WorldWideScience

Sample records for aircraft safety

  1. 40 CFR 87.6 - Aircraft safety.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Aircraft safety. 87.6 Section 87.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.6 Aircraft safety. The provisions...

  2. 14 CFR 34.6 - Aircraft safety.

    Science.gov (United States)

    2010-01-01

    ...) Consistent with 40 CFR 87.6, if the FAA Administrator determines that any emission control regulation in this... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Aircraft safety. 34.6 Section 34.6... safety. (a) The provisions of this part will be revised if at any time the Administrator determines...

  3. 76 FR 71081 - Public Aircraft Oversight Safety Forum

    Science.gov (United States)

    2011-11-16

    ... SAFETY BOARD Public Aircraft Oversight Safety Forum The National Transportation Safety Board (NTSB) will convene a Public Aircraft Oversight Safety Forum which will begin at 9 a.m., Wednesday, November 30, 2011. NTSB Chairman Deborah A.P. Hersman will chair the two-day forum and all five Board Members...

  4. Examining the Relationship Between Passenger Airline Aircraft Maintenance Outsourcing and Aircraft Safety

    Science.gov (United States)

    Monaghan, Kari L.

    The problem addressed was the concern for aircraft safety rates as they relate to the rate of maintenance outsourcing. Data gathered from 14 passenger airlines: AirTran, Alaska, America West, American, Continental, Delta, Frontier, Hawaiian, JetBlue, Midwest, Northwest, Southwest, United, and USAir covered the years 1996 through 2008. A quantitative correlational design, utilizing Pearson's correlation coefficient, and the coefficient of determination were used in the present study to measure the correlation between variables. Elements of passenger airline aircraft maintenance outsourcing and aircraft accidents, incidents, and pilot deviations within domestic passenger airline operations were analyzed, examined, and evaluated. Rates of maintenance outsourcing were analyzed to determine the association with accident, incident, and pilot deviation rates. Maintenance outsourcing rates used in the evaluation were the yearly dollar expenditure of passenger airlines for aircraft maintenance outsourcing as they relate to the total airline aircraft maintenance expenditures. Aircraft accident, incident, and pilot deviation rates used in the evaluation were the yearly number of accidents, incidents, and pilot deviations per miles flown. The Pearson r-values were calculated to measure the linear relationship strength between the variables. There were no statistically significant correlation findings for accidents, r(174)=0.065, p=0.393, and incidents, r(174)=0.020, p=0.793. However, there was a statistically significant correlation for pilot deviation rates, r(174)=0.204, p=0.007 thus indicating a statistically significant correlation between maintenance outsourcing rates and pilot deviation rates. The calculated R square value of 0.042 represents the variance that can be accounted for in aircraft pilot deviation rates by examining the variance in aircraft maintenance outsourcing rates; accordingly, 95.8% of the variance is unexplained. Suggestions for future research include

  5. On the safety of aircraft systems: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Guridi, G.; Hall, R.E.; Fullwood, R.R.

    1997-05-14

    An airplane is a highly engineered system incorporating control- and feedback-loops which often, and realistically, are non-linear because the equations describing such feedback contain products of state variables, trigonometric or square-root functions, or other types of non-linear terms. The feedback provided by the pilot (crew) of the airplane also is typically non-linear because it has the same mathematical characteristics. An airplane is designed with systems to prevent and mitigate undesired events. If an undesired triggering event occurs, an accident may process in different ways depending on the effectiveness of such systems. In addition, the progression of some accidents requires that the operating crew take corrective action(s), which may modify the configuration of some systems. The safety assessment of an aircraft system typically is carried out using ARP (Aerospace Recommended Practice) 4761 (SAE, 1995) methods, such as Fault Tree Analysis (FTA) and Failure Mode and Effects Analysis (FMEA). Such methods may be called static because they model an aircraft system on its nominal configuration during a mission time, but they do not incorporate the action(s) taken by the operating crew, nor the dynamic behavior (non-linearities) of the system (airplane) as a function of time. Probabilistic Safety Assessment (PSA), also known as Probabilistic Risk Assessment (PRA), has been applied to highly engineered systems, such as aircraft and nuclear power plants. PSA encompasses a wide variety of methods, including event tree analysis (ETA), FTA, and common-cause analysis, among others. PSA should not be confused with ARP 4761`s proposed PSSA (Preliminary System Safety Assessment); as its name implies, PSSA is a preliminary assessment at the system level consisting of FTA and FMEA.

  6. Lost in Debate: The Safety of Domestic Unmanned Aircraft Systems

    Directory of Open Access Journals (Sweden)

    Yeonmin Cho

    2014-12-01

    Full Text Available The United States is poised to integrate commercial unmanned aircraft systems (UAS into the national airspace and enable government entities to use UAS in a more expedient manner. This policy change, mandated by the Federal Aviation Administration (FAA Modernization and Reform Act of 2012, offers new economic, social and scientific opportunities as well as enhanced law enforcement capacity. However, such benefits will be accompanied by concerns over misuse and abuse of the new technologies by criminals and terrorists. Privacy has been the focus of public debate over the more widespread use of UAS. This paper examines a variety of issues related to allowing broad UAS operations in domestic airspace, and puts forth that safety should be the top priority of policy makers in their effort to integrate UAS into the national airspace system.

  7. Resistance ability evaluation of safety-related structures for the simulated aircraft accident

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Kim, Sung Woon; Choi, Jang Kyu [Daewoo E and C Co., Ltd., Suwon (Korea, Republic of)] (and others)

    2003-03-15

    Aircraft accidents on nuclear safety-related structures can cause severe damage to the safety of NPP(Nuclear Power Plant)s. To assess the safety of nuclear safety-related structures, the local damage and the dynamic response of global structures should be investigated together. This study have compared several local damage assessment formulas suggested for aircraft as an impactor, and have set the assessment system of local damage for impact-proof design of NPP containment buildings. And the local damage of nuclear safety-related structures in operation in Korea for commercial aircraft as impactor have been estimated. Impact load-time functions of the aircraft crash have been decided to assessment the safety of nuclear safety-related structures against the intentional colliding of commercial aircraft. Boeing 747 and Boeing 767 is selected as target aircraft based on the operation frequencies and weights. Comparison of the fire analysis methods showed that the method considering heat convection and radiation is adequate for the temperature analysis of the aircraft fuel fire. Finally, the study covered the analysis of the major structural drawings and design drawings with which three-dimensional finite element model analysis is expected to be performed.

  8. Active Flow Control with Adaptive Design Techniques for Improved Aircraft Safety Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The increased aircraft safety potential of active flow control using synthetic jets - specifically, using synthetic jets on the leading edge of the wing to delay...

  9. Improving safety of aircraft engines: a consortium approach

    Science.gov (United States)

    Brasche, Lisa J. H.

    1996-11-01

    With over seven million departures per year, air transportation has become not a luxury, but a standard mode of transportation for the United States. A critical aspect of modern air transport is the jet engine, a complex engineered component that has enabled the rapid travel to which we have all become accustomed. One of the enabling technologies for safe air travel is nondestructive evaluation, or NDE, which includes various inspection techniques used to assess the health or integrity of a structure, component, or material. The Engine Titanium Consortium (ETC) was established in 1993 to respond to recommendations made by the Federal Aviation Administration (FAA) Titanium Rotating Components Review Team (TRCRT) for improvements in inspection of engine titanium. Several recent accomplishments of the ETC are detailed in this paper. The objective of the Engine Titanium Consortium is to provide the FAAand the manufacturers with reliable and costeffective new methods and/or improvements in mature methods for detecting cracks, inclusions, and imperfections in titanium. The consortium consists of a team of researchers from academia and industry-namely, Iowa State University, Allied Signal Propulsion Engines, General Electric Aircraft Engines, and Pratt & Whitney Engines-who work together to develop program priorities, organize a program plan, conduct the research, and implement the solutions. The true advantage of the consortium approach is that it brings together the research talents of academia and the engineering talents of industry to tackle a technology-base problem. In bringing industrial competitors together, the consortium ensures that the research results, which have safety implications and result from FAA funds, are shared and become part of the public domain.

  10. The Ultimate Factor of Safety for Aircraft and Spacecraft Its History, Applications and Misconceptions

    Science.gov (United States)

    Zipay, John J.; Modlin, C. Thomas, Jr.; Larsen, Curtis E.

    2016-01-01

    The ultimate factor of safety (FOSULT) concept used in aircraft and spacecraft has evolved over many decades. Currently an FOSULT 1.5 is the FAR-mandated value for aircraft while an FOSULT of 1.4 has been used in various spacecraft. This paper was motivated by the desire to concisely explain the origins, proper interpretation and application of the ultimate factor of safety concept, since the authors have seen throughout their careers many misconceptions and incorrect applications of this concept. The history of the ultimate factor of safety concept is briefly summarized, the proper application of the factor of safety in aircraft design, structural analysis and operations is covered in detail, examples of limit load exceedance in aircraft and spacecraft are discussed, the evolution of the 1.4 FOSULT for spacecraft is described and some misconceptions regarding the ultimate factor of safety concept are addressed. It is hoped that this paper can be a summary resource for engineers to understand the origin, purpose and proper application of the ultimate factor of safety.

  11. Studies on the Seizure of Rudder on the Flight Safety of an Aircraft

    Institute of Scientific and Technical Information of China (English)

    GENG Jianzhong; WU Huzi; DUAN Zhuoyi

    2013-01-01

    The demands of aircraft quality design criterion on main control system failure and subsequently instantaneous response were analyzed.According to the simulation,the flight characteristics of an aircraft were studied in different angle of rudder seizure.It demonstrated that when rudder seizure with high angle and pilot could not take action immediately,the flight parameters would change sharply.The yaw angle increased 50 degrees in 5 minutes,side velocity could attain 40 meters per-second,the angle of attack and sideslip would surpass 30 degrees,roll rate would reach-20 degrees per second,side load would arrive 0.6g.Simultaneity the angle of attack exceeded the limited angle,the aircraft would stall.If control wasn' t working,the disaster would happen.These phenomena supply the sufficient information of the rudder malfunction.The validity of correcting yaw moment by asymmetry thrust was testified,the simulation results showed that even rudder seizure in most serious conditions,adopting asymmetry thrust can correct yaw moment caused by the rudder seizure.The judgment standards of flight safety level for the state of malfunction were given.The safety level was assessed caused by the rudder seizure.For an aircraft with two engines on one side,the pilots need to adjust the 4 engines to balance the asymmetric moment,the work load is increased enormously.According the flight safety standards,the safety level is level Ⅲ.

  12. Enhanced FAA-Hybrid III dummy for aircraft occupant safety assessment

    NARCIS (Netherlands)

    Waagmeester, C.D.; Ratingen, M.R. van; Giavotto, V.; Notarnicola, L.; Goldner, S.

    2002-01-01

    Following an integral approach unique in aircraft safety, the European HeliSafe project aims to improve the survivability of helicopter crashes and to reduce the risk at injuries for occupants in cockpit and cabin. In the project, a modified FAA-Hybrid III is used for the baseline-, design- and conc

  13. Aircraft

    Science.gov (United States)

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  14. Safety assessment of a metal cask under aircraft engine crash

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hoon [Dept. of Mechanical and Automotive Engineering, Keimyung University, Daegu (Korea, Republic of); Choi, Woo Seok; Seo, Ki Seog [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-04-15

    The structural integrity of a dual-purpose metal cask currently under development by the Korea Radioactive Waste Agency (KORAD) was evaluated, through numerical simulations and a model test, under high-speed missile impact reflecting targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from literature. In the impact scenario, a missile flying horizontally hits the top side of the cask, which is free standing on a concrete pad, with a velocity of 150 m/s. A simplified missile simulating a commercial aircraft engine was designed from an impact load-time function available in literature. In the analyses, the dynamic behavior of the metal cask and the integrity of the containment boundary were assessed. The simulation results were compared with the test results for a 1:3 scale model. Although the dynamic behavior of the cask in the model test did not match exactly with the prediction from the numerical simulation, other structural responses, such as the acceleration and strain history during the impact, showed very good agreement. Moreover, the containment function of the cask survived the missile impact as expected from the numerical simulation. Thus, the procedure and methodology adopted in the structural numerical analyses were successfully validated.

  15. Development of a detailed aircraft tyre finite element model for safety assessment

    International Nuclear Information System (INIS)

    Highlights: • A full-scaled LS-Dyna finite element aircraft tyre model has been developed. • Rubber and fabric material properties have been characterized and correlated. • The FE tyre model has been validated by comparing static simulations with tests. • Dynamic simulations have been analyzed to achieve landing safety assessment. - Abstract: This paper describes the development of a detailed finite element (FE) model of an aircraft test tyre in order to investigate its performance and assess its safety criteria. It is noticed that rubber and fabric composite materials are the major components of this tyre model and their characterization requires tests and correlation. The characterization of such materials is of great importance in the model development process. Due to its complicated mechanical behaviour that exceeds the linear elastic theory, rubber is generally considered as hyperelastic material in FE analysis. It can be defined by a stored energy function with various coefficients that need to be determined by a series of experimental test data. The key issue is to define an appropriate energy function that can provide good fit with the experimental test data. Initially, a full-scaled LS-Dyna FE model has been development to replicate the actual geometry of the target test tyre. The material properties of each individual component have been characterized and correlated with industrial uniaxial tension test data. The inflation and static load simulations have been analyzed basing on the characterized tyre model, indicating its reliability. The dynamic simulations that aim to duplicate tyre load upon aircraft landing scenarios have also been analyzed. Following the comments and guidelines from aircraft industrial data, the dynamic simulations have covered the tyre loading scenarios from normal (soft) landing, hard landing to crash landing under different aircraft landing weights and vertical speeds. The tyre deflection rate and the contact load have

  16. Safety assessment of A92 reactor building for large commercial aircraft crash

    International Nuclear Information System (INIS)

    The current paper presents key elements of the comprehensive analyses of the effects due to a large aircraft collision with the reactor building of Belene NPP in Bulgaria. The reactor building is a VVER A92; it belongs to the third+ generation and includes structural measures for protection against an aircraft impact as standard design. The A92 reactor building implements a double shell concept and is composed of thick RC external walls and an external shell which surrounds an internal pre-stressed containment and the internal walls of the auxiliary building. The malevolent large aircraft impact is considered as a beyond design base accident (Design Extended Conditions, DEC). The main issues under consideration are the structural integrity, the equipment safety due to the induced vibrations, and the fire safety of the entire installation. Many impact scenarios are analyzed varying both impact locations and loading intensity. A large number of non-linear dynamic analyses are used for assessment of the structural response and capacity, including different type of structural models, different finite element codes, and different material laws. The corresponding impact loadings are represented by load time functions calculated according to three different approaches, i.e. loading determined by Riera's method (Riera, 1968), load time function calculated by finite element analysis (Henkel and Klein, 2007), and coupled dynamic analysis with dynamic interaction between target and projectile. Based on the numerical results and engineering assessments the capacity of the A92 reactor building to resist a malevolent impact of a large aircraft is evaluated. Significant efforts are spent on safety assessment of equipment by using an evaluation procedure based on damage indicating parameters. As a result of these analyses several design modifications of structure elements are performed. There are changes of the layout of reinforcement, special arrangements and spatial

  17. 78 FR 52848 - Occupational Safety and Health Standards for Aircraft Cabin Crewmembers

    Science.gov (United States)

    2013-08-27

    ... conditions of aircraft cabin crew while they are onboard aircraft in operation. DATES: This action becomes... the working conditions of aircraft cabin crewmembers while they are onboard aircraft in operation... enforcement onboard the aircraft. The FAA agrees with the proposed recommendation. Specific procedures...

  18. Sensitivity Analysis for Safety Design Verification of General Aviation Reciprocating Aircraft Engine

    Institute of Scientific and Technical Information of China (English)

    CAO Jiaokun; DING Shuiting

    2012-01-01

    This paper presents an application of global sensitivity analysis for system safety analysis of reciprocating aircraft engine.Compared with local sensitivity analysis results,global sensitivity analysis could provide more information on parameter interactions,which are significant in complex system safety analysis.First,a deterministic aviation reciprocating engine thermodynamics model is developed and parameters of interest are defined as random variables.Then,samples are generated by Monte Carlo method for the parameters used in engine model on the basis of definition of factor distribution.Eventually,results from engine model are generated and importance indices are calculated.Based on the analysis results,design is improved to satisfy the airworthiness requirements.The results reveal that by using global sensitivity analysis,the parameters could be ranked with respect to their importance,including first order indices and total sensitivity indices.By reducing the uncertainty of parameters and adjusting the range of inputs,safety criteria would be satisfied.

  19. A critical reappraisal of nuclear power plant safety against accidental aircraft impact

    International Nuclear Information System (INIS)

    The overall problem of nuclear power plant safety against an accidental aircraft impact is discussed in relation with its structural analysis and design. Associated risks, such as fire, which is a potential source of damage for buildings and other structures, are not considered. The paper is divided in two parts. In part I different approaches used for determining the reaction-time curve are discussed. The influence on the results of target motions is examined next. It is shown that for the evaluation of structural response an aircraft-structure interaction analysis is usually an unnecessary refinement, 'mean' reaction-time and impact area-time curves being sufficient to define the excitation. Preliminary results for oblique impact are also given. Since the conditional probability of a normal impact is very small, the consideration of oblique impact may become acceptable in future design criteria. In part II, available solutions for the resulting structural dynamic problem are reviewed. The feasibility of resorting to a static analysis is also discussed. Present practices to evaluate floor response spectra are reviewed next. The short-comings of the 'deterministic' approach are pointed out. It is proposed to define the excitation as a mean plus a fluctuating force. The latter is treated as a nonstationary random process and the problem solved by numerical integration in the time domain. Although such solutions get prohibitively expensive when the number of degrees of freedom becomes large, results obtained for simple models may help to clarify which are the important variables of the problem. (orig.)

  20. Safety Analysis of Dual Purpose Metal Cask Subjected to Impulsive Loads due to Aircraft Engine Crash

    Science.gov (United States)

    Shirai, Koji; Namba, Kosuke; Saegusa, Toshiari

    In Japan, the first Interim Storage Facility of spent nuclear fuel away from reactor site is being planned to start its commercial operation around 2010, in use of dual-purpose metal cask in the northern part of Main Japan Island. Business License Examination for safety design approval has started since March, 2007. To demonstrate the more scientific and rational performance of safety regulation activities on each phase for the first license procedure, CREPEI has executed demonstration tests with full scale casks, such as drop tests onto real targets without impact limiters(1) and seismic tests subjected to strong earthquake motions(2). Moreover, it is important to develop the knowledge for the inherent security of metal casks under extreme mechanical-impact conditions, especially for increasing interest since the terrorist attacks from 11th September 2001(3)-(6). This paper presents dynamic mechanical behavior of the metal cask lid closure system caused by direct aircraft engine crash and describes calculated results (especially, leak tightness based on relative dynamic displacements between metallic seals). Firstly, the local penetration damage of the interim storage facility building by a big passenger aircraft engine crash (diameter 2.7m, length 4.3m, weight 4.4ton, impact velocity 90m/s) has been examined. The reduced velocity is calculated by the local damage formula for concrete structure with its thickness of 70cm. The load vs. time function for this reduced velocity (60m/s) is estimated by the impact analysis using Finite Element code LS-DYNA with the full scale engine model onto a hypothetically rigid target. Secondly, as the most critical scenarios for the metal cask, two impact scenarios (horizontal impact hitting the cask and vertical impact onto the lid metallic seal system) are chosen. To consider the geometry of all bolts for two lids, the gasket reaction forces and the inner pressure of the cask cavity, the detailed three dimensional FEM models are

  1. Dynamically Scaled Modular Aircraft for Flight-Based Aviation Safety Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Area-I, Incorporated personnel have led the design, fabrication, and flight testing of twelve unmanned aircraft and one manned aircraft. Partnered with NASA and...

  2. Stability, Transient Response, Control, and Safety of a High-Power Electric Grid for Turboelectric Propulsion of Aircraft

    Science.gov (United States)

    Armstrong, Michael; Ross, Christine; Phillips, Danny; Blackwelder, Mark

    2013-01-01

    This document contains the deliverables for the NASA Research and Technology for Aerospace Propulsion Systems (RTAPS) regarding the stability, transient response, control, and safety study for a high power cryogenic turboelectric distributed propulsion (TeDP) system. The objective of this research effort is to enumerate, characterize, and evaluate the critical issues facing the development of the N3-X concept aircraft. This includes the proposal of electrical grid architecture concepts and an evaluation of any needs for energy storage.

  3. 航空器运行安全评估研究%On the Operating Safety Evaluation of Aircrafts

    Institute of Scientific and Technical Information of China (English)

    卫瑷宇

    2015-01-01

    In the study of aircraft safety operating evaluation strategies ,RVSM and airspace capacity are an important issue of air traffic management on the premise of ensuring safety .At present ,safety appraisal strategies are the research hotspot in the civil aviation field .Bringing forth the collision risk model on the precondition of ensuring safety is of great significance for guaranteeing aircraft operating safety and reduc‐ing vertical separation .The paper expounds the RVSM evaluation process of the improved Reich model , and conducts the in-depth research on collision risk in aircraft operating safety evaluation process .%在航空器安全运行评估策略的研究过程中,如何在保障安全的前提下,缩小垂直间隔(RVSM ),进一步提高空域容量是空中交通管理中的一个重要问题。目前,安全评估策略的研究是民航领域的热点研究问题。在保持安全的前提下,提出碰撞风险模型,对于保障航空器运行安全、缩小垂直间隔都具有重要的意义。通过论述改进Reich模型的垂直间隔标准方法评估过程,有利于今后对航空器运行安全评估过程中的碰撞风险进行深入研究。

  4. Is Model-Based Development a Favorable Approach for Complex and Safety-Critical Computer Systems on Commercial Aircraft?

    Science.gov (United States)

    Torres-Pomales, Wilfredo

    2014-01-01

    A system is safety-critical if its failure can endanger human life or cause significant damage to property or the environment. State-of-the-art computer systems on commercial aircraft are highly complex, software-intensive, functionally integrated, and network-centric systems of systems. Ensuring that such systems are safe and comply with existing safety regulations is costly and time-consuming as the level of rigor in the development process, especially the validation and verification activities, is determined by considerations of system complexity and safety criticality. A significant degree of care and deep insight into the operational principles of these systems is required to ensure adequate coverage of all design implications relevant to system safety. Model-based development methodologies, methods, tools, and techniques facilitate collaboration and enable the use of common design artifacts among groups dealing with different aspects of the development of a system. This paper examines the application of model-based development to complex and safety-critical aircraft computer systems. Benefits and detriments are identified and an overall assessment of the approach is given.

  5. 77 FR 72998 - Policy Statement on Occupational Safety and Health Standards for Aircraft Cabin Crewmembers

    Science.gov (United States)

    2012-12-07

    ..., 2000 (65 FR 19477-19478), as well as at http://DocketsInfo.dot.gov . Docket: Background documents or... they are onboard aircraft in operation. DATES: Send comments on or before January 7, 2013....

  6. Aircraft Design Considerations to Meet One Engine Inoperative (OEI) Safety Requirements

    Science.gov (United States)

    Scott, Mark W.

    2012-01-01

    Commercial airlines are obligated to operate such that an aircraft can suffer an engine failure at any point in its mission and terminate the flight without an accident. Only minimal aircraft damage is allowable, such as brake replacement due to very heavy application, or an engine inspection and/or possible removal due to use of an emergency rating. Such performance criteria are often referred to as zero exposure, referring to zero accident exposure to an engine failure. The critical mission segment for meeting one engine inoperative (OEI) criteria is takeoff. For a given weight, wind, and ambient condition, fixed wing aircraft require a balanced field length. This is the longer of the distance to take off if an engine fails at a predetermined critical point in the takeoff profile, or the distance to reject the takeoff and brake to a stop. Rotorcraft have requirements for horizontal takeoff procedures that are equivalent to a balanced field length requirements for fixed wing aircraft. Rotorcraft also perform vertical procedures where no runway or heliport distance is available. These were developed primarily for elevated heliports as found on oil rigs or rooftops. They are also used for ground level operations as might be found at heliports at the end of piers or other confined areas.

  7. Designing Serious Games for Safety Education: "Learn to Brace" versus Traditional Pictorials for Aircraft Passengers.

    Science.gov (United States)

    Chittaro, Luca

    2016-05-01

    Serious games for safety education (SGSE) are a novel tool for preparing people to prevent and\\or handle risky situations. Although several SGSE have been developed, design and evaluation methods for SGSE need to be better grounded in and guided by safety-relevant psychological theories. In particular, this paper focuses on threat appeals and the assessment of variables, such as safety locus of control, that influence human behavior in real risky situations. It illustrates how we took into account such models in the design and evaluation of "Learn to Brace", a first-of-its-kind serious game that deals with a major problem in aviation safety, i.e. the scarce effectiveness of the safety cards used by airlines. The study considered a sample of 48 users: half of them received instructions about the brace position through the serious game, the other half through a traditional safety card pictorial. Results showed that the serious game was much more effective than the traditional instructions both in terms of learning and of changing safety-relevant perceptions, especially safety locus of control and recommendation perception.

  8. Development of SCR Aircraft takeoff and landing procedures for community noise abatement and their impact on flight safety

    Science.gov (United States)

    Grantham, W. D.; Smith, P. M.

    1980-01-01

    Piloted simulator studies to determine takeoff and landing procedures for a supersonic cruise transport concept that result in predicted community noise levels which meet current Federal Aviation Administration (FAA) standards are discussed. The results indicate that with the use of advanced procedures, the subject simulated aircraft meets the FAA traded noise levels during takeoff and landing utilizing average flight crew skills. The advanced takeoff procedures developed involved violating three of the current Federal Aviation Regulations (FAR) noise test conditions. These were: (1) thrust cutbacks at altitudes below 214 meters (700 ft); (2) thrust cutback level below those presently allowed; and (3) configuration change, other than raising the landing gear. It was not necessary to violate any FAR noise test conditions during landing approach. It was determined that the advanced procedures developed do not compromise flight safety. Automation of some of the aircraft functions reduced pilot workload, and the development of a simple head-up display to assist in the takeoff flight mode proved to be adequate.

  9. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems. The effects of primary cosmic ray particles and secondary particle showers produced by nuclear reactions with the atmosphere, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth s surface, especially if the net target area of the sensitive electronic system components is large. Finally, accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO). In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as human health and the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in ground-based atmospheric flight, and space flight environments. Ground test methods applied to microelectronic components and systems are used in combinations with radiation transport and reaction codes to predict the performance of microelectronic systems in their operating environments. Similar radiation transport

  10. An application of probabilistic safety assessment methods to model aircraft systems and accidents

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Guridi, G.; Hall, R.E.; Fullwood, R.R.

    1998-08-01

    A case study modeling the thrust reverser system (TRS) in the context of the fatal accident of a Boeing 767 is presented to illustrate the application of Probabilistic Safety Assessment methods. A simplified risk model consisting of an event tree with supporting fault trees was developed to represent the progression of the accident, taking into account the interaction between the TRS and the operating crew during the accident, and the findings of the accident investigation. A feasible sequence of events leading to the fatal accident was identified. Several insights about the TRS and the accident were obtained by applying PSA methods. Changes proposed for the TRS also are discussed.

  11. Safety research on unmanned aircraft system for airworthiness%无人机系统适航与安全性分析方法

    Institute of Scientific and Technical Information of China (English)

    丁水汀; 鲍梦瑶; 杜发荣

    2012-01-01

    Aiming at safety requirement for unmanned aircraft system (UAS), it was initially demonstrated that current safety assessment process and methodology based on reg- ulation and reference for manned aircraft were limited for UAS because of its unique fea- tures. In views of this principle, some improvements for UAS safety assessment were pro- posed: (1) take consideration of UAS including the unmanned aerial vehicle and assured e- quipments, and enlarge the scope of safety assessment during functional hazard analysis at system level; (2) take consideration of the feature that pilot and unmanned aircraft are physically separated, and reclassify and redefine the serious level of UAS failures. (3) con- sider that the quality of take-off has a huge impact on system, and the safety analysis must be conducted for two key events- ~air collision' and 'ground impact'. The result indicates that the above improvements are in accordance with features of UAV and ensures safety through establishing targeted safety level.%针对无人机系统安全性需求,首先根据载人航空器适航审定规范及安全性评估依据,表明由于无人机系统的特殊性造成直接应用现有安全性评估流程和评估方法具有局限性.在此基础上提出无人机系统适航安全性评估的几点改进:①考虑无人机系统包括无人机和综合保障设备,扩大安全性评估边界进行无人机系统级的功能危险分析;②考虑无人机系统"人机分离"特点,需要对无人机系统失效状态的严重程度进行重新分级和定义;③考虑无人机系统本身受起飞质量的影响很大,强调必须根据无人机系统分类对地面撞击和空中碰撞两个关键事件进行安全性分析.结果表明:上述改进从无人机系统本身特点出发,通过给定的目标安全水平进一步确保安全性.

  12. SIG: Multiple Views on Safety-Critical Automation: Aircraft, Autonomous Vehicles, Air Traffic Management and Satellite Ground Segments Perspectives

    Science.gov (United States)

    Feary, Michael; Palanque, Philippe; Martinie, Célia; Tscheligi, Manfred

    2016-01-01

    This SIG focuses on the engineering of automation in interactive critical systems. Automation has already been studied in a number of (sub-) disciplines and application fields: design, human factors, psychology, (software) engineering, aviation, health care, games. One distinguishing feature of the area we are focusing on is that in the field of interactive critical systems properties such as reliability, dependability, fault tolerance are as important as usability, user experience or overall acceptance issues. The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design, build and assess autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. An example of such integration is the representation of an unmanned aerial vehicle (UAV) (where no direct interaction is possible), together with aircrafts (that have to be instructed by an air traffic controller to avoid the UAV). Second the design and engineering of user interaction in general for autonomous objects/systems (for example a cruise control in a car or an autopilot in an aircraft). The goal of the SIG is to raise interest in the CHI community on the general aspects of automation and to identify a community of researchers and practitioners interested in those increasingly prominent issues of interfaces towards (semi)-autonomous systems. The expected audience should be interested in addressing the issues of integration of mainly unconnected research domains to formulate a new joint research agenda.

  13. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, Exploration, and Human Health and Safety

    Science.gov (United States)

    Koontz, Steve

    2015-01-01

    In this presentation a review of galactic cosmic ray (GCR) effects on microelectronic systems and human health and safety is given. The methods used to evaluate and mitigate unwanted cosmic ray effects in ground-based, atmospheric flight, and space flight environments are also reviewed. However not all GCR effects are undesirable. We will also briefly review how observation and analysis of GCR interactions with planetary atmospheres and surfaces and reveal important compositional and geophysical data on earth and elsewhere. About 1000 GCR particles enter every square meter of Earth’s upper atmosphere every second, roughly the same number striking every square meter of the International Space Station (ISS) and every other low- Earth orbit spacecraft. GCR particles are high energy ionized atomic nuclei (90% protons, 9% alpha particles, 1% heavier nuclei) traveling very close to the speed of light. The GCR particle flux is even higher in interplanetary space because the geomagnetic field provides some limited magnetic shielding. Collisions of GCR particles with atomic nuclei in planetary atmospheres and/or regolith as well as spacecraft materials produce nuclear reactions and energetic/highly penetrating secondary particle showers. Three twentieth century technology developments have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems and assess effects on human health and safety effects. The key technology developments are: 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems. Space and geophysical exploration needs drove the development of the instruments and analytical tools needed to recover compositional and structural data from GCR induced nuclear reactions and secondary particle showers. Finally, the

  14. SAFETY

    CERN Multimedia

    Niels Dupont

    2013-01-01

    CERN Safety rules and Radiation Protection at CMS The CERN Safety rules are defined by the Occupational Health & Safety and Environmental Protection Unit (HSE Unit), CERN’s institutional authority and central Safety organ attached to the Director General. In particular the Radiation Protection group (DGS-RP1) ensures that personnel on the CERN sites and the public are protected from potentially harmful effects of ionising radiation linked to CERN activities. The RP Group fulfils its mandate in collaboration with the CERN departments owning or operating sources of ionising radiation and having the responsibility for Radiation Safety of these sources. The specific responsibilities concerning "Radiation Safety" and "Radiation Protection" are delegated as follows: Radiation Safety is the responsibility of every CERN Department owning radiation sources or using radiation sources put at its disposition. These Departments are in charge of implementing the requi...

  15. Mission management aircraft operations manual

    Science.gov (United States)

    1992-01-01

    This manual prescribes the NASA mission management aircraft program and provides policies and criteria for the safe and economical operation, maintenance, and inspection of NASA mission management aircraft. The operation of NASA mission management aircraft is based on the concept that safety has the highest priority. Operations involving unwarranted risks will not be tolerated. NASA mission management aircraft will be designated by the Associate Administrator for Management Systems and Facilities. NASA mission management aircraft are public aircraft as defined by the Federal Aviation Act of 1958. Maintenance standards, as a minimum, will meet those required for retention of Federal Aviation Administration (FAA) airworthiness certification. Federal Aviation Regulation Part 91, Subparts A and B, will apply except when requirements of this manual are more restrictive.

  16. Aircraft Data Acquisition

    Directory of Open Access Journals (Sweden)

    Elena BALMUS

    2016-03-01

    Full Text Available The introduction of digital systems instead of analog ones has created a major separation in the aviation technology. Although the digital equipment made possible that the increasingly faster controllers take over, we should say that the real world remains essentially analogue [4]. Fly-by-wire designers attempting to control and measure the real feedback of an aircraft were forced to find a way to connect the analogue environment to their digital equipment. In order to manage the implications of this division in aviation, data optimization and comparison has been quite an important task. The interest in using data acquisition boards is being driven by the technology and design standards in the new generation of aircraft and the ongoing efforts of reducing weight and, in some cases addressing the safety risks. This paper presents a sum of technical report data from post processing and diversification of data acquisition from Arinc 429 interface on a research aircraft platform. Arinc 429 is by far the most common data bus in use on civil transport aircraft, regional jets and executive business jets today. Since its introduction on the Boeing 757/767 and Airbus aircraft in the early 1980s hardly any aircraft has been produced without the use of this data bus. It was used widely by the air transport indu

  17. Safety

    CERN Multimedia

    2003-01-01

    Please note that the safety codes A9, A10 AND A11 (ex annexes of SAPOCO/42) entitled respectively "Safety responsibilities in the divisions" "The safety policy committee (SAPOCO) and safety officers' committees" and "Administrative procedure following a serious accident or incident" are available on the web at the following URLs: Code A9: http://edms.cern.ch/document/337016/LAST_RELEASED Code A10: http://edms.cern.ch/document/337019/LAST_RELEASED Code A11: http://edms.cern.ch/document/337026/LAST_RELEASED Paper copies can also be obtained from the TIS divisional secretariat, e-mail: tis.secretariat@cern.ch. TIS Secretariat

  18. Amphibious Aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — A brief self composed research article on Amphibious Aircrafts discussing their use, origin and modern day applications along with their advantages and...

  19. Aircraft Noise

    Science.gov (United States)

    Michel, Ulf; Dobrzynski, Werner; Splettstoesser, Wolf; Delfs, Jan; Isermann, Ullrich; Obermeier, Frank

    Aircraft industry is exposed to increasing public pressure aiming at a continuing reduction of aircraft noise levels. This is necessary to both compensate for the detrimental effect on noise of the expected increase in air traffic and improve the quality of living in residential areas around airports.

  20. Aircraft Design

    Science.gov (United States)

    Bowers, Albion H. (Inventor); Uden, Edward (Inventor)

    2016-01-01

    The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.

  1. IDENTIFICATION OF AIRCRAFT HAZARDS

    International Nuclear Information System (INIS)

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7)

  2. Identification of Aircraft Hazards

    International Nuclear Information System (INIS)

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7)

  3. IDENTIFICATION OF AIRCRAFT HAZARDS

    Energy Technology Data Exchange (ETDEWEB)

    K.L. Ashley

    2005-03-23

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7).

  4. Identification of Aircraft Hazards

    Energy Technology Data Exchange (ETDEWEB)

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  5. SAFETY

    CERN Multimedia

    C. Schaefer and N. Dupont

    2013-01-01

      “Safety is the highest priority”: this statement from CERN is endorsed by the CMS management. An interpretation of this statement may bring you to the conclusion that you should stop working in order to avoid risks. If the safety is the priority, work is not! This would be a misunderstanding and misinterpretation. One should understand that “working safely” or “operating safely” is the priority at CERN. CERN personnel are exposed to different hazards on many levels on a daily basis. However, risk analyses and assessments are done in order to limit the number and the gravity of accidents. For example, this process takes place each time you cross the road. The hazard is the moving vehicle, the stake is you and the risk might be the risk of collision between both. The same principle has to be applied during our daily work. In particular, keeping in mind the general principles of prevention defined in the late 1980s. These principles wer...

  6. SAFETY

    CERN Multimedia

    M. Plagge, C. Schaefer and N. Dupont

    2013-01-01

    Fire Safety – Essential for a particle detector The CMS detector is a marvel of high technology, one of the most precise particle measurement devices we have built until now. Of course it has to be protected from external and internal incidents like the ones that can occur from fires. Due to the fire load, the permanent availability of oxygen and the presence of various ignition sources mostly based on electricity this has to be addressed. Starting from the beam pipe towards the magnet coil, the detector is protected by flooding it with pure gaseous nitrogen during operation. The outer shell of CMS, namely the yoke and the muon chambers are then covered by an emergency inertion system also based on nitrogen. To ensure maximum fire safety, all materials used comply with the CERN regulations IS 23 and IS 41 with only a few exceptions. Every piece of the 30-tonne polyethylene shielding is high-density material, borated, boxed within steel and coated with intumescent (a paint that creates a thick co...

  7. Safety Forecast Model of Aircraft Maintenance Technicians Based on GA-BP Arithmetic%基于GA-BP算法的飞机维修人员安全预测模型

    Institute of Scientific and Technical Information of China (English)

    林嘉豪; 李克武; 刘楠; 张兵

    2012-01-01

    为实现对飞机维修人员安全性的有效预测,构建了维修人员安全性评价指标.通过专家打分法获得了维修人员安全性评价指标的原始训练数据和测试数据,分别采用BP-GDM模型、BP-LM模型和GA-BP-LM模型对数据进行了训练和预测,仿真结果表明:BP-GDM模型预测精度最差,且训练耗时较长,而GA-BP-LM模型不仅可以获得较高的预测精度,且耗时最短,BP-LM模型居中.此外GA-BP-LM模型相对误差值波动幅度最小,平均相对误差仅为3.33%,达到了预测的精度要求,为飞机维修人员安全性预测提供了有效手段.%In order to scientific predict the safety of the aircraft maintenance technicians, the safety evaluation index is established. Different kinds of aircraft maintenance technicians safety evaluation index originality training data and test data are gained by expert mark method, used the BP-GDM model, BP-LM model and GA-BP-LM model to train and predict, the simulation result show that: the forecast precision of BP-GDM model is the worst and consume lots of time, but GA-BP-LM gained the best forecast precision and the lest simulation time, the BP-LM was placed in the middle. What's more GA-BP-LM model had the smallest opposite error fluctuate, and the average opposite error value is only 3. 33%, which matched well with the expect requirement, the model provide effective method for predict of aircraft maintenance technicians safety.

  8. Aircraft cybernetics

    Science.gov (United States)

    1977-01-01

    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  9. Challenges for the aircraft structural integrity program

    Science.gov (United States)

    Lincoln, John W.

    1994-01-01

    Thirty-six years ago the United States Air Force established the USAF Aircraft Structural Integrity Program (ASIP) because flight safety had been degraded by fatigue failures of operational aircraft. This initial program evolved, but has been stable since the issuance of MIL-STD-1530A in 1975. Today, the program faces new challenges because of a need to maintain aircraft longer in an environment of reduced funding levels. Also, there is increased pressure to reduce cost of the acquisition of new aircraft. It is the purpose of this paper to discuss the challenges for the ASIP and identify the changes in the program that will meet these challenges in the future.

  10. Hydrogen aircraft technology

    Science.gov (United States)

    Brewer, G. D.

    1991-01-01

    A comprehensive evaluation is conducted of the technology development status, economics, commercial feasibility, and infrastructural requirements of LH2-fueled aircraft, with additional consideration of hydrogen production, liquefaction, and cryostorage methods. Attention is given to the effects of LH2 fuel cryotank accommodation on the configurations of prospective commercial transports and military airlifters, SSTs, and HSTs, as well as to the use of the plentiful heatsink capacity of LH2 for innovative propulsion cycles' performance maximization. State-of-the-art materials and structural design principles for integral cryotank implementation are noted, as are airport requirements and safety and environmental considerations.

  11. Corrosion Sensor Development for Condition-Based Maintenance of Aircraft

    OpenAIRE

    Gino Rinaldi; Trisha Huber; Heather McIntosh; Les Lebrun; Heping Ding; John Weber

    2012-01-01

    Aircraft routinely operate in atmospheric environments that, over time, will impact their structural integrity. Material protection and selection schemes notwithstanding, recurrent exposure to chlorides, pollution, temperature gradients, and moisture provide the necessary electrochemical conditions for the development and profusion of corrosion in aircraft structures. For aircraft operators, this becomes an important safety matter as corrosion found in a given aircraft must be assumed to be p...

  12. APPLICATION FOR AIRCRAFT TRACKING

    OpenAIRE

    Ostroumov, Ivan; Kuz’menko, Natalia

    2011-01-01

    Abstract. In the article the important problems of software development for aircraft tracking have beendiscussed. Position reports of ACARS have been used for aircraft tracking around the world.An algorithm of aircraft coordinates decoding and visualization of aircraft position on the map has beenrepresented.Keywords: ACARS, aircraft, internet, position, software, tracking.

  13. Initial development of a metric to describe the level of safety associated with piloting an aircraft with synthetic vision systems (SVS) displays

    Science.gov (United States)

    Bartolone, Anthony P.; Glaab, Louis J.; Hughes, Monica F.; Parrish, Russell V.

    2005-05-01

    Synthetic Vision Systems (SVS) displays provide pilots with a continuous view of terrain combined with integrated guidance symbology in an effort to increase situation awareness (SA) and decrease workload during operations in Instrument Meteorological Conditions (IMC). It is hypothesized that SVS displays can replicate the safety and operational flexibility of flight in Visual Meteorological Conditions (VMC), regardless of actual out-the-window (OTW) visibility or time of day. Throughout the course of recent SVS research, significant progress has been made towards evolving SVS displays as well as demonstrating their ability to increase SA compared to conventional avionics in a variety of conditions. While a substantial amount of data has been accumulated demonstrating the capabilities of SVS displays, the ability of SVS to replicate the safety and operational flexibility of VMC flight performance in all visibility conditions is unknown to any specific degree. The previous piloted simulations and flight tests have shown better SA and path precision is achievable with SVS displays without causing an increase in workload, however none of the previous SVS research attempted to fully capture the significance of SVS displays in terms of their contribution to safety or operational benefits. In order to more fully quantify the relationship of flight operations in IMC with SVS displays to conventional operations conducted in VMC, a fundamental comparison to current day general aviation (GA) flight instruments was warranted. Such a comparison could begin to establish the extent to which SVS display concepts are capable of maintaining an "equivalent level of safety" with the round dials they could one day replace, for both current and future operations. Such a comparison was the focus of the SVS-ES experiment conducted under the Aviation Safety and Security Program's (AvSSP) GA Element of the SVS Project at NASA Langley Research Center in Hampton, Virginia. A combination of

  14. State Detection Method to the Aircraft Engine Based on the Time Domain Parameters Analysis Technology

    OpenAIRE

    Dongfang Luo

    2012-01-01

    The state detection method to the aircraft engine is very important to assure the aircraft’s safety flight, which has developed a new technology to realize the fault diagnosis to the aircraft engine. The collection of aircraft engine vibration signal can be used to complete the aircraft engine state detection and the fault diagnosis. In this study, the pretreated aircraft engine’s vibration signal was analyzed based on the time domain method, through the simulation, we can identify the aircra...

  15. Aircraft Wake Vortex Evolution and Prediction

    OpenAIRE

    Holzäpfel, Frank

    2005-01-01

    Aircraft trailing vortices constitute both a kaleidoscope of instructive fluid dynamics phenomena and a challenge for the sustained development of safety and capacity of the air-transportation industry. The current manuscript gives an overview on the wake vortex issue which commences at its historical roots and concludes with the current status of knowledge regarding the nature and characteristics, and the modeling of aircraft wakes. The incentive of today's wake vortex research still re...

  16. Study on Impedance Characteristics of Aircraft Cables

    Directory of Open Access Journals (Sweden)

    Weilin Li

    2016-01-01

    Full Text Available Voltage decrease and power loss in distribution lines of aircraft electric power system are harmful to the normal operation of electrical equipment and may even threaten the safety of aircraft. This study investigates how the gap distance (the distance between aircraft cables and aircraft skin and voltage frequency (variable frequency power supply will be adopted for next generation aircraft will affect the impedance of aircraft cables. To be more precise, the forming mechanism of cable resistance and inductance is illustrated in detail and their changing trends with frequency and gap distance are analyzed with the help of electromagnetic theoretical analysis. An aircraft cable simulation model is built with Maxwell 2D and the simulation results are consistent with the conclusions drawn from the theoretical analysis. The changing trends of the four core parameters of interest are analyzed: resistance, inductance, reactance, and impedance. The research results can be used as reference for the applications in Variable Speed Variable Frequency (VSVF aircraft electric power system.

  17. Vision assisted aircraft lateral navigation

    Science.gov (United States)

    Mohideen, Mohamed Ibrahim; Ramegowda, Dinesh; Seiler, Peter

    2013-05-01

    Surface operation is currently one of the least technologically equipped phases of aircraft operation. The increased air traffic congestion necessitates more aircraft operations in degraded weather and at night. The traditional surface procedures worked well in most cases as airport surfaces have not been congested and airport layouts were less complex. Despite the best efforts of FAA and other safety agencies, runway incursions continue to occur frequently due to incorrect surface operation. Several studies conducted by FAA suggest that pilot induced error contributes significantly to runway incursions. Further, the report attributes pilot's lack of situational awareness - local (e.g., minimizing lateral deviation), global (e.g., traffic in the vicinity) and route (e.g., distance to next turn) - to the problem. An Enhanced Vision System (EVS) is one concept that is being considered to resolve these issues. These systems use on-board sensors to provide situational awareness under poor visibility conditions. In this paper, we propose the use of an Image processing based system to estimate the aircraft position and orientation relative to taxiway markings to use as lateral guidance aid. We estimate aircraft yaw angle and lateral offset from slope of the taxiway centerline and horizontal position of vanishing line. Unlike automotive applications, several cues such as aircraft maneuvers along assigned route with minimal deviations, clear ground markings, even taxiway surface, limited aircraft speed are available and enable us to implement significant algorithm optimizations. We present experimental results to show high precision navigation accuracy with sensitivity analysis with respect to camera mount, optics, and image processing error.

  18. Propulsion controlled aircraft computer

    Science.gov (United States)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  19. Optimization of operational aircraft parameters reducing noise emission

    OpenAIRE

    Abdallah, Lina; Khardi, Salah; Haddou, Mounir

    2010-01-01

    The objective of this paper is to develop a model and a minimization method to provide flight path optimums reducing aircraft noise in the vicinity of airports. Optimization algorithm has solved a complex optimal control problem, and generates flight paths minimizing aircraft noise levels. Operational and safety constraints have been considered and their limits satisfied. Results are here presented and discussed.

  20. Optimization of operational aircraft parameters Reducing Noise Emission

    CERN Document Server

    Abdallah, Lina; Khardi, Salah

    2008-01-01

    The objective of this paper is to develop a model and a minimization method to provide flight path optimums reducing aircraft noise in the vicinity of airports. Optimization algorithm has solved a complex optimal control problem, and generates flight paths minimizing aircraft noise levels. Operational and safety constraints have been considered and their limits satisfied. Results are here presented and discussed.

  1. 14 CFR 33.75 - Safety analysis.

    Science.gov (United States)

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.75 Safety analysis. (a) (1) The applicant must analyze the engine, including the control system, to assess the...

  2. 基于运行安全的停机位分配问题研究%Research on Gate Assignment for Aircraft Based on Operational Safety

    Institute of Scientific and Technical Information of China (English)

    刘长有; 郭楠

    2011-01-01

    With the development of civil aviation and the increase of flight rates, push-out conflict probabilities between adjacent gates also increase continuously. To achieve a reasonable gate assignment with good safety and efficiency, an optimization model for gate assignment is established. In this model, restrictive conditions to avoid push-out conflict are added creatively, and important flights take the precedence to be first appointed to the gate that is the nearest one to passengers, so as to enhance passengers satisfaction. By analyzing the characters of gate assignment, genetic algorithm with good performance is chosen to solve this model. The airport gate assignment Gantt chart and algorithm convergence curve obtained from an example show that the gate assignment model is reasonable and the algorithm convergence performance is good, which meets the demands of expectation.%随着民航运输业的发展,航班密度不断增加,相邻停机位间推出冲突概率不断增加.为合理分配大型繁忙机场停机位,兼顾安全与效率,建立基于运行安全的停机位分配问题优化模型.在模型中加入约束条件以避免潜在的推出冲突,以及考虑将重要航班优先分配到指定的旅客行走距离较短的停机位,来提高旅客的整体满意度.通过分析机位分配特点,选择性能比较优越的遗传算法进行求解.最后用实际算例进行验证,得到停机位分配甘特图以及算法收敛曲线.从结果中可以看到,停机位分配比较合理,算法收敛性能良好.就整体而言,达到了预期的要求.

  3. 76 FR 5 - Feathering Propeller Systems for Light-Sport Aircraft Powered Gliders

    Science.gov (United States)

    2011-01-03

    ... sport pilots. For aircraft design, low performance within the constraints of light weight and structural... because it establishes minimum standards required in the interest of safety for the design of aircraft... applications of light-sport aircraft (LSA) design. In 2004, the FAA issued the final rule ``Certification...

  4. Obstacle avoidance and path planning for carrier aircraft launching

    Directory of Open Access Journals (Sweden)

    Wu Yu

    2015-06-01

    Full Text Available Launching safety and efficiency are important indexes to measure the fighting capacity of carrier. The study on path planning for taxi of carrier aircraft launching under actual deck environment is of great significance. In actual deck scheduling, manual command is applied to taxi of carrier aircraft, which has negative effects on the safety of staff and carrier aircraft launching. In consideration of both the safety and efficiency of carrier aircraft launching, the key elements of the problem are abstracted based on the analysis of deck environment, carrier aircraft maneuver performance and task requirements. According to the problem description, the mathematical model is established including various constraints. The carrier aircraft and the obstacles are reasonably simplified as circle and polygons respectively. What’s more, the proposed collision detection model reduces the calculations. Aimed at the features of model, the theory of model predictive control (MPC is applied to the path search. Then a dynamic weight heuristic function is designed and a dynamic multistep optimization algorithm is proposed. Taking the Nimitz-class aircraft carrier as an example, the paths from parking place to catapult are planned, which indicate the rationality of the model and the effectiveness of the algorithm by comparing the planning results under different simulation environments. The main contribution of research is the establishment of obstacle avoidance and path planning model. In addition, it provides the solution of model and technological foundations for comprehensive command and real-time decision-making of the carrier aircraft.

  5. Riveted Lap Joints in Aircraft Fuselage Design, Analysis and Properties

    CERN Document Server

    Skorupa, Andrzej

    2012-01-01

    Fatigue of the pressurized fuselages of transport aircraft is a significant problem all builders and users of aircraft have to cope with for reasons associated with assuring a sufficient lifetime and safety, and formulating adequate inspection procedures. These aspects are all addressed in various formal protocols for creating and maintaining airworthiness, including damage tolerance considerations. In most transport aircraft, fatigue occurs in lap joints, sometimes leading to circumstances that threaten safety in critical ways. The problem of fatigue of lap joints has been considerably enlarged by the goal of extending aircraft lifetimes. Fatigue of riveted lap joints between aluminium alloy sheets, typical of the pressurized aircraft fuselage, is the major topic of the present book. The richly illustrated and well-structured chapters treat subjects such as: structural design solutions and loading conditions for fuselage skin joints; relevance of laboratory test results for simple lap joint specimens to rive...

  6. Information note about the protection of nuclear facilities against aircraft crashes; Note d'information sur la protection des installations nucleaires contre les chutes d'avions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The protection of nuclear facilities against external risks (earthquakes, floods, fires etc..) is an aspect of safety taken into consideration by the French authority of nuclear safety (ASN). Concerning the aircraft crashes, the fundamental safety rules make three categories of aircraft: the small civil aircraft (weight < 5.7 t), the military aircraft, and the commercial aircraft (w > 5.7 t). Nuclear facilities are designed to resist against crashes of aircraft from the first category only, because the probability of the accidental crash of a big aircraft are extremely low. This document comprises an information note about the protection of nuclear facilities against aircraft crashes, a dossier about the safety of nuclear facilities with respect to external risks in general (natural disasters and aircraft crashes), and an article about the protection of nuclear power plants against aircraft crashes (design, safety measures, regulation, surveillance, experience feedback). (J.S.)

  7. Detectors Ensure Function, Safety of Aircraft Wiring

    Science.gov (United States)

    2013-01-01

    Pedro Medelius waited patiently in his lab at Kennedy Space Center. He had just received word that a colleague was bringing over a cable from a Space Shuttle solid rocket booster to test Medelius new invention. Medelius was calm until his colleague arrived, with about 30 other people. "Talk about testing under pressure," says Medelius. "There were people there from the Navy, the Air Force, and the Federal Aviation Administration." After the group s arrival, Medelius took a deep breath and connected his Standing Wave Reflectometer (SWR) to the cable. He wiggled the cable around, and the display showed a fault (a short or open circuit in wire) about an inch and a half inside the connector on the cable. His colleague questioned the results, because he had already checked that area on the cable. Medelius used the SWR to check again but got the same result. "That is when we took the cable apart and looked inside," Medelius says. "Lo and behold, that was exactly where the fault was." The impetus for Medelius new wire inspection technology came about in 1999 when one of the space shuttles lost power due to a fault somewhere in its more than 200 miles of electrical wiring. "The backup circuit was activated and prevented a major dysfunction, but nevertheless, there was a problem with the wiring," Medelius describes. Even though technicians used a device called a multimeter to measure the electrical current to find which wire had a fault, it could not pinpoint exactly where on the wire the fault was located. For that, technicians had to visually inspect the wire. "Sometimes they would have to remove the whole wire assembly and visually inspect every single wire. It was a very tedious operation because the wires are behind cabinets. They go all over the place in the shuttle," says Medelius. "NASA needed an instrument capable of telling them exactly where the faults were occurring." To meet NASA s needs for a highly precise device to inspect electrical power bundles, wires, and connectors, Medelius devised the SWR. "It came down to what was affected when a wire is short circuited or opened," he says. "We worked out a few equations based on physical principles." The SWR proved very sensitive, and the technology was patented.

  8. Designing A Conventional Aircraft

    OpenAIRE

    Sonei, Arash

    2014-01-01

    This paper is explaining the important design phases of dimensioning an unmanned conventional aircraft from scratch and will also design one according to a few chosen requirements. The design phases discussed will be all from wing dimensioning to stability and spin recovery, aircraft performance requirements and how to select a motor which overcomes these. As well as the optimal rate of climb for improved efficiency is discussed. In the end an aircraft which manages the set requirements and i...

  9. Lightning effects on aircraft

    Science.gov (United States)

    1977-01-01

    Direct and indirect effects of lightning on aircraft were examined in relation to aircraft design. Specific trends in design leading to more frequent lightning strikes were individually investigated. These trends included the increasing use of miniaturized, solid state components in aircraft electronics and electric power systems. A second trend studied was the increasing use of reinforced plastics and other nonconducting materials in place of aluminum skins, a practice that reduces the electromagnetic shielding furnished by a conductive skin.

  10. Cable Tensiometer for Aircraft

    Science.gov (United States)

    Nunnelee, Mark (Inventor)

    2008-01-01

    The invention is a cable tensiometer that can be used on aircraft for real-time, in-flight cable tension measurements. The invention can be used on any aircraft cables with high precision. The invention is extremely light-weight, hangs on the cable being tested and uses a dual bending beam design with a high mill-volt output to determine tension.

  11. Aircraft operations management manual

    Science.gov (United States)

    1992-01-01

    The NASA aircraft operations program is a multifaceted, highly diverse entity that directly supports the agency mission in aeronautical research and development, space science and applications, space flight, astronaut readiness training, and related activities through research and development, program support, and mission management aircraft operations flights. Users of the program are interagency, inter-government, international, and the business community. This manual provides guidelines to establish policy for the management of NASA aircraft resources, aircraft operations, and related matters. This policy is an integral part of and must be followed when establishing field installation policy and procedures covering the management of NASA aircraft operations. Each operating location will develop appropriate local procedures that conform with the requirements of this handbook. This manual should be used in conjunction with other governing instructions, handbooks, and manuals.

  12. AIRTV: Broadband Direct to Aircraft

    Science.gov (United States)

    Sorbello, R.; Stone, R.; Bennett, S. B.; Bertenyi, E.

    2002-01-01

    Airlines have been continuously upgrading their wide-body, long-haul aircraft with IFE (in-flight entertainment) systems that can support from 12 to 24 channels of video entertainment as well as provide the infrastructure to enable in-seat delivery of email and internet services. This is a direct consequence of increased passenger demands for improved in-flight services along with the expectations that broadband delivery systems capable of providing live entertainment (news, sports, financial information, etc.) and high speed data delivery will soon be available. The recent events of Sept. 11 have slowed the airline's upgrade of their IFE systems, but have also highlighted the compelling need for broadband aeronautical delivery systems to include operational and safety information. Despite the impact of these events, it is estimated that by 2005 more than 3000 long haul aircraft (servicing approximately 1 billion passengers annually) will be fully equipped with modern IFE systems. Current aircraft data delivery systems, which use either Inmarsat or NATS, are lacking in bandwidth and consequently are unsuitable to satisfy passenger demands for broadband email/internet services or the airlines' burgeoning data requirements. Present live video delivery services are limited to regional coverage and are not readily expandable to global or multiregional service. Faced with a compelling market demand for high data transport to aircraft, AirTV has been developing a broadband delivery system that will meet both passengers' and airlines' needs. AirTV is a global content delivery system designed to provide a range of video programming and data services to commercial airlines. When AirTV is operational in 2004, it will provide a broadband connection directly to the aircraft, delivering live video entertainment, internet/email service and essential operational and safety data. The system has been designed to provide seamless global service to all airline routes except for those

  13. Aircraft Vehicle Systems Modeling and Simulation under Uncertainty

    OpenAIRE

    Steinkellner, Sören

    2011-01-01

    In aircraft development, it is crucial to understand and evaluate behavior, performance, safety and other aspects of the systems before and after they are physically available for testing. Simulation models are used to gain knowledge in order to make decisions at all development stages. Modeling and simulation (M&S) in aircraft system development, for example of fuel, hydraulic and electrical power systems, is today an important part of the design process. Through M&S a problem in a f...

  14. A Grounded Theory Study of Aircraft Maintenance Technician Decision-Making

    Science.gov (United States)

    Norcross, Robert

    Aircraft maintenance technician decision-making and actions have resulted in aircraft system errors causing aircraft incidents and accidents. Aircraft accident investigators and researchers examined the factors that influence aircraft maintenance technician errors and categorized the types of errors in an attempt to prevent similar occurrences. New aircraft technology introduced to improve aviation safety and efficiency incur failures that have no information contained in the aircraft maintenance manuals. According to the Federal Aviation Administration, aircraft maintenance technicians must use only approved aircraft maintenance documents to repair, modify, and service aircraft. This qualitative research used a grounded theory approach to explore the decision-making processes and actions taken by aircraft maintenance technicians when confronted with an aircraft problem not contained in the aircraft maintenance manuals. The target population for the research was Federal Aviation Administration licensed aircraft and power plant mechanics from across the United States. Nonprobability purposeful sampling was used to obtain aircraft maintenance technicians with the experience sought in the study problem. The sample population recruitment yielded 19 participants for eight focus group sessions to obtain opinions, perceptions, and experiences related to the study problem. All data collected was entered into the Atlas ti qualitative analysis software. The emergence of Aircraft Maintenance Technician decision-making themes regarding Aircraft Maintenance Manual content, Aircraft Maintenance Technician experience, and legal implications of not following Aircraft Maintenance Manuals surfaced. Conclusions from this study suggest Aircraft Maintenance Technician decision-making were influenced by experience, gaps in the Aircraft Maintenance Manuals, reliance on others, realizing the impact of decisions concerning aircraft airworthiness, management pressures, and legal concerns

  15. SOLAR AIRCRAFT DESIGN

    OpenAIRE

    RAHMATI, Sadegh; GHASED, Amir

    2015-01-01

    Abstract. Generally domain Aircraft uses conventional fuel. These fuel having limited life, high cost and pollutant. Also nowadays price of petrol and other fuels are going to be higher, because of scarcity of those fuels. So there is great demand of use of non-exhaustible unlimited source of energy like solar energy. Solar aircraft is one of the ways to utilize solar energy. Solar aircraft uses solar panel to collect the solar radiation for immediate use but it also store the remaining part ...

  16. A Risk Management Architecture for Emergency Integrated Aircraft Control

    Science.gov (United States)

    McGlynn, Gregory E.; Litt, Jonathan S.; Lemon, Kimberly A.; Csank, Jeffrey T.

    2011-01-01

    Enhanced engine operation--operation that is beyond normal limits--has the potential to improve the adaptability and safety of aircraft in emergency situations. Intelligent use of enhanced engine operation to improve the handling qualities of the aircraft requires sophisticated risk estimation techniques and a risk management system that spans the flight and propulsion controllers. In this paper, an architecture that weighs the risks of the emergency and of possible engine performance enhancements to reduce overall risk to the aircraft is described. Two examples of emergency situations are presented to demonstrate the interaction between the flight and propulsion controllers to facilitate the enhanced operation.

  17. AIRTV: Broadband Direct to Aircraft

    Science.gov (United States)

    Sorbello, R.; Stone, R.; Bennett, S. B.; Bertenyi, E.

    2002-01-01

    Airlines have been continuously upgrading their wide-body, long-haul aircraft with IFE (in-flight entertainment) systems that can support from 12 to 24 channels of video entertainment as well as provide the infrastructure to enable in-seat delivery of email and internet services. This is a direct consequence of increased passenger demands for improved in-flight services along with the expectations that broadband delivery systems capable of providing live entertainment (news, sports, financial information, etc.) and high speed data delivery will soon be available. The recent events of Sept. 11 have slowed the airline's upgrade of their IFE systems, but have also highlighted the compelling need for broadband aeronautical delivery systems to include operational and safety information. Despite the impact of these events, it is estimated that by 2005 more than 3000 long haul aircraft (servicing approximately 1 billion passengers annually) will be fully equipped with modern IFE systems. Current aircraft data delivery systems, which use either Inmarsat or NATS, are lacking in bandwidth and consequently are unsuitable to satisfy passenger demands for broadband email/internet services or the airlines' burgeoning data requirements. Present live video delivery services are limited to regional coverage and are not readily expandable to global or multiregional service. Faced with a compelling market demand for high data transport to aircraft, AirTV has been developing a broadband delivery system that will meet both passengers' and airlines' needs. AirTV is a global content delivery system designed to provide a range of video programming and data services to commercial airlines. When AirTV is operational in 2004, it will provide a broadband connection directly to the aircraft, delivering live video entertainment, internet/email service and essential operational and safety data. The system has been designed to provide seamless global service to all airline routes except for those

  18. Aircraft Fire Protection Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Navy Aircraft Protection Laboratory provides complete test support for all Navy air vehicle fire protection systems. The facility allows for the simulation of a...

  19. Solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  20. Depreciation of aircraft

    Science.gov (United States)

    Warner, Edward P

    1922-01-01

    There is a widespread, and quite erroneous, impression to the effect that aircraft are essentially fragile and deteriorate with great rapidity when in service, so that the depreciation charges to be allowed on commercial or private operation are necessarily high.

  1. Aircraft electromagnetic compatibility

    Science.gov (United States)

    Clarke, Clifton A.; Larsen, William E.

    1987-01-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  2. Aircraft Operations Classification System

    Science.gov (United States)

    Harlow, Charles; Zhu, Weihong

    2001-01-01

    Accurate data is important in the aviation planning process. In this project we consider systems for measuring aircraft activity at airports. This would include determining the type of aircraft such as jet, helicopter, single engine, and multiengine propeller. Some of the issues involved in deploying technologies for monitoring aircraft operations are cost, reliability, and accuracy. In addition, the system must be field portable and acceptable at airports. A comparison of technologies was conducted and it was decided that an aircraft monitoring system should be based upon acoustic technology. A multimedia relational database was established for the study. The information contained in the database consists of airport information, runway information, acoustic records, photographic records, a description of the event (takeoff, landing), aircraft type, and environmental information. We extracted features from the time signal and the frequency content of the signal. A multi-layer feed-forward neural network was chosen as the classifier. Training and testing results were obtained. We were able to obtain classification results of over 90 percent for training and testing for takeoff events.

  3. Commercial Aircraft Integrated Vehicle Health Management Study

    Science.gov (United States)

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Jones, Sharon Monica; Kurtoglu, Tolga; Leone, Karen M.; Sandifer, Carl E.; Thomas, Megan A.

    2010-01-01

    Statistical data and literature from academia, industry, and other government agencies were reviewed and analyzed to establish requirements for fixture work in detection, diagnosis, prognosis, and mitigation for IVHM related hardware and software. Around 15 to 20 percent of commercial aircraft accidents between 1988 and 2003 involved inalftfnctions or failures of some aircraft system or component. Engine and landing gear failures/malfunctions dominate both accidents and incidents. The IVI vl Project research technologies were found to map to the Joint Planning and Development Office's National Research and Development Plan (RDP) as well as the Safety Working Group's National Aviation Safety Strategic. Plan (NASSP). Future directions in Aviation Technology as related to IVHlvl were identified by reviewing papers from three conferences across a five year time span. A total of twenty-one trend groups in propulsion, aeronautics and aircraft categories were compiled. Current and ftiture directions of IVHM related technologies were gathered and classified according to eight categories: measurement and inspection, sensors, sensor management, detection, component and subsystem monitoring, diagnosis, prognosis, and mitigation.

  4. Corrosion Sensor Development for Condition-Based Maintenance of Aircraft

    Directory of Open Access Journals (Sweden)

    Gino Rinaldi

    2012-01-01

    Full Text Available Aircraft routinely operate in atmospheric environments that, over time, will impact their structural integrity. Material protection and selection schemes notwithstanding, recurrent exposure to chlorides, pollution, temperature gradients, and moisture provide the necessary electrochemical conditions for the development and profusion of corrosion in aircraft structures. For aircraft operators, this becomes an important safety matter as corrosion found in a given aircraft must be assumed to be present in all of that type of aircraft. This safety protocol and its associated unscheduled maintenance requirement drive up the operational costs of the fleet and limit the availability of the aircraft. Hence, there is an opportunity at present for developing novel sensing technologies and schemes to aid in shifting time-based maintenance schedules towards condition-based maintenance procedures. In this work, part of the ongoing development of a multiparameter integrated corrosion sensor is presented. It consists of carbon nanotube/polyaniline polymer sensors and commercial-off-the-shelf sensors. It is being developed primarily for monitoring environmental and material factors for the purpose of providing a means to more accurately assess the structural integrity of aerospace aluminium alloys through fusion of multiparameter sensor data. Preliminary experimental test results are presented for chloride ion concentration, hydrogen gas evolution, humidity variations, and material degradation.

  5. An Aircraft Navigation System Fault Diagnosis Method Based on Optimized Neural Network Algorithm

    Institute of Scientific and Technical Information of China (English)

    Jean-dedieu Weyepe

    2014-01-01

    Air data and inertial reference system (ADIRS) is one of the complex sub-system in the aircraft navigation system and it plays an important role into the flight safety of the aircraft. This paper propose an optimize neural network algorithm which is a combination of neural network and ant colony algorithm to improve efficiency of maintenance engineer job task.

  6. Advanced Aircraft Material

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Prince

    2013-06-01

    Full Text Available There has been long debate on “advanced aircraft material” from past decades & researchers too came out with lots of new advanced material like composites and different aluminum alloys. Now days a new advancement that is in great talk is third generation Aluminum-lithium alloy. Newest Aluminum-lithium alloys are found out to have low density, higher elastic modulus, greater stiffness, greater cryogenic toughness, high resistance to fatigue cracking and improved corrosion resistance properties over the earlier used aircraft material as mentioned in Table 3 [1-5]. Comparison had been made with nowadays used composite material and is found out to be more superior then that

  7. Temperature Distribution in a Long-Span Aircraft Hangar

    Institute of Scientific and Technical Information of China (English)

    PEI Yongzhong; BAI Yin; SHI Yongjiu; ZHU Dan; WANG Yuanqing

    2008-01-01

    Long-span aircraft hangars have features which differ from other large structural systems. The temperature stresses due to temperature variations often greatly impact the mechanical performance of the structure. The paper presents an analysis of the heat transfer processes and factors which influence the temperature distribution. The AMECO-A380 aircraft hangar at the Beijing Capital International Airport was selected as a practical example to illustrate the use of finite volume analysis to calculate the temperature field taking into account meteorological conditions, solar radiation, heat convection, etc. The temperature distribution and the variation of the length of the upper and lower chords of the grid structure roof were ana-lyzed to develop guidelines for the temperature distributions in very large aircraft hangars. The results show that the temperature effect will be large for long-span hangars, and the temperature stresses due to non-uniform temperatures should be analyzed to guarantee the structural safety of large aircraft hangars.

  8. Advanced Radiometer For Cloud Liquid Water and Aircraft Icing Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft icing continues to be one of the major safety and operational concerns of the FAA, elements of the military, and the foreign military and civilian...

  9. Non-Parametric, Closed-Loop Testing of Autonomy in Unmanned Aircraft Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase I program aims to develop new methods to support safety testing for integration of Unmanned Aircraft Systems into the National Airspace (NAS)...

  10. Formalizing Probabilistic Safety Claims

    Science.gov (United States)

    Herencia-Zapana, Heber; Hagen, George E.; Narkawicz, Anthony J.

    2011-01-01

    A safety claim for a system is a statement that the system, which is subject to hazardous conditions, satisfies a given set of properties. Following work by John Rushby and Bev Littlewood, this paper presents a mathematical framework that can be used to state and formally prove probabilistic safety claims. It also enables hazardous conditions, their uncertainties, and their interactions to be integrated into the safety claim. This framework provides a formal description of the probabilistic composition of an arbitrary number of hazardous conditions and their effects on system behavior. An example is given of a probabilistic safety claim for a conflict detection algorithm for aircraft in a 2D airspace. The motivation for developing this mathematical framework is that it can be used in an automated theorem prover to formally verify safety claims.

  11. Auralization of novel aircraft configurations

    OpenAIRE

    Arntzen, M.; Bertsch, E.L.; Simons, D.G.

    2015-01-01

    A joint initiative of NLR, DLR, and TU Delft has been initiated to streamline the process of generating audible impressions of novel aircraft configurations. The integrated approach adds to the value of the individual tools and allows predicting the sound of future aircraft before they actually fly. Hence, an existing process for the aircraft design and system noise prediction at DLR has been upgraded to generate the required input data for an aircraft auralization framework developed by NLR ...

  12. Long Range Aircraft Trajectory Prediction

    OpenAIRE

    Magister, Tone

    2009-01-01

    The subject of the paper is the improvement of the aircraft future trajectory prediction accuracy for long-range airborne separation assurance. The strategic planning of safe aircraft flights and effective conflict avoidance tactics demand timely and accurate conflict detection based upon future four–dimensional airborne traffic situation prediction which is as accurate as each aircraft flight trajectory prediction. The improved kinematics model of aircraft relative flight considering flight ...

  13. Aircraft noise prediction

    Science.gov (United States)

    Filippone, Antonio

    2014-07-01

    This contribution addresses the state-of-the-art in the field of aircraft noise prediction, simulation and minimisation. The point of view taken in this context is that of comprehensive models that couple the various aircraft systems with the acoustic sources, the propagation and the flight trajectories. After an exhaustive review of the present predictive technologies in the relevant fields (airframe, propulsion, propagation, aircraft operations, trajectory optimisation), the paper addresses items for further research and development. Examples are shown for several airplanes, including the Airbus A319-100 (CFM engines), the Bombardier Dash8-Q400 (PW150 engines, Dowty R408 propellers) and the Boeing B737-800 (CFM engines). Predictions are done with the flight mechanics code FLIGHT. The transfer function between flight mechanics and the noise prediction is discussed in some details, along with the numerical procedures for validation and verification. Some code-to-code comparisons are shown. It is contended that the field of aircraft noise prediction has not yet reached a sufficient level of maturity. In particular, some parametric effects cannot be investigated, issues of accuracy are not currently addressed, and validation standards are still lacking.

  14. Robots for Aircraft Maintenance

    Science.gov (United States)

    1993-01-01

    Marshall Space Flight Center charged USBI (now Pratt & Whitney) with the task of developing an advanced stripping system based on hydroblasting to strip paint and thermal protection material from Space Shuttle solid rocket boosters. A robot, mounted on a transportable platform, controls the waterjet angle, water pressure and flow rate. This technology, now known as ARMS, has found commercial applications in the removal of coatings from jet engine components. The system is significantly faster than manual procedures and uses only minimal labor. Because the amount of "substrate" lost is minimal, the life of the component is extended. The need for toxic chemicals is reduced, as is waste disposal and human protection equipment. Users of the ARMS work cell include Delta Air Lines and the Air Force, which later contracted with USBI for development of a Large Aircraft Paint Stripping system (LARPS). LARPS' advantages are similar to ARMS, and it has enormous potential in military and civil aircraft maintenance. The technology may also be adapted to aircraft painting, aircraft inspection techniques and paint stripping of large objects like ships and railcars.

  15. Flight envelope protection of aircraft using adaptive neural network and online linearisation

    Science.gov (United States)

    Shin, Hohyun; Kim, Youdan

    2016-03-01

    Flight envelope protection algorithm is proposed to improve the safety of an aircraft. Flight envelope protection systems find the control inputs to prevent an aircraft from exceeding structure/aerodynamic limits and maximum control surface deflections. The future values of state variables are predicted using the current states and control inputs based on linearised aircraft model. To apply the envelope protection algorithm for the wide envelope of the aircraft, online linearisation is adopted. Finally, the flight envelope protection system is designed using adaptive neural network and least-squares method. Numerical simulations are conducted to verify the performance of the proposed scheme.

  16. Fuel level sensor based on polymer optical fiber Bragg gratings for aircraft applications

    DEFF Research Database (Denmark)

    Marques, C. A. F.; Pospori, A.; Sáez-Rodríguez, D.;

    2016-01-01

    Safety in civil aviation is increasingly important due to the increase in flight routes and their more challenging nature. Like other important systems in aircraft, fuel level monitoring is always a technical challenge. The most frequently used level sensors in aircraft fuel systems are based...... and present many advantages for aircraft fuel measurement. Different OFLLSs have been developed, such as the pressure type, float type, optical radar type, TIR type and side-leaking type. Amongst these, many types of OFLLSs based on fiber gratings have been demonstrated. However, these sensors have not been...... previously published in the literature, making it a potentially useful tool for aircraft fuel monitoring....

  17. Braking performance of aircraft tires

    Science.gov (United States)

    Agrawal, Satish K.

    This paper brings under one cover the subject of aircraft braking performance and a variety of related phenomena that lead to aircraft hydroplaning, overruns, and loss of directional control. Complex processes involving tire deformation, tire slipping, and fluid pressures in the tire-runway contact area develop the friction forces for retarding the aircraft; this paper describes the physics of these processes. The paper reviews the past and present research efforts and concludes that the most effective way to combat the hazards associated with aircraft landings and takeoffs on contaminated runways is by measuring and displaying in realtime the braking performance parameters in the aircraft cockpit.

  18. Vaccine Safety

    Science.gov (United States)

    ... the safety of Tdap, Meningococcal, and HPV vaccines Human Papillomavirus (HPV) Vaccine is Very Safe Read about the safety of ... Hepatitis A Vaccine Safety Hepatitis B Vaccine Safety Human Papillomavirus (HPV) Vaccine Safety FAQs about HPV Safety Influenza (Flu) Vaccine ...

  19. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Science.gov (United States)

    2010-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States (HTSUS) by meeting the following requirements: (1) The aircraft, aircraft engines,...

  20. Intelligent Aircraft Damage Assessment, Trajectory Planning, and Decision-Making under Uncertainty

    Science.gov (United States)

    Lopez, Israel; Sarigul-Klijn, Nesrin

    Situational awareness and learning are necessary to identify and select the optimal set of mutually non-exclusive hypothesis in order to maximize mission performance and adapt system behavior accordingly. This paper presents a hierarchical and decentralized approach for integrated damage assessment and trajectory planning in aircraft with uncertain navigational decision-making. Aircraft navigation can be safely accomplished by properly addressing the following: decision-making, obstacle perception, aircraft state estimation, and aircraft control. When in-flight failures or damage occur, rapid and precise decision-making under imprecise information is required in order to regain and maintain control of the aircraft. To achieve planned aircraft trajectory and complete safe landing, the uncertainties in system dynamics of the damaged aircraft need to be learned and incorporated at the level of motion planning. The damaged aircraft is simulated via a simplified kinematic model. The different sources and perspectives of uncertainties in the damage assessment process and post-failure trajectory planning are presented and classified. The decision-making process for an emergency motion planning and landing is developed via the Dempster-Shafer evidence theory. The objective of the trajectory planning is to arrive at a target position while maximizing the safety of the aircraft given uncertain conditions. Simulations are presented for an emergency motion planning and landing that takes into account aircraft dynamics, path complexity, distance to landing site, runway characteristics, and subjective human decision.

  1. Bayesian Software Health Management for Aircraft Guidance, Navigation, and Control

    Science.gov (United States)

    Schumann, Johann; Mbaya, Timmy; Menghoel, Ole

    2011-01-01

    Modern aircraft, both piloted fly-by-wire commercial aircraft as well as UAVs, more and more depend on highly complex safety critical software systems with many sensors and computer-controlled actuators. Despite careful design and V&V of the software, severe incidents have happened due to malfunctioning software. In this paper, we discuss the use of Bayesian networks (BNs) to monitor the health of the on-board software and sensor system, and to perform advanced on-board diagnostic reasoning. We will focus on the approach to develop reliable and robust health models for the combined software and sensor systems.

  2. Querying Safety Cases

    Science.gov (United States)

    Denney, Ewen W.; Naylor, Dwight; Pai, Ganesh

    2014-01-01

    Querying a safety case to show how the various stakeholders' concerns about system safety are addressed has been put forth as one of the benefits of argument-based assurance (in a recent study by the Health Foundation, UK, which reviewed the use of safety cases in safety-critical industries). However, neither the literature nor current practice offer much guidance on querying mechanisms appropriate for, or available within, a safety case paradigm. This paper presents a preliminary approach that uses a formal basis for querying safety cases, specifically Goal Structuring Notation (GSN) argument structures. Our approach semantically enriches GSN arguments with domain-specific metadata that the query language leverages, along with its inherent structure, to produce views. We have implemented the approach in our toolset AdvoCATE, and illustrate it by application to a fragment of the safety argument for an Unmanned Aircraft System (UAS) being developed at NASA Ames. We also discuss the potential practical utility of our query mechanism within the context of the existing framework for UAS safety assurance.

  3. 19 CFR 122.64 - Other aircraft.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Other aircraft. 122.64 Section 122.64 Customs... AIR COMMERCE REGULATIONS Clearance of Aircraft and Permission To Depart § 122.64 Other aircraft. Clearance or permission to depart shall be requested by the aircraft commander or agent for aircraft...

  4. Guidance Systems of Fighter Aircraft

    Directory of Open Access Journals (Sweden)

    K.N. Rajanikanth

    2005-07-01

    Full Text Available Mission performance of a fighter aircraft is crucial for survival and strike capabilities in todays' aerial warfare scenario. The guidance functions of such an aircraft play a vital role inmeeting the requirements and accomplishing the mission success. This paper presents the requirements of precision guidance for various missions of a fighter aircraft. The concept ofguidance system as a pilot-in-loop system is pivotal in understanding and designing such a system. Methodologies of designing such a system are described.

  5. Chemistry in aircraft plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kraabol, A.G.; Stordal, F.; Knudsen, S. [Norwegian Inst. for Air Research, Kjeller (Norway); Konopka, P. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    An expanding plume model with chemistry has been used to study the chemical conversion of NO{sub x} to reservoir species in aircraft plumes. The heterogeneous conversion of N{sub 2}O{sub 5} to HNO{sub 3}(s) has been investigated when the emissions take place during night-time. The plume from an B747 has been simulated. During a ten-hour calculation the most important reservoir species was HNO{sub 3} for emissions at noon. The heterogeneous reactions had little impact on the chemical loss of NO{sub x} to reservoir species for emissions at night. (author) 4 refs.

  6. Structural integrity in aircraft.

    Science.gov (United States)

    Hardrath, H. F.

    1973-01-01

    The paper reviews briefly the current design philosophies for achieving long, efficient, and reliable service in aircraft structures. The strengths and weaknesses of these design philosophies and their demonstrated records of success are discussed. The state of the art has not been developed to the point where designing can be done without major test inspection and maintenance programs. A broad program of research is proposed through which a viable computerized design scheme will be provided during the next decade. The program will organize and correlate existing knowledge on fatigue and fracture behavior, identify gaps in this knowledge, and guide specific research to upgrade design capabilities.

  7. 49 CFR Appendix to Part 800 - Request to the Secretary of the Department of Transportation To Investigate Certain Aircraft...

    Science.gov (United States)

    2010-10-01

    ... Transportation To Investigate Certain Aircraft Accidents Appendix to Part 800 Transportation Other Regulations... the Department of Transportation To Investigate Certain Aircraft Accidents (a) Acting pursuant to the... Safety Board Act of 1974, and as set forth below to investigate the facts, conditions, and...

  8. Structural Integrity Evaluation of the Lear Fan 2100 Aircraft

    Science.gov (United States)

    Kan, H. P.; Dyer, T. A.

    1996-01-01

    An in-situ nondestructive inspection was conducted to detect manufacturing and assembly induced defects in the upper two wing surfaces (skin s) and upper fuselage skin of the Lear Fan 2100 aircraft E009. The effects of the defects, detected during the inspection, on the integrity of the structure was analytically evaluated. A systematic evaluation was also conducted to determine the damage tolerance capability of the upper wing skin against impact threats and assembly induced damage. The upper wing skin was divided into small regions for damage tolerance evaluations. Structural reliability, margin of safety, allowable strains, and allowable damage size were computed. The results indicated that the impact damage threat imposed on composite military aircraft structures is too severe for the Lear Fan 2100 upper wing skin. However, the structural integrity is not significantly degraded by the assembly induced damage for properly assembled structures, such as the E009 aircraft.

  9. Influence of aircraft impact on seismic isolated SMR reactor

    International Nuclear Information System (INIS)

    In the past decades a lot of effort has been done to increase the reliability of NPP, particularly against the earthquakes effects, adopting the highly attractive strategy of the seismic isolation. Isolator bearings seem able to increase the safety margin/integrity of the safety relevant nuclear structures and to enable the standardization of the reactor design to be deployed across a wider range of sites. However in principle the design of a nuclear power plant depends on the safety aspects related also to other type of external events, like the aircraft impact that was/is of relevant importance for NPP safety (especially after the Sept. 2001) and must be considered in the design of both Generation III+ and IV reactors. This paper is related to a preliminary study of the global response of a seismically isolated reactor building subjected to a vicious commercial aircraft impact. In this framework the effects of impulsive loading due to the progressive aircraft crashing were evaluated, considering the potential for structural failure of the external building walls due to shearing and bending dynamic loads, with reference to the effects of the structure perforation, including concrete spalling of the internal surfaces and propagation of dynamic waves that could affect NPP safety systems and structures. To the purpose a rather refined numerical methodology was employed; three-dimensional models (FEM approach) of a reference SMR reactor containment and possible realistic aircraft structures were set up and used in the performed analyses, taking also into account suitable materials behaviour and constitutive laws. The structural analysis of the reference NPP internal components was carried out to appropriately check mainly the containment strength margin in the case of the considered accident and test the chosen models and numerical calculation approach. (author)

  10. Radial cylinder aircraft engines

    OpenAIRE

    Šimíček, Petr

    2015-01-01

    Práce je zaměřena na konstrukční řešení letadlových hvězdicových motorů. Úvod je pojednáním o historii letadlových hvězdicových motorů a jejich vývoji v historickém kontextu. Druhá část je zaměřena na konstrukci letadlových hvězdicových motorů, následně jsou uvedena některá zajímavá konstrukční řešení a porovnání s motorem jiného druhu konstrukce. The bachelor's thesis is focused on design of aircraft radial engines. Home is a treatise on the history of aircraft radial engines and their de...

  11. Aircraft landing using GPS

    Science.gov (United States)

    Lawrence, David Gary

    The advent of the Global Positioning System (GPS) is revolutionizing the field of navigation. Commercial aviation has been particularly influenced by this worldwide navigation system. From ground vehicle guidance to aircraft landing applications, GPS has the potential to impact many areas of aviation. GPS is already being used for non-precision approach guidance; current research focuses on its application to more critical regimes of flight. To this end, the following contributions were made: (1) Development of algorithms and a flexible software architecture capable of providing real-time position solutions accurate to the centimeter level with high integrity. This architecture was used to demonstrate 110 automatic landings of a Boeing 737. (2) Assessment of the navigation performance provided by two GPS-based landing systems developed at Stanford, the Integrity Beacon Landing System, and the Wide Area Augmentation System. (3) Preliminary evaluation of proposed enhancements to traditional techniques for GPS positioning, specifically, dual antenna positioning and pseudolite augmentation. (4) Introduction of a new concept for positioning using airport pseudolites. The results of this research are promising, showing that GPS-based systems can potentially meet even the stringent requirements of a Category III (zero visibility) landing system. Although technical and logistical hurdles still exist, it is likely that GPS will soon provide aircraft guidance in all phases of flight, including automatic landing, roll-out, and taxi.

  12. Aviation industry-research in aircraft finance

    OpenAIRE

    Ehrenthal, Joachim C.F.

    2010-01-01

    Aircraft values are key to aircraft financing decisions: Aircraft values act as a source of security for providers of debt capital and lessors failing to re-place aircraft, and as a source of upside potential to equity investors. Yet, aircraft values cannot be precisely and continuously monitored. This is because neither actual primary nor secondary aircraft transaction prices are disclosed. Various types of third party valuation estimates exist, but relying solely on third party appraisa...

  13. MISSILES AND AIRCRAFT (PART1

    Directory of Open Access Journals (Sweden)

    C.M. Meyer

    2012-02-01

    Full Text Available Many sources maintain that the role played by air power in the 1973 Yom Kippur War was important. Other interpretations state that control of air space over the battlefield areas, (either by aircraft or anti-aircraft defences, was vital.

  14. Aircrew physical training is the component of flight safety.

    Directory of Open Access Journals (Sweden)

    Popov F.I.

    2011-06-01

    Full Text Available The components and elements of aviation system for aircraft accidents prevention are realized in the article. The role and meaning of flying hours aircrew physical training in accordance with military and professional activity specification, system reliability "aircraft - pilot - environment" and its effective utilization in the training and combat activity conditions and flight safety improvement were developed in this article.

  15. Probing Aircraft Flight Test Hazard Mitigation for the Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Research Team

    Science.gov (United States)

    Kelly, Michael J.

    2013-01-01

    The Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Project Integration Manager requested in July 2012 that the NASA Engineering and Safety Center (NESC) form a team to independently assess aircraft structural failure hazards associated with the ACCESS experiment and to identify potential flight test hazard mitigations to ensure flight safety. The ACCESS Project Integration Manager subsequently requested that the assessment scope be focused predominantly on structural failure risks to the aircraft empennage raft empennage.

  16. MANPADS protection for civil aircraft using an expendable decoy

    Science.gov (United States)

    Walmsley, Roy H.; Friede, Johan; Millwood, Nicolas; Butters, Brian

    2009-09-01

    With the ever present threat of MANPADS throughout the world the protection of civil aircraft is a desirable capability that has special requirements in terms of certification, safety, logistics, affordability, environmental impact and exportability. The Civil Aircraft Missile Protection System (CAMPS), which includes the CIV-IR (infrared) leaf-based pyrophoric (not pyrotechnic) expendable countermeasure, is a system designed to meet these requirements. This paper presents the operating aspects of the decoy, including discussion of design features necessary to ensure safety both on the ground and in flight and assure successful deployment. The characteristics of the CIV-IR have been measured, both on static single leaves in the laboratory and on deployed packs in field tests and aircraft trials. These measured properties have been used in engagement modelling and simulation to assess the level of protection that can be afforded to commercial airliners against generation 1 and 2 MANPADS threats. Aircraft flight trials with ground based seekers have also been carried out to validate the modelling work. These combine to define the deployment patterns necessary for a successful seduction of the MANPAD.

  17. Risk assessment of aircraft accidents anywhere near an airport

    International Nuclear Information System (INIS)

    This work analyzes the more suitable areas to build new facilities, taking into account the conditions imposed by an airport located nearby. Initially, it describes the major characteristics of the airport. Then, the restrictions imposed to ensure the normal operation of the aircraft are analyzed. Following, there is a summary of the evolution of studies of aircraft accidents at nuclear facilities. In the second part, three models of aircraft crash probabilities are presented, all of them developed in the U.S.A, each with an increasing level of complexity in modeling the likelihood of accidents. The first model is the 'STD-3014' Department of Energy (DOE), the second is the 'ACRAM'(Aircraft Crash Risk Assessment Methodology) prepared by the 'Lawrence Livermore National Laboratory'(LLNL) and finally the more advanced 'ACRP-3', produced by the 'Transportation Research Board'. The results obtained with the three models establish that the risks imposed on the airport vicinity, remain low due to the improvement and innovation in the aircraft's safety, reducing the risk margin for the location of new nuclear facilities near an airport. (author)

  18. Structural Integrity Assessment of Reactor Containment Subjected to Aircraft Crash

    International Nuclear Information System (INIS)

    When an accident occurs at the NPP, containment building which acts as the last barrier should be assessed and analyzed structural integrity by internal loading or external loading. On many occasions that can occur in the containment internal such as LOCA(Loss Of Coolant Accident) are already reflected to design. Likewise, there are several kinds of accidents that may occur from the outside of containment such as earthquakes, hurricanes and strong wind. However, aircraft crash that at outside of containment is not reflected yet in domestic because NPP sites have been selected based on the probabilistic method. After intentional aircraft crash such as World Trade Center and Pentagon accident in US, social awareness for safety of infrastructure like NPP was raised world widely and it is time for assessment of aircraft crash in domestic. The object of this paper is assessment of reactor containment subjected to aircraft crash by FEM(Finite Element Method). In this paper, assessment of structural integrity of containment building subjected to certain aircraft crash was carried out. Verification of structure integrity of containment by intentional severe accident. Maximum stress 61.21MPa of horizontal shell crash does not penetrate containment. Research for more realistic results needed by steel reinforced concrete model

  19. Frequency Analysis of Aircraft hazards for License Application

    Energy Technology Data Exchange (ETDEWEB)

    K. Ashley

    2006-10-24

    The preclosure safety analysis for the monitored geologic repository at Yucca Mountain must consider the hazard that aircraft may pose to surface structures. Relevant surface structures are located beneath the restricted airspace of the Nevada Test Site (NTS) on the eastern slope of Yucca Mountain, near the North Portal of the Exploratory Studies Facility Tunnel (Figure 1). The North Portal is located several miles from the Nevada Test and Training Range (NTTR), which is used extensively by the U.S. Air Force (USAF) for training and test flights (Figure 1). The NTS airspace, which is controlled by the U.S. Department of Energy (DOE) for NTS activities, is not part of the NTTR. Agreements with the DOE allow USAF aircraft specific use of the airspace above the NTS (Reference 2.1.1 [DIRS 103472], Section 3.1.1 and Appendix A, Section 2.1; and Reference 2.1.2 [DIRS 157987], Sections 1.26 through 1.29). Commercial, military, and general aviation aircraft fly within several miles to the southwest of the repository site in the Beatty Corridor, which is a broad air corridor that runs approximately parallel to U.S. Highway 95 and the Nevada-California border (Figure 2). These aircraft and other aircraft operations are identified and described in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Sections 6 and 8). The purpose of this analysis is to estimate crash frequencies for aircraft hazards identified for detailed analysis in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Section 8). Reference 2.1.3, Section 8, also identifies a potential hazard associated with electronic jamming, which will be addressed in this analysis. This analysis will address only the repository and not the transportation routes to the site. The analysis is intended to provide the basis for: (1) Categorizing event sequences related to aircraft hazards; (2) Identifying design or operational requirements related to aircraft hazards.

  20. Ullage Compatible Optical Sensor for Monitoring Safety Significant Malfunctions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Significant emphasis has been placed on aircraft fuel tank safety following the TWA Flight 800 accident in July 1996. Upon investigation, the National...

  1. Floor Response Evaluation for Auxiliary Building Subjected to Aircraft Impact Loading

    International Nuclear Information System (INIS)

    These studies have been aimed to verify and ensure the safety of the targeted walls and structures especially in the viewpoint of the deterministic approach. However, a probabilistic safety assessment as well as deterministic approach for the damage of the internal component in the nuclear power plants (NPPs) subjected to aircraft crash is also needed. A probabilistic safety assessment for aircraft crash includes many uncertainties such as impact velocity, mass, impact location, shape, size, material etc. of aircraft. In this paper, an impact location was selected among the various parameters. This paper found the acceleration floor response spectra at specified locations (safety related components) on the target structure that assumed to be impact velocity 150m/s and maximum fuel for the specified aircraft model. In order to obtain the floor response in case of the crash with a various locations, the analyses for the auxiliary building subjected to aircraft impact were performed using Riera force history method and missile-target interaction method. The difference between responses in case of the building floor subjected to impact was occurred. Thus, in order to obtain the more accurate results, missile-target interaction method was used. This paper found the response at the selected point (node point No. 51). In order to probabilistic assessment for the safety related components, the assessment for a various parameters (velocity, mass, materials etc.) as well as impact locations should be needed

  2. Theory of Economic Life Prediction and Reliability Assessment of Aircraft Structures

    Institute of Scientific and Technical Information of China (English)

    YAN Chuliang; LIU Kege

    2011-01-01

    The theory of economic life prediction and reliability assessment of aircraft structures has a significant effect on safety of aircraft structures.It is based on the two-stage theory of fatigue process and can guarantee the safety and reliability of structures.According to the fatigue damage process, the fatigue scatter factors of crack initiation stage and crack propagation stage are given respectively.At the same time, mathematical models of fatigue life prediction are presented by utilizing the fatigue scatter factors and full scale test results of aircraft structures.Furthermore, the economic life model is put forward.The model is of significant scientific value for products to provide longer economic life, higher reliability and lower cost.The theory of economic life prediction and reliability assessment of aircraft structures has been successfully applied to determining and extending the structural life for thousands of airplanes.

  3. Comparison of Response between RC and SC Containment Structures Subjected to Aircraft Impact

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sang Shup; Choi, In Kil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Tae Hyo [Hanyang University, Seoul (Korea, Republic of)

    2012-05-15

    Since the aircraft terror to the World Trade Center (WTC) on September 11, 2001, an aircraft impact problem has been increasingly interested. The possibilities of aircraft impacts against nuclear power plants are one of important category. To date, the impact load of the analysis on aircraft impacts has been applied to target structures in local areas by using the impact force-time history function of Riera. However, Riera forcing function is not recommended at the expectation of unreasonable damage or perforation to target structures. The numerical analysis of rc and sc containment structures subjected to aircraft impact is performed by using the AUTODYN-3D. It is carried out the four different types for RC and SC structures. Thus, in this study, the different behaviors of containment structures and the safety of SC structure are expected

  4. Comparison of Response between RC and SC Containment Structures Subjected to Aircraft Impact

    International Nuclear Information System (INIS)

    Since the aircraft terror to the World Trade Center (WTC) on September 11, 2001, an aircraft impact problem has been increasingly interested. The possibilities of aircraft impacts against nuclear power plants are one of important category. To date, the impact load of the analysis on aircraft impacts has been applied to target structures in local areas by using the impact force-time history function of Riera. However, Riera forcing function is not recommended at the expectation of unreasonable damage or perforation to target structures. The numerical analysis of rc and sc containment structures subjected to aircraft impact is performed by using the AUTODYN-3D. It is carried out the four different types for RC and SC structures. Thus, in this study, the different behaviors of containment structures and the safety of SC structure are expected

  5. Aircraft radar antennas

    Science.gov (United States)

    Schrank, Helmut E.

    1987-04-01

    Many changes have taken place in airborne radar antennas since their beginnings over forty years ago. A brief historical review of the advances in technology is presented, from mechanically scanned reflectors to modern multiple function phased arrays. However, emphasis is not on history but on the state-of-the-art technology and trends for future airborne radar systems. The status of rotating surveillance antennas is illustrated by the AN/APY-1 Airborne Warning and Control System (AWACS) slotted waveguide array, which achieved a significant breakthrough in sidelobe suppression. Gimballed flat plate arrays in nose radomes are typified by the AN/APG-66 (F-16) antenna. Multifunction phased arrays are presented by the Electronically Agile Radar (EAR) antenna, which has achieved significant advances in performance versatility and reliability. Trends toward active aperture, adaptive, and digital beamforming arrays are briefly discussed. Antennas for future aircraft radar systems must provide multiple functions in less aperture space, and must perform more reliably.

  6. Commercial aircraft composite technology

    CERN Document Server

    Breuer, Ulf Paul

    2016-01-01

    This book is based on lectures held at the faculty of mechanical engineering at the Technical University of Kaiserslautern. The focus is on the central theme of societies overall aircraft requirements to specific material requirements and highlights the most important advantages and challenges of carbon fiber reinforced plastics (CFRP) compared to conventional materials. As it is fundamental to decide on the right material at the right place early on the main activities and milestones of the development and certification process and the systematic of defining clear requirements are discussed. The process of material qualification - verifying material requirements is explained in detail. All state-of-the-art composite manufacturing technologies are described, including changes and complemented by examples, and their improvement potential for future applications is discussed. Tangible case studies of high lift and wing structures emphasize the specific advantages and challenges of composite technology. Finally,...

  7. Wake-Induced Aerodynamics on a Trailing Aircraft

    Science.gov (United States)

    Mendenhall, Michael R.; Lesieutre, Daniel J.; Kelly, Michael J.

    2016-01-01

    NASA conducted flight tests to measure the exhaust products from alternative fuels using a DC-8 transport aircraft and a Falcon business jet. An independent analysis of the maximum vortex-induced loads on the Falcon in the DC-8 wake was conducted for pre-flight safety analysis and to define safe trail distances for the flight tests. Static and dynamic vortex-induced aerodynamic loads on the Falcon were predicted at a matrix of locations aft of the DC-8 under flight-test conditions, and the maximum loads were compared with design limit loads to assess aircraft safety. Trajectory simulations for the Falcon during close encounters with the DC-8 wake were made to study the vortex-induced loads during traverses of the DC-8 primary trailing vortex. A parametric study of flight traverses through the trailing vortex was conducted to assess Falcon flight behavior and motion characteristics.

  8. 76 FR 45011 - Control of Air Pollution From Aircraft and Aircraft Engines; Proposed Emission Standards and Test...

    Science.gov (United States)

    2011-07-27

    ... from Aircraft and Aircraft Engines; Emission Standards and Test Procedures;'' Final Rule, 62 FR 25356... From Aircraft and Aircraft Engines; Proposed Emission Standards and Test Procedures; Proposed Rule #0... and Aircraft Engines; Proposed Emission Standards and Test Procedures AGENCY: Environmental...

  9. Auto Safety

    Science.gov (United States)

    ... 5 Things to Know About Zika & Pregnancy Auto Safety KidsHealth > For Parents > Auto Safety Print A A ... by teaching some basic rules. Importance of Child Safety Seats Using a child safety seat (car seat) ...

  10. A modular method for the direct coupled aeroelastic simulation of free flying aircraft

    OpenAIRE

    Wellmer, Georg

    2014-01-01

    The present work describes the extension of an existing aeroelastic coupling environment to free-flying aircraft with rigid-body degrees of freedom. Aeroelasticity affects an aircraft in terms of performance, economics and operational safety. Therefore, fluid-structure interaction has to be taken into account early on in the design process. In the transonic regime non-linear effects preclude the application of linearised methods for the description of the flow field. Instead, Computational Fl...

  11. A study of external fuel vaporization. [for aircraft gas turbine engines

    Science.gov (United States)

    Szetela, E. J.; Chiappetta, L.; Baker, C. E.

    1981-01-01

    Candidate external vaporizer designs for an aircraft gas turbine engine are evaluated with respect to fuel thermal stability, integration of the vaporizer system into the aircraft engine, engine and vaporizer dynamic response, startup and altitude restart, engine performance, control requirements, safety, and maintenance. The selected concept is shown to offer potential gains in engine performance in terms of reduced specific fuel consumption and improved engine thrust/weight ratio. The thrust/weight improvement can be traded against vaporization system weight.

  12. Aircraft hydraulic power system diagnostic, prognostics and health management

    OpenAIRE

    Wang, Jian

    2012-01-01

    This Individual Research Project (IRP) is the extension research to the group design project (GDP) work which the author has participated in his Msc programme. The GDP objective is to complete the conceptual design of a 200-seat, flying wing civil airliner—FW-11. The next generation aircraft design demands higher reliability, safety and maintainability. With the development of the vehicle hydraulic system technology, the equipment and systems become more and more complex, their reliability...

  13. Standard Test Method to Determine Color Change and Staining Caused by Aircraft Maintenance Chemicals upon Aircraft Cabin Interior Hard Surfaces

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This test method covers the determination of color change and staining from liquid solutions, such as cleaning or disinfecting chemicals or both, on painted metallic surfaces and nonmetallic surfaces of materials being used inside the aircraft cabin. The effects upon the exposed specimens are measured with the AATCC Gray Scale for Color Change and AATCC Gray Color Scale for Staining. Note 1—This test method is applicable to any colored nonmetallic hard surface in contact with liquids. The selected test specimens are chosen because these materials are present in the majority of aircraft cabin interiors. 1.2This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  14. An Approach to Estimate the Localized Effects of an Aircraft Crash on a Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, C; Sanzo, D; Sharirli, M

    2004-04-19

    Aircraft crashes are an element of external events required to be analyzed and documented in facility Safety Analysis Reports (SARs) and Nuclear Explosive Safety Studies (NESSs). This paper discusses the localized effects of an aircraft crash impact into the Device Assembly Facility (DAF) located at the Nevada Test Site (NTS), given that the aircraft hits the facility. This was done to gain insight into the robustness of the DAF and to account for the special features of the DAF that enhance its ability to absorb the effects of an aircraft crash. For the purpose of this paper, localized effects are considered to be only perforation or scabbing of the facility. This paper presents an extension to the aircraft crash risk methodology of Department of Energy (DOE) Standard 3014. This extension applies to facilities that may find it necessary or desirable to estimate the localized effects of an aircraft crash hit on a facility of nonuniform construction or one that is shielded in certain directions by surrounding terrain or buildings. This extension is not proposed as a replacement to the aircraft crash risk methodology of DOE Standard 3014 but rather as an alternate method to cover situations that were not considered.

  15. Multi-body dynamic system simulation of carrier-based aircraft ski-jump takeoff

    Institute of Scientific and Technical Information of China (English)

    Wang Yangang; Wang Weijun; Qu Xiangju

    2013-01-01

    The flight safety is threatened by the special flight conditions and the low speed of carrier-based aircraft ski-jump takeoff.The aircraft carrier motion,aircraft dynamics,landing gears and wind field of sea state are comprehensively considered to dispose this multidiscipline intersection problem.According to the particular naval operating environment of the carrier-based aircraft ski-jump takeoff,the integrated dynamic simulation models of multi-body system are developed,which involves the movement entities of the carrier,the aircraft and the landing gears,and involves takeoff instruction,control system and the deck wind disturbance.Based on Matlab/Simulink environment,the multi-body system simulation is realized.The validity of the model and the rationality of the result are verified by an example simulation of carrier-based aircraft ski-jump takeoff.The simulation model and the software are suitable for the study of the multidiscipline intersection problems which are involved in the performance,flight quality and safety of carrier-based aircraft takeoff,the effects of landing gear loads,parameters of carrier deck,etc.

  16. 36 CFR 331.14 - Aircraft.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Aircraft. 331.14 Section 331..., KENTUCKY AND INDIANA § 331.14 Aircraft. (a) The operation of aircraft on WCA lands and waters is prohibited... prohibited. (c) The provisions of this section shall not be applicable to aircraft engaged on...

  17. 48 CFR 246.408-71 - Aircraft.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Aircraft. 246.408-71... Aircraft. (a) The Federal Aviation Administration (FAA) has certain responsibilities and prerogatives in connection with some commercial aircraft and of aircraft equipment and accessories (Pub. L. 85-726 (72...

  18. 36 CFR 327.4 - Aircraft.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Aircraft. 327.4 Section 327.4... Aircraft. (a) This section pertains to all aircraft including, but not limited to, airplanes, seaplanes, helicopters, ultra-light aircraft, motorized hang gliders, hot air balloons, any non-powered flight devices...

  19. 14 CFR 141.39 - Aircraft.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft. 141.39 Section 141.39 Aeronautics... CERTIFICATED AGENCIES PILOT SCHOOLS Personnel, Aircraft, and Facilities Requirements § 141.39 Aircraft. (a... certificate or provisional pilot school certificate must show that each aircraft used by the school for...

  20. Standard Practice for Effects of Cleaners on Unpainted Aircraft Surfaces

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice describes the procedure used to determine the effect of cleaners on unpainted aircraft surfaces. Visual observation is used for determining streaking or permanent stains which require polishing to remove. 1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  1. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Science.gov (United States)

    2010-01-01

    ..., airframes, aircraft engines, propellers, appliances, or component parts for return to service after..., REBUILDING, AND ALTERATION § 43.7 Persons authorized to approve aircraft, airframes, aircraft engines... Administrator, may approve an aircraft, airframe, aircraft engine, propeller, appliance, or component part...

  2. 78 FR 54385 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Science.gov (United States)

    2013-09-04

    ... Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration... directive (AD) for various aircraft equipped with Rotax Aircraft Engines 912 A Series Engine. This AD...; phone: +43 7246 601 0; fax: +43 7246 601 9130; Internet: http://www.rotax-aircraft-engines.com . You...

  3. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Science.gov (United States)

    2010-01-01

    ... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on... provisions of §§ 21.183(c), 21.184(b), or 21.185(c); and (2) New aircraft engines or propellers...

  4. Monitoring Aircraft Motion at Airports by LIDAR

    Science.gov (United States)

    Toth, C.; Jozkow, G.; Koppanyi, Z.; Young, S.; Grejner-Brzezinska, D.

    2016-06-01

    Improving sensor performance, combined with better affordability, provides better object space observability, resulting in new applications. Remote sensing systems are primarily concerned with acquiring data of the static components of our environment, such as the topographic surface of the earth, transportation infrastructure, city models, etc. Observing the dynamic component of the object space is still rather rare in the geospatial application field; vehicle extraction and traffic flow monitoring are a few examples of using remote sensing to detect and model moving objects. Deploying a network of inexpensive LiDAR sensors along taxiways and runways can provide both geometrically and temporally rich geospatial data that aircraft body can be extracted from the point cloud, and then, based on consecutive point clouds motion parameters can be estimated. Acquiring accurate aircraft trajectory data is essential to improve aviation safety at airports. This paper reports about the initial experiences obtained by using a network of four Velodyne VLP- 16 sensors to acquire data along a runway segment.

  5. Western Pacific Typhoon Aircraft Fixes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Western Pacific typhoon aircraft reconnaissance data from the years 1946 - 1965 and 1978, excluding 1952, were transcribed from original documents, or copy of...

  6. Aircraft recognition and tracking device

    Science.gov (United States)

    Filis, Dimitrios P.; Renios, Christos I.

    2011-11-01

    The technology of aircraft recognition and tracking has various applications in all areas of air navigation, be they civil or military, spanning from air traffic control and regulation at civilian airports to anti-aircraft weapon handling and guidance for military purposes.1, 18 The system presented in this thesis is an alternative implementation of identifying and tracking flying objects, which benefits from the optical spectrum by using an optical camera built into a servo motor (pan-tilt unit). More specifically, through the purpose-developed software, when a target (aircraft) enters the field of view of the camera18, it is both detected and identified.5, 22 Then the servo motor, being provided with data on target position and velocity, tracks the aircraft while it is in constant communication with the camera (Fig. 1). All the features are so designed as to operate under real time conditions.

  7. VTOL to Transonic Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The cyclogyro, an aircraft propulsion concept with the potential for VTOL to the lower bounds of transonic flight, is conceptually simple but structurally and...

  8. Electromagnetic Interference In New Aircraft

    Science.gov (United States)

    Larsen, William E.

    1991-01-01

    Report reviews plans to develop tests and standards to ensure that digital avionics systems in new civil aircraft immune to electromagnetic interference (EMI). Updated standards reflect more severe environment and vulnerabilities of modern avionics.

  9. Alloy design for aircraft engines

    Science.gov (United States)

    Pollock, Tresa M.

    2016-08-01

    Metallic materials are fundamental to advanced aircraft engines. While perceived as mature, emerging computational, experimental and processing innovations are expanding the scope for discovery and implementation of new metallic materials for future generations of advanced propulsion systems.

  10. Structural design of supersonic cruise aircraft

    Science.gov (United States)

    Fischler, J. E.

    1976-01-01

    The major efforts leading to an efficient structural design include: (1) the analysis methods used to improve the structural model optimization and compare the structural concepts, (2) the analysis and description of the fail-safe, crack growth, and residual strength studies and tests, (3) baseline structural trade studies to determine optimum structural weights including effects of geometry changes, strength, fail-safety, aeroelastics and flutter, 6AL-4V annealed titanium in structural efficiency after 70,000 hours at temperature, (5) the study of three structural models for aircraft at 2.0 Mach, 2.2 Mach, and 2.4 Mach cruise speeds, (6) the study of many structural concepts to determine their weight efficiencies; and (7) the determination of the requirements for large-scale structural development testing.

  11. Space Weather Effects on Aircraft Navigation

    Science.gov (United States)

    Stanley, J. C.; Cade, W. B.

    2012-12-01

    Many aircraft today use satellites for GPS navigation, arrival and departure to and from airspaces, and for "shooting" non-precision and precision Instrument Approaches into airports. Also in development is an Air Traffic Control system based on satellite technology that seeks to modernize current air traffic control and improve safety, eventually phasing out radar (though not yet in the very near future). Due to the general, commercial, and military aviation fields all becoming more and more reliant on satellite and GPS technologies, the effects of space weather events on these systems is of paramount concern to militaries, airlines, private pilots, and other aviation operators. In this study we analyze data from airlines and other resources regarding effects on satellite and GPS systems, which is crucial to the conduct of safe flight operations now and improving systems for future and continued use.

  12. Challenges in Aircraft Noise Prediction

    OpenAIRE

    Filippone A

    2014-01-01

    This contribution addresses the problem of aircraft noise prediction using theoretical methods. The problem is set in context with the needs at several levels to produce noise characterisation from commercial aircraft powered by gas turbine engines. We describe very briefly the computational model (whilst referring the reader to the appropriate literature), and provide examples of noise predictions and comparisons with measured data, where possible. We focus on the issue of stochastic analysi...

  13. Neural networks for aircraft control

    Science.gov (United States)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  14. Optimization in fractional aircraft ownership

    Science.gov (United States)

    Septiani, R. D.; Pasaribu, H. M.; Soewono, E.; Fayalita, R. A.

    2012-05-01

    Fractional Aircraft Ownership is a new concept in flight ownership management system where each individual or corporation may own a fraction of an aircraft. In this system, the owners have privilege to schedule their flight according to their needs. Fractional management companies (FMC) manages all aspects of aircraft operations, including utilization of FMC's aircraft in combination of outsourced aircrafts. This gives the owners the right to enjoy the benefits of private aviations. However, FMC may have complicated business requirements that neither commercial airlines nor charter airlines faces. Here, optimization models are constructed to minimize the number of aircrafts in order to maximize the profit and to minimize the daily operating cost. In this paper, three kinds of demand scenarios are made to represent different flight operations from different types of fractional owners. The problems are formulated as an optimization of profit and a daily operational cost to find the optimum flight assignments satisfying the weekly and daily demand respectively from the owners. Numerical results are obtained by Genetic Algorithm method.

  15. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Anderson, M.R.; Miake-Lye, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)

    1997-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  16. Parabolic aircraft solidification experiments

    Science.gov (United States)

    Workman, Gary L. (Principal Investigator); Smith, Guy A.; OBrien, Susan

    1996-01-01

    A number of solidification experiments have been utilized throughout the Materials Processing in Space Program to provide an experimental environment which minimizes variables in solidification experiments. Two techniques of interest are directional solidification and isothermal casting. Because of the wide-spread use of these experimental techniques in space-based research, several MSAD experiments have been manifested for space flight. In addition to the microstructural analysis for interpretation of the experimental results from previous work with parabolic flights, it has become apparent that a better understanding of the phenomena occurring during solidification can be better understood if direct visualization of the solidification interface were possible. Our university has performed in several experimental studies such as this in recent years. The most recent was in visualizing the effect of convective flow phenomena on the KC-135 and prior to that were several successive contracts to perform directional solidification and isothermal casting experiments on the KC-135. Included in this work was the modification and utilization of the Convective Flow Analyzer (CFA), the Aircraft Isothermal Casting Furnace (ICF), and the Three-Zone Directional Solidification Furnace. These studies have contributed heavily to the mission of the Microgravity Science and Applications' Materials Science Program.

  17. Aircraft Cabin Environmental Quality Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Gundel, Lara; Kirchstetter, Thomas; Spears, Michael; Sullivan, Douglas

    2010-05-06

    The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Results from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.

  18. An Algorithm for Managing Aircraft Movement on an Airport Surface

    Directory of Open Access Journals (Sweden)

    Giuseppe Maresca

    2013-08-01

    Full Text Available The present paper focuses on the development of an algorithm for safely and optimally managing the routing of aircraft on an airport surface in future airport operations. This tool is intended to support air traffic controllers’ decision-making in selecting the paths of all aircraft and the engine startup approval time for departing ones. Optimal routes are sought for minimizing the time both arriving and departing aircraft spend on an airport surface with engines on, with benefits in terms of safety, efficiency and costs. The proposed algorithm first computes a standalone, shortest path solution from runway to apron or vice versa, depending on the aircraft being inbound or outbound, respectively. For taking into account the constraints due to other traffic on an airport surface, this solution is amended by a conflict detection and resolution task that attempts to reduce and possibly nullify the number of conflicts generated in the first phase. An example application on a simple Italian airport exemplifies how the algorithm can be applied to true-world applications. Emphasis is given on how to model an airport surface as a weighted and directed graph with non-negative weights, as required for the input to the algorithm.

  19. Nuclear safety

    International Nuclear Information System (INIS)

    The author proposes an overview of methods and concepts used in the nuclear industry, at the design level as well as at the exploitation level, to ensure an acceptable safety level, notably in the case of nuclear reactors. He first addresses the general objectives of nuclear safety and the notion of acceptable risk: definition and organisation of nuclear safety (relationships between safety authorities and operators), notion of acceptable risk, deterministic safety approach and main safety principles (safety functions and confinement barriers, concept of defence in depth). Then, the author addresses the safety approach at the design level: studies of operational situations, studies of internal and external aggressions, safety report, design principles for important-for-safety systems (failure criterion, redundancy, failure prevention, safety classification). The next part addresses safety during exploitation and general exploitation rules: definition of the operation domain and of its limits, periodic controls and tests, management in case of incidents, accidents or aggressions

  20. Analysis of aircraft maintenance models

    Directory of Open Access Journals (Sweden)

    Vlada S. Sokolović

    2011-10-01

    Full Text Available This paper addressed several organizational models of aircraft maintenance. All models presented so far have been in use in Air Forces, so that the advantages and disadvantages of different models are known. First it shows the current model of aircraft maintenance as well as its basic characteristics. Then the paper discusses two organizational models of aircraft maintenance with their advantages and disadvantages. The advantages and disadvantages of different models are analyzed based on the criteria of operational capabilities of military units. In addition to operational capabilities, the paper presents some other criteria which should be taken into account in the evaluation and selection of an optimal model of aircraft maintenance. Performing a qualitative analysis of some models may not be sufficient for evaluating the optimum choice for models of maintenance referring to the selected set of criteria from the scope of operational capabilities. In order to choose the optimum model, it is necessary to conduct a detailed economic and technical analysis of individual tactical model maintenance. A high-quality aircraft maintenance organization requires the highest state and army authorities to be involved. It is necessary to set clear objectives for all the elements of modern air force technical support programs based on the given evaluation criteria.

  1. Safety culture

    Energy Technology Data Exchange (ETDEWEB)

    Keen, L.J. [Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada)

    2003-07-01

    Safety culture has become a topic of increasing interest for industry and regulators as issues are raised on safety problems around the world. The keys to safety culture are organizational effectiveness, effective communications, organizational learning, and a culture that encourages the identification and resolution of safety issues. The necessity of a strong safety culture places an onus on all of us to continually question whether the safety measures already in place are sufficient, and are being applied. (author)

  2. Characterization of the frequency and nature of bleed air contamination events in commercial aircraft.

    Science.gov (United States)

    Shehadi, M; Jones, B; Hosni, M

    2016-06-01

    Contamination of the bleed air used to pressurize and ventilate aircraft cabins is of concern due to the potential health and safety hazards for passengers and crew. Databases from the Federal Aviation Administration, NASA, and other sources were examined in detail to determine the frequency of bleed air contamination incidents. The frequency was examined on an aircraft model basis with the intent of identifying aircraft make and models with elevated frequencies of contamination events. The reported results herein may help investigators to focus future studies of bleed air contamination incidents on smaller number of aircrafts. Incident frequency was normalized by the number of aircraft, number of flights, and flight hours for each model to account for the large variations in the number of aircraft of different models. The focus of the study was on aircraft models that are currently in service and are used by major airlines in the United States. Incidents examined in this study include those related to smoke, oil odors, fumes, and any symptom that might be related to exposure to such contamination, reported by crew members, between 2007 and 2012, for US-based carriers for domestic flights and all international flights that either originated or terminated in the US. In addition to the reported frequency of incidents for different aircraft models, the analysis attempted to identify propulsion engines and auxiliary power units associated with aircrafts that had higher frequencies of incidents. While substantial variations were found in frequency of incidents, it was found that the contamination events were widely distributed across nearly all common models of aircraft.

  3. Characterization of the frequency and nature of bleed air contamination events in commercial aircraft.

    Science.gov (United States)

    Shehadi, M; Jones, B; Hosni, M

    2016-06-01

    Contamination of the bleed air used to pressurize and ventilate aircraft cabins is of concern due to the potential health and safety hazards for passengers and crew. Databases from the Federal Aviation Administration, NASA, and other sources were examined in detail to determine the frequency of bleed air contamination incidents. The frequency was examined on an aircraft model basis with the intent of identifying aircraft make and models with elevated frequencies of contamination events. The reported results herein may help investigators to focus future studies of bleed air contamination incidents on smaller number of aircrafts. Incident frequency was normalized by the number of aircraft, number of flights, and flight hours for each model to account for the large variations in the number of aircraft of different models. The focus of the study was on aircraft models that are currently in service and are used by major airlines in the United States. Incidents examined in this study include those related to smoke, oil odors, fumes, and any symptom that might be related to exposure to such contamination, reported by crew members, between 2007 and 2012, for US-based carriers for domestic flights and all international flights that either originated or terminated in the US. In addition to the reported frequency of incidents for different aircraft models, the analysis attempted to identify propulsion engines and auxiliary power units associated with aircrafts that had higher frequencies of incidents. While substantial variations were found in frequency of incidents, it was found that the contamination events were widely distributed across nearly all common models of aircraft. PMID:25864418

  4. MATE. Multi Aircraft Training Environment

    DEFF Research Database (Denmark)

    Hauland, G.; Bove, T.; Andersen, Henning Boje;

    2002-01-01

    in the MATE prototype was compared with the effects of traditional training that included the use of realaircraft. The experimental group (EXP) trained the pre-start checklist and the engine start checklist for the Saab 340 commuter aircraft in a MATE prototype. The control group (CTR) trained the same...... procedures using the aircraft (a/c) for training the prestart and a desktop computer tool (power plant trainer) for training engine starts. Performance on the pre-start checklist was compared in a formal checkout that took place in the a/c. Performance on the engine start procedure was compared......A medium fidelity and low cost training device for pilots, called the Multi Aircraft Training Environment (MATE), is developed to replace other low fidelity stand-alone training devices and integrate them into a flexible environment, primarily aimed attraining pilots in checklist procedures...

  5. Future aircraft networks and schedules

    Science.gov (United States)

    Shu, Yan

    2011-07-01

    Because of the importance of air transportation scheduling, the emergence of small aircraft and the vision of future fuel-efficient aircraft, this thesis has focused on the study of aircraft scheduling and network design involving multiple types of aircraft and flight services. It develops models and solution algorithms for the schedule design problem and analyzes the computational results. First, based on the current development of small aircraft and on-demand flight services, this thesis expands a business model for integrating on-demand flight services with the traditional scheduled flight services. This thesis proposes a three-step approach to the design of aircraft schedules and networks from scratch under the model. In the first step, both a frequency assignment model for scheduled flights that incorporates a passenger path choice model and a frequency assignment model for on-demand flights that incorporates a passenger mode choice model are created. In the second step, a rough fleet assignment model that determines a set of flight legs, each of which is assigned an aircraft type and a rough departure time is constructed. In the third step, a timetable model that determines an exact departure time for each flight leg is developed. Based on the models proposed in the three steps, this thesis creates schedule design instances that involve almost all the major airports and markets in the United States. The instances of the frequency assignment model created in this thesis are large-scale non-convex mixed-integer programming problems, and this dissertation develops an overall network structure and proposes iterative algorithms for solving these instances. The instances of both the rough fleet assignment model and the timetable model created in this thesis are large-scale mixed-integer programming problems, and this dissertation develops subproblem schemes for solving these instances. Based on these solution algorithms, this dissertation also presents

  6. Introduction to unmanned aircraft systems

    CERN Document Server

    Marshall, Douglas M; Hottman, Stephen B; Shappee, Eric; Most, Michael Thomas

    2011-01-01

    Introduction to Unmanned Aircraft Systems is the editors' response to their unsuccessful search for suitable university-level textbooks on this subject. A collection of contributions from top experts, this book applies the depth of their expertise to identify and survey the fundamentals of unmanned aircraft system (UAS) operations. Written from a nonengineering civilian operational perspective, the book starts by detailing the history of UASs and then explores current technology and what is expected for the future. Covering all facets of UAS elements and operation-including an examination of s

  7. Composite components on commercial aircraft

    Science.gov (United States)

    Dexter, H. B.

    1980-01-01

    The paper considers the use of composite components in commercial aircraft. NASA has been active in sponsoring flight service programs with advanced composites for the last 10 years, with 2.5 million total composite component hours accumulated since 1970 on commercial transports and helicopters with no significant degradation in residual strength of composite components. Design, inspection, and maintenance procedures have been developed; a major NASA/US industry technology program has been developed to reduce fuel consumption of commercial transport aircraft through the use of advanced composites.

  8. Classification of Unmanned Aircraft Systems. UAS Classification/Categorization for Certification

    Science.gov (United States)

    2004-01-01

    Category, class, and type designations are primary means to identify appropriate aircraft certification basis, operating rules/limitations, and pilot qualifications to operate in the National Airspace System (NAS). The question is whether UAS fit into existing aircraft categories or classes, or are unique enough to justify the creation of a new category/class. In addition, the characteristics or capabilities, which define when an UAS becomes a regulated aircraft, must also be decided. This issue focuses on UAS classification for certification purposes. Several approaches have been considered for classifying UAS. They basically group into either using a weight/mass basis, or a safety risk basis, factoring in the performance of the UAS, including where the UAS would operate. Under existing standards, aircraft must have a Type Certificate and Certificate of Airworthiness, in order to be used for "compensation or hire", a major difference from model aircraft. Newer technologies may make it possible for very small UAS to conduct commercial services, but that is left for a future discussion to extend the regulated aircraft to a lower level. The Access 5 position is that UAS are aircraft and should be regulated above the weight threshold differentiating them from model airplanes. The recommended classification grouping is summarized in a chart.

  9. Safety Assessment of Auxiliary Power Unit (APU) System for Civil Aircraft Based on Dynamic Fault Tree Analysis (DFTA)%基于动态故障树分析的民用飞机辅助动力装置系统安全性评估

    Institute of Scientific and Technical Information of China (English)

    王栋

    2014-01-01

    Traditional fault tree analysis method is widely used for system safety assessment in civil aviation indus-try , but dynamic characteristics of systems/subsystems, including operational sequencing interpretation, spare and redundancy expression cannot be represented by traditional fault trees. On the other hand, civil aircraft auxiliary power unit ( APU) often operates as a redundant system and its behavior can be described by using dynamic fault tree appropriately. As a result, the interest of DFTA application is focused on APU system safety assessment. In this paper, two kinds of dynamic gates ( PAND and CSP) were introduced firstly. Their quantitative calculations were presented by applying Markov model. Then two typical cases with auxiliary power unit ( APU) system safety assess-ment were analyzed by traditional fault tree and dynamic fault tree respectively. Finally the comparison between two kinds of Fault Tree Analysis ( FTA ) was provided and the result indicates that Dynamic Fault Tree Analysis ( DFTA) method based on proper application reaches remarkable accuracy ,and the calculation cost is acceptable when second-order approximation of exponential distribution function is applied.%在民用航空工业领域,传统的故障树分析方法广泛运用于系统安全性评估。然而,包含系统/子系统运行的时序阐述以及备份、冗余表达在内的动态特性不能通过传统故障树呈现。另一方面,民用飞机辅助动力装置( APU)经常作为一个冗余系统运作,因而其行为可以通过运用动态故障树进行适当的描述。所以APU的这种特性激发了动态故障树分析在APU系统安全性评估上应用的关注。首先介绍了两种动态门(优先与门和冷备件门),其定量计算通过施用马尔可夫模型来呈现;然后分别通过传统故障树以及动态故障树分析了APU系统安全性评估的两个典型案例;最后进行了两种故障树分析( FTA )的比较,其

  10. A novel trajectory planning strategy for aircraft emergency landing using Gauss pseudospectral method

    Institute of Scientific and Technical Information of China (English)

    Shaohua MENG; Jinwu XIANG; Zhangping LUO; Yiru REN; Nanjian ZHUANG

    2014-01-01

    To improve the survivability during an emergency situation, an algorithm for aircraft forced landing trajectory planning is proposed. The method integrates damaged aircraft modelling and trajectory planning into an optimal control framework. In order to deal with the complex aircraft flight dynamics, a solving strategy based on Gauss pseudospetral method (GPM) is presented. A 3-DOF nonlinear mass-point model taking into account the wind is developed to approximate the aircraft flight dynamics after loss of thrust. The solution minimizes the forced landing duration, with respect to the constraints that translate the changed dynamics, flight envelope limitation and operational safety requirements. The GPM is used to convert the trajectory planning problem to a nonlinear programming problem (NLP), which is solved by sequential quadratic programming algorithm. Simulation results show that the proposed algorithm can generate the minimum-time forced landing trajectory in event of engine-out with high efficiency and precision.

  11. Versatile Electric Propulsion Aircraft Testbed Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An all-electric aircraft testbed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered aircraft....

  12. The influence of handling qualities on safety and survivability

    Science.gov (United States)

    Anderson, S. B.

    1977-01-01

    The relationship of handling qualities to safety and survivability of military aircraft is examined which includes the following: (1) a brief discussion of the philosophy used in the military specifications for treatment of degraded handling qualities, (2) an examination of several example handling qualities problem areas which influence safety and survivability; and (3) a movie illustrating the potential dangers of inadequate handling qualities features.

  13. INTEGRATING UNMANNED AIRCRAFT VEHICLES IN THE ROMANIAN NATIONAL AIRSPACE

    Directory of Open Access Journals (Sweden)

    Sorana Alina Catinca POP

    2015-07-01

    Full Text Available The use of unmanned aerial vehicles in the Romanian civil airspace brings us back to the 1920's, when the first aircraft started to fly over the Romanian sky. Little did the legislators at that time know how to create the proper legal framework for the use of such machines so that all aspects related to their use be covered, as well as identify all potential risks and effects. Nowadays, UAVs are the new aircraft and it is a challenge for the legislators to properly identify the legal framework so that the safety and security of civil aviation are not affected. The paper will address the challenges the regulator faces in the integration of the UAVs in the Romanian civil airspace, developments and issues raised by the current regulation, as well as aspects related to the national regulations expected to enter into force at the end of 2015, beginning of 2016.

  14. Control Surface Fault Diagnosis for Small Autonomous Aircraft

    DEFF Research Database (Denmark)

    Hansen, Søren; Blanke, Mogens

    2011-01-01

    Small unmanned aerial vehicles require a large degree of fault-tolerance in order to fulfil their duties in an satisfactory way, both with respect to economy and safety in operation. Small aerial vehicles are commonly constructed without much redundancy in hardware, primarily for reasons of cost...... of distributions and change detection methods are employed to reach decisions about not-normal behaviour and it is shown how control surface faults can be diagnosed for a specific UAV without adding additional hardware to the platform. Only telemetry data from the aircraft is used together with a basic model...... of relations between signals within the aircraft. Frequency domain methods are shown to be robust in exploring relevant properties of the signals. The detection is shown to work on data from a real incident where an aileron gets stuck during launch of a UAV....

  15. Integrated Software Health Management for Aircraft GN and C

    Science.gov (United States)

    Schumann, Johann; Mengshoel, Ole

    2011-01-01

    Modern aircraft rely heavily on dependable operation of many safety-critical software components. Despite careful design, verification and validation (V&V), on-board software can fail with disastrous consequences if it encounters problematic software/hardware interaction or must operate in an unexpected environment. We are using a Bayesian approach to monitor the software and its behavior during operation and provide up-to-date information about the health of the software and its components. The powerful reasoning mechanism provided by our model-based Bayesian approach makes reliable diagnosis of the root causes possible and minimizes the number of false alarms. Compilation of the Bayesian model into compact arithmetic circuits makes SWHM feasible even on platforms with limited CPU power. We show initial results of SWHM on a small simulator of an embedded aircraft software system, where software and sensor faults can be injected.

  16. Determining the approach speed envelope of carrier aircraft

    Institute of Scientific and Technical Information of China (English)

    Geng Jianzhong; Yao Hailin; Duan Zhuoyi

    2013-01-01

    Many factors,such as deck motion and air wave,influence the determination of the approach speed which has an important effect on landing safety. Until recently,there are no design criteria about approach speed of carrier aircraft in the current standards and available publications. Therefore,the requirements of stall margin, longitudinal acceleration ability,altitude correction and field-of-view on approach speed were researched. Based on the flight dynamics model,the flight simulations were conducted to study the effect of the response time of en-gine,wave off requirements,elevator efficiency and deflection rate on the approach speed. The results presented that the approach longitudinal acceleration and altitude correction ability had crucial influence on the approach speed envelope of the aircraft. The limitations of the control requirements,field-of-view requirements and gear were also given through the simulation and analysis. Based on the above results,the approach speed envelope were determined.

  17. Personal Aircraft Point to the Future of Transportation

    Science.gov (United States)

    2010-01-01

    NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs, as well as a number of Agency innovations, have helped Duluth, Minnesota-based Cirrus Design Corporation become one of the world's leading manufacturers of general aviation aircraft. SBIRs with Langley Research Center provided the company with cost-effective composite airframe manufacturing methods, while crashworthiness testing at the Center increased the safety of its airplanes. Other NASA-derived technologies on Cirrus SR20 and SR22 aircraft include synthetic vision systems that help pilots navigate and full-plane parachutes that have saved the lives of more than 30 Cirrus pilots and passengers to date. Today, the SR22 is the world's top-selling Federal Aviation Administration (FAA)-certified single-engine airplane.

  18. 75 FR 28504 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Science.gov (United States)

    2010-05-21

    ... Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines AGENCY: Federal... 912 A series engine installed in various aircraft does not have an engine type certificate; instead, the engine is part of the aircraft type design. You may obtain further information by examining...

  19. 77 FR 1626 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Science.gov (United States)

    2012-01-11

    ... Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration (FAA), DOT... various aircraft equipped with Rotax Aircraft Engines 912 A series engine. This AD results from mandatory... Rotax Aircraft Engines BRP has issued Alert Service Bulletin ASB- 912-059 and ASB-914-042...

  20. 76 FR 31465 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Science.gov (United States)

    2011-06-01

    ... Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration...://www.rotax-aircraft-engines.com . You may review copies of the referenced service information at the... by examining the MCAI in the AD docket. Relevant Service Information Rotax Aircraft Engines...

  1. Residents' Annoyance Responses to Aircraft Noise Events

    OpenAIRE

    United States, National Aeronautics and Space Administration

    1983-01-01

    In a study conducted in the vicinity of Salt Lake City International Airport, community residents reported their annoyance with individual aircraft flyovers during rating sessions conducted in their homes. Annoyance ratings were obtained at different times of the day. Aircraft noise levels were measured, and other characteristics of the aircraft were noted by trained observers. Metrics commonly used for assessing aircraft noise were compared, but none performed significantly better than A-...

  2. The NASA Aircraft Energy Efficiency program

    Science.gov (United States)

    Klineberg, J. M.

    1979-01-01

    A review is provided of the goals, objectives, and recent progress in each of six aircraft energy efficiency programs aimed at improved propulsive, aerodynamic and structural efficiency for future transport aircraft. Attention is given to engine component improvement, an energy efficient turbofan engine, advanced turboprops, revolutionary gains in aerodynamic efficiency for aircraft of the late 1990s, laminar flow control, and composite primary aircraft structures.

  3. Robust Propulsion Control for Improved Aircraft Safety Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Scientific Monitoring, Inc. proposes to develop a robust propulsion control approach to facilitate control law design and simulation-based validation. The proposed...

  4. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    Science.gov (United States)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  5. Policy and the evaluation of aircraft noise

    NARCIS (Netherlands)

    Kroesen, M.; Molin, E.J.E.; Van Wee, G.P.

    2010-01-01

    In this paper, we hypothesize and test the ideas that (1) people’s subjectivity in relation to aircraft noise is shaped by the policy discourse, (2) this results in a limited number of frames towards aircraft noise, (3) the frames inform people how to think and feel about aircraft noise and (4) the

  6. 19 CFR 122.37 - Precleared aircraft.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Precleared aircraft. 122.37 Section 122.37 Customs... AIR COMMERCE REGULATIONS Landing Requirements § 122.37 Precleared aircraft. (a) Application. This section applies when aircraft carrying crew, passengers and baggage, or merchandise which has...

  7. 14 CFR 252.13 - Small aircraft.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Small aircraft. 252.13 Section 252.13 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.13 Small aircraft. Air carriers shall prohibit smoking on...

  8. 43 CFR 423.41 - Aircraft.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Aircraft. 423.41 Section 423.41 Public... Aircraft. (a) You must comply with any applicable Federal, State, and local laws, and with any additional... this part 423, with respect to aircraft landings, takeoffs, and operation on or in the proximity...

  9. 14 CFR 21.127 - Tests: aircraft.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tests: aircraft. 21.127 Section 21.127 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate Only § 21.127 Tests: aircraft. (a)...

  10. 50 CFR 27.34 - Aircraft.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Aircraft. 27.34 Section 27.34 Wildlife and... WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Disturbing Violations: With Vehicles § 27.34 Aircraft. The unauthorized operation of aircraft, including sail planes, and hang gliders, at altitudes resulting...

  11. 36 CFR 13.1004 - Aircraft use.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Aircraft use. 13.1004 Section... § 13.1004 Aircraft use. In extraordinary cases where no reasonable alternative exists, local rural residents who permanently reside in the following exempted community(ies) may use aircraft for access...

  12. 48 CFR 908.7102 - Aircraft.

    Science.gov (United States)

    2010-10-01

    ... REQUIRED SOURCES OF SUPPLIES AND SERVICES Acquisition of Special Items 908.7102 Aircraft. Acquisition of aircraft shall be in accordance with DOE-PMR 41 CFR 109-38.5205. ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Aircraft. 908.7102...

  13. 47 CFR 32.2113 - Aircraft.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aircraft. 32.2113 Section 32.2113... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2113 Aircraft. This account shall include the original cost of aircraft and any associated equipment and furnishings...

  14. 14 CFR 91.117 - Aircraft speed.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aircraft speed. 91.117 Section 91.117... speed. (a) Unless otherwise authorized by the Administrator, no person may operate an aircraft below 10... than the maximum speed prescribed in this section, the aircraft may be operated at that minimum speed....

  15. Fiber optic hardware for transport aircraft

    Science.gov (United States)

    White, John A.

    1994-10-01

    Aircraft manufacturers are developing fiber optic technology to exploit the benefits in system performance and manufacturing cost reduction. The fiber optic systems have high bandwidths and exceptional Electromagnetic Interference immunity that exceeds all new aircraft design requirements. Additionally, aircraft manufacturers have shown production readiness of fiber optic systems and design feasibility.

  16. HUMAN FACTOR IMPACT IN MILITARY AIRCRAFT MAINTENANCE

    OpenAIRE

    MARINKOVIC SRBOLJUB J.; DRENOVAC ALEKSANDAR Z.

    2015-01-01

    Aircraft maintenance, as a specific field of military materiel maintenance, is characterized by high reliability standards, based on regulations and technical standards. A system approach to maintenance represents the key element of maintenance quality, while aircraft maintenance staff has a crucial influence on the final outcome of aircraft maintenance.

  17. Standard Test Method for Preparing Aircraft Cleaning Compounds, Liquid Type, Water Base, for Storage Stability Testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This test method covers the determination of the stability in storage, of liquid, water-base chemical cleaning compounds, used to clean the exterior surfaces of aircraft. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  18. Human Response to Aircraft Noise

    NARCIS (Netherlands)

    Kroesen, M.

    2011-01-01

    How can it be that one person is extremely annoyed by the sounds of aircrafts, while his neighbour claims not to be bothered at all? The present thesis attempts to explain this observation by applying a range of quantitative methods to field data gathered among residents living near large airports.

  19. Aircraft Simulators and Pilot Training.

    Science.gov (United States)

    Caro, Paul W.

    Flight simulators are built as realistically as possible, presumably to enhance their training value. Yet, their training value is determined by the way they are used. Traditionally, simulators have been less important for training than have aircraft, but they are currently emerging as primary pilot training vehicles. This new emphasis is an…

  20. Aircraft Lightning Electromagnetic Environment Measurement

    Science.gov (United States)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.

    2011-01-01

    This paper outlines a NASA project plan for demonstrating a prototype lightning strike measurement system that is suitable for installation onto research aircraft that already operate in thunderstorms. This work builds upon past data from the NASA F106, FAA CV-580, and Transall C-180 flight projects, SAE ARP5412, and the European ILDAS Program. The primary focus is to capture airframe current waveforms during attachment, but may also consider pre and post-attachment current, electric field, and radiated field phenomena. New sensor technologies are being developed for this system, including a fiber-optic Faraday polarization sensor that measures lightning current waveforms from DC to over several Megahertz, and has dynamic range covering hundreds-of-volts to tens-of-thousands-of-volts. A study of the electromagnetic emission spectrum of lightning (including radio wave, microwave, optical, X-Rays and Gamma-Rays), and a compilation of aircraft transfer-function data (including composite aircraft) are included, to aid in the development of other new lightning environment sensors, their placement on-board research aircraft, and triggering of the onboard instrumentation system. The instrumentation system will leverage recent advances in high-speed, high dynamic range, deep memory data acquisition equipment, and fiber-optic interconnect.

  1. Selling safety: the use of celebrities in improving awareness of safety in commercial aviation.

    Science.gov (United States)

    Molesworth, Brett R C; Seneviratne, Dimuth; Burgess, Marion

    2016-07-01

    The aim of this study was to investigate the influential power of a celebrity to convey key safety messages in commercial aviation using a pre-flight safety briefing video. In addition, the present research sought to examine the effectiveness of subtitles in aiding the recall of these important messages as well as how in-cabin aircraft noise affects recall of this information. A total of 101 participants were randomly divided into four groups (no noise without subtitles, no noise with subtitles, noise without subtitles and noise with subtitles) and following exposure to a pre-recorded pre-flight safety briefing video were tested for recall of key safety messages within that video. Participants who recognised and recalled the name of the celebrity in the safety briefing video recalled significantly more of the messages than participants who did not recognise the celebrity. Subtitles were also found to be effective, however, only in the presence of representative in-cabin aircraft noise. Practitioner Summary: Passenger attention to pre-flight safety briefings on commercial aircraft is poor. Utilising the celebrity status of a famous person may overcome this problem. Results suggest that celebrities do increase the recall of safety-related information.

  2. Survival analysis of aging aircraft

    Science.gov (United States)

    Benavides, Samuel

    This study pushes systems engineering of aging aircraft beyond the boundaries of empirical and deterministic modeling by making a sharp break with the traditional laboratory-derived corrosion prediction algorithms that have shrouded real-world failures of aircraft structure. At the heart of this problem is the aeronautical industry's inability to be forthcoming in an accurate model that predicts corrosion failures in aircraft in spite of advances in corrosion algorithms or improvements in simulation and modeling. The struggle to develop accurate corrosion probabilistic models stems from a multitude of real-world interacting variables that synergistically influence corrosion in convoluted and complex ways. This dissertation, in essence, offers a statistical framework for the analysis of structural airframe corrosion failure by utilizing real-world data while considering the effects of interacting corrosion variables. This study injects realism into corrosion failures of aging aircraft systems by accomplishing four major goals related to the conceptual and methodological framework of corrosion modeling. First, this work connects corrosion modeling from the traditional, laboratory derived algorithms to corrosion failures in actual operating aircraft. This work augments physics-based modeling by examining the many confounding and interacting variables, such as environmental, geographical and operational, that impact failure of airframe structure. Examined through the lens of censored failure data from aircraft flying in a maritime environment, this study enhances the understanding between the triad of the theoretical, laboratory and real-world corrosion. Secondly, this study explores the importation and successful application of an advanced biomedical statistical tool---survival analysis---to model censored corrosion failure data. This well-grounded statistical methodology is inverted from a methodology that analyzes survival to one that examines failures. Third, this

  3. Advanced technologies and new roles for VTOL aircraft (Part 1/2)

    Energy Technology Data Exchange (ETDEWEB)

    Renaud, J.P. [Office National d' Etudes et de Recherches Aerospatiales (ONERA) (France); Aix-Marseille-2 Univ., 13 - Marseille (France)

    2000-04-01

    This survey paper intends to overview some main technical evolutions impacting present and future general design of rotor-craft (for vehicles, engines and systems), including helicopter and future tilt-rotor. These trends tend to achieve a better adaptation to a wide range of mission requirements with an economic aircraft optimization and an enhanced safety level and environmental impact. (author)

  4. 75 FR 12665 - Airworthiness Directives; Sikorsky Aircraft Corporation Model S-76C Helicopters

    Science.gov (United States)

    2010-03-17

    ... Privacy Act Statement in the Federal Register published on April 11, 2000 (65 FR 19477-78). Regulatory... Regulatory Policies and Procedures (44 FR 11034, February 26, 1979); and 3. Will not have a significant... CONTACT: Terry Fahr, Aviation Safety Engineer, Boston Aircraft Certification Office, 12 New...

  5. Laser Powered Aircraft Takes Flight

    Science.gov (United States)

    2003-01-01

    A team of NASA researchers from Marshall Space Flight Center (MSFC) and Dryden Flight Research center have proven that beamed light can be used to power an aircraft, a first-in-the-world accomplishment to the best of their knowledge. Using an experimental custom built radio-controlled model aircraft, the team has demonstrated a system that beams enough light energy from the ground to power the propeller of an aircraft and sustain it in flight. Special photovoltaic arrays on the plane, similar to solar cells, receive the light energy and convert it to electric current to drive the propeller motor. In a series of indoor flights this week at MSFC, a lightweight custom built laser beam was aimed at the airplane `s solar panels. The laser tracks the plane, maintaining power on its cells until the end of the flight when the laser is turned off and the airplane glides to a landing. The laser source demonstration represents the capability to beam more power to a plane so that it can reach higher altitudes and have a greater flight range without having to carry fuel or batteries, enabling an indefinite flight time. The demonstration was a collaborative effort between the Dryden Center at Edward's, California, where the aircraft was designed and built, and MSFC, where integration and testing of the laser and photovoltaic cells was done. Laser power beaming is a promising technology for consideration in new aircraft design and operation, and supports NASA's goals in the development of revolutionary aerospace technologies. Photographed with their invention are (from left to right): David Bushman and Tony Frackowiak, both of Dryden; and MSFC's Robert Burdine.

  6. Hazards of falling debris to people, aircraft, and watercraft

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J.K.; Young, L.W.; Jordan-Culler, T.

    1997-04-01

    This report is a collection of studies performed at Sandia National Laboratories in support of Phase One (inert debris) for the Risk and Lethality Commonality Team. This team was created by the Range Safety Group of the Range Commander`s Council to evaluate the safety issues for debris generated during flight tests and to develop debris safety criteria that can be adopted by the national ranges. Physiological data on the effects of debris impacts on people are presented. Log-normal curves are developed to relate the impact kinetic energy of fragments to the probability of fatality for people exposed in standing, sitting, or prone positions. Debris hazards to aircraft resulting from engine ingestion or penetration of a structure or windshield are discussed. The smallest mass fragments of aluminum, steel, and tungsten that may be hazardous to current aircraft are defined. Fragment penetration of the deck of a small ship or a pleasure craft is also considered. The smallest mass fragments of aluminum, steel, or tungsten that can penetrate decks are calculated.

  7. Factors influencing aircraft ground handling performance

    Science.gov (United States)

    Yager, T. J.

    1983-01-01

    Problems associated with aircraft ground handling operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from tests with instrumented ground vehicles and aircraft, and aircraft wet runway accident investigation are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.

  8. Tracking B-31 iceberg with two aircraft deployed sensors

    Directory of Open Access Journals (Sweden)

    D. H. Jones

    2014-07-01

    Full Text Available Icebergs are a natural hazard to maritime operations in polar regions. Iceberg populations are increasing, as is the demand for access to both Arctic and Antarctic seas. Soon the ability to reliably track icebergs may become a necessity for continued operational safety. The temporal and spatial coverage of remote sensing instruments is limited, and must be supplemented with in situ measurements. In this paper we describe the design of a tracking sensor that can be deployed from a fixed-wing aircraft during iceberg surveys, and detail the results of its first deployment operation on iceberg B-31.

  9. 33 CFR 165.711 - Safety Zone: Port Everglades, Fort Lauderdale, FL.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone: Port Everglades....711 Safety Zone: Port Everglades, Fort Lauderdale, FL. (a) Regulated area. A moving safety zone is established in the following area: (1) The waters around naval aircraft carriers entering Port Everglades...

  10. Safety Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Swan Lake National Wildlife Refuge Safety Plan discusses policies for the safety of the station employees, volunteers, and public. This plan seeks to identify...

  11. ITER safety

    International Nuclear Information System (INIS)

    As part of the series of publications by the IAEA that summarize the results of the Conceptual Design Activities for the ITER project, this document describes the ITER safety analyses. It contains an assessment of normal operation effluents, accident scenarios, plasma chamber safety, tritium system safety, magnet system safety, external loss of coolant and coolant flow problems, and a waste management assessment, while it describes the implementation of the safety approach for ITER. The document ends with a list of major conclusions, a set of topical remarks on technical safety issues, and recommendations for the Engineering Design Activities, safety considerations for siting ITER, and recommendations with regard to the safety issues for the R and D for ITER. Refs, figs and tabs

  12. SAFETY FIRST

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ensuring safety while peacefully utilizing nuclear energy is a top priority for China A fter a recent earthquake in Japan caused radioactive leaks at a nuclear power plant in Tokyo, the safety of nuclear energy has again aroused public attention.

  13. A grade-life fuzzy inference fusion prognostic model for aircraft engine bearings

    Science.gov (United States)

    Miao, Xuewen; Niu, Yongguo; Yang, Yun; Yin, Shuyue; Hong, Jie

    2012-04-01

    Prognostics and Health Management (PHM) technologies for potential application on aircraft have been maturing rapidly recently since it can ensure safety, equipment reliability, and reduction of costs. The service life prediction of aircraft engine is vital part of PHM technology. Research on practical and verifiable prediction methods for service life of bearing plays a critical role in improving the reliability and safety of aircraft engines. In the paper, the concept of Grade-Life (GL) is introduced to describe the service life of the bearing. A grade-life prognostic model of aircraft engine bearing, which is based on the fuzzy logic inference, is proposed. Firstly, the mathematical model is discussed, which is used to predict the physics-based GL (PGL). Then, the diagnostic estimation model based on SVM is given in details, which is exploited to predict the empirical GL (EPL). Thirdly, a fuzzy logic inference method is adopted to fuse two GL predicted results. Finally, the grade-life prognostic model is verified by the run-to-failure data acquired from accelerated life test of an aircraft bearing. The results accredit that this model provides for a more practical and reliable prediction for service life of bearings.

  14. Aircraft noise and birth weight

    Energy Technology Data Exchange (ETDEWEB)

    Knipschild, P.; Meijer, H.; Salle, H.

    1981-05-01

    Data from six infant welfare centres in the vicinity of Amsterdam airport were analysed. Birth weights of 902 infants were related to aircraft noise levels to which the mother was exposed in pregnancy. The analysis was restricted to deliveries in hospital, single births and mothers aged 20-34 years. In high noise areas the mean birth weight was 69 g lower than in low noise areas. Of the infants in high noise areas 24% had a birth weight less than 3000 g, compared with 18% in low noise areas. In the analysis the effect of sex of the infant, birth order and to some extent socio-economic status were taken into account. An effect of smoking seemed unlikely. The results, together with existing knowledge, give some suggestion that aircraft noise can decrease birth weight.

  15. Perception of aircraft Deviation Cues

    Science.gov (United States)

    Martin, Lynne; Azuma, Ronald; Fox, Jason; Verma, Savita; Lozito, Sandra

    2005-01-01

    To begin to address the need for new displays, required by a future airspace concept to support new roles that will be assigned to flight crews, a study of potentially informative display cues was undertaken. Two cues were tested on a simple plan display - aircraft trajectory and flight corridor. Of particular interest was the speed and accuracy with which participants could detect an aircraft deviating outside its flight corridor. Presence of the trajectory cue significantly reduced participant reaction time to a deviation while the flight corridor cue did not. Although non-significant, the flight corridor cue seemed to have a relationship with the accuracy of participants judgments rather than their speed. As this is the second of a series of studies, these issues will be addressed further in future studies.

  16. Safety matters

    OpenAIRE

    Gelder, P. van

    1999-01-01

    Several events have transpired recently to underscore yet again how important the issue of safety is for the local construction industry. This month regular contributor J.A. McInnis takes a look at how some of these events relate to one major area of site safety: safety whilst working at a height.

  17. Aircraft systems design methodology and dispatch reliability prediction

    OpenAIRE

    Bineid, Mansour

    2005-01-01

    Aircraft despatch reliability was the main subject of this research in the wider content of aircraft reliability. The factors effecting dispatch reliability, aircraft delay, causes of aircraft delays, and aircraft delay costs and magnitudes were examined. Delay cost elements and aircraft delay scenarios were also studied. It concluded that aircraft dispatch reliability is affected by technical and non-technical factors, and that the former are under the designer's control. It showed that ...

  18. Challenges of aircraft design integration

    OpenAIRE

    Kafyeke, F.; Abdo, M.; Pepin, F; Piperni, P.; Laurendeau, E.

    2007-01-01

    The design of a modern airplane brings together many disciplines: structures, aerodynamics, controls, systems, propulsion with complex interdependencies and many variables. Recent aircraft programs, such as Bombardier's Continental Jet program use participants located around the world and selected for their cost, quality and delivery capability. These participants share the risk on the program and must therefore be fully implicated in the design. A big challenge is to provide information on c...

  19. U.S. Geological Survey Unmanned Aircraft Systems (UAS) Roadmap 2014

    Science.gov (United States)

    Cress, Jill J.; Hutt, Michael E.; Sloan, Jeff L.; Bauer, Mark A.; Feller, Mark R.; Goplen, Susan E.

    2015-01-01

    The U.S. Department of the Interior (DOI) is responsible for protecting the natural resources and heritage contained on almost 20 percent of the land in the United States. This responsibility requires acquisition of remotely sensed data throughout vast lands, including areas that are remote and potentially dangerous to access. One promising new technology for data collection is unmanned aircraft systems (UAS), which may be better suited (achieving superior science, safety, and savings) than traditional methods. UAS, regardless of their size, have the same operational components: aircraft, payloads, communications unit, and operator control unit. The aircraft is the platform that flies and carries any required payloads. For Department of the Interior missions these payloads will be either a sensor or set of sensors that can acquire the specific type of remotely sensed data that is needed. The aircraft will also carry the payload that is responsible for transmitting live airborne video images, compass headings, and location information to the operator control unit. The communications unit, which transfers information between the aircraft and the operator control unit, consists of the hardware and software required to establish both uplink and downlink communications. Finally, the operator control unit both controls and monitors the aircraft and can be operated either by a pilot on the ground or autonomously.

  20. Safety handbook

    International Nuclear Information System (INIS)

    The purpose of the Australian Nuclear Science and Technology Organization's Safety Handbook is to outline simply the fundamental procedures and safety precautions which provide an appropriate framework for safe working with any potential hazards, such as fire and explosion, welding, cutting, brazing and soldering, compressed gases, cryogenic liquids, chemicals, ionizing radiations, non-ionising radiations, sound and vibration, as well as safety in the office. It also specifies the organisation for safety at the Lucas Heights Research Laboratories and the responsibilities of individuals and committees. It also defines the procedures for the scrutiny and review of all operations and the resultant setting of safety rules for them. ills

  1. PREDICTION OF AIRCRAFT NOISE LEVELS

    Science.gov (United States)

    Clark, B. J.

    1994-01-01

    Methods developed at the NASA Lewis Research Center for predicting the noise contributions from various aircraft noise sources have been incorporated into a computer program for predicting aircraft noise levels either in flight or in ground test. The noise sources accounted for include fan inlet and exhaust, jet, flap (for powered lift), core (combustor), turbine, and airframe. Noise propagation corrections are available in the program for atmospheric attenuation, ground reflections, extra ground attenuation, and shielding. The capacity to solve the geometrical relationships between an aircraft in flight and an observer on the ground has been included in the program to make it useful in evaluating noise estimates and footprints for various proposed engine installations. The program contains two main routines for employing the noise prediction routines. The first main routine consists of a procedure to calculate at various observer stations the time history of the noise from an aircraft flying at a specified set of speeds, orientations, and space coordinates. The various components of the noise are computed by the program. For each individual source, the noise levels are free field with no corrections for propagation losses other than spherical divergence. The total spectra may then be corrected for the usual effects of atmospheric attenuation, extra ground attenuation, ground reflection, and aircraft shielding. Next, the corresponding values of overall sound pressure level, perceived noise level, and tone-weighted perceived noise level are calculated. From the time history at each point, true effective perceived noise levels are calculated. Thus, values of effective perceived noise levels, maximum perceived noise levels, and tone-weighted perceived noise levels are found for a grid of specified points on the ground. The second main routine is designed to give the usual format of one-third octave sound pressure level values at a fixed radius for a number of user

  2. Nuclear Safety

    International Nuclear Information System (INIS)

    In this short paper it has only been possible to deal in a rather general way with the standards of safety used in the UK nuclear industry. The record of the industry extending over at least twenty years is impressive and, indeed, unique. No other industry has been so painstaking in protection of its workers and in its avoidance of damage to the environment. Headings are: introduction; how a nuclear power station works; radiation and its effects (including reference to ICRP, the UK National Radiological Protection Board, and safety standards); typical radiation doses (natural radiation, therapy, nuclear power programme and other sources); safety of nuclear reactors - design; key questions (matters of concern which arise in the public mind); safety of operators; safety of people in the vicinity of a nuclear power station; safety of the general public; safety bodies. (U.K.)

  3. Uncertainty quantification in computational fluid dynamics and aircraft engines

    CERN Document Server

    Montomoli, Francesco; D'Ammaro, Antonio; Massini, Michela; Salvadori, Simone

    2015-01-01

    This book introduces novel design techniques developed to increase the safety of aircraft engines. The authors demonstrate how the application of uncertainty methods can overcome problems in the accurate prediction of engine lift, caused by manufacturing error. This in turn ameliorates the difficulty of achieving required safety margins imposed by limits in current design and manufacturing methods. This text shows that even state-of-the-art computational fluid dynamics (CFD) are not able to predict the same performance measured in experiments; CFD methods assume idealised geometries but ideal geometries do not exist, cannot be manufactured and their performance differs from real-world ones. By applying geometrical variations of a few microns, the agreement with experiments improves dramatically, but unfortunately the manufacturing errors in engines or in experiments are unknown. In order to overcome this limitation, uncertainty quantification considers the probability density functions of manufacturing errors...

  4. An artificial intelligence-based structural health monitoring system for aging aircraft

    Science.gov (United States)

    Grady, Joseph E.; Tang, Stanley S.; Chen, K. L.

    1993-01-01

    To reduce operating expenses, airlines are now using the existing fleets of commercial aircraft well beyond their originally anticipated service lives. The repair and maintenance of these 'aging aircraft' has therefore become a critical safety issue, both to the airlines and the Federal Aviation Administration. This paper presents the results of an innovative research program to develop a structural monitoring system that will be used to evaluate the integrity of in-service aerospace structural components. Currently in the final phase of its development, this monitoring system will indicate when repair or maintenance of a damaged structural component is necessary.

  5. Sistema de encendido para motores de aviación - Ignition system for aircraft engines

    Directory of Open Access Journals (Sweden)

    Santos López, Pascual

    2011-12-01

    Full Text Available On May 7, 1934 José López Salmeron and Gaspar Serrano Esteve recorded their patent "ignition system for aircraft engines, automobiles and the like". A patent which was in a double ignition system Magneto-Delco, a condition that made ​​it perfect for aircraft engines, as it met the safety requirement to be a redundant ignition system, as if a failed ignition system was always the possibility that the other system functioned alternative. It analyzes the historical context of Spain in the early twentieth century and a brief history Spanish automotive

  6. Aircraft Configuration and Flight Crew Compliance with Procedures While Conducting Flight Deck Based Interval Management (FIM) Operations

    Science.gov (United States)

    Shay, Rick; Swieringa, Kurt A.; Baxley, Brian T.

    2012-01-01

    Flight deck based Interval Management (FIM) applications using ADS-B are being developed to improve both the safety and capacity of the National Airspace System (NAS). FIM is expected to improve the safety and efficiency of the NAS by giving pilots the technology and procedures to precisely achieve an interval behind the preceding aircraft by a specific point. Concurrently but independently, Optimized Profile Descents (OPD) are being developed to help reduce fuel consumption and noise, however, the range of speeds available when flying an OPD results in a decrease in the delivery precision of aircraft to the runway. This requires the addition of a spacing buffer between aircraft, reducing system throughput. FIM addresses this problem by providing pilots with speed guidance to achieve a precise interval behind another aircraft, even while flying optimized descents. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR) human-in-the-loop experiment employed 24 commercial pilots to explore the use of FIM equipment to conduct spacing operations behind two aircraft arriving to parallel runways, while flying an OPD during high-density operations. This paper describes the impact of variations in pilot operations; in particular configuring the aircraft, their compliance with FIM operating procedures, and their response to changes of the FIM speed. An example of the displayed FIM speeds used incorrectly by a pilot is also discussed. Finally, this paper examines the relationship between achieving airline operational goals for individual aircraft and the need for ATC to deliver aircraft to the runway with greater precision. The results show that aircraft can fly an OPD and conduct FIM operations to dependent parallel runways, enabling operational goals to be achieved efficiently while maintaining system throughput.

  7. Misconceptions of Electric Propulsion Aircraft and Their Emergent Aviation Markets

    Science.gov (United States)

    Moore, Mark D.; Fredericks, Bill

    2014-01-01

    Over the past several years there have been aircraft conceptual design and system studies that have reached conflicting conclusions relating to the feasibility of full and hybrid electric aircraft. Some studies and propulsion discipline experts have claimed that battery technologies will need to improve by 10 to 20 times before electric aircraft can effectively compete with reciprocating or turbine engines. However, such studies have approached comparative assessments without understanding the compelling differences that electric propulsion offers, how these technologies will fundamentally alter the way propulsion integration is approached, or how these new technologies can not only compete but far exceed existing propulsion solutions in many ways at battery specific energy densities of only 400 watt hours per kilogram. Electric propulsion characteristics offer the opportunity to achieve 4 to 8 time improvements in energy costs with dramatically lower total operating costs, while dramatically improving efficiency, community noise, propulsion system reliability and safety through redundancy, as well as life cycle Green House Gas emissions. Integration of electric propulsion will involve far greater degrees of distribution than existing propulsion solutions due to their compact and scale-free nature to achieve multi-disciplinary coupling and synergistic integration with the aerodynamics, highlift system, acoustics, vehicle control, balance, and aeroelasticity. Appropriate metrics of comparison and differences in analysis/design tools are discussed while comparing electric propulsion to other disruptive technologies. For several initial applications, battery energy density is already sufficient for competitive products, and for many additional markets energy densities will likely be adequate within the next 7 years for vibrant introduction. Market evolution and early adopter markets are discussed, along with the investment areas that will fill technology gaps and

  8. 78 FR 65554 - Exhaust Emission Standards for New Aircraft Turbine Engines and Identification Plate for Aircraft...

    Science.gov (United States)

    2013-11-01

    ... Aircraft Turbine Engines and Identification Plate for Aircraft Engines Correction In rule document 2013... for Subsonic Engines'', in the third column, in the last row, the entry ``rO > 26.7'' is corrected...

  9. 14 CFR 91.111 - Operating near other aircraft.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Operating near other aircraft. 91.111... § 91.111 Operating near other aircraft. (a) No person may operate an aircraft so close to another aircraft as to create a collision hazard. (b) No person may operate an aircraft in formation flight...

  10. Choice of Aircraft Size - Explanations and Implications

    OpenAIRE

    Givoni, Moshe; Rietveld, Piet

    2006-01-01

    To keep load factors high while offering high frequency service, airlines tend to reduce the size of the aircraft they use. At many of the world’s largest airports there are fewer than 100 passengers per air transport movement, although congestion and delays are growing. Furthermore, demand for air transport is predicted to continue growing but aircraft size is not. This paper aims to investigate and explain this phenomenon, the choice of relatively small aircraft. It seems that this choice i...

  11. Neural Networks Based Aircraft Fault Tolerant Control

    OpenAIRE

    Zhong, Lunlong; Mora-Camino, Félix

    2012-01-01

    The purpose of this communication is to deal with the case in which an aerodynamic actuator failure occurs to an aircraft while it has to perform guidance maneuvers. The problem considered deals with the reallocation of redundant actuators to perform the required maneuvers and maintain the structural integrity of the aircraft. A Nonlinear Inverse Control technique is used to generate online nominal moment along the three axis of the aircraft. Then, taking into account all material and structu...

  12. Impact of aircraft systems within aircraft operation: A MEA trajectory optimisation study

    OpenAIRE

    Seresinhe, R.

    2014-01-01

    Air transport has been a key component of the socio-economic globalisation. The ever increasing demand for air travel and air transport is a testament to the success of the aircraft. But this growing demand presents many challenges. One of which is the environmental impact due to aviation. The scope of the environmental impact of aircraft can be discussed from many viewpoints. This research focuses on the environmental impact due to aircraft operation. Aircraft operation causes...

  13. Policy and the evaluation of aircraft noise

    OpenAIRE

    Kroesen, M.; Molin, E.J.E.; Van Wee, G.P.

    2010-01-01

    In this paper, we hypothesize and test the ideas that (1) people’s subjectivity in relation to aircraft noise is shaped by the policy discourse, (2) this results in a limited number of frames towards aircraft noise, (3) the frames inform people how to think and feel about aircraft noise and (4) the distribution of the frames in the population is dependent on structural variables related to the individual. To reveal subjects’ frames of aircraft noise a latent class model is estimated based on ...

  14. Research on Emerging and Descending Aircraft Noise

    Directory of Open Access Journals (Sweden)

    Monika Bartkevičiūtė

    2013-12-01

    Full Text Available Along with an increase in the aircraft engine power and growth in air traffic, noise level at airports and their surrounding environs significantly increases. Aircraft noise is high level noise spreading within large radius and intensively irritating the human body. Air transport is one of the main sources of noise having a particularly strong negative impact on the environment. The article deals with activities and noises taking place in the largest nationwide Vilnius International Airport.The level of noise and its dispersion was evaluated conducting research on the noise generated by emerging and descending aircrafts in National Vilnius Airport. Investigation was carried out at 2 measuring points located in a residential area. There are different types of aircrafts causing different sound levels. It has been estimated the largest exceedances that occur when an aircraft is approaching. In this case, the noisiest types of aircrafts are B733, B738 and AT72. The sound level varies from 70 to 85 dBA. The quietest aircrafts are RJ1H and F70. When taking off, the equivalent of the maximum sound level value of these aircrafts does not exceed the authorized limits. The paper describes the causes of noise in aircrafts, the sources of origin and the impact of noise on humans and the environment.Article in Lithuanian

  15. Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL) provides a variety of research, design engineering and prototype fabrication services...

  16. 75 FR 50865 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Science.gov (United States)

    2010-08-18

    ... Equipped With Rotax Aircraft Engines 912 A Series Engines AGENCY: Federal Aviation Administration (FAA... 912 A series engine installed in various aircraft does not have an engine type certificate; instead, the engine is part of the aircraft type design. Comments We gave the public the opportunity...

  17. 75 FR 70098 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Science.gov (United States)

    2010-11-17

    ... Equipped With Rotax Aircraft Engines 912 A Series Engines AGENCY: Federal Aviation Administration (FAA... Aircraft Engines 912 A series engine with a crankcase assembly S/N up to and including S/N 27811, certificated in any category: ] Type certificate holder Aircraft model Engine model Aeromot-Industria...

  18. 75 FR 32315 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Science.gov (United States)

    2010-06-08

    ... Equipped With Rotax Aircraft Engines 912 A Series Engines AGENCY: Federal Aviation Administration (FAA... certificated in the United States. However, the Model 912 A series engine installed in various aircraft does not have an engine type certificate; instead, the engine is part of the aircraft type design. You...

  19. 76 FR 40219 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Science.gov (United States)

    2011-07-08

    ... Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration (FAA), DOT... Rotax Aircraft Engines Mandatory Service Bulletin SB-912-058 SB-914-041, dated April 15, 2011, listed in... 601 0; fax: +43 7246 601 9130; Internet: http://www.rotax-aircraft-engines.com . You may review...

  20. Program to compute the positions of the aircraft and of the aircraft sensor footprints

    Science.gov (United States)

    Paris, J. F. (Principal Investigator)

    1982-01-01

    The positions of the ground track of the aircraft and of the aircraft sensor footprints, in particular the metric camera and the radar scatterometer on the C-130 aircraft, are estimated by a program called ACTRK. The program uses the altitude, speed, and attitude informaton contained in the radar scatterometer data files to calculate the positions. The ACTRK program is documented.

  1. COMPARATIVE ANALYSIS OF TRANSPORT AIRCRAFT, BACKROUND FOR SHORT/ MEDIUM COURIER TRANSPORT AIRCRAFT PROCUREMENT

    Directory of Open Access Journals (Sweden)

    Matei POPA

    2010-03-01

    Full Text Available In accordance with Air Force requirements, the comparative analysis of short/medium transport aircraft comes to sustain procurement decision of short/medium transport aircraft. This paper presents, in short, the principles and the results of the comparative analysis for short/medium military transport aircraft.

  2. Safety; Avertissement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This annual report of the Senior Inspector for the Nuclear Safety, analyses the nuclear safety at EDF for the year 1999 and proposes twelve subjects of consideration to progress. Five technical documents are also provided and discussed concerning the nuclear power plants maintenance and safety (thermal fatigue, vibration fatigue, assisted control and instrumentation of the N4 bearing, 1300 MW reactors containment and time of life of power plants). (A.L.B.)

  3. Further Evolution of Composite Doubler Aircraft Repairs Through a Focus on Niche Applications

    Energy Technology Data Exchange (ETDEWEB)

    ROACH,DENNIS P.

    2000-07-15

    The number of commercial airframes exceeding twenty years of service continues to grow. A typical aircraft can experience over 2,000 fatigue cycles (cabin pressurizations) and even greater flight hours in a single year. An unavoidable by-product of aircraft use is that crack and corrosion flaws develop throughout the aircraft's skin and substructure elements. Economic barriers to the purchase of new aircraft have created an aging aircraft fleet and placed even greater demands on efficient and safe repair methods. The use of bonded composite doublers offers the airframe manufacturers and aircraft maintenance facilities a cost effective method to safety extend the lives of their aircraft. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is now possible to bond a single Boron-Epoxy composite doubler to the damaged structure. The FAA's Airworthiness Assurance Center at Sandia National Labs (AANC) is conducting a program with Boeing and Federal Express to validate and introduce composite doubler repair technology to the US commercial aircraft industry. This project focuses on repair of DC-10 structure and builds on the foundation of the successful L-1011 door corner repair that was completed by the AANC, Lockheed-Martin, and Delta Air Lines. The L-1011 composite doubler repair was installed in 1997 and has not developed any flaws in over three years of service, As a follow-on effort, this DC-1O repair program investigated design, analysis, performance (durability, flaw containment, reliability), installation, and nondestructive inspection issues. Current activities are demonstrating regular use of composite doubler repairs on commercial aircraft. The primary goal of this program is to move the technology into niche applications and to streamline the design-to-installation process. Using the data accumulated to date, the team has designed, analyzed, and developed inspection techniques for an array of composite doubler

  4. Technology for aircraft energy efficiency

    Science.gov (United States)

    Klineberg, J. M.

    1977-01-01

    Six technology programs for reducing fuel use in U.S. commercial aviation are discussed. The six NASA programs are divided into three groups: Propulsion - engine component improvement, energy efficient engine, advanced turboprops; Aerodynamics - energy efficient transport, laminar flow control; and Structures - composite primary structures. Schedules, phases, and applications of these programs are considered, and it is suggested that program results will be applied to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s.

  5. Aircraft empennage structural detail design

    Science.gov (United States)

    Meholic, Greg; Brown, Rhonda; Hall, Melissa; Harvey, Robert; Singer, Michael; Tella, Gustavo

    1993-01-01

    This project involved the detailed design of the aft fuselage and empennage structure, vertical stabilizer, rudder, horizontal stabilizer, and elevator for the Triton primary flight trainer. The main design goals under consideration were to illustrate the integration of the control systems devices used in the tail surfaces and their necessary structural supports as well as the elevator trim, navigational lighting system, electrical systems, tail-located ground tie, and fuselage/cabin interface structure. Accommodations for maintenance, lubrication, adjustment, and repairability were devised. Weight, fabrication, and (sub)assembly goals were addressed. All designs were in accordance with the FAR Part 23 stipulations for a normal category aircraft.

  6. Visit safety

    CERN Multimedia

    2012-01-01

    Experiment areas, offices, workshops: it is possible to have co-workers or friends visit these places.     You already know about the official visits service, the VIP office, and professional visits. But do you know about the safety instruction GSI-OHS1, “Visits on the CERN site”? This is a mandatory General Safety Instruction that was created to assist you in ensuring safety for all your visits, whatever their nature—especially those that are non-official. Questions? The HSE Unit will be happy to answer them. Write to safety-general@cern.ch.   The HSE Unit

  7. Medication safety.

    Science.gov (United States)

    Keohane, Carol A; Bates, David W

    2008-03-01

    Patient safety is a state of mind, not a technology. The technologies used in the medical setting represent tools that must be properly designed, used well, and assessed on an on-going basis. Moreover, in all settings, building a culture of safety is pivotal for improving safety, and many nontechnologic approaches, such as medication reconciliation and teaching patients about their medications, are also essential. This article addresses the topic of medication safety and examines specific strategies being used to decrease the incidence of medication errors across various clinical settings.

  8. Concept to Reality: Contributions of the Langley Research Center to US Civil Aircraft of the 1990s

    Science.gov (United States)

    Chambers, Joseph R.

    2003-01-01

    This document is intended to be a companion to NASA SP-2000-4519, 'Partners in Freedom: Contributions of the Langley Research Center to U.S. Military Aircraft of the 1990s'. Material included in the combined set of volumes provides informative and significant examples of the impact of Langley's research on U.S. civil and military aircraft of the 1990s. This volume, 'Concept to Reality: Contributions of the NASA Langley Research Center to U.S. Civil Aircraft of the 1990s', highlights significant Langley contributions to safety, cruise performance, takeoff and landing capabilities, structural integrity, crashworthiness, flight deck technologies, pilot-vehicle interfaces, flight characteristics, stall and spin behavior, computational design methods, and other challenging technical areas for civil aviation. The contents of this volume include descriptions of some of the more important applications of Langley research to current civil fixed-wing aircraft (rotary-wing aircraft are not included), including commercial airliners, business aircraft, and small personal-owner aircraft. In addition to discussions of specific aircraft applications, the document also covers contributions of Langley research to the operation of civil aircraft, which includes operating problems. This document is organized according to disciplinary technologies, for example, aerodynamics, structures, materials, and flight systems. Within each discussion, examples are cited where industry applied Langley technologies to specific aircraft that were in operational service during the 1990s and the early years of the new millennium. This document is intended to serve as a key reference for national policy makers, internal NASA policy makers, Congressional committees, the media, and the general public. Therefore, it has been written for a broad general audience and does not presume any significant technical expertise. An extensive bibliography is provided for technical specialists and others who desire a

  9. Workplace Safety and Health Topics: Safety & Prevention

    Science.gov (United States)

    ... and Healthy Jobs - Prevention through Design Hierarchy of Controls Industry and Occupation Coding and Support Logging Safety Machine Safety Motor Vehicle Safety Motor-Vehicle Safety of Law Enforcement Officers Nail Gun Safety National Occupational Mortality Surveillance (NOMS) Noise and ...

  10. Development Orientation of Aircraft Material Management%航材管理发展方向研究

    Institute of Scientific and Technical Information of China (English)

    常玉; 同姗姗

    2012-01-01

    How to seek after the maximum economic benefit under the prerequisite to ensure safety is an important problem in aircraft maintenance.Through the study on the requirements of aircraft material management development in CAAC, some suggestions for building economic benefit type aircraft material management mode are put forward from transferring aircraft material management concepts, enhancing aircraft material cost control and establishing aircraft material sharing platform in order to reduce costs, to ensure flight safety and to raise the competitiveness of the company.%如何在保证安全的前提下,追求最大的经济效益,是摆在飞机维修单位面前的一个重要问题.通过对CAAC航材管理发展要求的研读,从转变航材管理观念、加强航材成本控制、建立航材共享平台等方面提出了建立经济效益型航材管理模式的建议,以降低公司成本,保障飞行安全,提高公司的竞争力.

  11. Aircraft type influence on contrail properties

    Directory of Open Access Journals (Sweden)

    P. Jeßberger

    2013-05-01

    Full Text Available The investigation of the impact of aircraft parameters on contrail properties helps to better understand the climate impact from aviation. Yet, in observations, it is a challenge to separate aircraft and meteorological influences on contrail formation. During the CONCERT campaign in November 2008, contrails from 3 Airbus passenger aircraft of type A319-111, A340-311 and A380-841 were probed at cruise under similar meteorological conditions with in-situ instruments on board the DLR research aircraft Falcon. Within the 2 min old contrails detected near ice saturation, we find similar effective diameters Deff (5.2–5.9 μm, but differences in particle number densities nice (162–235 cm−3 and in vertical contrail extensions (120–290 m, resulting in large differences in contrail optical depths τ (0.25–0.94. Hence larger aircraft produce optically thicker contrails. Based on the observations, we apply the EULAG-LCM model with explicit ice microphysics and in addition the Contrail and Cirrus Prediction model CoCiP to calculate the aircraft type impact on young contrails under identical meteorological conditions. The observed increase in τ for heavier aircraft is confirmed by the models, yet for generally smaller τ. An aircraft dependence of climate relevant contrail properties persists during contrail lifetime, adding importance to aircraft dependent model initialization. We finally derive an analytical relationship between contrail, aircraft and meteorological parameters. Near ice saturation, contrail width × τ scales linearly with fuel flow rate as confirmed by observations. For higher saturation ratios approximations from theory suggest a non-linear increase in the form (RHI–12/3. Summarized our combined results could help to more accurately assess the climate impact from aviation using an aircraft dependent contrail parameterization.

  12. 77 FR 58301 - Technical Amendment; Airworthiness Standards: Aircraft Engines; Correction

    Science.gov (United States)

    2012-09-20

    ... Technical Amendment entitled, ``Airworthiness Standards: Aircraft Engine'' (77 FR 39623). In that technical... Administration 14 CFR Part 33 RIN 2120-AF57 Technical Amendment; Airworthiness Standards: Aircraft Engines... technical amendment, the FAA clarified aircraft engine vibration test requirements in the...

  13. 77 FR 39623 - Airworthiness Standards: Aircraft Engines; Technical Amendment

    Science.gov (United States)

    2012-07-05

    ... Federal Aviation Administration 14 CFR Part 33 Airworthiness Standards: Aircraft Engines; Technical.... SUMMARY: This amendment clarifies aircraft engine vibration test requirements in the airworthiness... 33--AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES 0 1. The authority citation for part 33 continues...

  14. LCC-OPS: Life Cycle Cost Application in Aircraft Operations

    NARCIS (Netherlands)

    Suwondo, E.

    2007-01-01

    Observation of current practices in aircraft operations and maintenance shows limited consideration of cost savings applied by aircraft modifications, maintenance program optimisation and aircraft selection. This is due to hidden (maintenance dependent) costs and difficulties in quantifying the util

  15. Status of Computational Aerodynamic Modeling Tools for Aircraft Loss-of-Control

    Science.gov (United States)

    Frink, Neal T.; Murphy, Patrick C.; Atkins, Harold L.; Viken, Sally A.; Petrilli, Justin L.; Gopalarathnam, Ashok; Paul, Ryan C.

    2016-01-01

    A concerted effort has been underway over the past several years to evolve computational capabilities for modeling aircraft loss-of-control under the NASA Aviation Safety Program. A principal goal has been to develop reliable computational tools for predicting and analyzing the non-linear stability & control characteristics of aircraft near stall boundaries affecting safe flight, and for utilizing those predictions for creating augmented flight simulation models that improve pilot training. Pursuing such an ambitious task with limited resources required the forging of close collaborative relationships with a diverse body of computational aerodynamicists and flight simulation experts to leverage their respective research efforts into the creation of NASA tools to meet this goal. Considerable progress has been made and work remains to be done. This paper summarizes the status of the NASA effort to establish computational capabilities for modeling aircraft loss-of-control and offers recommendations for future work.

  16. Multispectral imaging of aircraft exhaust

    Science.gov (United States)

    Berkson, Emily E.; Messinger, David W.

    2016-05-01

    Aircraft pollutants emitted during the landing-takeoff (LTO) cycle have significant effects on the local air quality surrounding airports. There are currently no inexpensive, portable, and unobtrusive sensors to quantify the amount of pollutants emitted from aircraft engines throughout the LTO cycle or to monitor the spatial-temporal extent of the exhaust plume. We seek to thoroughly characterize the unburned hydrocarbon (UHC) emissions from jet engine plumes and to design a portable imaging system to remotely quantify the emitted UHCs and temporally track the distribution of the plume. This paper shows results from the radiometric modeling of a jet engine exhaust plume and describes a prototype long-wave infrared imaging system capable of meeting the above requirements. The plume was modeled with vegetation and sky backgrounds, and filters were selected to maximize the detectivity of the plume. Initial calculations yield a look-up chart, which relates the minimum amount of emitted UHCs required to detect the presence of a plume to the noise-equivalent radiance of a system. Future work will aim to deploy the prototype imaging system at the Greater Rochester International Airport to assess the applicability of the system on a national scale. This project will help monitor the local pollution surrounding airports and allow better-informed decision-making regarding emission caps and pollution bylaws.

  17. Safety Instructions

    CERN Multimedia

    2003-01-01

    Please note that the Safety Instructions N0 37 rev. 3 (IS 37 rev. 3) entitled ""LEVEL-3" SAFETY ALARMS AND ALARM SYSTEMS" Is available on the web at the following URL: http://edms.cern.ch/document/335802 Paper copies can also be obtained from the TIS divisional secretariat, e-mail: tis.secretariat@cern.ch TIS Secretariat

  18. Noise control mechanisms of inside aircraft

    Science.gov (United States)

    Zverev, A. Ya.

    2016-07-01

    World trends in the development of methods and approaches to noise reduction in aircraft cabins are reviewed. The paper discusses the mechanisms of passive and active noise and vibration control, application of "smart" and innovative materials, new approaches to creating all fuselage-design elements, and other promising directions of noise control inside aircraft.

  19. Wireless Network Simulation in Aircraft Cabins

    Science.gov (United States)

    Beggs, John H.; Youssef, Mennatoallah; Vahala, Linda

    2004-01-01

    An electromagnetic propagation prediction tool was used to predict electromagnetic field strength inside airplane cabins. A commercial software package, Wireless Insite, was used to predict power levels inside aircraft cabins and the data was compared with previously collected experimental data. It was concluded that the software could qualitatively predict electromagnetic propagation inside the aircraft cabin environment.

  20. Cycle Counting Methods of the Aircraft Engine

    Science.gov (United States)

    Fedorchenko, Dmitrii G.; Novikov, Dmitrii K.

    2016-01-01

    The concept of condition-based gas turbine-powered aircraft operation is realized all over the world, which implementation requires knowledge of the end-of-life information related to components of aircraft engines in service. This research proposes an algorithm for estimating the equivalent cyclical running hours. This article provides analysis…

  1. Laminar flow control for transport aircraft applications

    Science.gov (United States)

    Wagner, R. D.

    1986-01-01

    The incorporation of laminar flow control into transport aircraft is discussed. Design concepts for the wing surface panel of laminar flow control transport aircraft are described. The development of small amounts of laminar flow on small commercial transports with natural or hybrid flow control is examined. Techniques for eliminating the insect contamination problem in the leading-edge region are proposed.

  2. 19 CFR 122.42 - Aircraft entry.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Aircraft entry. 122.42 Section 122.42 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Entry and Entry Documents; Electronic Manifest Requirements...

  3. 14 CFR 135.125 - Aircraft security.

    Science.gov (United States)

    2010-01-01

    ....125 Aircraft security. Certificate holders conducting operators conducting operations under this part must comply with the applicable security requirements in 49 CFR chapter XII. ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft security. 135.125 Section...

  4. 14 CFR 121.538 - Aircraft security.

    Science.gov (United States)

    2010-01-01

    ..., FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.538 Aircraft security. Certificate holders conducting operations under this part must comply with the applicable security requirements in 49 CFR chapter... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft security. 121.538 Section...

  5. A Turbo-Brayton Cryocooler for Aircraft Superconducting Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hybrid turboelectric aircraft with gas turbines driving electric generators connected to electric propulsion motors have the potential to transform the aircraft...

  6. An Instrument to Measure Aircraft Sulfate Particle Emissions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft particle emissions contribute a modest, but growing, portion of the overall particle emissions budget. Characterizing aircraft particle emissions is...

  7. Aircraft Stand Allocation with Associated Resource Scheduling

    DEFF Research Database (Denmark)

    Justesen, Tor Fog; Larsen, Jesper; Lusby, Richard Martin;

    An aircraft turn-round refers to the set of processes taking place from when an aircraft parks at its arrival stand until the time it departs from its departure stand. When handling a turn-round, the different processes involved (arrival, disembarkation of passengers, cleaning, etc.) require...... different ground handling resources (taxiways, aircraft stands, gates, etc) at different times. Each resource can be claimed by at most one turn-round at a time. The aircraft stand allocation problem with associated resource scheduling is the problem of allocating the required ground handling resources...... to handle a given set of aircraft turn-rounds. We develop a set packing-based model formulation of the problem which is both flexible in the sense that it can encapsulate any type of resource required during the handling of a turn-round and strong in the sense that conflicts that occur when two or more turn...

  8. A Study on External Fire Damage of Structures subjected to Aircraft Impact

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sang Shup [Hanyang University, Seoul (Korea, Republic of); Hahm, Daegi; Kim, Min Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    A large commercial aircraft consists of various components as fuselage, wings, fuel tank, engine etc. During a collision of the aircraft, the fuel tank with a large amount of jet fuel have a significant effect on the total load of the aircraft as well as causing explosive fire and smoke which affect the safety of the structure and equipment. US Sandia National Laboratories and Finland VTT etc. performed the test and simulation studies to evaluate the dispersion range of the fluid after the crash of liquid filled cylinder missiles. The test condition and results have been referred in this paper. The fluid modeling approach using SPH is applied to evaluate the dispersing range of the fluid, and is compared with the Brown's results. The jet fuel is idealized as particles contained in an aluminum cylinder missile, where those particles can be dispersed to the surrounding area after the missile crashes into a rigid target. The fluid model using the SPH method is briefly verified through comparison with test results, and then the modelling method is applied to a jet fuel model in an aircraft model. The dispersion analysis of jet fuel caused by aircraft impact is performed using an aircraft model for the determination of fire duration and fire affected zone in a nuclear power plant. Finally, the structural integrity of the roof of the structure during a jet fuel fire is evaluated. In this study, the filled jet fuel was modeled by using smooth particle hydrodynamics technique; jet fuel spread area following an aircraft crash was analyzed.

  9. Aircraft de-icer: Recycling can cut carbon emissions in half

    International Nuclear Information System (INIS)

    Flight-safety regulations in most countries require aircraft to be ice-free upon takeoff. In icy weather, this means that the aircraft usually must be de-iced (existing ice is removed) and sometimes anti-iced (to protect against ice-reformation). For both processes, aircraft typically are sprayed with an ‘antifreeze’ solution, consisting mainly of glycol diluted with water. This de/anti-icing creates an impact on the environment, of which environmental regulators have grown increasingly conscious. The US Environmental Protection Agency (EPA), for example, recently introduced stricter rules that require airports above minimum size to collect de-icing effluents and send them to wastewater treatment. De-icer collection and treatment is already done at most major airports, but a few have gone one step further: rather than putting the effluent to wastewater, they recycle it. This study examines the carbon savings that can be achieved by recycling de-icer. There are two key findings. One, recycling, as opposed to not recycling, cuts the footprint of aircraft de-icing by 40–50% — and even more, in regions where electricity-generation is cleaner. Two, recycling petrochemical-based de-icer generates a 15–30% lower footprint than using ‘bio’ de-icer without recycling. - Highlights: ► Carbon footprint of aircraft de-icing can be measured. ► Recycling aircraft de-icer cuts the footprint of aircraft de-icing by 40–50%. ► Recycling ‘fossil’ de-icer is lower carbon than not recycling ‘bio’ de-icer.

  10. Development of an ultrasonic pulse-echo (UPE) technique for aircraft icing studies

    Science.gov (United States)

    Liu, Yang; Chen, Wen-Li; Bond, Leonard J.; Hu, Hui

    2014-02-01

    Aircraft operating in some cold weather conditions face the risk of icing. Icing poses a threat to flight safety and its management is expensive. Removing light frost on a clear day from a medium-size business jet can cost 300, heavy wet snow removal can cost 3,000 and removal of accumulated frozen/freezing rain can cost close to 10,000. Understanding conditions that lead to severe icing events is important and challenging. When an aircraft or rotorcraft flies in a cold climate, some of the super cooled droplets impinging on exposed aircraft surfaces may flow along the surface prior to freezing and give various forms and shapes of ice. The runback behavior of a water film on an aircraft affects the morphology of ice accretion and the rate of formation. In this study, we report the recent progress to develop an Ultrasonic Pulse-Echo (UPE) technique to provide real-time thickness distribution measurements of surface water flows driven by boundary layer airflows for aircraft icing studies. A series of initial experimental investigations are conducted in an ice wind tunnel employing an array of ultrasonic transducers placed underneath the surface of a flat plate. The water runback behavior on the plate is evaluated by measuring the thickness profile variation of the water film along the surface by using the UPE technique under various wind speed and flow rate conditions.

  11. Development of an ultrasonic pulse-echo (UPE) technique for aircraft icing studies

    International Nuclear Information System (INIS)

    Aircraft operating in some cold weather conditions face the risk of icing. Icing poses a threat to flight safety and its management is expensive. Removing light frost on a clear day from a medium-size business jet can cost $300, heavy wet snow removal can cost $3,000 and removal of accumulated frozen/freezing rain can cost close to $10,000. Understanding conditions that lead to severe icing events is important and challenging. When an aircraft or rotorcraft flies in a cold climate, some of the super cooled droplets impinging on exposed aircraft surfaces may flow along the surface prior to freezing and give various forms and shapes of ice. The runback behavior of a water film on an aircraft affects the morphology of ice accretion and the rate of formation. In this study, we report the recent progress to develop an Ultrasonic Pulse-Echo (UPE) technique to provide real-time thickness distribution measurements of surface water flows driven by boundary layer airflows for aircraft icing studies. A series of initial experimental investigations are conducted in an ice wind tunnel employing an array of ultrasonic transducers placed underneath the surface of a flat plate. The water runback behavior on the plate is evaluated by measuring the thickness profile variation of the water film along the surface by using the UPE technique under various wind speed and flow rate conditions

  12. Development of an ultrasonic pulse-echo (UPE) technique for aircraft icing studies

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang; Hu, Hui [Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Room 1200, Ames, IA 50011 (United States); Chen, Wen-Li [Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Room 1200, Ames, IA 50011 (United States); School of Civil Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090 (China); Bond, Leonard J. [Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Room 1200, Ames, IA 50011 (United States); Center for Nondestructive Evaluation, Iowa State University, 1915 Scholl Road, 151 ASC II, Ames, IA 50011 (United States)

    2014-02-18

    Aircraft operating in some cold weather conditions face the risk of icing. Icing poses a threat to flight safety and its management is expensive. Removing light frost on a clear day from a medium-size business jet can cost $300, heavy wet snow removal can cost $3,000 and removal of accumulated frozen/freezing rain can cost close to $10,000. Understanding conditions that lead to severe icing events is important and challenging. When an aircraft or rotorcraft flies in a cold climate, some of the super cooled droplets impinging on exposed aircraft surfaces may flow along the surface prior to freezing and give various forms and shapes of ice. The runback behavior of a water film on an aircraft affects the morphology of ice accretion and the rate of formation. In this study, we report the recent progress to develop an Ultrasonic Pulse-Echo (UPE) technique to provide real-time thickness distribution measurements of surface water flows driven by boundary layer airflows for aircraft icing studies. A series of initial experimental investigations are conducted in an ice wind tunnel employing an array of ultrasonic transducers placed underneath the surface of a flat plate. The water runback behavior on the plate is evaluated by measuring the thickness profile variation of the water film along the surface by using the UPE technique under various wind speed and flow rate conditions.

  13. Magnetic levitation assisted aircraft take-off and landing (feasibility study - GABRIEL concept)

    Science.gov (United States)

    Rohacs, Daniel; Rohacs, Jozsef

    2016-08-01

    The Technology Roadmap 2013 developed by the International Air Transport Association envisions the option of flying without an undercarriage to be in operation by 2032. Preliminary investigations clearly indicate that magnetic levitation technology (MagLev) might be an appealing solution to assist the aircraft take-off and landing. The EU supported research project, abbreviated as GABRIEL, was dealing with (i) the concept development, (ii) the identification, evaluation and selection of the deployable magnetic levitation technology, (iii) the definition of the core system elements (including the required aircraft modifications, the ground-based system and airport elements, and the rendezvous control system), (iv) the analysis of the safety and security aspects, (v) the concept validation and (vi) the estimation of the proposed concept impact in terms of aircraft weight, noise, emission, cost-benefit). All results introduced here are compared to a medium size hypothetic passenger aircraft (identical with an Airbus A320). This paper gives a systematic overview of (i) the applied methods, (ii) the investigation of the possible use of magnetic levitation technology to assist the commercial aircraft take-off and landing processes and (iii) the demonstrations, validations showing the feasibility of the radically new concept. All major results are outlined.

  14. Safety strategy

    International Nuclear Information System (INIS)

    The basis for safety strategy in nuclear industry and especially nuclear power plants is the prevention of radioactivity release inside or outside of the technical installation. Therefore either technical or administrative measures are combined to a general strategy concept. This introduction will explain in more detail the following topics: - basic principles of safety - lines of assurance (LOA) - defense in depth - deterministic and probabilistic methods. This presentation is seen as an introduction to the more detailed discussion following in this course, nevertheless some selected examples will be used to illustrate the aspects of safety strategy development although they might be repeated later on. (orig.)

  15. Extreme loads and associated safety aspects

    International Nuclear Information System (INIS)

    Acomprehensive review highlights progress and new results obtained within the last two years in the field of extreme loads and associated safety aspects. For the time beeing work describing safety-relevant processes excepted as a consequence of the postulated loss of coolant accident is of central importance. Extreme loads might also be imposed on a nuclear power plant following an aircraft-crash, by chemical explosions in the neighbourhood of the plant or by an earthquake, These events are likewise the objectives of intensives experimental or analytical investigations with respect to their implications on nuclear power plants, their results are summarized. (orig.) 891 HP

  16. Aircraft wing structure detail design

    Science.gov (United States)

    Sager, Garrett L.; Roberts, Ron; Mallon, Bob; Alameri, Mohamed; Steinbach, Bill

    1993-01-01

    The provisions of this project call for the design of the structure of the wing and carry-through structure for the Viper primary trainer, which is to be certified as a utility category trainer under FAR part 23. The specific items to be designed in this statement of work were Front Spar, Rear Spar, Aileron Structure, Wing Skin, and Fuselage Carry-through Structure. In the design of these parts, provisions for the fuel system, electrical system, and control routing were required. Also, the total weight of the entire wing planform could not exceed 216 lbs. Since this aircraft is to be used as a primary trainer, and the SOW requires a useful life of 107 cycles, it was decided that all of the principle stresses in the structural members would be kept below 10 ksi. The only drawback to this approach is a weight penalty.

  17. Aircraft measurements of wave cloud

    Directory of Open Access Journals (Sweden)

    Z. Cui

    2012-05-01

    Full Text Available In this paper, aircraft measurements are presented of liquid phase (ice-free wave clouds made at temperatures greater than −5 °C that formed over Scotland, UK. The horizontal variations of the vertical velocity across wave clouds display a distinct pattern. The maximum updraughts occur at the upshear flanks of the clouds and the strong downdraughts at the downshear flanks. The cloud droplet concentrations were a couple of hundreds per cubic centimetres, and the drops generally had a mean diameter between 15–45 μm. A small proportion of the drops were drizzle. A new definition of a mountain-wave cloud is given, based on the measurements presented here and previous studies. The results in this paper provide a case for future numerical simulation of wave cloud and the interaction between wave and clouds.

  18. 77 FR 6694 - Notice of Proposed Policy Clarification for the Registration of Aircraft to U.S. Citizen Trustees...

    Science.gov (United States)

    2012-02-09

    ... aircraft in the United States. See 76 FR 23353 (April 26, 2011). In the notice, the FAA set forth several....403(a) and 91.405. The importance of the owner's role in the FAA's safety oversight system may be best... the USA Patriot Act, the Department of Commerce export control regulations, and the Office of...

  19. 75 FR 26888 - Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Model S-70A and S-70C Helicopters

    Science.gov (United States)

    2010-05-13

    ... Statement in the Federal Register published on April 11, 2000 (65 FR 19477-78). Examining the Docket You may... ``significant rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979); and 3... INFORMATION CONTACT: Terry Fahr, Aviation Safety Engineer, Boston Aircraft Certification Office, 12...

  20. Turboprop aircraft against terrorism: a SWOT analysis of turboprop aircraft in CAS operations

    Science.gov (United States)

    Yavuz, Murat; Akkas, Ali; Aslan, Yavuz

    2012-06-01

    Today, the threat perception is changing. Not only for countries but also for defence organisations like NATO, new threat perception is pointing terrorism. Many countries' air forces become responsible of fighting against terorism or Counter-Insurgency (COIN) Operations. Different from conventional warfare, alternative weapon or weapon systems are required for such operatioins. In counter-terrorism operations modern fighter jets are used as well as helicopters, subsonic jets, Unmanned Aircraft Systems (UAS), turboprop aircraft, baloons and similar platforms. Succes and efficiency of the use of these platforms can be determined by evaluating the conditions, the threats and the area together. Obviously, each platform has advantages and disadvantages for different cases. In this research, examples of turboprop aircraft usage against terrorism and with a more general approach, turboprop aircraft for Close Air Support (CAS) missions from all around the world are reviewed. In this effort, a closer look is taken at the countries using turboprop aircraft in CAS missions while observing the fields these aircraft are used in, type of operations, specifications of the aircraft, cost and the maintenance factors. Thus, an idea about the convenience of using these aircraft in such operations can be obtained. A SWOT analysis of turboprop aircraft in CAS operations is performed. This study shows that turboprop aircraft are suitable to be used in counter-terrorism and COIN operations in low threat environment and is cost benefical compared to jets.

  1. Sun Safety

    Science.gov (United States)

    ... Links Buttons and Badges Stay Informed Cancer Home Sun Safety Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir The sun’s ultraviolet (UV) rays can damage your skin in ...

  2. Aircraft impact on a spherical shell

    International Nuclear Information System (INIS)

    For nuclear power plants located in the immediate vicinity of cities and airports safeguarding against an accidental aircraft strike is important. Because of the complexity of such an aircraft crash the building is ordinarily designed for loading by an idealized dynamical load F(t), which follows from measurements (aircraft striking a rigid wall). The extent to which the elastic displacements of a structure influence the impact load F(t) is investigatd in this paper. The aircraft is idealized by a linear mass-spring-dashpot combination which can easily be treated in computations and which can suffer elastic as well as plastic deformations. This 'aircraft' normally strikes a spherical shell at the apex. The time-dependent reactions of the shell as a function of the unknown impact load F(t) are expanded in terms of the normal modes, which are Legendre functions. The continuity condition at the impact point leads to an integral equation for F(t) which may be solved by Laplace transformation. F(t) is computed for hemispheres with several ratios of thickness to radius, several edge conditions and several 'aircraft' parameters. In all cases F(t) differs very little from that function obtained for the case of the aircraft striking a rigid wall. (Auth.)

  3. Safety first!

    CERN Document Server

    2016-01-01

    Among the many duties I assumed at the beginning of the year was the ultimate responsibility for Safety at CERN: the responsibility for the physical safety of the personnel, the responsibility for the safe operation of the facilities, and the responsibility to ensure that CERN acts in accordance with the highest standards of radiation and environmental protection.   The Safety Policy document drawn up in September 2014 is an excellent basis for the implementation of Safety in all areas of CERN’s work. I am happy to commit during my mandate to help meet its objectives, not least by ensuring the Organization makes available the necessary means to achieve its Safety objectives. One of the main objectives of the HSE (Occupational Health and Safety and Environmental Protection) unit in the coming months is to enhance the measures to minimise CERN’s impact on the environment. I believe CERN should become a role model for an environmentally-aware scientific research laboratory. Risk ...

  4. A contract-based methodology for aircraft electric power system design

    OpenAIRE

    Nuzzo, P; H. Xu; Ozay, N; Finn, JB; Sangiovanni-Vincentelli, AL; Murray, RM; Donzé, A; Seshia, SA

    2014-01-01

    In an aircraft electric power system, one or more supervisory control units actuate a set of electromechanical switches to dynamically distribute power from generators to loads, while satisfying safety, reliability, and real-time performance requirements. To reduce expensive redesign steps, this control problem is generally addressed by minor incremental changes on top of consolidated solutions. A more systematic approach is hindered by a lack of rigorous design methodologies that allow estim...

  5. A comparison of aircraft tire skid with initial wheel rotational speed using ANSYS transient simulation

    OpenAIRE

    Alroqi, Abdurrhman A; Wang, Weiji

    2016-01-01

    Based on heavy aircraft main landing gear tires touchdown skidding process, patents have been registered since the 1940s to improve tire safety, decrease the substantial wear and smoke that results from every landing by spinning the rear wheels before touchdown. A single wheel has been modeled as a mass-spring-damper system using ANSYS mechanical transient simulation to analyze static and pre-rotating wheels behavior during a short period between touchdown and skidding, to spin-up to reach th...

  6. 舰机协同防空中的冲突检测磁%Conflict Detection of Warship-aircraft Cooperatively Anti-aircraft

    Institute of Scientific and Technical Information of China (English)

    刘玉亮; 安景新; 刘忠; 张建强

    2015-01-01

    在当今防空作战情况下中,舰机协同作战成为了当前防空作战的主要方式,但是舰机协同作战中作战空域会出现各类冲突。为保障作战单位的安全,有效对冲突进行探测,获得冲突信息,论文利用网格法对舰机协同作战中的空域进行分割,形成空域单元,研究了各类作战平台对空域的使用情况,提出了基于网格法的冲突探测方法。%In the situation of air combat ,the warship‐aircraft cooperatively anti‐aircraft become the main form of air de‐fense ,but there are many conflicts in airspace .In order to guarantee the safety of the unit ,the conflicts are detected effectu‐ally and the information of conflicts is obtained .In this paper ,the airspace of warship‐aircraft cooperatively anti‐aircraft is comminuted by using the grid method and the airspace cells are obtained .The use of various kinds of platforms of airspace is studied ,and a detection method of conflict based on grid method is proposed .

  7. Improved portable lighting for visual aircraft inspection

    Energy Technology Data Exchange (ETDEWEB)

    Shagam, R.N. [Sandia National Lab., Albuquerque, NM (United States); Lerner, J.; Shie, R. [Physical Optics Corp., Torrance, CA (United States)

    1995-04-01

    The most common tool used by aircraft inspectors is the personal flashlight. While it is compact and very portable, it is generally typified by poor beam quality which can interfere with the ability for an inspector to detect small defects and anomalies, such as cracks and corrosion sites, which may be indicators of major structural problems. A Light Shaping Diffuser{trademark} (LSD) installed in a stock flashlight as a replacement to the lens can improve the uniformity of an average flashlight and improve the quality of the inspection. Field trials at aircraft maintenance facilities have demonstrated general acceptance of the LSD by aircraft inspection and maintenance personnel.

  8. Improved portable lighting for visual aircraft inspection

    Science.gov (United States)

    Shagam, Richard N.; Lerner, Jeremy M.; Shie, Rick

    1995-07-01

    The most common tool used by aircraft inspectors is the personal flashlight. While it is compact and very portable, it is generally typified by poor beam quality which can interfere with the ability for an inspector to detect small defects and anomalies, such as cracks and corrosion sites, which may be indicators of major structural problems. A Light Shaping Diffuser TM (LSD) installed in a stock flashlight as a replacement to the lens can improve the uniformity of an average flashlight and improve the quality of the inspection. Field trials at aircraft maintenance facilities have demonstrated general acceptance of the LSD by aircraft inspection and maintenance personnel.

  9. Aircraft Loss-of-Control Accident Analysis

    Science.gov (United States)

    Belcastro, Christine M.; Foster, John V.

    2010-01-01

    Loss of control remains one of the largest contributors to fatal aircraft accidents worldwide. Aircraft loss-of-control accidents are complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents. To gain a better understanding into aircraft loss-of-control events and possible intervention strategies, this paper presents a detailed analysis of loss-of-control accident data (predominantly from Part 121), including worst case combinations of causal and contributing factors and their sequencing. Future potential risks are also considered.

  10. Aircraft Energy Efficiency (ACEE) status report

    Science.gov (United States)

    Nored, D. L.; Dugan, J. F., Jr.; Saunders, N. T.; Ziemianski, J. A.

    1979-01-01

    Fuel efficiency in aeronautics, for fuel conservation in general as well as for its effect on commercial aircraft operating economics is considered. Projects of the Aircraft Energy Efficiency Program related to propulsion are emphasized. These include: (1) engine component improvement, directed at performance improvement and engine diagnostics for prolonged service life; (2) energy efficient engine, directed at proving the technology base for the next generation of turbofan engines; and (3) advanced turboprop, directed at advancing the technology of turboprop powered aircraft to a point suitable for commercial airline service. Progress in these technology areas is reported.

  11. Processing infrared images of aircraft lapjoints

    Science.gov (United States)

    Syed, Hazari; Winfree, William P.; Cramer, K. E.

    1992-01-01

    Techniques for processing IR images of aging aircraft lapjoint data are discussed. Attention is given to a technique for detecting disbonds in aircraft lapjoints which clearly delineates the disbonded region from the bonded regions. The technique is weak on unpainted aircraft skin surfaces, but can be overridden by using a self-adhering contact sheet. Neural network analysis on raw temperature data has been shown to be an effective tool for visualization of images. Numerical simulation results show the above processing technique to be an effective tool in delineating the disbonds.

  12. 32 CFR 855.15 - Detaining an aircraft.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Detaining an aircraft. 855.15 Section 855.15 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.15 Detaining an...

  13. 42 CFR 71.44 - Disinsection of aircraft.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Disinsection of aircraft. 71.44 Section 71.44... Disinsection of aircraft. (a) The Director may require disinsection of an aircraft if it has left a foreign area that is infected with insect-borne communicable disease and the aircraft is suspected of...

  14. 9 CFR 91.41 - Cleaning and disinfecting of aircraft.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Cleaning and disinfecting of aircraft... INSPECTION AND HANDLING OF LIVESTOCK FOR EXPORTATION Cleaning and Disinfecting of Aircraft § 91.41 Cleaning and disinfecting of aircraft. Prior to loading of animals, the stowage area of aircraft to be used...

  15. 8 CFR 1280.21 - Seizure of aircraft.

    Science.gov (United States)

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Seizure of aircraft. 1280.21 Section 1280... REGULATIONS IMPOSITION AND COLLECTION OF FINES § 1280.21 Seizure of aircraft. Seizure of an aircraft under the authority of section 239 of the Act and § 1280.2 will not be made if such aircraft is damaged to an...

  16. 14 CFR 375.11 - Other foreign civil aircraft.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Other foreign civil aircraft. 375.11... PROCEEDINGS) SPECIAL REGULATIONS NAVIGATION OF FOREIGN CIVIL AIRCRAFT WITHIN THE UNITED STATES Authorization § 375.11 Other foreign civil aircraft. A foreign civil aircraft other than those referred to in §...

  17. 14 CFR 47.51 - Triennial aircraft registration report.

    Science.gov (United States)

    2010-01-01

    ... in the United States; or (iii) A corporation (other than a corporation which is a citizen of the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Triennial aircraft registration report. 47... AIRCRAFT AIRCRAFT REGISTRATION Certificates of Aircraft Registration § 47.51 Triennial...

  18. Formal Modeling and Analysis of a Preliminary Small Aircraft Transportation System (SATS)Concept

    Science.gov (United States)

    Carrreno, Victor A.; Gottliebsen, Hanne; Butler, Ricky; Kalvala, Sara

    2004-01-01

    New concepts for automating air traffic management functions at small non-towered airports raise serious safety issues associated with the software implementations and their underlying key algorithms. The criticality of such software systems necessitates that strong guarantees of the safety be developed for them. In this paper we present a formal method for modeling and verifying such systems using the PVS theorem proving system. The method is demonstrated on a preliminary concept of operation for the Small Aircraft Transportation System (SATS) project at NASA Langley.

  19. SAFETY INSTRUCTION AND SAFETY NOTE

    CERN Multimedia

    TIS Secretariat

    2002-01-01

    Please note that the SAFETY INSTRUCTION N0 49 (IS 49) and the SAFETY NOTE N0 28 (NS 28) entitled respectively 'AVOIDING CHEMICAL POLLUTION OF WATER' and 'CERN EXHIBITIONS - FIRE PRECAUTIONS' are available on the web at the following urls: http://edms.cern.ch/document/335814 and http://edms.cern.ch/document/335861 Paper copies can also be obtained from the TIS Divisional Secretariat, email: TIS.Secretariat@cern.ch

  20. Impact of Advanced Propeller Technology on Aircraft/Mission Characteristics of Several General Aviation Aircraft

    Science.gov (United States)

    Keiter, I. D.

    1982-01-01

    Studies of several General Aviation aircraft indicated that the application of advanced technologies to General Aviation propellers can reduce fuel consumption in future aircraft by a significant amount. Propeller blade weight reductions achieved through the use of composites, propeller efficiency and noise improvements achieved through the use of advanced concepts and improved propeller analytical design methods result in aircraft with lower operating cost, acquisition cost and gross weight.

  1. System safety education focused on flight safety

    Science.gov (United States)

    Holt, E.

    1971-01-01

    The measures necessary for achieving higher levels of system safety are analyzed with an eye toward maintaining the combat capability of the Air Force. Several education courses were provided for personnel involved in safety management. Data include: (1) Flight Safety Officer Course, (2) Advanced Safety Program Management, (3) Fundamentals of System Safety, and (4) Quantitative Methods of Safety Analysis.

  2. Directional monitoring terminal for aircraft noise

    Science.gov (United States)

    Genescà, M.

    2016-07-01

    This paper presents a concept of an aircraft noise monitoring terminal (NMT) that reduces background noise and the influence of ground reflection, in comparison with a single microphone. Also, it automatically identifies aircraft sound events based on the direction of arrival of the sound rather than on the sound pressure level (or radar data). And moreover, it provides an indicator of the quality of the sound pressure level measurement, i.e. if it is possibly disturbed by extraneous sources. The performance of this NMT is experimentally tested under real conditions in a measurement site close to Zurich airport. The results show that the NMT unambiguously identifies the noise events generated by the target aircraft, correctly detects those aircraft noise events that may be disturbed by the presence of other sources, and offers a substantial reduction in background and ground reflected sound.

  3. Modular Electric Propulsion Test Bed Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An all electric aircraft test bed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered...

  4. Smart structure application for the Challenger aircraft

    Science.gov (United States)

    Grenier, L.; Blaha, Franz A.

    1994-09-01

    The Challenger aircraft fleet of the Canadian Forces will fly demanding missions, requiring the implementation of a fatigue management program based on the monitoring of in-flight aircraft load conditions. Conventional sensing techniques experience problems arising from severe electromagnetic interference (EMI). This paper describes the development of an EMI- insensitive smart-structure sensing concept for loads monitoring. Fiber-optic strain sensors, incorporated at critical structural locations, are used to monitor the fatigue life of the aircraft wing, fuselage, and empennage. A fiber-optic accelerometer is also incorporated in the system. A long-term plan is presented for the development of an advanced smart-structure concept which can support the continuous monitoring of fatigue-prone components, and provide the aircraft with near real-time damage location and assessment.

  5. Modular Electric Propulsion Test Bed Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A hybrid electric aircraft simulation system and test bed is proposed to provide a dedicated development environment for the rigorous study and advancement of...

  6. The drive for Aircraft Energy Efficiency

    Science.gov (United States)

    James, R. L., Jr.; Maddalon, D. V.

    1984-01-01

    NASA's Aircraft Energy Efficiency (ACEE) program, which began in 1976, has mounted a development effort in four major transport aircraft technology fields: laminar flow systems, advanced aerodynamics, flight controls, and composite structures. ACEE has explored two basic methods for achieving drag-reducing boundary layer laminarization: the use of suction through the wing structure (via slots or perforations) to remove boundary layer turbulence, and the encouragement of natural laminar flow maintenance through refined design practices. Wind tunnel tests have been conducted for wide bodied aircraft equipped with high aspect ratio supercritical wings and winglets. Maneuver load control and pitch-active stability augmentation control systems reduce fuel consumption by reducing the drag associated with high aircraft stability margins. Composite structures yield lighter airframes that in turn call for smaller wing and empennage areas, reducing induced drag for a given payload. In combination, all four areas of development are expected to yield a fuel consumption reduction of 40 percent.

  7. Engineering students win NASA aircraft design competition

    OpenAIRE

    Crumbley, Liz

    2004-01-01

    Centuria," a single-engine jet aircraft designed by undergraduate engineering students from Virginia Tech and their counterparts at Loughborough University in the U.K., has won the Best Overall Award in NASA's 2004 Revolutionary Vehicles and Concepts Competition.

  8. Aircraft Nodal Data Acquisition System (ANDAS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of an Aircraft Nodal Data Acquisition System (ANDAS) is proposed. The proposed methodology employs the development of a very thin (135m) hybrid...

  9. Aircraft Nodal Data Acquisition System (ANDAS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of an Aircraft Nodal Data Acquisition System (ANDAS) based upon the short haul Zigbee networking standard is proposed. It employs a very thin (135 um)...

  10. Investigation of aircraft vortex wake structure

    Science.gov (United States)

    Baranov, N. A.; Turchak, L. I.

    2014-11-01

    In this work we analyze the mechanisms of formation of the vortex wake structure of aircraft with different wing shape in the plan flying close to or away from the underlying surface cleaned or released mechanization wing.

  11. Titanium in fatigue critical military aircraft structure

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, F.

    1999-07-01

    This paper discusses the effect of fatigue requirements on titanium structure in military aircraft applications, specifically, fighter aircraft. The discussion covers how fatigue affects the design and analysis of detail parts, and how manufacturing processes affect the fatigue performance of titanium structure. Criteria for designing fighter aircraft have evolved from simple strength calculations to extremely complex computer generated analyses involving strength, durability, damage tolerance and fatigue. Fatigue life prediction is an important part of these analyses and dramatically affects the design and weight of fighter aircraft. Manufacturing processes affect fatigue performance both in a positive and negative manner. Designers must allow for the effect of these processes on titanium structure and consider the efficiency and economy of adding processes that increase fatigue life.

  12. Thermal Management System for Superconducting Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft powered by hydrogen power plants or gas turbines driving electric generators connected to distributed electric motors for propulsion have the potential to...

  13. Tips for Travel and Aircraft Flight

    Science.gov (United States)

    ... Knowledge and support Tips for Travel and Aircraft Flight Category: FAQ's Tags: Risks Archives Breast Cancer Survivors ... limb carefully) and apply pressure as needed. DURING FLIGHT Keep your seat belt loosely fastened so that ...

  14. Design of heavy lift cargo aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the bird of the skies of the future. The heavy lift cargo aircraft which is currently being developed by me has twice the payload capacity of an Antonov...

  15. Emerging nondestructive inspection methods for aging aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, A; Dahlke, L; Gieske, J [and others

    1994-01-01

    This report identifies and describes emerging nondestructive inspection (NDI) methods that can potentially be used to inspect commercial transport and commuter aircraft for structural damage. The nine categories of emerging NDI techniques are: acoustic emission, x-ray computed tomography, backscatter radiation, reverse geometry x-ray, advanced electromagnetics, including magnetooptic imaging and advanced eddy current techniques, coherent optics, advanced ultrasonics, advanced visual, and infrared thermography. The physical principles, generalized performance characteristics, and typical applications associated with each method are described. In addition, aircraft inspection applications are discussed along with the associated technical considerations. Finally, the status of each technique is presented, with a discussion on when it may be available for use in actual aircraft maintenance programs. It should be noted that this is a companion document to DOT/FAA/CT-91/5, Current Nondestructive Inspection Methods for Aging Aircraft.

  16. 77 FR 36341 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Science.gov (United States)

    2012-06-18

    ... and Aircraft Engines; Emission Standards and Test Procedures;'' Final Rule, 70 FR 2521, November 17... From Aircraft and Aircraft Engines; Emission Standards and Test Procedures; Final Rule #0;#0;Federal...: Final rule. SUMMARY: EPA is adopting several new aircraft engine emission standards for oxides...

  17. Learning the Task Management Space of an Aircraft Approach Model

    Science.gov (United States)

    Krall, Joseph; Menzies, Tim; Davies, Misty

    2014-01-01

    Validating models of airspace operations is a particular challenge. These models are often aimed at finding and exploring safety violations, and aim to be accurate representations of real-world behavior. However, the rules governing the behavior are quite complex: nonlinear physics, operational modes, human behavior, and stochastic environmental concerns all determine the responses of the system. In this paper, we present a study on aircraft runway approaches as modeled in Georgia Tech's Work Models that Compute (WMC) simulation. We use a new learner, Genetic-Active Learning for Search-Based Software Engineering (GALE) to discover the Pareto frontiers defined by cognitive structures. These cognitive structures organize the prioritization and assignment of tasks of each pilot during approaches. We discuss the benefits of our approach, and also discuss future work necessary to enable uncertainty quantification.

  18. On the methods and examples of aircraft impact analysis

    International Nuclear Information System (INIS)

    Conclusions: Aircraft impact analysis can be performed today within feasible run times using PCs and available advanced commercial finite element software tools. Adequate element and material model technologies exist. Explicit time integration enables analysis of very large deformation Missile/Target impacts. Meshless/particle based methods may be beneficial for large deformation concrete “punching shear” analysis – potentially solves the “element erosion” problem associated with FE, but are not generally implemented yet in major commercial software. Verification of the complicated modeling technologies continues to be a challenge. Not much work has been done yet on ACI shock loading – redundant and physically separated safety trains key to success. Analysis approach and detail should be “balanced” - commensurate with the significant uncertainties - do not “over-do” details of some parts of the model (e.g., the plane) and the analysis

  19. Aircraft Noise and Quality of Life around Frankfurt Airport

    OpenAIRE

    Thomas Eikmann; Christin Peschel; Cara Kahl; Dirk Schreckenberg; Markus Meis

    2010-01-01

    In a survey of 2,312 residents living near Frankfurt Airport aircraft noise annoyance and disturbances as well as environmental (EQoL) and health-related quality of life (HQoL) were assessed and compared with data on exposure due to aircraft, road traffic, and railway noise. Results indicate higher noise annoyance than predicted from general exposure-response curves. Beside aircraft sound levels source-related attitudes were associated with reactions to aircraft noise. Furthermore, aircraft n...

  20. Maintenance program developmentandImport /Export of Aircraft in USA

    OpenAIRE

    Takele, Teklu

    2009-01-01

    AbstractThis thesis discuss how United Parcel Service (UPS) develop its aircraft maintenanceprogram after import of McDonnell Douglas MD-11aircraft and the process of exporting newMD-11 aircraft from manufacturer in USA to European operator as passenger aircraft. It alsodiscusses the process of importing the same types of aircraft as freight carrier. The aircraftundergo, through different modifications at Singapore Technologies Aerospace (STA)conversion from passenger to freight carrier, a pr...

  1. Aircraft Noise: Annoyance, House Prices and Valuation

    OpenAIRE

    Brooker, Peter

    2006-01-01

    “Nobody wants to buy your house. It’s the aircraft noise. You’ll have to reduce the price a lot.” Aircraft noise around airports causes annoyance, and tends to reduce the price of affected properties. Can annoyance be ‘costed’ by examining house price reductions? Are there other ways of valuing annoyance in monetary terms? This short paper summarises key research results and poses some questions.

  2. Research on Emerging and Descending Aircraft Noise

    OpenAIRE

    Monika Bartkevičiūtė; Raimondas Grubliauskas

    2013-01-01

    Along with an increase in the aircraft engine power and growth in air traffic, noise level at airports and their surrounding environs significantly increases. Aircraft noise is high level noise spreading within large radius and intensively irritating the human body. Air transport is one of the main sources of noise having a particularly strong negative impact on the environment. The article deals with activities and noises taking place in the largest nationwide Vilnius International Airport.T...

  3. Incidence of Fungal attack on Aircraft Fuselage

    Directory of Open Access Journals (Sweden)

    H. M. Dayal

    1968-10-01

    Full Text Available Incidence of fungal attack on the fuselage of a few Vampire aircraft has been observed. The fungus isolated from the infected regions has been tentatively indentified as TorulaSp. Laboratory experiments have revealed that within four weeks this fungus causes about 44 percent loss in the tensile strength of the brich plywood used in the manufacture of the fuselage of the aircraft.

  4. An Optimization Model for Aircraft Service Logistics

    Institute of Scientific and Technical Information of China (English)

    Angus; Cheung; W; H; Ip; Angel; Lai; Eva; Cheung

    2002-01-01

    Scheduling is one of the most difficult issues in t he planning and operations of the aircraft services industry. In this paper, t he various scheduling problems in ground support operation of an aircraft mainte nance service company are addressed. The authors developed a set of vehicle rout ings to cover each schedule flights; the objectives pursued are the maximization of vehicle and manpower utilization and minimization of operation time. To obta in the goals, an integer-programming model with geneti...

  5. Review of Aircraft Engine Fan Noise Reduction

    Science.gov (United States)

    VanZante, Dale

    2008-01-01

    Aircraft turbofan engines incorporate multiple technologies to enhance performance and durability while reducing noise emissions. Both careful aerodynamic design of the fan and proper installation of the fan into the system are requirements for achieving the performance and acoustic objectives. The design and installation characteristics of high performance aircraft engine fans will be discussed along with some lessons learned that may be applicable to spaceflight fan applications.

  6. Anti-aircraft Missiles and Gun Control

    OpenAIRE

    BLOCK, Walter

    2016-01-01

    Abstract. Gun control is a highly debatable topic both in the popular and scholarly media. But what about anti-aircraft missiles? Should they be banned? On the one hand, there are fewer of them around, so their challenge is more tractable. On the other hand, they can do far more damage than handguns. The present paper is an attempt to wrestle with this challenge.Keywords. Gun control, Second amendment, Libertarianism, Anti-aircraft missiles.JEL. K15.

  7. Computer Aided Visual Inspection of Aircraft Surfaces

    OpenAIRE

    Rafia Mumtaz; Mustafa Mumtaz; Atif Bin Mansoor; Hassan Masood

    2012-01-01

    Non Destructive Inspections (NDI) plays a vital role in aircraft industry as it determines the structural integrity of aircraft surface and material characterization. The existing NDI methods are time consuming, we propose a new NDI approach using Digital Image Processing that has the potential to substantially decrease the inspection time. Automatic Marking of cracks have been achieved through application of Thresholding, Gabor Filter and Non Subsampled Contourlet transform. For a novel meth...

  8. Smart fastener technology for aging aircraft

    Science.gov (United States)

    Schoess, Jeffrey N.; Paul, Clare A.

    1995-04-01

    Hidden and inaccessible corrosion in aircraft structures is the number 1 logistics problem for the Air Force, with an estimated maintenance cost of greater than one billion dollars per year. The smart aircraft fastener evaluation (SAFE) system is being developed to detect and characterize corrosion factors in hidden locations of aircraft structures. The SAFE concept is a novel `in-situ' measurement approach that measures and autonomously records several environmental factors (i.e., pH, temperature, chloride) associated with corrosion. The SAFE system integrated an electrochemical-based microsensor array directly into the aircraft structure to measure the evidence of active corrosion as an in-situ measurement without reducing aircraft structural integrity. The long term-payoff for the SAFE system will be in predictive maintenance for fixed and rotary wing aircraft structures, industrial tanks, and fugitive emissions applications such as control valves, chemical pipeline vessels, and industrial boilers. Predictive maintenance capability, service and repair will replace the current practice of scheduled maintenance to substantially reduce operational costs.

  9. A service life extension (SLEP) approach to operating aging aircraft beyond their original design lives

    Science.gov (United States)

    Pentz, Alan Carter

    With today's uncertain funding climate (including sequestration and continuing budget resolutions), decision makers face severe budgetary challenges to maintain dominance through all aspects of the Department of Defense (DoD). To meet war-fighting capabilities, the DoD continues to extend aircraft programs beyond their design service lives by up to ten years, and occasionally much more. The budget requires a new approach to traditional extension strategies (i.e., reuse, reset, and reclamation) for structural hardware. While extending service life without careful controls can present a safety concern, future operations planning does not consider how much risk is present when operating within sound structural principles. Traditional structural hardware extension methods drive increased costs. Decision makers often overlook the inherent damage tolerance and fatigue capability of structural components and rely on simple time- and flight-based cycle accumulation when determining aircraft retirement lives. This study demonstrates that decision makers should consider risk in addition to the current extension strategies. Through an evaluation of eight military aircraft programs and the application and simulation of F-18 turbine engine usage data, this dissertation shows that insight into actual aircraft mission data, consideration of fatigue capability, and service extension length are key factors to consider. Aircraft structural components, as well as many critical safety components and system designs, have a predefined level of conservatism and inherent damage tolerance. The methods applied in this study would apply to extensions of other critical structures such as bridges. Understanding how much damage tolerance is built into the design compared to the original design usage requirements presents the opportunity to manage systems based on risk. The study presents the sensitivity of these factors and recommends avenues for further research.

  10. Complexity and Pilot Workload Metrics for the Evaluation of Adaptive Flight Controls on a Full Scale Piloted Aircraft

    Science.gov (United States)

    Hanson, Curt; Schaefer, Jacob; Burken, John J.; Larson, David; Johnson, Marcus

    2014-01-01

    Flight research has shown the effectiveness of adaptive flight controls for improving aircraft safety and performance in the presence of uncertainties. The National Aeronautics and Space Administration's (NASA)'s Integrated Resilient Aircraft Control (IRAC) project designed and conducted a series of flight experiments to study the impact of variations in adaptive controller design complexity on performance and handling qualities. A novel complexity metric was devised to compare the degrees of simplicity achieved in three variations of a model reference adaptive controller (MRAC) for NASA's F-18 (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) Full-Scale Advanced Systems Testbed (Gen-2A) aircraft. The complexity measures of these controllers are also compared to that of an earlier MRAC design for NASA's Intelligent Flight Control System (IFCS) project and flown on a highly modified F-15 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois). Pilot comments during the IRAC research flights pointed to the importance of workload on handling qualities ratings for failure and damage scenarios. Modifications to existing pilot aggressiveness and duty cycle metrics are presented and applied to the IRAC controllers. Finally, while adaptive controllers may alleviate the effects of failures or damage on an aircraft's handling qualities, they also have the potential to introduce annoying changes to the flight dynamics or to the operation of aircraft systems. A nuisance rating scale is presented for the categorization of nuisance side-effects of adaptive controllers.

  11. High altitude aircraft flight tests

    Science.gov (United States)

    Helmken, Henry; Emmons, Peter; Homeyer, David

    1996-03-01

    In order to make low earth orbit L-band propagation measurements and test new voice communication concepts, a payload was proposed and accepted for flight aboard the COMET (now METEOR) spacecraft. This Low Earth Orbiting EXperiment payload (LEOEX) was designed and developed by Motorola Inc. and sponsored by the Space Communications Technology Center (SCTC), a NASA Center for the Commercial Development of Space (CCDS) located at Florida Atlantic University. In order to verify the LEOEX payload for satellite operation and obtain some preliminary propagation data, a series of 9 high altitude aircraft (SR-71 and ER-2) flight tests were conducted. These flights took place during a period of 7 months, from October 1993 to April 1994. This paper will summarize the operation of the LEOEX payload and the particular configuration used for these flights. The series of flyby tests were very successful and demonstrated how bi-directional, Time Division Multiple Access (TDMA) voice communication will work in space-to-ground L-band channels. The flight tests also acquired propagation data which will be representative of L-band Low Earth Orbiting (LEO) communication systems. In addition to verifying the LEOEX system operation, it also uncovered and ultimately aided the resolution of several key technical issues associated with the payload.

  12. Beamforming for aircraft noise measurements

    Science.gov (United States)

    Dougherty, Robert P.

    2003-10-01

    Phased array beamforming for aircraft noise source location has a long history, including early work on jet noise, wind tunnel measurements, and flyover testing. In the last 10 years, advancements in sparse 2-D and 3-D arrays, wind tunnel test techniques, and computer power have made phased array measurements almost common. Large aerospace companies and national research institutes have an advantage in access to major facilities and hundreds of measurement microphones, but universities and even consulting companies can perform tests with electret microphones and PC data acquisition systems. The type of testing remains a blend of science and art. A complex noise source is approximated by a mathematical model, and the microphones are deployed to evaluate the parameters of the model. For example, the simplest, but often the best, approach is to assume a distribution of mutually incoherent monopoles. This leads to an imaging process analogous to photography. Other models include coherent distributions of multipoles or duct modes. It is sometimes important to simulate the results that would have been obtained from single microphone measurements of part of the airplane in an ideal environment, had such measurements been feasible.

  13. Intelligent control of agile aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Mohler, R.R.; Zakrzewski, R.R. [Dept. of Electrical and Computer Engineering, Corvallis, OR (United States)

    1994-12-31

    A brief overview of adaptive and computer-aided flight control is presented as background for the evolution of recent research on nonlinear intelligent control. Here, several nonlinear control algorithms are investigated but emphasis is given to nearly time-optimal, neural-net generated feedback control which is trained on ideal minimum-time, open-loop trajectories. The minimum-time policies are computed by a new version of the switching-line-variational method (gradient algorithm). Critical control constraints and a benchmark for performance as well as a basis for training are obtained for the system design. This further demonstrates the need for an integrated controls and aircraft system design for full utilization of nonlinear control capability. Complex nonlinear simulations show the effectiveness of the derived nonlinear feedback controller for the high-angle-of-attack research vehicle (HARV) with stabilator and thrust-vector control. For example, angle of attack is controlled from near zero to sixty degrees in about two seconds with appropriate trim conditions at both ends. Such control greatly enhances maneuverability and general flight envelope admissibility.

  14. Operational safety

    International Nuclear Information System (INIS)

    The PNL Safety, Standards and Compliance Program contributed to the development and issuance of safety policies, standards, and criteria; for projects in the nuclear and nonnuclear areas. During 1976 the major emphasis was on developing criteria, instruments and methods to assure that radiation exposure to occupational personnel and to people in the environs of nuclear-related facilities is maintained at the lowest level technically and economically practicable. Progress in 1976 is reported on the preparation of guidelines for radiation exposure; Pu dosimetry studies; the preparation of an environmental monitoring handbook; and emergency instrumentation preparedness

  15. On Integrating Unmanned Aircraft Systems into the National Airspace System Issues, Challenges, Operational Restrictions, Certification, and Recommendations

    CERN Document Server

    Dalamagkidis, Konstantinos; Piegl, Les A

    2012-01-01

    This book presents, in a comprehensive way, current unmanned aviation regulation, airworthiness certification, special aircraft categories, pilot certification, federal aviation requirements, operation rules, airspace classes and regulation development models. It discusses unmanned aircraft systems levels of safety derived mathematically based on the corresponding levels for manned aviation. It provides an overview of the history and current status of UAS airworthiness and operational regulation worldwide. Existing regulations have been developed considering the need for a complete regulatory framework for UAS. It focuses on UAS safety assessment and functional requirements, achieved in terms of defining an “Equivalent Level of Safety”, or ELOS, with that of manned aviation, specifying what the ELOS requirement entails for UAS regulations. To accomplish this, the safety performance of manned aviation is first evaluated, followed by a novel model to derive reliability requirements for achieving target lev...

  16. SAFETY BULLETIN

    CERN Multimedia

    TIS Secretariat

    2002-01-01

    Please note that the Safety Bulletin no 4 (TIS 2002-04) entitled 'KNOW THE RISKS' is available on the web. Paper copies can also be obtained from the TIS Divisional Secretariat, e-mail: TIS.Secretariat@cern.ch TIS Secretariat

  17. Probing Aircraft Flight Test Hazard Mitigation for the Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) Research Team . Volume 2; Appendices

    Science.gov (United States)

    Kelly, Michael J.

    2013-01-01

    The Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) Project Integration Manager requested in July 2012 that the NASA Engineering and Safety Center (NESC) form a team to independently assess aircraft structural failure hazards associated with the ACCESS experiment and to identify potential flight test hazard mitigations to ensure flight safety. The ACCESS Project Integration Manager subsequently requested that the assessment scope be focused predominantly on structural failure risks to the aircraft empennage (horizontal and vertical tail). This report contains the Appendices to Volume I.

  18. Common factors in the withdrawal of European aircraft manufacturers from the regional aircraft market

    NARCIS (Netherlands)

    Heerkens, Hans; Bruijn, de Erik J.; Steenhuis, Harm-Jan

    2010-01-01

    We investigate whether there were common causes for the withdrawal from the regional aircraft market of three established manufacturers (BAE Systems, Fokker and Saab), while competitors thrived. We focus on the markets for 50- and 100-seat aircraft. One cause concerning the 50-seat market was the in

  19. Conceptual design of high speed supersonic aircraft: A brief review on SR-71 (Blackbird) aircraft

    Science.gov (United States)

    Xue, Hui; Khawaja, H.; Moatamedi, M.

    2014-12-01

    The paper presents the conceptual design of high-speed supersonic aircraft. The study focuses on SR-71 (Blackbird) aircraft. The input to the conceptual design is a mission profile. Mission profile is a flight profile of the aircraft defined by the customer. This paper gives the SR-71 aircraft mission profile specified by US air force. Mission profile helps in defining the attributes the aircraft such as wing profile, vertical tail configuration, propulsion system, etc. Wing profile and vertical tail configurations have direct impact on lift, drag, stability, performance and maneuverability of the aircraft. A propulsion system directly influences the performance of the aircraft. By combining the wing profile and the propulsion system, two important parameters, known as wing loading and thrust to weight ratio can be calculated. In this work, conceptual design procedure given by D. P. Raymer (AIAA Educational Series) is applied to calculate wing loading and thrust to weight ratio. The calculated values are compared against the actual values of the SR-71 aircraft. Results indicates that the values are in agreement with the trend of developments in aviation.

  20. Safety Performance of Airborne Separation: Preliminary Baseline Testing

    Science.gov (United States)

    Consiglio, Maria C.; Hoadley, Sherwood T.; Wing, David J.; Baxley, Brian T.

    2007-01-01

    The Safety Performance of Airborne Separation (SPAS) study is a suite of Monte Carlo simulation experiments designed to analyze and quantify safety behavior of airborne separation. This paper presents results of preliminary baseline testing. The preliminary baseline scenario is designed to be very challenging, consisting of randomized routes in generic high-density airspace in which all aircraft are constrained to the same flight level. Sustained traffic density is varied from approximately 3 to 15 aircraft per 10,000 square miles, approximating up to about 5 times today s traffic density in a typical sector. Research at high traffic densities and at multiple flight levels are planned within the next two years. Basic safety metrics for aircraft separation are collected and analyzed. During the progression of experiments, various errors, uncertainties, delays, and other variables potentially impacting system safety will be incrementally introduced to analyze the effect on safety of the individual factors as well as their interaction and collective effect. In this paper we report the results of the first experiment that addresses the preliminary baseline condition tested over a range of traffic densities. Early results at five times the typical traffic density in today s NAS indicate that, under the assumptions of this study, airborne separation can be safely performed. In addition, we report on initial observations from an exploration of four additional factors tested at a single traffic density: broadcast surveillance signal interference, extent of intent sharing, pilot delay, and wind prediction error.

  1. Smart aircraft fastener evaluation (SAFE) system: a condition-based corrosion detection system for aging aircraft

    Science.gov (United States)

    Schoess, Jeffrey N.; Seifert, Greg; Paul, Clare A.

    1996-05-01

    The smart aircraft fastener evaluation (SAFE) system is an advanced structural health monitoring effort to detect and characterize corrosion in hidden and inaccessible locations of aircraft structures. Hidden corrosion is the number one logistics problem for the U.S. Air Force, with an estimated maintenance cost of $700M per year in 1990 dollars. The SAFE system incorporates a solid-state electrochemical microsensor and smart sensor electronics in the body of a Hi-Lok aircraft fastener to process and autonomously report corrosion status to aircraft maintenance personnel. The long-term payoff for using SAFE technology will be in predictive maintenance for aging aircraft and rotorcraft systems, fugitive emissions applications such as control valves, chemical pipeline vessels, and industrial boilers. Predictive maintenance capability, service, and repair will replace the current practice of scheduled maintenance to substantially reduce operational costs. A summary of the SAFE concept, laboratory test results, and future field test plans is presented.

  2. Reliability Analysis of Aircraft Condition Monitoring Network Using an Enhanced BDD Algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHAO Changxiao; CHEN Yao; WANG Hailiang; XIONG Huagang

    2012-01-01

    The aircraft condition monitoring network is responsible for collecting the status of each component in aircraft.The reliability of this network has a significant effect on safety of the aircraft.The aircraft condition monitoring network works in a real-time manner that all the data should be transmitted within the deadline to ensure that the control center makes proper decision in time.Only the connectedness between the source node and destination cannot guarantee the data to be transmitted in time.In this paper,we take the time deadline into account and build the task-based reliability model.The binary decision diagram (BDD),which has the merit of efficiency in computing and storage space,is introduced when calculating the reliability of the network and addressing the essential variable.A case is analyzed using the algorithm proposed in this paper.The experimental results show that our method is efficient and proper for the reliability analysis of the real-time network.

  3. Quasi-ADS-B Based UAV Conflict Detection and Resolution to Manned Aircraft

    Directory of Open Access Journals (Sweden)

    Chin E. Lin

    2015-01-01

    Full Text Available A Conflict Detection and Resolution (CD&R system for manned/unmanned aerial vehicle (UAV based on Automatic Dependent Surveillance-Broadcast (ADS-B concept is designed and verified in this paper. The 900 MHz XBee-Pro is selected as data transponder to broadcast flight information among participating aircraft in omnirange. Standard Compact Position Report (CPR format packet data are automatically broadcasted by ID sequencing under Quasi-ADS-B mechanism. Time Division Multiple Access (TDMA monitoring checks the designated time slot and reallocates the conflict ID. This mechanism allows the transponder to effectively share data with multiple aircraft in near airspace. The STM32f103 microprocessor is designed to handle RF, GPS, and flight data with Windows application on manned aircraft and ground control station simultaneously. Different conflict detection and collision avoidance algorithms can be implemented into the system to ensure flight safety. The proposed UAV/CD&R using Quasi-ADS-B transceiver is tested using ultralight aircraft flying at 100–120 km/hr speed in small airspace for mission simulation. The proposed hardware is also useful to additional applications to mountain hikers for emergency search and rescue. The fundamental function by the proposed UAV/CD&R using Quasi-ADS-B is verified with effective signal broadcasting for surveillance and efficient collision alert and avoidance performance to low altitude flights.

  4. Evaluating the compliance of Keck's LGSAO automated aircraft protection system with FAA adopted criteria

    Science.gov (United States)

    Stomski, Paul J.; Campbell, Randy; Murphy, Thomas W.

    2014-07-01

    The W. M. Keck Observatory (WMKO) applied for and received a determination of no-objection from the Federal Aviation Administration (FAA) for laser guide star adaptive optics (LGS-AO) operations using an automated aircraft protection system (APS) in late 2013. WMKO's APS, named AIRSAFE, uses transponder based aircraft detection (TBAD) to replace human aircraft spotters. The FAA required WMKO to self-certify AIRSAFE compliance with SAE Aerospace Standard 6029A: "Performance Criteria for Laser Control Measures Used for Aviation Safety"[1] (AS- 6029A). AS-6029A prescribes performance and administrative criteria for an APS; essentially, requiring AIRSAFE to adequately protect all types of aircraft, traveling at any speed, altitude, distance and direction reasonably expected in the operating environment. A description of the analysis that comprises this compliance evaluation is the main focus of this paper. Also discussed is the AIRSAFE compliance with AS-6029A administrative criteria that includes characterization of site specific air traffic, failure modes, limitations, operating procedures, preventative maintenance procedures, and periodic system test procedures.

  5. Formal Methods in Air Traffic Management: The Case of Unmanned Aircraft Systems

    Science.gov (United States)

    Munoz, Cesar A.

    2015-01-01

    As the technological and operational capabilities of unmanned aircraft systems (UAS) continue to grow, so too does the need to introduce these systems into civil airspace. Unmanned Aircraft Systems Integration in the National Airspace System is a NASA research project that addresses the integration of civil UAS into non-segregated airspace operations. One of the major challenges of this integration is the lack of an onboard pilot to comply with the legal requirement that pilots see and avoid other aircraft. The need to provide an equivalent to this requirement for UAS has motivated the development of a detect and avoid (DAA) capability to provide the appropriate situational awareness and maneuver guidance in avoiding and remaining well clear of traffic aircraft. Formal methods has played a fundamental role in the development of this capability. This talk reports on the formal methods work conducted under NASA's Safe Autonomous System Operations project in support of the development of DAA for UAS. This work includes specification of low-level and high-level functional requirements, formal verification of algorithms, and rigorous validation of software implementations. The talk also discusses technical challenges in formal methods research in the context of the development and safety analysis of advanced air traffic management concepts.

  6. A novel hovering type of fixed wing aircraft with stealth capability

    Directory of Open Access Journals (Sweden)

    Valeriu DRĂGAN

    2010-12-01

    Full Text Available The tactical need for fixed wing aircraft with hovering capably has long been recognized bythe military for two reasons: increased safety when landing on aircraft carriers and higher velocitiesthat the ones obtainable with rotary wing aircraft.Thus far, the only concept governing the field of vertical flight was to use thrust either from a liftfan-F35, puffer ducts –Harrier or smaller jet engines-D0 31 or Yak-141, i.e. direct lift thrust.In this paper we will look at the prospect of using a combination of the Coanda effect with theVenturi effect to generate lift by so- called “supercirculation”. This novel approach can yield manyadvantages to conventional vertical lifting by providing a more stable platform and requiring lowerpower settings – and thus lower fuel consumption.The aircraft has a fixed, negatively sweped wing that uses circulation control to achieve lift atzero air speed. The fluid used for supercirculation will come from the fan thrust reversers – which, ifcorrectly managed, can give a sufficient flow for lifting the craft and also a negative thrust componentto compensate for the positive thrust of the primary flow (not diverted.

  7. On the use of a compact optical fiber sensor system in aircraft structural health monitoring

    Science.gov (United States)

    Mrad, Nezih; Guo, Honglei; Xiao, Gaozhi; Rocha, Bruno; Sun, Zhigang

    2012-06-01

    Structural Health Monitoring (SHM) has been identified as an area of significant potential for advanced aircraft maintenance programs that ensure continued airworthiness, enhanced operational safety and reduced life cycle cost. Several sensors and sensory systems have been developed for the implementation of such health monitoring capability. Among a wide range of developed technologies, fiber optic sensor technology, in particular fiber Bragg grating based emerged as one of the most promising for aircraft structural applications. This paper is set to explore the suitability of using a new Fiber Bragg Grating sensor (FBG) system developed for operation in two modes, low and high speed sensing modes, respectively. The suitability of the system for potential use in aircraft load monitoring and damage detection applications has been demonstrated. Results from FBG sensor system were in good agreement with results from conventional resistive strain gauges, validating this capability for load monitoring. For damage detection, the FBG sensor system was able to detect acoustic waves generated 52 inches (1.32 m) away. The initial results, obtained in a full stale experimentation, demonstrate the potential of using FBG sensors for both load monitoring and damage detection in aircraft environment.

  8. Safety Assurance in NextGen

    Science.gov (United States)

    HarrisonFleming, Cody; Spencer, Melissa; Leveson, Nancy; Wilkinson, Chris

    2012-01-01

    The generation of minimum operational, safety, performance, and interoperability requirements is an important aspect of safely integrating new NextGen components into the Communication Navigation Surveillance and Air Traffic Management (CNS/ATM) system. These requirements are used as part of the implementation and approval processes. In addition, they provide guidance to determine the levels of design assurance and performance that are needed for each element of the new NextGen procedures, including aircraft, operator, and Air Navigation and Service Provider. Using the enhanced Airborne Traffic Situational Awareness for InTrail Procedure (ATSA-ITP) as an example, this report describes some limitations of the current process used for generating safety requirements and levels of required design assurance. An alternative process is described, as well as the argument for why the alternative can generate more comprehensive requirements and greater safety assurance than the current approach.

  9. Small Autonomous Aircraft Servo Health Monitoring

    Science.gov (United States)

    Quintero, Steven

    2008-01-01

    Small air vehicles offer challenging power, weight, and volume constraints when considering implementation of system health monitoring technologies. In order to develop a testbed for monitoring the health and integrity of control surface servos and linkages, the Autonomous Aircraft Servo Health Monitoring system has been designed for small Uninhabited Aerial Vehicle (UAV) platforms to detect problematic behavior from servos and the air craft structures they control, This system will serve to verify the structural integrity of an aircraft's servos and linkages and thereby, through early detection of a problematic situation, minimize the chances of an aircraft accident. Embry-Riddle Aeronautical University's rotary-winged UAV has an Airborne Power management unit that is responsible for regulating, distributing, and monitoring the power supplied to the UAV's avionics. The current sensing technology utilized by the Airborne Power Management system is also the basis for the Servo Health system. The Servo Health system measures the current draw of the servos while the servos are in Motion in order to quantify the servo health. During a preflight check, deviations from a known baseline behavior can be logged and their causes found upon closer inspection of the aircraft. The erratic behavior nay include binding as a result of dirt buildup or backlash caused by looseness in the mechanical linkages. Moreover, the Servo Health system will allow elusive problems to be identified and preventative measures taken to avoid unnecessary hazardous conditions in small autonomous aircraft.

  10. Improving Aircraft Design Robustness with Scenario Methods

    Directory of Open Access Journals (Sweden)

    A. Strohmayer

    2001-01-01

    Full Text Available Compared to other industries, the aerospace sector is characterized by long product cycles in a very complex environment. The aircraft manufacturer has to base his product strategy on a long-term view of risks and opportunities in the transport industry but he cannot predict the development of relevant factors in this market environment with any certainty. In this situation, scenario methods offer a pragmatic way to limit the uncertainties and to work them up methodically, in order to derive recommendations for cost-intensive strategic decisions like for example the go-ahead for a new aircraft concept. By including scenario methods in the aircraft design cycle, the ‘design robustness’ can be improved, i.e. the design is not optimised for a prognosticated operating environment, but can cope with various possible future developments. The paper will explain the three fundamental aspects in applying scenario planning to the aircraft design process: requirement definition, design evaluation and technology identification. For each aspect, methods will be shown, which connect the rather qualitative results of a scenario process with aircraft design, which typically demands a qualitative input.

  11. Design of a spanloader cargo aircraft

    Science.gov (United States)

    1989-01-01

    With a growing demand for fast international freight service, the slow-moving cargo ships currently in use will soon find a substantial portion of their clients looking elsewhere. One candidate for filling this expected gap in the freight market is a span-loading aircraft (or 'flying wing') capable of long-range operation with extremely large payloads. This report summarizes the design features of an aircraft capable of fulfilling a long-haul, high-capacity cargo mission. The spanloader seeks to gain advantage over conventional aircraft by eliminating the aircraft fuselage and thus reducing empty weight. The primary disadvantage of this configuration is that the cargo-containing wing tends to be thick, thus posing a challenge to the airfoil designer. It also suffers from stability and control problems not encountered by conventional aircraft. The result is an interesting, challenging exercise in unconventional design. The report that follows is a student written synopsis of an effort judged to be the best of eight designs developed during the year 1988-1989.

  12. Control strategies for aircraft airframe noise reduction

    Institute of Scientific and Technical Information of China (English)

    Li Yong; Wang Xunnian; Zhang Dejiu

    2013-01-01

    With the development of low-noise aircraft engine,airframe noise now represents a major noise source during the commercial aircraft's approach to landing phase.Noise control efforts have therefore been extensively focused on the airframe noise problems in order to further reduce aircraft overall noise.In this review,various control methods explored in the last decades for noise reduction on airframe components including high-lift devices and landing gears are summarized.We introduce recent major achievements in airframe noise reduction with passive control methods such as fairings,deceleration plates,splitter plates,acoustic liners,slat cove cover and side-edge replacements,and then discuss the potential and control mechanism of some promising active flow control strategies for airframe noise reduction,such as plasma technique and air blowing/suction devices.Based on the knowledge gained throughout the extensively noise control testing,a few design concepts on the landing gear,high-lift devices and whole aircraft are provided for advanced aircraft low-noise design.Finally,discussions and suggestions are given for future research on airframe noise reduction.

  13. Aircraft Combat Survivability Estimation and Synthetic Tradeoff Methods

    Institute of Scientific and Technical Information of China (English)

    LI Shu-lin; LI Shou-an; LI Wei-ji; LI Dong-xia; FENG Feng

    2005-01-01

    A new concept is proposed that susceptibility, vulnerability, reliability, maintainability and supportability should be essential factors of aircraft combat survivability. A weight coefficient method and a synthetic method are proposed to estimate aircraft combat survivability based on the essential factors. Considering that it takes cost to enhance aircraft combat survivability, a synthetic tradeoff model between aircraft combat survivability and life cycle cost is built. The aircraft combat survivability estimation methods and synthetic tradeoff with a life cycle cost model will be helpful for aircraft combat survivability design and enhancement.

  14. Improvements in Aircraft Gas Turbine Engines for the 90s

    Directory of Open Access Journals (Sweden)

    Arun Prasad

    1993-10-01

    Full Text Available The gas turbine propulsion system has been playing the most significant role in the evolution and development of present-day aircraft, and has become the limiting technology for developing most new aircraft. However, the jet engine still remains the preferred propulsion choice. Aircraft gas turbines in one form or the other, viz. turbojet, turbofan, turboprop or turboshaft, have been used in commercial passenger aircraft, high performance military aircraft and in rotary wing aircraft (helicopters. The emphasis in engine development programmes world over seems to be in reducing fuel consumption, increasing thrust and in reducing weight.

  15. Concept of Operations for Commercial and Business Aircraft Synthetic Vision Systems. 1.0

    Science.gov (United States)

    Williams Daniel M.; Waller, Marvin C.; Koelling, John H.; Burdette, Daniel W.; Capron, William R.; Barry, John S.; Gifford, Richard B.; Doyle, Thomas M.

    2001-01-01

    A concept of operations (CONOPS) for the Commercial and Business (CaB) aircraft synthetic vision systems (SVS) is described. The CaB SVS is expected to provide increased safety and operational benefits in normal and low visibility conditions. Providing operational benefits will promote SVS implementation in the Net, improve aviation safety, and assist in meeting the national aviation safety goal. SVS will enhance safety and enable consistent gate-to-gate aircraft operations in normal and low visibility conditions. The goal for developing SVS is to support operational minima as low as Category 3b in a variety of environments. For departure and ground operations, the SVS goal is to enable operations with a runway visual range of 300 feet. The system is an integrated display concept that provides a virtual visual environment. The SVS virtual visual environment is composed of three components: an enhanced intuitive view of the flight environment, hazard and obstacle defection and display, and precision navigation guidance. The virtual visual environment will support enhanced operations procedures during all phases of flight - ground operations, departure, en route, and arrival. The applications selected for emphasis in this document include low visibility departures and arrivals including parallel runway operations, and low visibility airport surface operations. These particular applications were selected because of significant potential benefits afforded by SVS.

  16. Safety Note

    CERN Multimedia

    SC Secretariat

    2004-01-01

    Please note that the Safety Note no 29 (NS 29) entitled 'Fire Prevention for Insulating Core (Sandwich) Panel Structures for Inside Use Guidelines for Selection, Installation and Use' is available on the web at the following url: https://edms.cern.ch/document/475438/LAST_RELEASED Paper copies can also be obtained from the SC Unit secretariat, e-mail : sc.secretariat@cern.ch SC Secretariat

  17. Analysis of Aviation Safety Reporting System Incident Data Associated With the Technical Challenges of the Vehicle Systems Safety Technology Project

    Science.gov (United States)

    Withrow, Colleen A.; Reveley, Mary S.

    2014-01-01

    This analysis was conducted to support the Vehicle Systems Safety Technology (VSST) Project of the Aviation Safety Program (AVsP) milestone VSST4.2.1.01, "Identification of VSST-Related Trends." In particular, this is a review of incident data from the NASA Aviation Safety Reporting System (ASRS). The following three VSST-related technical challenges (TCs) were the focus of the incidents searched in the ASRS database: (1) Vechicle health assurance, (2) Effective crew-system interactions and decisions in all conditions; and (3) Aircraft loss of control prevention, mitigation, and recovery.

  18. Aircraft System Design and Integration

    Directory of Open Access Journals (Sweden)

    D. P. Coldbeck

    2000-01-01

    Full Text Available In the 1980's the British aircraft industry changed its approach to the management of projects from a system where a project office would manage a project and rely on a series of specialist departments to support them to a more process oriented method, using systems engineering models, whose most outwardly visible signs were the introduction of multidisciplinary product teams. One of the problems with the old method was that the individual departments often had different priorities and projects would get uneven support. The change in the system was only made possible for complex designs by the electronic distribution of data giving instantaneous access to all involved in the project. In 1997 the Defence and Aerospace Foresight Panel emphasised the need for a system engineering approach if British industry was to remain competitive. The Royal Academy of Engineering recognised that the change in working practices also changed what was required of a chartered engineer and redefined their requirements in 1997 [1]. The result of this is that engineering degree courses are now judged against new criteria with more emphasis placed on the relevance to industry rather than on purely academic content. At the University of Glasgow it was realized that the students ought to be made aware of current working practices and that there ought to be a review to ensure that the degrees give students the skills required by industry. It was decided to produce a one week introduction course in systems engineering for Masters of Engineering (MEng students to be taught by both university lecturers and practitioners from a range of companies in the aerospace industry with the hope of expanding the course into a module. The reaction of the students was favourable in terms of the content but it seems ironic that the main criticism was that there was not enough discussion involving the students. This paper briefly describes the individual teaching modules and discusses the

  19. Specific problems concerning aircraft impact on nuclear containment vessels

    International Nuclear Information System (INIS)

    Due to the high population density, in Belgium PWR power plants are designed against aircraft impacts. A double wall is used for the containment shield. The lack of relevant data and specifications for such a loading on the non-prestressed external wall led us to determine the suitable safety criteria, the most appropriate materials to be used and the corresponding limit state design through dynamic and plastic analysis. Our technical choices and calculation results are summarized below. The safety criteria consisted mainly in adopting an ultimate limite state design for the allowable compression stress on concrete and the yield stress for the allowable tension stress on reinforcement. The plastic calculations have been carried out by successive approximations of the final state instead of a step by step analysis. An elastic dynamic analysis for an impact at the top of the dome has been made with the MARC program. It justified a D.L.F. of 1.15 for the shear forces. The ULS design without crack limitation made the use of high strength steel for the main reinforcement fully efficient. This allowed an important saving on the reinforcement cost. Static and dynamic tests have been carried out on high grade bars. Among other interesting results these tests showed a strain velocity of 100% per sec. and an increase in the ultimate strength under rapid loading

  20. Aircraft induced contrail cirrus over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Mannstein, H.; Schumann, U. [Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Inst. fuer Physik der Atmosphaere, Oberpfaffenhofen (Germany)

    2005-08-01

    Condensation trails (contrails) and aircraft induced cirrus are nowadays a common feature at the mid latitude skies. Previously the impact of aircraft induced cirrus changes has been roughly estimated from observed decadal trends in cirrus cover but the direct attribution of observed cirrus changes to changes in aviation activity remains uncertain. In this paper the amount of additional cirrus induced from spreading contrails in humid air is estimated from the direct correlation between observed cirrus cover derived with suitable methods from METEOSAT data and aviation flight density reported by EUROCONTROL at high spatial and temporal resolution from June 22 to July 27, 1998 and September 27 to October 21, 2000. The results indicate that the aircraft induced cirrus cover over Europe is about ten times larger than that of linear contrails in the same region. Radiative forcing from the additional cirrus may be more than 10 times higher than that of linear contrails and aviation induced CO{sub 2} increases. (orig.)

  1. Static aeroelastic analysis for generic configuration aircraft

    Science.gov (United States)

    Lee, IN; Miura, Hirokazu; Chargin, Mladen K.

    1987-01-01

    A static aeroelastic analysis capability that can calculate flexible air loads for generic configuration aircraft was developed. It was made possible by integrating a finite element structural analysis code (MSC/NASTRAN) and a panel code of aerodynamic analysis based on linear potential flow theory. The framework already built in MSC/NASTRAN was used and the aerodynamic influence coefficient matrix is computed externally and inserted in the NASTRAN by means of a DMAP program. It was shown that deformation and flexible airloads of an oblique wing aircraft can be calculated reliably by this code both in subsonic and supersonic speeds. Preliminary results indicating importance of flexibility in calculating air loads for this type of aircraft are presented.

  2. Probabilistic analysis of aircraft crashes with explicit analysis of the building structure perforation; Probabilistische Analyse von Flugzeugabstuerzen mit expliziter Analyse der Perforation von Gebaeudestrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, Mathias; Pacharzina, Benedykt; Oberste-Schemmann, Andre; Sassen, Felix [Westinghouse Electric Germany GmbH, Mannheim (Germany)

    2012-11-01

    For probabilistic safety analyses (PSA) the estimation of aircraft crash induced core damage frequencies is required. Westinghouse developed a methodology for a realistic evaluation of accident sequences caused by aircraft crashes. The analysis includes two steps: the analysis of sequence of accident events and the analysis of damage mechanisms. For the aircraft crash induced accident sequences new detailed event trees were prepared for application in the PSA. The damage mechanisms include kerosene combustion, by building structures transferred vibrations with direct or mediated effects on safety systems, and direct impacts due to the penetration of building structures. The presented methodology evaluates solely the direct impact by penetration of building structures by simulation of the aircraft crash. It was assumed that the other damage mechanisms do not yield significant contributions to the non-availability of safety system components. It was shown that the calculated core damage frequencies for hypothetical aircraft crashes using the new methodology are about one magnitude lower than the results of conservative methods.

  3. ANASE: measuring aircraft noise annoyance very unreliably.

    OpenAIRE

    Brooker, Peter

    2008-01-01

    Does anyone who lives under a flight-path like aircraft noise? It is a political hot potato as well as a peace-destroyer. Tens of thousands of people will hear the noise from any third runway at Heathrow. So, when a study commissioned by the government claimed that people are becoming less tolerant of aircraft noise, it made highly unpleasant reading for supporters of a third runway. But the Department for Transport rejected the report as unreliable. Peter Brooker senses the vibrations.

  4. A strategic planning methodology for aircraft redesign

    Science.gov (United States)

    Romli, Fairuz Izzuddin

    Due to a progressive market shift to a customer-driven environment, the influence of engineering changes on the product's market success is becoming more prominent. This situation affects many long lead-time product industries including aircraft manufacturing. Derivative development has been the key strategy for many aircraft manufacturers to survive the competitive market and this trend is expected to continue in the future. Within this environment of design adaptation and variation, the main market advantages are often gained by the fastest aircraft manufacturers to develop and produce their range of market offerings without any costly mistakes. This realization creates an emphasis on the efficiency of the redesign process, particularly on the handling of engineering changes. However, most activities involved in the redesign process are supported either inefficiently or not at all by the current design methods and tools, primarily because they have been mostly developed to improve original product development. In view of this, the main goal of this research is to propose an aircraft redesign methodology that will act as a decision-making aid for aircraft designers in the change implementation planning of derivative developments. The proposed method, known as Strategic Planning of Engineering Changes (SPEC), combines the key elements of the product redesign planning and change management processes. Its application is aimed at reducing the redesign risks of derivative aircraft development, improving the detection of possible change effects propagation, increasing the efficiency of the change implementation planning and also reducing the costs and the time delays due to the redesign process. To address these challenges, four research areas have been identified: baseline assessment, change propagation prediction, change impact analysis and change implementation planning. Based on the established requirements for the redesign planning process, several methods and

  5. Aerodynamics/ACEE: Aircraft energy efficiency

    Science.gov (United States)

    1981-01-01

    An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.

  6. Advanced materials for aircraft engine applications.

    Science.gov (United States)

    Backman, D G; Williams, J C

    1992-02-28

    A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time.

  7. Titanium alloys Russian aircraft and aerospace applications

    CERN Document Server

    Moiseyev, Valentin N

    2005-01-01

    This text offers previously elusive information on state-of-the-art Russian metallurgic technology of titanium alloys. It details their physical, mechanical, and technological properties, as well as treatments and applications in various branches of modern industry, particularly aircraft and aerospace construction. Titanium Alloys: Russian Aircraft and Aerospace Applications addresses all facets of titanium alloys in aerospace and aviation technology, including specific applications, fundamentals, composition, and properties of commercial alloys. It is useful for all students and researchers interested in the investigation and applications of titanium.

  8. Ageing aircraft research in the Netherlands

    Science.gov (United States)

    Dejonge, J. B.; Bartelds, G.

    1992-01-01

    The problems of aging aircraft are worldwide. Hence, international cooperative actions to overcome or prevent problems should be taken. The Federal Aviation Administration (FAA) and the Netherlands Civil Aviation Department (RLD) signed a Memorandum of Cooperation in the area of structural integrity, with specific reference to research on problems in the area of aging aircraft. Here, an overview is given of aging research that is going on in the Netherlands. The work described is done largely at the National Aerospace Laboratory; much of the research is part of the forementioned cooperative agreement.

  9. A Product Safety Primer

    Science.gov (United States)

    Brown, Mary Anne Symons

    1975-01-01

    The article offers an overview of the product safety issue and offers ideas for helping students develop product safety awareness. The role of the Consumer Product Safety Commission and safety legislation are discussed. (MW)

  10. Conversion of the dual training aircraft (DC into single control advanced training aircraft (SC. Part I

    Directory of Open Access Journals (Sweden)

    Ioan ŞTEFĂNESCU

    2011-03-01

    Full Text Available Converting the DC school jet aircraft into SC advanced training aircraft - and use them forthe combat training of military pilots from the operational units, has become a necessity due to thebudget cuts for Air Force, with direct implications on reducing the number of hours of flight assignedto operating personnel for preparing and training.The purpose of adopting such a program is to reduce the number of flight hours allocated annuallyfor preparing and training in advanced stages of instruction, for every pilot, by more intensive use ofthis type of aircraft, which has the advantage of lower flight hour costs as compared to a supersoniccombat plane.

  11. The contribution of aircraft emissions to the atmospheric sulfur budget

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, E. [Stockholm Univ. (Sweden). Dept. of Meteorology; Feichter, J. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Sausen, R.; Hein, R. [Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1998-01-01

    An atmospheric general circulation model including the atmospheric sulfur cycle has been used to investigate the impact of aircraft sulfur emissions on the global sulfur budget of the atmosphere. The relative contribution from aircraft sulfur to the atmospheric sulfate burden is larger than the ratio between aircraft emissions and surface emissions due to the calculated long turn-over time of aircraft sulfate (about 12 days). However, in terms of the sulfate mass balance, aircraft emissions are small, contributing about 1% of the total sulfate mass north of 40 deg C where the aircraft emissions are largest. Despite this small contribution to sulfate mass, the aircraft emissions could potentially significantly enhance the background number concentration of aerosol particles. Based on the model calculations the increased stratospheric background aerosol mass observed during the last decades can not be explained by increased aircraft sulfur emissions 50 refs, 9 figs, 4 tabs

  12. Distributed Data Mining for Aircraft Health Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA, DoD, and commercial aircraft operators need to transform vast amounts of aircraft data accumulated in distributed databases into actionable knowledge. We...

  13. A Turbo-Brayton Cryocooler for Aircraft Superconducting Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hybrid turbo-electric aircraft with gas turbines driving electric generators connected to electric propulsion motors have the potential to transform the aircraft...

  14. Distributed Data Mining for Aircraft Health Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft Flight Operations Quality Assurance (FOQA) programs are implemented by most of the aircraft operators. Vast amounts of FOQA data are distributed between...

  15. Aircraft detection based on probability model of structural elements

    Science.gov (United States)

    Chen, Long; Jiang, Zhiguo

    2014-11-01

    Detecting aircrafts is important in the field of remote sensing. In past decades, researchers used various approaches to detect aircrafts based on classifiers for overall aircrafts. However, with the development of high-resolution images, the internal structures of aircrafts should also be taken into consideration now. To address this issue, a novel aircrafts detection method for satellite images based on probabilistic topic model is presented. We model aircrafts as the connected structural elements rather than features. The proposed method contains two major steps: 1) Use Cascade-Adaboost classier to identify the structural elements of aircraft firstly. 2) Connect these structural elements to aircrafts, where the relationships between elements are estimated by hierarchical topic model. The model places strict spatial constraints on structural elements which can identify differences between similar features. The experimental results demonstrate the effectiveness of the approach.

  16. Practical Voice Recognition for the Aircraft Cockpit Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal responds to the urgent need for improved pilot interfaces in the modern aircraft cockpit. Recent advances in aircraft equipment bring tremendous...

  17. Fault Tolerance, Diagnostics, and Prognostics in Aircraft Flight

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract In modern fighter aircraft with statically unstable airframe designs, the flight control system is considered flight critical, i.e. the aircraft will...

  18. Seal Design of the Aircraft Door%舱门密封件设计

    Institute of Scientific and Technical Information of China (English)

    渠涛

    2015-01-01

    密封件设计是飞机舱门设计的重要组成部分,其性能好坏关系着飞机的飞行安全,本文从密封件设计考虑因素、构型、性能验证等方面进行研究,给出设计密封件的一般考虑。%Seal Design is one of the most important parts of aircraft sealed cabin. The property of the seal is relative to the aircraft safety. It should be considerate that the seal environment factors, shape, and test should be studied.

  19. Delivering safety

    International Nuclear Information System (INIS)

    In the United Kingdom there have been significant recent changes to the management of civil nuclear liabilities. With the formation in April 2005 of the Nuclear Decommissioning Authority (NDA), ownership of the civil nuclear licensed sites in the UK, including the Magnox Reactor Stations, passed to this new organisation. The NDAs mission is to seek acceleration of the nuclear clean up programme and deliver increased value for money and, consequently, are driving their contractors to seek more innovative ways of performing work. British Nuclear Group manages the UK Magnox stations under contract to the NDA. This paper summarises the approach being taken within its Reactor Sites business to work with suppliers to enhance working arrangements at sites, improve the delivery of decommissioning programmes and deliver improvements in safety and environmental performance. The UK Magnox stations are 1. generation gas-graphite reactors, constructed in the 1950's and 1960's. Two stations are currently still operating, three are shut-down undergoing defueling and the other five are being decommissioned. Despite the distractions of industry restructuring, an uncompromising policy of demanding improved performance in conjunction with improved safety and environmental standards has been adopted. Over the past 5 years, this policy has resulted in step-changes in performance at Reactor Sites, with increased electrical output and accelerated defueling and decommissioning. The improvements in performance have been mirrored by improvements in safety (DACR of 0 at 5 sites); environmental standards (reductions in energy and water consumption, increased waste recycling) and the overall health of the workforce (20% reduction in sickness absence). These achievements have, in turn, been recognised by external bodies, resulting in several awards, including: the world's first ISRS and IERS level 10 awards (Sizewell, 2006), the NUMEX plant maintenance award (Bradwell, 2006), numerous Ro

  20. SAFETY NOTES

    CERN Multimedia

    TIS Secretariat

    2001-01-01

    Please note that the revisions of safety notes no 3 (NS 3 Rev. 2) and no 24 (NS 24 REV.) entitled respectively 'FIRE PREVENTION FOR ENCLOSED SPACES IN LARGE HALLS' and 'REMOVING UNBURIED ELV AND LVA ELECTRIC CONDUITS' are available on the web at the following urls: http://edmsoraweb.cern.ch:8001/cedar/doc.download?document_id=322811&version=1&filename=version_francaise.pdf http://edmsoraweb.cern.ch:8001/cedar/doc.download?document_id=322861&version=2&filename=version_francaise.pdf Paper copies can also be obtained from the TIS Divisional Secretariat, email tis.secretariat@cern.ch

  1. Safety training

    CERN Multimedia

    SC Unit

    2009-01-01

    Habilitation électrique A course entitled "Habilitation électrique pour personnel de laboratoire" (electrical safety qualification for laboratory personnel) will be held on 22 and 23 June. Registration by e-mail to isabelle.cusato@cern.ch. Explosion Hazards in the handling of flammable solvents and gases A course entitled "Explosion Hazards in the handling of flammable solvents and gases" given in French will be held on 18-19 June 2009. This course is obligatory for all FGSOs at CERN, and it is recommended for anyone handling flammable gas or solvents. To sign up please visit this page. For more information please contact Isabelle Cusato, tel. 73811.

  2. CAD SIMULATION & FEM ANALYSIS OF AIRCRAFT LANDING GEAR MECHANISM

    OpenAIRE

    Nilesh W. Nirwan; Dilip G. Gangwani,

    2015-01-01

    Aircraft landing gear supports the entire weight of an aircraft during landing and ground operations. They are attached to primary structural members of the aircraft. The type of gear depends on the aircraft design and its intended use. Most landing gear has wheels to facilitate operation to and from hard surfaces, such as airport runways. Other gear feature skids for this purpose, such as those found on helicopters, balloon gondolas, and in the tail area of some tail dragger airc...

  3. A measurement method to discriminate aircraft fly-over noise

    OpenAIRE

    Genesca Francitorra, Meritxell; Romeu Garbí, Jordi; Pàmies Gómez, Teresa

    2010-01-01

    Currently aircraft noise monitoring systems use a mesh of single microphones distributed around an airport to continuously sample the noise level. This fact requires a manual process of aircraft noise event detection and classification in order to distinguish aircraft events from the rest of noise events in the recording. In the present paper a 3-meter-long 12-microphone linear array is used to automatically obtain a background noise free aircraft noise recording. The beamforming process sepa...

  4. Light shaping diffusers{trademark} improve aircraft inspection

    Energy Technology Data Exchange (ETDEWEB)

    Shagam, R.N. [Sandia National Labs., Albuquerque, NM (United States); Shie, R.; Lerner, J. [Physical Optics Corp., Torrance, CA (United States)

    1994-11-01

    Physical Optical Corporation has introduced a Light Shaping Diffuser{trademark} (LSD) for the specialized illumination requirements of aircraft inspection. Attached to a handheld, battery-powered flashlight, this light-weight, holographic diffuser element provides bright, even illumination as aircraft inspectors perform the important task of visually examining aircraft for possible structural defects. Field trials conducted by the Aging Aircraft Program at Sandia National Laboratories confirm that the LSD-equipped flashlights are preferred by visual inspectors over stock flashlights.

  5. 8 CFR 280.21 - Seizure of aircraft.

    Science.gov (United States)

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Seizure of aircraft. 280.21 Section 280.21... OF FINES § 280.21 Seizure of aircraft. Seizure of an aircraft under the authority of section 239 of the Act and § 280.2 will not be made if such aircraft is damaged to an extent that its value is...

  6. 49 CFR 172.448 - CARGO AIRCRAFT ONLY label.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false CARGO AIRCRAFT ONLY label. 172.448 Section 172.448... SECURITY PLANS Labeling § 172.448 CARGO AIRCRAFT ONLY label. (a) Except for size and color, the CARGO AIRCRAFT ONLY label must be as follows: ER14JA09.001 (b) The CARGO AIRCRAFT ONLY label must be black on...

  7. Flight Control Design for a Tailless Aircraft Using Eigenstructure Assignment

    OpenAIRE

    Clara Nieto-Wire; Kenneth Sobel

    2011-01-01

    We apply eigenstructure assignment to the design of a flight control system for a wind tunnel model of a tailless aircraft. The aircraft, known as the innovative control effectors (ICEs) aircraft, has unconventional control surfaces plus pitch and yaw thrust vectoring. We linearize the aircraft in straight and level flight at an altitude of 15,000 feet and Mach number 0.4. Then, we separately design flight control systems for the longitudinal and lateral dynamics. We use a control allocation ...

  8. Perceived Noise Analysis for Offset Jets Applied to Commercial Supersonic Aircraft

    Science.gov (United States)

    Huff, Dennis L.; Henderson, Brenda S.; Berton, Jeffrey J.; Seidel, Jonathan A.

    2016-01-01

    A systems analysis was performed with experimental jet noise data, engine/aircraft performance codes and aircraft noise prediction codes to assess takeoff noise levels and mission range for conceptual supersonic commercial aircraft. A parametric study was done to identify viable engine cycles that meet NASA's N+2 goals for noise and performance. Model scale data from offset jets were used as input to the aircraft noise prediction code to determine the expected sound levels for the lateral certification point where jet noise dominates over all other noise sources. The noise predictions were used to determine the optimal orientation of the offset nozzles to minimize the noise at the lateral microphone location. An alternative takeoff procedure called "programmed lapse rate" was evaluated for noise reduction benefits. Results show there are two types of engines that provide acceptable mission range performance; one is a conventional mixed-flow turbofan and the other is a three-stream variable-cycle engine. Separate flow offset nozzles reduce the noise directed toward the thicker side of the outer flow stream, but have less benefit as the core nozzle pressure ratio is reduced. At the systems level for a three-engine N+2 aircraft with full throttle takeoff, there is a 1.4 EPNdB margin to Chapter 3 noise regulations predicted for the lateral certification point (assuming jet noise dominates). With a 10% reduction in thrust just after clearing the runway, the margin increases to 5.5 EPNdB. Margins to Chapter 4 and Chapter 14 levels will depend on the cumulative split between the three certification points, but it appears that low specific thrust engines with a 10% reduction in thrust (programmed lapse rate) can come close to meeting Chapter 14 noise levels. Further noise reduction is possible with engine oversizing and derated takeoff, but more detailed mission studies are needed to investigate the range impacts as well as the practical limits for safety and takeoff

  9. Back pain and its consequences among Polish Air Force pilots flying high performance aircraft

    Directory of Open Access Journals (Sweden)

    Aleksandra Truszczyńska

    2014-04-01

    Full Text Available Objectives: Back pain in Air Force fast jet pilots has been studied by several air forces and found to be relatively common. The objective of the study was to determine the prevalence and degree of the pain intensity in the cervical, thoracic and lumbar spine, subjective risk factors and their effect on the pilots' performance while flying high maneuver aircrafts and the consequences for cognitive deficiencies. Material and Methods: The study was designed as a retrospective, anonymous questionnaire survey, collecting data on the age, aircraft type, flying hours, pain characteristics, physical activity, etc. The study was participated by 94 pilots aged 28-45 years (mean age: 35.9±3.3 years, actively flying fast jet aircrafts Su-22, Mig-29 and F-16. The estimates regarding the level of the subjective back pain were established using visual analogue scales (VAS. Results: The values of the Cochran and Cox T-test for heterogeneous variances are as follows: for the total number of flying hours: F = 2.53, p = 0.0145, for the pilot's age: F = 3.15, p = 0.003, and for the BMI factor F = 2.73, p = 0.008. Conclusions: Our questionnaire survey showed a significant problem regarding spinal conditions in high performance aircraft pilots. The determination of the risk factors may lead to solving this problem and help eliminate the effect of the unfavorable environment on piloting jet aircrafts. Experiencing back pain during the flight might influence the mission performance and flight safety. The costs of pilots education are enormous and inability to fly, or even disability, leads to considerable economic loss. More research on specific prevention strategies is warranted in order to improve the in-flight working environment of fighter pilots.

  10. Safety first

    CERN Multimedia

    2012-01-01

    Safety is a priority for CERN. That is a message I conveyed in my New Year’s address and that I reiterated at one of the first Enlarged Directorate meetings of 2012 when I outlined five key safety objectives for the year, designed and implemented according to accepted international standards.   As we move from spring to summer, it’s time to take stock of how we are doing. Objective number one for 2012, which overarches everything else, is to limit the number of incidents in the workplace. That means systematically investigating and acting on every incident that involves work stoppage, along with all the most frequent workplace accidents: falls, trips and slips. The performance indicator we set ourselves is the percentage of investigations and follow-ups completed. Year on year, these figures are rising but we can never be complacent, and must strive to reach and sustain 100% follow-up. The second objective is to improve hazard control, with a focus in 2012 on chemical ha...

  11. Coordinated research programme on safety of RBMK type NPPs in relation to external events. V. 1. Working material

    International Nuclear Information System (INIS)

    The present volume is a collection of progress reports which have been submitted within the scope of the CRP on safety of RBMK type NPPs in relation to external events including seismic related papers and man-induced events (explosions and airplane crash). It includes papers concerned with experience related to RBMK equipment testing and calculations of seismic resistance, soil-structure interactions analysis, safety assurance, aircraft impact qualification and other external events for RBMK type NPP, seismic stability of NPPs in Eastern Europe, probabilistic assessment of NPP safety under aircraft impact, dynamic analysis of NPPs, screening of external hazards for NPP

  12. 75 FR 9327 - Aircraft Noise Certification Documents for International Operations

    Science.gov (United States)

    2010-03-02

    ... Administration 14 CFR Part 91 RIN 2120-AJ31 Aircraft Noise Certification Documents for International Operations... operating rules to require U.S. operators flying outside the United States to carry aircraft noise..., Subpart III, Section 44715, Controlling aircraft noise and sonic boom. Under that section, the FAA...

  13. 10 CFR 70.14 - Foreign military aircraft.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Foreign military aircraft. 70.14 Section 70.14 Energy....14 Foreign military aircraft. The regulations in this part do not apply to persons who carry special nuclear material (other than plutonium) in aircraft of the armed forces of foreign nations subject to 49...

  14. 47 CFR 90.423 - Operation on board aircraft.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Operation on board aircraft. 90.423 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Operating Requirements § 90.423 Operation on board aircraft. (a) Except... after September 14, 1973, under this part may be operated aboard aircraft for air-to-mobile,...

  15. 19 CFR 122.86 - Substitution of aircraft.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Substitution of aircraft. 122.86 Section 122.86... Substitution of aircraft. (a) Application. The residue cargo procedure applies when an airline must substitute aircraft to reach a destination due to weather conditions or operational factors which prevent an...

  16. 75 FR 70074 - Consensus Standards, Light-Sport Aircraft

    Science.gov (United States)

    2010-11-16

    ... Federal Aviation Administration Consensus Standards, Light-Sport Aircraft AGENCY: Federal Aviation... provisions of the Sport Pilot and Light-Sport Aircraft rule issued July 16, 2004, and effective September 1, 2004. ASTM International Committee F37 on Light Sport Aircraft developed the revised standards...

  17. 76 FR 45647 - Consensus Standards, Light-Sport Aircraft

    Science.gov (United States)

    2011-07-29

    ... revision process. Background: Under the provisions of the Sport Pilot and Light-Sport Aircraft rule, 69 FR... Federal Aviation Administration Consensus Standards, Light-Sport Aircraft AGENCY: Federal Aviation... to the provisions of the Sport Pilot and Light-Sport Aircraft rule issued July 16, 2004,...

  18. 14 CFR 45.31 - Marking of export aircraft.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Marking of export aircraft. 45.31 Section 45.31 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT IDENTIFICATION AND REGISTRATION MARKING Nationality and Registration Marks § 45.31 Marking of export aircraft....

  19. 14 CFR 135.145 - Aircraft proving and validation tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft proving and validation tests. 135... Aircraft and Equipment § 135.145 Aircraft proving and validation tests. (a) No certificate holder may... safely and in compliance with applicable regulatory standards. Validation tests are required for...

  20. Licencing and Training Reform in the Australian Aircraft Maintenance Industry

    Science.gov (United States)

    Hampson, Ian; Fraser, Doug

    2016-01-01

    The training and licencing of aircraft maintenance engineers fulfils a crucial protective function since it is they who perform and supervise aircraft maintenance and certify that planes are safe afterwards. In Australia, prior to training reform, a trades-based system of aircraft maintenance engineer training existed in an orderly relation with…

  1. 14 CFR 21.128 - Tests: aircraft engines.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tests: aircraft engines. 21.128 Section 21.128 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... engines. (a) Each person manufacturing aircraft engines under a type certificate only shall subject...

  2. 14 CFR 91.325 - Primary category aircraft: Operating limitations.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Primary category aircraft: Operating... Flight Operations § 91.325 Primary category aircraft: Operating limitations. (a) No person may operate a primary category aircraft carrying persons or property for compensation or hire. (b) No person may...

  3. Disruption Management for an Airline - Rescheduling of aircraft

    DEFF Research Database (Denmark)

    Larsen, Jesper; Løve, Michael; Sørensen, Kim Riis;

    2002-01-01

    The Aircraft Recovery Problem (ARP) involves decisions concerning aircraft to flight assignments in situations where unforseen events have disrupted the existing flight schedule, e.g. bad weather causing flight delays. The aircraft recovery problem aims to recover these flight schedules through a...

  4. Using heuristics to solve the dedicated aircraft recovery problem

    DEFF Research Database (Denmark)

    Løve, Michael; Sørensen, Kim Riis; Larsen, Jesper;

    2001-01-01

    The Dedicated Aircraft Recovery Problem (DARP) involves decisions concerning aircraft to flight assignments in situations where unforeseen events have disrupted the existing flight schedule, e.g. bad weather causing flight delays. The dedicated aircraft recovery problem aims to recover these flig...

  5. Northwest to Accelerate Retirement of Dc10 Aircraft

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Northwest Airlines announced that it will accelerate the retirement of its remaining 12DC10-30 aircraft in service. The airline said that during the next seven months,it will replace DC10 aircraft with new Airbus A330s and Boeing 747-400aircraft being returned to service.Currently, seven routes are served with the DC10.

  6. Smart Sensor System for NDE or Corrosion in Aging Aircraft

    Science.gov (United States)

    Bar-Cohen, Y.; Marzwell, N.; Osegueda, R.; Ferregut, C.

    1998-01-01

    The extension of the operation life of military and civilian aircraft rather than replacing them with new ones is increasing the probability of aircraft component failure as a result of aging. Aircraft that already have endured a long srvice life of more than 40 years are now being considered for another 40 years of service.

  7. An integrated systems engineering approach to aircraft design

    Science.gov (United States)

    Price, M.; Raghunathan, S.; Curran, R.

    2006-06-01

    The challenge in Aerospace Engineering, in the next two decades as set by Vision 2020, is to meet the targets of reduction of nitric oxide emission by 80%, carbon monoxide and carbon dioxide both by 50%, reduce noise by 50% and of course with reduced cost and improved safety. All this must be achieved with expected increase in capacity and demand. Such a challenge has to be in a background where the understanding of physics of flight has changed very little over the years and where industrial growth is driven primarily by cost rather than new technology. The way forward to meet the challenges is to introduce innovative technologies and develop an integrated, effective and efficient process for the life cycle design of aircraft, known as systems engineering (SE). SE is a holistic approach to a product that comprises several components. Customer specifications, conceptual design, risk analysis, functional analysis and architecture, physical architecture, design analysis and synthesis, and trade studies and optimisation, manufacturing, testing validation and verification, delivery, life cycle cost and management. Further, it involves interaction between traditional disciplines such as Aerodynamics, Structures and Flight Mechanics with people- and process-oriented disciplines such as Management, Manufacturing, and Technology Transfer. SE has become the state-of-the-art methodology for organising and managing aerospace production. However, like many well founded methodologies, it is more difficult to embody the core principles into formalised models and tools. The key contribution of the paper will be to review this formalisation and to present the very latest knowledge and technology that facilitates SE theory. Typically, research into SE provides a deeper understanding of the core principles and interactions, and helps one to appreciate the required technical architecture for fully exploiting it as a process, rather than a series of events. There are major issues as

  8. Recognition of aircraft using HRR features

    NARCIS (Netherlands)

    Kossen, A.S.

    2008-01-01

    Automated target recognition (ATR) based on high resolution radar (HRR) features can be used to increase the confidence in aircraft class. Standard radar systems are not designed for performing classification and uses additional identification systems. It is shown that with the use of features the a

  9. 78 FR 67309 - Earth Stations Aboard Aircraft

    Science.gov (United States)

    2013-11-12

    ...), and (d) published at 78 FR 14920 on March 8, 2013, are effective on November 12, 2013. FOR FURTHER...-161, published at 78 FR 14920, March 8, 2013. The OMB Control Number is 3060-1187. The Commission... COMMISSION 47 CFR Part 25 Earth Stations Aboard Aircraft AGENCY: Federal Communications Commission....

  10. Tactical aircraft optical cable plant program plan

    Science.gov (United States)

    Weaver, Thomas L.; Murdock, John K.; Ide, James R.

    1995-05-01

    A program was created with joint industry and government funding to apply fiber optic technologies to tactical aircraft. The technology offers many potential benefits, including increased electromagnetic interference immunity and the possibility of reduced weight, increased reliability, and enlarged capability from redesigning architectures to use the large bandwidth of fiber optics. Those benefits will only be realized if fiber optics meets the unique requirements of aircraft networks. The application of fiber optics to tactical aircraft presents challenges to physical components which can only be met by a methodical attention to what is required, what are the conditions of use, and how will the components be produced in the broad context of a fiber optics using economy. For this purpose, the FLASH program has outlined a plan, and developed a team to evaluate requirements, delineate environmental and use conditions, and design practical, low cost components for tactical aircraft fiber optic cable plants including cables, connectors, splices, backplanes, manufacturing and installation methods, and test and maintenance methods.

  11. Perspectives of civil aircraft avionics development

    OpenAIRE

    Наумов, А. В.

    1999-01-01

    Considered are main directions for civil avionics development. General requirements for airborne equipment functions. Analysis of airborne avionics selection per architecture and economical effectiveness in made. Proposed is the necessity of new approach to integrated avionics complex design, first of all, on basis of mathematical method for aircraft equipment and technical characteristics definition

  12. Stratospheric aircraft: Impact on the stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, H.

    1992-02-01

    The steady-state distribution of natural stratospheric ozone is primarily maintained through production by ultraviolet photolysis of molecular oxygen, destruction by a catalytic cycle involving nitrogen oxides (NO{sub x}), and relocation by air motions within the stratosphere. Nitrogen oxides from the exhausts of a commercially viable fleet of supersonic transports would exceed the natural source of stratospheric nitrogen oxides if the t should be equipped with 1990 technology jet engines. This model-free comparison between a vital natural global ingredient and a proposed new industrial product shows that building a large fleet of passenger stratospheric aircraft poses a significant global problem. NASA and aircraft industries have recognized this problem and are studying the redesign of jet aircraft engines in order to reduce the nitrogen oxides emissions. In 1989 atmospheric models identified two other paths by which the ozone destroying effects of stratospheric aircraft might be reduced or eliminated: (1) Use relatively low supersonic Mach numbers and flight altitudes. For a given rate of nitrogen oxides injection into the stratosphere, the calculated reduction of total ozone is a strong function of altitude, and flight altitudes well below 20 kilometers give relatively low calculated ozone reductions. (2) Include heterogeneous chemistry in the two-dimensional model calculations. Necessary conditions for answering the question on the title above are to improve the quality of our understanding of the lower stratosphere and to broaden our knowledge of hetergeneous stratospheric chemistry. This article reviews recently proposed new mechanisms for heterogeneous reactions on the global stratospheric sulfate aerosols.

  13. Stratospheric aircraft: Impact on the stratosphere?

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, H.

    1992-02-01

    The steady-state distribution of natural stratospheric ozone is primarily maintained through production by ultraviolet photolysis of molecular oxygen, destruction by a catalytic cycle involving nitrogen oxides (NO{sub x}), and relocation by air motions within the stratosphere. Nitrogen oxides from the exhausts of a commercially viable fleet of supersonic transports would exceed the natural source of stratospheric nitrogen oxides if the t should be equipped with 1990 technology jet engines. This model-free comparison between a vital natural global ingredient and a proposed new industrial product shows that building a large fleet of passenger stratospheric aircraft poses a significant global problem. NASA and aircraft industries have recognized this problem and are studying the redesign of jet aircraft engines in order to reduce the nitrogen oxides emissions. In 1989 atmospheric models identified two other paths by which the ozone destroying effects of stratospheric aircraft might be reduced or eliminated: (1) Use relatively low supersonic Mach numbers and flight altitudes. For a given rate of nitrogen oxides injection into the stratosphere, the calculated reduction of total ozone is a strong function of altitude, and flight altitudes well below 20 kilometers give relatively low calculated ozone reductions. (2) Include heterogeneous chemistry in the two-dimensional model calculations. Necessary conditions for answering the question on the title above are to improve the quality of our understanding of the lower stratosphere and to broaden our knowledge of hetergeneous stratospheric chemistry. This article reviews recently proposed new mechanisms for heterogeneous reactions on the global stratospheric sulfate aerosols.

  14. Automation tools for flexible aircraft maintenance.

    Energy Technology Data Exchange (ETDEWEB)

    Prentice, William J.; Drotning, William D.; Watterberg, Peter A.; Loucks, Clifford S.; Kozlowski, David M.

    2003-11-01

    This report summarizes the accomplishments of the Laboratory Directed Research and Development (LDRD) project 26546 at Sandia, during the period FY01 through FY03. The project team visited four DoD depots that support extensive aircraft maintenance in order to understand critical needs for automation, and to identify maintenance processes for potential automation or integration opportunities. From the visits, the team identified technology needs and application issues, as well as non-technical drivers that influence the application of automation in depot maintenance of aircraft. Software tools for automation facility design analysis were developed, improved, extended, and integrated to encompass greater breadth for eventual application as a generalized design tool. The design tools for automated path planning and path generation have been enhanced to incorporate those complex robot systems with redundant joint configurations, which are likely candidate designs for a complex aircraft maintenance facility. A prototype force-controlled actively compliant end-effector was designed and developed based on a parallel kinematic mechanism design. This device was developed for demonstration of surface finishing, one of many in-contact operations performed during aircraft maintenance. This end-effector tool was positioned along the workpiece by a robot manipulator, programmed for operation by the automated planning tools integrated for this project. Together, the hardware and software tools demonstrate many of the technologies required for flexible automation in a maintenance facility.

  15. Weed detection using unmanned aircraft vehicles

    Directory of Open Access Journals (Sweden)

    Pflanz, Michael

    2014-03-01

    Full Text Available In contrast to agricultural remote sensing technologies, which are based on images from satellites or manned aircrafts, photogrammetry at low altitude from unmanned aircraft vehicles lead to higher spatial resolution, real-time processing and lower costs. Moreover multicopter aircrafts are suitable vehicles to perform precise path or stationary flights. In terms of vegetation photogrammetry this minimises motion blur and provide better image overlapping for stitching and mapping procedures. Through improved image analyses and through the recent increase in the availability of powerful batteries, microcontrollers and multispectral cameras, it can be expected in future that spatial mapping of weeds from low altitudes will be promoted. A small unmanned aircraft vehicle with a modified RGB camera was tested taking images from agricultural fields. A microcopter with six rotors was applied. The hexacopter in particular is GPS controlled and operates within predefined areas at given altitudes (from 5 to 10 m. Different scenarios of photogrammetrically weed detection have been carried out regarding to variable altitude, image resolution, weed and crop growth stages. First experiences with microcopter showed a high potential for site-specific weed control. Images analyses with regards to recognition of weed patches can be used to adapt herbicide applications to varying weed occurrence across a field.

  16. Towards Intelligent Control for Next Generation Aircraft

    Science.gov (United States)

    Acosta, Diana Michelle; KrishnaKumar, Kalmanje Srinvas; Frost, Susan Alane

    2008-01-01

    NASA Aeronautics Subsonic Fixed Wing Project is focused on mitigating the environmental and operation impacts expected as aviation operations triple by 2025. The approach is to extend technological capabilities and explore novel civil transport configurations that reduce noise, emissions, fuel consumption and field length. Two Next Generation (NextGen) aircraft have been identified to meet the Subsonic Fixed Wing Project goals - these are the Hybrid Wing-Body (HWB) and Cruise Efficient Short Take-Off and Landing (CESTOL) aircraft. The technologies and concepts developed for these aircraft complicate the vehicle s design and operation. In this paper, flight control challenges for NextGen aircraft are described. The objective of this paper is to examine the potential of state-of-the-art control architectures and algorithms to meet the challenges and needed performance metrics for NextGen flight control. A broad range of conventional and intelligent control approaches are considered, including dynamic inversion control, integrated flight-propulsion control, control allocation, adaptive dynamic inversion control, data-based predictive control and reinforcement learning control.

  17. Developing aircraft photonic networks for airplane systems

    DEFF Research Database (Denmark)

    White, Henry J.; Brownjohn, Nick; Baptista, João;

    2013-01-01

    Achieving affordable high speed fiber optic communication networks for airplane systems has proved to be challenging. In this paper we describe a summary of the EU Framework 7 project DAPHNE (Developing Aircraft Photonic Networks). DAPHNE aimed to exploit photonic technology from terrestrial comm...

  18. Emergency Landing Planning for Damaged Aircraft

    Science.gov (United States)

    Meuleau, Nicolas; Plaunt, Christian John; Smith, David E.

    2008-01-01

    Considerable progress has been made over the last 15 years on building adaptive control systems to assist pilots in flying damaged aircraft. Once a pilot has regained control of a damaged aircraft, the next problem is to determine the best site for an emergency landing. In general, the decision depends on many factors including the actual control envelope of the aircraft, distance to the site, weather en route, characteristics of the approach path, characteristics of the runway or landing site, and emergency facilities at the site. All of these influence the risk to the aircraft, to the passengers and crew, and to people and property on the ground. We describe an ongoing project to build and demonstrate an emergency landing planner that takes these various factors into consideration and proposes possible routes and landing sites to the pilot, ordering them according to estimated risk. We give an overview of the system architecture and input data, describe our preliminary modeling of risk, and describe how we search the space of landing sites and routes.

  19. Ultrawideband Electromagnetic Interference to Aircraft Radios

    Science.gov (United States)

    Ely, Jay J.; Fuller, Gerald L.; Shaver, Timothy W.

    2002-01-01

    A very recent FCC Final Rule now permits marketing and operation of new products that incorporate Ultrawideband (UWB) technology into handheld devices. Wireless product developers are working to rapidly bring this versatile, powerful and expectedly inexpensive technology into numerous consumer wireless devices. Past studies addressing the potential for passenger-carried portable electronic devices (PEDs) to interfere with aircraft electronic systems suggest that UWB transmitters may pose a significant threat to aircraft communication and navigation radio receivers. NASA, United Airlines and Eagles Wings Incorporated have performed preliminary testing that clearly shows the potential for handheld UWB transmitters to cause cockpit failure indications for the air traffic control radio beacon system (ATCRBS), blanking of aircraft on the traffic alert and collision avoidance system (TCAS) displays, and cause erratic motion and failure of instrument landing system (ILS) localizer and glideslope pointers on the pilot horizontal situation and attitude director displays. This paper provides details of the preliminary testing and recommends further assessment of aircraft systems for susceptibility to UWB electromagnetic interference.

  20. Computer Aided Visual Inspection of Aircraft Surfaces

    Directory of Open Access Journals (Sweden)

    Rafia Mumtaz

    2012-02-01

    Full Text Available Non Destructive Inspections (NDI plays a vital role in aircraft industry as it determines the structural integrity of aircraft surface and material characterization. The existing NDI methods are time consuming, we propose a new NDI approach using Digital Image Processing that has the potential to substantially decrease the inspection time. Automatic Marking of cracks have been achieved through application of Thresholding, Gabor Filter and Non Subsampled Contourlet transform. For a novel method of NDI, the aircraft imagery is analyzed by three methods i.e Neural Networks, Contourlet Transform (CT and Discrete Cosine Transform (DCT. With the help of Contourlet Transform the two dimensional (2-D spectrum is divided into fine slices, using iterated directional filterbanks. Next, directional energy components for each block of the decomposed subband outputs are computed. These energy values are used to distinguish between the crack and scratch images using the Dot Product classifier. In next approach, the aircraft imagery is decomposed into high and low frequency components using DCT and the first order moment is determined to form feature vectors.A correlation based approach is then used for distinction between crack and scratch surfaces. A comparative examination between the two techniques on a database of crack and scratch images revealed that texture analysis using the combined transform based approach gave the best results by giving an accuracy of 96.6% for the identification of crack surfaces and 98.3% for scratch surfaces.

  1. Using Synthetic Kerosene in Civil Jet Aircraft

    NARCIS (Netherlands)

    Snijders, T.A.; Melkert, J.A.

    2008-01-01

    TU Delft in the Netherlands is performing research into the effects of the use of synthetic kerosene in aircraft. The research program consists of both desk research and tests. In the desk research gas turbine simulations will be combined with payload range performance calculations to show engine ef

  2. Incident response monitoring technologies for aircraft cabin

    NARCIS (Netherlands)

    Havermans, J.B.G.A.; Houtzager, M.M.G.; Jacobs, P.

    2015-01-01

    The Netherlands Organization for Applied Scientific Research (TNO) was granted by ASHRAE (1306-RP) to conduct scientfic review and feasibility analysis of technologies and methods for measuring aircraft power system contaminants in the cabin air during unanticipated adverse incidents. In particular,

  3. Aircraft family design using enhanced collaborative optimization

    Science.gov (United States)

    Roth, Brian Douglas

    Significant progress has been made toward the development of multidisciplinary design optimization (MDO) methods that are well-suited to practical large-scale design problems. However, opportunities exist for further progress. This thesis describes the development of enhanced collaborative optimization (ECO), a new decomposition-based MDO method. To support the development effort, the thesis offers a detailed comparison of two existing MDO methods: collaborative optimization (CO) and analytical target cascading (ATC). This aids in clarifying their function and capabilities, and it provides inspiration for the development of ECO. The ECO method offers several significant contributions. First, it enhances communication between disciplinary design teams while retaining the low-order coupling between them. Second, it provides disciplinary design teams with more authority over the design process. Third, it resolves several troubling computational inefficiencies that are associated with CO. As a result, ECO provides significant computational savings (relative to CO) for the test cases and practical design problems described in this thesis. New aircraft development projects seldom focus on a single set of mission requirements. Rather, a family of aircraft is designed, with each family member tailored to a different set of requirements. This thesis illustrates the application of decomposition-based MDO methods to aircraft family design. This represents a new application area, since MDO methods have traditionally been applied to multidisciplinary problems. ECO offers aircraft family design the same benefits that it affords to multidisciplinary design problems. Namely, it simplifies analysis integration, it provides a means to manage problem complexity, and it enables concurrent design of all family members. In support of aircraft family design, this thesis introduces a new wing structural model with sufficient fidelity to capture the tradeoffs associated with component

  4. Aircraft engine performance and integration in a flying wing aircraft conceptual design

    OpenAIRE

    Miao, Zhisong.

    2012-01-01

    The increasing demand of more economical and environmentally friendly aero engines leads to the proposal of a new concept – geared turbofan. In this thesis, the characteristics of this kind of engine and relevant considerations of integration on a flying wing aircraft were studied. The studies can be divided into four levels: GTF-11 engine modelling and performance simulation; aircraft performance calculation; nacelle design and aerodynamic performance evaluation; preliminar...

  5. Safety for Users

    CERN Document Server

    HR Department

    2008-01-01

    CERN welcomes more than 8000 Users every year. The PH Department as host to these scientific associates requires the highest safety standards. The PH Safety Office has published a Safety Flyer for Users. Important safety topics and procedures are presented. Although the Flyer is intended primarily to provide safety information for Users, the PH Safety Office invites all those on the CERN sites to keep a copy of the flyer as it gives guidance in matters of safety and explains what to do in the event of an emergency. Link: http://ph-dep.web.cern.ch/ph-dep/Safety/SafetyOffice.html PH-Safety Office PH Department

  6. Safety for Users

    CERN Document Server

    HR Department

    2008-01-01

    CERN welcomes more than 8000 Users every year. The PH Department as host to these scientific associates requires the highest safety standards. The PH Safety Office has published a safety flyer for Users. Important safety topics and procedures are presented. Although the flyer is intended primarily to provide safety information for Users, the PH Safety Office invites all those on the CERN sites to keep a copy of the flyer as it gives guidance in matters of safety and explains what to do in the event of an emergency. The flyer is available at: http://ph-dep.web.cern.ch/ph-dep/Safety/SafetyOffice.html PH-Safety Office PH Department

  7. Aircraft Design Analysis, CFD And Manufacturing

    Directory of Open Access Journals (Sweden)

    Haifa El-Sadi

    2016-09-01

    Full Text Available Aircraft design, manufacturing and CFD analysis as part of aerodynamic course, the students achieve sizing from a conceptual sketch, select the airfoil geometry and the tail geometry, calculate thrust to weight ratio and wing loading, use initial sizing and calculate the aerodynamic forces. The students design their aircraft based on the geometrical dimensions resulted from the calculations and use the model to build a prototype, test it in wind tunnel and achieve CFD analysis to be compared with the experimental results. The theory of aerodynamic is taught and applied as a project based. In this paper, the design process, aircraft manufacturing and CFD analysis are presented to show the effect of project based on student’s learning of aerodynamic course. This project based learning has improved and accelerated students understanding of aerodynamic concepts and involved students in a constructive exploration. The analysis of the aircraft resulted in a study that revolved around the lift and drag generation of this particular aircraft. As to determine the lift and drag forces generated by this plane, a model was created in Solidworks a 3-D model-rendering program. After this model was created it was 3-D printed in a reduced scale, and subjected to wind tunnel testing. The results from the wind tunnel lab experiment were recorded. For accuracy, the same 3-D model was then simulated using CFD simulation software within Solidworks and compared with the results from the wind tunnel test. The values derived from both the simulation and the wind tunnel tests were then compared with the theoretical calculations for further proof of accuracy.

  8. Aircraft Abnormal Conditions Detection, Identification, and Evaluation Using Innate and Adaptive Immune Systems Interaction

    Science.gov (United States)

    Al Azzawi, Dia

    Abnormal flight conditions play a major role in aircraft accidents frequently causing loss of control. To ensure aircraft operation safety in all situations, intelligent system monitoring and adaptation must rely on accurately detecting the presence of abnormal conditions as soon as they take place, identifying their root cause(s), estimating their nature and severity, and predicting their impact on the flight envelope. Due to the complexity and multidimensionality of the aircraft system under abnormal conditions, these requirements are extremely difficult to satisfy using existing analytical and/or statistical approaches. Moreover, current methodologies have addressed only isolated classes of abnormal conditions and a reduced number of aircraft dynamic parameters within a limited region of the flight envelope. This research effort aims at developing an integrated and comprehensive framework for the aircraft abnormal conditions detection, identification, and evaluation based on the artificial immune systems paradigm, which has the capability to address the complexity and multidimensionality issues related to aircraft systems. Within the proposed framework, a novel algorithm was developed for the abnormal conditions detection problem and extended to the abnormal conditions identification and evaluation. The algorithm and its extensions were inspired from the functionality of the biological dendritic cells (an important part of the innate immune system) and their interaction with the different components of the adaptive immune system. Immunity-based methodologies for re-assessing the flight envelope at post-failure and predicting the impact of the abnormal conditions on the performance and handling qualities are also proposed and investigated in this study. The generality of the approach makes it applicable to any system. Data for artificial immune system development were collected from flight tests of a supersonic research aircraft within a motion-based flight

  9. Construction safety

    CERN Document Server

    Li, Rita Yi Man

    2013-01-01

    A close-to-ideal blend of suburb and city, speedy construction of towers of Babylon, the sparkling proportion of glass and steel buildings’ facade at night showcase the wisdom of humans. They also witness the footsteps, sweats and tears of architects and engineers. Unfortunately, these signatures of human civilizations are swathed in towering figures of construction accidents. Fretting about these on sites, different countries adopt different measures on sites. This book firstly sketches the construction accidents on sites, followed by a review on safety measures in some of the developing countries such as Bermuda, Egypt, Kuwait and China; as well as developed countries, for example, the United States, France and Singapore. It also highlights the enormous compensation costs with the courts’ experiences in the United Kingdom and Hong Kong.

  10. Safety critical systems handbook a straightforward guide to functional safety : IEC 61508 (2010 edition) and related standards

    CERN Document Server

    Smith, David J

    2010-01-01

    Electrical, electronic and programmable electronic systems increasingly carry out safety functions to guard workers and the public against injury or death and the environment against pollution. The international functional safety standard IEC 61508 was revised in 2010, and this is the first comprehensive guide available to the revised standard. As functional safety is applicable to many industries, this book will have a wide readership beyond the chemical and process sector, including oil and gas, power generation, nuclear, aircraft, and automotive industries, plus project, instrumentation, design, and control engineers. * The only comprehensive guide to IEC 61508, updated to cover the 2010 amendments, that will ensure engineers are compliant with the latest process safety systems design and operation standards* Helps readers understand the process required to apply safety critical systems standards* Real-world approach helps users to interpret the standard, with case studies and best practice design examples...

  11. Global safety

    Directory of Open Access Journals (Sweden)

    Dorien J. DeTombe

    2010-08-01

    Full Text Available Global Safety is a container concept referring to various threats such as HIV/Aids, floods and terrorism; threats with different causes and different effects. These dangers threaten people, the global economy and the slity of states. Policy making for this kind of threats often lack an overview of the real causes and the interventions are based on a too shallow analysis of the problem, mono-disciplinary and focus mostly only on the effects. It would be more appropriate to develop policy related to these issues by utilizing the approaches, methods and tools that have been developed for complex societal problems. Handling these complex societal problems should be done multidisciplinary instead of mono-disciplinary. In order to give politicians the opportunity to handle complex problems multidisciplinary, multidisciplinary research institutes should be created. These multidisciplinary research institutes would provide politicians with better approaches to handle this type of problem. In these institutes the knowledge necessary for the change of these problems can be created through the use of the Compram methodology which has been developed specifically for handling complex societal problems. In a six step approach, experts, actors and policymakers discuss the content of the problem and the possible changes. The framework method uses interviewing, the Group Decision Room, simulation models and scenario's in a cooperative way. The methodology emphasizes the exchange of knowledge and understanding by communication among and between the experts, actors and politicians meanwhile keeping emotion in mind. The Compram methodology will be further explained in relation to global safety in regard to terrorism, economy, health care and agriculture.

  12. Review of factors affecting aircraft wet runway performance

    Science.gov (United States)

    Yager, T. J.

    1983-01-01

    Problems associated with aircraft operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from investigations conducted at the Langley Aircraft Landing Loads and Traction Facility and from tests with instrumented ground vehicles and aircraft are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.

  13. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    Science.gov (United States)

    Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2016-01-01

    The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  14. Review of Aircraft Electric Power Systems and Architectures

    DEFF Research Database (Denmark)

    Zhao, Xin; Guerrero, Josep M.; Wu, Xiaohao

    2014-01-01

    In recent years, the electrical power capacity is increasing rapidly in more electric aircraft (MEA), since the conventional mechanical, hydraulic and pneumatic energy systems are partly replaced by electrical power system. As a consequence, capacity and complexity of aircraft electric power...... systems (EPS) will increase dramatically and more advanced aircraft EPSs need to be developed. This paper gives a brief description of the constant frequency (CF) EPS, variable frequency (VF) EPS and advanced high voltage (HV) EPS. Power electronics in the three EPS is overviewed. Keywords: Aircraft Power...... System, More Electric Aircraft, Constant Frequency, Variable Frequency, High Voltage....

  15. Pre-flight safety briefings, mood and information retention.

    Science.gov (United States)

    Tehrani, Morteza; Molesworth, Brett R C

    2015-11-01

    Mood is a moderating factor that is known to affect performance. For airlines, the delivery of the pre-flight safety briefing prior to a commercial flight is not only an opportunity to inform passengers about the safety features on-board the aircraft they are flying, but an opportunity to positively influence their mood, and hence performance in the unlikely event of an emergency. The present research examined whether indeed the pre-flight safety briefing could be used to positively impact passengers' mood. In addition, the present research examined whether the recall of key safety messages contained within the pre-flight safety briefing was influenced by the style of briefing. Eighty-two participants were recruited for the research and divided into three groups; each group exposed to a different pre-flight cabin safety briefing video (standard, humorous, movie theme). Mood was measured prior and post safety briefing. The results revealed that pre-flight safety briefing videos can be used to manipulate passengers' mood. Safety briefings that are humorous or use movie themes to model their briefing were found to positively affect mood. However, there was a trade-off between entertainment and education, the greater the entertainment value, the poorer the retention of key safety messages. The results of the research are discussed from both an applied and theoretical perspective.

  16. NTS Offsite Radiation Safety Program

    International Nuclear Information System (INIS)

    The United States began conducting nuclear tests at what was then called the Nevade Proving Grounds on January 27, 1951. In those days of the cold war, the testing of nuclear weapons was done in the atmosphere, where the explosive devices were located on the surface, set at the top of towers, suspended from balloons, dropped from aircraft, or even fired from a cannon. Some were placed in tunnels or in uncased and unstemmed holes. Altogether, between 1951 and 1958, when the President declared a moratorium on nuclear testing, the Atomic Energy Commission conducted 119 tests on the Nevada Test Site. The Site was operated for this purpose a few months during each year except for 1954 and 1956, when all U.S. nuclear tests were conducted in the Pacific Islands. In 1954, the Atomic Energy Commission and the U.S. Public Health Service signed an agreement making the Public Health Service (PHS) responsible for carrying out a continuing program of offsite radiological safety for U.S. nuclear weapons testing. In 1955, the PHS began to conduct the Offsite Radiation Safety Program with the test series called Operation Teapot. When the U.S. Environmental Protection Agency (EPA) was established in 1970, the PHS Laboratory in Las Vegas responsible for the offsite Program became a part of the new Agency, and EPA has continued the Program since that time

  17. Reinterpreting aircraft measurements in anisotropic scaling turbulence

    Directory of Open Access Journals (Sweden)

    S. J. Hovde

    2009-07-01

    Full Text Available Due to both systematic and turbulent induced vertical fluctuations, the interpretation of atmospheric aircraft measurements requires a theory of turbulence. Until now virtually all the relevant theories have been isotropic or "quasi isotropic" in the sense that their exponents are the same in all directions. However almost all the available data on the vertical structure shows that it is scaling but with exponents different from the horizontal: the turbulence is scaling but anisotropic. In this paper, we show how such turbulence can lead to spurious breaks in the scaling and to the spurious appearance of the vertical scaling exponent at large horizontal lags.

    We demonstrate this using 16 legs of Gulfstream 4 aircraft near the top of the troposphere following isobars each between 500 and 3200 km in length. First we show that over wide ranges of scale, the horizontal spectra of the aircraft altitude are nearly k-5/3. In addition, we show that the altitude and pressure fluctuations along these fractal trajectories have a high degree of coherence with the measured wind (especially with its longitudinal component. There is also a strong phase relation between the altitude, pressure and wind fluctuations; for scales less than ≈40 km (on average the wind fluctuations lead the pressure and altitude, whereas for larger scales, the pressure fluctuations leads the wind. At the same transition scale, there is a break in the wind spectrum which we argue is caused by the aircraft starting to accurately follow isobars at the larger scales. In comparison, the temperature and humidity have low coherencies and phases and there are no apparent scale breaks, reinforcing the hypothesis that it is the aircraft trajectory that is causally linked to the scale breaks in the wind measurements.

    Using spectra and structure functions for the wind, we then estimate their exponents (β, H at small (5/3, 1/3 and large scales (2

  18. Control of Next Generation Aircraft and Wind Turbines

    Science.gov (United States)

    Frost, Susan

    2010-01-01

    The first part of this talk will describe some of the exciting new next generation aircraft that NASA is proposing for the future. These aircraft are being designed to reduce aircraft fuel consumption and environmental impact. Reducing the aircraft weight is one approach that will be used to achieve these goals. A new control framework will be presented that enables lighter, more flexible aircraft to maintain aircraft handling qualities, while preventing the aircraft from exceeding structural load limits. The second part of the talk will give an overview of utility-scale wind turbines and their control. Results of collaboration with Dr. Balas will be presented, including new theory to adaptively control the turbine in the presence of structural modes, with the focus on the application of this theory to a high-fidelity simulation of a wind turbine.

  19. Aircraft Noise and Quality of Life around Frankfurt Airport

    Directory of Open Access Journals (Sweden)

    Thomas Eikmann

    2010-08-01

    Full Text Available In a survey of 2,312 residents living near Frankfurt Airport aircraft noise annoyance and disturbances as well as environmental (EQoL and health-related quality of life (HQoL were assessed and compared with data on exposure due to aircraft, road traffic, and railway noise. Results indicate higher noise annoyance than predicted from general exposure-response curves. Beside aircraft sound levels source-related attitudes were associated with reactions to aircraft noise. Furthermore, aircraft noise affected EQoL in general, although to a much smaller extent. HQoL was associated with aircraft noise annoyance, noise sensitivity and partly with aircraft noise exposure, in particular in the subgroup of multimorbid residents. The results suggest a recursive relationship between noise and health, yet this cannot be tested in cross-sectional studies. Longitudinal studies would be recommendable to get more insight in the causal paths underlying the noise-health relationship.

  20. Distributed Air Traffic Control : A Human Safety Perspective

    CERN Document Server

    Nikumbh, Sarvesh; Vartak, Rahul

    2011-01-01

    The issues in air traffic control have so far been addressed with the intent to improve resource utilization and achieve an optimized solution with respect to fuel comsumption of aircrafts, efficient usage of the available airspace with minimal congestion related losses under various dynamic constraints. So the focus has almost always been more on smarter management of traffic to increase profits while human safety, though achieved in the process, we believe, has remained less seriously attended. This has become all the more important given that we have overburdened and overstressed air traffic controllers managing hundreds of airports and thousands of aircrafts per day. We propose a multiagent system based distributed approach to handle air traffic ensuring complete human (passenger) safety without removing any humans (ground controllers) from the loop thereby also retaining the earlier advantages in the new solution. The detailed design of the agent system, which will be easily interfacable with the existin...

  1. D-558-2 Aircraft on lakebed

    Science.gov (United States)

    1955-01-01

    Viewed in this 1955 photograph is the NACA High Speed Flight Station D-558-2 #2 (144) Skyrocket, an all-rocket powered vehicle. The Skyrocket is parked on Rogers Dry Lakebed at Edwards Air Force Base. This aircraft, NACA 144/Navy 37974, was the first to reach Mach 2 (see project description). The Douglas D-558-2 'Skyrockets' were among the early transonic research airplanes like the X-1, X-4, X-5, and X-92A. Three of the single-seat, swept-wing aircraft flew from 1948 to 1956 in a joint program involving the National Advisory Committee for Aeronautics (NACA), with its flight research done at the NACA's Muroc Flight Test Unit in Calif., redesignated in 1949 the High-Speed Flight Research Station (HSFRS); the Navy-Marine Corps; and the Douglas Aircraft Co. The HSFRS became the High-Speed Flight Station in 1954 and is now known as the NASA Dryden Flight Research Center. The Skyrocket made aviation history when it became the first airplane to fly twice the speed of sound. The 2 in the aircraft's designation referred to the fact that the Skyrocket was the phase-two version of what had originally been conceived as a three-phase program, with the phase-one aircraft having straight wings. The third phase, which never came to fruition, would have involved constructing a mock-up of a combat-type aircraft embodying the results from the testing of the phase one and two aircraft. Douglas pilot John F. Martin made the first flight at Muroc Army Airfield (later renamed Edwards Air Force Base) in Calif. on February 4, 1948. The goals of the program were to investigate the characteristics of swept-wing aircraft at transonic and supersonic speeds with particular attention to pitch-up (uncommanded rotation of the nose of the airplane upwards)--a problem prevalent in high-speed service aircraft of that era, particularly at low speeds during take-off and landing and in tight turns. The three aircraft gathered a great deal of data about pitch-up and the coupling of lateral (yaw) and

  2. Reinterpreting aircraft measurements in anisotropic scaling turbulence

    Directory of Open Access Journals (Sweden)

    S. Lovejoy

    2009-02-01

    Full Text Available Due to unavoidable vertical fluctuations, the interpretation of atmospheric aircraft measurements requires a theory of turbulence. Until now virtually all the relevant theories have been isotropic. However almost all the available data on the vertical structure shows that it is scaling but with exponents different from the horizontal: the turbulence is anisotropic not isotropic. In this paper, we show how this can lead to spurious breaks in the scaling and to the spurious appearance of the vertical scaling exponent at large horizontal lags.

    We demonstrate this using 16 legs of Gulfstream 4 tropospheric data following isobars each between 500 and 3200 km in length. First we show that the horizontal spectra of the aircraft altitude are nearly k−5/3 (although smoothed by aircraft intertia at scales <3 km. In addition, we show that the altitude and pressure fluctuations along these fractal trajectories have a high degree of coherence with the measured wind (especially with its longitudinal component. There is also a strong phase relation between the altitude, pressure and wind fluctuations with all of these effects occurring over the entire range of scales so that the trajectories influence the wind measurements over large ranges of scale. In comparison, the temperature and humidity have no apparent scale breaks and the corresponding coherencies and phases are low reinforcing the hypothesis that it is the aircraft trajectory that is causally linked to the scale breaks in the wind measurements.

    Using spectra and structure functions we then estimate the small and large scale exponents finding that they are close to the Kolmogorov values (5/3, 1/3 and the vertical values (2.4, 0.73 respectively (for the spectral and real space scaling exponents (β, H the latter are close to those estimated by drop sondes (2.4, 0.75 in the vertical direction. In addition, for each leg we estimate the energy flux, the sphero

  3. Structural analysis at aircraft conceptual design stage

    Science.gov (United States)

    Mansouri, Reza

    In the past 50 years, computers have helped by augmenting human efforts with tremendous pace. The aircraft industry is not an exception. Aircraft industry is more than ever dependent on computing because of a high level of complexity and the increasing need for excellence to survive a highly competitive marketplace. Designers choose computers to perform almost every analysis task. But while doing so, existing effective, accurate and easy to use classical analytical methods are often forgotten, which can be very useful especially in the early phases of the aircraft design where concept generation and evaluation demands physical visibility of design parameters to make decisions [39, 2004]. Structural analysis methods have been used by human beings since the very early civilization. Centuries before computers were invented; the pyramids were designed and constructed by Egyptians around 2000 B.C, the Parthenon was built by the Greeks, around 240 B.C, Dujiangyan was built by the Chinese. Persepolis, Hagia Sophia, Taj Mahal, Eiffel tower are only few more examples of historical buildings, bridges and monuments that were constructed before we had any advancement made in computer aided engineering. Aircraft industry is no exception either. In the first half of the 20th century, engineers used classical method and designed civil transport aircraft such as Ford Tri Motor (1926), Lockheed Vega (1927), Lockheed 9 Orion (1931), Douglas DC-3 (1935), Douglas DC-4/C-54 Skymaster (1938), Boeing 307 (1938) and Boeing 314 Clipper (1939) and managed to become airborne without difficulty. Evidencing, while advanced numerical methods such as the finite element analysis is one of the most effective structural analysis methods; classical structural analysis methods can also be as useful especially during the early phase of a fixed wing aircraft design where major decisions are made and concept generation and evaluation demands physical visibility of design parameters to make decisions

  4. Model-Checking Real-Time Properties of an Aircraft Landing Gear System Using Fiacre

    OpenAIRE

    Berthomieu, Bernard; Dal Zilio, Silvano; Fronc, Lukasz

    2014-01-01

    International audience We describe our experience with modeling the landing gear system of an aircraft using the formal specification language Fiacre. Our model takes into account the behavior and timing properties of both the physical parts and the control software of this system. We use this formal model to check safety and real-time properties on the system but also to find a safe bound on the maximal time needed for all gears to be down and locked (assuming the absence of failures). Ou...

  5. Fly-by-light flight control system architectures for tactical military aircraft

    Science.gov (United States)

    Corrigan, Jack; Jones, Jack E.; Shaw, Brad

    1995-05-01

    Requirements for future advanced tactical aircraft identify the need for flight control system architectures that provide a higher degree of performance with regard to electromagnetic interference immunity, communication bus data rate, propulsion/utility subsystem integration, and affordability. Evolution of highly centralized, digital, fly-by-wire flight/propulsion/utility control system is achieved as modular functions are implemented and integrated by serial, digital, fiber optics communication links. These adaptable architectures allow the user to configure the fly-by-light system to meet unique safety requirements, system performance, and design to cost targets.

  6. Technology for future low-pollution air-craft gas turbines. Technologie fuer kuenftige schadstoffarme Luftfahrtgasturbinen

    Energy Technology Data Exchange (ETDEWEB)

    Weyer, H.B. (Inst. fuer Antriebstechnik, Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany))

    1992-01-01

    The author highlights the state of the art and development of aviation and the resulting atmospheric pollution with a special reference to civilian air traffic at cruising altitude. The propagation and long-term chemical effect of power-unit exhaust gases are not discussed; these complex processes of diffusion and atmospheric chemistry are dealt with in papers of their own. The author focusses on future aviation technologies which will improve the pollutivity and profitability of air-craft while maintaining their high level of operational safety. (orig.)

  7. Advanced technologies and new roles for VTOL aircraft (Part 2/2)

    Energy Technology Data Exchange (ETDEWEB)

    Renaud, J.P. [Office National d' Etudes et de Recherches Aerospatiales (ONERA-University), 13 - Marseilles (France)

    2000-06-01

    This survey paper intends to overview some main technical evolutions impacting present and future general design of rotor-craft (for vehicles, engines and systems), including helicopter and future tilt-rotor. These trends tend to achieve a better adaptation to a wide range of mission requirements with an economic aircraft optimisation and an enhanced safety level and environmental impact. Whilst part I considered the whole rotor-craft technical activity the present part II is essentially focused on market issues and the tilt-rotor concept introduction. (author)

  8. Fire safety

    Energy Technology Data Exchange (ETDEWEB)

    Keski-Rahkonen, O.; Bjoerkman, J.; Hostikka, S.; Mangs, J. [VTT Building Technology, Espoo (Finland); Huhtanen, R. [VTT Energy, Espoo (Finland); Palmen, H.; Salminen, A.; Turtola, A. [VTT Automation, Espoo (Finland)

    1998-07-01

    According to experience and probabilistic risk assessments, fires present a significant hazard in a nuclear power plant. Fires may be initial events for accidents or affect safety systems planned to prevent accidents and to mitigate their consequences. The project consists of theoretical work, experiments and simulations aiming to increase the fire safety at nuclear power plants. The project has four target areas: (1) to produce validated models for numerical simulation programmes, (2) to produce new information on the behavior of equipment in case of fire, (3) to study applicability of new active fire protecting systems in nuclear power plants, and (4) to obtain quantitative knowledge of ignitions induced by important electric devices in nuclear power plants. These topics have been solved mainly experimentally, but modelling at different level is used to interpret experimental data, and to allow easy generalisation and engineering use of the obtained data. Numerical fire simulation has concentrated in comparison of CFD modelling of room fires, and fire spreading on cables on experimental data. So far the success has been good to fair. A simple analytical and numerical model has been developed for fire effluents spreading beyond the room of origin in mechanically strongly ventilated compartments. For behaviour of equipment in fire several full scale and scaled down calorimetric experiments were carried out on electronic cabinets, as well as on horizontal and vertical cable trays. These were carried out to supply material for CFD numerical simulation code validation. Several analytical models were developed and validated against obtained experimental results to allow quick calculations for PSA estimates as well as inter- and extrapolations to slightly different objects. Response times of different commercial fire detectors were determined for different types of smoke, especially emanating from smoldering and flaming cables to facilitate selection of proper detector

  9. Linking Safety Analysis to Safety Requirements

    DEFF Research Database (Denmark)

    Hansen, Kirsten Mark

    the same system model and that this model is formalized in a real-time, interval logic, based on a conventional dynamic systems model with a state over time. The three safety analysis techniques are interpreted in this model and it is shown how to derive safety requirements for components of a system.......Software for safety critical systems must deal with the hazards identified by safety analysistechniques: Fault trees, event trees,and cause consequence diagrams can be interpreted as safety requirements and used in the design activity. We propose that the safety analysis and the system design use...

  10. CERN's new safety policy

    CERN Multimedia

    2014-01-01

    The documents below, published on 29 September 2014 on the HSE website, together replace the document SAPOCO 42 as well as Safety Codes A1, A5, A9, A10, which are no longer in force. As from the publication date of these documents any reference made to the document SAPOCO 42 or to Safety Codes A1, A5, A9 and A10 in contractual documents or CERN rules and regulations shall be deemed to constitute a reference to the corresponding provisions of the documents listed below.   "The CERN Safety Policy" "Safety Regulation SR-SO - Responsibilities and organisational structure in matters of Safety at CERN" "General Safety Instruction GSI-SO-1 - Departmental Safety Officer (DSO)" "General Safety Instruction GSI-SO-2 - Territorial Safety Officer (TSO)" "General Safety Instruction GSI-SO-3 - Safety Linkperson (SLP)" "General Safety Instruction GSI-SO-4 - Large Experiment Group Leader In Matters of Safety (LEXGLI...

  11. Exploratory flight investigation of aircraft response to the wing vortex wake generated by the augmentor wing jet STOL research aircraft

    Science.gov (United States)

    Jacobsen, R. A.; Drinkwater, F. J., III

    1975-01-01

    A brief exploratory flight program was conducted at Ames Research Center to investigate the vortex wake hazard of a powered-lift STOL aircraft. The study was made by flying an instrumented Cessna 210 aircraft into the wake of the augmentor wing jet STOL research aircraft at separation distances from 1 to 4 n.mi. Characteristics of the wake were evaluated in terms of the magnitude of the upset of the probing aircraft. Results indicated that within 1 n.mi. separation the wake could cause rolling moments in excess of roll control power and yawing moments equivalent to rudder control power of the probe aircraft. Subjective evaluations by the pilots of the Cessna 210 aircraft, supported by response measurements, indicated that the upset caused by the wake of the STOL aircraft was comparable to that of a DC-9 in the landing configuration.

  12. Artificial Intelligence for Controlling Robotic Aircraft

    Science.gov (United States)

    Krishnakumar, Kalmanje

    2005-01-01

    A document consisting mostly of lecture slides presents overviews of artificial-intelligence-based control methods now under development for application to robotic aircraft [called Unmanned Aerial Vehicles (UAVs) in the paper] and spacecraft and to the next generation of flight controllers for piloted aircraft. Following brief introductory remarks, the paper presents background information on intelligent control, including basic characteristics defining intelligent systems and intelligent control and the concept of levels of intelligent control. Next, the paper addresses several concepts in intelligent flight control. The document ends with some concluding remarks, including statements to the effect that (1) intelligent control architectures can guarantee stability of inner control loops and (2) for UAVs, intelligent control provides a robust way to accommodate an outer-loop control architecture for planning and/or related purposes.

  13. Fundamentals of aircraft and rocket propulsion

    CERN Document Server

    El-Sayed, Ahmed F

    2016-01-01

    This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in th...

  14. Organization and Nuclear Safety: Safety culture

    International Nuclear Information System (INIS)

    This book presents the experience in nuclear safety and its influence in the exploitation on nuclear power plants. The safety organization and quality management before and after Chernobylsk and three mile island accidents

  15. Identifying tacit strategies in aircraft maneuvers

    Science.gov (United States)

    Lewis, Charles M.; Heidorn, P. B.

    1991-01-01

    Two machine-learning methods are presently used to characterize the avoidance strategies used by skilled pilots in simulated aircraft encounters, and a general framework for the characterization of the strategic components of skilled behavior via qualitative representation of situations and responses is presented. Descriptions of pilot maneuvers that were 'conceptually equivalent' were ascertained by a concept-learning algorithm in conjunction with a classifier system that employed a generic algorithm; satisficing and 'buggy' strategies were thereby revealed.

  16. Trajectory management for aircraft noise mitigation

    OpenAIRE

    Prats Menéndez, Xavier; Quevedo Casín, Joseba Jokin; Puig Cayuela, Vicenç

    2009-01-01

    Comunicació convidada This paper gives an overview of aircraft trajectory management aimed at producing noise abatementprocedures. Area Navigation (RNAV) concepts play an important role in the design of flexible and, therefore, noise friendly depart or approach procedures. In addition, the lowest dispersion of RNAV tracks help to contain noise footprints in a smaller area if compared with footprints that are produced when conventional procedures are flown. However, RNAV turns still produce...

  17. Review Article: Influenza Transmission on Aircraft

    Science.gov (United States)

    Adlhoch, Cornelia

    2016-01-01

    Background: Air travel is associated with the spread of influenza through infected passengers and potentially through in-flight transmission. Contact tracing after exposure to influenza is not performed systematically. We performed a systematic literature review to evaluate the evidence for influenza transmission aboard aircraft. Methods: Using PubMed and EMBASE databases, we identified and critically appraised identified records to assess the evidence of such transmission to passengers seated in close proximity to the index cases. We also developed a bias assessment tool to evaluate the quality of evidence provided in the retrieved studies. Results: We identified 14 peer-reviewed publications describing contact tracing of passengers after possible exposure to influenza virus aboard an aircraft. Contact tracing during the initial phase of the influenza A(H1N1)pdm09 pandemic was described in 11 publications. The studies describe the follow-up of 2,165 (51%) of 4,252 traceable passengers. Altogether, 163 secondary cases were identified resulting in an overall secondary attack rate among traced passengers of 7.5%. Of these secondary cases, 68 (42%) were seated within two rows of the index case. Conclusion: We found an overall moderate quality of evidence for transmission of influenza virus aboard an aircraft. The major limiting factor was the comparability of the studies. A majority of secondary cases was identified at a greater distance than two rows from the index case. A standardized approach for initiating, conducting, and reporting contact tracing could help to increase the evidence base for better assessing influenza transmission aboard aircraft. PMID:27253070

  18. Project ADIOS: Aircraft Deployable Ice Observation System

    Science.gov (United States)

    Gudmundsson, G. H.

    2013-12-01

    Regions of the Antarctic that are of scientific interest are often too heavily crevassed to enable a plane to land, or permit safe access from a field camp. We have developed an alternative strategy for instrumenting these regions: a sensor that can be dropped from an overflying aircraft. Existing aircraft deployable sensors are not suitable for long term operations in areas where snow accumulates, as they are quickly buried. We have overcome this problem by shaping the sensor like an aerodynamic mast with fins and a small parachute. After being released from the aircraft, the sensor accelerates to 42m/s and stabilizes during a 10s descent. On impact with the snow surface the sensor package buries itself to a depth of 1m then uses the large surface area of the fins to stop it burying further. This leaves a 1.5m mast protruding high above the snow surface to ensure a long operating life. The high impact kinetic energy and robust fin braking mechanism ensure that the design works in both soft and hard snow. Over the past two years we have developed and tested our design with a series of aircraft and wind tunnel tests. Last season we used this deployment strategy to successfully install a network of 31 single band GPS sensors in regions where crevassing has previously prevented science operations: Pine Island Glacier, West Antarctica, and Scar Inlet, Antarctic Peninsula. This season we intend to expand on this network by deploying a further 25 single and dual band GPS sensors on Thwaites Glacier, West Antarctica.

  19. Study of hydrogen as an aircraft fuel

    OpenAIRE

    Ciaravino, John S.

    2003-01-01

    Approved for public release; distribution is unlimited The conversion to hydrogen as a naval aviation fuel would allow for independence on fuel cost and supply, as hydrogen is globally accessible. The biggest obstacle to using hydrogen is its very low density, a property that even combined with hydrogen's high heat of combustion still results in very large fuel tanks. Liquid hydrogen (LH2) with its higher density would still require a larger volume than kerosene for the aircraft to achieve...

  20. Fuel consumption and exhaust emissions of aircrafts

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, R. [Institute of Flightmechanics, Braunschweig (Germany)

    1997-12-31

    The reduction of contamination of sensitive atmospheric layers by improved flight planning steps, is investigated. Calculated results have shown, that a further development of flight track planning allows considerable improvements on fuel consumption and exhaust emissions. Even if air traffic will further increase, optimistic investigations forecast a reduction of the environmental damage by aircraft exhausts, if the effects of improved flight track arrangement and engine innovations will be combined. (R.P.) 4 refs.

  1. Speed stress and the aircraft pilot

    Directory of Open Access Journals (Sweden)

    W.T.V. Adiseshiah

    1958-07-01

    Full Text Available When the human component in a man-machine system of pushed beyond the limits of human capacity in grasping information presented to senses or in executing a series of actions correctly, a condition of "speed stress" may be said to occur. Conditions encountered by aircraft at high speeds, make a consideration of the forms of speed stress, and of the measures to alleviate them, extremely important.

  2. Route optimization model for strike aircraft

    OpenAIRE

    Lee, Steve H. K.

    1995-01-01

    A model is designed and implemented to construct a 'flyable,' least- risk route for strike aircraft from takeoff to target, through enemy radars, in a defined area of operations. A network is fust constructed by discretizing the airspace into a three-dimensional grid of nodes and then connecting adjacent nodes with arcs. A shortest-path model in this network is then constructed with arc lengths that are a function of the probability of detection by radars monitoring t...

  3. Digital adaptive control laws for VTOL aircraft

    Science.gov (United States)

    Hartmann, G. L.; Stein, G.

    1979-01-01

    Honeywell has designed a digital self-adaptive flight control system for flight test in the VALT Research Aircraft (a modified CH-47). The final design resulted from a comparison of two different adaptive concepts: one based on explicit parameter estimates from a real-time maximum likelihood estimation algorithm and the other based on an implicit model reference adaptive system. The two designs are compared on the basis of performance and complexity.

  4. Structural ballistic armour for transport aircraft

    OpenAIRE

    Horsfall, I; Austin, S J; Bishop, W.

    2000-01-01

    This paper describes the structural response of a current ceramic-faced composite armour system and a proposed structural armour system for aircraft use. The proposed structural ballistic armour system is shown to be capable of providing significant structural integrity even after ballistic impact whilst providing ballistic protection equivalent to an existing applique system. The addition of a carbon fibre reinforced plastic front panel to the existing ceramic faced composite armour system i...

  5. Active Noise Control in Propeller Aircraft

    OpenAIRE

    Johansson, Sven; Claesson, Ingvar

    2001-01-01

    A noisy environment dominated by low frequency noise can often be improved through the use of active noise control. This situation arises naturally in propeller aircraft where the propellers induce periodic low frequency noise inside the cabin. The cabin noise is typically rather high, and the passenger flight comfort could be improved considerably if this level were significantly reduced. This paper addresses same design aspects for multiple-reference active noise control systems based on th...

  6. Assessment of NASA's Aircraft Noise Prediction Capability

    Science.gov (United States)

    Dahl, Milo D. (Editor)

    2012-01-01

    A goal of NASA s Fundamental Aeronautics Program is the improvement of aircraft noise prediction. This document provides an assessment, conducted from 2006 to 2009, on the current state of the art for aircraft noise prediction by carefully analyzing the results from prediction tools and from the experimental databases to determine errors and uncertainties and compare results to validate the predictions. The error analysis is included for both the predictions and the experimental data and helps identify where improvements are required. This study is restricted to prediction methods and databases developed or sponsored by NASA, although in many cases they represent the current state of the art for industry. The present document begins with an introduction giving a general background for and a discussion on the process of this assessment followed by eight chapters covering topics at both the system and the component levels. The topic areas, each with multiple contributors, are aircraft system noise, engine system noise, airframe noise, fan noise, liner physics, duct acoustics, jet noise, and propulsion airframe aeroacoustics.

  7. Aircraft noise and its nearfield propagation computations

    Science.gov (United States)

    Zhang, Xin

    2012-08-01

    Noise generated by civil transport aircraft during take-off and approach-to-land phases of operation is an environmental problem. The aircraft noise problem is firstly reviewed in this article. The review is followed by a description and assessment of a number of sound propagation methods suitable for applications with a background mean flow field pertinent to aircraft noise. Of the three main areas of the noise problem, i.e. generation, propagation, and radiation, propagation provides a vital link between near-field noise generation and far-field radiation. Its accurate assessment ensures the overall validity of a prediction model. Of the various classes of propagation equations, linearised Euler equations are often casted in either time domain or frequency domain. The equations are often solved numerically by computational aeroacoustics techniques, bur are subject to the onset of Kelvin-Helmholtz (K-H) instability modes which may ruin the solutions. Other forms of linearised equations, e.g. acoustic perturbation equations have been proposed, with differing degrees of success.

  8. Advanced Aerostructural Optimization Techniques for Aircraft Design

    Directory of Open Access Journals (Sweden)

    Yingtao Zuo

    2015-01-01

    Full Text Available Traditional coupled aerostructural design optimization (ASDO of aircraft based on high-fidelity models is computationally expensive and inefficient. To improve the efficiency, the key is to predict aerostructural performance of the aircraft efficiently. The cruise shape of the aircraft is parameterized and optimized in this paper, and a methodology named reverse iteration of structural model (RISM is adopted to get the aerostructural performance of cruise shape efficiently. A new mathematical explanation of RISM is presented in this paper. The efficiency of RISM can be improved by four times compared with traditional static aeroelastic analysis. General purpose computing on graphical processing units (GPGPU is adopted to accelerate the RISM further, and GPU-accelerated RISM is constructed. The efficiency of GPU-accelerated RISM can be raised by about 239 times compared with that of the loosely coupled aeroelastic analysis. Test shows that the fidelity of GPU-accelerated RISM is high enough for optimization. Optimization framework based on Kriging model is constructed. The efficiency of the proposed optimization system can be improved greatly with the aid of GPU-accelerated RISM. An unmanned aerial vehicle (UAV is optimized using this framework and the range is improved by 4.67% after optimization, which shows effectiveness and efficiency of this framework.

  9. Aircraft noise and its nearfield propagation computations

    Institute of Scientific and Technical Information of China (English)

    Xin Zhang

    2012-01-01

    Noise generated by civil transport aircraft during take-off and approach-to-land phases of operation is an environmental problem.The aircraft noise problem is firstly reviewed in this article.The review is followed by a description and assessment of a number of sound propagation methods suitable for applications with a background mean flow field pertinent to aircraft noise.Of the three main areas of the noise problem,i.e.generation,propagation,and radiation,propagation provides a vital link between near-field noise generation and far-field radiation.Its accurate assessment ensures the overall validity of a prediction model.Of the various classes of propagation equations,linearised Euler equations are often casted in either time domain or frequency domain.The equations are often solved numerically by computational aeroacoustics techniques,bur are subject to the onset of Kelvin-Helmholtz (K-H) instability modes which may ruin the solutions. Other forms of linearised equations,e.g.acoustic perturbation equations have been proposed,with differing degrees of success.

  10. Food safety.

    Science.gov (United States)

    Borchers, Andrea; Teuber, Suzanne S; Keen, Carl L; Gershwin, M Eric

    2010-10-01

    Food can never be entirely safe. Food safety is threatened by numerous pathogens that cause a variety of foodborne diseases, algal toxins that cause mostly acute disease, and fungal toxins that may be acutely toxic but may also have chronic sequelae, such as teratogenic, immunotoxic, nephrotoxic, and estrogenic effects. Perhaps more worrisome, the industrial activities of the last century and more have resulted in massive increases in our exposure to toxic metals such as lead, cadmium, mercury, and arsenic, which now are present in the entire food chain and exhibit various toxicities. Industrial processes also released chemicals that, although banned a long time ago, persist in the environment and contaminate our food. These include organochlorine compounds, such as 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (dichlorodiphenyl dichloroethene) (DDT), other pesticides, dioxins, and dioxin-like compounds. DDT and its breakdown product dichlorophenyl dichloroethylene affect the developing male and female reproductive organs. In addition, there is increasing evidence that they exhibit neurodevelopmental toxicities in human infants and children. They share this characteristic with the dioxins and dioxin-like compounds. Other food contaminants can arise from the treatment of animals with veterinary drugs or the spraying of food crops, which may leave residues. Among the pesticides applied to food crops, the organophosphates have been the focus of much regulatory attention because there is growing evidence that they, too, affect the developing brain. Numerous chemical contaminants are formed during the processing and cooking of foods. Many of them are known or suspected carcinogens. Other food contaminants leach from the packaging or storage containers. Examples that have garnered increasing attention in recent years are phthalates, which have been shown to induce malformations in the male reproductive system in laboratory animals, and bisphenol A, which negatively

  11. Food safety.

    Science.gov (United States)

    Borchers, Andrea; Teuber, Suzanne S; Keen, Carl L; Gershwin, M Eric

    2010-10-01

    Food can never be entirely safe. Food safety is threatened by numerous pathogens that cause a variety of foodborne diseases, algal toxins that cause mostly acute disease, and fungal toxins that may be acutely toxic but may also have chronic sequelae, such as teratogenic, immunotoxic, nephrotoxic, and estrogenic effects. Perhaps more worrisome, the industrial activities of the last century and more have resulted in massive increases in our exposure to toxic metals such as lead, cadmium, mercury, and arsenic, which now are present in the entire food chain and exhibit various toxicities. Industrial processes also released chemicals that, although banned a long time ago, persist in the environment and contaminate our food. These include organochlorine compounds, such as 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (dichlorodiphenyl dichloroethene) (DDT), other pesticides, dioxins, and dioxin-like compounds. DDT and its breakdown product dichlorophenyl dichloroethylene affect the developing male and female reproductive organs. In addition, there is increasing evidence that they exhibit neurodevelopmental toxicities in human infants and children. They share this characteristic with the dioxins and dioxin-like compounds. Other food contaminants can arise from the treatment of animals with veterinary drugs or the spraying of food crops, which may leave residues. Among the pesticides applied to food crops, the organophosphates have been the focus of much regulatory attention because there is growing evidence that they, too, affect the developing brain. Numerous chemical contaminants are formed during the processing and cooking of foods. Many of them are known or suspected carcinogens. Other food contaminants leach from the packaging or storage containers. Examples that have garnered increasing attention in recent years are phthalates, which have been shown to induce malformations in the male reproductive system in laboratory animals, and bisphenol A, which negatively

  12. Practical Application of a Subscale Transport Aircraft for Flight Research in Control Upset and Failure Conditions

    Science.gov (United States)

    Cunningham, Kevin; Foster, John V.; Morelli, Eugene A.; Murch, Austin M.

    2008-01-01

    Over the past decade, the goal of reducing the fatal accident rate of large transport aircraft has resulted in research aimed at the problem of aircraft loss-of-control. Starting in 1999, the NASA Aviation Safety Program initiated research that included vehicle dynamics modeling, system health monitoring, and reconfigurable control systems focused on flight regimes beyond the normal flight envelope. In recent years, there has been an increased emphasis on adaptive control technologies for recovery from control upsets or failures including damage scenarios. As part of these efforts, NASA has developed the Airborne Subscale Transport Aircraft Research (AirSTAR) flight facility to allow flight research and validation, and system testing for flight regimes that are considered too risky for full-scale manned transport airplane testing. The AirSTAR facility utilizes dynamically-scaled vehicles that enable the application of subscale flight test results to full scale vehicles. This paper describes the modeling and simulation approach used for AirSTAR vehicles that supports the goals of efficient, low-cost and safe flight research in abnormal flight conditions. Modeling of aerodynamics, controls, and propulsion will be discussed as well as the application of simulation to flight control system development, test planning, risk mitigation, and flight research.

  13. A survey on electromagnetic interferences on aircraft avionics systems and a GSM on board system overview

    Science.gov (United States)

    Vinto, Natale; Tropea, Mauro; Fazio, Peppino; Voznak, Miroslav

    2014-05-01

    Recent years have been characterized by an increase in the air traffic. More attention over micro-economic and macroeconomic indexes would be strategic to gather and enhance the safety of a flight and customer needing, for communicating by wireless handhelds on-board aircrafts. Thus, European Telecommunications Standards Institute (ETSI) proposed a GSM On Board (GSMOBA) system as a possible solution, allowing mobile terminals to communicate through GSM system on aircraft, avoiding electromagnetic interferences with radio components aboard. The main issues are directly related with interferences that could spring-out when mobile terminals attempt to connect to ground BTS, from the airplane. This kind of system is able to resolve the problem in terms of conformance of Effective Isotropic Radiated Power (EIRP) limits, defined outside the aircraft, by using an On board BTS (OBTS) and modeling the relevant key RF parameters on the air. The main purpose of this work is to illustrate the state-of-the-art of literature and previous studies about the problem, giving also a good detail of technical and normative references.

  14. Airport operator and aircraft operator in case of bird strike. Relations, obligations and liability

    Directory of Open Access Journals (Sweden)

    Sylwia KACZYŃSKA-ADAMCZYK

    2011-01-01

    Full Text Available Air transport is subject to various risks. One of them is bird strike hazard. Despite numerous regulations concerning prevention from this type of occurrence, it is not possible to eliminate them entirely.Bird strikes most often take place during take-off and landing, that is on or in the vicinity of an airport. For that reason airport operators are the first parties that can be made accountable for this occurence. International law imposes numerous responsibilities on airport operators in terms of bird strike hazard prevention on air operations, thus placing airport operators in a “key position” in the system of safety. However, the party that suffers significant damages in the first instance, is the aircraft operator. If a bird strike takes place on or in the vicinity of an airport, an aicraft operator can sue the airport operator for compensation of damages. Generally, the issue of indemnity is subject to out of court negotiations, however instances in which there is a lack of agreement between the parties, i.e. airport operator, aircraft operator or their insurers, lead to legal proceedings for compensation.This article attempts to illustrate the relationship between air traffic participants such as airport operators and aircraft operators in connection with their obligations and liability, particulary taking into account the legal obligations of an airport operator.

  15. Trajectory Management of the Unmanned Aircraft System (UAS in Emergency Situation

    Directory of Open Access Journals (Sweden)

    Andrzej Majka

    2015-05-01

    Full Text Available Unmanned aircraft must be characterized by a level of safety, similar to that of manned aircraft, when performing flights over densely populated areas. Dangerous situations or emergencies are frequently connected with the necessity to change the profiles and parameters of a flight as well as the flight plans. The aim of this work is to present the methods used to determine an Unmanned Aircraft System’s (UAS flight profile after a dangerous situation or emergency occurs. The analysis was limited to the possibility of an engine system emergency and further flight continuing along a trajectory of which the shape depends on the type of the emergency. The suggested method also enables the determination of an optimal flying trajectory, based on the territory of a special protection zone (for example, large populated areas, in the case of an emergency that would disable continuation of the performed task. The method used in this work allows researchers, in a simplified way, to solve a variation task using the Ritz–Galerkin method, consisting of an approximate solution of the boundary value problem to determine the optimal flight path. The worked out method can become an element of the on-board system supporting UAS flight control.

  16. Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use

    Directory of Open Access Journals (Sweden)

    Adam C. Watts

    2012-06-01

    Full Text Available Unmanned Aircraft Systems (UAS have evolved rapidly over the past decade driven primarily by military uses, and have begun finding application among civilian users for earth sensing reconnaissance and scientific data collection purposes. Among UAS, promising characteristics are long flight duration, improved mission safety, flight repeatability due to improving autopilots, and reduced operational costs when compared to manned aircraft. The potential advantages of an unmanned platform, however, depend on many factors, such as aircraft, sensor types, mission objectives, and the current UAS regulatory requirements for operations of the particular platform. The regulations concerning UAS operation are still in the early development stages and currently present significant barriers to entry for scientific users. In this article we describe a variety of platforms, as well as sensor capabilities, and identify advantages of each as relevant to the demands of users in the scientific research sector. We also briefly discuss the current state of regulations affecting UAS operations, with the purpose of informing the scientific community about this developing technology whose potential for revolutionizing natural science observations is similar to those transformations that GIS and GPS brought to the community two decades ago.

  17. Bromine Safety

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, B

    2001-04-09

    The production and handling in 1999 of about 200 million kilograms of bromine plus substantial derivatives thereof by Great Lakes Chemical Corp. and Albemarle Corporation in their southern Arkansas refineries gave OSHA Occupational Injury/Illness Rates (OIIR) in the range of 0.74 to 1.60 reportable OIIRs per 200,000 man hours. OIIRs for similar industries and a wide selection of other U.S. industries range from 1.6 to 23.9 in the most recent OSHA report. Occupational fatalities for the two companies in 1999 were zero compared to a range in the U.S.of zero for all computer manufacturing to 0.0445 percent for all of agriculture, forestry and fishing in the most recent OSHA report. These results show that bromine and its compounds can be considered as safe chemicals as a result of the bromine safety standards and practices at the two companies. The use of hydrobromic acid as an electrical energy storage medium in reversible PEM fuel cells is discussed. A study in 1979 of 20 megawatt halogen working fluid power plants by Oronzio de Nora Group found such energy to cost 2 to 2.5 times the prevailing base rate at that time. New conditions may reduce this relative cost. The energy storage aspect allows energy delivery at maximum demand times where the energy commands premium rates. The study also found marginal cost and performance advantages for hydrobromic acid over hydrochloric acid working fluid. Separate studies in the late 70s by General Electric also showed marginal performance advantages for hydrobromic acid.

  18. A major safety overhaul

    CERN Document Server

    2003-01-01

    A redefined policy, a revamped safety course, an environmental project... the TIS (Technical Inspection and Safety) Division has begun a major safety overhaul. Its new head, Wolfgang Weingarten, explains to the Bulletin why and how this is happening.

  19. Promoting health and safety for traveling and commuting employees.

    Science.gov (United States)

    Pochat-Debroux, Sophia

    2008-09-01

    In a society that relies on a growing market economy and free enterprise, Americans spend inordinate time commuting and traveling for work. Aircraft and private vehicles are the two primary modes of work-related travel, with each having its own inherit risks and hazards. Although much has been written about international travel health, little has been published about protecting the health and safety of workers during domestic business travel. The intent of this article is to highlight the statistics associated with domestic business travel and present sound rationale for an inclusive and comprehensive domestic travel health and safety program for employees. PMID:18792614

  20. Fuel dispersal modeling for aircraft-runway impact scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Tieszen, S.R.

    1995-11-01

    A fuel dispersal model for C-141 transport accidents was developed for the Defense Nuclear Agency`s Fuel Fire Technology Base Program to support Weapon System Safety Assessments. The spectrum of accidents resulting from aircraft impact on a runway was divided into three fuel dispersal regimes: low, intermediate, and high-velocity impact. Sufficient data existed in the accident, crash test, and fuel-filled bomb literature to support development of a qualitative framework for dispersal models, but not quantitative models for all regimes. Therefore, a test series at intermediate scale was conducted to generate data on which to base the model for the high-velocity regime. Tests were conducted over an impact velocity range from 12 m/s to 91 m/s and angles of impact from 22.5{degrees} to 67.5{degrees}. Dependent variables were area covered by dispersed fuel, amount of mass in that area, and location of the area relative to the impact line. Test results showed that no liquid pooling occurred for impact velocities greater than 61 m/s, independent of the angle of impact. Some pooling did occur at lower velocities, but in no test was the liquid-layer thickness greater than 5.25 mm.

  1. Understanding electrostatic charge behaviour in aircraft fuel systems

    Science.gov (United States)

    Ogilvy, Jill A.; Hooker, Phil; Bennett, Darrell

    2015-10-01

    This paper presents work on the simulation of electrostatic charge build-up and decay in aircraft fuel systems. A model (EC-Flow) has been developed by BAE Systems under contract to Airbus, to allow the user to assess the effects of changes in design or in refuel conditions. Some of the principles behind the model are outlined. The model allows for a range of system components, including metallic and non-metallic pipes, valves, filters, junctions, bends and orifices. A purpose-built experimental rig was built at the Health and Safety Laboratory in Buxton, UK, to provide comparison data. The rig comprises a fuel delivery system, a test section where different components may be introduced into the system, and a Faraday Pail for measuring generated charge. Diagnostics include wall currents, charge densities and pressure losses. This paper shows sample results from the fitting of model predictions to measurement data and shows how analysis may be used to explain some of the observed trends.

  2. Analysis of Aviation Safety Reporting System Incident Data Associated with the Technical Challenges of the Atmospheric Environment Safety Technology Project

    Science.gov (United States)

    Withrow, Colleen A.; Reveley, Mary S.

    2014-01-01

    This study analyzed aircraft incidents in the NASA Aviation Safety Reporting System (ASRS) that apply to two of the three technical challenges (TCs) in NASA's Aviation Safety Program's Atmospheric Environment Safety Technology Project. The aircraft incidents are related to airframe icing and atmospheric hazards TCs. The study reviewed incidents that listed their primary problem as weather or environment-nonweather between 1994 and 2011 for aircraft defined by Federal Aviation Regulations (FAR) Parts 121, 135, and 91. The study investigated the phases of flight, a variety of anomalies, flight conditions, and incidents by FAR part, along with other categories. The first part of the analysis focused on airframe-icing-related incidents and found 275 incidents out of 3526 weather-related incidents over the 18-yr period. The second portion of the study focused on atmospheric hazards and found 4647 incidents over the same time period. Atmospheric hazards-related incidents included a range of conditions from clear air turbulence and wake vortex, to controlled flight toward terrain, ground encounters, and incursions.

  3. New Safety rules

    CERN Multimedia

    Safety Commission

    2008-01-01

    The revision of CERN Safety rules is in progress and the following new Safety rules have been issued on 15-04-2008: Safety Procedure SP-R1 Establishing, Updating and Publishing CERN Safety rules: http://cern.ch/safety-rules/SP-R1.htm; Safety Regulation SR-S Smoking at CERN: http://cern.ch/safety-rules/SR-S.htm; Safety Regulation SR-M Mechanical Equipment: http://cern.ch/safety-rules/SR-M.htm; General Safety Instruction GSI-M1 Standard Lifting Equipment: http://cern.ch/safety-rules/GSI-M1.htm; General Safety Instruction GSI-M2 Standard Pressure Equipment: http://cern.ch/safety-rules/GSI-M2.htm; General Safety Instruction GSI-M3 Special Mechanical Equipment: http://cern.ch/safety-rules/GSI-M3.htm. These documents apply to all persons under the Director General’s authority. All Safety rules are available at the web page: http://www.cern.ch/safety-rules The Safety Commission

  4. Animal Drug Safety FAQs

    Science.gov (United States)

    ... Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Frequently Asked Questions Animal Drug Safety Frequently Asked Questions Share Tweet Linkedin ...

  5. Nuclear criticality safety guide

    Energy Technology Data Exchange (ETDEWEB)

    Pruvost, N.L.; Paxton, H.C. [eds.

    1996-09-01

    This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators.

  6. Farm Health and Safety

    Science.gov (United States)

    ... jobs in the United States. Farms have many health and safety hazards, including Chemicals and pesticides Machinery, ... equipment can also reduce accidents. Occupational Safety and Health Administration

  7. HANARO Safety Performance Indicators

    International Nuclear Information System (INIS)

    HANARO is a 30 MW open-tank-in-pool type multi-purpose research reactor. Safety improvement activities have been implemented and the importance of safety management in nuclear activities for reactor application and utilization has also been emphasized. Safety performance indicators (SPIs) are used to assess the safety management status, in combination with other factors such as safety culture, human performance and operation status. The SPI system can provide a proactive approach to complement other safety assessment activities. HANARO has tried to develop a programme for the establishment of safety performance indicators. In this paper the application experience of safety performance indicators in HANARO is described. (author)

  8. Nuclear criticality safety guide

    International Nuclear Information System (INIS)

    This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators

  9. V/STOL tilt rotor aircraft study. Volume 2: Preliminary design of research aircraft

    Science.gov (United States)

    1972-01-01

    A preliminary design study was conducted to establish a minimum sized, low cost V/STOL tilt-rotor research aircraft with the capability of performing proof-of-concept flight research investigations applicable to a wide range of useful military and commercial configurations. The analysis and design approach was based on state-of-the-art methods and maximum use of off-the-shelf hardware and systems to reduce development risk, procurement cost and schedules impact. The rotors to be used are of 26 foot diameter and are the same as currently under construction and test as part of NASA Tilt-Rotor Contract NAS2-6505. The aircraft has a design gross weight of 12,000 lbs. The proposed engines to be used are Lycoming T53-L-13B rated at 1550 shaft horsepower which are fully qualified. A flight test investigation is recommended which will determine the capabilities and limitations of the research aircraft.

  10. Relating aviation service difficulty reports to accident data for safety trend prediction

    Energy Technology Data Exchange (ETDEWEB)

    Fullwood, R.; Hall, R.; Martinez, G.; Uryasev, S.

    1996-03-13

    This work explores the hypothesis that Service Difficulty Reports (SDR - primarily inspection reports) are related to Accident Incident Data System (AIDS - reports primarily compiled from National Transportation Safety Board (NTSB) accident investigations). This work sought and found relations between equipment operability reported in the SDR and aviation safety reported in AIDS. Equipment is not the only factor in aviation accidents, but it is the factor reported in the SDR. Two approaches to risk analysis were used: (1) The conventional method, in which reporting frequencies are taken from a data base (SDR), and used with an aircraft reliability block diagram model of the critical systems to predict aircraft failure, and (2) Shape analysis that uses the magnitude and shape of the SDR distribution compared with the AIDS distribution to predict aircraft failure.

  11. Patient safety: Safety culture and patient safety ethics

    DEFF Research Database (Denmark)

    Madsen, Marlene Dyrløv

    2006-01-01

    challenging issues of systemic, organisational, cultural and ethical relevance, which this dissertation seeks to address through the application of different disciplinary approaches. The main focus of researchis safety culture; through empirical and theoretical studies to comprehend the phenomenon, address......Patient safety - the prevention of medical error and adverse events - and the initiative of developing safety cultures to assure patients from harm have become one of the central concerns in quality improvement in healthcare both nationally andinternationally. This subject raises numerous...... the problems, and suggest possible solutions for improving patient safety through the promotion of safety culture and ethics. I seek to illuminate theissues of patient safety from several perspectives; the organizational healthcare system, in particular the healthcare workers perspectives and experiences...

  12. Synthetic Vision CFIT Experiments for GA and Commercial Aircraft: "A Picture Is Worth A Thousand Lives"

    Science.gov (United States)

    Prinzel, Lawrence J., III; Hughes, Monica F.; Arthur, Jarvis J., III; Kramer, Lynda J.; Glaab, Louis J.; Bailey, Randy E.; Parrish, Russell V.; Uenking, Michael D.

    2003-01-01

    Because restricted visibility has been implicated in the majority of commercial and general aviation accidents, solutions will need to focus on how to enhance safety during instrument meteorological conditions (IMC). The NASA Synthetic Vision Systems (SVS) project is developing technologies to help achieve these goals through the synthetic presentation of how the outside world would look to the pilot if vision were not reduced. The potential safety outcome would be a significant reduction in several accident categories, such as controlled-flight-into-terrain (CFIT), that have restricted visibility as a causal factor. The paper describes two experiments that demonstrated the efficacy of synthetic vision technology to prevent CFIT accidents for both general aviation and commercial aircraft.

  13. Standard Test Method for Stress-Corrosion of Titanium Alloys by Aircraft Engine Cleaning Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This test method establishes a test procedure for determining the propensity of aircraft turbine engine cleaning and maintenance materials for causing stress corrosion cracking of titanium alloy parts. 1.2 The evaluation is conducted on representative titanium alloys by determining the effect of contact with cleaning and maintenance materials on tendency of prestressed titanium alloys to crack when subsequently heated to elevated temperatures. 1.3 Test conditions are based upon manufacturer's maximum recommended operating solution concentration. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see and .

  14. Nitrogen oxides at the UTLS: Combining observations from research aircraft and in-service aircraft

    Science.gov (United States)

    Ziereis, Helmut; Stratmann, Greta; Schlager, Hans; Gottschaldt, Klaus-Dirk; Rauthe-Schöch, Armin; Zahn, Andreas; Hoor, Peter; van, Peter

    2016-04-01

    Nitrogen oxides have a decisive influence on the chemistry of the upper troposphere and lower stratosphere. They are key constituents of several reaction chains influencing the production of ozone. They also play an essential role in the cycling of hydroxyl radicals and therefore influence the lifetime of methane. Due to their short lifetime and their variety of sources there is still a high uncertainty about the abundance of nitrogen oxides in the UTLS. Dedicated aircraft campaigns aim to study specific atmospheric questions like lightning, long range transport or aircraft emissions. Usually, within a short time period comprehensive measurements are performed within a more or less restricted region. Therefore, especially trace constituents like nitrogen oxides with short lifetime and a variety of different sources are not represented adequately. On the other hand, routine measurements from in-service aircraft allow observations over longer time periods and larger regions. However, it is nearly impossible to influence the scheduling of in-service aircraft and thereby time and space of the observations. Therefore, the combination of dedicated aircraft campaigns and routine observations might supplement each other. For this study we combine nitrogen oxides data sets obtained with the IAGOS-CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) flying laboratory and with the German research aircraft HALO (High altitude and long range research aircraft). Data have been acquired within the IAGOS-CARIBIC project on a monthly base using a Lufthansa Airbus A340-600 since December 2004. About four flights are performed each month covering predominantly northern mid-latitudes. Additional flights have been conducted to destinations in South America and South Africa. Since 2012 HALO has been operational. Nitrogen oxides measurements have been performed during six missions covering mid latitudes, tropical as well as Polar

  15. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    Science.gov (United States)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  16. Aircraft Anomaly Detection Using Performance Models Trained on Fleet Data

    Science.gov (United States)

    Gorinevsky, Dimitry; Matthews, Bryan L.; Martin, Rodney

    2012-01-01

    This paper describes an application of data mining technology called Distributed Fleet Monitoring (DFM) to Flight Operational Quality Assurance (FOQA) data collected from a fleet of commercial aircraft. DFM transforms the data into aircraft performance models, flight-to-flight trends, and individual flight anomalies by fitting a multi-level regression model to the data. The model represents aircraft flight performance and takes into account fixed effects: flight-to-flight and vehicle-to-vehicle variability. The regression parameters include aerodynamic coefficients and other aircraft performance parameters that are usually identified by aircraft manufacturers in flight tests. Using DFM, the multi-terabyte FOQA data set with half-million flights was processed in a few hours. The anomalies found include wrong values of competed variables, (e.g., aircraft weight), sensor failures and baises, failures, biases, and trends in flight actuators. These anomalies were missed by the existing airline monitoring of FOQA data exceedances.

  17. Damage criticality and inspection concerns of composite-metallic aircraft structures under blunt impact

    Science.gov (United States)

    Zou, D.; Haack, C.; Bishop, P.; Bezabeh, A.

    2015-04-01

    Composite aircraft structures such as fuselage and wings are subject to impact from many sources. Ground service equipment (GSE) vehicles are regarded as realistic sources of blunt impact damage, where the protective soft rubber is used. With the use of composite materials, blunt impact damage is of special interest, since potential significant structural damage may be barely visible or invisible on the structure's outer surface. Such impact can result in local or non-local damage, in terms of internal delamination in skin, interfacial delamination between stiffeners and skin, and fracture of internal reinforced component such as stringers and frames. The consequences of these events result in aircraft damage, delays, and financial cost to the industry. Therefore, it is necessary to understand the criticality of damage under this impact and provide reliable recommendations for safety and inspection technologies. This investigation concerns a composite-metallic 4-hat-stiffened and 5-frame panel, designed to represent a fuselage structure panel generic to the new generation of composite aircraft. The test fixtures were developed based on the correlation between finite element analyses of the panel model and the barrel model. Three static tests at certain amount of impact energy were performed, in order to improve the understanding of the influence of the variation in shear ties, and the added rotational stiffness. The results of this research demonstrated low velocity high mass impacts on composite aircraft fuselages beyond 82.1 kN of impact load, which may cause extensive internal structural damage without clear visual detectability on the external skin surface.

  18. Impact Analyses and Tests of Metal Cask Considering Aircraft Engine Crash - 12308

    International Nuclear Information System (INIS)

    The structural integrity of a dual purpose metal cask currently under development by the Korea Radioactive Waste Management Cooperation (KRMC) is evaluated through analyses and tests under a high-speed missile impact considering the targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from the literature. The missile impact velocity was set at 150 m/s, and two impact orientations were considered. A simplified missile simulating a commercial aircraft engine is designed from an impact load history curve provided in the literature. In the analyses, the focus is on the evaluation of the containment boundary integrity of the metal cask. The analyses results are compared with the results of tests using a 1/3 scale model. The results show very good agreements, and the procedure and methodology adopted in the structural analyses are validated. While the integrity of the cask is maintained in one evaluation where the missile impacts the top side of the free standing cask, the containment boundary is breached in another case in which the missile impacts the center of the cask lid in a perpendicular orientation. A safety assessment using a numerical simulation of an aircraft engine crash into spent nuclear fuel storage systems is performed. A commercially available explicit finite element code is utilized for the dynamic simulation, and the strain rate effect is included in the modeling of the materials used in the target system and missile. The simulation results show very good agreement with the test results. It is noted that this is the first test considering an aircraft crash in Korea. (authors)

  19. 77 FR 44470 - Safety Zone; Seafair Blue Angels Air Show Performance, Seattle, WA

    Science.gov (United States)

    2012-07-30

    ... establishing a safety zone on the waters of Lake Washington, Seattle, WA. This action is necessary to safeguard... military aircraft. The regulation contained in 33 CFR 165.1319 encompasses `` ll waters of Lake Washington...: the owners or operators of vessels intending to transit this portion of Lake Washington during...

  20. A Particle System for Safety Verification of Free Flight in Air Traffic

    NARCIS (Netherlands)

    Blom, H.A.P.; Krystul, J.; Bakker, G.J.

    2006-01-01

    Under free flight, an aircrew has both the freedom to select their trajectory and the responsibility of resolving conflicts with other aircraft. The general belief is that free flight can be made safe under low traffic conditions. Increasing traffic, however, raises safety verification issues. This