however, require uneconomical concentrations of mild steel. It is for this reason that the use of high strength steels e.g. St 110/135, has been introduced in Germany for this kind of loading. Through the use of wire strands or cables of high strength steel it is possible to reach a condition of cracks and large deformations due to ultimate loads in zone of point loading. The reinforcement takes on a distinctly curved shape and is able to carry the normal loads and shears through a suspension-structure action. The deformability of the structure for the analysed limit load state can be further increased through a bond-free net. This measure allows a more uniform sketching of the cables or strands over a larger zone. (Auth.)

  4. Guided modes in photonic structures with left-handed components

    CERN Document Server

    Markos, P

    2015-01-01

    The spectrum of guided modes of linear chain of dielectric and left-handed cylinders is analyzed. The structure of eigenfrequences is much more richer if cylinders are made from the left-handed material with both permittivity and permeability negative. he number of guided modes is much larger, and their interaction with incident electromagnetic wave is much stronger. For some value of the wave vector, no guided modes were found. We discuss how these specific properties of guided modes correspond to folded bands, observed recently in photonic structureswith left-handed components.

  5. Evaluation of Stress Intensity Factor of Welded Structural Steel Component

    Directory of Open Access Journals (Sweden)

    Sathish T R

    2013-09-01

    Full Text Available This project work is dedicated to study the influence of welding process on mechanical properties (such as ultimate tensile strength, hardness, and impact toughness of welded structural steel component. In this work three grades of welded structural steel have been developed by using three different grades of electrodes such as E7016, E7018 and E7024. Comparative study has been made between the three grades ofwelded structural steel work pieces. Nondestructive test methods are used to find the quality of the weld. There after mechanical properties have been evaluated experimentally by preparing all specimens as per the ASTM standards. Based on the results of the tests carried out on the welded specimen using the three different grades of electrodes it is observed that the structural steel welded using E7016 grade exhibits better mechanical properties and hence crack resisting capability or fracture toughness. The stress intensity factor for the structural steel welded using E7016 has been evaluated by using the data obtained from the fracture toughness test. The stress intensity factor thus obtained is validated by using FEM.Finally, mini hydraulic excavator bucket has been taken for the static stress analysis in the welded region.

  6. Spiral Passive Electromagnetic Sensor (SPES) for composite structural changes in aircraft structures

    Science.gov (United States)

    Iervolino, Onorio; Meo, Michele

    2016-04-01

    A major goal of structural health monitoring (SHM) is to provide accurate and responsive detection and monitoring of flaws. This research work reports an investigation of SPES sensors for damage detection, investigating different sensor sizes and how they affect the sensor's signal. A sensor able to monitor structural change that can be remotely interrogated and does not need a power supply is presented in this work. The SPES-sensor presents the great advantage of monitoring conductive and non-conductive structures such as fiberglass-reinforced composites (FRC) and carbon fiber-reinforced polymers (CFRP). Any phenomena that affect the magnetic field of the SPES can be detected and monitored. A study was conducted to investigate the capability of sensor to give information on structural changes, simulated by the presence of an external mass placed in the proximity of sensor. Effect of different positions of the SPES within the sample, and how to extend the area of inspection using multiple sensors was investigated. The sensor was tested embedded in the samples, simulating the structural change on both sides of the sample. In both configurations the sensor described herein demonstrated a great potential to monitor structural changes.

  7. Magnons in one-dimensional k-component Fibonacci structures

    Energy Technology Data Exchange (ETDEWEB)

    Costa, C. H., E-mail: carloshocosta@hotmail.com [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Vasconcelos, M. S. [Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil)

    2014-05-07

    We have studied the magnon transmission through of one-dimensional magnonic k-component Fibonacci structures, where k different materials are arranged in accordance with the following substitution rule: S{sub n}{sup (k)}=S{sub n−1}{sup (k)}S{sub n−k}{sup (k)} (n≥k=0,1,2,…), where S{sub n}{sup (k)} is the nth stage of the sequence. The calculations were carried out in exchange dominated regime within the framework of the Heisenberg model and taking into account the RPA approximation. We have considered multilayers composed of simple cubic spin-S Heisenberg ferromagnets, and, by using the powerful transfer-matrix method, the spin wave transmission is obtained. It is demonstrated that the transmission coefficient has a rich and interesting magnonic pass- and stop-bands structures, which depends on the frequency of magnons and the k values.

  8. Structural ECM components in the premetastatic and metastatic niche.

    Science.gov (United States)

    Høye, Anette M; Erler, Janine T

    2016-06-01

    The aim of this review is to give an overview of the extracellular matrix (ECM) components that are important for creating structural changes in the premetastatic and metastatic niche. The successful arrival and survival of cancer cells that have left the primary tumor and colonized distant sites depends on the new microenvironment they encounter. The primary tumor itself releases factors into the circulation that travel to distant organs and then initiate structural changes, both non-enzymatic and enzymatic, to create a favorable niche for the disseminating tumor cells. Therapeutic strategies aimed at targeting cell-ECM interactions may well be one of the best viable approaches to combat metastasis and thus improve patient care. PMID:27053524

  9. Structures and components in galaxy clusters: observations and models

    CERN Document Server

    Bykov, A M; Ferrari, C; Forman, W R; Kaastra, J S; Klein, U; Markevitch, M; de Plaa, J

    2015-01-01

    Clusters of galaxies are the largest gravitationally bounded structures in the Universe dominated by dark matter. We review the observational appearance and physical models of plasma structures in clusters of galaxies. Bubbles of relativistic plasma which are inflated by supermassive black holes of AGNs, cooling and heating of the gas, large scale plasma shocks, cold fronts, non-thermal halos and relics are observed in clusters. These constituents are reflecting both the formation history and the dynamical properties of clusters of galaxies. We discuss X-ray spectroscopy as a tool to study the metal enrichment in clusters and fine spectroscopy of Fe X-ray lines as a powerful diagnostics of both the turbulent plasma motions and the energetics of the non-thermal electron populations. The knowledge of the complex dynamical and feedback processes is necessary to understand the energy and matter balance as well as to constrain the role of the non-thermal components of clusters.

  10. Ventilation and internal structure effects on naturally induced flows in a static aircraft wing

    International Nuclear Information System (INIS)

    The ventilation performance within an aircraft wing leading edge is investigated for a number of enclosure and ventilation configurations. The natural convection regime present is found to be highly sensitive to enclosure conditions, particularly the introduction of a partition. The presence of a partition reduced the overall heat exhausted from the cavity by up to 60%. The optimum ventilation strategy is also changed from a forward biased vent orientation (found for the unpartitioned case), to one where both the rear and front vents within the enclosure had the same open area. Cylinder plume effects dominate within the enclosure and were the main driver of the convective regime, with steady-state enclosure conditions highly dependent upon cylinder placement and plume orientation. An externally heated enclosure with internal heat source, combined with ventilation and an internal structure produced a complex natural convection regime which is sensitive to enclosure conditions. Hence an adequate knowledge of such conditions is necessary in order to fully appreciate the convective regime. - Highlights: → Optimum ventilation strategy changed between unpartitioned and partitioned cases. → Flow path and plume orientation are important to consider when analysing ventilation. → Bleed duct placement significantly alters flow path and temperature distribution. → Enclosure partitioning reduced heat exhaustion by 60%.

  11. The effect of material heterogeneity in curved composite beams for use in aircraft structures

    Science.gov (United States)

    Otoole, Brendan J.; Santare, Michael H.

    1992-01-01

    A design tool is presented for predicting the effect of material heterogeneity on the performance of curved composite beams for use in aircraft fuselage structures. Material heterogeneity can be induced during processes such as sheet forming and stretch forming of thermoplastic composites. This heterogeneity can be introduced in the form of fiber realignment and spreading during the manufacturing process causing a gradient in material properties in both the radial and tangential directions. The analysis procedure uses a separate two-dimensional elasticity solution for the stresses in the flanges and web sections of the beam. The separate solutions are coupled by requiring the forces and displacements match at the section boundaries. Analysis is performed for curved beams loaded in pure bending and uniform pressure. The beams can be of any general cross-section such as a hat, T-, I-, or J-beam. Preliminary results show that geometry of the beam dictates the effect of heterogeneity on performance. Heterogeneity plays a much larger role in beams with a small average radius to depth ratio, R/t, where R is the average radius of the beam and t is the difference between the inside and outside radius. Results of the analysis are in the form of stresses and displacements, and they are compared to both mechanics of materials and numerical solutions obtained using finite element analysis.

  12. Fatigue damage assessment of high-usage in-service aircraft fuselage structure

    Science.gov (United States)

    Mosinyi, Bao Rasebolai

    As the commercial and military aircraft fleets continue to age, there is a growing concern that multiple-site damage (MSD) can compromise structural integrity. Multiple site damage is the simultaneous occurrence of many small cracks at independent structural locations, and is the natural result of fatigue, corrosion, fretting and other possible damage mechanisms. These MSD cracks may linkup and form a fatigue lead crack of critical length. The presence of MSD also reduces the structure's ability to withstand longer cracks. The objective of the current study is to assess, both experimentally and analytically, MSD formation and growth in the lap joint of curved panels removed from a retired aircraft. A Boeing 727-232 airplane owned and operated by Delta Air Lines, and retired at its design service goal, was selected for the study. Two panels removed from the left-hand side of the fuselage crown, near stringer 4L, were subjected to extended fatigue testing using the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration (FAA) William J. Hughes Technical Center. The state of MSD was continuously assessed using several nondestructive inspection (NDI) methods. Damage to the load attachment points of the first panel resulted in termination of the fatigue test at 43,500 fatigue cycles, before cracks had developed in the lap joint. The fatigue test for the second panel was initially conducted under simulated in-service loading conditions for 120,000 cycles, and no cracks were detected in the skin of the panel test section. Artificial damage was then introduced into the panel at selected rivets in the critical (lower) rivet row, and the fatigue loads were increased. Visually detectable crack growth from the artificial notches was first seen after 133,000 cycles. The resulting lead crack grew along the lower rivet row, eventually forming an 11.8" long unstable crack after 141,771 cycles, at which point the

  13. CdTe film structure formation in layerwise component sorption

    Energy Technology Data Exchange (ETDEWEB)

    Murashev, S.V.; Denisova, A.T.; Ezhovskii, Yu.K.

    1988-04-10

    Aleskovskii's insular hypothesis has been used in a new approach to film synthesis, where irreversible reactions occur at surfaces on sequential component treatment, where the components contain the compound units. One can synthesize a film of a strictly defined composition on the basis of the critical condensation temperatures T/sub A/ and T/sub B/ together with the compound decomposition temperature T/sub AB/, i.e., it is necessary to have T/sub A/, T/sub B/ < T/sub s/ < T/sub AB/, where T/sub s/ is substrate temperature. The authors used AGChT-23-17 single-crystal gallium arsenide substrates having (100) orientation. Films up to 15 nm thick were measured by ellipsometry, while thicker films were assessed with an interferometer. The cadmium telluride films were made by alternating treatment in cadmium and tellurium beams made by evaporation from Knudsen cells. The lower limit to monolayer growth is set by the onset of tellurium condensation, and the upper by the transition from irreversible chemisorption to reversible. The growth constant and the diffraction data indicate the mode of film formation, the growth direction, and the relationship to the structure, which is related to the temperature. Films with the best structure are made at substrate temperatures of 498-535 K.

  14. Residual strength evaluation of concrete structural components under fatigue loading

    Indian Academy of Sciences (India)

    A Rama Chandra Murthy; G S Palani; Nagesh R Iyer; Smitha Gopinath; B K Raghu Prasad

    2012-02-01

    This paper presents methodologies for residual strength evaluation of concrete structural components using linear elastic and nonlinear fracture mechanics principles. The effect of cohesive forces due to aggregate bridging has been represented mathematically by employing tension softening models. Various tension softening models such as linear, bilinear, trilinear, exponential and power curve have been described with appropriate expressions. These models have been validated by predicting the remaining life of concrete structural components and comparing with the corresponding experimental values available in the literature. It is observed that the predicted remaining life by using power model and modified bi-linear model is in good agreement with the corresponding experimental values. Residual strength has also been predicted using these tension softening models and observed that the predicted residual strength is in good agreement with the corresponding analytical values in the literature. In general, it is observed that the variation of predicted residual moment with the chosen tension softening model follows the similar trend as in the case of remaining life. Linear model predicts large residual moments followed by trilinear, bilinear and power models.

  15. Atmospheric pressure plasma jet deposition of Si-based coupling films as surface preparation for structural adhesive bonding in the aircraft industry

    OpenAIRE

    Bringmann, Philipp

    2016-01-01

    Damages of metallic aircraft structures that occur during manufacturing, assembly and in service require local repair. Especially with current service-life extensions of ageing aircraft fleets, the importance of such repair methods is increasing. Typically, the repair of smaller damages on aluminium fuselage or wing skins is done by riveting a patch onto the flawed structure. However, the use of rivets reduces the strength of the structure and promotes fatigue. Joining the patch by adhesive b...

  16. Cooperative Autonomous Observation of Coherent Atmospheric Structures using Small Unmanned Aircraft Systems

    Science.gov (United States)

    Ravela, S.

    2014-12-01

    Mapping the structure of localized atmospheric phenomena, from sea breeze and shallow cumuli to thunderstorms and hurricanes, is of scientific interest. Low-cost small unmanned aircraft systems (sUAS) open the possibility for autonomous "instruments" to map important small-scale phenomena (kilometers, hours) and serve as a testbed for for much larger scales. Localized phenomena viewed as coherent structures interacting with their large-scale environment are difficult to map. As simple simulations show, naive Eulerian or Lagrangian strategies can fail in mapping localized phenomena. Model-based techniques are needed. Meteorological targeting, where supplementary UAS measurements additionally constrain numerical models is promising, but may require many primary measurements to be successful. We propose a new, data-driven, field-operable, cooperative autonomous observing system (CAOS) framework. A remote observer (on a UAS) tracks tracers to identify an apparent motion model over short timescales. Motion-based predictions seed MCMC flight plans for other UAS to gather in-situ data, which is fused with the remote measurements to produce maps. The tracking and mapping cycles repeat, and maps can be assimilated into numerical models for longer term forecasting. CAOS has been applied to study small scale emissions. At Popocatepetl, in collaboration with CENAPRED and IPN, it is being applied map the plume using remote IR/UV UAS and in-situ SO2 sensing, with additional plans for water vapor, the electric field and ash. The combination of sUAS with autonomy appears to be highly promising methodology for environmental mapping. For more information, please visit http://caos.mit.edu

  17. Life extension techniques for aircraft structures-Extending durability and promoting damage tolerance through bonded crack retarders

    OpenAIRE

    Irving, Phil E.; Zhang, Xiang; Doucet, J; Figueroa-Gordon, Douglas J.; Boscolo, M.; Heinimann, M.; Shepherd, G.; Fitzpatrick, M. E.; D. Liljedahl

    2011-01-01

    This paper explores the viability of the bonded crack retarder concept as a device for life extension of damage tolerant aircraft structures. Fatigue crack growth behaviour in metallic substrates with bonded straps has been determined. SENT and M(T) test coupons and large scale skin-stringer panels were tested at constant and variable amplitude loads. The strap materials were glass fibre polymer composites, GLARE, AA7085 and Ti-6Al-4V. Comprehensive measurements were made of...

  18. Structure of the basal components of a bacterial transporter

    Energy Technology Data Exchange (ETDEWEB)

    Meisner, Jeffrey; Maehigashi, Tatsuya; André, Ingemar; Dunham, Christine M.; Moran, Jr., Charles P. (Emory-MED); (Lund)

    2012-12-10

    Proteins SpoIIQ and SpoIIIAH interact through two membranes to connect the forespore and the mother cell during endospore development in the bacterium Bacillus subtilis. SpoIIIAH consists of a transmembrane segment and an extracellular domain with similarity to YscJ proteins. YscJ proteins form large multimeric rings that are the structural scaffolds for the assembly of type III secretion systems in Gram-negative bacteria. The predicted ring-forming motif of SpoIIIAH and other evidence led to the model that SpoIIQ and SpoIIIAH form the core components of a channel or transporter through which the mother cell nurtures forespore development. Therefore, to understand the roles of SpoIIIAH and SpoIIQ in channel formation, it is critical to determine whether SpoIIIAH adopts a ring-forming structural motif, and whether interaction of SpoIIIAH with SpoIIQ would preclude ring formation. We report a 2.8-{angstrom} resolution structure of a complex of SpoIIQ and SpoIIIAH. SpoIIIAH folds into the ring-building structural motif, and modeling shows that the structure of the SpoIIQ-SpoIIIAH complex is compatible with forming a symmetrical oligomer that is similar to those in type III systems. The inner diameters of the two most likely ring models are large enough to accommodate several copies of other integral membrane proteins. SpoIIQ contains a LytM domain, which is found in metalloendopeptidases, but lacks residues important for metalloprotease activity. Other LytM domains appear to be involved in protein-protein interactions. We found that the LytM domain of SpoIIQ contains an accessory region that interacts with SpoIIIAH.

  19. On the Deflexion of Anisotropic Structural Composite Aerodynamic Components

    Directory of Open Access Journals (Sweden)

    J. Whitty

    2014-01-01

    Full Text Available This paper presents closed form solutions to the classical beam elasticity differential equation in order to effectively model the displacement of standard aerodynamic geometries used throughout a number of industries. The models assume that the components are constructed from in-plane generally anisotropic (though shown to be quasi-isotropic composite materials. Exact solutions for the displacement and strains for elliptical and FX66-S-196 and NACA 63-621 aerofoil approximations thin wall composite material shell structures, with and without a stiffening rib (shear-web, are presented for the first time. Each of the models developed is rigorously validated via numerical (Runge-Kutta solutions of an identical differential equation used to derive the analytical models presented. The resulting calculated displacement and material strain fields are shown to be in excellent agreement with simulations using the ANSYS and CATIA commercial finite element (FE codes as well as experimental data evident in the literature. One major implication of the theoretical treatment is that these solutions can now be used in design codes to limit the required displacement and strains in similar components used in the aerospace and most notably renewable energy sectors.

  20. Induced radioactivity of LDEF materials and structural components

    Science.gov (United States)

    Harmon, B. A.; Laird, C. E.; Fishman, G. J.; Parnell, T. A.; Camp, D. C.; Frederick, C. E.; Hurley, D. L.; Lindstrom, D. J.; Moss, C. E.; Reedy, R. C.; Reeves, J. H.; Smith, A. R.; Winn, W. G.; Benton, E. V.

    1996-01-01

    We present an overview of the Long Duration Exposure Facility (LDEF) induced activation measurements. The LDEF, which was gravity-gradient stabilized, was exposed to the low Earth orbit (LEO) radiation environment over a 5.8 year period. Retrieved activation samples and structural components from the spacecraft were analyzed with low and ultra-low background HPGe gamma spectrometry at several national facilities. This allowed a very sensitive measurement of long-lived radionuclides produced by proton- and neutron-induced reactions in the time-dependent, non-isotropic LEO environment. A summary of major findings from this study is given that consists of directionally dependent activation, depth profiles, thermal neutron activation, and surface beryllium-7 deposition from the upper atmosphere. We also describe a database of these measurements that has been prepared for use in testing radiation environmental models and spacecraft design.

  1. Interpretation of probabilistic structural analysis of an aging passive component

    International Nuclear Information System (INIS)

    This article describes a technique to calculate the risk from failure of passive components over time, and demonstrates the technique by applying it to a weld in the auxiliary feedwater (AFW) system. It uses a modified version of the PRAISE computer code to perform a probabilistic structural analysis to calculate the probability that crack growth due to aging would cause the weld to rupture. It then uses the weld rupture probability as input to a modified existing PRA to calculate the change in plant risk with time. The results show an insignificant effect on plant risk because of the low calculated rupture rate of the weld in this particular calculation over 48 yr of service. A decreasing yearly rupture rate for this weld is calculated. This results from infant mortality; that is, most of those initial flaws that will eventually lead to rupture will do so early in life

  2. Dynamic structure factors in two-component plasmas

    International Nuclear Information System (INIS)

    Theoretical investigations into the properties of dense plasmas have benefited from results of computer simulations of model systems. Recently molecular simulations of a strongly coupled hydrogen plasma have been performed in which the particals interact via pseudopotentials designed to approximately include short-range quantum effects. Among the simulation results of this two-component plasma (TCP) is the charge-charge structure factor, S /sub QQ/ (k,ω). Here the authors investigate this quantity by approximate solutions to the exact kinetic equation for S /sub QQ/ (k,μ). The equilibrium correlation, S /sub QQ/ (k), valid for strongly coupled systems required as input to the calculation of the dynamic correlation function is found employing the pseudopotential in the solution of the hypernetted chain (HNC) equations. The results are compared with the computer simulation results

  3. 3D printed components with ultrasonically arranged microscale structure

    Science.gov (United States)

    Llewellyn-Jones, Thomas M.; Drinkwater, Bruce W.; Trask, Richard S.

    2016-02-01

    This paper shows the first application of in situ manipulation of discontinuous fibrous structure mid-print, within a 3D printed polymeric composite architecture. Currently, rapid prototyping methods (fused filament fabrication, stereolithography) are gaining increasing popularity within the engineering commnity to build structural components. Unfortunately, the full potential of these components is limited by the mechanical properties of the materials used. The aim of this study is to create and demonstrate a novel method to instantaneously orient micro-scale glass fibres within a selectively cured photocurable resin system, using ultrasonic forces to align the fibres in the desired 3D architecture. To achieve this we have mounted a switchable, focused laser module on the carriage of a three-axis 3D printing stage, above an in-house ultrasonic alignment rig containing a mixture of photocurable resin and discontinuous 14 μm diameter glass fibre reinforcement(50 μm length). In our study, a suitable print speed of 20 mm s-1 was used, which is comparable to conventional additive layer techniques. We show the ability to construct in-plane orthogonally aligned sections printed side by side, where the precise orientation of the configurations is controlled by switching the ultrasonic standing wave profile mid-print. This approach permits the realisation of complex fibrous architectures within a 3D printed landscape. The versatile nature of the ultrasonic manipulation technique also permits a wide range of particle types (diameters, aspect ratios and functions) and architectures (in-plane, and out-plane) to be patterned, leading to the creation of a new generation of fibrous reinforced composites for 3D printing.

  4. Definition of 1992 Technology Aircraft Noise Levels and the Methodology for Assessing Airplane Noise Impact of Component Noise Reduction Concepts

    Science.gov (United States)

    Kumasaka, Henry A.; Martinez, Michael M.; Weir, Donald S.

    1996-01-01

    This report describes the methodology for assessing the impact of component noise reduction on total airplane system noise. The methodology is intended to be applied to the results of individual study elements of the NASA-Advanced Subsonic Technology (AST) Noise Reduction Program, which will address the development of noise reduction concepts for specific components. Program progress will be assessed in terms of noise reduction achieved, relative to baseline levels representative of 1992 technology airplane/engine design and performance. In this report, the 1992 technology reference levels are defined for assessment models based on four airplane sizes - an average business jet and three commercial transports: a small twin, a medium sized twin, and a large quad. Study results indicate that component changes defined as program final goals for nacelle treatment and engine/airframe source noise reduction would achieve from 6-7 EPNdB reduction of total airplane noise at FAR 36 Stage 3 noise certification conditions for all of the airplane noise assessment models.

  5. An Advanced Open-Source Aircraft Design Platform for Personal Air Vehicle Geometry, Aerodynamics, and Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovators working to revolutionize air travel through personal aviation pioneers need innovative aircraft design tools. Vehicle Sketch Pad (VSP) is an aircraft...

  6. Vortex Structures in a Rotating BEC Dark Matter Component

    CERN Document Server

    Zinner, Nikolaj Thomas

    2011-01-01

    We study the effects of a dark matter component that consists of bosonic particles with ultralight masses in the condensed state. We compare previous studies for both non-interacting condensates and with repulsive two-body terms and show consistency between the proposals. Furthermore, we explore the effects of rotation on a superfluid dark matter condensate, assuming that a vortex lattice forms as seen in ultracold atomic gas experiments. The influence of such a lattice in virialization of gravitationally bound structures and on galactic rotation velocity curves is explored. With fine-tuning of the bosonic particle mass and the two-body repulsive interaction strength, we find that one can have sub-structure on rotation curves that resembles some observations in spiral galaxies. This occurs when the dark matter halo has an array of hollow cylinders. This can cause oscillatory behavior in the galactic rotation curves in similar fashion to the well-known effect of the spiral arms. We also consider how future exp...

  7. Bonding and structure in dense multi-component molecular mixtures.

    Science.gov (United States)

    Meyer, Edmund R; Ticknor, Christopher; Bethkenhagen, Mandy; Hamel, Sebastien; Redmer, Ronald; Kress, Joel D; Collins, Lee A

    2015-10-28

    We have performed finite-temperature density functional theory molecular dynamics simulations on dense methane, ammonia, and water mixtures (CH4:NH3:H2O) for various compositions and temperatures (2000 K ≤ T ≤ 10,000 K) that span a set of possible conditions in the interiors of ice-giant exoplanets. The equation-of-state, pair distribution functions, and bond autocorrelation functions (BACF) were used to probe the structure and dynamics of these complex fluids. In particular, an improvement to the choice of the cutoff in the BACF was developed that allowed analysis refinements for density and temperature effects. We note the relative changes in the nature of these systems engendered by variations in the concentration ratios. A basic tenet emerges from all these comparisons that varying the relative amounts of the three heavy components (C,N,O) can effect considerable changes in the nature of the fluid and may in turn have ramifications for the structure and composition of various planetary layers. PMID:26520533

  8. NASA-UVA Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft

    Science.gov (United States)

    Starke, E. A., Jr.

    1997-01-01

    This is the final report of the study "Aluminum-Based Materials for High Speed Aircraft" which had the objectives (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials and (2) to assess the materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT. The research team consisted of ALCOA, Allied-Signal, Boeing, McDonnell Douglas, Reynolds Metals and the University of Virginia. Four classes of aluminum alloys were investigated: (1) I/M 2XXX containing Li and I/M 2XXX without Li, (2) I/M 6XXX, (3) two P/M 2XXX alloys, and (4) two different aluminum-based metal matrix composites (MMC). The I/M alloys were targeted for a Mach 2.0 aircraft and the P/M and MMC alloys were targeted for a Mach 2.4 aircraft. Design studies were conducted using several different concepts including skin/stiffener (baseline), honeycomb sandwich, integrally stiffened and hybrid adaptations (conventionally stiffened thin-sandwich skins). Alloy development included fundamental studies of coarsening behavior, the effect of stress on nucleation and growth of precipitates, and fracture toughness as a function of temperature were an integral part of this program. The details of all phases of the research are described in this final report.

  9. Aerothermo-Structural Analysis of Low Cost Composite Nozzle/Inlet Components

    Science.gov (United States)

    Shivakumar, Kuwigai; Challa, Preeli; Sree, Dave; Reddy, D.

    1999-01-01

    This research is a cooperative effort among the Turbomachinery and Propulsion Division of NASA Glenn, CCMR of NC A&T State University, and the Tuskegee University. The NC A&T is the lead center and Tuskegee University is the participating institution. Objectives of the research were to develop an integrated aerodynamic, thermal and structural analysis code for design of aircraft engine components, such as, nozzles and inlets made of textile composites; conduct design studies on typical inlets for hypersonic transportation vehicles and setup standards test examples and finally manufacture a scaled down composite inlet. These objectives are accomplished through the following seven tasks: (1) identify the relevant public domain codes for all three types of analysis; (2) evaluate the codes for the accuracy of results and computational efficiency; (3) develop aero-thermal and thermal structural mapping algorithms; (4) integrate all the codes into one single code; (5) write a graphical user interface to improve the user friendliness of the code; (6) conduct test studies for rocket based combined-cycle engine inlet; and finally (7) fabricate a demonstration inlet model using textile preform composites. Tasks one, two and six are being pursued. Selected and evaluated NPARC for flow field analysis, CSTEM for in-depth thermal analysis of inlets and nozzles and FRAC3D for stress analysis. These codes have been independently verified for accuracy and performance. In addition, graphical user interface based on micromechanics analysis for laminated as well as textile composites was developed. Demonstration of this code will be made at the conference. A rocket based combined cycle engine was selected for test studies. Flow field analysis of various inlet geometries were studied. Integration of codes is being continued. The codes developed are being applied to a candidate example of trailblazer engine proposed for space transportation. A successful development of the code will

  10. Bird impact at aircraft structure - Damage analysis using Coupled Euler Lagrangian Approach

    Science.gov (United States)

    Smojver, I.; Ivancevic, D.

    2010-06-01

    Numerical bird strike damage prediction procedure has been applied on the very detailed large airplane secondary structure consisting of sandwich, composite and metallic structural items. The impacted inboard flap finite element model is modelled using 3D, shell and continuum shell elements, coupled with appropriate kinematic constraints. The bird has been modelled using Coupled Euler Lagrangian approach, in order to avoid the numerical difficulties connected with mesh distortion. Various failure modes, such as Carbon Fibre Reinforced Plastics (CFRP) face layer rupture, failure of composite matrix, damage initiation / evolution in the sandwich structure Nomex core and elastoplastic failure of a metallic structure have been investigated. Besides, general contact has been applied as to efficiently capture the contact between Eulerian bird material and the structure, as well as large deformations of the different structural components. Compared to the classic Lagrangian modelling of the bird, the analysis has proven to be more stable, and the results, such as damage areas, physically more realistic. The impact has been applied in the area that is the most probably subjected to the impact damage during exploitation.

  11. Bird impact at aircraft structure - Damage analysis using Coupled Euler Lagrangian Approach

    International Nuclear Information System (INIS)

    Numerical bird strike damage prediction procedure has been applied on the very detailed large airplane secondary structure consisting of sandwich, composite and metallic structural items. The impacted inboard flap finite element model is modelled using 3D, shell and continuum shell elements, coupled with appropriate kinematic constraints. The bird has been modelled using Coupled Euler Lagrangian approach, in order to avoid the numerical difficulties connected with mesh distortion. Various failure modes, such as Carbon Fibre Reinforced Plastics (CFRP) face layer rupture, failure of composite matrix, damage initiation / evolution in the sandwich structure Nomex core and elastoplastic failure of a metallic structure have been investigated. Besides, general contact has been applied as to efficiently capture the contact between Eulerian bird material and the structure, as well as large deformations of the different structural components. Compared to the classic Lagrangian modelling of the bird, the analysis has proven to be more stable, and the results, such as damage areas, physically more realistic. The impact has been applied in the area that is the most probably subjected to the impact damage during exploitation.

  12. An assessment of tailoring of lightning protection design requirements for a composite wing structure on a metallic aircraft

    Science.gov (United States)

    Harwood, T. L.

    1991-01-01

    The Navy A-6E aircraft is presently being modified with a new wing which uses graphite/epoxy structures and substructures around a titanium load-bearing structure. The ability of composites to conduct electricity is less than that of aluminum. This is cause for concern when the wing may be required to conduct large lightning currents. The manufacturer attempted to solve lightning protection issues by performing a risk assessment based on a statistical approach which allows relaxation of the wing lightning protection design levels over certain locations of the composite wing. A sensitivity study is presented designed to define the total risk of relaxation of the design levels.

  13. Characterization of Unsteady Flow Structures Around Tandem Cylinders for Component Interaction Studies in Airframe Noise

    Science.gov (United States)

    Jenkins, Luther N.; Khorrami, Mehdi R.; Choudhari, Meelan M.; McGinley, Catherine B.

    2005-01-01

    A joint computational and experimental study has been performed at NASA Langley Research Center to investigate the unsteady flow generated by the components of an aircraft landing gear system. Because the flow field surrounding a full landing gear is so complex, the study was conducted on a simplified geometry consisting of two cylinders in tandem arrangement to isolate and characterize the pertinent flow phenomena. This paper focuses on the experimental effort where surface pressures, 2-D Particle Image Velocimetry, and hot-wire anemometry were used to document the flow interaction around the two cylinders at a Reynolds Number of 1.66 x 10(exp 5), based on cylinder diameter, and cylinder spacing-todiameter ratios, L/D, of 1.435 and 3.70. Transition strips were applied to the forward cylinder to produce a turbulent boundary layer upstream of the flow separation. For these flow conditions and L/D ratios, surface pressures on both the forward and rear cylinders show the effects of L/D on flow symmetry, base pressure, and the location of flow separation and attachment. Mean velocities and instantaneous vorticity obtained from the PIV data are used to examine the flow structure between and aft of the cylinders. Shedding frequencies and spectra obtained using hot-wire anemometry are presented. These results are compared with unsteady, Reynolds-Averaged Navier-Stokes (URANS) computations for the same configuration in a companion paper by Khorrami, Choudhari, Jenkins, and McGinley (2005). The experimental dataset produced in this study provides information to better understand the mechanisms associated with component interaction noise, develop and validate time-accurate computer methods used to calculate the unsteady flow field, and assist in modeling of the radiated noise from landing gears.

  14. Advanced manufacturing development of a composite empennage component for L-1011 aircraft. Phase 4: Full scale ground test

    Science.gov (United States)

    Jackson, A. C.; Dorwald, F.

    1982-01-01

    The ground tests conducted on the advanced composite vertical fin (ACVF) program are described. The design and fabrication of the test fixture and the transition structure, static test of Ground Test Article (GTA) No. 1, rework of GTA No. 2, and static, damage tolerance, fail-safe and residual strength tests of GTA No. 2 are described.

  15. Survival analysis of aging aircraft

    Science.gov (United States)

    Benavides, Samuel

    work demonstrates the development of a probabilistic corrosion failure model using survival analysis methods and techniques. Using a parsimonious approach, the coefficients of a Cox proportional hazards model were derived from a set of environmental, geographical and operational predictor variables. To determine if the variables satisfied the proportional hazard assumption, numerous statistical tests were performed---such as the equivalence tests of the log rank, Wilcoxon, Peto-Peto and Fleming-Harrington---and graphical plots generated such as observed-versus-expected plots and log(-log) survival curves. Finally, in a paradigm enhancement to current design methodologies, this dissertation place sets survival analysis modeling in the context of an emerging holistic structural integrity philosophy. While traditional aircraft design and life prediction methodologies consider only the cyclic fatigue domain without consideration to the environmental or unique operating spectrum that aircraft may fly in, a holistic approach considers the cradle-to-grave driving forces in the life of a component, such as corrosion assisted crack nucleation in a material. This dissertation, which uses real-world failure data obtained from structural aircraft components, is poised to narrow the cradle-to-grave loop and provide holistic feedback in the understanding of aircraft structural system failures.

  16. Robotic aircraft scanner for neutron radiographic inspection

    International Nuclear Information System (INIS)

    A robotic positioner and manipulator, a key component of a mobile neutron radiography system (MNRS) for aircraft inspection, is described. The MNRS is designed to inspect military aircraft for hidden corrosion in aluminum structures. The MNRS is comprised of an accelerator-based (Kaman A-711 sealed tube neutron generator using the deuterium-tritium reaction) thermal neutron source, electronic neutron imaging system, robotic positioner and manipulator for the source/imager, control trailer housing system control electronics and digital image processing system, mobile dark room for film processing, self-contained electrical power source, and radiation safety system. For in situ aircraft inspection, the robotic scanner is programmed (in a teach/learn mode) to scan a region of the components (e.g., wings, stabilizers, etc.) using a control pendant

  17. Structures, Components and Functions of Secretory Tissues in Houttuynia cordata

    Institute of Scientific and Technical Information of China (English)

    Xi-Lu Ni; Li Peng; Wen-Zhe Liu

    2007-01-01

    Houttuynia cordata Thunb., traditionally used as a therapeutic plant in folk medicine, has shown antioxidant and anticancer activities.The species, as a core component of paleoherbs, is normally characterized based on the presence of different types of secretory tissue: oil cells, three types of secretory cells and glandular hairs.The aim of this work was to study the structural, componential, and the functional characteristics of the secretory tissues in both the floral and vegetative parts.The results indicate that oll cells and secretory cells are distributed in all organs of the plant, while glandular hairs are situated on the aerial stems and leaves.Both oil cells and glandular hairs initiate from the protoderm, but their developmental processes are different.Although three types of secretory cells initiate from different primary meristems, the developmental pattems of different secretory cells are the same.Also, although the origins of secretory cells are different from oil cells, their early developmental processes are the same.Histochemical results show that oil cells, secretory cells and glandular hairs produce flavonoids, phenolic compounds, tannins, lipids, aldehyde and ketone-compounds.In addition, there are terpenoids and pectic-like substances in oil cells, alkaloids in secretory cells of aerial stems, and terpenoids and alkaloids in glandular hairs.These compounds play very important roles in protecting plants from being eaten by herbivores (herbivory) and infected by microbial pathogens.The oil cell and secretory cell, as unicellular secretory tissues, are intermediates between the primitive surface glandular and secretory cavity and canal during the evolution of secretory structures.

  18. INTELLECTUAL MECHATRONIC SYSTEMS WITH REMOTE COMPONENT INTERACTION: STRUCTURE AND FUNCTIONS

    Directory of Open Access Journals (Sweden)

    A. V. Gulay

    2015-01-01

    Full Text Available Basic requirements to sensor and controlling tracts of mechatronic systems with the remote organization of object control processes have been considered in the paper. A rational approach presupposes designing of the mentioned systems as multichannel technical complexes intended for parallel or quasi-parallel force-moment control of outlet mechanical links (motion modules by multiple coordinates of the required phase space. It has been shown that the use of digitizing principles and distributed data procession in mechatronic systems makes it possible to pass to the unified structure and typical set of software and hardware functions of the aforesaid tracts. The paper gives consideration to a structural and functional scheme of the mechatronic system which contains an intellectual sensor device, a controlling center and an intellectual executive mechanism. The tasks that are linked with organization of preliminary information procession and construction of the systematic interface for transfer of telemetric transactions between controlled objects and the control center have been specified in the paper. Solution of a functionally full set of logically completed tasks is imposed to software and hardware tracts of the mechatronic system which is based on the abovementioned principles.The paper presents preliminary distribution of functions according to the system resources that is between an intellectual sensor unit, a control center and an intellectual executive mechanism. One of the most important features is an informational compatibility of the system components which is achieved owing to the use of unified transactions. The noise immune data coding expands useful informational transaction volume to some actual volume. It has been shown that construction of tract transfer and transaction reception in the intellectual mechatronic system on the basis of radio channels is considered as the most complicated technical solution. 

  19. Advanced manufacturing development of a composite empennage component for L-1011 aircraft. Phase 2: Design and analysis

    Science.gov (United States)

    Jackson, A. C.; Crocker, J. F.; Ekvall, J. C.; Eudaily, R. R.; Mosesian, B.; Vancleave, R. R.; Vanhamersveld, J.

    1981-01-01

    The composite fin design consists of two one-piece cocured covers, two one-piece cocured spars and eleven ribs. The lower ribs are truss ribs with graphite/epoxy caps and aluminum truss members. The upper three ribs are a sandwich design with graphite/epoxy face sheets and a syntactic epoxy core. The design achieves a 27% weight saving compared to the metal box. The fastener count has been reduced from over 40,000 to less than 7000. The structural integrity of the composite fin was verified by analysis and test. The static, fail-safe and flutter analyses were completed. An extensive test program has established the material behavior under a range of conditions and critical subcomponents were tested to verify the structural concepts.

  20. Effective L/D: A Theoretical Approach to the Measurement of Aero-Structural Efficiency in Aircraft Design

    Science.gov (United States)

    Guynn, Mark D.

    2015-01-01

    There are many trade-offs in aircraft design that ultimately impact the overall performance and characteristics of the final design. One well recognized and well understood trade-off is that of wing weight and aerodynamic efficiency. Higher aerodynamic efficiency can be obtained by increasing wing span, usually at the expense of higher wing weight. The proper balance of these two competing factors depends on the objectives of the design. For example, aerodynamic efficiency is preeminent for sailplanes and long slender wings result. Although the wing weight-drag trade is universally recognized, aerodynamic efficiency and structural efficiency are not usually considered in combination. This paper discusses the concept of "aero-structural efficiency," which combines weight and drag characteristics. A metric to quantify aero-structural efficiency, termed effective L/D, is then derived and tested with various scenarios. Effective L/D is found to be a practical and robust means to simultaneously characterize aerodynamic and structural efficiency in the context of aircraft design. The primary value of the effective L/D metric is as a means to better communicate the combined system level impacts of drag and structural weight.

  1. Aircraft-skin Infrared Radiation Characteristics Modeling and Analysis

    Institute of Scientific and Technical Information of China (English)

    Lu Jianwei; Wang Qiang

    2009-01-01

    One of the most important problems of stealth technology is to evaluate the infrared radiation (IR) level received by IR sensors from fighters to be detected. This article presents a synthetic method for calculating the IR emitted from aircraft-skin. By reckoning the aerodynamic heating and hot engine casing to be the main heat sources of the exposed aircraft-skin, a numerical model of skin temperature distribution is established through computational fluid dynamics (CFD) technique. Based on it, an infrared signature model for solving the complex geometry and structure of a fighter is proposed with the reverse Monte Carlo (RMC) method. Finally, by way of determining the IR intensity from aircraft-skin, the aircraft components that emit the most IR can be identified; and the cooling effects of the main aircraft components on IR intensity are investigated. It is found that reduction by 10 K in the skin temperature of head, vertical stabilizers and wings could lead to decline of more than 8% of the IR intensity on the aircraft-skin in front view while at the broadside of the aircraft, the drops in IR intensity could attain under 8%. The results provide useful reference in designing stealthy aircraft.

  2. Technology for aircraft energy efficiency

    Science.gov (United States)

    Klineberg, J. M.

    1977-01-01

    Six technology programs for reducing fuel use in U.S. commercial aviation are discussed. The six NASA programs are divided into three groups: Propulsion - engine component improvement, energy efficient engine, advanced turboprops; Aerodynamics - energy efficient transport, laminar flow control; and Structures - composite primary structures. Schedules, phases, and applications of these programs are considered, and it is suggested that program results will be applied to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s.

  3. Component-specific modeling. [jet engine hot section components

    Science.gov (United States)

    Mcknight, R. L.; Maffeo, R. J.; Tipton, M. T.; Weber, G.

    1992-01-01

    Accomplishments are described for a 3 year program to develop methodology for component-specific modeling of aircraft hot section components (turbine blades, turbine vanes, and burner liners). These accomplishments include: (1) engine thermodynamic and mission models, (2) geometry model generators, (3) remeshing, (4) specialty three-dimensional inelastic structural analysis, (5) computationally efficient solvers, (6) adaptive solution strategies, (7) engine performance parameters/component response variables decomposition and synthesis, (8) integrated software architecture and development, and (9) validation cases for software developed.

  4. A Generic Guidance and Control Structure for Six-Degree-of-Freedom Conceptual Aircraft Design

    Science.gov (United States)

    Cotting, M. Christopher; Cox, Timothy H.

    2005-01-01

    A control system framework is presented for both real-time and batch six-degree-of-freedom simulation. This framework allows stabilization and control with multiple command options, from body rate control to waypoint guidance. Also, pilot commands can be used to operate the simulation in a pilot-in-the-loop environment. This control system framework is created by using direct vehicle state feedback with nonlinear dynamic inversion. A direct control allocation scheme is used to command aircraft effectors. Online B-matrix estimation is used in the control allocation algorithm for maximum algorithm flexibility. Primary uses for this framework include conceptual design and early preliminary design of aircraft, where vehicle models change rapidly and a knowledge of vehicle six-degree-of-freedom performance is required. A simulated airbreathing hypersonic vehicle and a simulated high performance fighter are controlled to demonstrate the flexibility and utility of the control system.

  5. Prismatic sealed nickel-cadmium batteries utilizing fiber structured electrodes. II - Applications as a maintenance free aircraft battery

    Science.gov (United States)

    Anderman, Menahem; Benczur-Urmossy, Gabor; Haschka, Friedrich

    Test data on prismatic sealed Ni-Cd batteries utilizing fiber structured electrodes (sealed FNC) is discussed. It is shown that, under a voltage limited charging scheme, the charge acceptance of the sealed FNC battery is far superior to that of the standard vented aircraft Ni-Cd batteries. This results in the sealed FNC battery maintaining its capacity over several thousand cycles without any need for electrical conditioning or water topping. APU start data demonstrate superior power capabilities over existing technologies. Performance at low temperature is presented. Abuse test results reveal a safe fail mechanism even under severe electrical abuse.

  6. Challenges of an Industrialized Acousto-Ultrasonic Sensor System Installation on Primary Aircraft Structure

    OpenAIRE

    Dobmann, Nicolas; Bach, Martin; Eckstein, Benjamin

    2014-01-01

    At laboratory level, secondary bonding of Acousto-Ultrasonic sensor systems is well established and has proven its reliability in applications from coupon level up to flight test installations. However, the applied sensor secondary bonding is a manual process with high amount of required auxiliaries and tools and is hence associated with high costs. In transition from sensor installation under laboratory conditions to the installation of large-scale sensor networks within an aircraft serial p...

  7. 飞机框架结构件振动疲劳失效分析%Vibration-fatigue failure analysis of an aircraft frame component

    Institute of Scientific and Technical Information of China (English)

    李博; 胡伟叶; 沈以赴; 周明

    2011-01-01

    An aircraft frame component of ZL205A casting aluminum alloy fractured during former vibration-fatigue test.Failure analysis was carried out for the frame component by visual examination,X-ray detection,phosphor penetration NDT,fractography inspection,microstructure observation,chemical composition analysis and mechanical properties test.The results show that the fracture was induced maily by fatigue cracking initiations at the chamfering surface porosity defects.The geometric size of porosity defects and their intergranular spatial dendrictic shapes had special influence on the initiation and propagation of fatigue cracks was discussed.%某ZL205A铸造铝合金飞机框架结构件在经过技术标准下的振动试验后发生断裂失效,通过宏观视察、X射线探伤、荧光渗透无损检测、断口形貌观察、微观组织分析、化学成分分析、力学性能测试等手段对该中层支架进行失效分析。结果表明,倒角部位近表面疏松的铸造缺陷是导致疲劳断裂的主要诱因。铝合金铸造疏松的几何尺寸及其呈现的空间树突状结构特点,对于疲劳裂纹的萌生和扩展有着特殊影响。

  8. Development and applications of two computational procedures for determining the vibration modes of structural systems. [aircraft structures - aerospaceplanes

    Science.gov (United States)

    Kvaternik, R. G.

    1975-01-01

    Two computational procedures for analyzing complex structural systems for their natural modes and frequencies of vibration are presented. Both procedures are based on a substructures methodology and both employ the finite-element stiffness method to model the constituent substructures. The first procedure is a direct method based on solving the eigenvalue problem associated with a finite-element representation of the complete structure. The second procedure is a component-mode synthesis scheme in which the vibration modes of the complete structure are synthesized from modes of substructures into which the structure is divided. The analytical basis of the methods contains a combination of features which enhance the generality of the procedures. The computational procedures exhibit a unique utilitarian character with respect to the versatility, computational convenience, and ease of computer implementation. The computational procedures were implemented in two special-purpose computer programs. The results of the application of these programs to several structural configurations are shown and comparisons are made with experiment.

  9. Design and Testing of Off-The-Shelf Electronic Components for an Acoustic Emission Structural Health Monitoring System Using Piezoelectric Sensors

    OpenAIRE

    Law, Yiu Kui

    2005-01-01

    The safety concern of aging aircraft is a rising issue in terms of both safety and cost. An aircraft structure failure during flight is unacceptable. A method needs to be developed and standardized to test the integrity of both commercial and military aircrafts. The current method to test the structure of an aircraft requires the aircraft to be taken out of service for inspection; this is costly due to the inspection required to be performed and the lost use from downtime. A novice ide...

  10. Full Field Stress Measurement for in Situ Structural Health Monitoring of Airframe Components and Repairs

    OpenAIRE

    Rajic, Nik; Street, N.; Brooks, C.; Galea, S.

    2014-01-01

    International audience The fatigue usage monitoring systems installed on various military aircraft rely primarily on strain gauges for sensory information, and for good reason. Strain gauges have a well established certification framework, a relatively good track record of reliability and they directly target the parameter that drives fatigue. Extending the role of strain gauges to structural health monitoring however is problematic. The reasons are manifold but a key one is that strain gr...

  11. All-Fiber Components for Micro-Structured Fibers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose new concepts for developing components for high performance space based Lidar systems. While it is generally recognized that photonic crystal fiber...

  12. Verification of the local structural response of building structures in the anchorage areas of heavy components

    International Nuclear Information System (INIS)

    In conventional dynamic structural analyses for determining dynamic system response for various locations at which components are installed inside the structures it is common practice (in order to simplify analytical effort) to assume that the anchorage (anchor plate, anchor bolts or throughbolts, concrete and reinforcement in the area of bound) has rigid body characteristics and that the building structure itself does not display any local response of its own. The influence of the stiffness of the anchor plate as well anchor bolts and its stress level on the dynamic response is also neglected. For a large number of anchoring systems, especially for all those components and systems having only a small mass, this assumption is certainly appropriate. At some locations, particularly at points where heavy components are anchored or when loading input has been increased, this can lead to local loading of the anchor system as well as of the building structure well into the nonlinear range. Often, verification of capability to accommodate these loads is not possible without changing the wall thicknesses or increasing the percentage of reinforcement. Since the presence of linear or nonlinear effects can be expected to result in energy dissipation (increase in damping capacity and also a change in the stiffness of the coupled system) it must be assumed that the dynamic response between the theoretical coupling point A and the real connection point B of the component on the anchor plate can be considerably altered. Some changes of the dynamic response in the connection point B have to be expected generally even in cases of linear-elastic loading of the anchorage. Using typical anchoring systems as an example, the influence of consideration of nonlinear effects in the anchorage area of a typical anchor plate on the dynamic response as well as the conservatism of conventional analytical approaches are investigated

  13. Testing and Analysis of a Composite Non-Cylindrical Aircraft Fuselage Structure. Part 1; Ultimate Design Loads

    Science.gov (United States)

    Przekop, Adam; Jegley, Dawn C.; Lovejoy, Andrew E.; Rouse, Marshall; Wu, Hsi-Yung T.

    2016-01-01

    The Environmentally Responsible Aviation Project aimed to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration were not sufficient to achieve the desired metrics. One airframe concept identified by the project as having the potential to dramatically improve aircraft performance was a composite-based hybrid wing body configuration. Such a concept, however, presented inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses finite element analysis and testing of a large-scale hybrid wing body center section structure developed and constructed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. Part I of the paper considers the five most critical load conditions, which are internal pressure only and positive and negative g-loads with and without internal pressure. Analysis results are compared with measurements acquired during testing. Performance of the test article is found to be closely aligned with predictions and, consequently, able to support the hybrid wing body design loads in pristine and barely visible impact damage conditions.

  14. System-on-Chip Integration of a New Electromechanical Impedance Calculation Method for Aircraft Structure Health Monitoring

    Science.gov (United States)

    Boukabache, Hamza; Escriba, Christophe; Zedek, Sabeha; Medale, Daniel; Rolet, Sebastien; Fourniols, Jean Yves

    2012-01-01

    The work reported on this paper describes a new methodology implementation for active structural health monitoring of recent aircraft parts made from carbon-fiber-reinforced polymer. This diagnosis is based on a new embedded method that is capable of measuring the local high frequency impedance spectrum of the structure through the calculation of the electro-mechanical impedance of a piezoelectric patch pasted non-permanently onto its surface. This paper involves both the laboratory based E/M impedance method development, its implementation into a CPU with limited resources as well as a comparison with experimental testing data needed to demonstrate the feasibility of flaw detection on composite materials and answer the question of the method reliability. The different development steps are presented and the integration issues are discussed. Furthermore, we present the unique advantages that the reconfigurable electronics through System-on-Chip (SoC) technology brings to the system scaling and flexibility. At the end of this article, we demonstrate the capability of a basic network of sensors mounted onto a real composite aircraft part specimen to capture its local impedance spectrum signature and to diagnosis different delamination sizes using a comparison with a baseline. PMID:23202013

  15. X-ray inspection of composite materials for aircraft structures using detectors of Medipix type

    International Nuclear Information System (INIS)

    This work presents an overview of promising X-ray imaging techniques employed for non-destructive defectoscopy inspections of composite materials intended for the Aircraft industry. The major emphasis is placed on non-tomographic imaging techniques which do not require demanding spatial and time measurement conditions. Imaging methods for defects visualisation, delamination detection and porosity measurement of various composite materials such as carbon fibre reinforced polymers and honeycomb sendwiches are proposed. We make use of the new large area WidePix X-ray imaging camera assembled from up to 100 edgeless Medipix type detectors which is highly suitable for this type of measurements

  16. Assessment of aircraft structural integrity by detecting disbonds through ultrasonic scanning

    Science.gov (United States)

    Abedin, M. N.; Prabhu, D. R.; Winfree, W. P.

    1992-01-01

    A study of nondestructive evaluation of aircraft bonded joints using the contact scanning technique is presented. Reflected signals acquired through the contacting transducer characterize the test region as being bonded or disbonded. Ultrasonic signals are attenuated more rapidly in the bonded regions when compared to disbonded regions. A peak amplitude based method and an artificial neural network are used to classify the signals. Results obtained using an artificial neural network exhibited significant insensitivity to signal variation when compared to the peak amplitude. Very good agreement is observed between results obtained using the present technique and those obtained using immersion scanning.

  17. Design, Analysis and Fabrication of Secondary Structural Components for the Habitat Demonstration Unit-Deep Space Habitat

    Science.gov (United States)

    Smith, Russell W.; Langford, William M.

    2012-01-01

    In support of NASA s Habitat Demonstration Unit - Deep Space Habitat Prototype, a number of evolved structural sections were designed, fabricated, analyzed and installed in the 5 meter diameter prototype. The hardware consisted of three principal structural sections, and included the development of novel fastener insert concepts. The articles developed consisted of: 1) 1/8th of the primary flooring section, 2) an inner radius floor beam support which interfaced with, and supported (1), 3) two upper hatch section prototypes, and 4) novel insert designs for mechanical fastener attachments. Advanced manufacturing approaches were utilized in the fabrication of the components. The structural components were developed using current commercial aircraft constructions as a baseline (for both the flooring components and their associated mechanical fastener inserts). The structural sections utilized honeycomb sandwich panels. The core section consisted of 1/8th inch cell size Nomex, at 9 lbs/cu ft, and which was 0.66 inches thick. The facesheets had 3 plys each, with a thickness of 0.010 inches per ply, made from woven E-glass with epoxy reinforcement. Analysis activities consisted of both analytical models, as well as initial closed form calculations. Testing was conducted to help verify analysis model inputs, as well as to facilitate correlation between testing and analysis. Test activities consisted of both 4 point bending tests as well as compressive core crush sequences. This paper presents an overview of this activity, and discusses issues encountered during the various phases of the applied research effort, and its relevance to future space based habitats.

  18. Statistical time series methods for damage diagnosis in a scale aircraft skeleton structure: loosened bolts damage scenarios

    International Nuclear Information System (INIS)

    A comparative assessment of several vibration based statistical time series methods for Structural Health Monitoring (SHM) is presented via their application to a scale aircraft skeleton laboratory structure. A brief overview of the methods, which are either scalar or vector type, non-parametric or parametric, and pertain to either the response-only or excitation-response cases, is provided. Damage diagnosis, including both the detection and identification subproblems, is tackled via scalar or vector vibration signals. The methods' effectiveness is assessed via repeated experiments under various damage scenarios, with each scenario corresponding to the loosening of one or more selected bolts. The results of the study confirm the 'global' damage detection capability and effectiveness of statistical time series methods for SHM.

  19. Analytical and experimental investigation of aircraft metal structures reinforced with filamentary composites. Phase 1: Concept development and feasibility

    Science.gov (United States)

    Oken, S.; June, R. R.

    1971-01-01

    The analytical and experimental investigations are described in the first phase of a program to establish the feasibility of reinforcing metal aircraft structures with advanced filamentary composites. The interactions resulting from combining the two types of materials into single assemblies as well as their ability to function structurally were studied. The combinations studied were boron-epoxy reinforced aluminum, boron-epoxy reinforced titanium, and boron-polyimide reinforced titanium. The concepts used unidirectional composites as reinforcement in the primary loading direction and metal for carrying the transverse loads as well as its portion of the primary load. The program established that several realistic concepts could be fabricated, that these concepts could perform to a level that would result in significant weight savings, and that there are means for predicting their capability within a reasonable degree of accuracy. This program also encountered problems related to the application of polyimide systems that resulted in their relatively poor and variable performance.

  20. Peak earthquake response of structures under multi-component excitations

    Institute of Scientific and Technical Information of China (English)

    Jianwei Song; Zach Liang; Yi-Lun Chu; George C.Lee

    2007-01-01

    Accurate estimation of the peak seismic responses of structures is important in earthquake resistant design.The internal force distributions and the seismic responses of structures are quite complex,since ground motions are multidirectional.One key issue is the uncertainty of the incident angle between the directions of ground motion and the reference axes of the structure.Different assumed seismic incidences can result in difierent peak values within the scope of design spectrum analysis for a given structure and earthquake ground motion record combination.Using time history analysis to determine the maximum structural responses excited by a given earthquake record requires repetitive calculations to determine the critical incident angle.This paper presents a transformation approach for relatively accurate and rapid determination of the maximum peak responses of a linear structure subjected to three-dimensional excitations within all possible seismic incident angles.The responses can be deformations,internal forces,strains and so on.An irregular building structure model is established using SAP2000 program.Several typical earthquake records and an artificial white noise are applied to the structure model to illustrate the variation of the maximum structural responses for different incident angles.Numerical results show that for many structural parameters,the variation can be greater than 100%.This method can be directly applied to time history analysis of structures using existing computer software to determine the peak responses without carrying out the analyses for all possible incident angles.It can also be used to verify and/or modify aseismic designs by using response spectrum analysis.

  1. An analysis of single-engine rate-of-climb capabilities and thrust requirements of the S-3 and ES-3 aircraft in support of the TF34 Engine Component Improvement Program

    OpenAIRE

    Micklewright, Alan J.

    1995-01-01

    This thesis provides an analytical look at the performance of the TF34 engine installed on the Navy's 5-3 and ES-3 aircraft. The objective of the thesis is to provide information to assist in the effective management of proposals and improvements being considered under the TF34 Engine Component Improvement Program (CIP). Historical flight data, simulator flight and thrust data, historical operational engine data, and data from aircrew surveys were all analyzed to determine the significance of...

  2. Integrated Flight/Structural Mode Control for Very Flexible Aircraft Using L1 Adaptive Output Feedback Controller

    Science.gov (United States)

    Che, Jiaxing; Cao, Chengyu; Gregory, Irene M.

    2012-01-01

    This paper explores application of adaptive control architecture to a light, high-aspect ratio, flexible aircraft configuration that exhibits strong rigid body/flexible mode coupling. Specifically, an L(sub 1) adaptive output feedback controller is developed for a semi-span wind tunnel model capable of motion. The wind tunnel mount allows the semi-span model to translate vertically and pitch at the wing root, resulting in better simulation of an aircraft s rigid body motion. The control objective is to design a pitch control with altitude hold while suppressing body freedom flutter. The controller is an output feedback nominal controller (LQG) augmented by an L(sub 1) adaptive loop. A modification to the L(sub 1) output feedback is proposed to make it more suitable for flexible structures. The new control law relaxes the required bounds on the unmatched uncertainty and allows dependence on the state as well as time, i.e. a more general unmatched nonlinearity. The paper presents controller development and simulated performance responses. Simulation is conducted by using full state flexible wing models derived from test data at 10 different dynamic pressure conditions. An L(sub 1) adaptive output feedback controller is designed for a single test point and is then applied to all the test cases. The simulation results show that the L(sub 1) augmented controller can stabilize and meet the performance requirements for all 10 test conditions ranging from 30 psf to 130 psf dynamic pressure.

  3. A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures

    Directory of Open Access Journals (Sweden)

    Edson Cocchieri Botelho

    2006-09-01

    Full Text Available Weight reduction and improved damage tolerance characteristics were the prime drivers to develop new family of materials for the aerospace/aeronautical industry. Aiming this objective, a new lightweight Fiber/Metal Laminate (FML has been developed. The combination of metal and polymer composite laminates can create a synergistic effect on many properties. The mechanical properties of FML shows improvements over the properties of both aluminum alloys and composite materials individually. Due to their excellent properties, FML are being used as fuselage skin structures of the next generation commercial aircrafts. One of the advantages of FML when compared with conventional carbon fiber/epoxy composites is the low moisture absorption. The moisture absorption in FML composites is slower when compared with polymer composites, even under the relatively harsh conditions, due to the barrier of the aluminum outer layers. Due to this favorable atmosphere, recently big companies such as EMBRAER, Aerospatiale, Boing, Airbus, and so one, starting to work with this kind of materials as an alternative to save money and to guarantee the security of their aircrafts.

  4. Wavlet Decomposition based Diagnostic for Structural Health Monitoring on Metallic Aircrafts: Case of Crack Triangulation and Corrosion Detection

    Directory of Open Access Journals (Sweden)

    jean yves fourniols

    2013-02-01

    Full Text Available This work focus on the structural health monitoring of aircrafts parts specimen structures made of 2024 Aluminum alloys using a reliable Joint Time Frequency Analysis calculation (Joint Temporal Frequency Analysis. In this paper we demonstrate the feasibility of a new non destructive control method capable to probe very large structures within a short time. The method we developed is based through a wide piezoelectric sensors network on a smart comparison between two acoustic signatures: the healthy structure response captured before the commissioning of the plane and “an after flight” response. The sensors network exploits the capability of piezoelectric patches to generate/measure specific Lamb wave’s modes. The system is therefore dynamically configured to localize mechanicals flaws using a triangulation algorithm that operates using different techniques like pitch-catch and pulse-echo. The aim of this paper is to highlight a methodology that is currently being integrated into reconfigurable qualified and certified hardware architecture. The idea behind is to interface the airplane's structure to an integrated modular avionics calculator (IMA.An analytic study is performed and tests to prove the proposed method feasibility on corroded and damaged structures specimens are provided at the end of this paper.

  5. Cladding Effects on Structural Integrity of Nuclear Components

    International Nuclear Information System (INIS)

    Based on this study, the following conclusions and recommendations can be made: Due to significant differences in the thermal and mechanical properties between the austenitic cladding and the ferritic base metal, residual stresses are induced in the cladding and the underlying base metal. These stresses are left in clad components even after Post-Weld Heat Treatment (PWHT). The different restraint conditions of the clad component have a minor influence on the magnitude of the cladding residual stresses in the cladding layer. The thickness of the clad object is the main impacting geometrical dimension in developing cladding residual stresses. A clad object having a base material thickness exceeding 10 times the cladding thickness would be practically sufficient to introduce cladding residual stresses of a thick reactor pressure vessel. For a clad component that received PWHT, the peak tensile stress is in the cladding layer, and the residual stresses in the underlying base material are negligible. However, for clad components not receiving PWHT, for instance the repair welding of the cladding, the cladding residual stresses of tensile type exist even in the base material. This implies a higher risk for underclad cracking for clad repairs that received no PWHT. For certain clad geometries, like nozzles, the profile of the cladding residual stresses depends on the clad thickness and position, and significant tensile stresses can also exist in the base material. Based on different measurements reported in the literature, a value of 150 GPa can be used as Young's Modulus of the austenitic cladding material at room temperature. The control measurements of small samples from the irradiated reactor pressure vessel head did not reveal a significant difference of Young's Modulus between the irradiated and the unirradiated cladding material condition. No significant differences between the axial and tangential cladding residual stresses are reported in the measurement of

  6. Cladding Effects on Structural Integrity of Nuclear Components

    Energy Technology Data Exchange (ETDEWEB)

    Sattari-Far, Iradi; Andersson, Magnus [lnspecta Technology AB, Stockholm (Sweden)

    2006-06-15

    Based on this study, the following conclusions and recommendations can be made: Due to significant differences in the thermal and mechanical properties between the austenitic cladding and the ferritic base metal, residual stresses are induced in the cladding and the underlying base metal. These stresses are left in clad components even after Post-Weld Heat Treatment (PWHT). The different restraint conditions of the clad component have a minor influence on the magnitude of the cladding residual stresses in the cladding layer. The thickness of the clad object is the main impacting geometrical dimension in developing cladding residual stresses. A clad object having a base material thickness exceeding 10 times the cladding thickness would be practically sufficient to introduce cladding residual stresses of a thick reactor pressure vessel. For a clad component that received PWHT, the peak tensile stress is in the cladding layer, and the residual stresses in the underlying base material are negligible. However, for clad components not receiving PWHT, for instance the repair welding of the cladding, the cladding residual stresses of tensile type exist even in the base material. This implies a higher risk for underclad cracking for clad repairs that received no PWHT. For certain clad geometries, like nozzles, the profile of the cladding residual stresses depends on the clad thickness and position, and significant tensile stresses can also exist in the base material. Based on different measurements reported in the literature, a value of 150 GPa can be used as Young's Modulus of the austenitic cladding material at room temperature. The control measurements of small samples from the irradiated reactor pressure vessel head did not reveal a significant difference of Young's Modulus between the irradiated and the unirradiated cladding material condition. No significant differences between the axial and tangential cladding residual stresses are reported in the

  7. Development of powder metallurgy Al alloys for high temperature aircraft structural applications, phase 2

    Science.gov (United States)

    Chellman, D. J.

    1982-01-01

    In this continuing study, the development of mechanically alloyed heat resistant aluminum alloys for aircraft were studied to develop higher strength targets and higher service temperatures. The use of higher alloy additions to MA Al-Fe-Co alloys, employment of prealloyed starting materials, and higher extrusion temperatures were investigated. While the MA Al-Fe-Co alloys exhibited good retention of strength and ductility properties at elevated temperatures and excellent stability of properties after 1000 hour exposure at elevated temperatures, a sensitivity of this system to low extrusion strain rates adversely affected the level of strength achieved. MA alloys in the Al-Li family showed excellent notched toughness and property stability after long time exposures at elevated temperatures. A loss of Li during processing and the higher extrusion temperature 482 K (900 F) resulted in low mechanical strengths. Subsequent hot and cold working of the MA Al-Li had only a mild influence on properties.

  8. On-line identification, flutter testing and adaptive notching of structural parameters for V-22 tiltrotor aircraft

    Indian Academy of Sciences (India)

    R K Mehra; P O Arambel; A M Sampath; R K Prasanth; T C Parham

    2000-04-01

    New algorithms and results are presented for flutter testing and adaptive notching of structural modes in V-22 tiltrotor aircraft based on simulated and flight-test data from Bell Helicopter Textron, Inc. (BHTI). For flutter testing and the identification of structural mode frequencies, dampings and mode shapes, time domain state space techniques based on Deterministic Stochastic Realization Algorithms (DSRA) are used to accurately identify multiple modessimultaneously from sine sweep and other multifrequency data, resulting in great savings over the conventional Prony method. Two different techniques for adaptive notching are explored in order to design an Integrated Flight Structural Control (IFSC) system. The first technique is based on on-line identification of structural mode parameters using DSRA algorithm and tuning of a notch filter. The second technique is based on decoupling rigid-body and structural modes of the aircraft by means of a Kalman filter and using rigid-body estimates in the feedback control loop. The difference between the two approaches is that on-line identification and adaptive notching in the first approach are entirely based on the knowledge of structural modes, whereas the Kalman filter design in the second approach is based on the rigid-body dynamic model only.In the first IFSC design, on-line identification is necessary for flight envelope expansion and to adjust the notch filter frequencies and suppress aero-servoelastic instabilities due to changing flight conditionssuch as gross weight, sling loads, and airspeed. It isshown that by tuning the notch filterfrequency to the identified frequency, the phase lag is reduced and the corresponding structural mode is effectively suppressed and stability is maintained. In the second IFSC design using Kalman filter design, the structural modes are again effectively suppressed. Furthermore, the rigid-body estimates are found to be fairly insensitive to both natural frequency and damping factor

  9. UNMANNED AIRCRAFT SYSTEMS AS COMPLEX MULTISTRUCTURAL SYSTEM

    Directory of Open Access Journals (Sweden)

    A. S. Abufanas

    2015-08-01

    Full Text Available The principles of constructing mathematical models of unmanned aircraft systems as complex systems consisting of a plurality ofsubsystems, each of which is considered as a system. In this case, the relationship between the subsystems are described by equations based on the topological graph theory, and for the preparation of component equations describing the dynamics of the subsystems is proposed to use differential equations discontinuous type based on systems theory of random structure.

  10. Amphibious Aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — A brief self composed research article on Amphibious Aircrafts discussing their use, origin and modern day applications along with their advantages and...

  11. Release strategies for making transferable semiconductor structures, devices and device components

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, John A.; Nuzzo, Ralph G.; Meitl, Matthew; Ko, Heung Cho; Yoon, Jongseung; Menard, Etienne; Baca, Alfred J.

    2016-05-24

    Provided are methods for making a device or device component by providing a multi layer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.

  12. Lessons learned during decommissioning of underground structures, systems and components

    International Nuclear Information System (INIS)

    The following examples present some important lessons learned, some brief technical details and a description of problems encountered in the past in various decommissioning projects related to the removal of underground SSCs. Some cases refer to embedded components. The situations described here are typical of the types of difficulty that can arise when planning for or implementing the removal of underground SSCs as an element of the decommissioning process. The information presented here is not intended to be exhaustive and the reader is encouraged to evaluate the applicability of the specific lessons learned to their own particular decommissioning project or activity. It is not the intention of this annex to identify projects for criticism but rather to enhance future operations planning and implementation in order to reduce the likelihood of the recurrence of earlier problems. A short analysis of the root causes of these problems is presented

  13. The Structural Geographic Components of a Territorial Survey

    Directory of Open Access Journals (Sweden)

    POMPEI COCEAN

    2006-01-01

    Full Text Available When using regional geographic approaches, i.e. when applying its concepts to the problems of anthropic communities from a certain territory, is compulsory. In this study we have taken into account the complex and the etymologically adequate meaning of the notion and not the meaning most commonly used at present (i.e. the functional zoning and regionalisation of the territory. Relying on the estimations of territorial surveys, one may give the solutions for the extant malfunctions and for optimising future developments. The geographic components of this parameter (the territorial survey are: the natural support basis, the population and its settlements, the social and economic development level, the technical equipment of the territory, and the extant risks and malfunctions. Indices from 1 to 10 will be summed in order to give us the big picture, namely the present-day situation and the favourability level of that territory for various anthropic interventions.

  14. Design-Load Basis for LANL Structures, Systems, and Components

    Energy Technology Data Exchange (ETDEWEB)

    I. Cuesta

    2004-09-01

    This document supports the recommendations in the Los Alamos National Laboratory (LANL) Engineering Standard Manual (ESM), Chapter 5--Structural providing the basis for the loads, analysis procedures, and codes to be used in the ESM. It also provides the justification for eliminating the loads to be considered in design, and evidence that the design basis loads are appropriate and consistent with the graded approach required by the Department of Energy (DOE) Code of Federal Regulation Nuclear Safety Management, 10, Part 830. This document focuses on (1) the primary and secondary natural phenomena hazards listed in DOE-G-420.1-2, Appendix C, (2) additional loads not related to natural phenomena hazards, and (3) the design loads on structures during construction.

  15. Vertical Distribution of Structural Components in Corn Stover

    OpenAIRE

    Jane M. F. Johnson; Douglas L. Karlen; Garold L. Gresham; Cantrell, Keri B.; Archer, David W.; Brian J. Wienhold; Gary E. Varvel; David A. Laird; John Baker; Tyson E. Ochsner; Jeff M. Novak; Ardell D. Halvorson; Francisco Arriaga; David T. Lightle; Amber Hoover

    2014-01-01

    In the United States, corn ( Zea mays L.) stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk) that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10...

  16. Optimal glass-ceramic structures: Components of giant mirror telescopes

    Science.gov (United States)

    Eschenauer, Hans A.

    1990-01-01

    Detailed investigations are carried out on optimal glass-ceramic mirror structures of terrestrial space technology (optical telescopes). In order to find an optimum design, a nonlinear multi-criteria optimization problem is formulated. 'Minimum deformation' at 'minimum weight' are selected as contradictory objectives, and a set of further constraints (quilting effect, optical faults etc.) is defined and included. A special result of the investigations is described.

  17. Guided modes in photonic structures with left-handed components

    OpenAIRE

    Markos, P.

    2015-01-01

    The spectrum of guided modes of linear chain of dielectric and left-handed cylinders is analyzed. The structure of eigenfrequences is much more richer if cylinders are made from the left-handed material with both permittivity and permeability negative. he number of guided modes is much larger, and their interaction with incident electromagnetic wave is much stronger. For some value of the wave vector, no guided modes were found. We discuss how these specific properties of guided modes corresp...

  18. Screening criteria for critical structures and components in Wolsong PLiM

    International Nuclear Information System (INIS)

    The first step of PLiM, plant lifetime management, is the feasibility study to evaluate economic gains of continued operation beyond its design life. This feasibility study includes the selection of critical structures and components that greatly effect to continued operation, lifetime evaluation such as aging effects for those major components, and economic assessment incorporating the results of lifetime evaluation. To select critical structures and components for PLiM of Wolsong unit 1, the concept of major structures and components important to PLiM was defined here and screening procedure was established to meet with the scope of aging management of PSR. As a selection criteria, impacts of component's failure to plant safety, expenses and efforts to recover failure or refurbish, and the possibility of failure of refurbishment were screened out. To determine relative priority of structures and components, the technique of multi-attribute utility measurement was utilized

  19. 77 FR 27815 - Aging Management of Stainless Steel Structures and Components in Treated Borated Water

    Science.gov (United States)

    2012-05-11

    ... COMMISSION Aging Management of Stainless Steel Structures and Components in Treated Borated Water AGENCY..., ``Aging Management of Stainless Steel Structures and Components in Treated Borated Water.'' This LR-ISG... Register on June 22, 2010 (75 FR 35510). The NRC staff has determined that existing guidance in the...

  20. 76 FR 74831 - Aging Management of Stainless Steel Structures and Components in Treated Borated Water

    Science.gov (United States)

    2011-12-01

    ... COMMISSION Aging Management of Stainless Steel Structures and Components in Treated Borated Water AGENCY...: On November 8, 2011 (76 FR 69292) the U.S. Nuclear Regulatory Commission (NRC) published in the...- ISG-2011-01, ``Aging Management of Stainless Steel Structures and Components in Treated Borated...

  1. Composite structure of vortices in two-component Bose-Einstein condensate

    OpenAIRE

    Ivashin Anatoly P.; Poluektov Yuri M.

    2015-01-01

    In contrast to one-component Bose-Einstein condensate case, the vortices in two-component condensate can have various complicated structures. The vortices in a space-homogeneous Bose-Einstein condensate have been studied in this paper. It is shown that the vortex structure is described by three dimensionless parameters. This is totally different from the usual one-component condensate case,where an isolated vortex is described by a parameterless dimensionless equation....

  2. Liability and lifetime of metallic components and structures

    International Nuclear Information System (INIS)

    In this overview of his research activity, the author describes the ductile damage process in structures subjected to high rate loadings, notably for tank steels and gas pipeline high resistance steels. Then, he describes the cleavage fracture process in bainitic steels by means of a local fracture approach. He proposes a modelling of the Charpy v-notch impact test of the resilience-to-toughness transition during the ductile-brittle transition for bainitic steels, the developed method being used to interpret resilience and toughness tests performed on an irradiated material. He finally discusses these works, describes the current ones, and discusses research perspectives within his Nuclear Material Department

  3. Probabilistic Structural Analysis Methods (PSAM) for select space propulsion system components, part 2

    Science.gov (United States)

    1991-01-01

    The technical effort and computer code enhancements performed during the sixth year of the Probabilistic Structural Analysis Methods program are summarized. Various capabilities are described to probabilistically combine structural response and structural resistance to compute component reliability. A library of structural resistance models is implemented in the Numerical Evaluations of Stochastic Structures Under Stress (NESSUS) code that included fatigue, fracture, creep, multi-factor interaction, and other important effects. In addition, a user interface was developed for user-defined resistance models. An accurate and efficient reliability method was developed and was successfully implemented in the NESSUS code to compute component reliability based on user-selected response and resistance models. A risk module was developed to compute component risk with respect to cost, performance, or user-defined criteria. The new component risk assessment capabilities were validated and demonstrated using several examples. Various supporting methodologies were also developed in support of component risk assessment.

  4. Aircraft Design

    Science.gov (United States)

    Bowers, Albion H. (Inventor); Uden, Edward (Inventor)

    2016-01-01

    The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.

  5. Aircraft Noise

    Science.gov (United States)

    Michel, Ulf; Dobrzynski, Werner; Splettstoesser, Wolf; Delfs, Jan; Isermann, Ullrich; Obermeier, Frank

    Aircraft industry is exposed to increasing public pressure aiming at a continuing reduction of aircraft noise levels. This is necessary to both compensate for the detrimental effect on noise of the expected increase in air traffic and improve the quality of living in residential areas around airports.

  6. Aeroelastic Loads Modeling for Composite Aircraft Design Support

    NARCIS (Netherlands)

    Baluch, H.A.

    2009-01-01

    With regard to the simulation of structural vibrations and consequent aeroelastic loads in aircraft components, the use of elastic axis e.a as reference of vibrations is quite common. The e.a decouples the bending and torsion degrees of freedom (D.o.F) during the dynamic analysis. The use of the e.a

  7. Evaluation on the structural soundness of the transport package for low-level radioactive waste for subsurface disposal against aircraft impact by finite element method

    International Nuclear Information System (INIS)

    The structural analysis of aircraft crush on the transport package for low-level radioactive waste was performed using the impact force which was already used for the evaluation of the high-level waste transport package by LSDYNA code. The transport package was deformed, and stresses due to the crush exceeded elastic range. However, plastic strains yieled in the package were far than the elongation of the materials and the body of the package did not contact the disposal packages due to the deformation of the package. Therefore, it was confirmed that the package keeps its integrity against aircraft crush. (author)

  8. Distributed, Passivity-Based, Aeroservoelastic Control (DPASC) of Structurally Efficient Aircraft in the Presence of Gusts Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Control of extremely lightweight, long endurance aircraft poses a challenging aeroservoelastic (ASE) problem due to significantly increased flexibility, and...

  9. Engineering analyzes of bionics structures of componible modules

    International Nuclear Information System (INIS)

    The main goal of the research presented in this paper is creation of innovative concept for prefabricated houses for living, using the modular principal. The leading idea is assembling of prefabricated houses as structures of modules, with possibility for relatively easy changes during the exploitation: adding, removing or recombination of modules according to the space requirements of the users. Each of the modules would be fabricated as a fully prepared self standing room for living. The shape and construction of the modules, as well as their space arrangement are derived according to the principals of bionics. The quality of the presented concept is approved trough several analyses: static analysis of the construction using finite elements method; solar analysis for election of perfect orientation and insulation; thermal analysis. (Author)

  10. Program for establishing long-time flight service performance of composite materials in the center wing structure of C-130 aircraft. Phase 5: Flight service and inspection

    Science.gov (United States)

    Kizer, J. A.

    1981-01-01

    Inspections of the C-130 composite-reinforced center wings were conducted over the flight service monitoring period of more than six years. Twelve inspections were conducted on each of the two C-130H airplanes having composite reinforced center wing boxes. Each inspection consisted of visual and ultrasonic inspection of the selective boron-epoxy reinforced center wings which included the inspection of the boron-epoxy laminates and the boron-epoxy reinforcement/aluminum structure adhesive bondlines. During the flight service monitoring period, the two C-130H aircraft accumulated more than 10,000 flight hours and no defects were detected in the inspections over this period. The successful performance of the C-130H aircraft with composite-reinforced center wings allowed the transfer of the responsibilities of inspecting and maintaining these two aircraft to the U. S. Air Force.

  11. Computer Aided Visual Inspection of Aircraft Surfaces

    Directory of Open Access Journals (Sweden)

    Rafia Mumtaz

    2012-02-01

    Full Text Available Non Destructive Inspections (NDI plays a vital role in aircraft industry as it determines the structural integrity of aircraft surface and material characterization. The existing NDI methods are time consuming, we propose a new NDI approach using Digital Image Processing that has the potential to substantially decrease the inspection time. Automatic Marking of cracks have been achieved through application of Thresholding, Gabor Filter and Non Subsampled Contourlet transform. For a novel method of NDI, the aircraft imagery is analyzed by three methods i.e Neural Networks, Contourlet Transform (CT and Discrete Cosine Transform (DCT. With the help of Contourlet Transform the two dimensional (2-D spectrum is divided into fine slices, using iterated directional filterbanks. Next, directional energy components for each block of the decomposed subband outputs are computed. These energy values are used to distinguish between the crack and scratch images using the Dot Product classifier. In next approach, the aircraft imagery is decomposed into high and low frequency components using DCT and the first order moment is determined to form feature vectors.A correlation based approach is then used for distinction between crack and scratch surfaces. A comparative examination between the two techniques on a database of crack and scratch images revealed that texture analysis using the combined transform based approach gave the best results by giving an accuracy of 96.6% for the identification of crack surfaces and 98.3% for scratch surfaces.

  12. Reliability-based aeroelastic optimization of a composite aircraft wing via fluid-structure interaction of high fidelity solvers

    International Nuclear Information System (INIS)

    We consider reliability based aeroelastic optimization of a AGARD 445.6 composite aircraft wing with stochastic parameters. Both commercial engineering software and an in-house reliability analysis code are employed in this high-fidelity computational framework. Finite volume based flow solver Fluent is used to solve 3D Euler equations, while Gambit is the fluid domain mesh generator and Catia-V5-R16 is used as a parametric 3D solid modeler. Abaqus, a structural finite element solver, is used to compute the structural response of the aeroelastic system. Mesh based parallel code coupling interface MPCCI-3.0.6 is used to exchange the pressure and displacement information between Fluent and Abaqus to perform a loosely coupled fluid-structure interaction by employing a staggered algorithm. To compute the probability of failure for the probabilistic constraints, one of the well known MPP (Most Probable Point) based reliability analysis methods, FORM (First Order Reliability Method) is implemented in Matlab. This in-house developed Matlab code is embedded in the multidisciplinary optimization workflow which is driven by Modefrontier. Modefrontier 4.1, is used for its gradient based optimization algorithm called NBI-NLPQLP which is based on sequential quadratic programming method. A pareto optimal solution for the stochastic aeroelastic optimization is obtained for a specified reliability index and results are compared with the results of deterministic aeroelastic optimization.

  13. A tabu search evalutionary algorithm for multiobjective optimization: Application to a bi-criterion aircraft structural reliability problem

    Science.gov (United States)

    Long, Kim Chenming

    Real-world engineering optimization problems often require the consideration of multiple conflicting and noncommensurate objectives, subject to nonconvex constraint regions in a high-dimensional decision space. Further challenges occur for combinatorial multiobjective problems in which the decision variables are not continuous. Traditional multiobjective optimization methods of operations research, such as weighting and epsilon constraint methods, are ill-suited to solving these complex, multiobjective problems. This has given rise to the application of a wide range of metaheuristic optimization algorithms, such as evolutionary, particle swarm, simulated annealing, and ant colony methods, to multiobjective optimization. Several multiobjective evolutionary algorithms have been developed, including the strength Pareto evolutionary algorithm (SPEA) and the non-dominated sorting genetic algorithm (NSGA), for determining the Pareto-optimal set of non-dominated solutions. Although numerous researchers have developed a wide range of multiobjective optimization algorithms, there is a continuing need to construct computationally efficient algorithms with an improved ability to converge to globally non-dominated solutions along the Pareto-optimal front for complex, large-scale, multiobjective engineering optimization problems. This is particularly important when the multiple objective functions and constraints of the real-world system cannot be expressed in explicit mathematical representations. This research presents a novel metaheuristic evolutionary algorithm for complex multiobjective optimization problems, which combines the metaheuristic tabu search algorithm with the evolutionary algorithm (TSEA), as embodied in genetic algorithms. TSEA is successfully applied to bicriteria (i.e., structural reliability and retrofit cost) optimization of the aircraft tail structure fatigue life, which increases its reliability by prolonging fatigue life. A comparison for this

  14. Structural homologies of component C5 of human complement with components C3 and C4 by neutron scattering

    International Nuclear Information System (INIS)

    The complement component C5 is one of a family of structurally related plasma proteins that includes components C3 and C4. Activation of C5 is the initial step in the formation of the membrane attack complex of complement. Analysis of the solution structure of C5 and comparisons with similar analyses of the structures of C3 and C4 are reported here. Neutron solution scattering gave an Mr for C5 of 201,000, which demonstrates that C5 is monomeric in solution. The radius of gyration RG of C5 at infinite contrast is 4.87 nm and corresponds to an elongated structure. The longest length of C5 was determined to be at least 15-16 nm from three calculations on the basis of the RG, the scattering intensity at zero angle I(0), and the indirect transformation of the scattering curve into real space. Comparison of the RG and contrast variation data and indirect transformations of the scattering curves for C3, C4, and C5 show that these have very similar structures. Comparisons of the C5 scattering curve with Debye small-sphere models previously employed for C4 and C3 show that good curve fits could be obtained. Unlike previous studies that have suggested significant differences, these experiments indicate that, while C5 differs from C3 and C4 in its activation and inactivation pathways, significant structural homology exists between the native proteins, as might be predicted from their high (and similar) sequence homology

  15. Vertical Distribution of Structural Components in Corn Stover

    Directory of Open Access Journals (Sweden)

    Jane M. F. Johnson

    2014-11-01

    Full Text Available In the United States, corn (Zea mays L. stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10% greater at grain harvest than at physiological maturity, but harvestable biomass was about 25% less due to stalk breakage. Gross heating density above the ear averaged 16.3 ± 0.40 MJ kg−1, but with an alkalinity measure of 0.83 g MJ−1, slagging is likely to occur during gasification. Assuming a stover harvest height of 10 cm, the estimated ethanol yield would be >2500 L ha−1, but it would be only 1000 L ha−1 if stover harvest was restricted to the material from above the primary ear. Vertical composition of corn stover is relatively uniform; thus, decision on cutting height may be driven by agronomic, economic and environmental considerations.

  16. Vertical distribution of structural components in corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Jane M. F. Johnson; Douglas L. Karlen; Garold L. Gresham; Keri B. Cantrell; David W. Archer; Brian J. Wienhold; Gary E. Varvel; David A. Laird; John Baker; Tyson E. Ochsner; Jeff M. Novak; Ardell D. Halvorson; Francisco Arriaga; David T. Lightle; Amber Hoover; Rachel Emerson; Nancy W. Barbour

    2014-11-01

    In the United States, corn (Zea mays L.) stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk) that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10% greater at grain harvest than at physiological maturity, but harvestable biomass was about 25% less due to stalk breakage. Gross heating density above the ear averaged 16.3 ± 0.40 MJ kg?¹, but with an alkalinity measure of 0.83 g MJ?¹, slagging is likely to occur during gasification. Assuming a stover harvest height of 10 cm, the estimated ethanol yield would be >2500 L ha?¹, but it would be only 1000 L ha?¹ if stover harvest was restricted to the material from above the primary ear. Vertical composition of corn stover is relatively uniform; thus, decision on cutting height may be driven by agronomic, economic and environmental considerations.

  17. Weibull-Based Design Methodology for Rotating Structures in Aircraft Engines

    OpenAIRE

    Zaretsky V. E.; Hendricks C. R.; Soditus S.

    2003-01-01

    The NASA Energy-Efficient Engine (E3-Engine) is used as the basis of a Weibull-based life and reliability analysis. Each component's life, and thus the engine's life, is defined by high-cycle fatigue or low-cycle fatigue. Knowing the cumulative life distribution of each of the components making up the engine as represented by a Weibull slope is a prerequisite to predicting the life and reliability of the entire engine. As the engine's Weibull slope increases, the predicted life decreases. The...

  18. Oppor tunistic maintenance for multi-component systems considering structural dependence and economic dependence

    Institute of Scientific and Technical Information of China (English)

    Junbao Geng; Michael Azarian; Michael Pecht

    2015-01-01

    Although opportunistic maintenance strategies are widely used for multi-component systems, al opportunistic mainte-nance strategies only consider economic dependence and do not take structural dependence into account. An opportunistic main-tenance strategy is presented for a multi-component system that considers both structural dependence and economic dependence. The cost relation and time relation among components based on structural dependence are developed. The maintenance strategy for each component of a multi-component system involves one of five maintenance actions, namely, no-maintenance, a minimal maintenance action, an imperfect maintenance action, a perfect maintenance action, and a replacement action. The maintenance action is determined by the virtual age of the component, the life expectancy of the component, and the age threshold values. Monte Carlo simulation is designed to obtain the optimal oppor-tunistic maintenance strategy of the system over its lifetime. The simulation result reveals that the minimum maintenance cost with a strategy that considers structural dependence is less than that with a strategy that does not consider structural dependence. The availability with a strategy that considers structural dependence is greater than that with a strategy that does not consider structural dependence under the same conditions.

  19. Some Considerations about the RIERA Approach and Missile-Structure Interaction Analysis Method in Aircraft Impact Assessment on Nuclear Power Plants

    International Nuclear Information System (INIS)

    In this paper, the classically preferred RIERA approach and the so-called missile-structure interaction (MSI) analysis methods which are indebted by the latest computing power are discussed about their inherent discrepancies. Studies on the safety assessments on the nuclear power plants against large civil aircraft crashes are ongoing actively. In this paper, the classically preferred RIERA approach and the so-called missile-structure interaction (MSI) analysis methods are discussed about their inherent discrepancies especially from the point of view energy balances. More advanced and simplified ways in the safety assessment of nuclear power plants against large civil aircrafts may be possible by understanding the inherent discrepancies of the RIERA approach method and the missile-structure interaction method and reducing the differences of structural responses

  20. Trimmed simulation of a transport aircraft using fluid-structure coupling

    NARCIS (Netherlands)

    Michler, A.K.; Dwight, R.P.; Heinrich, R.

    2009-01-01

    The accurate prediction of the aerodynamic coefficients under cruise conditions is of major importance for assessing the aircraft’s fuel consumption. To this end, fluid dynamics, structural mechanics and flight mechanics have to be considered: on the one hand, the structure elastically deforms under

  1. Residual stress measurements in laser clad aircraft aluminium alloys

    International Nuclear Information System (INIS)

    Fatigue and corrosion damage of structural components threatens the safety and availability of civil and military aircrafts. There is no sign of relief from these threats as civil and military aircrafts worldwide are continuously being pushed further into and past their initial design fatigue lives in tight financial circumstances. Given fatigue and corrosion damage often initiates at the surface and sub-surface of the components, there has been extensive research and development worldwide focused on advanced aircraft repair technologies and surface enhancement methods. The Deep Surface Rolling (DSR) is one of advanced surface enhancement technologies that can introduce deep compressive residual stresses into the surface of aircraft metallic structure to extend its fatigue life. For the development of cost-effective aircraft structural repair technologies such as laser cladding, in this study, aluminium alloy 7075-T651 specimens with simulated corrosion damage were repaired using laser cladding technology. The surface of the laser cladding region was then processed by DSR. The experimental results from subsequent fatigue testing of laser cladded baseline, DSR and post-heat treated laser cladded specimens discovered that the DSR process can significantly increase fatigue life in comparison with the ascladded baseline. The three dimensional residual stresses were measured by neutron diffraction and the results confirmed the beneficial compressive residual stresses at the cladding surface can be achieved in depth more than 1.0 mm.

  2. Environmental and genetic effects on pigment-based vs. structural component of yellow feather colouration.

    Directory of Open Access Journals (Sweden)

    Jana Matrková

    Full Text Available BACKGROUND: Carotenoid plumage is of widespread use in bird communication. Carotenoid-based feather colouration has recently been shown to be dependent on both pigment concentration and feather structure. If these two components are determined differently, one plumage patch may potentially convey different aspects of individual quality. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated the effects of genetic and environmental factors on carotenoid-based yellow breast colouration of Great Tit (Parus major nestlings. By partial cross-fostering, we separated the genetic and pre-natal vs. post-natal parental effects on both the structural and the pigment-based component of carotenoid-based plumage colouration. We also simultaneously manipulated the post-hatching environment by brood size manipulation. The structural component of nestling colouration reflected features of female colouration. On the other hand, the pigment-based component was more affected by rearing conditions presumably representing food quality. While the structural component was related to both origin- and environment-related factors, the pigment-based component seemed to be environment-dependent only. These results support the notion that pigment-based and structural components of feather colouration are determined differently. CONCLUSIONS/SIGNIFICANCE: Chromatic and achromatic components of carotenoid-based feather colouration reflected different aspects of individual quality and history, and thus may potentially form a multicomponent signal.

  3. Mechanical strain energy shuttle for aircraft morphing via wing twist or structural deformation

    Science.gov (United States)

    Clingman, Dan J.; Ruggeri, Robert T.

    2004-07-01

    Direct structural deformation to achieve aerodynamic benefit is difficult because large actuators must supply energy for structural strain and aerodynamic loads. This ppaer presents a mechanism that allows most of the energy required to twist or deform a wing to be stored in descrete springs. When this device is used, only sufficient energy is provided to control the position of the wing. This concept allows lightweight actuators to perform wing twisting and other structural distortions, and it reduces the onboard mass of the wing-twist system. The energy shuttle can be used with any actuator and it has been adapted for used with shape memory alloy, piezoelectric, and electromagnetic actuators.

  4. Measurement of wavefront structure from large aperture optical components by phase shifting interferometry

    International Nuclear Information System (INIS)

    This paper discusses the results of high spatial resolution measurement of the transmitted or reflected wavefront of optical components using phase shifting interferometry with a wavelength of 6328 angstrom. The optical components studied range in size from approximately 50 mm x 100 mm to 400 mm x 750 mm. Wavefront data, in the form of 3-D phase maps, have been obtained for three regimes of scale length: ''micro roughness'', ''mid-spatial scale'', and ''optical figure/curvature.'' Repetitive wavefront structure has been observed with scale lengths from 10 mm to 100 mm. The amplitude of this structure is typically λ/100 to λ/20. Previously unobserved structure has been detected in optical materials and on the surfaces of components. We are using this data to assist in optimizing laser system design, to qualify optical components and fabrication processes under study in our component development program

  5. Innovative Structural and Material Concepts for Low-Weight Low-Drag Aircraft Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this multi-phase project is to explore, develop, integrate, and test several innovative structural design concepts and new material...

  6. Nonlinear Aerodynamics-Structure Time Simulation for HALE Aircraft Design/Analysis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Time simulation of a nonlinear aerodynamics model (NA) developed at Virginia Tech coupled with a nonlinear structure model (NS) is proposed as a design/analysis...

  7. Trimmed simulation of a transport aircraft using fluid-structure coupling

    OpenAIRE

    Michler, A.K.; DWIGHT, R.P.; Heinrich, R

    2009-01-01

    The accurate prediction of the aerodynamic coefficients under cruise conditions is of major importance for assessing the aircraft’s fuel consumption. To this end, fluid dynamics, structural mechanics and flight mechanics have to be considered: on the one hand, the structure elastically deforms under the influence of the flow and a state of static aeroelastic equilibrium is reached; on the other hand, the aircraft’s loads are balanced by adjusting control surfaces, which influences the flow. A...

  8. Aircraft Carriers

    DEFF Research Database (Denmark)

    Nødskov, Kim; Kværnø, Ole

    the majority of its foreign trade, as well as its oil imports, upon which the country is totally dependent. China therefore has good reasons for acquiring an aircraft carrier to enable it to protect its national interests. An aircraft carrier would also be a prominent symbol of China’s future status...... information is pieced together, then a picture is created of a Chinese aircraft carrier program, where Varyag will be made operational for training purposes. With this as the model, China will build a similar sized carrier themselves. If this project does become a reality, then it will take many years for...... Kuznetsov carrier. The SU-33 is, in its modernized version, technologically at the same level as western combat aircraft in both the offensive as well as the defensive roles. But Russia and China currently have an arms trade 6 dispute that is likely to prevent a deal, unless the dispute is resolved. As an...

  9. Probabilistic Structural Analysis Methods (PSAM) for Select Space Propulsion System Components

    Science.gov (United States)

    1999-01-01

    Probabilistic Structural Analysis Methods (PSAM) are described for the probabilistic structural analysis of engine components for current and future space propulsion systems. Components for these systems are subjected to stochastic thermomechanical launch loads. Uncertainties or randomness also occurs in material properties, structural geometry, and boundary conditions. Material property stochasticity, such as in modulus of elasticity or yield strength, exists in every structure and is a consequence of variations in material composition and manufacturing processes. Procedures are outlined for computing the probabilistic structural response or reliability of the structural components. The response variables include static or dynamic deflections, strains, and stresses at one or several locations, natural frequencies, fatigue or creep life, etc. Sample cases illustrates how the PSAM methods and codes simulate input uncertainties and compute probabilistic response or reliability using a finite element model with probabilistic methods.

  10. 76 FR 69292 - Aging Management of Stainless Steel Structures and Components in Treated Borated Water

    Science.gov (United States)

    2011-11-08

    .... ML100920158), for which a notice of availability was published in the Federal Register on June 22, 2010 (75 FR... COMMISSION Aging Management of Stainless Steel Structures and Components in Treated Borated Water AGENCY... Components in Treated Borated Water.'' This LR-ISG revises the guidance in the Standard Review Plan...

  11. CMS experiment : animation showing the construction of the main structural components of CMS together

    CERN Multimedia

    CERN Multimedia Production Unit

    2003-01-01

    This 17-minute long animation shows the construction of the main structural components of CMS in the surface hall in Cessy and offers a detailed overview of the installation in the experimental cavern.

  12. CMS experiment : animation showing the construction of the main structural components of CMS together

    CERN Multimedia

    2006-01-01

    This 17-minute long animation shows the construction of the main structural components of CMS in the surface hall in Cessy and offers a detailed overview of the installation in the experimental cavern.

  13. CALCULATED TEMPERATURE RISE AND THERMAL ELONGATION OF STRUCTURAL COMPONENTS, DEPENDING ON ACTION INTEGRAL OF INJECTED LIGHTNING CURRENTS

    DEFF Research Database (Denmark)

    Madsen, Søren Find

    2005-01-01

    In the initial phase of an aircraft design, it is valuable to be capable of predicting temperature rise and thermal elongation depending on the actual threat from lightning currents. In this paper equations are stated to calculate the temperature rise of different structures. The analytical...

  14. Weibull-Based Design Methodology for Rotating Structures in Aircraft Engines

    Directory of Open Access Journals (Sweden)

    Erwin V. Zaretsky

    2003-01-01

    Full Text Available The NASA Energy-Efficient Engine (E3-Engine is used as the basis of a Weibull-based life and reliability analysis. Each component's life, and thus the engine's life, is defined by high-cycle fatigue or low-cycle fatigue. Knowing the cumulative life distribution of each of the components making up the engine as represented by a Weibull slope is a prerequisite to predicting the life and reliability of the entire engine. As the engine's Weibull slope increases, the predicted life decreases. The predicted engine lives L5 (95% probability of survival of approximately 17,000 and 32,000 hr do correlate with current engine-maintenance practices without and with refurbishment, respectively. The individual high-pressure turbine (HPT blade lives necessary to obtain a blade system life L0.1 (99.9% probability of survival of 9000 hr for Weibull slopes of 3, 6, and 9 are 47,391; 20,652; and 15,658 hr, respectively. For a design life of the HPT disks having probable points of failure equal to or greater than 36,000 hr at a probability of survival of 99.9%, the predicted disk system life L0.1 can vary from 9408 to 24,911 hr.

  15. Ageing management and Long-term operation of NPP structures and components

    International Nuclear Information System (INIS)

    The paper presents methodological aspects for ageing management and long-term operation of NPP structures and components considering experience accumulated in nuclear area of Ukraine and IAEA recommendations. The research shows the role of ageing management for lifetime extension and justification of long-term operation of NPP structures and components. The given information is recommended to be used during development of regulatory and technical documents on ageing management and long-term operation

  16. On the Use of Principal Component Analysis for Parameter Identification and Damage Detection in Structures

    OpenAIRE

    Golinval, Jean-Claude

    2014-01-01

    Modal analysis is used extensively for understanding the dynamic behaviour of structures as well as for structural health monitoring or damage detection based on output-only measurements. In this presentation, a different approach based on principal component analysis is considered. Principal component analysis (PCA), also called proper orthogonal decomposition (POD), is a multi-variate statistical method that aims at obtaining a compact representation of the data. In the present paper, PC...

  17. Structural models of multi-component nicknames of american cities and towns

    OpenAIRE

    Zosimova O.V.

    2015-01-01

    The article deals with the structure of informal place names in the USA. The main structural models of multi-component nicknames of American cities and towns include: ‘Adjective + Noun’, ‘Noun + Noun’ and ‘(Attribute) Noun + of + Noun’. The most productive constituent elements of the multi-component nicknames are the words ‘city’ and ‘capital’. Their combinations with different types of modifiers characterize the US cities and towns ...

  18. Strategies To Discover the Structural Components of Cyst and Oocyst Walls

    OpenAIRE

    Samuelson, John; Bushkin, G. Guy; Chatterjee, Aparajita; Robbins, Phillips W.

    2013-01-01

    Cysts of Giardia lamblia and Entamoeba histolytica and oocysts of Toxoplasma gondii and Cryptosporidium parvum are the infectious and sometimes diagnostic forms of these parasites. To discover the structural components of cyst and oocyst walls, we have developed strategies based upon a few simple assumptions. Briefly, the most abundant wall proteins are identified by monoclonal antibodies or mass spectrometry. Structural components include a sugar polysaccharide (chitin for Entamoeba, β-1,3-l...

  19. Evaluation of inelastic constitutive models for nonlinear structural analysis. [for aircraft turbine engines

    Science.gov (United States)

    Kaufman, A.

    1982-01-01

    The influence of inelastic material models on computed stress-strain states, and therefore predicted lives, was studied for thermomechanically loaded structures. Nonlinear structural analyses were performed on a fatigue specimen which had been subjected to thermal cycling in fluidized beds and on a mechanically load cycled benchmark notch specimen. Four incremental plasticity creep models (isotropic, kinematic, combined isotropic kinematic, combined plus transient creep) were exercised using the MARC program. Of the plasticity models, kinematic hardening gave results most consistent with experimental observations. Life predictions using the computed strain histories at the critical location with a strainrange partitioning approach considerably overpredicted the crack initiation life of the thermal fatigue specimen.

  20. Design and analysis of aerospace structures at elevated temperatures. [aircraft, missiles, and space platforms

    Science.gov (United States)

    Chang, C. I.

    1989-01-01

    An account is given of approaches that have emerged as useful in the incorporation of thermal loading considerations into advanced composite materials-based aerospace structural design practices. Sources of structural heating encompass not only propulsion system heat and aerodynamic surface heating at supersonic speeds, but the growing possibility of intense thermal fluxes from directed-energy weapons. The composite materials in question range from intrinsically nonheat-resistant polymer matrix systems to metal-matrix composites, and increasingly to such ceramic-matrix composites as carbon/carbon, which are explicitly intended for elevated temperature operation.

  1. Beyond Rigid Body: Integrated Structural Control of Extremely Lightweight Flexible Aircraft

    Science.gov (United States)

    Bosworth, John T.

    2013-01-01

    Integrated structural control of extremely lightweight vehicles will open a new paradigm and allow for performance increases. The X-56A Multi-Utility Technology Testbed (MUTT) vehicle will be used to evaluate and advance the state-of-the-art in modeling and control of this new class of aerospace vehicle.

  2. Preliminary weight and cost estimates for transport aircraft composite structural design concepts

    Science.gov (United States)

    1973-01-01

    Preliminary weight and cost estimates have been prepared for design concepts utilized for a transonic long range transport airframe with extensive applications of advanced composite materials. The design concepts, manufacturing approach, and anticipated details of manufacturing cost reflected in the composite airframe are substantially different from those found in conventional metal structure and offer further evidence of the advantages of advanced composite materials.

  3. PVDF array sensor for Lamb wave reception: Aircraft structural health monitoring

    Science.gov (United States)

    Ren, Baiyang; Lissenden, Cliff J.

    2016-02-01

    Fracture critical structures need structural health monitoring (SHM) to improve safety and reliability as well as reduce downtime and maintenance costs. Lamb waves provide promising techniques for on-line SHM systems because of their large volumetric coverage and good sensitivity to defects. Extensive research has focused on using features derived from time signals obtained at sparse locations distributed across the structure. Commonly used features are wave amplitude, energy, and time of arrival. However, the modal content of received Lamb waves contains valuable information about the existence and characteristics of defects, but cannot be determined from these signal features. Wave scattering at a defect often results in mode conversions in both transmitted and reflected waves. Features like change in time of arrival or amplitude reduction can be interpreted as being a result of mode conversion. This work is focused on the design of a 1D array sensor such that received wave signals at equally spaced locations are available for modal analysis in the wavenumber-frequency domain. PVDF (polyvinylidene fluoride) is selected as the active material of the sensor because of its low interference with wave fields in structures. The PVDF array sensor is fabricated to have 16 independent channels and its capability to detect and characterize different types of defects is demonstrated experimentally.

  4. Aircraft interior noise prediction using a structural-acoustic analogy in NASTRAN modal synthesis

    Science.gov (United States)

    Grosveld, Ferdinand W.; Sullivan, Brenda M.; Marulo, Francesco

    1988-01-01

    The noise induced inside a cylindrical fuselage model by shaker excitation is investigated theoretically and experimentally. The NASTRAN modal-synthesis program is used in the theoretical analysis, and the predictions are compared with experimental measurements in extensive graphs. Good general agreement is obtained, but the need for further refinements to account for acoustic-cavity damping and structural-acoustic interaction is indicated.

  5. Status of structural design codes for high-temperature gas-cooled reactor components

    International Nuclear Information System (INIS)

    Beginning with basic principles for the structural design of metallic HTR components, the special features of an HTR are compared with those of light-water reactor components. The main emphasis is on components for elevated and high temperature application. The materials under consideration are introduced. The typical high-temperature failure modes are described and design limits are proposed. The methods for avoiding different types of failure are provided. The HTR concept of integrity excludes spontaneous large-area failure; therefore, the understanding of high-temperature fracture mechanics and the ongoing experimental and theoretical work, which established the main topic for the structural design code, are discussed. (orig.)

  6. Evaluation of low-cost aluminum composites for aircraft engine structural applications

    Science.gov (United States)

    Mcdanels, D. L.; Signorelli, R. A.

    1983-01-01

    Panels of discontinuous SiC composites, with several aluminum matrices, were fabricated and evaluated. Modulus, yield strength and tensile strength results indicated that the properties of composites containing SiC whisker, nodule or particulate reinforcements were similar. The modulus of the composites was controlled by the volume percentage of the SiC reinforcement content, while the strength and ductility were controlled by both the reinforcement content and the matrix alloy. The feasibility of fabricating structural shapes by both wire performs and direct casting was demonstrated for Al2O3/Al composites. The feasibility of fabricating high performance composites into structural shapes by low pressure hot molding was demonstrated for B4C-coated B/Al composites.

  7. Sensor-Only System Identification for Structural Health Monitoring of Advanced Aircraft

    Science.gov (United States)

    Kukreja, Sunil L.; Bernstein, Dennis S.

    2012-01-01

    Environmental conditions, cyclic loading, and aging contribute to structural wear and degradation, and thus potentially catastrophic events. The challenge of health monitoring technology is to determine incipient changes accurately and efficiently. This project addresses this challenge by developing health monitoring techniques that depend only on sensor measurements. Since actively controlled excitation is not needed, sensor-to-sensor identification (S2SID) provides an in-flight diagnostic tool that exploits ambient excitation to provide advance warning of significant changes. S2SID can subsequently be followed up by ground testing to localize and quantify structural changes. The conceptual foundation of S2SID is the notion of a pseudo-transfer function, where one sensor is viewed as the pseudo-input and another is viewed as the pseudo-output, is approach is less restrictive than transmissibility identification and operational modal analysis since no assumption is made about the locations of the sensors relative to the excitation.

  8. Mapping crustal S-wave velocity structure with SV-component receiver function method

    Institute of Scientific and Technical Information of China (English)

    邹最红; 陈晓非

    2003-01-01

    In this article, we analyze the characters of SV-component receiver function of teleseismic body waves and its advantages in mapping the S-wave velocity structure of crust in detail. Similar to radial receiver function, SV-component receiver function can be obtained by directly deconvolving the P-component from the SV-component of teleseismic recordings. Our analyses indicate that the change of amplitude of SV-component receiver function against the change of epicentral distance is less than that of radial receiver function. Moreover, the waveform of SV-component receiver function is simpler than the radial receiver function and gives prominence to the PS converted phases that are the most sensitive to the shear wave velocity structure in the inversion. The synthetic tests show that the convergence of SV-component receiver function inversion is faster than that of the radial receiver function inversion. As an example, we investigate the S-wave velocity structure beneath HIA station by using the SV-component receiver function inversion method.

  9. Bayesian Framework based Damage Segmentation (BFDS) with Time-Reversal Tomography (TRT) for Damage Characterization in Complex Aircraft Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To meet the NASA's need for innovative technologies that decrease turn-around time for inspections and assessments for safe operations of aircraft and spacecraft,...

  10. Multilevel probabilistic approach to evaluate manufacturing defect in composite aircraft structures

    Energy Technology Data Exchange (ETDEWEB)

    Caracciolo, Paola, E-mail: paola.caracciolo@airbus.com [AIRBUS INDUSTRIES Germany, Department of Airframe Architecture and Integration-Research and Technology-Kreetslag, 10, D-21129, Hamburg (Germany)

    2014-05-15

    In this work it is developed a reliable approach and its feasibility to the design and analysis of a composite structures. The metric is compared the robustness and reliability designs versus the traditional design, to demonstrate the gain that can be achieved with a probabilistic approach. The use of the stochastic approach of the uncertain parameteters in combination with the multi-scale levels analysis is the main objective of this paper. The work is dedicated to analyze the uncertainties in the design, tests, manufacturing process, and key gates such as materials characteristic.

  11. On bi-Hamiltonian structure of two-component Novikov equation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Nianhua [Department of Mathematics, China University of Mining and Technology, Beijing 100083 (China); Liu, Q.P., E-mail: qpl@cumtb.edu.cn [Department of Mathematics, China University of Mining and Technology, Beijing 100083 (China)

    2013-01-03

    In this Letter, we present a bi-Hamiltonian structure for the two-component Novikov equation. We also show that proper reduction of this bi-Hamiltonian structure leads to the Hamiltonian operators found by Hone and Wang for the Novikov equation.

  12. Lewis acidic metal catalysed organic transformations by designed multi-component structures and assemblies

    Indian Academy of Sciences (India)

    Afsar Ali; Amit P Singh; Rajeev Gupta

    2010-05-01

    This paper presents the recent developments in designing multi-component structures including metal-organic frameworks containing Lewis acidic metal ions. The emphasis has been given to understand the design elements adopted to synthesize such structures bearing Lewis acidic metal ion. Further, few important Lewis acidic metal catalysed organic transformation reactions have been discussed demonstrating the importance of such materials for practical purposes.

  13. Vlasov Simulation of Electrostatic Solitary Structures in Multi-Component Plasmas

    Science.gov (United States)

    Umeda, Takayuki; Ashour-Abdalla, Maha; Pickett, Jolene S.; Goldstein, Melvyn L.

    2012-01-01

    Electrostatic solitary structures have been observed in the Earth's magnetosheath by the Cluster spacecraft. Recent theoretical work has suggested that these solitary structures are modeled by electron acoustic solitary waves existing in a four-component plasma system consisting of core electrons, two counter-streaming electron beams, and one species of background ions. In this paper, the excitation of electron acoustic waves and the formation of solitary structures are studied by means of a one-dimensional electrostatic Vlasov simulation. The present result first shows that either electron acoustic solitary waves with negative potential or electron phase-space holes with positive potential are excited in four-component plasma systems. However, these electrostatic solitary structures have longer duration times and higher wave amplitudes than the solitary structures observed in the magnetosheath. The result indicates that a high-speed and small free energy source may be needed as a fifth component. An additional simulation of a five-component plasma consisting of a stable four-component plasma and a weak electron beam shows the generation of small and fast electron phase-space holes by the bump-on-tail instability. The physical properties of the small and fast electron phase-space holes are very similar to those obtained by the previous theoretical analysis. The amplitude and duration time of solitary structures in the simulation are also in agreement with the Cluster observation.

  14. Correlation between rheological behavior and structure of multi-component polymer systems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Rheological measurement has been an effective method to characterize the structure and properties for multiphase/multi-component polymers, owing to its sensitivity to the structure change of hetero geneous systems. In this article, recent progress in the studies on the morphology/structure and rheological properties of heterogeneous systems is summarized, mainly reporting the findings of the authors and their collaborators, involving the correlation between the morphology and viscoelastic relaxation of LCST-type polymer blends, the microstructure and linear/nonlinear viscoelastic behavior of block copolymers, time scaling of shear-induced crystallization and rheological response of polyolefins, and the relationship between the structure/properties and rheological behavior of filled polymer blends. It is suggested that a thorough understanding of the characteristic rheological response to the morphology/structure evolution of multiphase/multi-component polymers facilitates researchers' optimizing the morphology/structure and ultimate mechanical properties of polymer materials.

  15. Correlation between rheological behavior and structure of multi-component polymer systems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Rheological measurement has been an effective method to characterize the structure and properties for multiphase/multi-component polymers, owing to its sensitivity to the structure change of hetero- geneous systems. In this article, recent progress in the studies on the morphology/structure and rheological properties of heterogeneous systems is summarized, mainly reporting the findings of the authors and their collaborators, involving the correlation between the morphology and viscoelastic relaxation of LCST-type polymer blends, the microstructure and linear/nonlinear viscoelastic behavior of block copolymers, time scaling of shear-induced crystallization and rheological response of poly- olefins, and the relationship between the structure/properties and rheological behavior of filled polymer blends. It is suggested that a thorough understanding of the characteristic rheological response to the morphology/structure evolution of multiphase/multi-component polymers facilitates researchers’ op- timizing the morphology/structure and ultimate mechanical properties of polymer materials.

  16. Impact of aircraft systems within aircraft operation: A MEA trajectory optimisation study

    OpenAIRE

    Seresinhe, R.

    2014-01-01

    Air transport has been a key component of the socio-economic globalisation. The ever increasing demand for air travel and air transport is a testament to the success of the aircraft. But this growing demand presents many challenges. One of which is the environmental impact due to aviation. The scope of the environmental impact of aircraft can be discussed from many viewpoints. This research focuses on the environmental impact due to aircraft operation. Aircraft operation causes...

  17. Full-scale flight tests of aircraft morphing structures using SMA actuators

    Science.gov (United States)

    Mabe, James H.; Calkins, Frederick T.; Ruggeri, Robert T.

    2007-04-01

    In August of 2005 The Boeing Company conducted a full-scale flight test utilizing Shape Memory Alloy (SMA) actuators to morph an engine's fan exhaust to correlate exhaust geometry with jet noise reduction. The test was conducted on a 777-300ER with GE-115B engines. The presence of chevrons, serrated aerodynamic surfaces mounted at the trailing edge of the thrust reverser, have been shown to greatly reduce jet noise by encouraging advantageous mixing of the free, and fan streams. The morphing, or Variable Geometry Chevrons (VGC), utilized compact, light weight, and robust SMA actuators to morph the chevron shape to optimize the noise reduction or meet acoustic test objectives. The VGC system was designed for two modes of operation. The entirely autonomous operation utilized changes in the ambient temperature from take-off to cruise to activate the chevron shape change. It required no internal heaters, wiring, control system, or sensing. By design this provided one tip immersion at the warmer take-off temperatures to reduce community noise and another during the cooler cruise state for more efficient engine operation, i.e. reduced specific fuel consumption. For the flight tests a powered mode was added where internal heaters were used to individually control the VGC temperatures. This enabled us to vary the immersions and test a variety of chevron configurations. The flight test demonstrated the value of SMA actuators to solve a real world aerospace problem, validated that the technology could be safely integrated into the airplane's structure and flight system, and represented a large step forward in the realization of SMA actuators for production applications. In this paper the authors describe the development of the actuator system, the steps required to integrate the morphing structure into the thrust reverser, and the analysis and testing that was required to gain approval for flight. Issues related to material strength, thermal environment, vibration

  18. Model Updating of Complex Structures Using the Combination of Component Mode Synthesis and Kriging Predictor

    OpenAIRE

    Yang Liu; Yan Li; Dejun Wang; Shaoyi Zhang

    2014-01-01

    Updating the structural model of complex structures is time-consuming due to the large size of the finite element model (FEM). Using conventional methods for these cases is computationally expensive or even impossible. A two-level method, which combined the Kriging predictor and the component mode synthesis (CMS) technique, was proposed to ensure the successful implementing of FEM updating of large-scale structures. In the first level, the CMS was applied to build a reasonable condensed FEM o...

  19. Probabilistic approach to ageing management of structures, systems and components important to safety

    International Nuclear Information System (INIS)

    Ageing of components (the general term commonly used in PSA studies for structures, systems and components in a plant) needs to be managed effectively for assuring operational safety of the plant. A number of ageing-related degradation mechanisms such as fatigue, stress corrosion cracking, irradiation embrittlement and flow-induced corrosion and vibration can cause component failure affecting safety function, thereby increasing the plant risk (i.e. system unavailability, core damage frequency etc.) Deterministically there are detailed surveillance and maintenance programme for taking corrective action to the ageing components, as necessary for their reliable functioning. A complementary Probabilistic Safety Assessment (PSA) methodology can also be used to assess risks resulting from ageing of structures, systems and components (SSCs) and replacement, repair or overhaul strategy can be developed and action implemented as appropriate with risk informed decision approach. Probabilistic approach can be used to find out the failure probability of the component considering all possible failure modes. This is known as Probabilistic Fracture Mechanics (PFM). These failure probabilities can then be used for the calculation of the risk to the systems and plant as a whole at any point of time to determine the residual life of the component and thereby find out the ageing effect of the component. In this paper, different ageing models (to calculate the 'ageing rate') have been considered to incorporate the ageing effect of the component important to safety. Using this, a general probabilistic approach (PSA) has been addressed for evaluating ageing impacts of the component important to safety on plant risk (i.e. core damage frequency) by ranking them with importance measures. A case study for the demonstration of this probabilistic approach to the ageing management of some components important to safety has also been presented whereby suitable repair/replacement strategy has

  20. Hazards from aircraft

    International Nuclear Information System (INIS)

    The siting of nuclear power plants has created innumerable environmental concerns. Among the effects of the ''man-made environment'' one of increasing importance in recent nuclear plant siting hazards analysis has been the concern about aircraft hazards to the nuclear plant. These hazards are of concern because of the possibility that an aircraft may have a malfunction and crash either near the plant or directly into it. Such a crash could be postulated to result, because of missile and/or fire effects, in radioactive releases which would endanger the public health and safety. The majority of studies related to hazards from air traffic have been concerned with the determination of the probability associated with an aircraft striking vulnerable portions of a given plant. Other studies have focused on the structural response to such a strike. This work focuses on the problem of strike probability. 13 references

  1. Component-based syntheses of trioxacarcin A, DC-45-A1 and structural analogues

    Science.gov (United States)

    Magauer, Thomas; Smaltz, Daniel J.; Myers, Andrew G.

    2013-10-01

    The trioxacarcins are polyoxygenated, structurally complex natural products that potently inhibit the growth of cultured human cancer cells. Here we describe syntheses of trioxacarcin A, DC-45-A1 and structural analogues by late-stage stereoselective glycosylation reactions of fully functionalized, differentially protected aglycon substrates. Key issues addressed in this work include the identification of an appropriate means to activate and protect each of the two 2-deoxysugar components, trioxacarcinose A and trioxacarcinose B, as well as a viable sequencing of the glycosidic couplings. The convergent, component-based sequence we present allows for rapid construction of structurally diverse, synthetic analogues that would be inaccessible by any other means, in amounts required to support biological evaluation. Analogues that arise from the modification of four of five modular components are assembled in 11 steps or fewer. The majority of these are found to be active in antiproliferative assays using cultured human cancer cells.

  2. Seismic Response of Base-Isolated Structures under Multi-component Ground Motion Excitation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An analysis of a base-isolated structure for multi-component random ground motion is presented. The mean square response of the system is obtained under different parametric variations. The effectiveness of main parameters and the torsional component during an earthquake is quantified with the help of the response ratio and the root mean square response with and without base isolation. It is observed that the base isolation has considerable influence on the response and the effect of the torsional component is not ignored.

  3. Structural Framework for Flight: NASA's Role in Development of Advanced Composite Materials for Aircraft and Space Structures

    Science.gov (United States)

    Tenney, Darrel R.; Davis, John G., Jr.; Johnston, Norman J.; Pipes, R. Byron; McGuire, Jack F.

    2011-01-01

    This serves as a source of collated information on Composite Research over the past four decades at NASA Langley Research Center, and is a key reference for readers wishing to grasp the underlying principles and challenges associated with developing and applying advanced composite materials to new aerospace vehicle concepts. Second, it identifies the major obstacles encountered in developing and applying composites on advanced flight vehicles, as well as lessons learned in overcoming these obstacles. Third, it points out current barriers and challenges to further application of composites on future vehicles. This is extremely valuable for steering research in the future, when new breakthroughs in materials or processing science may eliminate/minimize some of the barriers that have traditionally blocked the expanded application of composite to new structural or revolutionary vehicle concepts. Finally, a review of past work and identification of future challenges will hopefully inspire new research opportunities and development of revolutionary materials and structural concepts to revolutionize future flight vehicles.

  4. Aircraft cybernetics

    Science.gov (United States)

    1977-01-01

    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  5. VTOL to Transonic Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The cyclogyro, an aircraft propulsion concept with the potential for VTOL to the lower bounds of transonic flight, is conceptually simple but structurally and...

  6. Application of the Safety Classification of Structures, Systems and Components in Nuclear Power Plants

    International Nuclear Information System (INIS)

    This publication describes how to complete tasks associated with every step of the classification methodology set out in IAEA Safety Standards Series No. SSG-30, Safety Classification of Structures, Systems and Components in Nuclear Power Plants. In particular, how to capture all the structures, systems and components (SSCs) of a nuclear power plant to be safety classified. Emphasis is placed on the SSCs that are necessary to limit radiological releases to the public and occupational doses to workers in operational conditions This publication provides information for organizations establishing a comprehensive safety classification of SSCs compliant with IAEA recommendations, and to support regulators in reviewing safety classification submitted by licensees

  7. Size and shape of grain boundary network components and their atomic structures in polycrystalline nanoscale materials

    International Nuclear Information System (INIS)

    Microstructure in polycrystalline materials is composed of grain boundary plane, triple junction line, and vertex point. They are the integral parts of the grain boundary network structure and the foundation for the structure-property relations. In polycrystalline, especially nanocrystalline, materials, it becomes increasingly difficult to probe the atomistic structure of the microstructure components directly in experiment due to the size limitation. Here, we present a numerical approach using pair correlation function from atomistic simulation to obtain the detailed information for atomic order and disorder in the grain boundary network in nanocrystalline materials. We show that the atomic structures in the different microstructural components are related closely to their geometric size and shape, leading to unique signatures for atomic structure in microstructural characterization at nanoscales. The dependence varies systematically with the characteristic dimension of the microstructural component: liquid-like disorder is found in vertex points, but a certain order persists in triple junctions and grain boundaries along the extended dimensions of these microstructure components

  8. Longterm performance of structural component of intermediate- and low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Underground repository for intermediate- and low-level radioactive waste is to be sealed and closed after operation. Structural components, which are generally made of cement concrete, are designed and accommodated in the repository for the purpose of operational convenience and stability after closure. To forecast the change of long-term integrity of the structural components, experimental verification, using in-situ or near in-situ conditions, is necessary. Domestic and foreign requirements with regard to the selection criteria and the performance criteria for structural components in disposal facility were surveyed. Characteristics of various types of cement were studied. Materials and construction methods of structural components similar to those of disposal facility was investigated and test items and methods for integrity of cement concrete were included. Literature survey for domestic groundwater characteristics was performed together with Ca-type bentonite ore which is a potential backfill material. Causes or factors affecting the durability of the cement structures were summarized. Experiments to figure out the ions leaching out from and migrating into cement soaked in distilled water and synthetic groundwater, respectively, were carried out. And finally, diffusion of chloride ion through cement was experimentally measured

  9. Seismic performance of non-structural components and contents in buildings: an overview of NZ research

    Science.gov (United States)

    Dhakal, Rajesh P.; Pourali, Atefeh; Tasligedik, Ali Sahin; Yeow, Trevor; Baird, Andrew; MacRae, Gregory; Pampanin, Stefano; Palermo, Alessandro

    2016-03-01

    This paper summarizes the research on non-structural elements and building contents being conducted at University of Canterbury in New Zealand. Since the 2010-2011 series of Canterbury earthquakes, in which damage to non-structural components and contents contributed heavily to downtime and overall financial loss, attention to seismic performance and design of non-structural components and contents in buildings has increased exponentially in NZ. This has resulted in an increased allocation of resources to research leading to development of more resilient non-structural systems in buildings that would incur substantially less damage and cause little downtime during earthquakes. In the last few years, NZ researchers have made important developments in understanding and improving the seismic performance of secondary building elements such as partitions, facades, ceilings and contents.

  10. Probabilistic Structural Analysis Methods for select space propulsion system components (PSAM). Volume 2: Literature surveys of critical Space Shuttle main engine components

    Science.gov (United States)

    Rajagopal, K. R.

    1992-01-01

    The technical effort and computer code development is summarized. Several formulations for Probabilistic Finite Element Analysis (PFEA) are described with emphasis on the selected formulation. The strategies being implemented in the first-version computer code to perform linear, elastic PFEA is described. The results of a series of select Space Shuttle Main Engine (SSME) component surveys are presented. These results identify the critical components and provide the information necessary for probabilistic structural analysis. Volume 2 is a summary of critical SSME components.

  11. Estimating term structure changes using principal component analysis in Indian sovereign bond market

    OpenAIRE

    Nath, Golaka

    2012-01-01

    This paper analyses the India sovereign yield to find out the principal factors affecting the term structure of interest rate changes. We apply Principal Component Analysis (PCA) on our data consisting of zero coupon interest rates derived from government bond trading using Nelson-Siegel functional form. This decomposition of the yield curve highlights important relationship between identified factors and metrics of the term structure shape. The empirical findings support statistical similari...

  12. Structural integrity and management of aging in internal components of BWR reactors

    International Nuclear Information System (INIS)

    Presently work the bases to apply structural integrity and the handling of the aging of internal components of the pressure vessel of boiling water reactors of water are revised and is carried out an example of structural integrity in the horizontal welding H4 of the encircling one of the core of a reactor, taking data reported in the literature. It is also revised what is required to carry out the handling program or conduct of the aging (AMP). (Author)

  13. Experimental component Mode Synthesis Applied to the Solar Array Type Structure

    OpenAIRE

    Komatsu, Keiji; Sano, Masaaki; SANBONGI, Shigeo; Takashi Kai; TODA, Susumu; 小松, 敬治; 佐野, 政明; 三本木, 茂夫; 甲斐, 高志; 戸田, 勧

    1988-01-01

    A component mode synthesis technique based on experimentally determined modal parameters is presented in this paper. The test structure is a solar array type plate, which is divided into three parts, and four flexible connective parts. In the synthesis, the measured modes are approximated in polynomials to produce rotational degrees of freedom. The results sythesized are in good agreement with the test results obtained from a combined structure.

  14. Structural studies on dihydrolipoyl transacetylase : the core component of the pyruvate dehydrogenase complex of Azotobacter vinelandii.

    OpenAIRE

    Hanemaaijer, R.

    1988-01-01

    The studies described in this thesis deal with the structure of the Azotobactervinelandii dihydrolipoyl transacetylase, the core component (E 2 ) of the pyruvate dehydrogenase complex. in all organisms the pyruvate dehydrogenase complex is closely related to the 2-oxoglutarate dehydrogenase complex and, if present, the branched-chain 2-oxoacid dehydrogenase complex. These enzyme complexes are large multimeric structures. The smallest known is the pyruvate dehydrogenase complex from A.vineland...

  15. Role of Bhabha Atomic Research Center (BARC) parallel processing system in structural analysis of nuclear components

    International Nuclear Information System (INIS)

    Computational structural analysis of nuclear reactor components requires high speed computing systems. Parallel processing systems, such as ANUPAM developed at Bhabha Atomic Research Centre, have helped immensely in meeting this requirement. The implementation of structural integrity analysis code on ANUPAM is illustrated here by commissioning two in house codes TABS and FAIR. The parallelization strategies and the efficiency of ANUPAM are highlighted. (author). 6 refs., 3 figs

  16. Application of artificial neural networks to the design optimization of aerospace structural components

    Science.gov (United States)

    Berke, Laszlo; Patnaik, Surya N.; Murthy, Pappu L. N.

    1993-01-01

    The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated by using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network with the code NETS. Optimum designs for new design conditions were predicted by using the trained network. Neural net prediction of optimum designs was found to be satisfactory for most of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.

  17. A Generic Inner-Loop Control Law Structure for Six-Degree-of-Freedom Conceptual Aircraft Design

    Science.gov (United States)

    Cox, Timothy H.; Cotting, M. Christopher

    2005-01-01

    A generic control system framework for both real-time and batch six-degree-of-freedom simulations is presented. This framework uses a simplified dynamic inversion technique to allow for stabilization and control of any type of aircraft at the pilot interface level. The simulation, designed primarily for the real-time simulation environment, also can be run in a batch mode through a simple guidance interface. Direct vehicle-state acceleration feedback is required with the simplified dynamic inversion technique. The estimation of surface effectiveness within real-time simulation timing constraints also is required. The generic framework provides easily modifiable control variables, allowing flexibility in the variables that the pilot commands. A direct control allocation scheme is used to command aircraft effectors. Primary uses for this system include conceptual and preliminary design of aircraft, when vehicle models are rapidly changing and knowledge of vehicle six-degree-of-freedom performance is required. A simulated airbreathing hypersonic vehicle and simulated high-performance fighter aircraft are used to demonstrate the flexibility and utility of the control system.

  18. Probabilistic Structural Analysis Methods (PSAM) for select space propulsion system structural components

    Science.gov (United States)

    Cruse, T. A.

    1987-01-01

    The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.

  19. Probabilistic Structural Analysis Methods for select space propulsion system structural components (PSAM)

    Science.gov (United States)

    Cruse, T. A.; Burnside, O. H.; Wu, Y.-T.; Polch, E. Z.; Dias, J. B.

    1988-01-01

    The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.

  20. Structure Analysis of Network Traffic Matrix Based on Relaxed Principal Component Pursuit

    CERN Document Server

    Wang, Zhe; Xu, Ke; Yin, Baolin

    2011-01-01

    The network traffic matrix is a kind of flow-level Internet traffic data and is widely applied to network operation and management. It is a crucial problem to analyze the composition and structure of traffic matrix; some mathematical approaches such as Principal Component Analysis (PCA) were used to handle that problem. In this paper, we first argue that PCA performs poorly for analyzing traffic matrixes polluted by large volume anomalies, then propose a new composition model of the network traffic matrix. According to our model, structure analysis can be formally defined as decomposing a traffic matrix into low-rank, sparse, and noise sub-matrixes, which is equal to the Robust Principal Component Analysis (RPCA) problem defined in [13]. Based on the Relaxed Principal Component Pursuit (Relaxed PCP) method and the Accelerated Proximal Gradient (APG) algorithm, an iterative algorithm for decomposing a traffic matrix is presented, and our experiment results demonstrate its efficiency and flexibility. At last, f...

  1. Data structure characterization of miltispectral data using principal component and principal factor analysis

    Science.gov (United States)

    Lee, Jae K.; Mausel, Paul W.; Lulla, Kamlesh P.

    1989-01-01

    Both principal component analysis (PCA) and principal factor analysis (PFA) were used to analyze an experimental multispectral data structure in terms of common and unique variance. Only the common variance of the multispectral data was associated with the principal factor, while higher-order principal components were associated with both common and unique variance. The unique variance was found to represent small spectral variations within each cover type as well as noise vectors, and was most abundant in the lower-order principal components. The lower-order principal components can be useful in research designed to discriminate minor physical variations within features, and to highlight localized change when using multitemporal-multispectral data. Conversely, PFA of the multispectral data provided an insight into a great potential for discriminating basic land-cover types by excluding the unique variance which was related to the noise and minor spectral variations.

  2. Structure and Mechanism of the S Component of a Bacterial ECF Transporter

    Energy Technology Data Exchange (ETDEWEB)

    P Zhang; J Wang; Y Shi

    2011-12-31

    The energy-coupling factor (ECF) transporters, responsible for vitamin uptake in prokaryotes, are a unique family of membrane transporters. Each ECF transporter contains a membrane-embedded, substrate-binding protein (known as the S component), an energy-coupling module that comprises two ATP-binding proteins (known as the A and A' components) and a transmembrane protein (known as the T component). The structure and transport mechanism of the ECF family remain unknown. Here we report the crystal structure of RibU, the S component of the ECF-type riboflavin transporter from Staphylococcus aureus at 3.6-{angstrom} resolution. RibU contains six transmembrane segments, adopts a previously unreported transporter fold and contains a riboflavin molecule bound to the L1 loop and the periplasmic portion of transmembrane segments 4-6. Structural analysis reveals the essential ligand-binding residues, identifies the putative transport path and, with sequence alignment, uncovers conserved structural features and suggests potential mechanisms of action among the ECF transporters.

  3. On the classification of structures, systems and components of nuclear research and test reactors

    International Nuclear Information System (INIS)

    The classification of structures, systems and components of nuclear reactors is a relevant issue related to their design because it is directly associated with their safety functions. There is an important statement regarding quality standards and records that says Structures, systems, and components important to safety shall be designed, fabricated, erected, and tested to quality standards commensurate with the importance of the safety functions to be performed. The definition of the codes, standards and technical requirements applied to the nuclear reactor design, fabrication, inspection and tests may be seen as the main result from this statement. There are well established guides to classify structures, systems and components for nuclear power reactors such as the Pressurized Water Reactors but one can not say the same for nuclear research and test reactors. The nuclear reactors safety functions are those required to the safe reactor operation, the safe reactor shutdown and continued safe conditions, the response to anticipated transients, the response to potential accidents and the control of radioactive material. So, it is proposed in this paper an approach to develop the classification of structures, systems and components of these reactors based on their intended safety functions in order to define the applicable set of codes, standards and technical requirements. (author)

  4. Integrated network for structural integrity monitoring of critical components in nuclear facilities, RIMIS

    International Nuclear Information System (INIS)

    The round table aims to join specialists working in the research area of the Romanian R and D Institutes and Universities involved in structural integrity assessment of materials, especially those working in the nuclear field, together with the representatives of the end user, the Cernavoda NPP. This scientific event will offer the opportunity to disseminate the theoretical, experimental and modelling activities, carried out to date, in the framework of the National Program 'Research of Excellence', Module I 2006-2008, managed by the National Authority for Scientific Research. Entitled 'Integrated Network for Structural Integrity Monitoring of Critical Components in Nuclear Facilities, RIMIS, the project has two main objectives: 1. - to elaborate a procedure applicable to the structural integrity assessment of critical components used in Romanian nuclear facilities (CANDU type Reactor, Hydrogen Isotopes Separation installations); 2. - to integrate the national networking into a similar one of European level, and to enhance the scientific significance of Romanian R and D organisations as well as to increase the contribution in solving major issues of the nuclear field. The topics of the round table will be focused on: 1. Development of a Structural Integrity Assessment Methodology applicable to the nuclear facilities components; 2. Experimental investigation methods and procedures; 3. Numeric simulation of nuclear components behaviour; 4. Further activities to finalize the assessment procedure. Also participations and contributions to sustain the activity in the European Network NULIFE, FP6 will be discussed. (authors)

  5. STRUCTURE OF CONSORTIUM DESTRUCTIVE COMPONENTS IN THE INDUSTRIAL AREA OF KRIVYI RIG BASIN

    Directory of Open Access Journals (Sweden)

    Kachinskaya V.V.

    2014-08-01

    Full Text Available Тhe structural organization and a biological variety of ground mesofauna on consortium level of the organization of ecosystems are considered. The analysis of indicators of the structural organization and a biodiversity of ground mesofauna in consortium Ulmus and Populus in the conditions of territories of industrial mining – metallurgical complex of Krivyi Rig Basin is carried out. It is established that taxonomical structure of ground mesofauna is characterized by insignificant number and quantity of taxonomical groups. Prevalence in morfo-ecological structure of hortobiontes and herpetobiontes testifies about faunae considerable attachment to consortium determinants and influences of a steppe climate on its structure. Prevalence of phytophages and polyphages in trophic structure is caused by combination of determinants specificity of consortium and zone source of fauna formations. The structural organization of ground mesofauna in consortium Ulmus and Populus in the conditions of industrial sites is characterized simplified taxonomical structure with a low biodiversity at all levels. It was suggested that structural and functional organization of destructive components of the block consortium of Ulmus and Populus in the conditions of industrial sites are simplified and determined by biogeochemical patterns of pedogenic and leaf litter layer of consortium and type of anthropogenic impact. Management and sustainable use of consortium under technogenic pressure should be based on the effects of extreme and critical components in the evolution of consortium. These critical points are the type of leading man-made factors and pedogenic and leaf litter biogeochemical conditions of consortium determinants, which results in inhibition of development and simplification of the structural and functional organization of destructive components of the block. The elaboration of measures to restore and maintain that structural and functional organization

  6. Costs and benefits of composite material applications to a civil STOL aircraft

    Science.gov (United States)

    Logan, T. R.

    1974-01-01

    Costs and benefits of advanced composite primary airframe structure were studied to determine cost-effective applications to a civil STOL aircraft designed for introduction in the early 1980 time period. Applications were assessed by comparing costs and weights with a baseline metal aircraft which served as a basis of comparison throughout the study. Costs as well as weights were estimated from specific designs of principal airframe components, thus establishing a cost-data base for the study. Cost effectiveness was judged by an analysis that compared direct operating costs and return on investment of the composite and baseline aircraft. A systems operations analysis was performed to judge effects of the smaller, lighter composite aircraft. It was determined that broad applications of advanced composites to the airframe considered could be cost-effective, but this advantage is strongly influenced by structural configuration and several key cost categories.

  7. Numerical modeling and experimental validation of the acoustic transmission of aircraft's double-wall structures including sound package

    Science.gov (United States)

    Rhazi, Dilal

    In the field of aeronautics, reducing the harmful effects of acoustics constitutes a major concern at the international level and justifies the call for further research, particularly in Canada where aeronautics is a key economic sector, which operates in a context of global competition. Aircraft sidewall structure is usually of a double wall construction with a curved ribbed metallic skin and a lightweight composite or sandwich trim separated by a cavity filled with a noise control treatment. The latter is of a great importance in the transport industry, and continues to be of interest in many engineering applications. However, the insertion loss noise control treatment depends on the excitation of the supporting structure. In particular, Turbulent Boundary Layer is of interest to several industries. This excitation is difficult to simulate in laboratory conditions, given the prohibiting costs and difficulties associated with wind tunnel and in-flight tests. Numerical simulation is the only practical way to predict the response to such excitations and to analyze effects of design changes to the response to such excitation. Another kinds of excitations encountered in industrial are monopole, rain on the Roof and diffuse acoustic field. Deterministic methods can calculate in each point the spectral response of the system. Most known are numerical methods such as finite elements and boundary elements methods. These methods generally apply to the low frequency where modal behavior of the structure dominates. However, the high limit of calculation in frequency of these methods cannot be defined in a strict way because it is related to the capacity of data processing and to the nature of the studied mechanical system. With these challenges in mind, and with limitations of the main numerical codes on the market, the manufacturers have expressed the need for simple models immediately available as early as the stage of preliminary drafts. This thesis represents an attempt

  8. Three-dimensional fluid-structure interaction dynamics of a pool-reactor in-tank component. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kulak, R.F.

    1979-01-01

    The safety evaluation of reactor-components often involves the analysis of various types of fluid/structural components interacting in three-dimensional space. For example, in the design of a pool-type reactor several vital in-tank components such as the primary pumps and the intermediate heat exchangers are contained within the primary tank. Typically, these components are suspended from the deck structure and largely submersed in the sodium pool. Because of this positioning these components are vulnerable to structural damage due to pressure wave propagation in the tank during a CDA. In order to assess the structural integrity of these components it is necessary to perform a dynamic analysis in three-dimensional space which accounts for the fluid-structure coupling. A model is developed which has many of the salient features of this fluid-structural component system.

  9. "Structuration" by Intellectual Organization: The Configuration of Knowledge in Relations among Structural Components in Networks of Science

    CERN Document Server

    Leydesdorff, Loet

    2010-01-01

    Using aggregated journal-journal citation networks, the measurement of the knowledge base in empirical systems is factor-analyzed in two cases of interdisciplinary developments during the period 1995-2005: (i) the development of nanotechnology in the natural sciences and (ii) the development of communication studies as an interdiscipline between social psychology and political science. The results are compared with a case of stable development: the citation networks of core journals in chemistry. These citation networks are intellectually organized by networks of expectations in the knowledge base at the specialty (that is, above-journal) level. This "structuration" of structural components (over time) can be measured as configurational information. The latter is compared with the Shannon-type information generated in the interactions among structural components: the difference between these two measures provides us with a measure for the redundancy generated by the specification of a model in the knowledge b...

  10. Variations of Structural Components: Specific Intercultural Differences in Facial Morphology, Skin Type, and Structures

    OpenAIRE

    McKnight, Aisha; Momoh, Adeyiza O.; Bullocks, Jamal M.

    2009-01-01

    Analysis of the differences in facial morphology and skin structure and tone among ethnic groups within the realm of plastic surgery is relevant due to the increasing number of ethnic individuals seeking cosmetic surgery. Previous classifications of ideal facial morphologic characteristics have been revised and challenged over the years to accurately reflect the differences in facial structure that are aesthetically pleasing to individuals of differing ethnic groups. The traditional neoclassi...

  11. Component mode synthesis and large deflection vibrations of complex structures. [beams and trusses

    Science.gov (United States)

    Mei, C.

    1984-01-01

    The accuracy of the NASTRAN modal synthesis analysis was assessed by comparing it with full structure NASTRAN and nine other modal synthesis results using a nine-bay truss. A NASTRAN component mode transient response analysis was also performed on the free-free truss structure. A finite element method was developed for nonlinear vibration of beam structures subjected to harmonic excitation. Longitudinal deformation and inertia are both included in the formula. Tables show the finite element free vibration results with and without considering the effects of longitudinal deformation and inertia as well as the frequency ratios for a simply supported and a clamped beam subjected to a uniform harmonic force.

  12. Expert system for earthquake-resistant design of structures and components

    International Nuclear Information System (INIS)

    The earthquake-resistant design of structures and components of nuclear power plants is a specialized field requiring expertise and inputs from a variety of experts in various inter-related disciplines, e.g., seismology, geology and tectonics; local geotechnical analysis and soil mechanics; linear and nonlinear, static and dynamic analyses; seismic behavior of different types of structural systems and components constructed of different materials; soil-structural interaction analyses; structural design and detailing; understanding of codes and regulatory and licensing requirements; as well as specialized knowledge of financial, legal and public-safety related issues. An engineer, designing and analyzing structures and components on a routine basis, does not have the knowledge in all these facets of the earthquake-resistant design process. The expert system, described in this paper, will be able to mimic the reasoning process and the decision-making actions of a variety of experts needed to provide consultation and inputs the engineers on the various different phases of the earthquake-resistant design process

  13. Knowledge-based System Prototype in Structural Component Design Based on FM

    Institute of Scientific and Technical Information of China (English)

    JIANG Tao; LI Qing-fen; LI Ming; FU Wei

    2002-01-01

    A knowledge-based system in structural component design based on fracture mechanics is developed in this paper. The system consists of several functional parts: a general inference engine, a set of knowledge bases and data-bases, an interpretation engine, a bases administration system and the interface. It can simulate a human expert to make analysis and design scheme mainly for four kinds of typical structural components widely used in shipbuilding industry: pressure vessels, huge rotation constructions, pump-rod and welded structures. It is an open system which may be broadened and perfected to cover a wider range of engineering application through the modification and enlargement of knowledge bases and data-bases. It has a natural and friendly interface that may be easily operated. An on-line help service is also provided.

  14. The influence of the stray-light component in determining coronal temperature structures

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We use a few solar partial eclipse observations made by XRT/Hinode to estimate the influence of stray-light component in determining coronal temperature structures. Our analysis shows that the stray light will largely affect the estimation of coronal temperature and change the estimated temperature structure in one coronal hole region. The stray lights mildly influence the estimated temperatures in one quiet Sun region and do not change the estimated temperature structure. This implies that the influence of stray lights differs from one region to another, and definitely needs to be considered in some regions. Whereas a carefully estimated point-spread-function is needed to remove the stray light component, our study shows that by a simple approach such as subtracting the average intensity of distant (e.g. >1.4 solar radius) points from the data values, the influence of stray light can be largely removed, at least for the two regions we study here.

  15. The influence of the stray-light component in determining coronal temperature structures

    Institute of Scientific and Technical Information of China (English)

    HAO Juan; ZHANG Mei

    2009-01-01

    We use a few solar partial eclipse observations made by XRT/Hinode to estimate the influence of stray-light component in determining coronal temperature structures. Our analysis shows that the stray light will largely affect the estimation of coronal temperature and change the estimated temperature structure in one coronal hole region. The stray lights mildly influence the estimated temperatures in one quiet Sun region and do not change the estimated temperature structure. This implies that the influence of stray lights differs from one region to another, and definitely needs to be considered in some regions. Whereas a carefully estimated point-spread-function Is needed to remove the stray light component, our study shows that by a simple approach such as subtracting the average intensity of distant (e.g. >1.4 solar radius) points from the data values, the influence of stray light can be largely removed, at least for the two regions we study here.

  16. A multi-structural single cell model of force-induced interactions of cytoskeletal components.

    Science.gov (United States)

    Barreto, Sara; Clausen, Casper H; Perrault, Cecile M; Fletcher, Daniel A; Lacroix, Damien

    2013-08-01

    Several computational models based on experimental techniques and theories have been proposed to describe cytoskeleton (CSK) mechanics. Tensegrity is a prominent model for force generation, but it cannot predict mechanics of individual CSK components, nor explain the discrepancies from the different single cell stimulating techniques studies combined with cytoskeleton-disruptors. A new numerical concept that defines a multi-structural 3D finite element (FE) model of a single-adherent cell is proposed to investigate the biophysical and biochemical differences of the mechanical role of each cytoskeleton component under loading. The model includes prestressed actin bundles and microtubule within cytoplasm and nucleus surrounded by the actin cortex. We performed numerical simulations of atomic force microscopy (AFM) experiments by subjecting the cell model to compressive loads. The numerical role of the CSK components was corroborated with AFM force measurements on U2OS-osteosarcoma cells and NIH-3T3 fibroblasts exposed to different cytoskeleton-disrupting drugs. Computational simulation showed that actin cortex and microtubules are the major components targeted in resisting compression. This is a new numerical tool that explains the specific role of the cortex and overcomes the difficulty of isolating this component from other networks in vitro. This illustrates that a combination of cytoskeletal structures with their own properties is necessary for a complete description of cellular mechanics. PMID:23702149

  17. Manufacturing studies of structural components for the ITER EC upper launcher

    Energy Technology Data Exchange (ETDEWEB)

    Spaeh, Peter, E-mail: peter.spaeh@imf.fzk.de [Forschungszentrum Karlsruhe, Institute for Material Research I, Association FZK-Euratom, P.O. Box 3640, D-76021 Karlsruhe (Germany); Heidinger, Roland; Kleefeldt, Klaus [Forschungszentrum Karlsruhe, Institute for Material Research I, Association FZK-Euratom, P.O. Box 3640, D-76021 Karlsruhe (Germany); Leher, Franz [MAN DWE GmbH Apparatebau, Werftstr. 17, D-94469 Deggendorf (Germany); Meier, Andreas [Forschungszentrum Karlsruhe, Institute for Material Research I, Association FZK-Euratom, P.O. Box 3640, D-76021 Karlsruhe (Germany); Obermeier, Christian [MAN DWE GmbH Apparatebau, Werftstr. 17, D-94469 Deggendorf (Germany); Scherer, Theo [Forschungszentrum Karlsruhe, Institute for Material Research I, Association FZK-Euratom, P.O. Box 3640, D-76021 Karlsruhe (Germany); Serikov, Arkady [Forschungszentrum Karlsruhe, Institute for Neutron Physics and Reactor Technology, Association FZK-Euratom, P.O. Box 3640, D-76021 Karlsruhe (Germany); Strauss, Dirk; Vaccaro, Alessandro [Forschungszentrum Karlsruhe, Institute for Material Research I, Association FZK-Euratom, P.O. Box 3640, D-76021 Karlsruhe (Germany)

    2010-12-15

    To counteract plasma instabilities, electron cyclotron launchers will be installed in four of the ITER upper ports. An EC launcher consists of a structural system which accommodates the MM-wave-components and has to meet demands on precise alignment, sufficient removal of nuclear heat loads, mechanical strength and proper nuclear shielding. The structural system consists of the Blanket Shield Module (BSM) and the Mainframe. Depending on the expected heat loads, the launcher components are designed as double-wall or single-wall elements, connected by massive flanges. Double-wall segments feature narrow cooling gaps with stiffening ribs between stainless steel shells. Single-wall segments consist of welded stainless steel plates with substantial material thickness. To investigate industrial manufacturing routes, characteristic sections of the BSM and the Mainframe were addressed in detail. To identify the optimum manufacturing strategy for double-wall components, three different concepts, namely HIP (Hot Isostatic Pressing), brazing and machining were studied and a total of four mock-ups of double-wall components were produced. Also for single-wall components appropriate manufacturing routes were investigated, optimum production parameters were determined and typical segments were manufactured. These prototypes are under study at the FZK Launcher Handling Test facility (LHT) where various ITER operating conditions can be simulated. Analyses and test series related to feasibility, prevention of residual stresses, contour accuracy, thermo-hydraulic behavior and also economical aspects were performed.

  18. Evaluation of aseismic integrity in HTTR core-bottom structure. Pt. 3. Structural integrity of core support post component

    International Nuclear Information System (INIS)

    Component testing of the core support post for the high temperature engineering test reactor (HTTR) was carried out to verify its structural integrity using full-scale and (1)/(2)-scale models. The compressive fracture load was measured at room temperature under the conditions of post inclination up to about 1 degree, cyclic load up to 200 times and oxidation up to about 30% of oxidation weight-loss. In this paper, the effects of post inclination angle, cyclic load and oxidation weight-loss of this component on the compressive fracture load were discussed and the fracture load was compared with the design load of the HTTR. ((orig.))

  19. Reduced models of multi-stage cyclic structures using cyclic symmetry reduction and component mode synthesis

    Science.gov (United States)

    Tran, Duc-Minh

    2014-10-01

    Reduced models of multi-stage cyclic structures such as bladed-disk assemblies are developed by using the multi-stage cyclic symmetry reduction and/or component mode synthesis methods. The multi-stage cyclic symmetry reduction consists in writing the equations of the bladed disks, the inter-disk structures, the inter-disk constraints and the whole multi-stage coupled system in terms of the traveling wave coordinates for all the phase indexes of the reference sectors and for all the bladed disks. Several reduced coupled systems are then solved by selecting at each time only one or a few phase indexes for each bladed disk and by applying the cyclic symmetry boundary conditions. On the other hand, component mode synthesis methods are used either independently or in combination with the multi-stage cyclic symmetry reduction to obtain reduced models of the multi-stage structure. Two of them are particularly efficient, that are firstly component mode synthesis methods with interface modes applied on the bladed disks and secondly component mode synthesis methods with traveling wave coordinates applied on the reference sectors.

  20. Val d'Agri: structural settings by using gravity gradient tensor (ggt) components.

    Science.gov (United States)

    Fedi, M.; Ferranti, L.; Florio, G.; Giori, I.; Italiano, F.

    2003-04-01

    Within the investigated area, which covers the median and frontal zone of the Campano-Lucano segment of the Southern Apennines, the gravity field shows a clear spatial relation with the tectonic structure of the belt. The fold and thrust belt formed in response to late Miocene-Early Pleistocene shortening and allochthon emplacement toward the northeast, and was subsequently affected by extensional faulting which migrated to northeast ahead of the thrust system. As a result, contractional structures are found associated to Pliocene-Early Pleistocene thrust-top basins in the NE part of the area, whereas extensional faults shape Middle Pleistocene-Holocene basin on the SW sector. The main structural grain of the belt is NW-SE, but E-W structures are widespread in the area as a result of phases of non-coaxial thrusting and strike-slip faulting. Gravity anomalies mirrors the spatial distribution of thrust-top and extensional basins and of the deeper bedrock structures controlling basin deposition. The gravity gradient is a second rank tensor containing the second spatial derivatives of the gravity potential. At present gravity gradient airborne surveys are just at the beginning, while gradiometry instrumentations have not yet being implemented for land surveys over rugged terrains. In order to access to this important geophysical quantity for land surveys, we use here a stable technique to compute it from gravity data. The gradient tensor of gravity helps detecting the geometrical parameters of a geological body and has been used in regions traditionally difficult for reflection seismic, such as those where sub-salt and sub-basalt structures occur. The analysis, one by one, of the components of the gradient tensor of gravity has proved to yield a fine image of the structural setting of the Val d'Agri. The Tzz component allows accurate location of the anomalies and appreciation of their spatial relation with basins and structures, but other components of the GGT provide

  1. In-situ measurement of mechanical properties of structural components using cyclic ball indentation technique

    International Nuclear Information System (INIS)

    Material properties of components change during service due to environmental conditions. Measurement of mechanical properties of the components is important for assessing their fitness for service. In many instances, it is not possible to remove sizable samples from the component for doing the measurement in laboratory. In-situ technique for measurement of mechanical properties has great significance in such cases. One of the nondestructive methods that can be adopted for in-situ application is based on cyclic ball indentation technique. It involves multiple indentation cycles (at the same penetration location) on a metallic surface by a spherical indenter. Each cycle consists of indentation, partial unload and reload sequences. Presently, commercial systems are available for doing indentation test on structural component for limited applications. But, there is a genuine need of remotely operable compact in-situ property measurement system. Considering the importance of such applications Reactor Engineering Division of BARC has developed an In-situ Property Measurement System (IProMS), which can be used for in-situ measurement of mechanical properties of a flat or tubular component. This paper highlights the basic theory of measurement, qualification tests on IProMS and results from tests done on flat specimens and tubular component. (author)

  2. Various double component mode synthesis and sub-structuring methods for dynamic mixed FEM

    OpenAIRE

    Garambois, Pierre; Besset, Sébastien; Jézéquel, Louis

    2015-01-01

    International audience Mixed Finite Element Model Component Mode Synthesis (CMS) a b s t r a c t This paper presents various sub-structuring and component mode synthesis (CMS) reduction methods for dynamic mixed displacement-stress FEM. The idea is to imagine a new way of reducing a mixed FEM, by splitting the reduction of the displacement and the stress parameters and adapting primal existing modal reduction methods to each field of the mixed model. In this way, we can choose, for each su...

  3. Factors Study Influencing on Numerical Simulation of Aircraft Windshield against Bird Strike

    Directory of Open Access Journals (Sweden)

    F.S. Wang

    2011-01-01

    Full Text Available The combined model of UniGraphics(UG and ANSYS-LS-DYNA software and finite element (FE model of aircraft windshield and windshield structure for bird strike were built. The windshield structure is composed of windshield, framework, arc-frame and gasket. The factors influencing on dynamic response for bird strike were analyzed such as bird velocity, mesh density of windshield, mesh density of bird, boundary condition, material model of windshield, analytic methods and components of windshield structure. The results showed that these factors must be taken into account when FE analysis method is applied to aircraft anti-bird design.

  4. Model Updating of Complex Structures Using the Combination of Component Mode Synthesis and Kriging Predictor

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2014-01-01

    Full Text Available Updating the structural model of complex structures is time-consuming due to the large size of the finite element model (FEM. Using conventional methods for these cases is computationally expensive or even impossible. A two-level method, which combined the Kriging predictor and the component mode synthesis (CMS technique, was proposed to ensure the successful implementing of FEM updating of large-scale structures. In the first level, the CMS was applied to build a reasonable condensed FEM of complex structures. In the second level, the Kriging predictor that was deemed as a surrogate FEM in structural dynamics was generated based on the condensed FEM. Some key issues of the application of the metamodel (surrogate FEM to FEM updating were also discussed. Finally, the effectiveness of the proposed method was demonstrated by updating the FEM of a real arch bridge with the measured modal parameters.

  5. Prediction of UHPFRC panels thickness subjected to aircraft engine impact

    Directory of Open Access Journals (Sweden)

    Duc-Kien Thai

    2016-06-01

    Full Text Available In the practical design of nuclear building structures subjected to an aircraft crash, the structures are required to prevent scabbing and perforation. NEI 07-13 provided the formulas to predict the minimum reinforced concrete (RC wall thickness to prevent the local damage caused by aircraft engine impact. However, these formulas may not be suitable for predicting the thickness of the ultra-high performance fiber reinforced concrete (UHPFRC wall. In this study, the local damage of a UHPFRC wall caused by the impact of aircraft engine missile is investigated using a finite element program LS-DYNA. The structural components of the UHPFRC panel, aircraft engine model, and their contacts are fully modeled. The analysis results are verified with the test results. A parametric study with varying panel thickness, fiber type and content, and impact velocity is performed to investigate the local damage of the UHPFRC panel. Based on a comparison with the given formulas, the modified equations of Chang and Degen are proposed to predict the minimum wall thickness to prevent scabbing and perforation in the case in which the UHPFRC structure is used.

  6. APPLICATION FOR AIRCRAFT TRACKING

    OpenAIRE

    Ostroumov, Ivan; Kuz’menko, Natalia

    2011-01-01

    Abstract. In the article the important problems of software development for aircraft tracking have beendiscussed. Position reports of ACARS have been used for aircraft tracking around the world.An algorithm of aircraft coordinates decoding and visualization of aircraft position on the map has beenrepresented.Keywords: ACARS, aircraft, internet, position, software, tracking.

  7. Design of structural components for the helical reactor FFHR-d1A

    International Nuclear Information System (INIS)

    Highlights: •A design for the helical reactor FFHR-d1A is conducted. Stress analysis of the coil support structure is performed. •Fundamental design for the vacuum vessel and access ports is presented. •A concept of the gravity support is shown. -- Abstract: FFHR-d1 is a conceptual design of the helical reactor being developed at the National Institute for Fusion Science. The maintenance of in-vessel components is very important for the fusion demo reactor. In addition, sufficient pathways are needed for the divertor exhaust. To implement these, the vacuum vessel, coil support structure, and cryostat require large apertures. However, the coil support structure has to be sufficiently rigid to remain within soundness and deformation limits. A design combining the structural components in the FFHR-d1A was developed from mechanical and thermal viewpoints. Consequently, components having a sufficiently large port area were provided. An investigation of the maintenance and exhaust schemes has been planned on the basis of this fundamental design

  8. Design and commission of an experimental test rig to apply a full-scale pressure load on composite sandwich panels representative of an aircraft secondary structure

    International Nuclear Information System (INIS)

    This paper describes the design of a test rig, which is used to apply a representative pressure load to a full-scale composite sandwich secondary aircraft structure. A generic panel was designed with features to represent those in the composite sandwich secondary aircraft structure. To provide full-field strain data from the panels, the test rig was designed for use with optical measurement techniques such as thermoelastic stress analysis (TSA) and digital image correlation (DIC). TSA requires a cyclic load to be applied to a structure for the measurement of the strain state; therefore, the test rig has been designed to be mounted on a standard servo-hydraulic test machine. As both TSA and DIC require an uninterrupted view of the surface of the test panel, an important consideration in the design is facilitating the optical access for the two techniques. To aid the test rig design a finite element (FE) model was produced. The model provides information on the deflections that must be accommodated by the test rig, and ensures that the stress and strain levels developed in the panel when loaded in the test rig would be sufficient for measurement using TSA and DIC. Finally, initial tests using the test rig have shown it to be capable of achieving the required pressure and maintaining a cyclic load. It was also demonstrated that both TSA and DIC data can be collected from the panels under load, which are used to validate the stress and deflection derived from the FE model

  9. Experience in the use of FBR core component structural design criteria as applied to FFTF

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, S.L.

    1979-01-01

    User gained experience resulting from trial applications of proposed structural design guidelines for Fast Breeder Reactor (FBR) core components is presented. This work was done supporting the design analyses process for consumable core components for the Fast Test Reactor (FTR) of the Fast Flux Test Facility (FFTF). The proposed guidelines were found to be more comprehensive and generally easier to apply than those methods previously used. Component evaluation required a minimum amount of detailed inelastic analysis, primarily through the use of simplified inelastic analysis methods, as given in the guidelines. A major shortcoming of this draft criteria/guidelines is a lack of supporting irradiated material properties. Some areas of guidance given seems ambiguous and may be non-conservative, particularly those related to stress classification unique to FBR environments. Further verification of these areas appears to be in order.

  10. Conformal and embedded IDT microsensors for health monitoring of structures

    Science.gov (United States)

    Varadan, Vijay K.; Varadan, Vasundara V.

    2000-06-01

    MEMS are currently being applied to the structural health monitoring of critical aircraft components and composites. The approach integrates acoustic emission, strain gauges, MEMS accelerometers and vibration monitoring aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ aircraft structural health monitoring system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensor and MEMS for structural applications including load, vibration and acoustics characterization and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State wireless communication systems suitable for condition monitoring of aircraft structures in-flight. The main application areas of this investigation include continuos monitoring of a) structural integrity of aging aircraft, b) fatigue cracking, c) corrosion, d) deflection and strain of aircraft structures, wings, and rotorblades, e) impact damage, f) delamination and g) location and propagation of cracks. In this paper we give an overview of wireless programmable microsensors and MEMS and their associated driving electronics for such applications.

  11. Reinterpreting aircraft measurements in anisotropic scaling turbulence

    Directory of Open Access Journals (Sweden)

    S. Lovejoy

    2009-02-01

    Full Text Available Due to unavoidable vertical fluctuations, the interpretation of atmospheric aircraft measurements requires a theory of turbulence. Until now virtually all the relevant theories have been isotropic. However almost all the available data on the vertical structure shows that it is scaling but with exponents different from the horizontal: the turbulence is anisotropic not isotropic. In this paper, we show how this can lead to spurious breaks in the scaling and to the spurious appearance of the vertical scaling exponent at large horizontal lags.

    We demonstrate this using 16 legs of Gulfstream 4 tropospheric data following isobars each between 500 and 3200 km in length. First we show that the horizontal spectra of the aircraft altitude are nearly k−5/3 (although smoothed by aircraft intertia at scales <3 km. In addition, we show that the altitude and pressure fluctuations along these fractal trajectories have a high degree of coherence with the measured wind (especially with its longitudinal component. There is also a strong phase relation between the altitude, pressure and wind fluctuations with all of these effects occurring over the entire range of scales so that the trajectories influence the wind measurements over large ranges of scale. In comparison, the temperature and humidity have no apparent scale breaks and the corresponding coherencies and phases are low reinforcing the hypothesis that it is the aircraft trajectory that is causally linked to the scale breaks in the wind measurements.

    Using spectra and structure functions we then estimate the small and large scale exponents finding that they are close to the Kolmogorov values (5/3, 1/3 and the vertical values (2.4, 0.73 respectively (for the spectral and real space scaling exponents (β, H the latter are close to those estimated by drop sondes (2.4, 0.75 in the vertical direction. In addition, for each leg we estimate the energy flux, the sphero

  12. A Kernel Time Structure Independent Component Analysis Method for Nonlinear Process Monitoring☆

    Institute of Scientific and Technical Information of China (English)

    Lianfang Cai; Xuemin Tian; Ni Zhang

    2014-01-01

    Kernel independent component analysis (KICA) is a newly emerging nonlinear process monitoring method, which can extract mutually independent latent variables cal ed independent components (ICs) from process var-iables. However, when more than one IC have Gaussian distribution, it cannot extract the IC feature effectively and thus its monitoring performance will be degraded drastical y. To solve such a problem, a kernel time struc-ture independent component analysis (KTSICA) method is proposed for monitoring nonlinear process in this paper. The original process data are mapped into a feature space nonlinearly and then the whitened data are calculated in the feature space by the kernel trick. Subsequently, a time structure independent component analysis algorithm, which has no requirement for the distribution of ICs, is proposed to extract the IC feature. Finally, two monitoring statistics are built to detect process faults. When some fault is detected, a nonlinear fault identification method is developed to identify fault variables based on sensitivity analysis. The proposed monitoring method is applied in the Tennessee Eastman benchmark process. Applications demonstrate the superiority of KTSICA over KICA.

  13. The effect of non-structural components and lignin on hemicellulose extraction.

    Science.gov (United States)

    Liu, Kai-Xuan; Li, Hong-Qiang; Zhang, Jie; Zhang, Zhi-Guo; Xu, Jian

    2016-08-01

    As the important structural component of corn stover, hemicellulose could be converted into a variety of high value-added products. However, high quality hemicellulose extraction is not an easy issue. The present study aims to investigate the effects of non-structural components (NSCs) and lignin removal on alkaline extraction of hemicellulose. Although NSCs were found to have a minimal effect on hemicellulose dissolution, they affected the color values of the hemicellulose extracts. The lignin limited the hemicellulose dissolution and increased the color value by binding to hemicellulose molecules and forming lignin-carbohydrate complexes. Sodium chlorite method can remove about 90% lignin from corn stover, especially the lignin connected to hemicellulose through p-coumaric and ferulic acids. Which increased the hemicellulose dissolution ratio to 93% and reduced the color value 14-28%, but the cost is about 20% carbohydrates lost. PMID:27213576

  14. Structural Reliability Methods for Wind Power Converter System Component Reliability Assessment

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    Wind power converter systems are essential subsystems in both off-shore and on-shore wind turbines. It is the main interface between generator and grid connection. This system is affected by numerous stresses where the main contributors might be defined as vibration and temperature loadings. The...... temperature variations induce time-varying stresses and thereby fatigue loads. A probabilistic model is used to model fatigue failure for an electrical component in the power converter system. This model is based on a linear damage accumulation and physics of failure approaches, where a failure criterion is...... defined by the threshold model. The attention is focused on crack propagation in solder joints of electrical components due to the temperature loadings. Structural Reliability approaches are used to incorporate model, physical and statistical uncertainties. Reliability estimation by means of structural...

  15. DOE Order 5480.28 natural phenomena hazards mitigation system, structure, component database

    International Nuclear Information System (INIS)

    This document describes the Prioritization Phase Database that was prepared for the Project Hanford Management Contractors to support the implementation of DOE Order 5480.28. Included within this document are three appendices which contain the prioritized list of applicable Project Hanford Management Contractors Systems, Structures, and Components. These appendices include those assets that comply with the requirements of DOE Order 5480.28, assets for which a waiver will be recommended, and assets requiring additional information before compliance can be ascertained

  16. Humus components and biogenic structures under tropical slash-and-burn agriculture

    OpenAIRE

    Topoliantz, Stéphanie; Ponge, Jean-François; Lavelle, Patrick

    2006-01-01

    International audience Slash-and-burn cultivation in the humid tropics can cause changes in the composition of topsoil, depending on the duration of the fallow. We studied differences between practices, using the small-volume micromorphological method, to quantify the distribution of solid components in the topsoil, concentrating on plant organs and biogenic structures created by soil animals. We compared samples of topsoil from five plots, two at Maripasoula, an Aluku village along the Ma...

  17. Independent component analysis reveals new and biologically significant structures in micro array data

    Directory of Open Access Journals (Sweden)

    Veerla Srinivas

    2006-06-01

    Full Text Available Abstract Background An alternative to standard approaches to uncover biologically meaningful structures in micro array data is to treat the data as a blind source separation (BSS problem. BSS attempts to separate a mixture of signals into their different sources and refers to the problem of recovering signals from several observed linear mixtures. In the context of micro array data, "sources" may correspond to specific cellular responses or to co-regulated genes. Results We applied independent component analysis (ICA to three different microarray data sets; two tumor data sets and one time series experiment. To obtain reliable components we used iterated ICA to estimate component centrotypes. We found that many of the low ranking components indeed may show a strong biological coherence and hence be of biological significance. Generally ICA achieved a higher resolution when compared with results based on correlated expression and a larger number of gene clusters with significantly enriched for gene ontology (GO categories. In addition, components characteristic for molecular subtypes and for tumors with specific chromosomal translocations were identified. ICA also identified more than one gene clusters significant for the same GO categories and hence disclosed a higher level of biological heterogeneity, even within coherent groups of genes. Conclusion Although the ICA approach primarily detects hidden variables, these surfaced as highly correlated genes in time series data and in one instance in the tumor data. This further strengthens the biological relevance of latent variables detected by ICA.

  18. Health monitoring of time-varying stochastic structures by latent components and fuzzy expert system

    Institute of Scientific and Technical Information of China (English)

    M. M. Ettefagt; M. H. Sadeghi

    2008-01-01

    In this paper, a novel parametric model-based decomposition method is proposed for structural health monitoring of time-varying structures. For this purpose, the advanced Functional-Series Time-dependent Auto Regressive Moving Average (FS-TARMA) technique is used to estimate the parameters and innovation variance used in the parametric signal decomposition scheme. Additionally, a unique feature extraction and reduction method based on the decomposed signals, known as Latent Components (LCs), is proposed. To evaluate the efficiency of the proposed method, numerical simulation and an experimental study in the laboratory were conducted on a time-varying structure, where various types of damage were introduced. The Fuzzy Expert System (FES) was used as a classification tool to demonstrate that the proposed method successfully identifies different structural conditions when compared with other methods based on non-reduced and ordinary feature extraction.

  19. A Method of Clustering Components into Modules Based on Products' Functional and Structural Analysis

    Institute of Scientific and Technical Information of China (English)

    MENG Xiang-hui; JIANG Zu-hua; ZHENG Ying-fei

    2006-01-01

    Modularity is the key to improving the cost-variety trade-off in product development. To achieve the functional independency and structural independency of modules, a method of clustering components to identify modules based on functional and structural analysis was presented. Two stages were included in the method. In the first stage the products' function was analyzed to determine the primary level of modules. Then the objective function for modules identifying was formulated to achieve functional independency of modules. Finally the genetic algorithm was used to solve the combinatorial optimization problem in modules identifying to form the primary modules of products. In the second stage the cohesion degree of modules and the coupling degree between modules were analyzed. Based on this structural analysis the modular scheme was refined according to the thinking of structural independency. A case study on the gear reducer was conducted to illustrate the validity of the presented method.

  20. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods.

    Science.gov (United States)

    McClements, David Julian; Decker, Eric Andrew; Park, Yeonhwa; Weiss, Jochen

    2009-06-01

    There have been major advances in the design and fabrication of structured delivery systems for the encapsulation of nutraceutical and functional food components. A wide variety of delivery systems is now available, each with its own advantages and disadvantages for particular applications. This review begins by discussing some of the major nutraceutical and functional food components that need to be delivered and highlights the main limitations to their current utilization within the food industry. It then discusses the principles underpinning the rational design of structured delivery systems: the structural characteristics of the building blocks; the nature of the forces holding these building blocks together; and, the different ways of assembling these building blocks into structured delivery systems. Finally, we review the major types of structured delivery systems that are currently available to food scientists: lipid-based (simple, multiple, multilayer, and solid lipid particle emulsions); surfactant-based (simple micelles, mixed micelles, vesicles, and microemulsions) and biopolymer-based (soluble complexes, coacervates, hydrogel droplets, and particles). For each type of delivery system we describe its preparation, properties, advantages, and limitations. PMID:19484636

  1. Low frequency cabin noise reduction based on the intrinsic structural tuning concept: The theory and the experimental results, phase 2. [jet aircraft noise

    Science.gov (United States)

    Sengupta, G.

    1978-01-01

    Low frequency cabin noise and sonically induced stresses in an aircraft fuselage may be reduced by intrinsic tuning of the various structural members such as the skin, stringers, and frames and then applying damping treatments on these members. The concept is also useful in identifying the key structural resonance mechanisms controlling the fuselage response to broadband random excitation and in developing suitable damping treatments for reducing the structural response in various frequency ranges. The mathematical proof of the concept and the results of some laboratory and field tests on a group of skin-stringer panels are described. In the so-called stiffness-controlled region, the noise transmission may actually be controlled by stiffener resonances, depending upon the relationship between the natural frequencies of the skin bay and the stiffeners. Therefore, cabin noise in the stiffness-controlled region may be effectively reduced by applying damping treatments on the stiffeners.

  2. Construction of structural design guidelines for vacuum vessels and other components

    International Nuclear Information System (INIS)

    Since November 1990, systematic research has been carried out in preparation for a Japanese draft of structural design guidelines for an experimental fusion reactor. This paper summarizes the major results of the work and the status of these efforts. At first, failure modes to be prevented by design standards were extracted by considering the materials, configurations and operating conditions of International Thermonuclear Experimental Reactor (ITER) components. Applicability of the current design standard was discussed by considering failure modes in the second stage. Specific issues regarding the individual components were also discussed. Major difficulties in vacuum vessel were how to classify stress due to magnetic load, how to define evaluation cross section in complex 3-dimensional structures and how to estimate the fatigue life of weldments. In designing in-vessel components (IVCs) such as blankets and divertors, the significant reduction in uniform elongation capability caused by heavy neutron irradiation should be taken into account. The validity of the existing structural design method was also confirmed by comparing the elastic-plastic design limit for virgin material, the elastic design limit for irradiated material and the fracture mechanics design limit for irradiated material. (orig.)

  3. A review on the coordinative structure of human walking and the application of principal component analysis

    Institute of Scientific and Technical Information of China (English)

    Xinguang Wang; Nicholas O'Dwyer; Mark Halaki

    2013-01-01

    Walking is a complex task which includes hundreds of muscles, bones and joints working together to deliver smooth movements. With the complexity, walking has been widely investigated in order to identify the pattern of multi-segment movement and reveal the control mechanism. The degree of freedom and dimensional properties provide a view of the coordinative structure during walking, which has been extensively studied by using dimension reduction technique. In this paper, the studies related to the coordinative structure, dimensions detection and pattern reorganization during walking have been reviewed. Principal component analysis, as a popular technique, is widely used in the processing of human movement data. Both the principle and the outcomes of principal component analysis were introduced in this paper. This technique has been reported to successfully reduce the redundancy within the original data, identify the physical meaning represented by the extracted principal components and discriminate the different patterns. The coordinative structure during walking assessed by this technique could provide further information of the body control mechanism and correlate walking pattern with injury.

  4. DEVELOPMENT OF METHODOLOGY FOR DESIGNING TESTABLE COMPONENT STRUCTURE OF DISCIPLINARY COMPETENCE

    Directory of Open Access Journals (Sweden)

    Vladimir I. Freyman

    2014-01-01

    Full Text Available The aim of the study is to present new methods of quality results assessment of the education corresponding to requirements of Federal State Educational Standards (FSES of the Third Generation developed for the higher school. The urgency of search of adequate tools for quality competency measurement and its elements formed in the course of experts’ preparation are specified. Methods. It is necessary to consider interference of competency components such as knowledge, abilities, possession in order to make procedures of assessment of students’ achievements within the limits of separate discipline or curriculum section more convenient, effective and exact. While modeling of component structure of the disciplinary competence the testable design of components is used; the approach borrowed from technical diagnostics. Results. The research outcomes include the definition and analysis of general iterative methodology for testable designing component structure of the disciplinary competence. Application of the proposed methodology is illustrated as the example of an abstract academic discipline with specified data and index of labour requirement. Methodology restrictions are noted; practical recommendations are given. Scientific novelty. Basic data and a detailed step-by-step implementation phase of the proposed common iterative approach to the development of disciplinary competence testable component structure are considered. Tests and diagnostic tables for different options of designing are proposed. Practical significance. The research findings can help promoting learning efficiency increase, a choice of adequate control devices, accuracy of assessment, and also efficient use of personnel, temporal and material resources of higher education institutions. Proposed algorithms, methods and approaches to procedure of control results organization and realization of developed competences and its components can be used as methodical base while

  5. TWO-COMPONENT STRUCTURE OF THE Hβ BROAD-LINE REGION IN QUASARS. I. EVIDENCE FROM SPECTRAL PRINCIPAL COMPONENT ANALYSIS

    International Nuclear Information System (INIS)

    We report on a spectral principal component analysis (SPCA) of a sample of 816 quasars, selected to have small Fe II velocity shifts with spectral coverage in the rest wavelength range 3500-5500 Å. The sample is explicitly designed to mitigate spurious effects on SPCA induced by Fe II velocity shifts. We improve the algorithm of SPCA in the literature and introduce a new quantity, the fractional-contribution spectrum, that effectively identifies the emission features encoded in each eigenspectrum. The first eigenspectrum clearly records the power-law continuum and very broad Balmer emission lines. Narrow emission lines dominate the second eigenspectrum. The third eigenspectrum represents the Fe II emission and a component of the Balmer lines with kinematically similar intermediate-velocity widths. Correlations between the weights of the eigenspectra and parametric measurements of line strength and continuum slope confirm the above interpretation for the eigenspectra. Monte Carlo simulations demonstrate the validity of our method to recognize cross talk in SPCA and firmly rule out a single-component model for broad Hβ. We also present the results of SPCA for four other samples that contain quasars in bins of larger Fe II velocity shift; similar eigenspectra are obtained. We propose that the Hβ-emitting region has two kinematically distinct components: one with very large velocities whose strength correlates with the continuum shape and another with more modest, intermediate velocities that is closely coupled to the gas that gives rise to Fe II emission.

  6. Two-component Structure of the Hβ Broad-line Region in Quasars. I. Evidence from Spectral Principal Component Analysis

    Science.gov (United States)

    Hu, Chen; Wang, Jian-Min; Ho, Luis C.; Ferland, Gary J.; Baldwin, Jack A.; Wang, Ye

    2012-12-01

    We report on a spectral principal component analysis (SPCA) of a sample of 816 quasars, selected to have small Fe II velocity shifts with spectral coverage in the rest wavelength range 3500-5500 Å. The sample is explicitly designed to mitigate spurious effects on SPCA induced by Fe II velocity shifts. We improve the algorithm of SPCA in the literature and introduce a new quantity, the fractional-contribution spectrum, that effectively identifies the emission features encoded in each eigenspectrum. The first eigenspectrum clearly records the power-law continuum and very broad Balmer emission lines. Narrow emission lines dominate the second eigenspectrum. The third eigenspectrum represents the Fe II emission and a component of the Balmer lines with kinematically similar intermediate-velocity widths. Correlations between the weights of the eigenspectra and parametric measurements of line strength and continuum slope confirm the above interpretation for the eigenspectra. Monte Carlo simulations demonstrate the validity of our method to recognize cross talk in SPCA and firmly rule out a single-component model for broad Hβ. We also present the results of SPCA for four other samples that contain quasars in bins of larger Fe II velocity shift; similar eigenspectra are obtained. We propose that the Hβ-emitting region has two kinematically distinct components: one with very large velocities whose strength correlates with the continuum shape and another with more modest, intermediate velocities that is closely coupled to the gas that gives rise to Fe II emission.

  7. Novel structural components of the ventral disc and lateral crest in Giardia intestinalis.

    Directory of Open Access Journals (Sweden)

    Kari D Hagen

    2011-12-01

    Full Text Available Giardia intestinalis is a ubiquitous parasitic protist that is the causative agent of giardiasis, one of the most common protozoan diarrheal diseases in the world. Giardia trophozoites attach to the intestinal epithelium using a specialized and elaborate microtubule structure, the ventral disc. Surrounding the ventral disc is a less characterized putatively contractile structure, the lateral crest, which forms a continuous perimeter seal with the substrate. A better understanding of ventral disc and lateral crest structure, conformational dynamics, and biogenesis is critical for understanding the mechanism of giardial attachment to the host. To determine the components comprising the ventral disc and lateral crest, we used shotgun proteomics to identify proteins in a preparation of isolated ventral discs. Candidate disc-associated proteins, or DAPs, were GFP-tagged using a ligation-independent high-throughput cloning method. Based on disc localization, we identified eighteen novel DAPs, which more than doubles the number of known disc-associated proteins. Ten of the novel DAPs are associated with the lateral crest or outer edge of the disc, and are the first confirmed components of this structure. Using Fluorescence Recovery After Photobleaching (FRAP with representative novel DAP::GFP strains we found that the newly identified DAPs tested did not recover after photobleaching and are therefore structural components of the ventral disc or lateral crest. Functional analyses of the novel DAPs will be central toward understanding the mechanism of ventral disc-mediated attachment and the mechanism of disc biogenesis during cell division. Since attachment of Giardia to the intestine via the ventral disc is essential for pathogenesis, it is possible that some proteins comprising the disc could be potential drug targets if their loss or disruption interfered with disc biogenesis or function, preventing attachment.

  8. RESOLVING THE STELLAR OUTSKIRTS OF M81: EVIDENCE FOR A FAINT, EXTENDED STRUCTURAL COMPONENT

    International Nuclear Information System (INIS)

    We present a wide field census of resolved stellar populations in the northern half of M81, conducted with Suprime-Cam on the 8 m Subaru telescope and covering an area ∼0.3 deg2. The resulting color-magnitude diagram reaches over one magnitude below the red giant branch (RGB) tip, allowing a detailed comparison between the young and old stellar spatial distributions. The surface density of stars with ages ∼20 cm-2, lower than typically probed with Hα flux. Both diffuse light and resolved RGB star counts show compelling evidence for a faint, extended structural component beyond the bright optical disk, with a much flatter surface brightness profile. The star counts allow us to probe this component to significantly fainter levels than is possible with the diffuse light alone. From the colors of its RGB stars, we estimate that this component has a peak global metallicity [M/H] ∼ -1.1 ± 0.3 at deprojected radii 32-44 kpc assuming an age of 10 Gyr and distance of 3.6 Mpc. The spatial distribution of its RGB stars follows a power-law surface density profile, I(r) ∝ r -γ, with γ ∼ 2. If this component were separate from the bulge and from the bright optical disk, then it would contain ∼10%-15% of M81's total V-band luminosity. We discuss the possibility that this is M81's halo or thick disk, and in particular highlight its similarities and differences with these components in the Milky Way. Other possibilities for its nature, such as a perturbed disk or the faint extension of the bulge, cannot be completely ruled out, though our data disfavor the latter. These observations add to the growing body of evidence for faint, complex extended structures beyond the bright disks of spiral galaxies.

  9. Response spectrum analysis of coupled structural response to a three component seismic disturbance

    International Nuclear Information System (INIS)

    The work discussed herein is a comparison and evaluation of several response spectrum analysis (RSA) techniques as applied to the same structural model with seismic excitation having three spatial components. The structural model includes five lumped masses (floors) connected by four elastic members. The base is supported by three translational springs and two horizontal torsional springs. In general, the mass center and shear center of a building floor are distinct locations. Hence, inertia forces, which act at the mass center, induce twisting in the structure. Through this induced torsion, the lateral (x and y) displacements of the mass elements are coupled. The ground motion components used for this study are artificial earthquake records generated from recorded accelerograms by a spectrum modification technique. The accelerograms have response spectra which are compatible with U.S. NRC Regulatory Guide 1.60. Lagrange's equations of motion for the system were written in matrix form and uncoupled with the modal matrix. Numerical integration (fourth order Runge-Kutta) of the resulting modal equations produced time histories of system displacements in response to simultaneous application of three orthogonal components of ground motion, and displacement response spectra for each modal coordinate in response to each of the three ground motion components. Five different RSA techniques were used to combine the spectral displacements and the modal matrix to give approximations of maximum system displacements. These approximations were then compared with the maximum system displacements taken from the time histories. The RSA techniques used are the method of absolute sums, the square root of the sum of the sum of the squares, the double sum approach, the method of closely spaced modes, and Lin's method

  10. VTOL in ground effect flows for closely spaced jets. [to predict pressure and upwash forces on aircraft structures

    Science.gov (United States)

    Migdal, D.; Hill, W. G., Jr.; Jenkins, R. C.

    1979-01-01

    Results of a series of in ground effect twin jet tests are presented along with flow models for closely spaced jets to help predict pressure and upwash forces on simulated aircraft surfaces. The isolated twin jet tests revealed unstable fountains over a range of spacings and jet heights, regions of below ambient pressure on the ground, and negative pressure differential in the upwash flow field. A separate computer code was developed for vertically oriented, incompressible jets. This model more accurately reflects fountain behavior without fully formed wall jets, and adequately predicts ground isobars, upwash dynamic pressure decay, and fountain lift force variation with height above ground.

  11. Reinterpreting aircraft measurements in anisotropic scaling turbulence

    Directory of Open Access Journals (Sweden)

    S. J. Hovde

    2009-07-01

    Full Text Available Due to both systematic and turbulent induced vertical fluctuations, the interpretation of atmospheric aircraft measurements requires a theory of turbulence. Until now virtually all the relevant theories have been isotropic or "quasi isotropic" in the sense that their exponents are the same in all directions. However almost all the available data on the vertical structure shows that it is scaling but with exponents different from the horizontal: the turbulence is scaling but anisotropic. In this paper, we show how such turbulence can lead to spurious breaks in the scaling and to the spurious appearance of the vertical scaling exponent at large horizontal lags.

    We demonstrate this using 16 legs of Gulfstream 4 aircraft near the top of the troposphere following isobars each between 500 and 3200 km in length. First we show that over wide ranges of scale, the horizontal spectra of the aircraft altitude are nearly k-5/3. In addition, we show that the altitude and pressure fluctuations along these fractal trajectories have a high degree of coherence with the measured wind (especially with its longitudinal component. There is also a strong phase relation between the altitude, pressure and wind fluctuations; for scales less than ≈40 km (on average the wind fluctuations lead the pressure and altitude, whereas for larger scales, the pressure fluctuations leads the wind. At the same transition scale, there is a break in the wind spectrum which we argue is caused by the aircraft starting to accurately follow isobars at the larger scales. In comparison, the temperature and humidity have low coherencies and phases and there are no apparent scale breaks, reinforcing the hypothesis that it is the aircraft trajectory that is causally linked to the scale breaks in the wind measurements.

    Using spectra and structure functions for the wind, we then estimate their exponents (β, H at small (5/3, 1/3 and large scales (2

  12. Interpretation of risk significance of passive component aging using probabilistic structural analysis

    International Nuclear Information System (INIS)

    The probabilistic risk assessments (PRAs) being developed at most nuclear power plants to calculate the risk of core damage generally focus on the possible failure of active components. Except as initiating events, the possible failure of passive components is given little consideration. The NRC is sponsoring a project at INEL to investigate the risk significance of passive components as they age. For this project, the authors developed a technique to calculate the failure probability of passive components over time, and demonstrated the technique by applying it to a weld in the auxiliary feedwater (AFW) system. The selection of this component was based on expert judgment of the likelihood of failure and on an estimate of the consequence of component failure to plant safety. The authors used a modified version of the PRAISE computer code to perform a probabilistic structural analysis to calculate the probability that crack growth due to aging would cause the weld to rupture. The authors modified an existing PRA (NUREG 1150 plant) to include the possible rupture of the AFW weld, and then used the weld rupture probability as input to the modified PRA to calculate the change in plant risk with time. The results showed an insignificant effect on plant risk because of the low calculated rupture rate of the weld in this particular calculation over 48 years of service. However, the most interesting observation was the rupture rate trend for this 48 years. A decreasing yearly rupture rate for this weld was calculated instead of the increasing rupture rate trend one might expect. The authors attribute this result to infant mortality; that is, most of those initial flaws that will eventually lead to rupture will do so early in life. This means that although each weld in a population may be wearing out, the population as a whole can exhibit a decreasing rupture rate

  13. Two-Component Structure of the Hbeta Broad-Line Region in Quasars. I. Evidence from Spectral Principal Component Analysis

    CERN Document Server

    Hu, Chen; Ho, Luis C; Ferland, Gary J; Baldwin, Jack A; Wang, Ye

    2012-01-01

    We report on a spectral principal component analysis (SPCA) of a sample of 816 quasars, selected to have small Fe II velocity shifts with spectral coverage in the rest wavelength range 3500--5500 \\AA. The sample is explicitly designed to mitigate spurious effects on SPCA induced by Fe II velocity shifts. We improve the algorithm of SPCA in the literature and introduce a new quantity, \\emph{the fractional-contribution spectrum}, that effectively identifies the emission features encoded in each eigenspectrum. The first eigenspectrum clearly records the power-law continuum and very broad Balmer emission lines. Narrow emission lines dominate the second eigenspectrum. The third eigenspectrum represents the Fe II emission and a component of the Balmer lines with kinematically similar intermediate velocity widths. Correlations between the weights of the eigenspectra and parametric measurements of line strength and continuum slope confirm the above interpretation for the eigenspectra. Monte Carlo simulations demonstr...

  14. Floor Response Evaluation for Auxiliary Building Subjected to Aircraft Impact Loading

    International Nuclear Information System (INIS)

    These studies have been aimed to verify and ensure the safety of the targeted walls and structures especially in the viewpoint of the deterministic approach. However, a probabilistic safety assessment as well as deterministic approach for the damage of the internal component in the nuclear power plants (NPPs) subjected to aircraft crash is also needed. A probabilistic safety assessment for aircraft crash includes many uncertainties such as impact velocity, mass, impact location, shape, size, material etc. of aircraft. In this paper, an impact location was selected among the various parameters. This paper found the acceleration floor response spectra at specified locations (safety related components) on the target structure that assumed to be impact velocity 150m/s and maximum fuel for the specified aircraft model. In order to obtain the floor response in case of the crash with a various locations, the analyses for the auxiliary building subjected to aircraft impact were performed using Riera force history method and missile-target interaction method. The difference between responses in case of the building floor subjected to impact was occurred. Thus, in order to obtain the more accurate results, missile-target interaction method was used. This paper found the response at the selected point (node point No. 51). In order to probabilistic assessment for the safety related components, the assessment for a various parameters (velocity, mass, materials etc.) as well as impact locations should be needed

  15. Experimental shielding evaluation of the radiation protection provided by the structurally significant components of residential structures

    International Nuclear Information System (INIS)

    The human health and environmental effects following a postulated accidental release of radioactive material to the environment have been a public and regulatory concern since the early development of nuclear technology. These postulated releases have been researched extensively to better understand the potential risks for accident mitigation and emergency planning purposes. The objective of this investigation is to provide an updated technical basis for contemporary building shielding factors for the US housing stock. Building shielding factors quantify the protection from ionising radiation provided by a certain building type. Much of the current data used to determine the quality of shielding around nuclear facilities and urban environments is based on simplistic point-kernel calculations for 1950s era suburbia and is no longer applicable to the densely populated urban environments realised today. To analyse a building’s radiation shielding properties, the ideal approach would be to subject a variety of building types to various radioactive sources and measure the radiation levels in and around the building. While this is not entirely practicable, this research analyses the shielding effectiveness of ten structurally significant US housing-stock models (walls and roofs) important for shielding against ionising radiation. The experimental data are used to benchmark computational models to calculate the shielding effectiveness of various building configurations under investigation from two types of realistic environmental source terms. Various combinations of these ten shielding models can be used to develop full-scale computational housing-unit models for building shielding factor calculations representing 69.6 million housing units (61.3%) in the United States. Results produced in this investigation provide a comparison between theory and experiment behind building shielding factor methodology. (paper)

  16. Aircraft operational reliability—A model-based approach and a case study

    International Nuclear Information System (INIS)

    The success of an aircraft mission is subject to the fulfillment of some operational requirements before and during each flight. As these requirements depend essentially on the aircraft system components and the mission profile, the effects of failures can be very severe if they are not anticipated. Hence, one should be able to assess the aircraft operational reliability with regard to its missions in order to be able to cope with failures. We address aircraft operational reliability modeling to support maintenance planning during the mission achievement. We develop a modeling approach, based on a meta-model that is used as a basis: (i) to structure the information needed to assess aircraft operational reliability and (ii) to build a stochastic model that can be tuned dynamically, in order to take into account the aircraft system operational state, a mission profile and the maintenance facilities available at the flight stop locations involved in the mission. The aim is to enable operational reliability assessment online. A case study, based on an aircraft subsystem, is considered for illustration using the Stochastic Activity Networks (SANs) formalism

  17. Structural components of the nuclear body in nuclei of Allium cepa cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Nuclear bodies have long been noted in interphase nuclei of plant cells,but their structural component,origin and function are still unclear by now.The present work showed in onion cells the nuclear bodies appeared as a spherical structure about 0.3 to 0.8 μm in diameter.They possibly were formed in nucleolus and subsequently released,and entered into nucleoplasm.Observation through cytochemical staining method at the ultrastructural level confirmed that nuclear bodies consisted of ribonucleoproteins (RNPs) and silver-stainable proteins.Immunocytochemical results revealed that nuclear bodies contained no DNA and ribosomal gene transcription factor (UBF).Based on these data,we suggested that nuclear bodies are not related to the ribosome or other gene transcription activities,instead they may act as subnuclear structures for RNPs transport from nucleolus to cytoplasm,and may also be involved in splicing of pre-mRNAs.

  18. Development of mechanical test techniques for structural components of irradiated PWR fuel assembly

    International Nuclear Information System (INIS)

    An increase of fuel burnup and duration of fuel life remains one of the main methods for a nuclear power engineering enhancement. Properties of structural materials providing corrosion resistance, mechanical strength, and dimensional instability of the components of a fuel assembly (FA) are of great importance for fuel operational reliability in such fuel life cycles. Generally, PWR fuel assemblies consist of a top nozzle, spacer grid, bottom nozzle, and guide/instrumentation tubes. The top and bottom nozzle are fixed to the guide tubes using a screw or bulge method. The spacer grid fixed to the guide/instrumentation tubes using a spot weld or bulge method. To understand the in-reactor performance of PWR FA, several devices and test techniques have been developed for mechanical property tests. Among the structural components of PWR FA, a spacer grid, a hold down spring of a top nozzle and a connecting part of FA were considered. Experimental works were carried out for the unirradiated and irradiated components of advanced nuclear fuel assemblies for KSNPs and Westinghouse type PWRs at IMEF (Irradiated Materials Examination Facility) at KAERI. The developed techniques were verified through a hot cell tests. (author)

  19. The role of testing programs in verifying structural integrity of medium speed diesel generator components

    International Nuclear Information System (INIS)

    The reliability of emergency diesel generators is of prime concern to the nuclear power industry. Assurance that these components will perform their intended functions has usually been approached by requiring frequent, and occasionally abusive, testing. The testing procedure is suspected to result in some life reduction to the equipment. A current program addresses the evaluation of structural integrity of diesel generator components through a combination of engine pre- and postoperational testing, design analysis, nondestructive examination, and monitoring to maximize reliability with minimum wear of the engine. This program employs engineering analysis to understand previous problems, to predict future performance of critical components, and to define areas of focus for NDE or monitoring. The analysis also provides conservative in-service inspection intervals and a quantitative basis to extend or eliminate NDE requirements. Engine testing and inspection provide verification of this analysis and at the same time refine the accuracy of the predictions. This paper describes applying this combined analytical and testing approach to major diesel engine components such as crankshafts, connecting rod bearing shells, and pistons

  20. Development of Probabilistic Risk Assessment Procedure of Nuclear Power Plant under Aircraft Impact Loadings

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Daegi; Shin, Sangshup; Park, Jin Hee; Choi, Inkil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this paper, the total technical roadmap and the procedure to assess the aircraft impact risk will be introduced. In the first year of the research project, 2012, we developed aircraft impact accident scenario and performed preliminary fragility analysis of the local failure of the targeted wall by aircraft impact. An aircraft impact event can be characterized by the appropriate load parameters (i. e., aircraft type, mass, velocity, angle of crash, etc.). Therefore, the reference parameter should be selected to represent each load effect in order to evaluate the capacity/fragility of SSCs using deterministic or probabilistic methods. This is similar to the use of the peak ground acceleration (PGA) to represent the ground motion spectrum of the earthquake in the seismic probabilistic risk assessment (SPRA) approach. We developed the methodology to decide on the reference parameter for the aircraft impact risk quantification among some reasonable candidates, which can represent many uncertain loading parameters. To detect the response and the damage of the target structure, missile-target interaction method and Riera's time-history analysis method have been used primarily in the aircraft impact research area. To define the reference loading parameter, we need to perform repetitive simulations for many analysis cases. Thus, we applied a revised version of Riera's method, which is appropriate for a simplified impact simulation. The target NPP to determine the reference parameter and evaluate the preliminary assessment of aircraft impact risk was selected among the typical Korean PWR NPPs. The response has been calculated for pre-stressed concrete containment buildings subjected to aircraft impact loading, and the responses according to each reference parameter have been analyzed. Recently, we also evaluated the floor response spectra for the locations of important components for the estimation of the failure probabilities and fragility functions of

  1. Development of Probabilistic Risk Assessment Procedure of Nuclear Power Plant under Aircraft Impact Loadings

    International Nuclear Information System (INIS)

    In this paper, the total technical roadmap and the procedure to assess the aircraft impact risk will be introduced. In the first year of the research project, 2012, we developed aircraft impact accident scenario and performed preliminary fragility analysis of the local failure of the targeted wall by aircraft impact. An aircraft impact event can be characterized by the appropriate load parameters (i. e., aircraft type, mass, velocity, angle of crash, etc.). Therefore, the reference parameter should be selected to represent each load effect in order to evaluate the capacity/fragility of SSCs using deterministic or probabilistic methods. This is similar to the use of the peak ground acceleration (PGA) to represent the ground motion spectrum of the earthquake in the seismic probabilistic risk assessment (SPRA) approach. We developed the methodology to decide on the reference parameter for the aircraft impact risk quantification among some reasonable candidates, which can represent many uncertain loading parameters. To detect the response and the damage of the target structure, missile-target interaction method and Riera's time-history analysis method have been used primarily in the aircraft impact research area. To define the reference loading parameter, we need to perform repetitive simulations for many analysis cases. Thus, we applied a revised version of Riera's method, which is appropriate for a simplified impact simulation. The target NPP to determine the reference parameter and evaluate the preliminary assessment of aircraft impact risk was selected among the typical Korean PWR NPPs. The response has been calculated for pre-stressed concrete containment buildings subjected to aircraft impact loading, and the responses according to each reference parameter have been analyzed. Recently, we also evaluated the floor response spectra for the locations of important components for the estimation of the failure probabilities and fragility functions of

  2. Protective Role of Spore Structural Components in Determining Bacillus subtilis Spore Resistance to Simulated Mars Surface Conditions

    OpenAIRE

    Moeller, Ralf; Schuerger, Andrew C.; Reitz, Günther; Nicholson, Wayne L.

    2012-01-01

    Spores of wild-type and mutant Bacillus subtilis strains lacking various structural components were exposed to simulated Martian atmospheric and UV irradiation conditions. Spore survival and mutagenesis were strongly dependent on the functionality of all of the structural components, with small acid-soluble spore proteins, coat layers, and dipicolinic acid as key protectants.

  3. Neural Networks Based Aircraft Fault Tolerant Control

    OpenAIRE

    Zhong, Lunlong; Mora-Camino, Félix

    2012-01-01

    The purpose of this communication is to deal with the case in which an aerodynamic actuator failure occurs to an aircraft while it has to perform guidance maneuvers. The problem considered deals with the reallocation of redundant actuators to perform the required maneuvers and maintain the structural integrity of the aircraft. A Nonlinear Inverse Control technique is used to generate online nominal moment along the three axis of the aircraft. Then, taking into account all material and structu...

  4. A new process monitoring method based on noisy time structure independent component analysis

    Institute of Scientific and Technical Information of China (English)

    Lianfang Cai; Xuemin Tian

    2015-01-01

    Conventional process monitoring method based on fast independent component analysis (FastICA) cannot take the ubiquitous measurement noises into account and may exhibit degraded monitoring performance under the adverse effects of the measurement noises. In this paper, a new process monitoring approach based on noisy time structure ICA (NoisyTSICA) is proposed to solve such problem. A NoisyTSICA algorithm which can consider the measurement noises explicitly is firstly developed to estimate the mixing matrix and extract the independent components (ICs). Subsequently, a monitoring statistic is built to detect process faults on the basis of the recur-sive kurtosis estimations of the dominant ICs. Lastly, a contribution plot for the monitoring statistic is constructed to identify the fault variables based on the sensitivity analysis. Simulation studies on the continuous stirred tank reactor system demonstrate that the proposed NoisyTSICA-based monitoring method outperforms the conven-tional FastICA-based monitoring method.

  5. Application of lifetime management for mechanical systems, structures and components (SSC) in nuclear power plants

    International Nuclear Information System (INIS)

    Guidelines, codes and standards contain regulations and requirements to guarantee a high quality of mechanical systems, structures and components (SSC) of nuclear power plants. These concern safe and reliable operation during the total lifetime (lifetime management), safety against ageing phenomena (ageing management) as well as proof of integrity (e.g. break exclusion or avoidance of fracture). Within this field the ageing management is a key element. Depending on the safety-relevance of the SSC under observation including preventive maintenance various tasks are required in particular to clarify the mechanisms which contribute system-specifically to the damage of the components and systems and to define their controlling parameters which have to be monitored and checked. Appropriate continuous or discontinuous measures are to be considered in this connection. The approach to ensure a high standard of quality in operation and the management of the technical and organisational aspects are demonstrated and explained. (author)

  6. Calculating excess volumes of binary solutions with allowance for structural differences between mixed components

    Science.gov (United States)

    Balankina, E. S.

    2016-06-01

    Analytical dependences of a volume's properties on the differences between the geometric structures of initial monosystems are obtained for binary systems simulated by a grain medium. The effect of microstructural parameter k (the ratio of volumes of molecules of mixed components) on the concentration behavior of the relative excess molar volume of different types of real binary solutions is analyzed. It is established that the contribution due to differences between the volumes of molecules and coefficients of the packing density of mixed components is ~80-100% for mutual solutions of n-alkanes and ~55-80% of the experimental value of the relative excess molar volume for water solutions of n-alcohols.

  7. Analysis of complex elastic structures by a Rayleigh-Ritz component modes method using Lagrange multipliers. Ph.D. Thesis

    Science.gov (United States)

    Klein, L. R.

    1974-01-01

    The free vibrations of elastic structures of arbitrary complexity were analyzed in terms of their component modes. The method was based upon the use of the normal unconstrained modes of the components in a Rayleigh-Ritz analysis. The continuity conditions were enforced by means of Lagrange Multipliers. Examples of the structures considered are: (1) beams with nonuniform properties; (2) airplane structures with high or low aspect ratio lifting surface components; (3) the oblique wing airplane; and (4) plate structures. The method was also applied to the analysis of modal damping of linear elastic structures. Convergence of the method versus the number of modes per component and/or the number of components is discussed and compared to more conventional approaches, ad-hoc methods, and experimental results.

  8. Single-Component Conductors: A Sturdy Electronic Structure Generated by Bulky Substituents.

    Science.gov (United States)

    Filatre-Furcate, Agathe; Bellec, Nathalie; Jeannin, Olivier; Auban-Senzier, Pascale; Fourmigué, Marc; Íñiguez, Jorge; Canadell, Enric; Brière, Benjamin; Ta Phuoc, Vinh; Lorcy, Dominique

    2016-06-20

    While the introduction of large, bulky substituents such as tert-butyl, -SiMe3, or -Si(isopropyl)3 has been used recently to control the solid state structures and charge mobility of organic semiconductors, this crystal engineering strategy is usually avoided in molecular metals where a maximized overlap is sought. In order to investigate such steric effects in single component conductors, the ethyl group of the known [Au(Et-thiazdt)2] radical complex has been replaced by an isopropyl one to give a novel single component molecular conductor denoted [Au(iPr-thiazdt)2] (iPr-thiazdt: N-isopropyl-1,3-thiazoline-2-thione-4,5-dithiolate). It exhibits a very original stacked structure of crisscross molecules interacting laterally to give a truly three-dimensional network. This system is weakly conducting at ambient pressure (5 S·cm(-1)), and both transport and optical measurements evidence a slowly decreasing energy gap under applied pressure with a regime change around 1.5 GPa. In contrast with other conducting systems amenable to a metallic state under physical or chemical pressure, the Mott insulating state is stable here up to 4 GPa, a consequence of its peculiar electronic structure. PMID:27266960

  9. Design Issues and implications for structural integrity of fusion power plant components

    International Nuclear Information System (INIS)

    The criteria and implications for successful design, licensing and power plant operation are assessed, and imposed constraints and limitations are examined. The design of a reliable fusion power plant is dependent on the availability of licensed nuclear materials and the structural-thermal loading conditions during normal and abnormal events. Various conditions in a tokamak lead to structural damage and possible failure. Taking into consideration all the possible structural failure mechanisms, the most likely are combinations of fatigue and creep. Issues encountered in the fusion environment are the significant amount of irradiation creep, the large ratio of helium production to displacement damage, and the degradation of fatigue strength and ductility, effects which are even encountered at low temperatures. Design codes distinguish between failure criteria under steady and transient loads, and lay down rules for failure prediction under combined creep-fatigue conditions. Currently, there are no established fusion specific licensing processes or component design codes. Any limits imposed on designs or performance are taken from existing design codes developed by the fission industry. There is a need to initiate the process of defining and developing tools for the design and licensing of fusion components and facilities to ensure nuclear safety. (author)

  10. Prediction of possible failure mechanism in power plant components using neural networks and structural failure database

    International Nuclear Information System (INIS)

    This paper describes analyses of case studies on failure of structural components in power plants using the hierarchical (multilayer) neural networks. Using the selected test data about case studies stored in the structural failure database of a knowledge-based system, the network is trained: either to predict possible failure mechanisms like creep-, overheating (OH)- or overstressing (OS)-induced failure (Network of Type A), or to classify a root failure cause of each case study into either primary or secondary cause (Network of Type B). In the present study, the primary root cause is defined as ''manufacturing, material or design induced causes'', while the secondary one as ''not manufacturing, material nor design induced causes, e.g. failures due to operation or mal-operation''. An ordinary three-layer neural network employing the back propagation algorithm with the momentum method is utilized in this study. The results claerly show that the neural network is a powerful tool to analyze case studies of failure of structural components. For example, the trained network of Type A predicts creep-induced failure in unknown case studies with an accuracy of 86%, while the network of Type B classifies root failure causes of unknown case studies with an accuracy of 88%. It should be noted here that because of the shortage of available case studies, an appropriate selection of case studies and input parameters to be used for network training is strongly required to attain high accuracy. (orig./MM)

  11. Mining the physical infrastructure: Opportunities, barriers and interventions in promoting structural components reuse.

    Science.gov (United States)

    Iacovidou, Eleni; Purnell, Phil

    2016-07-01

    Construction is the most resource intensive sector in the world. It consumes more than half of the total global resources; it is responsible for more than a third of the total global energy use and associated emissions; and generates the greatest and most voluminous waste stream globally. Reuse is considered to be a material and carbon saving practice highly recommended in the construction sector as it can address both waste and carbon emission regulatory targets. This practice offers the possibility to conserve resources through the reclamation of structural components and the carbon embedded in them, as well as opportunities for the development of new business models and the creation of environmental, economic, technical and social value. This paper focuses on the identification and analysis of existing interventions that can promote the reuse of construction components, and outlines the barriers and opportunities arising from this practice as depicted from the global literature. The main conclusions that derive from this study are that the combination of incentives that promote reuse of construction components and recycling of the rest of the construction materials with the provision of specialised education, skills and training would transform the way construction sector currently operates and create opportunities for new business development. Moreover, a typology system developed based on the properties and lifetime of construction components is required in order to provide transparency and guidance in the way construction components are used and reused, in order to make them readily available to designers and contractors. Smart technologies carry the potential to aid the development and uptake of this system by enabling efficient tracking, storage and archiving, while providing information relevant to the environmental and economic savings that can be regained, enabling also better decision-making during construction and deconstruction works. However, further

  12. Structural health monitoring of power plant components based on a local temperature measurement concept

    International Nuclear Information System (INIS)

    The fatigue assessment of power plant components based on fatigue monitoring approaches is an essential part of the integrity concept and modern lifetime management. It is comparable to structural health monitoring approaches in other engineering fields. The methods of fatigue evaluation of nuclear power plant components based on realistic thermal load data measured on the plant are addressed. In this context the Fast Fatigue Evaluation (FFE) and Detailed Fatigue Calculation (DFC) of nuclear power plant components are parts of the three staged approach to lifetime assessment and lifetime management of the AREVA Fatigue Concept (AFC). The three stages Simplified Fatigue Estimation (SFE), Fast Fatigue Evaluation (FFE) and Detailed Fatigue Calculation (DFC) are characterized by increasing calculation effort and decreasing degree of conservatism. Their application is case dependent. The quality of the fatigue lifetime assessment essentially depends on one hand on the fatigue model assumptions and on the other hand on the load data as the basic input. In the case of nuclear power plant components thermal transient loading is most fatigue relevant. Usual global fatigue monitoring approaches rely on measured data from plant instrumentation. As an extension, the application of a local fatigue monitoring strategy (to be described in detail within the scope of this paper) paves the way of delivering continuously (nowadays at a frequency of 1 Hz) realistic load data at the fatigue relevant locations. Methods of qualified processing of these data are discussed in detail. Particularly, the processing of arbitrary operational load sequences and the derivation of representative model transients is discussed. This approach related to realistic load-time histories is principally applicable for all fatigue relevant components and ensures a realistic fatigue evaluation. (orig.)

  13. Towards Prognostics for Electronics Components

    Data.gov (United States)

    National Aeronautics and Space Administration — Electronics components have an increasingly critical role in avionics systems and in the development of future aircraft systems. Prognostics of such components is...

  14. Neutron radiography for maintenance inspection of military and civilian aircraft

    International Nuclear Information System (INIS)

    As part of a program to develop new and advanced nondestructive inspection techniques, a series of projects has been conducted to develop and evaluate neutron radiography as a nondestructive inspection tool. A major portion of this effort has been directed toward the application of neutron radiography as a maintenance inspection tool for military and civilian aircraft. The availability of 252Cf as a neutron source has enabled the use of neutron-radiography systems in normal maintenance environments for the inspection of flight-line aircraft with a minimum of interference. Neutron radiography has been demonstrated to be a powerful nondestructive inspection tool for a variety of applications involving the detection of organic or non-metallic compounds. Its ability to detect surface and subsurface corrosion in aircraft structure is unmatched by any other inspection technique. This capability of detecting corrosion without component disassembly is particularly significant when corrosion is hidden behind thick metallic structural members. The neutron radiographic technique has been applied successfully to detect corrosion in wing tanks, rear stabilators, aft spar, starboard and port wing, rudder, fuselage skin, and nose landing gears of a variety of fixed-wind aircraft, as well as rotary blades and rotary tail flaps of heliocopters

  15. A structural damage detection indicator based on principal component analysis and statistical hypothesis testing

    Science.gov (United States)

    Mujica, L. E.; Ruiz, M.; Pozo, F.; Rodellar, J.; Güemes, A.

    2014-02-01

    A comprehensive statistical analysis is performed for structural health monitoring (SHM). The analysis starts by obtaining the baseline principal component analysis (PCA) model and projections using measurements from the healthy or undamaged structure. PCA is used in this framework as a way to compress and extract information from the sensor-data stored for the structure which summarizes most of the variance in a few (new) variables into the baseline model space. When the structure needs to be inspected, new experiments are performed and they are projected into the baseline PCA model. Each experiment is considered as a random process and, consequently, each projection into the PCA model is treated as a random variable. Then, using a random sample of a limited number of experiments on the healthy structure, it can be inferred using the χ2 test that the population or baseline projection is normally distributed with mean μh and standard deviation σh. The objective is then to analyse whether the distribution of samples that come from the current structure (healthy or not) is related to the healthy one. More precisely, a test for the equality of population means is performed with a random sample, that is, the equality of the sample mean μs and the population mean μh is tested. The results of the test can determine that the hypothesis is rejected (μh ≠ μc and the structure is damaged) or that there is no evidence to suggest that the two means are different, so the structure can be considered as healthy. The results indicate that the test is able to accurately classify random samples as healthy or not.

  16. A structural damage detection indicator based on principal component analysis and statistical hypothesis testing

    International Nuclear Information System (INIS)

    A comprehensive statistical analysis is performed for structural health monitoring (SHM). The analysis starts by obtaining the baseline principal component analysis (PCA) model and projections using measurements from the healthy or undamaged structure. PCA is used in this framework as a way to compress and extract information from the sensor-data stored for the structure which summarizes most of the variance in a few (new) variables into the baseline model space. When the structure needs to be inspected, new experiments are performed and they are projected into the baseline PCA model. Each experiment is considered as a random process and, consequently, each projection into the PCA model is treated as a random variable. Then, using a random sample of a limited number of experiments on the healthy structure, it can be inferred using the χ2 test that the population or baseline projection is normally distributed with mean μh and standard deviation σh. The objective is then to analyse whether the distribution of samples that come from the current structure (healthy or not) is related to the healthy one. More precisely, a test for the equality of population means is performed with a random sample, that is, the equality of the sample mean μs and the population mean μh is tested. The results of the test can determine that the hypothesis is rejected (μh ≠ μc and the structure is damaged) or that there is no evidence to suggest that the two means are different, so the structure can be considered as healthy. The results indicate that the test is able to accurately classify random samples as healthy or not. (paper)

  17. Spatial and kinematic structure of the thermal components of the Galactic center arc

    International Nuclear Information System (INIS)

    High-resolution radio continuum and radio recombination line observations of two bright segments of the filamentary Arc near the galactic center have been carried out using the VLA. On the basis of the polarization and recombination line characteristics of these regions, one can clearly identify and distinguish the thermal and non-thermal features of the Arc. These observations provide strong evidence in support of a physical interaction between these two components. In fact, the clarity of the interaction between thermal and non-thermal structures in unprecedented. In the regions of interaction, the magnetic field is dynamically important, and we infer that its strength exceeds 1 milligauss

  18. Spatial and kinematic structure of the thermal components of the Galactic center arc

    Energy Technology Data Exchange (ETDEWEB)

    Yusef-Zadeh, F.; Morris, M.; van Gorkom, J.H.

    1987-04-15

    High-resolution radio continuum and radio recombination line observations of two bright segments of the filamentary Arc near the galactic center have been carried out using the VLA. On the basis of the polarization and recombination line characteristics of these regions, one can clearly identify and distinguish the thermal and non-thermal features of the Arc. These observations provide strong evidence in support of a physical interaction between these two components. In fact, the clarity of the interaction between thermal and non-thermal structures in unprecedented. In the regions of interaction, the magnetic field is dynamically important, and we infer that its strength exceeds 1 milligauss.

  19. Tank waste remediation system safety structures, systems, and components: requirements and characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, D.F.

    1996-09-30

    Safety Systems, Structures, and Components (SSCs) have been identified from hazard and accident analyses. These analyses were performed to support the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR) and Basis for Interim Operation (BIO). The text identifies and evaluates the SSCs, and their supporting SSC`s, to show that they either prevent the occurrence of the accident or, mitigate the consequences of the accident to below the acceptance guidelines. The requirements for the SSC`s to fulfill these tasks are described.

  20. Effects of inulin on the structure and emulsifying properties of protein components in dough.

    Science.gov (United States)

    Liu, Juan; Luo, Denglin; Li, Xuan; Xu, Baocheng; Zhang, Xiaoyu; Liu, Jianxue

    2016-11-01

    High-purity gliadin, glutenin and gluten fractions were extracted from wheat gluten flour. To investigate the effects of three types of inulin with different degrees of polymerization (DP) on the emulsifying properties, disulfide contents, secondary structures and microstructures of these fractions, Turbidimetry, spectrophotometer, Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) were used in this study. The results showed that the emulsifying activity of gliadin was higher than that of glutenin and gluten, but its emulsion stability was lower than that of glutenin. Adding inulin increased the emulsifying activity of the three protein fractions and emulsion stability of gliadin and gluten, but decreased the emulsion stability of glutenin and disulfide bond contents of glutenin and gluten. In the presence of inulin, the α-helical structure of the three proteins had no significant change, whereas the β-turn structure decreased and β-sheet structure increased. The SEM images showed that inulin had the most significant effect on the glutenin microstructure. In general, inulin with a higher DP had greater effects on the structure and emulsifying properties of protein components in dough. PMID:27211643