WorldWideScience

Sample records for aircraft propulsion reactors

  1. REACTOR AND SHIELD PHYSICS. Comprehensive Technical Report, General Electric Direct-Air-Cycle, Aircraft Nuclear Propulsion Program.

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, W.E.; Simpson, J.D.

    1962-01-01

    This volume is one of twenty-one summarizing the Aircraft Nuclear Propulsion Program of the General Electric Company. This volume describes the experimental and theoretical work accomplished in the areas of reactor and shield physics.

  2. Propulsion controlled aircraft computer

    Science.gov (United States)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  3. Ship propulsion reactors technology

    International Nuclear Information System (INIS)

    This paper takes the state of the art on ship propulsion reactors technology. The french research programs with the corresponding technological stakes, the reactors specifications and advantages are detailed. (A.L.B.)

  4. Reactors. Nuclear propulsion ships

    International Nuclear Information System (INIS)

    This article has for object the development of nuclear-powered ships and the conception of the nuclear-powered ship. The technology of the naval propulsion P.W.R. type reactor is described in the article B.N.3 141 'Nuclear Boilers ships'. (N.C.)

  5. Comprehensive Technical Report, General Electric Direct-Air-Cycle Aircraft Nuclear Propulsion Program; Aircraft Nuclear Propulsion Application Studies

    Energy Technology Data Exchange (ETDEWEB)

    Comassar, S.

    1962-04-30

    This volume is one of twenty-one summarizing the Aircraft Nuclear Propulsion Program of the General Electric Company. This portion describes the studies of advanced applications of nuclear reactors that were performed, including various types of aircraft, missiles, space vehicles, ships, and portable power plants.

  6. Reactors for nuclear electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades.

  7. Reactors for nuclear electric propulsion

    International Nuclear Information System (INIS)

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades

  8. Aircraft Nuclear Propulsion Project Quarterly Progress Report for Period Ending December 31, 1956

    Energy Technology Data Exchange (ETDEWEB)

    NA, NA [ORNL

    1957-03-12

    This quarterly progress report of the Aircraft Nuclear Propulsion Project at ORNL records the technical progress of research on circulating-fuel reactors and other ANP research at the Laboratory. The report is divided into five major parts: 1) Aircraft Reactor Engineering, 2) Chemistry, and 3) Metallurgy, 4) Heat Transfer and Physical Properties, Radiation Damage, and Fuel Recovery and Reprocessing, and 5) Reactor Shielding.

  9. Fundamentals of aircraft and rocket propulsion

    CERN Document Server

    El-Sayed, Ahmed F

    2016-01-01

    This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in th...

  10. Preliminary analysis of three cycles for nuclear propulsion of aircraft

    Science.gov (United States)

    Humble, L V; Wachtl, W W; Doyle, R B

    1950-01-01

    A preliminary study was made of the feasibility of three cycles for nuclear propulsion of aircraft: a direct-air-turbojet, a binary liquid-metal turbojet, and a helium compressor jet. All three cycles appeared feasible for flight at a Mach number of 0.9 and altitudes up to 50,000 feet; the liquid-metal cycle appeared feasible for flight at a Mach number of 1.5. The air and helium cycles resulted in heavier aircraft than did the liquid-metal cycle, particularly at a Mach number of 1.5. The relative advantage of the liquid-metal cycle became greater as the flight speed and altitude increased, and as the reactor wall temperature decreased.

  11. Contributions Regarding the Aircraft Nuclear Propulsion

    International Nuclear Information System (INIS)

    The possibility to use a nuclear reactor for airplanes propulsion was investigated taking in to account 2 possible solutions: the direct cycle (where the fluid pass through the reactor's core) and the indirect cycle (where the fluid is passing through a heat exchanger). Taking in to account the radioprotection problems, the only realistic solution seems to be the indirect cycle, where the energy transfer should be performed by a heat exchanger that must work at very high speed of the fluid. The heat exchanger will replace the classical burning room. We had performed a more precise theoretical study for the nuclear jet engine regarding the performances of the nuclear reactor, of the heat exchanger and of the jet engine. It was taken in to account that in the moment when the burning room is replaced by a heat exchanger, a new model for gasodynamic process from the engine must be performed. Studies regarding the high flow speed heat transfer were performed.

  12. Contributions Regarding the Aircraft Nuclear Propulsion

    Science.gov (United States)

    Mitrica, Bogdan; Stanciu, Virgil; Petre, Marian; Dima, Mihai Octavian; Petre, Carmelia; Precup, Irinel

    2010-01-01

    The possibility to use a nuclear reactor for airplanes propulsion was investigated taking in to account 2 possible solutions: the direct cycle (where the fluid pass through the reactor's core) and the indirect cycle (where the fluid is passing through a heat exchanger). Taking in to account the radioprotection problems, the only realistic solution seems to be the indirect cycle, where the energy transfer should be performed by a heat exchanger that must work at very high speed of the fluid. The heat exchanger will replace the classical burning room. We had performed a more precise theoretical study for the nuclear jet engine regarding the performances of the nuclear reactor, of the heat exchanger and of the jet engine. It was taken in to account that in the moment when the burning room is replaced by a heat exchanger, a new model for gasodynamic process from the engine must be performed. Studies regarding the high flow speed heat transfer were performed.

  13. Closed cycle propulsion for small unmanned aircraft

    Science.gov (United States)

    Hays, Thomas Chadwick

    This study evaluates the merit of closed cycle propulsion systems for use in unmanned systems. The complexity and added weight of closed cycle engines is offset by benefits in high altitude performance, operation in polluted air environments, multi-fuel operation, and potential for flight in low oxygen environments using generic thermal heat sources. Although most closed thermal cycles cannot match the efficiency and power density potential of internal combustion engines (ICE) and turbomachines in aircraft propulsion applications, the addition of design requirements regarding noise output, and operation at high altitude results in IC and CC engine's performance becoming much more comparable. Muffling devices increase backpressure on internal combustion engines thereby reducing power output and efficiency. Multi stage turbo supercharging for operation at high altitude can in some cases increase efficiency of ICE's, but at the result of significant additional complexity and cost that also reduces practical reliability because of the often intricate mechanisms involved. It is in these scenarios that closed cycle engines offer a comparable performance alternative that may prove to be simpler, cheaper, and more reliable than high altitude or low noise internal combustion or turbomachine propulsion systems.

  14. Reactors. Nuclear propulsion ships; Reacteurs. Navires a propulsion nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Fribourg, Ch. [Technicatome, Centre d' Etudes Nucleaires de Saclay, 91 - Gif sur Yvette (France)

    2001-07-01

    This article has for object the development of nuclear-powered ships and the conception of the nuclear-powered ship. The technology of the naval propulsion P.W.R. type reactor is described in the article B.N.3 141 'Nuclear Boilers ships'. (N.C.)

  15. Thermionic reactor systems for electric propulsion.

    Science.gov (United States)

    Mondt, J. F.

    1972-01-01

    This paper summarizes the preliminary design studies of unmanned electric propulsion spacecraft, with primary emphasis on the in-core thermionic reactor power subsystem. A 70-kWe power subsystem, with an external-fuel thermionic reactor, is shown integrated into a large L/D (about 20) electric propulsion spacecraft. The 70-kWe spacecraft is designed for launch to earth escape with a Titan-Centaur. Two 300-kWe reactor designs (external-fuel and flashlight designs from Atomic Energy Commission contracted studies) are integrated into 270-kWe electric propulsion spacecraft. The 270-kWe spacecraft are designed for launch to a 700-nmi earth orbit with a Titan III-C/7 booster. The 70-kWe thermionic reactor power subsystem is also conceptually shown as a space base power plant.

  16. Uranium arc fission reactor for space propulsion

    Science.gov (United States)

    Watanabe, Yoichi; Maya, Isaac; Vitali, Juan; Appelbaum, Jacob; Schneider, Richard T.

    1991-01-01

    Combining the proven technology of solid core reactors with uranium arc confinement and non-equilibrium ionization by fission fragments can lead to an attractive propulsion system which has a higher specific impulse than a solid core propulsion system and higher thrust than an electric propulsion systems. A preliminary study indicates that a system with 300 MW of fission power can achieve a gas exhaust velocity of 18,000 m/sec and a thrust of 10,000 Newtons utilizing a magnetohydrodynamic generator and accelerator. An experimental program is underway to examine the major mass and energy transfer issues.

  17. Misconceptions of Electric Propulsion Aircraft and Their Emergent Aviation Markets

    Science.gov (United States)

    Moore, Mark D.; Fredericks, Bill

    2014-01-01

    Over the past several years there have been aircraft conceptual design and system studies that have reached conflicting conclusions relating to the feasibility of full and hybrid electric aircraft. Some studies and propulsion discipline experts have claimed that battery technologies will need to improve by 10 to 20 times before electric aircraft can effectively compete with reciprocating or turbine engines. However, such studies have approached comparative assessments without understanding the compelling differences that electric propulsion offers, how these technologies will fundamentally alter the way propulsion integration is approached, or how these new technologies can not only compete but far exceed existing propulsion solutions in many ways at battery specific energy densities of only 400 watt hours per kilogram. Electric propulsion characteristics offer the opportunity to achieve 4 to 8 time improvements in energy costs with dramatically lower total operating costs, while dramatically improving efficiency, community noise, propulsion system reliability and safety through redundancy, as well as life cycle Green House Gas emissions. Integration of electric propulsion will involve far greater degrees of distribution than existing propulsion solutions due to their compact and scale-free nature to achieve multi-disciplinary coupling and synergistic integration with the aerodynamics, highlift system, acoustics, vehicle control, balance, and aeroelasticity. Appropriate metrics of comparison and differences in analysis/design tools are discussed while comparing electric propulsion to other disruptive technologies. For several initial applications, battery energy density is already sufficient for competitive products, and for many additional markets energy densities will likely be adequate within the next 7 years for vibrant introduction. Market evolution and early adopter markets are discussed, along with the investment areas that will fill technology gaps and

  18. Propulsion Investigation for Zero and Near-Zero Emissions Aircraft

    Science.gov (United States)

    Snyder, Christopher A.; Berton, Jeffrey J.; Brown, Gerald v.; Dolce, James L.; Dravid, Marayan V.; Eichenberg, Dennis J.; Freeh, Joshua E.; Gallo, Christopher A.; Jones, Scott M.; Kundu, Krishna P.; Marek, Cecil J.; Millis, Marc G.; Murthy, Pappu L.; Roach, Timothy M.; Smith, Timothy D.; Stefko, George L.; Sullivan, Roy M.; Tornabene, Robert T.; Geiselhat, Karl A.; Kascak, Albert F.

    2009-01-01

    As world emissions are further scrutinized to identify areas for improvement, aviation s contribution to the problem can no longer be ignored. Previous studies for zero or near-zero emissions aircraft suggest aircraft and propulsion system sizes that would perform propulsion system and subsystems layout and propellant tankage analyses to verify the weight-scaling relationships. These efforts could be used to identify and guide subsequent work on systems and subsystems to achieve viable aircraft system emissions goals. Previous work quickly focused these efforts on propulsion systems for 70- and 100-passenger aircraft. Propulsion systems modeled included hydrogen-fueled gas turbines and fuel cells; some preliminary estimates combined these two systems. Hydrogen gas-turbine engines, with advanced combustor technology, could realize significant reductions in nitrogen emissions. Hydrogen fuel cell propulsion systems were further laid out, and more detailed analysis identified systems needed and weight goals for a viable overall system weight. Results show significant, necessary reductions in overall weight, predominantly on the fuel cell stack, and power management and distribution subsystems to achieve reasonable overall aircraft sizes and weights. Preliminary conceptual analyses for a combination of gas-turbine and fuel cell systems were also performed, and further studies were recommended. Using gas-turbine engines combined with fuel cell systems can reduce the fuel cell propulsion system weight, but at higher fuel usage than using the fuel cell only.

  19. Investigation of cross flow fan propulsion for lightweight VTOL aircraft.

    OpenAIRE

    Gossett, Dean H.

    2000-01-01

    As world population increases, road and airport congestion will become increasingly prevalent. A small, cheap vTOL aircraft which can be flown from a driveway to the workplace parking lot would reduce traffic congestion and travel time. A lightweight, single seat commuter type VTOL aircraft is envisioned as the solution to this problem. To achieve a goal of minimum weight, the aircraft aerodynamic design should be optimized for forward flight. Vertical thrust augmentation from a propulsion un...

  20. Versatile Electric Propulsion Aircraft Testbed Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An all-electric aircraft testbed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered aircraft....

  1. Energy efficient engine: Propulsion system-aircraft integration evaluation

    Science.gov (United States)

    Owens, R. E.

    1979-01-01

    Flight performance and operating economics of future commercial transports utilizing the energy efficient engine were assessed as well as the probability of meeting NASA's goals for TSFC, DOC, noise, and emissions. Results of the initial propulsion systems aircraft integration evaluation presented include estimates of engine performance, predictions of fuel burns, operating costs of the flight propulsion system installed in seven selected advanced study commercial transports, estimates of noise and emissions, considerations of thrust growth, and the achievement-probability analysis.

  2. Modular Electric Propulsion Test Bed Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An all electric aircraft test bed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered...

  3. Modular Electric Propulsion Test Bed Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A hybrid electric aircraft simulation system and test bed is proposed to provide a dedicated development environment for the rigorous study and advancement of...

  4. Turboelectric Distributed Propulsion in a Hybrid Wing Body Aircraft

    Science.gov (United States)

    Felder, James L.; Brown, Gerald V.; DaeKim, Hyun; Chu, Julio

    2011-01-01

    The performance of the N3-X, a 300 passenger hybrid wing body (HWB) aircraft with turboelectric distributed propulsion (TeDP), has been analyzed to see if it can meet the 70% fuel burn reduction goal of the NASA Subsonic Fixed Wing project for N+3 generation aircraft. The TeDP system utilizes superconducting electric generators, motors and transmission lines to allow the power producing and thrust producing portions of the system to be widely separated. It also allows a small number of large turboshaft engines to drive any number of propulsors. On the N3-X these new degrees of freedom were used to (1) place two large turboshaft engines driving generators in freestream conditions to maximize thermal efficiency and (2) to embed a broad continuous array of 15 motor driven propulsors on the upper surface of the aircraft near the trailing edge. That location maximizes the amount of the boundary layer ingested and thus maximizes propulsive efficiency. The Boeing B777-200LR flying 7500 nm (13890 km) with a cruise speed of Mach 0.84 and an 118100 lb payload was selected as the reference aircraft and mission for this study. In order to distinguish between improvements due to technology and aircraft configuration changes from those due to the propulsion configuration changes, an intermediate configuration was included in this study. In this configuration a pylon mounted, ultra high bypass (UHB) geared turbofan engine with identical propulsion technology was integrated into the same hybrid wing body airframe. That aircraft achieved a 52% reduction in mission fuel burn relative to the reference aircraft. The N3-X was able to achieve a reduction of 70% and 72% (depending on the cooling system) relative to the reference aircraft. The additional 18% - 20% reduction in the mission fuel burn can therefore be attributed to the additional degrees of freedom in the propulsion system configuration afforded by the TeDP system that eliminates nacelle and pylon drag, maximizes boundary

  5. A measuring stand for a ducted fan aircraft propulsion unit

    Directory of Open Access Journals (Sweden)

    Hlaváček David

    2014-03-01

    Full Text Available The UL-39 ultra-light aircraft which is being developed by the Department of Aerospace Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, is equipped with an unconventional ducted fan propulsion unit. The unit consists of an axial fan driven by a piston engine and placed inside a duct ended with a nozzle. This article describes the arrangement of a modernised measuring stand for this highly specific propulsion unit which will be able to measure the fan pressure ratio and velocity field in front of and behind the fan and its characteristic curve.

  6. Ship propulsion reactors technology; La technologie des reacteurs de propulsion navale

    Energy Technology Data Exchange (ETDEWEB)

    Fribourg, Ch. [Technicatome, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    2002-07-01

    This paper takes the state of the art on ship propulsion reactors technology. The french research programs with the corresponding technological stakes, the reactors specifications and advantages are detailed. (A.L.B.)

  7. Lightweight, Efficient Power Converters for Advanced Turboelectric Aircraft Propulsion Systems

    Science.gov (United States)

    Hennessy, Michael J.

    2014-01-01

    NASA is investigating advanced turboelectric aircraft propulsion systems that use superconducting motors to drive multiple distributed turbofans. Conventional electric motors are too large and heavy to be practical for this application; therefore, superconducting motors are required. In order to improve aircraft maneuverability, variable-speed power converters are required to throttle power to the turbofans. The low operating temperature and the need for lightweight components that place a minimum of additional heat load on the refrigeration system open the possibility of incorporating extremely efficient cryogenic power conversion technology. This Phase II project is developing critical components required to meet these goals.

  8. Lightweight, Efficient Power Converters for Advanced Turboelectric Aircraft Propulsion Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is investigating advanced turboelectric aircraft propulsion systems that utilize superconducting motors to drive a number of distributed turbofans....

  9. Lightweight, Efficient Power Converters for Advanced Turboelectric Aircraft Propulsion Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is investigating advanced turboelectric aircraft propulsion systems that utilize superconducting motors to drive a number of distributed turbofans. In an...

  10. Civilian application of propulsion reactor in Indonesia

    International Nuclear Information System (INIS)

    It has been learned that to cope with energy requirement in the remote islands and less developed regions of Indonesia, small or very small nuclear reactors producing electricity and/or process heat could be appropriately applied. The barge mounted propulsion power reactors are the attractive examples so far envisioned, and technology information of which is being exposed to the world these last years. The solutions for least maintenance and no on-site refueling, no radioactive discharge, and no radioactive waste to remain in the user country are among the attractions for further deliberations. It has been understood, however, that there are many uncertainties to overcome, especially for the developing countries to introduce this novel application. International acceptance is the most crucial, availability of first-of-the-kind engineering, prototype or reference plant that would prove licensibility in the vendor's country is the second, and economic competitiveness due to very small size is the third among issues to enlighten. The relevant regulations concerning marine nuclear safety, marine transportation, and proliferation of information, as well as international forums to justify the feasibility of related transfer of technology, are the items that the IAEA could help to provide to smoothen any possible international transaction. Indonesia supports this AGM as one of the appropriate IAEA efforts in this line, and expects from it positive international consensus and possible studies/R and D work that this country could participate in. (author)

  11. Distributed Turboelectric Propulsion for Hybrid Wing Body Aircraft

    Science.gov (United States)

    Kim, Hyun Dae; Brown, Gerald V.; Felder, James L.

    2008-01-01

    Meeting future goals for aircraft and air traffic system performance will require new airframes with more highly integrated propulsion. Previous studies have evaluated hybrid wing body (HWB) configurations with various numbers of engines and with increasing degrees of propulsion-airframe integration. A recently published configuration with 12 small engines partially embedded in a HWB aircraft, reviewed herein, serves as the airframe baseline for the new concept aircraft that is the subject of this paper. To achieve high cruise efficiency, a high lift-to-drag ratio HWB was adopted as the baseline airframe along with boundary layer ingestion inlets and distributed thrust nozzles to fill in the wakes generated by the vehicle. The distributed powered-lift propulsion concept for the baseline vehicle used a simple, high-lift-capable internally blown flap or jet flap system with a number of small high bypass ratio turbofan engines in the airframe. In that concept, the engine flow path from the inlet to the nozzle is direct and does not involve complicated internal ducts through the airframe to redistribute the engine flow. In addition, partially embedded engines, distributed along the upper surface of the HWB airframe, provide noise reduction through airframe shielding and promote jet flow mixing with the ambient airflow. To improve performance and to reduce noise and environmental impact even further, a drastic change in the propulsion system is proposed in this paper. The new concept adopts the previous baseline cruise-efficient short take-off and landing (CESTOL) airframe but employs a number of superconducting motors to drive the distributed fans rather than using many small conventional engines. The power to drive these electric fans is generated by two remotely located gas-turbine-driven superconducting generators. This arrangement allows many small partially embedded fans while retaining the superior efficiency of large core engines, which are physically separated

  12. Prospects for applications of ship-propulsion nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mitenkov, F.M.

    1994-10-01

    The use of ship-propulsion nuclear power reactors in remote areas of Russia is examined. Two ship reactors were analyzed: the KLT-40, a 170 MW-thermal reactor; and the KN-3, a 300 MW-thermal reactor. The applications considered were electricity generation, desalination, and drinking water production. Analyses showed that the applications are technically justified and could be economically advantageous. 5 refs., 9 figs., 1 tab.

  13. Propulsion Selection for 85kft Remotely Piloted Atmospheric Science Aircraft

    Science.gov (United States)

    Bents, David J.; Mockler, Ted; Maldonado, Jaime; Hahn, Andrew; Cyrus, John; Schmitz, Paul; Harp, Jim; King, Joseph

    1996-01-01

    This paper describes how a 3 stage turbocharged gasoline engine was selected to power NASA's atmospheric science unmanned aircraft now under development. The airplane, whose purpose is to fly sampling instruments through targeted regions of the upper atmosphere at the exact location and time (season, time of day) where the most interesting chemistry is taking place, must have a round trip range exceeding 1000 km, carry a payload of about 500 lb to altitudes exceeding 80 kft over the site, and be able to remain above that altitude for at least 30 minutes before returning to base. This is a subsonic aircraft (the aerodynamic heating and shock associated with supersonic flight could easily destroy the chemical species that are being sampled) and it must be constructed so it will operate out of small airfields at primitive remote sites worldwide, under varying climate and weather conditions. Finally it must be low cost, since less than $50 M is available for its development. These requirements put severe constraints on the aircraft design (for example, wing loading in the vicinity of 10 psf) and have in turn limited the propulsion choices to already-existing hardware, or limited adaptations of existing hardware. The only candidate that could emerge under these circumstances was a propeller driven aircraft powered by spark ignited (SI) gasoline engines, whose intake pressurization is accomplished by multiple stages of turbo-charging and intercooling. Fortunately the turbocharged SI powerplant, owing to its rich automotive heritage and earlier intensive aero powerplant development during WWII, enjoys in addition to its potentially low development costs some subtle physical advantages (arising from its near-stochiometric combustion) that may make it smaller and lighter than either a turbine engine or a diesel for these altitudes. Just as fortunately, the NASA/industry team developing this aircraft includes the same people who built multi-stage turbocharged SI powerplants

  14. Pellet bed reactor concepts for nuclear propulsion applications

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Morley, N.J.; Pelaccio, D.G.; Juhasz, A. [Univ of New Mexico, Albuquerque, NM (United States)

    1994-11-01

    Pellet bed reactor (PeBR) concepts have been developed for nuclear thermal and nuclear electric propulsion, and bimodal applications. This annular core, fast spectrum reactor offers many desirable design and safety features. These features include high-power density, small reactor size, full retention of fission products, passive decay heat removal, redundancy in reactor control, negative temperature reactivity feedback, ground testing of the fully assembled reactor using electric heating and nonnuclear fuel elements, and the option of fueling on the launch pad or fueling and refueling in orbit. In addition to these features, the concepts for nuclear electric propulsion and for bimodal power and thermal propulsion have no single point failure. The average power density in the reactor for nuclear thermal propulsion ranges from 2.2 to 3.3 MW/I and for a 15-MWe nuclear electric propulsion system the total power system specific mass is about 3.3 kg/kWe. The bimodal-PeBR system concepts offer specific impulse in excess of 650 s, tens of Newtons of thrust, and total system specific power ranging from 11 to 21.9 We/kg at the 10- and 40-kWe levels, respectively. 35 refs.

  15. A cermet fuel reactor for nuclear thermal propulsion

    Science.gov (United States)

    Kruger, Gordon

    1991-01-01

    Work on the cermet fuel reactor done in the 1960's by General Electric (GE) and the Argonne National Laboratory (ANL) that had as its goal the development of systems that could be used for nuclear rocket propulsion as well as closed cycle propulsion system designs for ship propulsion, space nuclear propulsion, and other propulsion systems is reviewed. It is concluded that the work done in the 1960's has demonstrated that we can have excellent thermal and mechanical performance with cermet fuel. Thousands of hours of testing were performed on the cermet fuel at both GE and AGL, including very rapid transients and some radiation performance history. We conclude that there are no feasibility issues with cermet fuel. What is needed is reactivation of existing technology and qualification testing of a specific fuel form. We believe this can be done with a minimum development risk.

  16. Magnesium Diboride Superconducting Coils for Electric Propulsion Systems for Large Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For electric propulsion systems for large aircraft it is desirable to have very light weight electric motors. Cryogenic motors offer much lighter weight than...

  17. Power Requirements Determined for High-Power-Density Electric Motors for Electric Aircraft Propulsion

    Science.gov (United States)

    Johnson, Dexter; Brown, Gerald V.

    2005-01-01

    Future advanced aircraft fueled by hydrogen are being developed to use electric drive systems instead of gas turbine engines for propulsion. Current conventional electric motor power densities cannot match those of today s gas turbine aircraft engines. However, if significant technological advances could be made in high-power-density motor development, the benefits of an electric propulsion system, such as the reduction of harmful emissions, could be realized.

  18. The Multidisciplinary Design Optimization of a Distributed Propulsion Blended-Wing-Body Aircraft

    OpenAIRE

    Ko, Yan-Yee Andy

    2003-01-01

    The purpose of this study is to examine the multidisciplinary design optimization (MDO) of a distributed propulsion blended-wing-body (BWB) aircraft. The BWB is a hybrid shape resembling a flying wing, placing the payload in the inboard sections of the wing. The distributed propulsion concept involves replacing a small number of large engines with many smaller engines. The distributed propulsion concept considered here ducts part of the engine exhaust to exit out along the trailing edge of th...

  19. Counter Rotating Fans—An Aircraft Propulsion for the Future?

    Institute of Scientific and Technical Information of China (English)

    Peter Schimming

    2003-01-01

    In the mid seventies a new propulsor for aircraft was designed and investigated-the so-called PROPFAN.With regard to the total pressure increase, it ranges between a conventional propeller and a turbofan with very high bypass ratio.This new propulsion system promised a reduction in fuel consumption of 15 to 25% compared to engines at that time. A lot of propfans (Hamilton Standard, USA) with different numbers of blades and blade shapes have been designed and tested in wind tunnels in order to find an optimum in efficiency, Fig. 1. Parallel to this development GE, USA, made a design of a counter rotating unducted propfan, the so-called UDF, Fig.2. A prototype engine was manufactured and investigated on an in-flight test bed mounted at the MD82 and the B727. Since that time there has not been any further development of propfans (except AN 70 with NK 90—engine, Ukraine, which is more or less a propeller design) due to relatively low fuel prices and technical obstacles. Only technical programs in different countries are still going on in order to prepare a data base for designing counter rotating fans in terms of aeroacoustics, aerodynamics and aeroelasticities.In DLR, Germany, a lot of experimental and numerical work has been undertaken to understand the physical behaviour of the unsteady flow in a counter rotating fan.

  20. Energy efficient engine flight propulsion system: Aircraft/engine integration evaluation

    Science.gov (United States)

    Patt, R. F.

    1980-01-01

    Results of aircraft/engine integration studies conducted on an advanced flight propulsion system are reported. Economic evaluations of the preliminary design are included and indicate that program goals will be met. Installed sfc, DOC, noise, and emissions were evaluated. Aircraft installation considerations and growth were reviewed.

  1. Proposal of Space Reactor for Nuclear Electric Propulsion System

    Science.gov (United States)

    Nagata, Hidetaka; Nishiyama, Takaaki; Nakashima, Hideki

    Currently, the solar battery, the chemical cell, and the RI battery are used for the energy source in space. However, it is difficult for them to satisfy requirements for deep space explorations. Therefore, other electric power sources which can stably produce high electric energy output, regardless of distance from the sun, are necessary to execute such missions. Then, we here propose small nuclear reactors as power sources for deep space exploration, and consider a conceptual design of a small nuclear reactor for Nuclear Electric Propulsion System. It is found from nuclear analyses that the Gas-Cooled reactor could not meet the design requirement imposed on the core mass. On the other hand, a light water reactor is found to be a promising alternative to the Gas-Cooled reactor.

  2. Nuclear vapor thermal reactor propulsion technology

    Science.gov (United States)

    Maya, Isaac; Diaz, Nils J.; Dugan, Edward T.; Watanabe, Yoichi; McClanahan, James A.; Wen-Hsiung Tu, Carman, Robert L.

    1993-01-01

    The conceptual design of a nuclear rocket based on the vapor core reactor is presented. The Nuclear Vapor Thermal Rocket (NVTR) offers the potential for a specific impulse of 1000 to 1200 s at thrust-to-weight ratios of 1 to 2. The design is based on NERVA geometry and systems with the solid fuel replaced by uranium tetrafluoride (UF4) vapor. The closed-loop core does not rely on hydrodynamic confinement of the fuel. The hydrogen propellant is separated from the UF4 fuel gas by graphite structure. The hydrogen is maintained at high pressure (˜100 atm), and exits the core at 3,100 K to 3,500 K. Zirconium carbide and hafnium carbide coatings are used to protect the hot graphite from the hydrogen. The core is surrounded by beryllium oxide reflector. The nuclear reactor core has been integrated into a 75 klb engine design using an expander cycle and dual turbopumps. The NVTR offers the potential for an incremental technology development pathway to high performance gas core reactors. Since the fuel is readily available, it also offers advantages in the initial cost of development, as it will not require major expenditures for fuel development.

  3. Neutronics Study of the KANUTER Space Propulsion Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Venneri, Paolo; Nam, Seung Hyun; Kim, Yonghee [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    The Korea Advanced Nuclear Thermal Engine Rocket (KANUTER) has been developed at the Korea Advanced Institute of Science and Technology (KAIST). This space propulsion system is unique in that it implements a HEU fuel with a thermal spectrum system. This allows the system to be designed with a minimal amount of fissile material and an incredibly small and light system. This then allows the implementation of the system in a cluster format which enables redundancy and easy scalability for different mission requirements. This combination of low fissile content, compact size, and thermalized spectrum contribute to an interesting and novel behavior of the reactor system. The two codes were both used for the burn up calculations in order to verify their validity while the static calculations and characterization of the core were done principally with MCNPX. The KANUTER space propulsion reactor is in the process of being characterized and improved. Its basic neutronic characteristics have been studied, and its behavior over time has been identified. It has been shown that this reactor will have difficulty operating as hoped in a bimodal configuration where it is able to provide both propulsion and power throughout mission to Mars. The reason for this has been identified as Xe{sup 135}, and it is believed that a possible solution to this issue does exist, either in the form of an appropriately designed neutron spectrum or the building in of sufficient excess reactivity.

  4. Aircraft Electric/Hybrid-Electric Power and Propulsion Workshop Perspective of the V/STOL Aircraft Systems Tech Committee

    Science.gov (United States)

    Hange, Craig E.

    2016-01-01

    This presentation will be given at the AIAA Electric Hybrid-Electric Power Propulsion Workshop on July 29, 2016. The workshop is being held so the AIAA can determine how it can support the introduction of electric aircraft into the aerospace industry. This presentation will address the needs of the community within the industry that advocates the use of powered-lift as important new technologies for future aircraft and air transportation systems. As the current chairman of the VSTOL Aircraft Systems Technical Committee, I will be presenting generalized descriptions of the past research in developing powered-lift and generalized observations on how electric and hybrid-electric propulsion may provide advances in the powered-lift field.

  5. Robust Propulsion Control for Improved Aircraft Safety Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Scientific Monitoring, Inc. proposes to develop a robust propulsion control approach to facilitate control law design and simulation-based validation. The proposed...

  6. Performance and Environmental Assessment of an Advanced Aircraft with Open Rotor Propulsion

    Science.gov (United States)

    Guynn, Mark D.; Berton, Jeffrey J.; Haller, William J.; Hendricks, Eric S.; Tong, Michael T.

    2012-01-01

    Application of high speed, advanced turboprops, or "propfans," to transonic transport aircraft received significant attention during the 1970s and 1980s when fuel efficiency was the driving focus of aeronautical research. Unfortunately, after fuel prices declined sharply there was no longer sufficient motivation to continue maturing this technology. Recent volatility in fuel prices and increasing concern for aviation s environmental impact, however, have renewed interest in unducted, open rotor propulsion. Because of the renewed interest in open rotor propulsion, the lack of publicly available up-to-date studies assessing its benefits, and NASA s focus on reducing fuel consumption, a preliminary aircraft system level study on open rotor propulsion was initiated to inform decisions concerning research in this area. New analysis processes were established to assess the characteristics of open rotor aircraft. These processes were then used to assess the performance, noise, and emissions characteristics of an advanced, single-aisle aircraft using open rotor propulsion. The results of this initial study indicate open rotor engines have the potential to provide significant reductions in fuel consumption and landing-takeoff cycle NOX emissions. Noise analysis of the study configuration indicates that an open rotor aircraft in the single-aisle class would be able to meet current noise regulations with margin.

  7. The MAUS nuclear space reactor with ion propulsion system

    Science.gov (United States)

    Mainardi, Enrico

    2006-06-01

    MAUS (Moltiplicatore Avanzato Ultracompatto Spaziale) is a nuclear reactor concept design capable to ensure a reliable, long-lasting, low-mass, compact energy supply needed for advanced, future space missions. The exploration of the solar system and the space beyond requires the development of nuclear energy generators for supplying electricity to space-bases, spacecrafts, probes or satellites, as well as for propelling ships in long space missions. For propulsion, the MAUS nuclear reactor could be used to power electric ion drive engines. An ion engine is able to build up to very high velocities, far greater than chemical propulsion systems, but has high power and long service requirements. The MAUS concept is described, together with the ion propulsion engine and together with the reference thermoionic process used to convert the thermal power into electricity. The design work has been performed at the Nuclear Engineering and Energy Conversion Department of the University of Rome "La Sapienza" starting from 1992 on an issue submitted by the Italian Space Agency (ASI), in cooperation with the research laboratories of ENEA.

  8. The MAUS nuclear space reactor with ion propulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Mainardi, Enrico [DINCE - Dipartimento di Ingegneria Nucleare e Conversioni Energetiche, University of Rome ' La Sapienza' , C.so V. Emanuele II, 244, 00186 Rome (Italy)]. E-mail: mainardi@frascati.enea.it

    2006-06-01

    MAUS (Moltiplicatore Avanzato Ultracompatto Spaziale) is a nuclear reactor concept design capable to ensure a reliable, long-lasting, low-mass, compact energy supply needed for advanced, future space missions. The exploration of the solar system and the space beyond requires the development of nuclear energy generators for supplying electricity to space-bases, spacecrafts, probes or satellites, as well as for propelling ships in long space missions. For propulsion, the MAUS nuclear reactor could be used to power electric ion drive engines. An ion engine is able to build up to very high velocities, far greater than chemical propulsion systems, but has high power and long service requirements. The MAUS concept is described, together with the ion propulsion engine and together with the reference thermoionic process used to convert the thermal power into electricity. The design work has been performed at the Nuclear Engineering and Energy Conversion Department of the University of Rome 'La Sapienza' starting from 1992 on an issue submitted by the Italian Space Agency (ASI), in cooperation with the research laboratories of ENEA.

  9. The Maus nuclear space reactor with ion propulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Enrico Mainardi [DINCE - Dipartimento di Ingegneria Nucleare e Conversioni Energetiche, University of Rome ' La Sapienza' , C.so V. EmanueleII, 244, 00186 Roma (Italy)

    2006-07-01

    MAUS (Moltiplicatore Avanzato Ultracompatto Spaziale) is a nuclear reactor concept design capable to ensure a reliable, long lasting, low mass, compact energy supply needed for advanced, future space missions. The exploration of the solar system and the space beyond requires the development of nuclear energy generators for supplying electricity to space-bases, spacecrafts, probes or satellites, as well as for propelling ships in long space missions. For propulsion, the MAUS nuclear reactor could be used to power electric ion drive engines. An ion engine is able to build up to very high velocities, far greater than chemical propulsion systems, but has high power and long service requirements. The MAUS concept is described, together with the ion propulsion engine and together with the reference thermionic process used to convert the thermal power into electricity. The design work has been performed at the Nuclear Engineering and Energy Conversion Department of the University of Rome 'La Sapienza' starting from 1992 on an issue submitted by the Italian Space Agency (ASI), in cooperation with the research laboratories of ENEA. (author)

  10. Completely modular Thermionic Reactor Ion Propulsion System (TRIPS)

    Science.gov (United States)

    Peelgren, M. L.; Kikin, G. M.; Sawyer, C. D.

    1972-01-01

    The nuclear reactor powered ion propulsion system described is an advanced completely modularized system which lends itself to development of prototype and/or flight type components without the need for complete system tests until late in the development program. This modularity is achieved in all of the subsystems and components of the electric propulsion system including (1) the thermionic fuel elements, (2) the heat rejection subsystem (heat pipes), (3) the power conditioning modules, and (4) the ion thrusters. Both flashlight and external fuel type in-core thermionic reactors are considered as the power source. The thermionic fuel elements would be useful over a range of reactor power levels. Electrical heated acceptance testing in their flight configuration is possible for the external fuel case. Nuclear heated testing by sampling methods could be used for acceptance testing of flashlight fuel elements. The use of heat pipes for cooling the collectors and as a means of heat transport to the radiator allows early prototype or flight configuration testing of a small module of the heat rejection subsystem as opposed to full scale liquid metal pumps and radiators in a large vacuum chamber. The power conditioner (p/c) is arranged in modules with passive cooling.

  11. Economic effects of propulsion system technology on existing and future transport aircraft

    Science.gov (United States)

    Sallee, G. P.

    1974-01-01

    The results of an airline study of the economic effects of propulsion system technology on current and future transport aircraft are presented. This report represents the results of a detailed study of propulsion system operating economics. The study has four major parts: (1) a detailed analysis of current propulsion system maintenance with respect to the material and labor costs encountered versus years in service and the design characteristics of the major elements of the propulsion system of the B707, b727, and B747. (2) an analysis of the economic impact of a future representative 1979 propulsion system is presented with emphasis on depreciation of investment, fuel costs and maintenance costs developed on the basis of the analysis of the historical trends observed. (3) recommendations concerning improved methods of forecasting the maintenance cost of future propulsion systems are presented. A detailed method based on the summation of the projected labor and material repair costs for each major engine module and its installation along with a shorter form suitable for quick, less detailed analysis are presented, and (4) recommendations concerning areas where additional technology is needed to improve the economics of future commercial propulsion systems are presented along with the suggested economic benefits available from such advanced technology efforts.

  12. Critical technologies for reactors used in nuclear electric propulsion

    International Nuclear Information System (INIS)

    Nuclear electric Propulsion (NEP) systems are expected to play a significant role in the exploration and exploitation of space. Unlike nuclear thermal propulsion (NTP) systems in which the hot reactor coolant is directly discharged from nozzles to provide the required thrust, NEP systems include electric power generation and conditioning units that in turn are used to drive electric thrusters. These thrusters accelerate sub atomic particles to produce thrust. The major advantage of NEP systems is the ability to provide very high specific impulses (∼5000 s) that minimize the requirement for propellants. In addition, the power systems used in NEP could pro vide the dual purpose of also providing power for the missions at the destination. This synergism can be exploited in shared development costs. The NEP systems produce significantly lower thrust that NTP systems and are generally more massive. Both systems have their appropriate roles in a balanced space program. The technology development needs of NEP systems differ in many important ways from the development needs for NTP systems because of the significant differences in the operating conditions of the systems. The NEP systems require long-life reactor power systems operating at power levels that are considerably lower than those for NTP systems. In contrast, the operational lifetime of an NEP system (years) is orders of magnitude longer than the operational lifetime of NTP systems (thousands of second). Thus, the critical issue of NEP is survivability and reliable operability for very long times at temperatures that are considerably more modest than the temperatures required for effective NTP operations but generally much higher than those experienced in terrestrial reactors

  13. Simple hybrid propulsion model for hybrid aircraft design space exploration

    OpenAIRE

    Belleville, Mathieu

    2015-01-01

    International audience This article introduces a semi-empirical model for an electric fan and a minimalistic model for a turbofan. The electric fan model provides an easy selection of optimal characteristics based on power loading. The turbofan model has provision for power extraction, and exhibit a physical behaviour. These two models allowed exploring the performance of a hybrid-electric aircraft featuring two turbofans under the wing and one electric fan at the rear of the fuselage. Ass...

  14. Pellet bed reactor concept for nuclear electric propulsion

    Science.gov (United States)

    El-Genk, Mohamed S.; Morley, Nicholas J.; Juhasz, Albert

    1993-01-01

    For Nuclear Electric Propulsion (NEP) applications, gas cooled nuclear reactors with dynamic energy conversion systems offer high specific power and low total mass. This paper describes the Pellet Bed Reactor (PeBR) concept for potential NEP missions to Mars. The helium cooled, 75-80 MWt PeBR, consists of a single annular fuel region filled with a randomly packed bed of spherical fuel pellets, is designed for multiple starts, and offers unique safety and operation features. Each fuel pellet, about 8-10 mm in diameter, is composed of hundreds of TRISO type fuel microspheres embedded in a graphite matrix for a full retention of fission products. To eliminate the likelihood of a single-point failure, the annular core of the PeBR is divided into three 120° sectors. Each sector is self contained and separate and capable of operating and being cooled on its own and in cooperation with either one or two other sectors. Each sector is coupled to a separate, 5 MWe Closed Brayton Cycle (CBC) energy conversion unit and is subcritical for safe handling and launching. In the event of a failure of the cooling system of a core sector, the reactor power level may be reduced, allowing adjacent sectors to convect the heat away using their own cooling system, thus maintaining reactor operation. Also, due to the absence of an internal core structure in the PeBR core, fueling of the reactor can easily be performed either at the launch facility or in orbit, and refueling can be accomplished in orbit as needed to extend the power system lifetime

  15. Enabling Electric Propulsion for Flight - Hybrid Electric Aircraft Research at AFRC

    Science.gov (United States)

    Clarke, Sean; Lin, Yohan; Kloesel, Kurt; Ginn, Starr

    2014-01-01

    Advances in electric machine efficiency and energy storage capability are enabling a new alternative to traditional propulsion systems for aircraft. This has already begun with several small concept and demonstration vehicles, and NASA projects this technology will be essential to meet energy and emissions goals for commercial aviation in the next 30 years. In order to raise the Technology Readiness Level of electric propulsion systems, practical integration and performance challenges will need to be identified and studied in the near-term so that larger, more advanced electric propulsion system testbeds can be designed and built. Researchers at NASA Armstrong Flight Research Center are building up a suite of test articles for the development, integration, and validation of these systems in a real world environment.

  16. Power Balance of a Hybrid Power Source in a Power Plant for a Small Propulsion Aircraft

    OpenAIRE

    Bataller Planes, Elena; Lapena Rey, Nieves; Mosquera, Jonay; Ortí, Fortunato; Oliver Ramírez, Jesús Angel; García Suárez, Oscar; Moreno González, Felix Antonio; Portilla Berrueco, Jorge; Torroja Fungairiño, Yago; Vasic, Miroslav; Huerta Oliveres, Santa Concepción; Trocki, M.; Zumel Vaquero, Pablo; Cobos Márquez, José Antonio

    2008-01-01

    This paper analyzes two different architectures for a hybrid power source comprising a PEM (Polymer Electrolyte Membrane) fuel cell and a Li ion battery. The hybrid power source feeds the propulsion motor of an all electrical aircraft, the Boeing Fuel Cell Demonstrator. The architectures are an unregulated and a regulated hybrid power source. The regulation is achieved by means of a controllable series boost converter (SBC) connected in series with the fuel cell. Both architectures have been ...

  17. Propulsion Electric Grid Simulator (PEGS) for Future Turboelectric Distributed Propulsion Aircraft

    Science.gov (United States)

    Choi, Benjamin B.; Morrison, Carlos; Dever, Timothy; Brown, Gerald V.

    2014-01-01

    NASA Glenn Research Center, in collaboration with the aerospace industry and academia, has begun the development of technology for a future hybrid-wing body electric airplane with a turboelectric distributed propulsion (TeDP) system. It is essential to design a subscale system to emulate the TeDP power grid, which would enable rapid analysis and demonstration of the proof-of-concept of the TeDP electrical system. This paper describes how small electrical machines with their controllers can emulate all the components in a TeDP power train. The whole system model in Matlab/Simulink was first developed and tested in simulation, and the simulation results showed that system dynamic characteristics could be implemented by using the closed-loop control of the electric motor drive systems. Then we designed a subscale experimental system to emulate the entire power system from the turbine engine to the propulsive fans. Firstly, we built a system to emulate a gas turbine engine driving a generator, consisting of two permanent magnet (PM) motors with brushless motor drives, coupled by a shaft. We programmed the first motor and its drive to mimic the speed-torque characteristic of the gas turbine engine, while the second motor and drive act as a generator and produce a torque load on the first motor. Secondly, we built another system of two PM motors and drives to emulate a motor driving a propulsive fan. We programmed the first motor and drive to emulate a wound-rotor synchronous motor. The propulsive fan was emulated by implementing fan maps and flight conditions into the fourth motor and drive, which produce a torque load on the driving motor. The stator of each PM motor is designed to travel axially to change the coupling between rotor and stator. This feature allows the PM motor to more closely emulate a wound-rotor synchronous machine. These techniques can convert the plain motor system into a unique TeDP power grid emulator that enables real-time simulation performance

  18. Fuel Cell Airframe Integration Study for Short-Range Aircraft. Volume 1; Aircraft Propulsion and Subsystems Integration Evaluation

    Science.gov (United States)

    Gummalla, Mallika; Pandy, Arun; Braun, Robert; Carriere, Thierry; Yamanis, Jean; Vanderspurt, Thomas; Hardin, Larry; Welch, Rick

    2006-01-01

    The objective of this study is to define the functionality and evaluate the propulsion and power system benefits derived from a Solid Oxide Fuel Cell (SOFC) based Auxiliary Power Unit (APU) for a future short range commercial aircraft, and to define the technology gaps to enable such a system. United Technologies Corporation (UTC) Integrated Total Aircraft Power System (ITAPS) methodologies were used to evaluate a baseline aircraft and several SOFC architectures. The technology benefits were captured as reductions of the mission fuel burn, life cycle cost, noise and emissions. As a result of the study, it was recognized that system integration is critical to maximize benefits from the SOFC APU for aircraft application. The mission fuel burn savings for the two SOFC architectures ranged from 4.7 percent for a system with high integration to 6.7 percent for a highly integrated system with certain technological risks. The SOFC APU itself produced zero emissions. The reduction in engine fuel burn achieved with the SOFC systems also resulted in reduced emissions from the engines for both ground operations and in flight. The noise level of the baseline APU with a silencer is 78 dBA, while the SOFC APU produced a lower noise level. It is concluded that a high specific power SOFC system is needed to achieve the benefits identified in this study. Additional areas requiring further development are the processing of the fuel to remove sulfur, either on board or on the ground, and extending the heat sink capability of the fuel to allow greater waste heat recovery, resolve the transient electrical system integration issues, and identification of the impact of the location of the SOFC and its size on the aircraft.

  19. Turboelectric Distributed Propulsion Engine Cycle Analysis for Hybrid-Wing-Body Aircraft

    Science.gov (United States)

    Felder, James L.; Kim, Hyun Dae; Brown, Gerald V.

    2009-01-01

    Meeting NASA's N+3 goals requires a fundamental shift in approach to aircraft and engine design. Material and design improvements allow higher pressure and higher temperature core engines which improve the thermal efficiency. Propulsive efficiency, the other half of the overall efficiency equation, however, is largely determined by the fan pressure ratio (FPR). Lower FPR increases propulsive efficiency, but also dramatically reduces fan shaft speed through the combination of larger diameter fans and reduced fan tip speed limits. The result is that below an FPR of 1.5 the maximum fan shaft speed makes direct drive turbines problematic. However, it is the low pressure ratio fans that allow the improvement in propulsive efficiency which, along with improvements in thermal efficiency in the core, contributes strongly to meeting the N+3 goals for fuel burn reduction. The lower fan exhaust velocities resulting from lower FPRs are also key to meeting the aircraft noise goals. Adding a gear box to the standard turbofan engine allows acceptable turbine speeds to be maintained. However, development of a 50,000+ hp gearbox required by fans in a large twin engine transport aircraft presents an extreme technical challenge, therefore another approach is needed. This paper presents a propulsion system which transmits power from the turbine to the fan electrically rather than mechanically. Recent and anticipated advances in high temperature superconducting generators, motors, and power lines offer the possibility that such devices can be used to transmit turbine power in aircraft without an excessive weight penalty. Moving to such a power transmission system does more than provide better matching between fan and turbine shaft speeds. The relative ease with which electrical power can be distributed throughout the aircraft opens up numerous other possibilities for new aircraft and propulsion configurations and modes of operation. This paper discusses a number of these new

  20. Stability, Transient Response, Control, and Safety of a High-Power Electric Grid for Turboelectric Propulsion of Aircraft

    Science.gov (United States)

    Armstrong, Michael; Ross, Christine; Phillips, Danny; Blackwelder, Mark

    2013-01-01

    This document contains the deliverables for the NASA Research and Technology for Aerospace Propulsion Systems (RTAPS) regarding the stability, transient response, control, and safety study for a high power cryogenic turboelectric distributed propulsion (TeDP) system. The objective of this research effort is to enumerate, characterize, and evaluate the critical issues facing the development of the N3-X concept aircraft. This includes the proposal of electrical grid architecture concepts and an evaluation of any needs for energy storage.

  1. Design and piloted simulation evaluation of integrated flight/propulsion controls for STOVL aircraft

    Science.gov (United States)

    Franklin, James A.; Engelland, Shawn A.

    1991-01-01

    Integrated flight/propulsion control systems have been designed for operation of STOVL aircraft over the low speed powered-lift flight envelope. The control system employs command modes for attitude, flightpath angle and flightpath acceleration during transition, and translational velocity command for hover and vertical landing. The command modes and feedback control are implemented in the form of a state-rate feedback implicit model follower to achieve the desired flying qualities and to suppress the effects of external disturbances and variations in the aircraft characteristics over the low speed envelope. A nonlinear inverse system was used to translate the output from these commands and feedback control into commands for the various aerodynamic and propulsion control effectors that are employed in powered-lift flight. Piloted evaluations of these STOVL integrated control designs have been conducted on Ames Research Center's Vertical Motion Simulator to assess flying qualities over the low-speed flight envelope. Results indicate that Level 1 flying qualities are achieved with this control system concept for each of these low-speed operations over a wide range of wind, atmospheric turbulence, and visibility conditions.

  2. Influence of aircraft impact on seismic isolated SMR reactor

    International Nuclear Information System (INIS)

    In the past decades a lot of effort has been done to increase the reliability of NPP, particularly against the earthquakes effects, adopting the highly attractive strategy of the seismic isolation. Isolator bearings seem able to increase the safety margin/integrity of the safety relevant nuclear structures and to enable the standardization of the reactor design to be deployed across a wider range of sites. However in principle the design of a nuclear power plant depends on the safety aspects related also to other type of external events, like the aircraft impact that was/is of relevant importance for NPP safety (especially after the Sept. 2001) and must be considered in the design of both Generation III+ and IV reactors. This paper is related to a preliminary study of the global response of a seismically isolated reactor building subjected to a vicious commercial aircraft impact. In this framework the effects of impulsive loading due to the progressive aircraft crashing were evaluated, considering the potential for structural failure of the external building walls due to shearing and bending dynamic loads, with reference to the effects of the structure perforation, including concrete spalling of the internal surfaces and propagation of dynamic waves that could affect NPP safety systems and structures. To the purpose a rather refined numerical methodology was employed; three-dimensional models (FEM approach) of a reference SMR reactor containment and possible realistic aircraft structures were set up and used in the performed analyses, taking also into account suitable materials behaviour and constitutive laws. The structural analysis of the reference NPP internal components was carried out to appropriately check mainly the containment strength margin in the case of the considered accident and test the chosen models and numerical calculation approach. (author)

  3. Structural Integrity Assessment of Reactor Containment Subjected to Aircraft Crash

    International Nuclear Information System (INIS)

    When an accident occurs at the NPP, containment building which acts as the last barrier should be assessed and analyzed structural integrity by internal loading or external loading. On many occasions that can occur in the containment internal such as LOCA(Loss Of Coolant Accident) are already reflected to design. Likewise, there are several kinds of accidents that may occur from the outside of containment such as earthquakes, hurricanes and strong wind. However, aircraft crash that at outside of containment is not reflected yet in domestic because NPP sites have been selected based on the probabilistic method. After intentional aircraft crash such as World Trade Center and Pentagon accident in US, social awareness for safety of infrastructure like NPP was raised world widely and it is time for assessment of aircraft crash in domestic. The object of this paper is assessment of reactor containment subjected to aircraft crash by FEM(Finite Element Method). In this paper, assessment of structural integrity of containment building subjected to certain aircraft crash was carried out. Verification of structure integrity of containment by intentional severe accident. Maximum stress 61.21MPa of horizontal shell crash does not penetrate containment. Research for more realistic results needed by steel reinforced concrete model

  4. Requirements for a common nuclear propulsion and power reactor for human exploration missions to Mars

    Science.gov (United States)

    Cataldo, Robert L.; Borowski, Stanley K.

    1998-01-01

    Requirements for propulsion and power systems capable of achieving a safe, reliable, robust and affordable human Mars exploration mission have been identified. Nuclear systems have been identified that can meet the challenges of short trip times, reduced number of launch vehicles, potential for ``all propulsive'' maneuvers, abundant in-space power and low mass, volume and deployed area, and energy rich surface power. Reduced total systems cost will also be mandatory to achieve affordable human exploration of Mars. Hence, it is desirable to design a space propulsion and surface power reactor with the greatest degree of commonality as possible with the goal of reducing total system costs.

  5. 76 FR 3540 - U.S. Advanced Boiling Water Reactor Aircraft Impact Design Certification Amendment

    Science.gov (United States)

    2011-01-20

    ... COMMISSION 10 CFR Part 52 RIN 3150-AI84 U.S. Advanced Boiling Water Reactor Aircraft Impact Design... the U.S. Advanced Boiling Water Reactor (ABWR) standard plant design to comply with the NRC's aircraft...--Design Certification Rule for the U.S. Advanced Boiling Water Reactor IV. Section-by-Section Analysis...

  6. Benefits of Hybrid-Electric Propulsion to Achieve 4x Increase in Cruise Efficiency for a VTOL Aircraft

    Science.gov (United States)

    Fredericks, William J.; Moore, Mark D.; Busan, Ronald C.

    2013-01-01

    Electric propulsion enables radical new vehicle concepts, particularly for Vertical Takeoff and Landing (VTOL) aircraft because of their significant mismatch between takeoff and cruise power conditions. However, electric propulsion does not merely provide the ability to normalize the power required across the phases of flight, in the way that automobiles also use hybrid electric technologies. The ability to distribute the thrust across the airframe, without mechanical complexity and with a scale-free propulsion system, is a new degree of freedom for aircraft designers. Electric propulsion is scale-free in terms of being able to achieve highly similar levels of motor power to weight and efficiency across a dramatic scaling range. Applying these combined principles of electric propulsion across a VTOL aircraft permits an improvement in aerodynamic efficiency that is approximately four times the state of the art of conventional helicopter configurations. Helicopters typically achieve a lift to drag ratio (L/D) of between 4 and 5, while the VTOL aircraft designed and developed in this research were designed to achieve an L/D of approximately 20. Fundamentally, the ability to eliminate the problem of advancing and retreating rotor blades is shown, without resorting to unacceptable prior solutions such as tail-sitters. This combination of concept and technology also enables a four times increase in range and endurance while maintaining the full VTOL and hover capability provided by a helicopter. Also important is the ability to achieve low disc-loading for low ground impingement velocities, low noise and hover power minimization (thus reducing energy consumption in VTOL phases). This combination of low noise and electric propulsion (i.e. zero emissions) will produce a much more community-friendly class of vehicles. This research provides a review of the concept brainstorming, configuration aerodynamic and mission analysis, as well as subscale prototype construction and

  7. Hybrid Wing Body Aircraft System Noise Assessment with Propulsion Airframe Aeroacoustic Experiments

    Science.gov (United States)

    Thomas, Russell H.; Burley, Casey L.; Olson, Erik D.

    2010-01-01

    A system noise assessment of a hybrid wing body configuration was performed using NASA s best available aircraft models, engine model, and system noise assessment method. A propulsion airframe aeroacoustic effects experimental database for key noise sources and interaction effects was used to provide data directly in the noise assessment where prediction methods are inadequate. NASA engine and aircraft system models were created to define the hybrid wing body aircraft concept as a twin engine aircraft with a 7500 nautical mile mission. The engines were modeled as existing technology high bypass ratio turbofans. The baseline hybrid wing body aircraft was assessed at 22 dB cumulative below the FAA Stage 4 certification level. To determine the potential for noise reduction with relatively near term technologies, seven other configurations were assessed beginning with moving the engines two fan nozzle diameters upstream of the trailing edge and then adding technologies for reduction of the highest noise sources. Aft radiated noise was expected to be the most challenging to reduce and, therefore, the experimental database focused on jet nozzle and pylon configurations that could reduce jet noise through a combination of source reduction and shielding effectiveness. The best configuration for reduction of jet noise used state-of-the-art technology chevrons with a pylon above the engine in the crown position. This configuration resulted in jet source noise reduction, favorable azimuthal directivity, and noise source relocation upstream where it is more effectively shielded by the limited airframe surface, and additional fan noise attenuation from acoustic liner on the crown pylon internal surfaces. Vertical and elevon surfaces were also assessed to add shielding area. The elevon deflection above the trailing edge showed some small additional noise reduction whereas vertical surfaces resulted in a slight noise increase. With the effects of the configurations from the

  8. Pin-Type Gas Cooled Reactor for Nuclear Electric Propulsion

    Science.gov (United States)

    Wright, Steven A.; Lipinski, Ronald J.

    2003-01-01

    This paper describes a point design for a pin-type Gas-Cooled Reactor concept that uses a fuel pin design similar to the SP100 fuel pin. The Gas-Cooled Reactor is designed to operate at 100 kWe for 7 years plus have a reduced power mode of 20% power for a duration of 5 years. The power system uses a gas-cooled, UN-fueled, pin-type reactor to heat He/Xe gas that flows directly into a recuperated Brayton system to produce electricity. Heat is rejected to space via a thermal radiator that unfolds in space. The reactor contains approximately 154 kg of 93.15 % enriched UN in 313 fuel pins. The fuel is clad with rhenium-lined Nb-1Zr. The pressures vessel and ducting are cooled by the 900 K He/Xe gas inlet flow or by thermal radiation. This permits all pressure boundaries to be made of superalloy metals rather than refractory metals, which greatly reduces the cost and development schedule required by the project. The reactor contains sufficient rhenium (a neutron poison) to make the reactor subcritical under water immersion accidents without the use of internal shutdown rods. The mass of the reactor and reflectors is about 750 kg.

  9. Neutronics and thermal-hydraulics analyses of the pellet bed reactor for nuclear thermal propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Morley, N.J.; El-Genk, S. [Univ. of New Mexico, Albuquerque, NM (United States)

    1995-01-01

    Neutronics and thermal-hydraulics design and analyses of the pellet bed reactor for nuclear thermal propulsion are performed based on consideration of reactor criticality, passive decay heat removal, maximum fuel temperature, and subcriticality during a water flooding accident. Besides calculating the dimensions of the reactor core to satisfy the excess reactivity requirement at the beginning-of-mission of 1.25 $ (K{sub eff} of 1.01), the TWODANT discrete ordinates code is used to estimate the radial and axial fission power density profiles in the core. These power profiles are used in the nuclear propulsion thermal-hydraulic analysis model (NUTHAM-S) to determine the two-dimensional steady-state temperature, pressure, and flow fields in the core and optimize the orificing in the hot frit to avoid hot spots in the core at full-power operation.

  10. Numerical simulation of the actuation system for the ALDF's propulsion control valve. [Aircraft Landing Dynamics Facility

    Science.gov (United States)

    Korte, John J.

    1990-01-01

    A numerical simulation of the actuation system for the propulsion control valve (PCV) of the NASA Langley Aircraft Landing Dynamics Facility was developed during the preliminary design of the PCV and used throughout the entire project. The simulation is based on a predictive model of the PCV which is used to evaluate and design the actuation system. The PCV controls a 1.7 million-pound thrust water jet used in propelling a 108,000-pound test carriage. The PCV can open and close in 0.300 second and deliver over 9,000 gallons of water per sec at pressures up to 3150 psi. The numerical simulation results are used to predict transient performance and valve opening characteristics, specify the hydraulic control system, define transient loadings on components, and evaluate failure modes. The mathematical model used for numerically simulating the mechanical fluid power system is described, and numerical results are demonstrated for a typical opening and closing cycle of the PCV. A summary is then given on how the model is used in the design process.

  11. A One Dimensional, Time Dependent Inlet/Engine Numerical Simulation for Aircraft Propulsion Systems

    Science.gov (United States)

    Garrard, Doug; Davis, Milt, Jr.; Cole, Gary

    1999-01-01

    The NASA Lewis Research Center (LeRC) and the Arnold Engineering Development Center (AEDC) have developed a closely coupled computer simulation system that provides a one dimensional, high frequency inlet/engine numerical simulation for aircraft propulsion systems. The simulation system, operating under the LeRC-developed Application Portable Parallel Library (APPL), closely coupled a supersonic inlet with a gas turbine engine. The supersonic inlet was modeled using the Large Perturbation Inlet (LAPIN) computer code, and the gas turbine engine was modeled using the Aerodynamic Turbine Engine Code (ATEC). Both LAPIN and ATEC provide a one dimensional, compressible, time dependent flow solution by solving the one dimensional Euler equations for the conservation of mass, momentum, and energy. Source terms are used to model features such as bleed flows, turbomachinery component characteristics, and inlet subsonic spillage while unstarted. High frequency events, such as compressor surge and inlet unstart, can be simulated with a high degree of fidelity. The simulation system was exercised using a supersonic inlet with sixty percent of the supersonic area contraction occurring internally, and a GE J85-13 turbojet engine.

  12. Small Reactor Designs Suitable for Direct Nuclear Thermal Propulsion: Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Schnitzler

    2012-01-01

    Advancement of U.S. scientific, security, and economic interests requires high performance propulsion systems to support missions beyond low Earth orbit. A robust space exploration program will include robotic outer planet and crewed missions to a variety of destinations including the moon, near Earth objects, and eventually Mars. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. In NASA's recent Mars Design Reference Architecture (DRA) 5.0 study, nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option for the human exploration of Mars because of its high thrust and high specific impulse ({approx}900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. The recently announced national space policy2 supports the development and use of space nuclear power systems where such systems safely enable or significantly enhance space exploration or operational capabilities. An extensive nuclear thermal rocket technology development effort was conducted under the Rover/NERVA, GE-710 and ANL nuclear rocket programs (1955-1973). Both graphite and refractory metal alloy fuel types were pursued. The primary and significantly larger Rover/NERVA program focused on graphite type fuels. Research, development, and testing of high temperature graphite fuels was conducted. Reactors and engines employing these fuels were designed, built, and ground tested. The GE-710 and ANL programs focused on an alternative ceramic-metallic 'cermet' fuel type consisting of UO2 (or UN) fuel embedded in a refractory metal matrix such as tungsten. The General Electric program examined closed loop concepts for space or terrestrial

  13. Advanced Fusion Reactors for Space Propulsion and Power Systems

    Science.gov (United States)

    Chapman, John J.

    2011-01-01

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  14. Direct Estimation of Power Distribution in Reactors for Nuclear Thermal Space Propulsion

    Science.gov (United States)

    Aldemir, Tunc; Miller, Don W.; Burghelea, Andrei

    2004-02-01

    A recently proposed constant temperature power sensor (CTPS) has the capability to directly measure the local power deposition rate in nuclear reactor cores proposed for space thermal propulsion. Such a capability reduces the uncertainties in the estimated power peaking factors and hence increases the reliability of the nuclear engine. The CTPS operation is sensitive to the changes in the local thermal conditions. A procedure is described for the automatic on-line calibration of the sensor through estimation of changes in thermal .conditions.

  15. Design of particle bed reactors for the space nuclear thermal propulsion program

    Energy Technology Data Exchange (ETDEWEB)

    Ludewig, H.; Powell, J.R.; Todosow, M.; Maise, G.; Barletta, R.; Schweitzer, D.G. [Brookhaven National Lab., Upton, NY (United States)

    1996-02-01

    This paper describes the design for the Particle Bed Reactor (PBR) that was considered for the Space Nuclear Thermal Propulsion (SNTP) Program. The methods of analysis and their validation are outlined first. Monte Carlo methods were used for the physics analysis, several new algorithms were developed for the fluid dynamics, heat transfer and transient analysis; and commercial codes were used for the stress analysis. We carried out a critical experiment, prototypic of the PBR to validate the reactor physics; blowdown experiments with beds of prototypic dimensions were undertaken to validate the power-extraction capabilities from particle beds. In addition, materials and mechanical design concepts for the fuel elements were experimentally validated. (author).

  16. Preliminary Design of the Low Speed Propulsion Air Intake of the LAPCAT-MR2 Aircraft

    Science.gov (United States)

    Meerts, C.; Steelant, J.; Hendrick, P.

    2011-08-01

    A supersonic air intake has been designed for the low speed propulsion system of the LAPCAT-MR2 aircraft. Development has been based on the XB-70 aircraft air intake which achieves extremely high performances over a wide operation range through the combined use of variable geometry and porous wall suction for boundary layer control. Design of the LAPCAT-MR2 intake has been operated through CFD simulations using DLR TAU-Code (perfect gas model - Menter SST turbulence model). First, a new boundary condition has been validated into the DLR TAU-Code (perfect gas model) for porous wall suction modelling. Standard test cases have shown surprisingly good agreement with both theoretical predictions and experimental results. Based upon this validation, XB-70 air intake performances have been assessed through CFD simulations over the subsonic, transonic and supersonic operation regions and compared to available flight data. A new simulation strategy was deployed avoiding numerical instabilities when initiating the flow in both transonic and supersonic operation modes. First, the flow must be initiated with a far field Mach number higher than the target flight Mach number. Additionally, the inlet backpressure may only be increased to its target value once the oblique shock pattern downstream the intake compression ramps is converged. Simulations using that strategy have shown excellent agreement with in-flight measurements for both total pressure recovery ratio and variable geometry schedule prediction. The demarcation between stable and unstable operation could be well reproduced. Finally, a modified version of the XB-70 air intake has been integrated in the elliptical intake on the LAPCAT vehicle. Operation of this intake in the LAPCAT-MR2 environment is under evaluation using the same simulation strategy as the one developed for the XB-70. Performances are assessed at several key operation points to assess viability of this design. This information will allow in a next

  17. Thermal radiation in gas core nuclear reactors for space propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Slutz, S.A.; Gauntt, R.O.; Harms, G.A.; Latham, T.; Roman, W.; Rodgers, R.J. (Sandia National Lab, Albuquerque, NM (United States))

    1994-05-01

    A diffusive model of the radial transport of thermal radiation out of a cylindrical core of fissioning plasma is presented. The diffusion approximation is appropriate because the opacity of uranium is very high at the temperatures of interest (greater than 3000 K). We make one additional simplification of assuming constant opacity throughout the fuel. This allows the complete set of solutions to be expressed as a single function. This function is approximated analytically to facilitate parametric studies of the performance of a test module of the nuclear light bulb gas-core nuclear-rocket-engine concept, in the Annular Core Research Reactor at Sandia National Laboratories. Our findings indicate that radiation temperatures in range of 4000-6000 K are attainable, which is sufficient to test the high specific impulse potential (approximately 2000 s) of this concept. 15 refs.

  18. Request for Naval Reactors Comment on Proposed PROMETHEUS Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to Jet Propulsion Laboratory

    International Nuclear Information System (INIS)

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory

  19. Hybrid Electric Propulsion System for a 4 Passenger VTOL Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The advancement of hybrid-electric propulsion systems for rotorcraft enables vertical takeoff and landing (VTOL) vehicles to take advantage of aerodynamic...

  20. Hybrid upper surface blown flap propulsive-lift concept for the Quiet Short-Haul Research Aircraft

    Science.gov (United States)

    Cochrane, J. A.; Carros, R. J.

    1975-01-01

    The hybrid upper surface blowing concept consists of wing-mounted turbofan engines with a major portion of the fan exhaust directed over the wing upper surface to provide high levels of propulsive lift, but with a portion of the fan airflow directed over selected portions of the airframe to provide boundary layer control. NASA-sponsored preliminary design studies identified the hybrid upper surface blowing concept as the best propulsive lift concept to be applied to the Quiet Short-Haul Research Aircraft (QSRA) that is planned as a flight facility to conduct flight research at low noise levels, high approach lift coefficients, and steep approaches. Data from NASA in-house and NASA-sponsored small and large-scale wind tunnel tests of various configurations using this concept are presented.

  1. System Noise Assessment and the Potential for a Low Noise Hybrid Wing Body Aircraft with Open Rotor Propulsion

    Science.gov (United States)

    Thomas, Russell H.; Burley, Casey L.; Lopes, Leonard V.; Bahr, Christopher J.; Gern, Frank H.; VanZante, Dale E.

    2014-01-01

    An aircraft system noise assessment was conducted for a hybrid wing body freighter aircraft concept configured with three open rotor engines. The primary objective of the study was to determine the aircraft system level noise given the significant impact of installation effects including shielding the open rotor noise by the airframe. The aircraft was designed to carry a payload of 100,000 lbs on a 6,500 nautical mile mission. An experimental database was used to establish the propulsion airframe aeroacoustic installation effects including those from shielding by the airframe planform, interactions with the control surfaces, and additional noise reduction technologies. A second objective of the study applied the impacts of projected low noise airframe technology and a projection of advanced low noise rotors appropriate for the NASA N+2 2025 timeframe. With the projection of low noise rotors and installation effects, the aircraft system level was 26.0 EPNLdB below Stage 4 level with the engine installed at 1.0 rotor diameters upstream of the trailing edge. Moving the engine to 1.5 rotor diameters brought the system level noise to 30.8 EPNLdB below Stage 4. At these locations on the airframe, the integrated level of installation effects including shielding can be as much as 20 EPNLdB cumulative in addition to lower engine source noise from advanced low noise rotors. And finally, an additional set of technology effects were identified and the potential impact at the system level was estimated for noise only without assessing the impact on aircraft performance. If these additional effects were to be included it is estimated that the potential aircraft system noise could reach as low as 38.0 EPNLdB cumulative below Stage 4.

  2. Comprehensive Technical Report, General Electric Direct-Air-Cycle Aircraft Nuclear Propulsion Program, Program Summary and References

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, G.; Rothstein, A.J.

    1962-06-28

    This is one of twenty-one volumes sumarizing the Aircraft Nuclear Propulsion Program of the General Electric Company. This volume discusses the background to the General Electric program, and summarizes the various direct-air-cycle nuclear test assemblies and power plants that were developed. Because of the requirements of high performance, low weight, and small size, vast improvements in existing technology were required to meet the flight objectives. The technological progress achieved during the program is also summarized. The last appendix contains a compilation of the abstracts, tables of contents, and reference lists of the other twenty volumes.

  3. Propulsion Airframe Aeroacoustic Integration Effects for a Hybrid Wing Body Aircraft Configuration

    Science.gov (United States)

    Czech, Michael J.; Thomas, Russell H; Elkoby, Ronen

    2012-01-01

    An extensive experimental investigation was performed to study the propulsion airframe aeroacoustic effects of a high bypass ratio engine for a hybrid wing body aircraft configuration where the engine is installed above the wing. The objective was to provide an understanding of the jet noise shielding effectiveness as a function of engine gas condition and location as well as nozzle configuration. A 4.7% scale nozzle of a bypass ratio seven engine was run at characteristic cycle points under static and forward flight conditions. The effect of the pylon and its orientation on jet noise was also studied as a function of bypass ratio and cycle condition. The addition of a pylon yielded significant spectral changes lowering jet noise by up to 4 dB at high polar angles and increasing it by 2 to 3 dB at forward angles. In order to assess jet noise shielding, a planform representation of the airframe model, also at 4.7% scale was traversed such that the jet nozzle was positioned from downstream of to several diameters upstream of the airframe model trailing edge. Installations at two fan diameters upstream of the wing trailing edge provided only limited shielding in the forward arc at high frequencies for both the axisymmetric and a conventional round nozzle with pylon. This was consistent with phased array measurements suggesting that the high frequency sources are predominantly located near the nozzle exit and, consequently, are amenable to shielding. The mid to low frequency sources were observed further downstream and shielding was insignificant. Chevrons were designed and used to impact the distribution of sources with the more aggressive design showing a significant upstream migration of the sources in the mid frequency range. Furthermore, the chevrons reduced the low frequency source levels and the typical high frequency increase due to the application of chevron nozzles was successfully shielded. The pylon was further modified with a technology that injects air

  4. Effect of reactor coolant radioactivity upon configuration feasibility for a nuclear electric propulsion vehicle

    Science.gov (United States)

    Soffer, L.; Wright, G. N.

    1973-01-01

    A preliminary shielding analysis was carried out for a conceptual nuclear electric propulsion vehicle designed to transport payloads from low earth orbit to synchronous orbit. The vehicle employed a thermionic nuclear reactor operating at 1575 kilowatts and generated 120 kilowatts of electricity for a round-trip mission time of 2000 hours. Propulsion was via axially directed ion engines employing 3300 pounds of mercury as a propellant. The vehicle configuration permitted a reactor shadow shield geometry using LiH and the mercury propellant for shielding. However, much of the radioactive NaK reactor coolant was unshielded and in close proximity to the power conditioning electronics. An estimate of the radioactivity of the NaK coolant was made and its unshielded dose rate to the power conditioning equipment calculated. It was found that the activated NaK contributed about three-fourths of the gamma dose constraint. The NaK dose was considered a sufficiently high fraction of the allowable gamma dose to necessitate modifications in configuration.

  5. The nuclear naval propulsion; La propulsion nucleaire navale

    Energy Technology Data Exchange (ETDEWEB)

    Fribourg, Ch. [Technicatome, Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1999-03-01

    As soon as 1942 the application of nuclear energy to the propulsion of submarines was yet quoted as very promising. For 40 years this type of propulsion has been applied to submarines, aircraft carriers and ice-breakers. A review of the different kinds of ships is made and a perspective for a near future is drawn. The historical aspect of the successive French programs is presented and the development of the concept due to the progress of technology and experience is highlighted. The Charles de Gaulle aircraft carrier will benefit fully from its nuclear propulsion system. This system allows: -autonomy with the supplying of almost no limited amount of electricity, -compactness, the absence of chimneys facilitates the use of the flight-deck, -a reduction of the mass, a classical propulsion system requires 8000 tons of fuel, -a great maneuverability and a high level of reliability. Naval propulsion presents the engineers with specific problems. The exiguity of ships implies the entanglement of different systems, for instance, the water reserve is used as a radiation shielding. The ship maneuverability requires a high flexibility of the power supply: from 10% to 100% of the nominal power delivered in less than one minute. The particular auto-stability of the pressurized water reactor type which can sustain sharp power transients by a rise of only 10 degrees of the moderator temperature has been one of the main assets of this type of reactor to the naval propulsion. (A.C.)

  6. Solid Oxide Fuel Cell APU Feasibility Study for a Long Range Commercial Aircraft Using UTC ITAPS Approach. Volume 1; Aircraft Propulsion and Subsystems Integration Evaluation

    Science.gov (United States)

    Srinivasan, Hari; Yamanis, Jean; Welch, Rick; Tulyani, Sonia; Hardin, Larry

    2006-01-01

    The objective of this contract effort was to define the functionality and evaluate the propulsion and power system benefits derived from a Solid Oxide Fuel Cell (SOFC) based Auxiliary Power Unit (APU) for a future long range commercial aircraft, and to define the technology gaps to enable such a system. The study employed technologies commensurate with Entry into Service (EIS) in 2015. United Technologies Corporation (UTC) Integrated Total Aircraft Power System (ITAPS) methodologies were used to evaluate system concepts to a conceptual level of fidelity. The technology benefits were captured as reductions of the mission fuel burn and emissions. The baseline aircraft considered was the Boeing 777-200ER airframe with more electric subsystems, Ultra Efficient Engine Technology (UEET) engines, and an advanced APU with ceramics for increased efficiency. In addition to the baseline architecture, four architectures using an SOFC system to replace the conventional APU were investigated. The mission fuel burn savings for Architecture-A, which has minimal system integration, is 0.16 percent. Architecture-B and Architecture-C employ greater system integration and obtain fuel burn benefits of 0.44 and 0.70 percent, respectively. Architecture-D represents the highest level of integration and obtains a benefit of 0.77 percent.

  7. Evaluation of V/STOL research aircraft design. [landing approaches, propulsion/control, piloted moving base simulator

    Science.gov (United States)

    Deckert, W. H.; Holzhauser, C. A.

    1973-01-01

    The evaluation and evolution of direct jet lift V/STOL transport aircraft designs are discussed. The V/STOL transport design selected as an example is a lift-fan design that was evaluated as a candidate configuration for a possible future V/STOL research transport. The paper includes discussion of potential advanced V/STOL landing approach profiles as key design requirements for V/STOL aircraft, description and experimental results of an integrated propulsion/control system designed to achieve desired advanced V/STOL near-terminal operating capabilities, and results from evaluating V/STOL designs on piloted moving-base simulators. This paper discusses use of the piloted moving-base simulator as a design tool for evolving satisfactory V/STOL stabilization and propulsion/control systems. Included are problems and solutions identified during simulation of simultaneous decelerating/descent steep curved landing approaches under instrument flight conditions. Simulation results are also compared to flight results obtained with the DO-31 V/STOL research transport.

  8. Space Molten Salt Reactor Concept for Nuclear Electric Propulsion and Surface Power

    Science.gov (United States)

    Eades, M.; Flanders, J.; McMurray, N.; Denning, R.; Sun, X.; Windl, W.; Blue, T.

    Students at The Ohio State University working under the NASA Steckler Grant sought to investigate how molten salt reactors with fissile material dissolved in a liquid fuel medium can be applied to space applications. Molten salt reactors of this kind, built for non-space applications, have demonstrated high power densities, high temperature operation without pressurization, high fuel burn up and other characteristics that are ideal for space fission systems. However, little research has been published on the application of molten salt reactor technology to space fission systems. This paper presents a conceptual design of the Space Molten Salt Reactor (SMSR), which utilizes molten salt reactor technology for Nuclear Electric Propulsion (NEP) and surface power at the 100 kWe to 15 MWe level. Central to the SMSR design is a liquid mixture of LiF, BeF2 and highly enriched U235F4 that acts as both fuel and core coolant. In brief, some of the positive characteristics of the SMSR are compact size, simplified core design, high fuel burn up percentages, proliferation resistant features, passive safety mechanisms, a considerable body of previous research, and the possibility for flexible mission architecture.

  9. Fuselage Boundary Layer Ingestion Propulsion Applied to a Thin Haul Commuter Aircraft for Optimal Efficiency

    Science.gov (United States)

    Mikic, Gregor Veble; Stoll, Alex; Bevirt, JoeBen; Grah, Rok; Moore, Mark D.

    2016-01-01

    Theoretical and numerical aspects of aerodynamic efficiency of propulsion systems are studied. Focus is on types of propulsion that closely couples to the aerodynamics of the complete vehicle. We discuss the effects of local flow fields, which are affected both by conservative flow acceleration as well as total pressure losses, on the efficiency of boundary layer immersed propulsion devices. We introduce the concept of a boundary layer retardation turbine that helps reduce skin friction over the fuselage. We numerically investigate efficiency gains offered by boundary layer and wake interacting devices. We discuss the results in terms of a total energy consumption framework and show that efficiency gains offered depend on all the elements of the propulsion system.

  10. Integrated Reconfigurable Aero and Propulsion Control for Improved Flight Safety of Commercial Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of this project is to develop and test a novel innovative Integrated Reconfigurable Aero & Propulsion Control (IRAP) system that achieves...

  11. Integration of an Advanced Cryogenic Electric Propulsion System (ACEPS) to Aerodynamically Efficient Subsonic Transport Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal defines innovative aerodynamic concepts and technology goals aimed at vehicle efficiency for future subsonic aircraft in the 2020 ? 2030 timeframe....

  12. Magnesium Diboride Superconducting Coils for Electric Propulsion Systems for Large Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The recent development of magnesium diboride superconducting wires makes possible the potential to have much lighter weight superconducting coils for heavy aircraft...

  13. Inlet Channel for a Ducted Fan Propulsion System of a Light Aircraft

    Directory of Open Access Journals (Sweden)

    E. Ritschl

    2003-01-01

    Full Text Available So-called "cold-jet" propulsion units consist of a piston engine, a blower and the necessary air duct. Till now, all attempts to utilize "cold-jet" propulsion units to maintain the thrust of an airplane have been unsuccessful. Analysis has shown that the main difficulty is the deformation of the flow field at the entry to the blower [1].

  14. A small high temperature gas cooled reactor for nuclear marine propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Brugiere, F.; Sillon, C. [Ecole des Applications Militaires de l' Energie Atomique, 50 - Cherbourg (France); Foster, A.; Hamilton, P.; Jewer, S.; Thompson, A.C. [Defence College of Electromechanical Engineering, Nuclear Dept., Military Rd, Gosport (United Kingdom); Kingston, T.; Williams, A.M.; Beeley, P.A. [Rolls-Royce (Marine Power), Raynesway, Derby (United Kingdom)

    2007-07-01

    Results from a design study for a hypothetical nuclear marine propulsion plant are presented. The plant utilizes a small High Temperature Gas Cooled Reactor (HTGCR) similar to the GTHTR300 design by the Japan Atomic Energy Agency with power being generated by a direct cycle gas turbine. The GTHTR300 design is modified in order to achieve the required power of 80 MWth and core lifetime of approximately 10 years. Thermal hydraulic analysis shows that in the event of a complete loss of flow accident the hot channel fuel temperature exceeds the 1600 Celsius degrees limit due to the high power peaking in assemblies adjacent to the inner reflector. Reactor dynamics shows oscillatory behaviour in rapid power transients. An automatic control rod system is suggested to overcome this problem. (authors)

  15. Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Schnitzler; Stanley K. Borowski

    2012-07-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified as the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine

  16. Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion

    Science.gov (United States)

    Schnitzler, Bruce G.; Borowski, Stanley K.

    2012-01-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified as the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine operations and the engine and stage design were

  17. The need to address the larger universe of HEU-fueled reactors, including critical assemblies, pulsed reactors and propulsion reactors

    International Nuclear Information System (INIS)

    Full text: The RERTR program has focused thus far primarily on ending shipments of HEU fuel to research reactors. This has resulted in giving highest priority to reactors with steady thermal powers of 1 megawatt or more, because they require regular refuelling. Critical facilities and pulsed reactors can also of serious concern, because some of them contain very large amounts of barely-irradiated HEU and plutonium. They could be costly to convert - and conversion to LEU may be impractical for fast-neutron critical assemblies. An assessment should be carried out first, therefore, as to which are still needed. Critical assemblies are required today primarily to benchmark Monte Carlo neutron-transport codes. Perhaps the world nuclear community could share a few instead of each reactor-design institute having its own. There is also a whole universe of HEU-fuelled pressurized-water reactors used to power submarines and other types of nuclear-powered ships. These reactors collectively require much more HEU fuel each year than research reactors. The risk of HEU diversion from their fuel cycles is not zero but it is difficult for outsiders to discuss conversion because of the fuel designs are classified. This makes the conversion of Russia's civilian icebreaker reactors of particular interest because issues of classified fuel design are less problematic and these reactors load annually fuel containing about 400 kg of U-235. Another reason for interest in developing LEU fuel for these reactors is that the KLT-40 icebreaker reactor is being adapted for a floating nuclear power plant. Finally, the research-reactor community is, in any case, faced with developing fuels that can operate at power-reactor-fuel temperatures because there are a few high-powered research reactors that operate in this temperature range. (author)

  18. APACHE: Integrated Hybrid Fuel Cell System for 2-Seat All Electric Aircraft Propulsion

    OpenAIRE

    Hordé, Théophile; Achard, Patrick; Metkemeijer, Rudolf

    2012-01-01

    International audience The French APACHE project aims at demonstrating the feasibility of using a Hybrid Fuel Cell System (HFCS) as the power generator for all electric 2-seat aircrafts. This study focuses on three main topics: airworthiness of Proton Exchange Membrane Fuel Cells (PEMFC), their hybridization with Lithium Ion (Li-Ion) batteries and systems' integration into light aircrafts. Altitude and inclination tests have been led and allow to conclude on the ability of PEMFC to operate...

  19. Propulsion Control and Health Management (PCHM) Technology for Flight Test on the C-17 T-1 Aircraft

    Science.gov (United States)

    Simon, Donald L.; Garg, Sanjay; Venti, Michael

    2004-01-01

    The C-I 7 T-l Globemaster III is an Air Force flight research vehicle located at Edwards Air Force Base. NASA Dryden and the C-17 System Program Office have entered into a Memorandum of Agreement to permit NASA the use of the C-I 7 T-I to conduct flight research on a mutually coordinated schedule. The C-17 Propulsion Control and Health Management (PCHM) Working Group was formed in order to foster discussion and coordinate planning amongst the various government agencies conducting PCHM research with a potential need for flight testing, and to communicate to the PCHM community the capabilities of the C-17 T-l aircraft to support such flight testing. This paper documents the output of this Working Group, including a summary of the candidate PCHM technologies identified and their associated benefits relative to NASA goals and objectives.

  20. Aircraft-crash-protected steel reactor building roof structure for the European market

    International Nuclear Information System (INIS)

    This paper recommends the use of all steel roof structures for the reactor building of European Boiling Water Reactor (BWR) plants. This change would make the advanced US BWR designs more compatible with European requirements. Replacement of the existing concrete roof slab with a sufficiently thick steel plate would eliminate the concrete spelling resulting from a postulated aircraft crash, potentially damaging the drywell head or the spent fuel pool

  1. Aircraft-crash-protected steel reactor building roof structure for the European market

    Energy Technology Data Exchange (ETDEWEB)

    Posta, B.A.; Kadar, I. [Bechtel Corp., San Francisco, CA (United States); Rao, A.S. [General Electric Nuclear Engineering, San Jose, CA (United States)

    1996-07-01

    This paper recommends the use of all steel roof structures for the reactor building of European Boiling Water Reactor (BWR) plants. This change would make the advanced US BWR designs more compatible with European requirements. Replacement of the existing concrete roof slab with a sufficiently thick steel plate would eliminate the concrete spelling resulting from a postulated aircraft crash, potentially damaging the drywell head or the spent fuel pool.

  2. Development of Liquid-Vapor Core Reactors with MHD Generator for Space Power and Propulsion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Samim Anghaie

    2002-08-13

    core. Still there are problems of containment since many of the proposed vessel materials such as W or Mo have high neutron cross sections making the design of a critical system difficult. There is also the possibility for a GCR to remain in a subcritical state, and by the use of a shockwave mechanism, increase the pressure and temperature inside the core to achieve criticality. This type of GCR is referred to as a shockwave-driven pulsed gas core reactor. These two basic designs were evaluated as advance concepts for space power and propulsion.

  3. Multimegawatt nuclear electric propulsion with gaseous and vapor core reactors with MHD

    Science.gov (United States)

    Knight, Travis; Anghaie, Samim; Smith, Blair; Houts, Michael

    2001-02-01

    This study investigated the development of a system concept for space power generation and nuclear electric propulsion based on a fissioning plasma core reactor (FPCR) with magnetohydrodynamic (MHD) power conversion system, coupled to a magnetoplasmadynamic (MPD) thruster. The FPCR is a liquid-vapor core reactor concept operating with metallic uranium or uranium tetrafluoride (UF4) vapor as the fissioning fuel and alkali metals or their fluorides as working fluid in a closed Rankine cycle with MHD energy conversion. Candidate working fluids include K, Li, Na, KF, LiF, NaF, etc. The system features core outlet temperatures of 3000 to 4000 K at pressures of about 1 to 10 MPa, MHD temperatures of 2000 to 3000 K, and radiator temperatures of 1200 to 2000 K. This combination of parameters offers the potential for low total system specific mass in the range of 0.4 to 0.6 kg/kWe. The MHD output could be coupled with minimal power conditioning to the variable specific impulse magnetoplasma rocket (VASIMR), MPD thrusters or other types of thruster for producing thrust at very high specific impulse (Isp=1500 to 10,000 s). .

  4. Thermal-hydraulic analysis of the pellet bed reactor for nuclear thermal propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Morley, N.J. (Institute for Space Nuclear Power Studies, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131-1341 (United States)); El-Genk, M.S. (Institute for Space Nuclear Power Studies, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131-1341 (United States))

    1994-09-01

    A two-dimensional steady-state thermal-hydraulics analysis of the pellet bed reactor for nuclear thermal propulsion is performed using the NUTHAM- S thermal-hydraulic code. The effects of axial heat and momentum transfers on the temperature and flow fields in the core are investigated. In addition, the porosity profile in the hot frit is optimized to avoid the development of a hot spot in the reactor core. Finally, a sensitivity analysis is performed using the optimized hot frit porosity profile to determine the effects of varying the propellant and core parameters on the peak fuel temperature and pressure drop across the core. These parameters include the inlet temperature and mass flow rate of the hydrogen propellant, average porosity of the core bed, the porosity of the hot frit, and local hot frit blockage. The peak temperature of the fuel is shown not to exceed its melting point as a result of changing any of these parameters from the base case, with the exception of hot frit blockage greater than 60% over a 0.12m axial segment of the hot frit. ((orig.))

  5. Nonlinear robust control of hypersonic aircrafts with interactions between flight dynamics and propulsion systems.

    Science.gov (United States)

    Li, Zhaoying; Zhou, Wenjie; Liu, Hao

    2016-09-01

    This paper addresses the nonlinear robust tracking controller design problem for hypersonic vehicles. This problem is challenging due to strong coupling between the aerodynamics and the propulsion system, and the uncertainties involved in the vehicle dynamics including parametric uncertainties, unmodeled model uncertainties, and external disturbances. By utilizing the feedback linearization technique, a linear tracking error system is established with prescribed references. For the linear model, a robust controller is proposed based on the signal compensation theory to guarantee that the tracking error dynamics is robustly stable. Numerical simulation results are given to show the advantages of the proposed nonlinear robust control method, compared to the robust loop-shaping control approach.

  6. Experiment Design for Complex VTOL Aircraft with Distributed Propulsion and Tilt Wing

    Science.gov (United States)

    Murphy, Patrick C.; Landman, Drew

    2015-01-01

    Selected experimental results from a wind tunnel study of a subscale VTOL concept with distributed propulsion and tilt lifting surfaces are presented. The vehicle complexity and automated test facility were ideal for use with a randomized designed experiment. Design of Experiments and Response Surface Methods were invoked to produce run efficient, statistically rigorous regression models with minimized prediction error. Static tests were conducted at the NASA Langley 12-Foot Low-Speed Tunnel to model all six aerodynamic coefficients over a large flight envelope. This work supports investigations at NASA Langley in developing advanced configurations, simulations, and advanced control systems.

  7. Advanced technology payoffs for future rotorcraft, commuter aircraft, cruise missile, and APU propulsion systems

    Science.gov (United States)

    Turk, M. A.; Zeiner, P. K.

    1986-01-01

    In connection with the significant advances made regarding the performance of larger gas turbines, challenges arise concerning the improvement of small gas turbine engines in the 250 to 1000 horsepower range. In response to these challenges, the NASA/Army-sponsored Small Engine Component Technology (SECT) study was undertaken with the objective to identify the engine cycle, configuration, and component technology requirements for the substantial performance improvements desired in year-2000 small gas turbine engines. In the context of this objective, an American turbine engine company evaluated engines for four year-2000 applications, including a rotorcraft, a commuter aircraft, a supersonic cruise missile, and an auxiliary power unit (APU). Attention is given to reference missions, reference engines, reference aircraft, year-2000 technology projections, cycle studies, advanced engine selections, and a technology evaluation.

  8. Characterisation of a hybrid, fuel-cell-based propulsion system for small unmanned aircraft

    Science.gov (United States)

    Verstraete, D.; Lehmkuehler, K.; Gong, A.; Harvey, J. R.; Brian, G.; Palmer, J. L.

    2014-03-01

    Advanced hybrid powerplants combining a fuel cell and battery can enable significantly higher endurance for small, electrically powered unmanned aircraft systems, compared with batteries alone. However, detailed investigations of the static and dynamic performance of such systems are required to address integration challenges. This article describes a series of tests used to characterise the Horizon Energy Systems' AeroStack hybrid, fuel-cell-based powertrain. The results demonstrate that a significant difference can exist between the dynamic performance of the fuel-cell system and its static polarisation curve, confirming the need for detailed measurements. The results also confirm that the AeroStack's lithium-polymer battery plays a crucial role in its response to dynamic load changes and protects the fuel cell from membrane dehydration and fuel starvation. At low static loads, the AeroStack fuel cell recharges the battery with currents up to 1 A, which leads to further differences with the polarisation curve.

  9. Information report presented in application of article 145 of the regulation by the commission of national defense and armed forces about the propulsion system of the second aircraft carrier; Rapport d'information depose en application de l'article 145 du reglement par la commission de la defense nationale et des forces armees sur le mode de propulsion du second porte-avions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-11-01

    In the framework of the project of launching of a sister-ship to the Charles de Gaulle aircraft carrier, this report makes an objective analysis of the different possible propulsion systems that can be considered for this battle ship according to different criteria: 1 - two possible energy sources and four possible configurations of aircraft carrier considered: alternative between nuclear propulsion and conventional propulsion, the two nuclear ships eventualities, the hypothesis of an entirely French-made classical propulsion ship, the opportunity of a French-British cooperation for a conventional aircraft carrier project; 2 - decision criteria: operational need, cost, industrial and technological stakes, constraints linked with daily ship and crew life; 3 - propulsion systems alternative: conventional propulsion and reinforcement of the European defense policy, nuclear propulsion for an operational superiority and for a complementarity with the Charles de Gaulle. (J.S.)

  10. Sensitivity of Mission Energy Consumption to Turboelectric Distributed Propulsion Design Assumptions on the N3-X Hybrid Wing Body Aircraft

    Science.gov (United States)

    Felder, James L.; Tong, Michael T.; Chu, Julio

    2012-01-01

    In a previous study by the authors it was shown that the N3-X, a 300 passenger hybrid wing body (HWB) aircraft with a turboelectric distributed propulsion (TeDP) system, was able to meet the NASA Subsonic Fixed Wing (SFW) project goal for N+3 generation aircraft of at least a 60% reduction in total energy consumption as compared to the best in class current generation aircraft. This previous study combined technology assumptions that represented the highest anticipated values that could be matured to technology readiness level (TRL) 4-6 by 2030. This paper presents the results of a sensitivity analysis of the total mission energy consumption to reductions in each key technology assumption. Of the parameters examined, the mission total energy consumption was most sensitive to changes to total pressure loss in the propulsor inlet. The baseline inlet internal pressure loss is assumed to be an optimistic 0.5%. An inlet pressure loss of 3% increases the total energy consumption 9%. However changes to reduce inlet pressure loss can result in additional distortion to the fan which can reduce fan efficiency or vice versa. It is very important that the inlet and fan be analyzed and optimized as a single unit. The turboshaft hot section is assumed to be made of ceramic matrix composite (CMC) with a 3000 F maximum material temperature. Reducing the maximum material temperature to 2700 F increases the mission energy consumption by only 1.5%. Thus achieving a 3000 F temperature in CMCs is important but not central to achieving the energy consumption objective of the N3-X/TeDP. A key parameter in the efficiency of superconducting motors and generators is the size of the superconducting filaments in the stator. The size of the superconducting filaments in the baseline model is assumed to be 10 microns. A 40 micron filament, which represents current technology, results in a 200% increase in AC losses in the motor and generator stators. This analysis shows that for a system with 40

  11. Performance studies on the application of four-engine and two-engine USB propulsive lift to the E-2C aircraft

    Science.gov (United States)

    Riddle, D. W.; Stevens, V. C.

    1986-01-01

    A study has been completed of the performance benefits to be derived from applying advanced upper-surface blowing (USB) propulsive-lift technology to the E-2C aircraft. The results of comparing four-engine with two-engine USB configurations are discussed, and engine sizing and aerodynamic/structural considerations pertaining to the E-2C/USB modification are examined. The effects of the modification on performance are described in detail with regard to takeoff distance and landing distance estimation in free-deck operations, operations using catapult and arresting gear, ceiling and radar surveillance missions, and range and endurance capability.

  12. Aircraft

    Science.gov (United States)

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  13. Safety assessment of A92 reactor building for large commercial aircraft crash

    International Nuclear Information System (INIS)

    The current paper presents key elements of the comprehensive analyses of the effects due to a large aircraft collision with the reactor building of Belene NPP in Bulgaria. The reactor building is a VVER A92; it belongs to the third+ generation and includes structural measures for protection against an aircraft impact as standard design. The A92 reactor building implements a double shell concept and is composed of thick RC external walls and an external shell which surrounds an internal pre-stressed containment and the internal walls of the auxiliary building. The malevolent large aircraft impact is considered as a beyond design base accident (Design Extended Conditions, DEC). The main issues under consideration are the structural integrity, the equipment safety due to the induced vibrations, and the fire safety of the entire installation. Many impact scenarios are analyzed varying both impact locations and loading intensity. A large number of non-linear dynamic analyses are used for assessment of the structural response and capacity, including different type of structural models, different finite element codes, and different material laws. The corresponding impact loadings are represented by load time functions calculated according to three different approaches, i.e. loading determined by Riera's method (Riera, 1968), load time function calculated by finite element analysis (Henkel and Klein, 2007), and coupled dynamic analysis with dynamic interaction between target and projectile. Based on the numerical results and engineering assessments the capacity of the A92 reactor building to resist a malevolent impact of a large aircraft is evaluated. Significant efforts are spent on safety assessment of equipment by using an evaluation procedure based on damage indicating parameters. As a result of these analyses several design modifications of structure elements are performed. There are changes of the layout of reinforcement, special arrangements and spatial

  14. Development of Reactor Core for Nuclear Thermal Propulsion%核热推进堆芯方案的发展

    Institute of Scientific and Technical Information of China (English)

    解家春; 赵守智

    2012-01-01

    Nuclear thermal propulsion heats propellant with fission energy. It's specific impulse is double of chemical rockets. It could play an important role in space mission. During the research process about nuclear thermal propulsion in USA and Russia, many reactors were well developed. The details of the reactors core were described, the characteristics of design were indicated, and the trend of development was summarized.%核热推进利用核裂变能加热工质,比冲可达化学火箭的2倍多,在空间活动中有广阔的应用前景.在美国和俄罗斯的研究过程中,对多个核热推进堆芯方案进行了较深入的研究.本工作介绍了这些堆芯方案的情况,详细说明了其设计特点,并总结了堆芯方案的发展趋势.

  15. The outlook for application of powerful nuclear thermionic reactor -powered space electric jet propulsion engines

    International Nuclear Information System (INIS)

    This paper summarizes main study results for application of powerful space electric jet propulsion unit (EJPUs) which is powered by Nuclear Thermionic Power Unit (NTPU). They are combined in Nuclear Power/Propulsion Unit (NPPU) which serves as means of spacecraft equipment power supply and spacecraft movement. Problems the paper deals with are the following: information satellites delivery and their on-orbit power supply during 10-15 years, removal of especially hazardous nuclear wastes, mining of asteroid resources and others. Evaluations on power/time/mass relationship for this type of mission are given. EJPU parameters are compatible with Russian existent or being under development launch vehicle. (author)

  16. The outlook for application of powerful nuclear thermionic reactor - powered space electric jet propulsion engines

    Energy Technology Data Exchange (ETDEWEB)

    Semyonov, Y.P.; Bakanov, Y.A.; Synyavsky, V.V.; Yuditsky, V.D. [Rocket-Space Corp. `Energia`, Moscow (Russian Federation)

    1997-12-31

    This paper summarizes main study results for application of powerful space electric jet propulsion unit (EJPUs) which is powered by Nuclear Thermionic Power Unit (NTPU). They are combined in Nuclear Power/Propulsion Unit (NPPU) which serves as means of spacecraft equipment power supply and spacecraft movement. Problems the paper deals with are the following: information satellites delivery and their on-orbit power supply during 10-15 years, removal of especially hazardous nuclear wastes, mining of asteroid resources and others. Evaluations on power/time/mass relationship for this type of mission are given. EJPU parameters are compatible with Russian existent or being under development launch vehicle. (author)

  17. Autonomous Reactor Control Using Model Based Predictive Control for Space Propulsion Applications

    International Nuclear Information System (INIS)

    Reliable reactor control is important to reactor safety, both in terrestrial and space systems. For a space system, where the time for communication to Earth is significant, autonomous control is imperative. Based on feedback from reactor diagnostics, a controller must be able to automatically adjust to changes in reactor temperature and power level to maintain nominal operation without user intervention. Model-based predictive control (MBPC) (Clarke 1994; Morari 1994) is investigated as a potential control methodology for reactor start-up and transient operation in the presence of an external source. Bragg-Sitton and Holloway (2004) assessed the applicability of MBPC to reactor start-up from a cold, zero-power condition in the presence of a time-varying external radiation source, where large fluctuations in the external radiation source can significantly impact a reactor during start-up operations. The MBPC algorithm applied the point kinetics model to describe the reactor dynamics, using a single group of delayed neutrons; initial application considered a fast neutron lifetime (10-3 sec) to simplify calculations during initial controller analysis. The present study will more accurately specify the dynamics of a fast reactor, using a more appropriate fast neutron lifetime (10-7 sec) than in the previous work. Controller stability will also be assessed by carefully considering the dependencies of each component in the defined cost (objective) function and its subsequent effect on the selected 'optimal' control maneuvers

  18. Development of a Robust Tri-Carbide Fueled Reactor for Multimegawatt Space Power and Propulsion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Samim Anghaie; Travis W. Knight; Johann Plancher; Reza Gouw

    2004-08-11

    An innovative reactor core design based on advanced, mixed carbide fuels was analyzed for nuclear space power applications. Solid solution, mixed carbide fuels such as (U,Zr,Nb)c and (U,Zr, Ta)C offer great promise as an advanced high temperature fuel for space power reactors.

  19. A spherical torus nuclear fusion reactor space propulsion vehicle concept for fast interplanetary travel

    Science.gov (United States)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.

    1999-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a>5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including payload, central truss, nuclear reactor (including diverter and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, and component design.

  20. A Spherical Torus Nuclear Fusion Reactor Space Propulsion Vehicle Concept for Fast Interplanetary Travel

    Science.gov (United States)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.

    1998-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a greater than 5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all ma or systems including payload, central truss, nuclear reactor (including divertor and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, power utilization, and component design.

  1. An Electronic Workshop on the Performance Seeking Control and Propulsion Controlled Aircraft Results of the F-15 Highly Integrated Digital Electronic Control Flight Research Program

    Science.gov (United States)

    Powers, Sheryll Goecke (Compiler)

    1995-01-01

    Flight research for the F-15 HIDEC (Highly Integrated Digital Electronic Control) program was completed at NASA Dryden Flight Research Center in the fall of 1993. The flight research conducted during the last two years of the HIDEC program included two principal experiments: (1) performance seeking control (PSC), an adaptive, real-time, on-board optimization of engine, inlet, and horizontal tail position on the F-15; and (2) propulsion controlled aircraft (PCA), an augmented flight control system developed for landings as well as up-and-away flight that used only engine thrust (flight controls locked) for flight control. In September 1994, the background details and results of the PSC and PCA experiments were presented in an electronic workshop, accessible through the Dryden World Wide Web (http://www.dfrc.nasa.gov/dryden.html) and as a compact disk.

  2. Comparison of Direct and Indirect Gas Reactor Brayton Systems for Nuclear Electric Space Propulsion

    International Nuclear Information System (INIS)

    Gas reactor systems are being considered as candidates for use in generating power for the Prometheus-1 spacecraft, along with other NASA missions as part of the Prometheus program. Gas reactors offer a benign coolant, which increases core and structural materials options. However, the gas coolant has inferior thermal transport properties, relative to other coolant candidates such as liquid metals. This leads to concerns for providing effective heat transfer and for minimizing pressure drop within the reactor core. In direct gas Brayton systems, i.e. those with one or more Brayton turbines in the reactor cooling loop, the ability to provide effective core cooling and low pressure drop is further constrained by the need for a low pressure, high molecular weight gas, typically a mixture of helium and xenon. Use of separate primary and secondary gas loops, one for the reactor and one or more for the Brayton system(s) separated by heat exchanger(s), allows for independent optimization of the pressure and gas composition of each loop. The reactor loop can use higher pressure pure helium, which provides improved heat transfer and heat transport properties, while the Brayton loop can utilize lower pressure He-Xe. However, this approach requires a separate primary gas circulator and also requires gas to gas heat exchangers. This paper focuses on the trade-offs between the direct gas reactor Brayton system and the indirect gas Brayton system. It discusses heat exchanger arrangement and materials options and projects heat exchanger mass based on heat transfer area and structural design needs. Analysis indicates that these heat exchangers add considerable mass, but result in reactor cooling and system resiliency improvements

  3. Corrigendum to small power and heat generation systems on the basis of propulsion and innovative reactor technologies (IAEA-TECDOC-1172)

    International Nuclear Information System (INIS)

    Full text: - Footnote 1 on page 4 should read: ''1The results of the feasibility studies were presented by BARC at the meeting, but no paper was provided for publication in these proceedings.'' - On page 5, footnote 2 should be added to the following paragraph: ''CEA and TECHNICATOM (France) have about 200 reactor-years of experience from propulsion and small experimental reactors. Special design features for a future small reactor are formulated as follows2:'' (''2 At the meeting, these features were presented by CEA, Cadarache, but no paper was provided for publication in these proceedings.'')

  4. A Spherical Torus Nuclear Fusion Reactor Space Propulsion Vehicle Concept for Fast Interplanetary Piloted and Robotic Missions

    Science.gov (United States)

    Williams, C. H.; Borowski, S. K.; Dudzinski, L. A.; Juhasz, A. J.

    1999-11-01

    A conceptual space vehicle concept to support NASA's 21^st century requirements was designed to enable human, multi-month travel throughout the outer solar system. The design was predicated on an ignited, spherical torus fusion reactor (R=2.5 m; a=1.25 m) burning spin polarized D^3He fuel and operating at high beta (30%). Peaked plasma temperature (50 keV) and number density (5×10^20 m-3) profiles were used. Engineering design was performed on all major vehicle systems including fusion reactor, fast wave plasma heating, power conversion, magnetic nozzle (for direct plasma propulsion), tankage and others, with emphasis on 1D fusion power balance, operation physics, first wall, toroidal field coils, and heat transfer. Two related proof-of-concept experiments at OSU, LANL, and PPPL are discussed. Results showed a 108 mt crew habitat payload could be delivered to Saturn rendezvous in 214 days using 6,145 MW of plasma jet power.

  5. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  6. Conceptual design, evaluation and research identification for Remote Augmented Propulsive Lift Systems (RALS) with ejectors for VTOL aircraft

    Science.gov (United States)

    Willis, W. S.; Konarski, M.; Sutherland, M. V.

    1982-01-01

    Ejector concepts for use with a remote augmented lift system (RALS) exhaust nozzle were studied. A number of concepts were considered and three were selected as having the greatest promise of providing the desired aircraft and exhaust gas cooling and lift enhancement. A scale model test program is recommended to explore the effects of the more important parameters on ejector performance.

  7. Small power and heat generation systems on the basis of propulsion and innovative reactor technologies. Proceedings of an advisory group meeting

    International Nuclear Information System (INIS)

    In the future for developing regions and remote areas one or two power reactors in the 50 MWe to 100 MWe range could be appropriately applied for electricity and heat generation. Introducing and managing such a small program with conventional reactor systems would require a mature supporting technological infrastructure and many skilled highly-trained staff at the site, which might be a problem in some countries. An increased number of small conventional reactors would increase the burden and expenditure for assuring security and non-proliferation. To this end, the time has come to develop an innovative small reactor concept which meets the following requirements: reliable, safe operation with a minimum maintenance and supporting infrastructure, economic competitiveness with alternative energy sources available to the candidate sites, and significant improvements in proliferation resistance relative to existing reactor systems. Successful resolution of such a problem requires a comprehensive system approach that considers all aspects of manufacturing, transportation, operation and ultimate disposal. Some elements of this approach have been used previously in the development of propulsion nuclear power systems, with consideration given to many diverse requirements such as highly autonomous operation for a long period of time, no planned maintenance, no on-site refueling and ultimate disposition. It is with this focus that the IAEA convened the Advisory Group on Propulsion Reactor technologies for Civilian Applications

  8. Preliminary Thermohydraulic Analysis of a New Moderated Reactor Utilizing an LEU-Fuel for Space Nuclear Thermal Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Choi, Jae Young; Venneria, Paolo F.; Jeong, Yong Hoon; Chang, Soon Heung [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    The Korea Advanced NUclear Thermal Engine Rocket utilizing an LEU fuel (KANUTER-LEU) is a non-proliferative and comparably efficient NTR engine with relatively low thrust levels of 40 - 50 kN for in-space transportation. The small modular engine can expand mission versatility, when flexibly used in a clustered engine arrangement, so that it can perform various scale missions from low-thrust robotic science missions to high-thrust manned missions. In addition, the clustered engine system can enhance engine redundancy and ensuing crew safety as well as the thrust. The propulsion system is an energy conversion system to transform the thermal energy of the reactor into the kinetic energy of the propellant to produce the powers for thrust, propellant feeding and electricity. It is mainly made up of a propellant Feeding System (PFS) comprising a Turbo-Pump Assembly (TPA), a Regenerative Nozzle Assembly (RNA), etc. For this core design study, an expander cycle is assumed to be the propulsion system. The EGS converts the thermal energy of the EHTGR in the idle operation (only 350 kW{sub th} power) to electric power during the electric power mode. This paper presents a preliminary thermohydraulic design analysis to explore the design space for the new reactor and to estimate the referential engine performance. The new non-proliferative NTR engine concept, KANUTER-LEU, is under designing to surmount the nuclear proliferation obstacles on allR and Dactivities and eventual commercialization for future generations. To efficiently implement a heavy LEU fuel for the NTR engine, its reactor design innovatively possesses the key characteristics of the high U density fuel with high heating and H{sub 2} corrosion resistances, the thermal neutron spectrum core and also minimizing non-fission neutron loss, and the compact reactor design with protectively cooling capability. To investigate feasible design space for the moderated EHTGR-LEU and resultant engine performance, the

  9. NASA Langley Distributed Propulsion VTOL Tilt-Wing Aircraft Testing, Modeling, Simulation, Control, and Flight Test Development

    Science.gov (United States)

    Rothhaar, Paul M.; Murphy, Patrick C.; Bacon, Barton J.; Gregory, Irene M.; Grauer, Jared A.; Busan, Ronald C.; Croom, Mark A.

    2014-01-01

    Control of complex Vertical Take-Off and Landing (VTOL) aircraft traversing from hovering to wing born flight mode and back poses notoriously difficult modeling, simulation, control, and flight-testing challenges. This paper provides an overview of the techniques and advances required to develop the GL-10 tilt-wing, tilt-tail, long endurance, VTOL aircraft control system. The GL-10 prototype's unusual and complex configuration requires application of state-of-the-art techniques and some significant advances in wind tunnel infrastructure automation, efficient Design Of Experiments (DOE) tunnel test techniques, modeling, multi-body equations of motion, multi-body actuator models, simulation, control algorithm design, and flight test avionics, testing, and analysis. The following compendium surveys key disciplines required to develop an effective control system for this challenging vehicle in this on-going effort.

  10. Techno-economic and environmental risk assessment of innovative propulsion systems for short-range civil aircraft

    OpenAIRE

    Colmenares Quintero, Ramon Fernando

    2009-01-01

    Aircraft are thought to contribute about 3.5% (IPCC, 1999) to the total radiative forcing (a measure of change in climate) of all the human activities and this figure is forecaste to increase. Future concerns for aviation’s role in climate change are mainly due to the envisaged continued growth in this sector. Growth rates for emissions are less than those for traffic growth since fuel efficiency continues to improve over the years. Despite regular improvements in fuel efficien...

  11. Flight assessment of the onboard propulsion system model for the Performance Seeking Control algorithm on an F-15 aircraft

    Science.gov (United States)

    Orme, John S.; Schkolnik, Gerard S.

    1995-01-01

    Performance Seeking Control (PSC), an onboard, adaptive, real-time optimization algorithm, relies upon an onboard propulsion system model. Flight results illustrated propulsion system performance improvements as calculated by the model. These improvements were subject to uncertainty arising from modeling error. Thus to quantify uncertainty in the PSC performance improvements, modeling accuracy must be assessed. A flight test approach to verify PSC-predicted increases in thrust (FNP) and absolute levels of fan stall margin is developed and applied to flight test data. Application of the excess thrust technique shows that increases of FNP agree to within 3 percent of full-scale measurements for most conditions. Accuracy to these levels is significant because uncertainty bands may now be applied to the performance improvements provided by PSC. Assessment of PSC fan stall margin modeling accuracy was completed with analysis of in-flight stall tests. Results indicate that the model overestimates the stall margin by between 5 to 10 percent. Because PSC achieves performance gains by using available stall margin, this overestimation may represent performance improvements to be recovered with increased modeling accuracy. Assessment of thrust and stall margin modeling accuracy provides a critical piece for a comprehensive understanding of PSC's capabilities and limitations.

  12. An Introduction to Thermodynamic Performance Analysis of Aircraft Gas Turbine Engine Cycles Using the Numerical Propulsion System Simulation Code

    Science.gov (United States)

    Jones, Scott M.

    2007-01-01

    This document is intended as an introduction to the analysis of gas turbine engine cycles using the Numerical Propulsion System Simulation (NPSS) code. It is assumed that the analyst has a firm understanding of fluid flow, gas dynamics, thermodynamics, and turbomachinery theory. The purpose of this paper is to provide for the novice the information necessary to begin cycle analysis using NPSS. This paper and the annotated example serve as a starting point and by no means cover the entire range of information and experience necessary for engine performance simulation. NPSS syntax is presented but for a more detailed explanation of the code the user is referred to the NPSS User Guide and Reference document (ref. 1).

  13. 40 CFR 87.62 - Test procedure (propulsion engines).

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 87.62 Test procedure (propulsion... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Test procedure (propulsion...

  14. A Turbo-Brayton Cryocooler for Aircraft Superconducting Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hybrid turboelectric aircraft with gas turbines driving electric generators connected to electric propulsion motors have the potential to transform the aircraft...

  15. Marshall Space Flight Center and the Reactor-in-Flight Stage: A Look Back at Using Nuclear Propulsion to Power Space Vehicles in the 1960's

    Science.gov (United States)

    Wright, Mike

    2003-01-01

    This paper examines the Marshall Space Flight Center s role in the Reactor-In-Flight (RIlT) project that NASA was involved with in the early 1960 s. The paper outlines the project s relation to the joint NASA-Atomic Energy Commission nuclear initiative known as Project Rover. It describes the justification for the RIFT project, its scope, and the difficulties that were encountered during the project. It also provides as assessment of NASA s overall capabilities related to nuclear propulsion in the early 1960 s.

  16. Nuclear propulsion technology advanced fuels technology

    Science.gov (United States)

    Stark, Walter A., Jr.

    1993-01-01

    Viewgraphs on advanced fuels technology are presented. Topics covered include: nuclear thermal propulsion reactor and fuel requirements; propulsion efficiency and temperature; uranium fuel compounds; melting point experiments; fabrication techniques; and sintered microspheres.

  17. Nuclear-electric propulsion - Manned Mars propulsion options

    Science.gov (United States)

    Palaszewski, Bryan; Brophy, John; King, David

    1989-01-01

    Nuclear-electric propulsion can significantly reduce the launch mass for manned Mars missions. By using high-specific-impulse (lsp) electric propulsion systems with advanced nuclear reactors, the total mass-to-orbit for a series of manned Mars flight is reduced. Propulsion technologies required for the manned Mars mission are described. Multi-megawatt Ion and Magneto-Plasma-Dynamic (MPD) propulsion thrusters, Power-Processing Units and nuclear power source are needed. Xenon (Xe)-Ion and MPD thruster performance are detailed. Mission analyses for several Mars mission options are addressed. Both MPD and Ion propulsion were investigated. A four-megawatt propulsion system power level was assumed. Mass comparisons for all-chemical oxygen/hydrogen propulsion missions and combined chemical and nuclear-electric propulsion Mars fleets are included. With fleets of small nuclear-electric vehicles, short trip times to Mars are also enabled.

  18. Key Technologies and Their Development in Nuclear Thermal Propulsion Reactors%核热推进反应堆关键技术及其发展

    Institute of Scientific and Technical Information of China (English)

    陈立新; 胡攀; 王立鹏; 江新标

    2014-01-01

    分析了核热推进NTP(nuclear thermal propulsion)反应堆关键技术及现状,介绍了核热推进反应堆技术在空间推进领域的应用,总结对比了美国、俄罗斯现有核热推进反应堆设计方案的主要参数和特性,并对未来航天器用核热推进反应堆的发展方向和应用前景进行了探讨。%In this paper , the key technologies and their development in nuclear thermal pro-pulsion( NTP) reactors are analyzed , and the application background of NTP reactors in space is also introduced . Meanw hile , the main parameters and characteristics of some N T P reactors designed in USA and Russia are compared . Finally , the development and application foreground of NTP reactors in the future are discussed .

  19. Conversion of hydrocarbon fuel in thermal protection reactors of hypersonic aircraft

    Science.gov (United States)

    Kuranov, A. L.; Mikhaylov, A. M.; Korabelnikov, A. V.

    2016-07-01

    Thermal protection of heat-stressed surfaces of a high-speed vehicle flying in dense layers of atmosphere is one of the topical issues. Not of a less importance is also the problem of hydrocarbon fuel combustion in a supersonic air flow. In the concept under development, it is supposed that in the most high-stressed parts of airframe and engine, catalytic thermochemical reactors will be installed, wherein highly endothermic processes of steam conversion of hydrocarbon fuel take place. Simultaneously with heat absorption, hydrogen generation will occur in the reactors. This paper presents the results of a study of conversion of hydrocarbon fuel in a slit reactor.

  20. Focused technology: Nuclear propulsion

    Science.gov (United States)

    Miller, Thomas J.

    1991-01-01

    The topics presented are covered in viewgraph form and include: nuclear thermal propulsion (NTP), which challenges (1) high temperature fuel and materials, (2) hot hydrogen environment, (3) test facilities, (4) safety, (5) environmental impact compliance, and (6) concept development, and nuclear electric propulsion (NEP), which challenges (1) long operational lifetime, (2) high temperature reactors, turbines, and radiators, (3) high fuel burn-up reactor fuels, and designs, (4) efficient, high temperature power conditioning, (5) high efficiency, and long life thrusters, (6) safety, (7) environmental impact compliance, and (8) concept development.

  1. Hybrid-Electric Aircraft TOGW Development Tool with Empirically-Based Airframe and Physics-Based Hybrid Propulsion System Component Analysis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hybrid-Electric distributed propulsion (HEDP) is becoming widely accepted and new tools will be required for future development. This Phase I SBIR proposal creates...

  2. Magnetic Flux Compression Reactor Concepts for Spacecraft Propulsion and Power (MSFC Center Director's Discretionary Fund; Project No. 99-24). Part 1

    Science.gov (United States)

    Litchford, R. J.; Robertson, G. A.; Hawk, C. W.; Turner, M. W.; Koelfgen, S.; Litchford, Ron J. (Technical Monitor)

    2001-01-01

    This technical publication (TP) examines performance and design issues associated with magnetic flux compression reactor concepts for nuclear/chemical pulse propulsion and power. Assuming that low-yield microfusion detonations or chemical detonations using high-energy density matter can eventually be realized in practice, various magnetic flux compression concepts are conceivable. In particular, reactors in which a magnetic field would be compressed between an expanding detonation-driven plasma cloud and a stationary structure formed from a high-temperature superconductor are envisioned. Primary interest is accomplishing two important functions: (1) Collimation and reflection of a hot diamagnetic plasma for direct thrust production, and (2) electric power generation for fusion standoff drivers and/or dense plasma formation. In this TP, performance potential is examined, major technical uncertainties related to this concept accessed, and a simple performance model for a radial-mode reactor developed. Flux trapping effectiveness is analyzed using a skin layer methodology, which accounts for magnetic diffusion losses into the plasma armature and the stationary stator. The results of laboratory-scale experiments on magnetic diffusion in bulk-processed type II superconductors are also presented.

  3. Assessment of the impact of neutronic/thermal-hydraulic coupling on the design and performance of nuclear reactors for space propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Aithal, S.M.; Aldemir, T.; Vafai, K. (Ohio State Univ., Columbus, OH (United States). Dept. of Mechanical Engineering)

    1994-04-01

    A series of studies has been performed to investigate the potential impact of the coupling between neutronics and thermal hydraulics on the design and performance assessment of solid core reactors for nuclear thermal space propulsion, using the particle bed reactor (PBR) concept as an example system. For a given temperature distribution in the reactor, the k[sub eff] and steady-state core power distribution are obtained from three-dimensional, continuous energy Monte Carlo simulations using the MCNP code. For a given core power distribution, determination of the temperature distribution in the core and hydrogen-filled annulus between the reflector and pressure vessel is based on a nonthermal equilibrium analysis. The results show that a realistic estimation of fuel, core size, and control requirements for PBRs using hydrogenous moderators, as well as optimization of the overall engine design, may require coupled neutronic/thermal-hydraulic studies. However, it may be possible to estimate the thermal safety margins and propellant exit temperatures based on power distributions obtained from neutronic calculations at room temperature. The results also show that, while variation of the hydrogen flow rate in the annulus has been proposed as a partial control mechanism for PBRs, such control mechanism may not be feasible for PBRs with high moderator-to-fuel ratios and hence soft core neutron spectra.

  4. 76 FR 78096 - U.S. Advanced Boiling Water Reactor Aircraft Impact Design Certification Amendment

    Science.gov (United States)

    2011-12-16

    ...) inside the reactor building, and (3) well away from the power block. Locations inside the primary..., 2009 (74 FR 62829). On June 12, 2009 (74 FR 28112), the NRC amended its regulations to require.... Rather, the AIA rule's goal is to enhance the facility's inherent robustness at the design stage. The...

  5. Solar Thermal Propulsion Test

    Science.gov (United States)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. This image, taken during the test, depicts the light being concentrated into the focal point inside the vacuum chamber. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  6. Space fusion energy conversion using a field reversed configuration reactor: A new technical approach for space propulsion and power

    Science.gov (United States)

    Schulze, Norman R.; Miley, George H.; Santarius, John F.

    1991-01-01

    The fusion energy conversion design approach, the Field Reversed Configuration (FRC) - when burning deuterium and helium-3, offers a new method and concept for space transportation with high energy demanding programs, like the Manned Mars Mission and planetary science outpost missions require. FRC's will increase safety, reduce costs, and enable new missions by providing a high specific power propulsion system from a high performance fusion engine system that can be optimally designed. By using spacecraft powered by FRC's the space program can fulfill High Energy Space Missions (HESM) in a manner not otherwise possible. FRC's can potentially enable the attainment of high payload mass fractions while doing so within shorter flight times.

  7. A new marine propulsion system

    Institute of Scientific and Technical Information of China (English)

    HAN Wei-shi; LIU Tao

    2003-01-01

    A new marine propulsion system is proposed . A small liquid sodium cooled reactor acts as prime mover; alkali-metal thermal-to-electric conversion (AMTEC) cells are employed to convert the heat energy to electricity; superconducting magneto-hydrodynamic thruster combined with spray-water thruster works as propulsion. The configuration and characteristics of this system are described. Such a nuclear-powered propulsion system is not only free of noise, but also has high reliability and efficiency. It would be a preferable propulsion system for ships in the future.

  8. A Computational Fluid Dynamic and Heat Transfer Model for Gaseous Core and Gas Cooled Space Power and Propulsion Reactors

    Science.gov (United States)

    Anghaie, S.; Chen, G.

    1996-01-01

    A computational model based on the axisymmetric, thin-layer Navier-Stokes equations is developed to predict the convective, radiation and conductive heat transfer in high temperature space nuclear reactors. An implicit-explicit, finite volume, MacCormack method in conjunction with the Gauss-Seidel line iteration procedure is utilized to solve the thermal and fluid governing equations. Simulation of coolant and propellant flows in these reactors involves the subsonic and supersonic flows of hydrogen, helium and uranium tetrafluoride under variable boundary conditions. An enthalpy-rebalancing scheme is developed and implemented to enhance and accelerate the rate of convergence when a wall heat flux boundary condition is used. The model also incorporated the Baldwin and Lomax two-layer algebraic turbulence scheme for the calculation of the turbulent kinetic energy and eddy diffusivity of energy. The Rosseland diffusion approximation is used to simulate the radiative energy transfer in the optically thick environment of gas core reactors. The computational model is benchmarked with experimental data on flow separation angle and drag force acting on a suspended sphere in a cylindrical tube. The heat transfer is validated by comparing the computed results with the standard heat transfer correlations predictions. The model is used to simulate flow and heat transfer under a variety of design conditions. The effect of internal heat generation on the heat transfer in the gas core reactors is examined for a variety of power densities, 100 W/cc, 500 W/cc and 1000 W/cc. The maximum temperature, corresponding with the heat generation rates, are 2150 K, 2750 K and 3550 K, respectively. This analysis shows that the maximum temperature is strongly dependent on the value of heat generation rate. It also indicates that a heat generation rate higher than 1000 W/cc is necessary to maintain the gas temperature at about 3500 K, which is typical design temperature required to achieve high

  9. Enabling Electric Propulsion for Flight

    Science.gov (United States)

    Ginn, Starr Renee

    2015-01-01

    Team Seedling project AFRC and LaRC 31ft distributed electric propulsion wing on truck bed up 75 miles per hour for coefficient of lift validation. Convergent Aeronautic Solutions project, sub-project Convergent Electric Propulsion Technologies AFRC, LaRC and GRC, re-winging a 4 passenger Tecnam aircraft with a 31ft distributed electric propulsion wing. Advanced Air Transport Technologies (Fixed Wing), Hybrid Electric Research Theme, developing a series hybrid ironbird and flight sim to study integration and performance challenges in preparation for a 1-2 MW flight project.

  10. In service feedback from on-board nuclear reactors; Retour d`experience des chaufferies nucleaires de propulsion navale

    Energy Technology Data Exchange (ETDEWEB)

    Gall, P. [CEA, 75 - Paris (France)

    1995-03-01

    Feedback from operation experience is part of the safety policy about on-board nuclear reactors that belong to the French Navy. It is based on the collection and analysis of every event likely to concern nuclear safety, and relies on an organization made up of all the involved actors, and on specific implements too. (author). 1 fig.

  11. Anaerobic degradation of aircraft deicing fluid (ADF) in upflow anaerobic sludge blanket (UASB) reactors and the fate of ADF additives

    Science.gov (United States)

    Pham, Thi Tham

    2002-11-01

    A central composite design was employed to methodically investigate anaerobic treatment of aircraft deicing fluid (ADF) in bench-scale Upflow Anaerobic Sludge Blanket (UASB) reactors. A total of 23 runs at 17 different operating conditions were conducted in continuous mode. The development of four empirical models describing process responses (i.e., chemical oxygen demand (COD) removal efficiency, biomass specific acetoclastic activity, methane production rate, and methane production potential) as functions of ADF concentration, hydraulic retention time (HRT), and biomass concentration is presented. Model verification indicated that predicted responses (COD removal efficiencies, biomass specific acetoclastic activity, and methane production rates and potential) were in good agreement with experimental results. Biomass specific acetoclastic activity was improved by almost two-fold during ADF treatment in UASB reactors. For the design window, COD removal efficiencies were higher than 90%. Predicted methane production potentials were close to theoretical values, and methane production rates increased as the organic loading rate (OLR) was increased. ADF toxicity effects were evident for 1.6% ADF at medium specific organic loadings (SOLR above 0.5 g COD/g VSS/d). In contrast, good reactor stability and excellent removal efficiencies were achieved at 1.2% ADF for reactor loadings approaching that of highly loaded systems (0.73 g COD/g VSS/d). Acclimation to ADF resulted in an initial reduction in the biomass settling velocity. The fate of ADF additives was also investigated. There was minimal sorption of benzotriazole (BT), 5-methyl-1 H-benzotriazole (MeBT), and 5,6-dimethyl-1 H-benzotriazole (DiMeBT) to anaerobic granules. A higher sorption capacity was measured for NP. Active transport may be one of the mechanisms for NP sorption. Ethylene glycol degradation experiments indicated that BT, MeBT, DiMeBT, and the nonionic surfactant Tergitol NP-4 had no significant

  12. The SMPR for the naval propulsion; Les RPMP pour la propulsion navale

    Energy Technology Data Exchange (ETDEWEB)

    Gauducheau, B. [Technicatome, Centre d' Etudes Nucleaires de Saclay, 91 - Gif sur Yvette (France)

    2002-07-01

    The first controlled application of the fissile energy was the american nuclear reactor for the ship propulsion. Since the sixties, the France begun researches to secure the independence of its nuclear propulsion program. The historical aspects, the french program management and the perspectives of the ship nuclear propulsion, are discussed in this paper. (A.L.B.)

  13. VTOL to Transonic Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The cyclogyro, an aircraft propulsion concept with the potential for VTOL to the lower bounds of transonic flight, is conceptually simple but structurally and...

  14. Alloy design for aircraft engines

    Science.gov (United States)

    Pollock, Tresa M.

    2016-08-01

    Metallic materials are fundamental to advanced aircraft engines. While perceived as mature, emerging computational, experimental and processing innovations are expanding the scope for discovery and implementation of new metallic materials for future generations of advanced propulsion systems.

  15. Rarefaction wave gun propulsion

    Science.gov (United States)

    Kathe, Eric Lee

    A new species of gun propulsion that dramatically reduces recoil momentum imparted to the gun is presented. First conceived by the author on 18 March 1999, the propulsion concept is explained, a methodology for the design of a reasonable apparatus for experimental validation using NATO standard 35mm TP anti-aircraft ammunition is developed, and the experimental results are presented. The firing results are juxtaposed by a simple interior ballistic model to place the experimental findings into a context within which they may better be understood. Rarefaction wave gun (RAVEN) propulsion is an original contribution to the field of armament engineering. No precedent is known, and no experimental results of such a gun have been published until now. Recoil reduction in excess of 50% was experimentally achieved without measured loss in projectile velocity. RAVEN achieves recoil reduction by means of a delayed venting of the breech of the gun chamber that directs the high enthalpy propellant gases through an expansion nozzle to generate forward thrust that abates the rearward momentum applied to the gun prior to venting. The novel feature of RAVEN, relative to prior recoilless rifles, is that sufficiently delayed venting results in a rarefaction wave that follows the projectile though the bore without catching it. Thus, the projectile exits the muzzle without any compromise to its propulsion performance relative to guns that maintain a sealed chamber.

  16. MSFC Nuclear Propulsion Materials Development

    Science.gov (United States)

    Rogers, J. R.; Cook, B.

    2004-01-01

    Nuclear propulsion systems for spacecraft applications present numerous technical challenges for propulsion systems. They have been the focus of a recent NRA. Challenges inclue: a nuclear reactor subsystem to produce thermal energy; a power conversion subsystem to convert the thermal energy into electrical energy; a propulsion subsystem that utilizes Hall effect thrusters; thruster technologies and high temperature materials to support subsystems. The MSFC Electrostatic Levitation (ESL) Facility provides an ideal platform for the study of high temperature and reactive materials. An overview of the facility and its capabilities will be presented.

  17. A Turbo-Brayton Cryocooler for Aircraft Superconducting Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hybrid turbo-electric aircraft with gas turbines driving electric generators connected to electric propulsion motors have the potential to transform the aircraft...

  18. Space Nuclear Thermal Propulsion (SNTP) tests

    Science.gov (United States)

    Allen, George C.

    1993-01-01

    Viewgraphs on the space nuclear thermal propulsion (SNTP) program are presented. The objective of the research is to develop advanced nuclear thermal propulsion (NTP) technology based on the particle bed reactor concept. A strong philosophical commitment exists in the industry/national laboratory team to emphasize testing in development activities. Nuclear testing currently underway to support development of SNTP technology is addressed.

  19. Focused technology: Nuclear propulsion

    Science.gov (United States)

    Miller, Thomas J.

    1993-01-01

    Five viewgraphs are presented that outline the objectives and elements of the Nuclear Propulsion Program, mission considerations, propulsion technologies, and the logic flow path for nuclear propulsion development.

  20. Numerical Propulsion System Simulation

    Science.gov (United States)

    Naiman, Cynthia

    2006-01-01

    The NASA Glenn Research Center, in partnership with the aerospace industry, other government agencies, and academia, is leading the effort to develop an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). NPSS is a framework for performing analysis of complex systems. The initial development of NPSS focused on the analysis and design of airbreathing aircraft engines, but the resulting NPSS framework may be applied to any system, for example: aerospace, rockets, hypersonics, power and propulsion, fuel cells, ground based power, and even human system modeling. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the NASA Aeronautics Research Mission Directorate Fundamental Aeronautics Program and the Advanced Virtual Engine Test Cell (AVETeC). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes capabilities to facilitate collaborative engineering. The NPSS will provide improved tools to develop custom components and to use capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities extend NPSS from a zero-dimensional simulation tool to a multi-fidelity, multidiscipline system-level simulation tool for the full development life cycle.

  1. Solar Thermal Propulsion Test Facility

    Science.gov (United States)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph shows a fully assembled solar thermal engine placed inside the vacuum chamber at the test facility prior to testing. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move theNation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  2. Hybrid-Electric and Distributed Propulsion Technologies for Large Commercial Transports: A NASA Perspective

    Science.gov (United States)

    Madavan, Nateri K.; Del Rosario, Ruben; Jankovsky, Amy L.

    2015-01-01

    Develop and demonstrate technologies that will revolutionize commercial transport aircraft propulsion and accelerate development of all-electric aircraft architectures. Enable radically different propulsion systems that can meet national environmental and fuel burn reduction goals for subsonic commercial aircraft. Focus on future large regional jets and single-aisle twin (Boeing 737- class) aircraft for greatest impact on fuel burn, noise and emissions. Research horizon is long-term but with periodic spinoff of technologies for introduction in aircraft with more- and all-electric architectures. Research aligned with new NASA Aeronautics strategic R&T thrusts in areas of transition to low-carbon propulsion and ultra-efficient commercial transports.

  3. The NASA Aircraft Energy Efficiency program

    Science.gov (United States)

    Klineberg, J. M.

    1979-01-01

    A review is provided of the goals, objectives, and recent progress in each of six aircraft energy efficiency programs aimed at improved propulsive, aerodynamic and structural efficiency for future transport aircraft. Attention is given to engine component improvement, an energy efficient turbofan engine, advanced turboprops, revolutionary gains in aerodynamic efficiency for aircraft of the late 1990s, laminar flow control, and composite primary aircraft structures.

  4. Magnesium Diboride Superconducting Stator Coils for Electric Propulsion Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Many are pursuing the development of electric propulsion systems for large aircraft due to the potential of being cleaner, quieter, lighter, and more versatile than...

  5. Thermal Management System for Superconducting Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft powered by hydrogen power plants or gas turbines driving electric generators connected to distributed electric motors for propulsion have the potential to...

  6. Improvements in Aircraft Gas Turbine Engines for the 90s

    Directory of Open Access Journals (Sweden)

    Arun Prasad

    1993-10-01

    Full Text Available The gas turbine propulsion system has been playing the most significant role in the evolution and development of present-day aircraft, and has become the limiting technology for developing most new aircraft. However, the jet engine still remains the preferred propulsion choice. Aircraft gas turbines in one form or the other, viz. turbojet, turbofan, turboprop or turboshaft, have been used in commercial passenger aircraft, high performance military aircraft and in rotary wing aircraft (helicopters. The emphasis in engine development programmes world over seems to be in reducing fuel consumption, increasing thrust and in reducing weight.

  7. Impact of dynamic loads on propulsion integration

    Science.gov (United States)

    Seiner, J. M.

    1994-01-01

    Aircraft dynamic loads produced by engine exhaust plumes are examined for a class of military fighter and bomber configurations in model and full scale. The configurations examined are associated with the USAF F-15 and B-1B aircraft, and the US F-18 HARV and ASTOVL programs. The experience gained as a result of these studies is used to formulate a level of understanding concerning this phenomena that could be useful at the preliminary stage of propulsion/airframe design.

  8. Solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  9. A Future with Hybrid Electric Propulsion Systems: A NASA Perspective

    Science.gov (United States)

    DelRosario, Ruben

    2014-01-01

    The presentation highlights a NASA perspective on Hybrid Electric Propulsion Systems for aeronautical applications. Discussed are results from NASA Advance Concepts Study for Aircraft Entering service in 2030 and beyond and the potential use of hybrid electric propulsion systems as a potential solution to the requirements for energy efficiency and environmental compatibility. Current progress and notional potential NASA research plans are presented.

  10. Propulsion materials

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Edward J. [U.S. Dept. of Energy, Washington, D.C. (United States); Sullivan, Rogelio A. [U.S. Dept. of Energy, Washington, D.C. (United States); Gibbs, Jerry L. [U.S. Dept. of Energy, Washington, D.C. (United States)

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  11. Analysis of UAS hybrid propulsion systems

    Science.gov (United States)

    Rupe, Ryan M.

    Hybrid propulsion technology has been growing over last several years. With the steadily increasing cost of fuel and demand for unmanned aircraft systems to meet an ever expanding variety of responsibilities, research must be conducted into the development of alternative propulsion systems to reduce operating costs and optimize for strategic missions. One of the primary roles of unmanned aircraft systems is to provide aerial surveillance without detection. While electric propulsion systems provide a great option for lower acoustic signatures due to the lack of combustion and exhaust noise, they typically have low flight endurance due to battery limitations. Gas burning propulsion systems are ideal for long range/endurance missions due to the high energy density of hydrocarbon fuel, but can be much easier to detect. Research is conducted into the feasibility of gas/electric hybrid propulsion systems and the tradeoffs involved for reconnaissance mission scenarios. An analysis program is developed to optimize each component of the system and examine their effects on the overall performance of the aircraft. Each subsystem is parameterized and simulated within the program and tradeoffs between payload weight, range, and endurance are tested and evaluated to fulfill mission requirements.

  12. Electric vehicle propulsion alternatives

    Science.gov (United States)

    Secunde, R. R.; Schuh, R. M.; Beach, R. F.

    1983-01-01

    Propulsion technology development for electric vehicles is summarized. Analytical studies, technology evaluation, and the development of technology for motors, controllers, transmissions, and complete propulsion systems are included.

  13. Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter

    2010-01-01

    Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.

  14. Nonlinear analysis of commercial aircraft impact on a reactor building—Comparison between integral and decoupled crash simulation

    International Nuclear Information System (INIS)

    Since 9/11, the crash of a commercial aeroplane on the reactor building of a nuclear power plant is a realistic design scenario. Before that the structural behaviour under a crash of a military plane was investigated by a procedure using load-time functions (Riera, 1968). Thereby, the computation of the load-time-function was based on a conceptional model considering the main stiffness parts and masses by discrete elements. With respect to the homogeneous structural set-up of a military plane, the application of this model and the derived load-time-function applied as lumped load case seems very feasible. Contrary thereto the structural set-up of a commercial aeroplane, with e.g. the high mass concentration of the turbine or the high stiffness of the wing box compared to other parts, is different. This can be counteracted by using a more detailed finite element (FE) model for the computation of the load-time-function and by dividing the load case for the reactor building in different main load zones. Although this represents a more detailed investigation, the procedure of using a load-time-function still has the disadvantage to separate the real scenario into two steps. Thereby, the direct interaction between the structure and the aeroplane including all softening effects due to material respectively structural compliances is neglected. This leads to the general conclusion that by applying load-time-functions the results are conservative compared to the real behaviour. Due to the increased capabilities of numerical software solutions it is also possible nowadays to carry out integral crash simulations, combining all effects within one simulation. Compared to the procedure of using load-time-functions, the numerical complexity and therefore the amount of work for this integral method are increased. Within this paper both procedures (load-time function by detailed FE-model and the integral method) are exemplarily compared to each other by a crash analysis of an

  15. Nonlinear analysis of commercial aircraft impact on a reactor building—Comparison between integral and decoupled crash simulation

    Energy Technology Data Exchange (ETDEWEB)

    Siefert, A., E-mail: siefert@woelfel.de; Henkel, F.O.

    2014-04-01

    Since 9/11, the crash of a commercial aeroplane on the reactor building of a nuclear power plant is a realistic design scenario. Before that the structural behaviour under a crash of a military plane was investigated by a procedure using load-time functions (Riera, 1968). Thereby, the computation of the load-time-function was based on a conceptional model considering the main stiffness parts and masses by discrete elements. With respect to the homogeneous structural set-up of a military plane, the application of this model and the derived load-time-function applied as lumped load case seems very feasible. Contrary thereto the structural set-up of a commercial aeroplane, with e.g. the high mass concentration of the turbine or the high stiffness of the wing box compared to other parts, is different. This can be counteracted by using a more detailed finite element (FE) model for the computation of the load-time-function and by dividing the load case for the reactor building in different main load zones. Although this represents a more detailed investigation, the procedure of using a load-time-function still has the disadvantage to separate the real scenario into two steps. Thereby, the direct interaction between the structure and the aeroplane including all softening effects due to material respectively structural compliances is neglected. This leads to the general conclusion that by applying load-time-functions the results are conservative compared to the real behaviour. Due to the increased capabilities of numerical software solutions it is also possible nowadays to carry out integral crash simulations, combining all effects within one simulation. Compared to the procedure of using load-time-functions, the numerical complexity and therefore the amount of work for this integral method are increased. Within this paper both procedures (load-time function by detailed FE-model and the integral method) are exemplarily compared to each other by a crash analysis of an

  16. 14 CFR 21.24 - Issuance of type certificate: primary category aircraft.

    Science.gov (United States)

    2010-01-01

    ... aircraft's type design or supplemental type design. (c) For aircraft manufactured outside of the United... requirements; the applicant has conducted appropriate flight, structural, propulsion, and systems tests...; the type design complies with the airworthiness standards and noise requirements established for...

  17. Solar Thermal Propulsion Test Facility at MSFC

    Science.gov (United States)

    1999-01-01

    This photograph shows an overall view of the Solar Thermal Propulsion Test Facility at the Marshall Space Flight Center (MSFC). The 20-by 24-ft heliostat mirror, shown at the left, has dual-axis control that keeps a reflection of the sunlight on an 18-ft diameter concentrator mirror (right). The concentrator mirror then focuses the sunlight to a 4-in focal point inside the vacuum chamber, shown at the front of concentrator mirror. Researchers at MSFC have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than chemical a combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propell nt. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  18. Chemistry and propulsion; Chimie et propulsions

    Energy Technology Data Exchange (ETDEWEB)

    Potier, P. [Maison de la Chimie, 75 - Paris (France); Davenas, A. [societe Nationale des Poudres et des Explosifs - SNPE (France); Berman, M. [Air Force Office of Scientific Research, Arlington, VA (United States)] [and others

    2002-07-01

    During the colloquium on chemistry and propulsion, held in march 2002, ten papers have been presented. The proceedings are brought in this document: ramjet, scram-jet and Pulse Detonation Engine; researches and applications on energetic materials and propulsion; advances in poly-nitrogen chemistry; evolution of space propulsion; environmental and technological stakes of aeronautic propulsion; ramjet engines and pulse detonation engines, automobiles thermal engines for 2015, high temperature fuel cells for the propulsion domain, the hydrogen and the fuel cells in the future transports. (A.L.B.)

  19. Simplest AB-Thermonuclear Space Propulsion and Electric Generator

    CERN Document Server

    Bolonkin, A

    2007-01-01

    The author applies, develops and researches mini-sized Micro- AB Thermonuclear Reactors for space propulsion and space power systems. These small engines directly convert the high speed charged particles produced in the thermonuclear reactor into vehicle thrust or vehicle electricity with maximum efficiency. The simplest AB-thermonuclear propulsion offered allows spaceships to reach speeds of 20,000 50,000 km/s (1/6 of light speed) for fuel ratio 0.1 and produces a huge amount of useful electric energy. Offered propulsion system permits flight to any planet of our Solar system in short time and to the nearest non-Sun stars by E-being or intellectual robots during a single human life period. Key words: AB-propulsion, thermonuclear propulsion, space propulsion, thermonuclear power system.

  20. Nuclear propulsion in the United States.

    Science.gov (United States)

    Gabriel, D. S.

    1972-01-01

    The achievements of the Nuclear Propulsion Program over the past 15 years are reviewed. It is shown that the effort in basic and applied research and technological development resulted in a state of technology of nuclear rocket engines based on solid core reactors, which is suitable for the development of a space propulsion system. Current efforts aimed at achieving specific impulses on the order of 975 sec (3400 K) are noted. The characteristics of SNRE (Small Nuclear Rocket Engine), the ALPHA, BETA, and GAMMA engines are discussed. Attention is given to the design and principles of operation of the Rotating Fluidized Dust Bed Reactor.

  1. Performance of advanced high-temperature fuels for nuclear propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Stark, W.A.; Butt, D.P.; Storms, E.K.; Wallace, T.C. [Los Alamos National Lab., NM (United States)

    1994-12-31

    Nuclear propulsion using hydrogen has been demonstrated to operate at nearly twice the performance level of today`s chemical rockets. However, higher temperatures lead to a variety of degradations that compromise safety and longevity. Foremost among these is the melting of the propulsion reactor fuel. The melting behaviour of the U-Zr-C and U-Nb-C systems have been evaluated.

  2. NASA Fixed Wing Project Propulsion Research and Technology Development Activities to Reduce Thrust Specific Energy Consumption

    Science.gov (United States)

    Hathaway, Michael D.; DelRasario, Ruben; Madavan, Nateri K.

    2013-01-01

    This paper presents an overview of the propulsion research and technology portfolio of NASA Fundamental Aeronautics Program Fixed Wing Project. The research is aimed at significantly reducing the thrust specific fuel/energy consumption of notional advanced fixed wing aircraft (by 60 % relative to a baseline Boeing 737-800 aircraft with CFM56-7B engines) in the 2030-2035 time frame. The research investments described herein are aimed at improving propulsive efficiency through higher bypass ratio fans, improving thermal efficiency through compact high overall pressure ratio gas generators, and exploring the potential benefits of boundary layer ingestion propulsion and hybrid gas-electric propulsion concepts.

  3. Hybrid rocket propulsion

    Science.gov (United States)

    Holzman, Allen L.

    1993-01-01

    Topics addressed are: (1) comparison of the theoretical impulses; (2) comparison of the density-specific impulses; (3) general propulsion system features comparison; (4) hybrid systems, booster applications; and (5) hybrid systems, upper stage propulsion applications.

  4. STOVL propulsion system volume dynamics approximations

    Science.gov (United States)

    Drummond, Colin K.

    1989-01-01

    Two approaches to modeling turbofan engine component volume dynamics are explored and compared with a view toward application to real-time simulation of short take-off vertical landing (STOVL) aircraft propulsion systems. The first (and most popular) approach considers only heat and mass balances; the second approach includes a momentum balance and substitutes the heat equation with a complete energy balance. Results for a practical test case are presented and discussed.

  5. Hydrogen aircraft technology

    Science.gov (United States)

    Brewer, G. D.

    1991-01-01

    A comprehensive evaluation is conducted of the technology development status, economics, commercial feasibility, and infrastructural requirements of LH2-fueled aircraft, with additional consideration of hydrogen production, liquefaction, and cryostorage methods. Attention is given to the effects of LH2 fuel cryotank accommodation on the configurations of prospective commercial transports and military airlifters, SSTs, and HSTs, as well as to the use of the plentiful heatsink capacity of LH2 for innovative propulsion cycles' performance maximization. State-of-the-art materials and structural design principles for integral cryotank implementation are noted, as are airport requirements and safety and environmental considerations.

  6. Additively Manufactured Propulsion System

    OpenAIRE

    Dushku, Matthew; Mueller, Paul

    2012-01-01

    New high-performance, carbon-fiber reinforced polymer material allows additive manufacturing to produce pressure vessels capable of high pressures (thousands of pounds per square inch). This advancement in turn allows integral hybrid propulsion which is revolutionary for both CubeSats and additively-manufactured spacecraft. Hybrid propulsion offers simplicity as compared to bipropellant liquid propulsion, significantly better safety compared to solid or monopropellant hydrazine propulsion, an...

  7. Vehicle Integrated Propulsion Research for the Study of Health Management Capabilities

    Science.gov (United States)

    Lekki, John D.; Simon, Donald L.; Hunter, Gary W.; Woike, Mary; Tokars, Roger P.

    2012-01-01

    Presentation on vehicle integrated propulsion research results and planning. This research emphasizes the testing of advanced health management sensors and diagnostics in an aircraft engine that is operated through multiple baseline and fault conditions.

  8. Conceptual design of high speed supersonic aircraft: A brief review on SR-71 (Blackbird) aircraft

    Science.gov (United States)

    Xue, Hui; Khawaja, H.; Moatamedi, M.

    2014-12-01

    The paper presents the conceptual design of high-speed supersonic aircraft. The study focuses on SR-71 (Blackbird) aircraft. The input to the conceptual design is a mission profile. Mission profile is a flight profile of the aircraft defined by the customer. This paper gives the SR-71 aircraft mission profile specified by US air force. Mission profile helps in defining the attributes the aircraft such as wing profile, vertical tail configuration, propulsion system, etc. Wing profile and vertical tail configurations have direct impact on lift, drag, stability, performance and maneuverability of the aircraft. A propulsion system directly influences the performance of the aircraft. By combining the wing profile and the propulsion system, two important parameters, known as wing loading and thrust to weight ratio can be calculated. In this work, conceptual design procedure given by D. P. Raymer (AIAA Educational Series) is applied to calculate wing loading and thrust to weight ratio. The calculated values are compared against the actual values of the SR-71 aircraft. Results indicates that the values are in agreement with the trend of developments in aviation.

  9. Rocket propulsion elements

    CERN Document Server

    Sutton, George P

    2011-01-01

    The definitive text on rocket propulsion-now revised to reflect advancements in the field For sixty years, Sutton's Rocket Propulsion Elements has been regarded as the single most authoritative sourcebook on rocket propulsion technology. As with the previous edition, coauthored with Oscar Biblarz, the Eighth Edition of Rocket Propulsion Elements offers a thorough introduction to basic principles of rocket propulsion for guided missiles, space flight, or satellite flight. It describes the physical mechanisms and designs for various types of rockets' and provides an unders

  10. Aircraft noise prediction

    Science.gov (United States)

    Filippone, Antonio

    2014-07-01

    This contribution addresses the state-of-the-art in the field of aircraft noise prediction, simulation and minimisation. The point of view taken in this context is that of comprehensive models that couple the various aircraft systems with the acoustic sources, the propagation and the flight trajectories. After an exhaustive review of the present predictive technologies in the relevant fields (airframe, propulsion, propagation, aircraft operations, trajectory optimisation), the paper addresses items for further research and development. Examples are shown for several airplanes, including the Airbus A319-100 (CFM engines), the Bombardier Dash8-Q400 (PW150 engines, Dowty R408 propellers) and the Boeing B737-800 (CFM engines). Predictions are done with the flight mechanics code FLIGHT. The transfer function between flight mechanics and the noise prediction is discussed in some details, along with the numerical procedures for validation and verification. Some code-to-code comparisons are shown. It is contended that the field of aircraft noise prediction has not yet reached a sufficient level of maturity. In particular, some parametric effects cannot be investigated, issues of accuracy are not currently addressed, and validation standards are still lacking.

  11. Nuclear Propulsion and Power Non-Nuclear Test Facility (NP2NTF): Preliminary Analysis and Feasibility Assessment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear reactors, which power nuclear propulsion and power systems, and the nuclear radiation and residual radioactivity associated with these systems, impose...

  12. Challenges of aircraft design integration

    OpenAIRE

    Kafyeke, F.; Abdo, M.; Pepin, F; Piperni, P.; Laurendeau, E.

    2007-01-01

    The design of a modern airplane brings together many disciplines: structures, aerodynamics, controls, systems, propulsion with complex interdependencies and many variables. Recent aircraft programs, such as Bombardier's Continental Jet program use participants located around the world and selected for their cost, quality and delivery capability. These participants share the risk on the program and must therefore be fully implicated in the design. A big challenge is to provide information on c...

  13. Radioisotope electric propulsion (REP): A near-term approach to nuclear propulsion

    Science.gov (United States)

    Schmidt, George R.; Manzella, David H.; Kamhawi, Hani; Kremic, Tibor; Oleson, Steven R.; Dankanich, John W.; Dudzinski, Leonard A.

    2010-02-01

    Studies over the last decade have shown radioisotope-based nuclear electric propulsion to be enhancing and, in some cases, enabling for many potential robotic science missions. Also known as radioisotope electric propulsion (REP), the technology offers the performance advantages of traditional reactor-powered electric propulsion (i.e., high specific impulse propulsion at large distances from the Sun), but with much smaller, affordable spacecraft. Future use of REP requires development of radioisotope power sources with system specific powers well above that of current systems. The US Department of Energy and NASA have developed an advanced Stirling radioisotope generator (ASRG) engineering unit, which was subjected to rigorous flight qualification-level tests in 2008, and began extended lifetime testing later that year. This advancement, along with recent work on small ion thrusters and life extension technology for Hall thrusters, could enable missions using REP sometime during the next decade.

  14. Radioisotope Electric Propulsion (REP): A Near-Term Approach to Nuclear Propulsion

    Science.gov (United States)

    Schmidt, George R.; Manzella, David H.; Kamhawi, Hani; Kremic, Tibor; Oleson, Steven R.; Dankanich, John W.; Dudzinski, Leonard A.

    2009-01-01

    Studies over the last decade have shown radioisotope-based nuclear electric propulsion to be enhancing and, in some cases, enabling for many potential robotic science missions. Also known as radioisotope electric propulsion (REP), the technology offers the performance advantages of traditional reactor-powered electric propulsion (i.e., high specific impulse propulsion at large distances from the Sun), but with much smaller, affordable spacecraft. Future use of REP requires development of radioisotope power sources with system specific powers well above that of current systems. The US Department of Energy and NASA have developed an advanced Stirling radioisotope generator (ASRG) engineering unit, which was subjected to rigorous flight qualification-level tests in 2008, and began extended lifetime testing later that year. This advancement, along with recent work on small ion thrusters and life extension technology for Hall thrusters, could enable missions using REP sometime during the next decade.

  15. A Risk Management Architecture for Emergency Integrated Aircraft Control

    Science.gov (United States)

    McGlynn, Gregory E.; Litt, Jonathan S.; Lemon, Kimberly A.; Csank, Jeffrey T.

    2011-01-01

    Enhanced engine operation--operation that is beyond normal limits--has the potential to improve the adaptability and safety of aircraft in emergency situations. Intelligent use of enhanced engine operation to improve the handling qualities of the aircraft requires sophisticated risk estimation techniques and a risk management system that spans the flight and propulsion controllers. In this paper, an architecture that weighs the risks of the emergency and of possible engine performance enhancements to reduce overall risk to the aircraft is described. Two examples of emergency situations are presented to demonstrate the interaction between the flight and propulsion controllers to facilitate the enhanced operation.

  16. Aircraft Energy Efficiency (ACEE) status report

    Science.gov (United States)

    Nored, D. L.; Dugan, J. F., Jr.; Saunders, N. T.; Ziemianski, J. A.

    1979-01-01

    Fuel efficiency in aeronautics, for fuel conservation in general as well as for its effect on commercial aircraft operating economics is considered. Projects of the Aircraft Energy Efficiency Program related to propulsion are emphasized. These include: (1) engine component improvement, directed at performance improvement and engine diagnostics for prolonged service life; (2) energy efficient engine, directed at proving the technology base for the next generation of turbofan engines; and (3) advanced turboprop, directed at advancing the technology of turboprop powered aircraft to a point suitable for commercial airline service. Progress in these technology areas is reported.

  17. Amphibious Aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — A brief self composed research article on Amphibious Aircrafts discussing their use, origin and modern day applications along with their advantages and...

  18. A piecewise linear state variable technique for real time propulsion system simulation

    Science.gov (United States)

    Mihaloew, J. R.; Roth, S. P.

    1982-01-01

    The emphasis on increased aircraft and propulsion control system integration and piloted simulation has created a need for higher fidelity real time dynamic propulsion models. A real time propulsion system modeling technique which satisfies this need and which provides the capabilities needed to evaluate propulsion system performance and aircraft system interaction on manned flight simulators was developed and demonstrated using flight simulator facilities at NASA Ames. A piecewise linear state variable technique is used. This technique provides the system accuracy, stability and transient response required for integrated aircraft and propulsion control system studies. The real time dynamic model includes the detail and flexibility required for the evaluation of critical control parameters and propulsion component limits over a limited flight envelope. The model contains approximately 7.0 K bytes of in-line computational code and 14.7 K of block data. It has an 8.9 ms cycle time on a Xerox Sigma 9 computer. A Pegasus-Harrier propulsion system was used as a baseline for developing the mathematical modeling and simulation technique. A hydromechanical and water injection control system was also simulated. The model was programmed for interfacing with a Harrier aircraft simulation at NASA Ames. Descriptions of the real time methodology and model capabilities are presented.

  19. Nuclear power propulsion system for spacecraft

    Science.gov (United States)

    Koroteev, A. S.; Oshev, Yu. A.; Popov, S. A.; Karevsky, A. V.; Solodukhin, A. Ye.; Zakharenkov, L. E.; Semenkin, A. V.

    2015-12-01

    The proposed designs of high-power space tugs that utilize solar or nuclear energy to power an electric jet engine are reviewed. The conceptual design of a nuclear power propulsion system (NPPS) is described; its structural diagram, gas circuit, and electric diagram are discussed. The NPPS incorporates a nuclear reactor, a thermal-to-electric energy conversion system, a system for the conversion and distribution of electric energy, and an electric propulsion system. Two criterion parameters were chosen in the considered NPPS design: the temperature of gaseous working medium at the nuclear reactor outlet and the rotor speed of turboalternators. The maintenance of these parameters at a given level guarantees that the needed electric voltage is generated and allows for power mode control. The processes of startup/shutdown and increasing/reducing the power, the principles of distribution of electric energy over loads, and the probable emergencies for the proposed NPPS design are discussed.

  20. Advanced nuclear propulsion concepts

    Energy Technology Data Exchange (ETDEWEB)

    Howe, S.D. [Los Alamos National Lab., NM (United States)

    1994-12-31

    A preliminary analysis has been carried out for two potential advanced nuclear propulsion systems: a contained pulsed nuclear propulsion engine and an antiproton initiated ICF system. The results of these studies indicate that both concepts have a high potential to help enable manned planetary exploration but require substantial development.

  1. Cold gas micro propulsion

    NARCIS (Netherlands)

    Louwerse, Marcus Cornelis

    2009-01-01

    This thesis describes the development of a micro propulsion system. The trend of miniaturization of satellites requires small sized propulsion systems. For particular missions it is important to maintain an accurate distance between multiple satellites. Satellites drift apart due to differences in m

  2. Efficiency of Fish Propulsion

    CERN Document Server

    Maertens, A P; Yue, D K P

    2014-01-01

    It is shown that the system efficiency of a self-propelled flexible body is ill-defined unless one considers the concept of quasi-propulsive efficiency, defined as the ratio of the power needed to tow a body in rigid-straight condition over the power it needs for self-propulsion, both measured for the same speed. Through examples we show that the quasi-propulsive efficiency is the only rational non-dimensional metric of the propulsive fitness of fish and fish-like mechanisms. Using two-dimensional viscous simulations and the concept of quasi-propulsive efficiency, we discuss the efficiency two-dimensional undulating foils. We show that low efficiencies, due to adverse body-propulsor hydrodynamic interactions, cannot be accounted for by the increase in friction drag.

  3. The Numerical Propulsion System Simulation: An Overview

    Science.gov (United States)

    Lytle, John K.

    2000-01-01

    Advances in computational technology and in physics-based modeling are making large-scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze major propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of designing systems, providing the designer with critical information about the components early in the design process. This paper describes the development of the numerical propulsion system simulation (NPSS), a modular and extensible framework for the integration of multicomponent and multidisciplinary analysis tools using geographically distributed resources such as computing platforms, data bases, and people. The analysis is currently focused on large-scale modeling of complete aircraft engines. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.

  4. Distributed Propulsion featuring Boundary Layer Ingestion Engines for the Blended Wing Body Subsonic Transport

    OpenAIRE

    Kok, H.J.M.; Voskuijl, M.; Van Tooren, M.J.L.

    2010-01-01

    The blended wing body aircraft is one of the promising contenders for the next generation large transport aircraft. This aircraft is particularly suitable for the use of boundary layer ingestion engines. Results published in literature suggest that it might be beneficial to have a large number of these engines (distributed propulsion). A conceptual design study is therefore performed to determine the potential benefits of boundary layer ingestion engines for a conventional number of engines i...

  5. Aircraft Noise

    Science.gov (United States)

    Michel, Ulf; Dobrzynski, Werner; Splettstoesser, Wolf; Delfs, Jan; Isermann, Ullrich; Obermeier, Frank

    Aircraft industry is exposed to increasing public pressure aiming at a continuing reduction of aircraft noise levels. This is necessary to both compensate for the detrimental effect on noise of the expected increase in air traffic and improve the quality of living in residential areas around airports.

  6. Aircraft Design

    Science.gov (United States)

    Bowers, Albion H. (Inventor); Uden, Edward (Inventor)

    2016-01-01

    The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.

  7. Nuclear propulsion system options for Mars missions

    Science.gov (United States)

    Emrich, William J., Jr.; Young, Archie C.

    1992-01-01

    This paper focuses on the use of a nuclear thermal rocket to accomplish a variety of space missions with emphasis on the manned Mars mission. The particle-bed-reactor type nuclear engine was chosen as the baseline engine because of its perceived versatility over other nuclear propulsion systems in conducting a wide variety of tasks. This study indicates that the particle-bed-reactor engine with its high engine thrust-to-weight ratio (about 20) and high specific impulse (about 950 to 1050 sec) offers distinct advantages over the larger and heavier NERVA-type nuclear engines.

  8. Liquid Metal Cooled Reactor for Space Power

    Science.gov (United States)

    Weitzberg, Abraham

    2003-01-01

    The conceptual design is for a liquid metal (LM) cooled nuclear reactor that would provide heat to a closed Brayton cycle (CBC) power conversion subsystem to provide electricity for electric propulsion thrusters and spacecraft power. The baseline power level is 100 kWe to the user. For long term power generation, UN pin fuel with Nb1Zr alloy cladding was selected. As part of the SP-100 Program this fuel demonstrated lifetime with greater than six atom percent burnup, at temperatures in the range of 1400-1500 K. The CBC subsystem was selected because of the performance and lifetime database from commercial and aircraft applications and from prior NASA and DOE space programs. The high efficiency of the CBC also allows the reactor to operate at relatively low power levels over its 15-year life, minimizing the long-term power density and temperature of the fuel. The scope of this paper is limited to only the nuclear components that provide heated helium-xenon gas to the CBC subsystem. The principal challenge for the LM reactor concept was to design the reactor core, shield and primary heat transport subsystems to meet mission requirements in a low mass configuration. The LM concept design approach was to assemble components from prior programs and, with minimum change, determine if the system met the objective of the study. All of the components are based on technologies having substantial data bases. Nuclear, thermalhydraulic, stress, and shielding analyses were performed using available computer codes. Neutronics issues included maintaining adequate operating and shutdown reactivities, even under accident conditions. Thermalhydraulic and stress analyses calculated fuel and material temperatures, coolant flows and temperatures, and thermal stresses in the fuel pins, components and structures. Using conservative design assumptions and practices, consistent with the detailed design work performed during the SP-100 Program, the mass of the reactor, shield, primary heat

  9. Optimization of the SHX Fusion Powered Transatmospheric Propulsion Concept

    Science.gov (United States)

    Adams, Robert B.; Landrum, D. Brian

    2001-01-01

    Existing propulsion technology has not achieved cost effective payload delivery rates to low earth orbit. A fusion based propulsion system, denoted as the Simultaneous Heating and eXpansion (SHX) engine, has been proposed in earlier papers. The SHX couples energy generated by a fusion reactor to the engine flowpath by use of coherent beam emitters. A quasi-one-dimensional flow model was used to quantify the effects of area expansion and energy input on propulsive efficiency for several beam models. Entropy calculations were included to evaluate the lost work in the system.

  10. Shielding Development for Nuclear Thermal Propulsion

    Science.gov (United States)

    Caffrey, Jarvis A.; Gomez, Carlos F.; Scharber, Luke L.

    2015-01-01

    Radiation shielding analysis and development for the Nuclear Cryogenic Propulsion Stage (NCPS) effort is currently in progress and preliminary results have enabled consideration for critical interfaces in the reactor and propulsion stage systems. Early analyses have highlighted a number of engineering constraints, challenges, and possible mitigating solutions. Performance constraints include permissible crew dose rates (shared with expected cosmic ray dose), radiation heating flux into cryogenic propellant, and material radiation damage in critical components. Design strategies in staging can serve to reduce radiation scatter and enhance the effectiveness of inherent shielding within the spacecraft while minimizing the required mass of shielding in the reactor system. Within the reactor system, shield design is further constrained by the need for active cooling with minimal radiation streaming through flow channels. Material selection and thermal design must maximize the reliability of the shield to survive the extreme environment through a long duration mission with multiple engine restarts. A discussion of these challenges and relevant design strategies are provided for the mitigation of radiation in nuclear thermal propulsion.

  11. The United States Naval Nuclear Propulsion Program - Over 151 Million Miles Safely Steamed on Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-03-01

    NNSA’s third mission pillar is supporting the U.S. Navy’s ability to protect and defend American interests across the globe. The Naval Reactors Program remains at the forefront of technological developments in naval nuclear propulsion and ensures a commanding edge in warfighting capabilities by advancing new technologies and improvements in naval reactor performance and reliability. In 2015, the Naval Nuclear Propulsion Program pioneered advances in nuclear reactor and warship design – such as increasing reactor lifetimes, improving submarine operational effectiveness, and reducing propulsion plant crewing. The Naval Reactors Program continued its record of operational excellence by providing the technical expertise required to resolve emergent issues in the Nation’s nuclear-powered fleet, enabling the Fleet to safely steam more than two million miles. Naval Reactors safely maintains, operates, and oversees the reactors on the Navy’s 82 nuclear-powered warships, constituting more than 45 percent of the Navy’s major combatants.

  12. Focal Point Inside the Vacuum Chamber for Solar Thermal Propulsion

    Science.gov (United States)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. The 20- by 24-ft heliostat mirror (not shown in this photograph) has dual-axis control that keeps a reflection of the sunlight on an 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. This photograph is a close-up view of a 4-in focal point inside the vacuum chamber at the MSFC Solar Thermal Propulsion Test facility. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  13. Fusion power for space propulsion.

    Science.gov (United States)

    Roth, R.; Rayle, W.; Reinmann, J.

    1972-01-01

    Principles of operation, interplanetary orbit-to-orbit mission capabilities, technical problems, and environmental safeguards are examined for thermonuclear fusion propulsion systems. Two systems examined include (1) a fusion-electric concept in which kinetic energy of charged particles from the plasma is converted into electric power (for accelerating the propellant in an electrostatic thrustor) by the van de Graaf generator principle and (2) the direct fusion rocket in which energetic plasma lost from the reactor has a suitable amount of added propellant to obtain the optimum exhaust velocity. The deuterium-tritium and the deuterium/helium-3 reactions are considered as suitable candidates, and attention is given to problems of cryogenic refrigeration systems, magnet shielding, and high-energy particle extraction and guidance.

  14. The Case of Nuclear Propulsion

    Science.gov (United States)

    Koroteev, Anatoly S.; Ponomarev-Stepnoi, Nicolai N.; Smetannikov, Vladimir P.; Gafarov, Albert A.; Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Martin, James; Bragg-Sitton, Shannon; Dickens, Ricky

    2003-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and utilized. Successful utilization will simultaneously develop the infrastructure and experience necessary for developing even higher power and performance systems. To be successful, development programs must devise strategies for rapidly converting paper reactor concepts into actual flight hardware. One approach to accomplishing this is to design highly testable systems, and to structure the program to contain frequent, significant hardware milestones. This paper discusses ongoing efforts in Russia and the United States aimed at enabling near-term utilization of space fission systems.

  15. Nuclear Cryogenic Propulsion Stage

    Science.gov (United States)

    Houts, Michael G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP.

  16. Design Concept of Propulsion System for Nuclear Operated Vessel Adventurer

    Energy Technology Data Exchange (ETDEWEB)

    Halimi, B.; Kim, T. W.; Son, H. M.; Suh, Kune Y. [Seoul National University, Seoul (Korea, Republic of)

    2008-05-15

    This work centers about advantages of nuclear power propulsion with various naval applications such as military surface ship, submarine, and ice breaker. These applications are required to work for a long periods of time on the ocean, where supply of fuel is complicated and sometimes impracticable. A preliminary design concept is presented of the propulsion system for the Nuclear Operated Vessel Adventurer (NOVA). NOVA employs the Battery Omnibus Reactor Integral System (BORIS), a small fast integral reactor cooled by natural circulation and the Modular Optimized Brayton Integral System (MOBIS), a supercritical carbon dioxide (SCO2) driven Brayton cycle, as power converter to the Naval Application Vessel Integral System (NAVIS)

  17. Propulsion technology discipline

    Science.gov (United States)

    Jones, Lee W.

    1990-01-01

    Viewgraphs on propulsion technology discipline for Space Station Freedom are presented. Topics covered include: water electrolysis O2/H2 system; hydrazine system advancements; common technology; fluids disposal; and storable bipropellant system.

  18. Viscous Marangoni propulsion

    CERN Document Server

    Lauga, Eric; 10.1017/jfm.2011.484

    2012-01-01

    Marangoni propulsion is a form of locomotion wherein an asymmetric release of surfactant by a body located at the surface of a liquid leads to its directed motion. We present in this paper a mathematical model for Marangoni propulsion in the viscous regime. We consider the case of a thin rigid circular disk placed at the surface of a viscous fluid and whose perimeter has a prescribed concentration of an insoluble surfactant, to which the rest of its surface is impenetrable. Assuming a linearized equation of state between surface tension and surfactant concentration, we derive analytically the surfactant, velocity and pressure fields in the asymptotic limit of low Capillary, Peclet and Reynolds numbers. We then exploit these results to calculate the Marangoni propulsion speed of the disk. Neglecting the stress contribution from Marangoni flows is seen to over-predict the propulsion speed by 50%.

  19. Is nuclear propulsion doomed to check?; La propulsion nucleaire est-elle vouee a l'echec?

    Energy Technology Data Exchange (ETDEWEB)

    Baruch, J.O

    2003-10-01

    Among the spacecraft propulsion systems, the use of nuclear reactors belong to a separate class. Even if considered as the most suitable for the human exploration of the interplanetary space, it suffers from several drawbacks, like its radiotoxicity, the stresses exerted on materials and the weight of the shipborne reactors. Moreover, there is a lack of sustain from the public who considers this technique as dangerous. The research programs about nuclear spacecraft propulsion were numerous in the 1960's. Today they are re-launched by the impulse of the US administration. (J.S.)

  20. Nuclear Pulse Propulsion

    OpenAIRE

    Atanas, Dilov; Hasan, Osman; Nickolai, Larsen; Tom, Edwards

    2015-01-01

    This project aims to provide the reader with a comprehensive insight into the potential of nuclear fuels to accelerate spacecraft propulsion, shorten journey times and broaden our exploration of space. The current methods of space propulsion offer little in the way of efficiency in terms of cost, time and henceforth investment and research. The dwindling resources of the planet plus the exponential rise of overpopulation will ultimately push us towards exploration of worlds further afield ...

  1. Thermal Management Tools for Propulsion System Trade Studies and Analysis

    Science.gov (United States)

    McCarthy, Kevin; Hodge, Ernie

    2011-01-01

    Energy-related subsystems in modern aircraft are more tightly coupled with less design margin. These subsystems include thermal management subsystems, vehicle electric power generation and distribution, aircraft engines, and flight control. Tighter coupling, lower design margins, and higher system complexity all make preliminary trade studies difficult. A suite of thermal management analysis tools has been developed to facilitate trade studies during preliminary design of air-vehicle propulsion systems. Simulink blocksets (from MathWorks) for developing quasi-steady-state and transient system models of aircraft thermal management systems and related energy systems have been developed. These blocksets extend the Simulink modeling environment in the thermal sciences and aircraft systems disciplines. The blocksets include blocks for modeling aircraft system heat loads, heat exchangers, pumps, reservoirs, fuel tanks, and other components at varying levels of model fidelity. The blocksets have been applied in a first-principles, physics-based modeling and simulation architecture for rapid prototyping of aircraft thermal management and related systems. They have been applied in representative modern aircraft thermal management system studies. The modeling and simulation architecture has also been used to conduct trade studies in a vehicle level model that incorporates coupling effects among the aircraft mission, engine cycle, fuel, and multi-phase heat-transfer materials.

  2. Fusion Propulsion Z-Pinch Engine Concept

    Science.gov (United States)

    Miernik, J.; Statham, G.; Fabisinski, L.; Maples, C. D.; Adams, R.; Polsgrove, T.; Fincher, S.; Cassibry, J.; Cortez, R.; Turner, M.; Percy, T.

    2011-01-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human spaceflight missions. The Z-Pinch dense plasma focus method is a Magneto-Inertial Fusion (MIF) approach that may potentially lead to a small, low cost fusion reactor/engine assembly1. Recent advancements in experimental and theoretical understanding of this concept suggest favorable scaling of fusion power output yield 2. The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this process can be pulsed over short timescales (10(exp -6 sec). This type of plasma formation is widely used in the field of Nuclear Weapons Effects testing in the defense industry, as well as in fusion energy research. A Decade Module 2 (DM2), approx.500 KJ pulsed-power is coming to the RSA Aerophysics Lab managed by UAHuntsville in January, 2012. A Z-Pinch propulsion concept was designed for a vehicle based on a previous fusion vehicle study called "Human Outer Planet Exploration" (HOPE), which used Magnetized Target Fusion (MTF) 3 propulsion. The reference mission is the transport of crew and cargo to Mars and back, with a reusable vehicle.

  3. Technology for aircraft energy efficiency

    Science.gov (United States)

    Klineberg, J. M.

    1977-01-01

    Six technology programs for reducing fuel use in U.S. commercial aviation are discussed. The six NASA programs are divided into three groups: Propulsion - engine component improvement, energy efficient engine, advanced turboprops; Aerodynamics - energy efficient transport, laminar flow control; and Structures - composite primary structures. Schedules, phases, and applications of these programs are considered, and it is suggested that program results will be applied to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s.

  4. Tools for advanced simulations to nuclear propulsion systems in rockets

    Energy Technology Data Exchange (ETDEWEB)

    Torres Sepulveda, A.; Perez Vara, R.

    2004-07-01

    While chemical propulsion rockets have dominated space exploration, other forms of rocket propulsion based on nuclear power, electrostatic and magnetic drive, and other principles besides chemical reactions, have been considered from the earliest days of the field. The goal of most of these advanced rocket propulsion schemes is improved efficiency through higher exhaust velocities, in order to reduce the amount of fuel the rocket vehicle needs to carry, though generally at the expense of high thrust. Nuclear propulsion seems to be the most promising short term technology to plan realistic interplanetary missions. The development of a nuclear electric propulsion spacecraft shall require the development of models to analyse the mission and to understand the interaction between the related subsystems (nuclear reactor, electrical converter, power management and distribution, and electric propulsion) during the different phases of the mission. This paper explores the modelling of a nuclear electric propulsion (NEP) spacecraft type using EcosimPro simulation software. This software is a multi-disciplinary simulation tool with a powerful object-oriented simulation language and state-of-the-art solvers. EcosimPro is the recommended ESA simulation tool for environmental Control and Life Support Systems (ECLSS) and has been used successfully within the framework of the European activities of the International Space Station programme. Furthermore, propulsion libraries for chemical and electrical propulsion are currently being developed under ESA contracts to set this tool as standard usage in the propulsion community. At present, there is not any workable NEP spacecraft, but a standardized-modular, multi-purpose interplanetary spacecraft for post-2000 missions, called ISC-2000, has been proposed in reference. The simulation model presented on this paper is based on the preliminary designs for this spacecraft. (Author)

  5. Nuclear modules for space electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Difilippo, F.C.

    1998-12-31

    Analysis of interplanetary cargo and piloted missions requires calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options iteratively by using fast computer simulations. The Oak Ridge National Laboratory (ORNL) has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition. dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one-dimensional versions of the equations of conservation of mass, energy, and momentum with compressible flow. 10 refs., 1 tab.

  6. Nuclear modules for space electric propulsion

    Science.gov (United States)

    Difilippo, F. C.

    1998-01-01

    Analysis of interplanetary cargo and piloted missions requires calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options iteratively by using fast computer simulations. The Oak Ridge National Laboratory (ORNL) has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition. dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one-dimensional versions of the equations of conservation of mass, energy, and momentum with compressible flow.

  7. Scoping calculations of power sources for nuclear electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Difilippo, F.C. [Oak Ridge National Lab., TN (United States)

    1994-05-01

    This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to making scoping calculations for mission analysis.

  8. Scoping calculations of power sources for nuclear electric propulsion

    International Nuclear Information System (INIS)

    This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to making scoping calculations for mission analysis

  9. Efficiency of fish propulsion.

    Science.gov (United States)

    Maertens, A P; Triantafyllou, M S; Yue, D K P

    2015-08-01

    The system efficiency of a self-propelled flexible body is ill-defined, hence we introduce the concept of quasi-propulsive efficiency, defined as the ratio of the power needed to tow a body in rigid-straight condition over the power it requires for self-propulsion, both measured for the same speed. Through examples we show that the quasi-propulsive efficiency is a rational non-dimensional metric of the propulsive fitness of fish and fish-like mechanisms, consistent with the goal to minimize fuel consumption under size and velocity constraints. We perform two-dimensional viscous simulations and apply the concept of quasi-propulsive efficiency to illustrate and discuss the efficiency of two-dimensional undulating foils employing first carangiform and then anguilliform kinematics. We show that low efficiency may be due to adverse body-propulsor hydrodynamic interactions, which cannot be accounted for by an increase in friction drag, as done previously, since at the Reynolds number Re = 5 000 considered in the simulations, pressure is a major contributor to both thrust and drag. PMID:26226349

  10. Nuclear electric ion propulsion for three deep space missions

    Science.gov (United States)

    Chiravalle, Vincent P.

    2008-03-01

    Nuclear electric ion propulsion is considered for three sample deep space missions starting from a 500 km low Earth orbit encompassing the transfer of a 100 MT payload into a 1500 km orbit around Mars, the rendezvous of a 10 MT payload with the Jovian moon Europa and the rendezvous of a similar payload with Saturn's moon Titan. Near term ion engine and space nuclear reactor technology are assumed. It is shown that nuclear electric ion propulsion offers more than twice the payload for the Mars mission relative to the case when a nuclear thermal rocket is used for the trans-Mars injection maneuver at Earth, and about the same payload advantage relative to the case when solar electric propulsion is used for the Mars heliocentric transfer. For missions to the outer planets nuclear electric ion propulsion increases the payload mass fraction by a factor of two or more compared with high thrust systems that utilize gravity assist trajectories.

  11. Nuclear energy propulsion in space; L'utilisation de l'energie nucleaire dans l'espace

    Energy Technology Data Exchange (ETDEWEB)

    Raepsaet, X. [CEA Saclay, 91 - Gif sur Yvette (France). Dept. de Mecanique et de Technologie; Pempie, P. [Centre National d' Etudes Spatiales, CNES, 91 - Evry (France)

    2001-12-01

    Nuclear energy can be used under two different ways in spatial applications, first the most common is the production of electricity that is used to supply an electrical propulsion system. The second way is the thermal propulsion where the nuclear reactor is considered as a heat exchanger whose purpose is to heat a gas that will expand in a nozzle. The thermal propulsion implies that the nuclear fuel and some reactor components will have to sustain very high temperatures ( > 2000 K) and important temperature gradients over short time intervals. Because of size and mass constraints propulsion reactors require highly enriched uranium fuels, in such cases power densities reach 1 to 10 MW / liter of core, which is by 1 to 2 orders of magnitude bigger than in a PWR-type power reactor, this represents a true technological challenge. In this article 2 projects: ERATO concerning spatial power generation and MAPS concerning thermal propulsion are presented. (A.C.)

  12. Space Nuclear Thermal Propulsion (SNTP) Air Force facility

    Science.gov (United States)

    Beck, David F.

    1993-01-01

    The Space Nuclear Thermal Propulsion (SNTP) Program is an initiative within the US Air Force to acquire and validate advanced technologies that could be used to sustain superior capabilities in the area or space nuclear propulsion. The SNTP Program has a specific objective of demonstrating the feasibility of the particle bed reactor (PBR) concept. The term PIPET refers to a project within the SNTP Program responsible for the design, development, construction, and operation of a test reactor facility, including all support systems, that is intended to resolve program technology issues and test goals. A nuclear test facility has been designed that meets SNTP Facility requirements. The design approach taken to meet SNTP requirements has resulted in a nuclear test facility that should encompass a wide range of nuclear thermal propulsion (NTP) test requirements that may be generated within other programs. The SNTP PIPET project is actively working with DOE and NASA to assess this possibility.

  13. RSMASS-D nuclear thermal propulsion and bimodal system mass models

    Energy Technology Data Exchange (ETDEWEB)

    King, D.B. [DSWA/FC, Thermionic Evaluation Facility 801 University Blvd. SE Albuquerque, New Mexico (United States); Marshall, A.C. [DSWA/FC, Thermionic Evaluation Facility 801 University Blvd. SE Albuquerque, New Mexico (United States)

    1997-01-01

    Two relatively simple models have been developed to estimate reactor, radiation shield, and balance of system masses for a particle bed reactor (PBR) nuclear thermal propulsion concept and a cermet-core power and propulsion (bimodal) concept. The approach was based on the methodology developed for the RSMASS-D models. The RSMASS-D approach for the reactor and shield sub-systems uses a combination of simple equations derived from reactor physics and other fundamental considerations along with tabulations of data from more detailed neutron and gamma transport theory computations. Relatively simple models are used to estimate the masses of other subsystem components of the nuclear propulsion and bimodal systems. Other subsystem components include instrumentation and control (I&C), boom, safety systems, radiator, thermoelectrics, heat pipes, and nozzle. The user of these models can vary basic design parameters within an allowed range to achieve a parameter choice which yields a minimum mass for the operational conditions of interest. Estimated system masses are presented for a range of reactor power levels for propulsion for the PBR propulsion concept and for both electrical power and propulsion for the cermet-core bimodal concept. The estimated reactor system masses agree with mass predictions from detailed calculations with xx percent for both models. {copyright} {ital 1997 American Institute of Physics.}

  14. Aerodynamics/ACEE: Aircraft energy efficiency

    Science.gov (United States)

    1981-01-01

    An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.

  15. Feasibility study of a superconducting motor for electrical helicopter propulsion

    International Nuclear Information System (INIS)

    During the past decades, superconducting electrical machines have become more suitable to replace conventional iron based designs, because of their lower weight and higher torque density. These properties make them good candidates for use in More Electric Aircraft (MEA). Especially helicopter propulsion systems could benefit from the increased performance. This paper describes the feasibility study of a superconducting motor to be used for helicopter propulsion as part of a More Electric Aircraft (MEA). For this, the armature, field windings and cryostat are designed, aiming at meeting the difficult specifications. Since superconductors have virtually no electrical resistance when cooled down below a certain critical temperature, they can be used to build high field and low weight coils for electrical machines. Especially the possibility to not use iron can make the superconducting motor lighter with a higher power density compared with conventional Permanent Magnet (PM) motors.

  16. Turning points in reactor design

    International Nuclear Information System (INIS)

    This article provides some historical aspects on nuclear reactor design, beginning with PWR development for Naval Propulsion and the first commercial application at Yankee Rowe. Five turning points in reactor design and some safety problems associated with them are reviewed: (1) stability of Dresden-1, (2) ECCS, (3) PRA, (4) TMI-2, and (5) advanced passive LWR designs. While the emphasis is on the thermal-hydraulic aspects, the discussion is also about reactor systems

  17. Turning points in reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Beckjord, E.S.

    1995-09-01

    This article provides some historical aspects on nuclear reactor design, beginning with PWR development for Naval Propulsion and the first commercial application at Yankee Rowe. Five turning points in reactor design and some safety problems associated with them are reviewed: (1) stability of Dresden-1, (2) ECCS, (3) PRA, (4) TMI-2, and (5) advanced passive LWR designs. While the emphasis is on the thermal-hydraulic aspects, the discussion is also about reactor systems.

  18. Airbreathing Propulsion An Introduction

    CERN Document Server

    Bose, Tarit

    2012-01-01

    Airbreathing Propulsion covers the physics of combustion, fluid and thermo-dynamics, and structural mechanics of airbreathing engines, including piston, turboprop, turbojet, turbofan, and ramjet engines. End-of-chapter exercises allow the reader to practice the fundamental concepts behind airbreathing propulsion, and the included PAGIC computer code will help the reader to examine the relationships between the performance parameters of different engines. Large amounts of data on many different piston, turbojet, and turboprop engines have been compiled for this book and are included as an appendix. This textbook is ideal for senior undergraduate and graduate students studying aeronautical engineering, aerospace engineering, and mechanical engineering.

  19. Power generation from nuclear reactors in aerospace applications

    Energy Technology Data Exchange (ETDEWEB)

    English, R.E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  20. Power generation from nuclear reactors in aerospace applications

    International Nuclear Information System (INIS)

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion

  1. NASA's Nuclear Thermal Propulsion Project

    Science.gov (United States)

    Houts, Michael; Mitchell, Sonny; Kim, Tony; Borowski, Stanley; Power, Kevin; Scott, John; Belvin, Anthony; Clement, Steven

    2015-01-01

    Space fission power systems can provide a power rich environment anywhere in the solar system, independent of available sunlight. Space fission propulsion offers the potential for enabling rapid, affordable access to any point in the solar system. One type of space fission propulsion is Nuclear Thermal Propulsion (NTP). NTP systems operate by using a fission reactor to heat hydrogen to very high temperature (>2500 K) and expanding the hot hydrogen through a supersonic nozzle. First generation NTP systems are designed to have an Isp of approximately 900 s. The high Isp of NTP enables rapid crew transfer to destinations such as Mars, and can also help reduce mission cost, improve logistics (fewer launches), and provide other benefits. However, for NTP systems to be utilized they must be affordable and viable to develop. NASA's Advanced Exploration Systems (AES) NTP project is a technology development project that will help assess the affordability and viability of NTP. Early work has included fabrication of representative graphite composite fuel element segments, coating of representative graphite composite fuel element segments, fabrication of representative cermet fuel element segments, and testing of fuel element segments in the Compact Fuel Element Environmental Tester (CFEET). Near-term activities will include testing approximately 16" fuel element segments in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES), and ongoing research into improving fuel microstructure and coatings. In addition to recapturing fuels technology, affordable development, qualification, and utilization strategies must be devised. Options such as using low-enriched uranium (LEU) instead of highly-enriched uranium (HEU) are being assessed, although that option requires development of a key technology before it can be applied to NTP in the thrust range of interest. Ground test facilities will be required, especially if NTP is to be used in conjunction with high value or

  2. Book no.9. Nuclear naval propulsion: a comprehensive inventory; Cahier no.9. Propulsion nucleaire navale: un inventaire complet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    This document presents the nuclear reactors and fuels used for ship propulsion. A review is made of the present day condition of the fleet of nuclear submarines and other ships worldwide with an assessment of the related risks. An inventory is given of the known submarine accidents between 1960 and 2002. Finally the design of the future nuclear submarines is presented. (J.S.)

  3. Aircraft cybernetics

    Science.gov (United States)

    1977-01-01

    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  4. AASPT Carbon/Carbon Aircraft Brake Disk Granted MPA

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ Xi'an Chaoma Technology Co. Ltd. was issued Parts Manufacturer Approval (PMA) for Carbon/Carbon aircraft brake disk for Airbus 320 series by Civil Aviation Administration of China (CAAC). The company is held by Academy of Aerospace Solid Propulsion Technology (AASPT), a subsidiary of China Aerospace Science and Technology Corporation (CASC). It is the first approval given to a Chinese company to design and produce brakes for main civilian aircraft.

  5. CORBASec Used to Secure Distributed Aerospace Propulsion Simulations

    Science.gov (United States)

    Blaser, Tammy M.

    2003-01-01

    The NASA Glenn Research Center and its industry partners are developing a Common Object Request Broker (CORBA) Security (CORBASec) test bed to secure their distributed aerospace propulsion simulations. Glenn has been working with its aerospace propulsion industry partners to deploy the Numerical Propulsion System Simulation (NPSS) object-based technology. NPSS is a program focused on reducing the cost and time in developing aerospace propulsion engines. It was developed by Glenn and is being managed by the NASA Ames Research Center as the lead center reporting directly to NASA Headquarters' Aerospace Technology Enterprise. Glenn is an active domain member of the Object Management Group: an open membership, not-for-profit consortium that produces and manages computer industry specifications (i.e., CORBA) for interoperable enterprise applications. When NPSS is deployed, it will assemble a distributed aerospace propulsion simulation scenario from proprietary analytical CORBA servers and execute them with security afforded by the CORBASec implementation. The NPSS CORBASec test bed was initially developed with the TPBroker Security Service product (Hitachi Computer Products (America), Inc., Waltham, MA) using the Object Request Broker (ORB), which is based on the TPBroker Basic Object Adaptor, and using NPSS software across different firewall products. The test bed has been migrated to the Portable Object Adaptor architecture using the Hitachi Security Service product based on the VisiBroker 4.x ORB (Borland, Scotts Valley, CA) and on the Orbix 2000 ORB (Dublin, Ireland, with U.S. headquarters in Waltham, MA). Glenn, GE Aircraft Engines, and Pratt & Whitney Aircraft are the initial industry partners contributing to the NPSS CORBASec test bed. The test bed uses Security SecurID (RSA Security Inc., Bedford, MA) two-factor token-based authentication together with Hitachi Security Service digital-certificate-based authentication to validate the various NPSS users. The test

  6. Causes and advantages of radical innovation: example of the space nuclear propulsion; Motivations et atouts de l`innovation radicale: l`exemple de la propulsion nucleaire spatiale

    Energy Technology Data Exchange (ETDEWEB)

    Proust, E. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Direction des Reacteurs Nucleaires

    1997-12-31

    After a review of the principles underlying the nuclear propulsion and its application to space propulsion, the NERVA program, developed in the US in the 60`s, is summarized, with emphasis on the fuels that were studied in order to sustain very high temperature and variations (graphite matrix with uranium and zirconium carbides), and on the reactor design which led to the development of the PHOEBUS 2A reactor, the most powerful reactor ever constructed (4000 MW). Advantages of the nuclear propulsion for space transportation are still prominent, especially for a Moon permanent base and voyages to Mars. French researches are aimed at a cargo shuttle application between Earth and Moon orbits, with a reactor concept based on annular fuel elements and hydrogen radially passing through the fuel elements

  7. Novel Ship Propulsion System

    Institute of Scientific and Technical Information of China (English)

    JI Yulong; SUN Yuqing; ZHANG Hongpeng; ZHANG Yindong; CHEN Haiquan

    2009-01-01

    As the development tends towards high-speed, large-scale and high-power, power of the ship main engine becomes larger and larger. This make the engine design and cabin arrangement become more and more difficult. Ship maneuverability becomes bad. A new ship propulsion system, integrated hydraulic propulsion (IHP), is put forward to meet the development of modem ship. Principle of IHP system is discussed. Working condition matching characteristic of IHP ship is studied based on its matching characteristic charts. According to their propulsion principle, dynamic mathematic models of IHP ship and direct propulsion (DP) ship are developed. These two models are verified by test sailing and test stand data. Based on the software Matlab/Simulink, comparison research between IHP ship and DP ship is conducted. The results show that cabin arrangement of IHP ship is very flexible, working condition matching characteristic of IHP ship is good, the ratio of power to weight of IHP ship is larger than DP ship, and maneuverability is excellent. IHP system is suitable for engineering ship, superpower ship and warship, etc.

  8. Fission ships[Nuclear space propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Kleiner, Kurt

    2000-12-02

    This article focuses on the paper project on the development of nuclear propulsion for space craft and considers the advantages and disadvantages of nuclear-powered rockets over conventional designs. Details are given of the miniature reactor engine, MITEE, its fuel elements fabricated from rolled metal sheets impregnated with uranium oxide fuel particles, its operation which is similar to that of a jet engine, and its anticipated use to travel through the atmosphere of Jupiter and to cut the travel time to planets. Public concern regarding nuclear energy is given as one of the reasons why NASA is unlikely to launch a nuclear-powered space craft in the near future.

  9. Mission Analysis and Aircraft Sizing of a Hybrid-Electric Regional Aircraft

    Science.gov (United States)

    Antcliff, Kevin R.; Guynn, Mark D.; Marien, Ty V.; Wells, Douglas P.; Schneider, Steven J.; Tong, Michael T.

    2016-01-01

    The purpose of this study was to explore advanced airframe and propulsion technologies for a small regional transport aircraft concept (approximately 50 passengers), with the goal of creating a conceptual design that delivers significant cost and performance advantages over current aircraft in that class. In turn, this could encourage airlines to open up new markets, reestablish service at smaller airports, and increase mobility and connectivity for all passengers. To meet these study goals, hybrid-electric propulsion was analyzed as the primary enabling technology. The advanced regional aircraft is analyzed with four levels of electrification, 0 percent electric with 100 percent conventional, 25 percent electric with 75 percent conventional, 50 percent electric with 50 percent conventional, and 75 percent electric with 25 percent conventional for comparison purposes. Engine models were developed to represent projected future turboprop engine performance with advanced technology and estimates of the engine weights and flowpath dimensions were developed. A low-order multi-disciplinary optimization (MDO) environment was created that could capture the unique features of parallel hybrid-electric aircraft. It is determined that at the size and range of the advanced turboprop: The battery specific energy must be 750 watt-hours per kilogram or greater for the total energy to be less than for a conventional aircraft. A hybrid vehicle would likely not be economically feasible with a battery specific energy of 500 or 750 watt-hours per kilogram based on the higher gross weight, operating empty weight, and energy costs compared to a conventional turboprop. The battery specific energy would need to reach 1000 watt-hours per kilogram by 2030 to make the electrification of its propulsion an economically feasible option. A shorter range and/or an altered propulsion-airframe integration could provide more favorable results.

  10. Advanced Chemical Propulsion

    Science.gov (United States)

    Alexander, L.

    2004-11-01

    Improving the performance and reliability characteristics of chemical propulsion systems requires research and testing of higher-performance propellants, higher efficiency thrusters, cryogenics technology, lightweight components and advancements in propulsion system design and assessment. Propellants are being investigated to identify practical combinations with higher efficiencies and better thermal properties to reduce thermal control requirements. This includes combinations with modest increases, such as LOX-hydrazine, as well as a new evaluation of major improvements available from fluorine-bearing oxidizers. Practical ways of implementing cryogenic propulsion to further increase efficiency are also being studied. Some potential advances include small pump-fed engines, and improvements in cryocooler technology and tank pressure control. Gelled propellants will be tested to determine the practicality of letting propellants freeze at low environmental temperatures and thawing them only when required for use. The propellant tank is typically the single highest non-expendable mass in a chemical propulsion system. Lightweight tank designs, materials and methods of fabrication are being investigated. These are projected to offer a 45-50 percent decrease in tank mass, representing the potential inert system mass savings. Mission and systems analyses are being conducted to guide the technology research and set priorities for technology investment, based on estimated gains in payload and mission capabilities. This includes development of advanced assessment tools and analyses of specific missions selected from Science Missions' Directorate. The goal is to mature a suite of reliable advanced propulsion technologies that will promote more cost efficient missions through the reduction of interplanetary trip time, increased scientific payload mass fraction and longer on-station operations. This talk will review the Advanced Chemical technology development roadmap, current

  11. Supersonic STOVL fighter concepts featuring the hybrid tandem-fan propulsion system

    Science.gov (United States)

    Gelhausen, P. A.; Wilson, S. B., III

    1986-01-01

    Current research on vertical- or short-takeoff-and-landing (V/STOL) aircraft is concentrating on developing a multirole-capable fighter. Several V/STOL concepts being studied show a capability performing for short-takeoff and vertical-landing (STOVL) missions. This paper is concerned with a propulsion concept which promises added flexibility in mission performance: the hybrid-tandem fan. This propulsion concept is combined with four aircraft planforms and the performance of each is evaluated on a representative mission. The four aircraft planforms used in the study are a conventional wing-tail, a forward-swept wing and canard, a delta-wing and canard, and an oblique wing and tail. The mission was chosen so that the four aircraft all had approximately the same gross takeoff weight. The four designs are compared at various phases of the mission.

  12. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    Energy Technology Data Exchange (ETDEWEB)

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.

  13. AEROSTATIC AND AERODYNAMIC MODULES OF A HYBRID BUOYANT AIRCRAFT: AN ANALYTICAL APPROACH

    Directory of Open Access Journals (Sweden)

    Anwar Ul Haque

    2015-05-01

    Full Text Available An analytical approach is essential for the estimation of the requirements of aerodynamic and aerostatic lift for a hybrid buoyant aircraft. Such aircrafts have two different modules to balance the weight of aircraft; aerostatic module and aerodynamic module. Both these modules are to be treated separately for estimation of the mass budget of propulsion systems and required power. In the present work, existing relationships of aircraft and airship are reviewed for its further application for these modules. Limitations of such relationships are also disussed and it is precieved that it will provide a strating point for better understanding of design anatomy of such aircraft.

  14. Advances in computational design and analysis of airbreathing propulsion systems

    Science.gov (United States)

    Klineberg, John M.

    1989-01-01

    The development of commercial and military aircraft depends, to a large extent, on engine manufacturers being able to achieve significant increases in propulsion capability through improved component aerodynamics, materials, and structures. The recent history of propulsion has been marked by efforts to develop computational techniques that can speed up the propulsion design process and produce superior designs. The availability of powerful supercomputers, such as the NASA Numerical Aerodynamic Simulator, and the potential for even higher performance offered by parallel computer architectures, have opened the door to the use of multi-dimensional simulations to study complex physical phenomena in propulsion systems that have previously defied analysis or experimental observation. An overview of several NASA Lewis research efforts is provided that are contributing toward the long-range goal of a numerical test-cell for the integrated, multidisciplinary design, analysis, and optimization of propulsion systems. Specific examples in Internal Computational Fluid Mechanics, Computational Structural Mechanics, Computational Materials Science, and High Performance Computing are cited and described in terms of current capabilities, technical challenges, and future research directions.

  15. Z-Pinch Pulsed Plasma Propulsion Technology Development

    Science.gov (United States)

    Polsgrove, Tara; Adams, Robert B.; Fabisinski, Leo; Fincher, Sharon; Maples, C. Dauphne; Miernik, Janie; Percy, Tom; Statham, Geoff; Turner, Matt; Cassibry, Jason; Cortez, Ross; Santarius, John

    2010-01-01

    Fusion-based propulsion can enable fast interplanetary transportation. Magneto-inertial fusion (MIF) is an approach which has been shown to potentially lead to a low cost, small reactor for fusion break even. The Z-Pinch/dense plasma focus method is an MIF concept in which a column of gas is compressed to thermonuclear conditions by an axial current (I approximates 100 MA). Recent advancements in experiments and the theoretical understanding of this concept suggest favorable scaling of fusion power output yield as I(sup 4). This document presents a conceptual design of a Z-Pinch fusion propulsion system and a vehicle for human exploration. The purpose of this study is to apply Z-Pinch fusion principles to the design of a propulsion system for an interplanetary spacecraft. This study took four steps in service of that objective; these steps are identified below. 1. Z-Pinch Modeling and Analysis: There is a wealth of literature characterizing Z-Pinch physics and existing Z-Pinch physics models. In order to be useful in engineering analysis, simplified Z-Pinch fusion thermodynamic models are required to give propulsion engineers the quantity of plasma, plasma temperature, rate of expansion, etc. The study team developed these models in this study. 2. Propulsion Modeling and Analysis: While the Z-Pinch models characterize the fusion process itself, propulsion models calculate the parameters that characterize the propulsion system (thrust, specific impulse, etc.) The study team developed a Z-Pinch propulsion model and used it to determine the best values for pulse rate, amount of propellant per pulse, and mixture ratio of the D-T and liner materials as well as the resulting thrust and specific impulse of the system. 3. Mission Analysis: Several potential missions were studied. Trajectory analysis using data from the propulsion model was used to determine the duration of the propulsion burns, the amount of propellant expended to complete each mission considered. 4

  16. Variable Geometry Aircraft Wing Supported by Struts And/Or Trusses

    Science.gov (United States)

    Melton, John E. (Inventor); Dudley, Michael R. (Inventor)

    2016-01-01

    The present invention provides an aircraft having variable airframe geometry for accommodating efficient flight. The aircraft includes an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, and a brace operably connected between said oblique wing and said fuselage. The present invention also provides an aircraft having an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, a propulsion system pivotally connected with said oblique wing, and a brace operably connected between said propulsion system and said fuselage.

  17. Development of a simulation tool for flight dynamics and control investigations of articulated vtol unmanned aircraft

    OpenAIRE

    Saghafi, F.

    1996-01-01

    A simulation tool for flight dynamics and control investigations of three different Vertical Take Off and Landing (VTOL) unmanned aircraft configurations has been developed. A control concept has been proposed in order to take advantage of the fast response characteristics of the ordinary small engine/propeller propulsion systems in such aircraft, as well as replacing the complex rotors used previously in VTOL concepts for small unmanned aircraft. The simulation model has been ...

  18. Jet propulsion without inertia

    CERN Document Server

    Spagnolie, Saverio E

    2010-01-01

    A body immersed in a highly viscous fluid can locomote by drawing in and expelling fluid through pores at its surface. We consider this mechanism of jet propulsion without inertia in the case of spheroidal bodies, and derive both the swimming velocity and the hydrodynamic efficiency. Elementary examples are presented, and exact axisymmetric solutions for spherical, prolate spheroidal, and oblate spheroidal body shapes are provided. In each case, entirely and partially porous (i.e. jetting) surfaces are considered, and the optimal jetting flow profiles at the surface for maximizing the hydrodynamic efficiency are determined computationally. The maximal efficiency which may be achieved by a sphere using such jet propulsion is 12.5%, a significant improvement upon traditional flagella-based means of locomotion at zero Reynolds number. Unlike other swimming mechanisms which rely on the presentation of a small cross section in the direction of motion, the efficiency of a jetting body at low Reynolds number increas...

  19. Hybrid propulsion technology program

    Science.gov (United States)

    1990-01-01

    Technology was identified which will enable application of hybrid propulsion to manned and unmanned space launch vehicles. Two design concepts are proposed. The first is a hybrid propulsion system using the classical method of regression (classical hybrid) resulting from the flow of oxidizer across a fuel grain surface. The second system uses a self-sustaining gas generator (gas generator hybrid) to produce a fuel rich exhaust that was mixed with oxidizer in a separate combustor. Both systems offer cost and reliability improvement over the existing solid rocket booster and proposed liquid boosters. The designs were evaluated using life cycle cost and reliability. The program consisted of: (1) identification and evaluation of candidate oxidizers and fuels; (2) preliminary evaluation of booster design concepts; (3) preparation of a detailed point design including life cycle costs and reliability analyses; (4) identification of those hybrid specific technologies needing improvement; and (5) preperation of a technology acquisition plan and large scale demonstration plan.

  20. Conceptual Design of Electrical Propulsion System for Nuclear Operated Vessel Adventurer

    Energy Technology Data Exchange (ETDEWEB)

    Halimi, B.; Suh, K. Y. [Seoul National University, Seoul (Korea, Republic of)

    2009-05-15

    A design concept of the electric propulsion system for the Nuclear Operated Vessel Adventure (NOVA) is presented. NOVA employs Battery Omnibus Reactor Integral System (BORIS), a liquid metal cooled small fast integral reactor, and Modular Optimized Brayton Integral System (MOBIS), a supercritical CO {sub 2} (SCO{sub 2}) Brayton cycle as power converter to Naval Application Vessel Integral System (NAVIS)

  1. The MAP Propulsion Subsystem

    Science.gov (United States)

    Davis, Gary T.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    This paper describes the requirements, design, integration, test, performance, and lessons learned of NASA's Microwave Anisotropy Probe (MAP) propulsion subsystem. MAP was launched on a Delta-II launch vehicle from NASA's Kennedy Space Center on June 30, 2001. Due to instrument thermal stability requirements, the Earth-Sun L2 Lagrange point was selected for the mission orbit. The L2 trajectory incorporated phasing loops and a lunar gravity assist. The propulsion subsystem's requirements are to manage momentum, perform maneuvers during the phasing loops to set up the lunar swingby, and perform stationkeeping at L2 for 2 years. MAP's propulsion subsystem uses 8 thrusters which are located and oriented to provide attitude control and momentum management about all axes, and delta-V in any direction without exposing the instrument to the sun. The propellant tank holds 72 kg of hydrazine, which is expelled by unregulated blowdown pressurization. Thermal management is complex because no heater cycling is allowed at L2. Several technical challenges presented themselves during I and T, such as in-situ weld repairs and in-situ bending of thruster tubes to accommodate late changes in the observatory CG. On-orbit performance has been nominal, and all phasing loop, mid-course correction, and stationkeeping maneuvers have been successfully performed to date.

  2. APPLICATION FOR AIRCRAFT TRACKING

    OpenAIRE

    Ostroumov, Ivan; Kuz’menko, Natalia

    2011-01-01

    Abstract. In the article the important problems of software development for aircraft tracking have beendiscussed. Position reports of ACARS have been used for aircraft tracking around the world.An algorithm of aircraft coordinates decoding and visualization of aircraft position on the map has beenrepresented.Keywords: ACARS, aircraft, internet, position, software, tracking.

  3. Causes and advantages of radical innovation: example of the space nuclear propulsion

    International Nuclear Information System (INIS)

    After a review of the principles underlying the nuclear propulsion and its application to space propulsion, the NERVA program, developed in the US in the 60's, is summarized, with emphasis on the fuels that were studied in order to sustain very high temperature and variations (graphite matrix with uranium and zirconium carbides), and on the reactor design which led to the development of the PHOEBUS 2A reactor, the most powerful reactor ever constructed (4000 MW). Advantages of the nuclear propulsion for space transportation are still prominent, especially for a Moon permanent base and voyages to Mars. French researches are aimed at a cargo shuttle application between Earth and Moon orbits, with a reactor concept based on annular fuel elements and hydrogen radially passing through the fuel elements

  4. Design of Carbon Composite Driveshaft for Ultralight Aircraft Propulsion System

    Directory of Open Access Journals (Sweden)

    R. Poul

    2006-01-01

    Full Text Available This paper deals with the design of the carbon fibre composite driveshaft. This driveshaft will be used for connection between piston engine and propulsor of the type of axial-flow fan. Three different versions of driveshaft were designed and produced. Version 1 if completely made of Al alloy. Version 2 is of hybrid design where the central part is made of high strength carbon composite and flanges are made of Al alloy. Adhesive bond is used for connection between flanges and the central CFRP tube. Version 3 differs from the version 2 by aplication of ultrahigh-strength carbon fibre on the central part. Dimensions and design conditions are equal for all three versions to obtain simply comparable results. Calculations of driveshafts are described in the paper. 

  5. Robust Nonlinear Feedback Control of Aircraft Propulsion Systems

    Science.gov (United States)

    Garrard, William L.; Balas, Gary J.; Litt, Jonathan (Technical Monitor)

    2001-01-01

    This is the final report on the research performed under NASA Glen grant NASA/NAG-3-1975 concerning feedback control of the Pratt & Whitney (PW) STF 952, a twin spool, mixed flow, after burning turbofan engine. The research focussed on the design of linear and gain-scheduled, multivariable inner-loop controllers for the PW turbofan engine using H-infinity and linear, parameter-varying (LPV) control techniques. The nonlinear turbofan engine simulation was provided by PW within the NASA Rocket Engine Transient Simulator (ROCETS) simulation software environment. ROCETS was used to generate linearized models of the turbofan engine for control design and analysis as well as the simulation environment to evaluate the performance and robustness of the controllers. Comparison between the H-infinity, and LPV controllers are made with the baseline multivariable controller and developed by Pratt & Whitney engineers included in the ROCETS simulation. Simulation results indicate that H-infinity and LPV techniques effectively achieve desired response characteristics with minimal cross coupling between commanded values and are very robust to unmodeled dynamics and sensor noise.

  6. NASA Breakthrough Propulsion Physics Program

    Science.gov (United States)

    Millis, Marc G.

    1998-01-01

    In 1996, NASA established the Breakthrough Propulsion Physics program to seek the ultimate breakthroughs in space transportation: propulsion that requires no propellant mass, propulsion that attains the maximum transit speeds physically possible, and breakthrough methods of energy production to power such devices. Topics of interest include experiments and theories regarding the coupling of gravity and electromagnetism, vacuum fluctuation energy, warp drives and worm-holes, and superluminal quantum effects. Because these propulsion goals are presumably far from fruition, a special emphasis is to identify affordable, near-term, and credible research that could make measurable progress toward these propulsion goals. The methods of the program and the results of the 1997 workshop are presented. This Breakthrough Propulsion Physics program, managed by Lewis Research Center, is one part of a comprehensive, long range Advanced Space Transportation Plan managed by Marshall Space Flight Center.

  7. The Nuclear Cryogenic Propulsion Stage

    Science.gov (United States)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.

  8. Modeling of Ship Propulsion Performance

    DEFF Research Database (Denmark)

    Pedersen, Benjamin Pjedsted; Larsen, Jan

    2009-01-01

    Full scale measurements of the propulsion power, ship speed, wind speed and direction, sea and air temperature, from four different loading conditions has been used to train a neural network for prediction of propulsion power. The network was able to predict the propulsion power with accuracy...... between 0.8-2.8%, which is about the same accuracy as for the measurements. The methods developed are intended to support the performance monitoring system SeaTrend® developed by FORCE Technology (FORCE (2008))....

  9. In-Space Propulsion, Logistics Reduction, and Evaluation of Steam Reformer Kinetics: Problems and Prospects

    Science.gov (United States)

    Jaworske, D. A.; Palaszewski, B. A.; Kulis, M. J.; Gokoglu, S. A.

    2015-01-01

    Human space missions generate waste materials. A 70-kg crewmember creates a waste stream of 1 kg per day, and a four-person crew on a deep space habitat for a 400+ day mission would create over 1600 kg of waste. Converted into methane, the carbon could be used as a fuel for propulsion or power. The NASA Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) project is investing in space resource utilization with an emphasis on repurposing logistics materials for useful purposes and has selected steam reforming among many different competitive processes as the preferred method for repurposing organic waste into methane. Already demonstrated at the relevant processing rate of 5.4 kg of waste per day, high temperature oxygenated steam consumes waste and produces carbon dioxide, carbon monoxide, and hydrogen which can then be converted into methane catalytically. However, the steam reforming process has not been studied in microgravity. Data are critically needed to understand the mechanisms that allow use of steam reforming in a reduced gravity environment. This paper reviews the relevant literature, identifies gravity-dependent mechanisms within the steam gasification process, and describes an innovative experiment to acquire the crucial kinetic information in a small-scale reactor specifically designed to operate within the requirements of a reduced gravity aircraft flight. The experiment will determine if the steam reformer process is mass-transport limited, and if so, what level of forced convection will be needed to obtain performance comparable to that in 1-g.

  10. Electric Propulsion Research Building (EPRB)

    Data.gov (United States)

    Federal Laboratory Consortium — The Electric Propulsion Research Building (EPRB) capability centers on its suite of vacuum chambers, which are configured to meet the unique requirements related to...

  11. Study on a PEFC propulsion system for surface ships

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Ryuta [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan); Tsuchiyama, Syozo [Shipbuilding Research Association, Tokyo (Japan)

    1996-12-31

    This Abstract summarizes a series of presentations to the present Seminar, covering various aspects of a 1,000 kW PEFC system envisaged as propulsion system to equip a 1,500 DWT Cargo vessel, reported under the following titles: (1) Performance Evaluation of 1kW PEFC (2) Performance of Catalysts for CO Removal by Methanation Reaction (3) Development of a Selective Oxidation CO Removal Reactor for Methanol Reformate Gas (4) Experimental Investigation on a Turbine Compressor for Air Supply System of a Fuel Cell (5) Dynamic Simulator for PEFC Propulsion Plant (6) Power Feature Required for PEFC Powered Electric Propulsion Ship The purpose of this study is to identify subjects requiring further development toward the realization of a practical fuel cell system to power ships.

  12. Progress report on nuclear propulsion for space exploration and science

    Science.gov (United States)

    Bennett, Gary L.; Miller, Thomas J.

    1993-01-01

    NASA is continuing its work in cooperation with the Department of Energy (DOE) on nuclear propulsion - both nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP). The focus of the NTP studies remains on piloted and cargo missions to Mars (with precursor missions to the moon) although studies are under way to examine the potential uses of NTP for science missions. The focus of the NEP studies has shifted to space science missions with consideration of combining a science mission with an earlier demonstration of NEP using the SP-100 space nuclear reactor power system. Both NTP and NEP efforts are continuing in 1993 to provide a good foundation for science and exploration planners. Both NTP and NEP provide a very important transportation resource and in a number of cases enable missions that could not otherwise be accomplished.

  13. Design and Performance of the NASA SCEPTOR Distributed Electric Propulsion Flight Demonstrator

    Science.gov (United States)

    Borer, Nicholas K.; Patterson, Michael D.; Viken, Jeffrey K.; Moore, Mark D.; Clarke, Sean; Redifer, Matthew E.; Christie, Robert J.; Stoll, Alex M.; Dubois, Arthur; Bevirt, JoeBen; Gibson, Andrew R.; Foster, Trevor J.; Osterkamp, Philip G.

    2016-01-01

    Distributed Electric Propulsion (DEP) technology uses multiple propulsors driven by electric motors distributed about the airframe to yield beneficial aerodynamic-propulsion interaction. The NASA SCEPTOR flight demonstration project will retrofit an existing internal combustion engine-powered light aircraft with two types of DEP: small "high-lift" propellers distributed along the leading edge of the wing which accelerate the flow over the wing at low speeds, and larger cruise propellers co-located with each wingtip for primary propulsive power. The updated high-lift system enables a 2.5x reduction in wing area as compared to the original aircraft, reducing drag at cruise and shifting the velocity for maximum lift-to-drag ratio to a higher speed, while maintaining low-speed performance. The wingtip-mounted cruise propellers interact with the wingtip vortex, enabling a further efficiency increase that can reduce propulsive power by 10%. A tradespace exploration approach is developed that enables rapid identification of salient trades, and subsequent creation of SCEPTOR demonstrator geometries. These candidates were scrutinized by subject matter experts to identify design preferences that were not modeled during configuration exploration. This exploration and design approach is used to create an aircraft that consumes an estimated 4.8x less energy at the selected cruise point when compared to the original aircraft.

  14. A comparison of chemical propulsion, nuclear thermal propulsion, and multimegawatt electric propulsion for Mars missions

    Science.gov (United States)

    Frisbee, Robert H.; Blandino, John J.; Leifer, Stephanie D.

    1991-01-01

    Various propulsion systems are considered for a split-mission piloted exploration of Mars in terms of reducing total initial mass in low earth orbit (IMLEO) as well as trip time. Aerobraked nuclear thermal propulsion (NTP), multimegawatt (MMW) nuclear electric propulsion (NEP), and MMW solar electric propulsion (SEP) are discussed and compared to a baseline aerobraked chemical propulsion system. NTP offers low IMLEO, MMW NEP allows both low IMLEO and a short trip time, and both nuclear systems offer better mission characteristics than the chemical system. The MMW SEP is concluded to be less efficient in spite of a lower IMLEO because of the system's higher specific mass and nonconstant power production. It is recommended that MMW NEP and SEP systems be considered for application to Mars cargo missions. The NEP system is concluded to be the most effective propulsion configuration for piloted Mars missions and lunar base missions.

  15. Nuclear modules for space electric propulsion

    Science.gov (United States)

    Difilippo, F. C.

    1998-01-01

    The analysis of interplanetary cargo and piloted missions requires the calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options in an iterative way by using simulations that run fast on a computer. As a consequence of a collaborative agreement between the National Aeronautic and Space Administration (NASA) and the Oak Ridge National Laboratory (ORNL), ORNL has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition, dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one

  16. Nuclear modules for space electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Difilippo, F.C. [Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 6025, Oak Ridge, Tennessee 37831-6363 (United States)

    1998-01-01

    The analysis of interplanetary cargo and piloted missions requires the calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options in an iterative way by using simulations that run fast on a computer. As a consequence of a collaborative agreement between the National Aeronautic and Space Administration (NASA) and the Oak Ridge National Laboratory (ORNL), ORNL has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition, dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one

  17. Miniature propulsion systems

    Science.gov (United States)

    Campbell, John G.

    1992-07-01

    Miniature solenoid valves, check valves and a hydrazine gas generator typify the miniaturization used in the liquid propulsion system for the Army Light Weight Exo-Atmospheric Projectile (LEAP). The pressure control subsystem uses a solenoid valve weighing 24 grams to control flow of helium to pressurize the propellant tanks. The attitude control subsystem uses a gas generator weighing 71 grams to produce decomposed hydrazine as the gaseous propellant for miniature 1 lbf ACS thrusters weighing 5.4 grams. The successful use of these miniature components in development tests and a hover test of the LEAP is described.

  18. Integrated propulsion and power modeling for bimodal nuclear thermal rockets

    Science.gov (United States)

    Clough, Joshua

    Bimodal nuclear thermal rocket (BNTR) engines have been shown to reduce the weight of space vehicles to the Moon, Mars, and beyond by utilizing a common reactor for propulsion and power generation. These savings lead to reduced launch vehicle costs and/or increased mission safety and capability. Experimental work of the Rover/NERVA program demonstrated the feasibility of NTR systems for trajectories to Mars. Numerous recent studies have demonstrated the economic and performance benefits of BNTR operation. Relatively little, however, is known about the reactor-level operation of a BNTR engine. The objective of this dissertation is to develop a numerical BNTR engine model in order to study the feasibility and component-level impact of utilizing a NERVA-derived reactor as a heat source for both propulsion and power. The primary contribution is to provide the first-of-its-kind model and analysis of a NERVA-derived BNTR engine. Numerical component models have been modified and created for the NERVA reactor fuel elements and tie tubes, including 1-D coolant thermodynamics and radial thermal conduction with heat generation. A BNTR engine system model has been created in order to design and analyze an engine employing an expander-cycle nuclear rocket and Brayton cycle power generator using the same reactor. Design point results show that a 316 MWt reactor produces a thrust and specific impulse of 66.6 kN and 917 s, respectively. The same reactor can be run at 73.8 kWt to produce the necessary 16.7 kW electric power with a Brayton cycle generator. This demonstrates the feasibility of BNTR operation with a NERVA-derived reactor but also indicates that the reactor control system must be able to operate with precision across a wide power range, and that the transient analysis of reactor decay heat merits future investigation. Results also identify a significant reactor pressure-drop limitation during propulsion and power-generation operation that is caused by poor tie tube

  19. Design of an Electric Propulsion System for SCEPTOR

    Science.gov (United States)

    Dubois, Arthur; van der Geest, Martin; Bevirt, JoeBen; Clarke, Sean; Christie, Robert J.; Borer, Nicholas K.

    2016-01-01

    The rise of electric propulsion systems has pushed aircraft designers towards new and potentially transformative concepts. As part of this effort, NASA is leading the SCEPTOR program which aims at designing a fully electric distributed propulsion general aviation aircraft. This article highlights critical aspects of the design of SCEPTOR's propulsion system conceived at Joby Aviation in partnership with NASA, including motor electromagnetic design and optimization as well as cooling system integration. The motor is designed with a finite element based multi-objective optimization approach. This provides insight into important design tradeoffs such as mass versus efficiency, and enables a detailed quantitative comparison between different motor topologies. Secondly, a complete design and Computational Fluid Dynamics analysis of the air breathing cooling system is presented. The cooling system is fully integrated into the nacelle, contains little to no moving parts and only incurs a small drag penalty. Several concepts are considered and compared over a range of operating conditions. The study presents trade-offs between various parameters such as cooling efficiency, drag, mechanical simplicity and robustness.

  20. Hybrid propulsion systems for space exploration missions

    Science.gov (United States)

    Darooka, D. K.

    1991-01-01

    Combinations of nuclear thermal propulsion (NTP), nuclear electric propulsion (NEP), and chemical propulsion are discussed. Technical details are given in viewgraph form. The characteristics of each configuration are discussed, particularly thrust characteristics.

  1. Additive Manufacturing of Aerospace Propulsion Components

    Science.gov (United States)

    Misra, Ajay K.; Grady, Joseph E.; Carter, Robert

    2015-01-01

    The presentation will provide an overview of ongoing activities on additive manufacturing of aerospace propulsion components, which included rocket propulsion and gas turbine engines. Future opportunities on additive manufacturing of hybrid electric propulsion components will be discussed.

  2. Overview on hybrid propulsion

    Science.gov (United States)

    Calabro, M.

    2011-10-01

    Aside of research works, this historical survey shows propulsion units used by students for small satellites and for gas generation, or those for the Space Ship One, even if LOx/HTPB was studied and tested in large motors for its potential very low cost; however, this combination highlights a series of technical problems without any performance advantage over the existing LOx/Kerosene family and never been operational for ETO applications. The particularity of hybrid propulsion is to use the state-of-the-art of both liquids and solids; the only show stopper is the propellant itself. The past work focused on LOx/HTPB (selected for its low cost) appears to be a dead-end (combustion problems and global low performances resulting from a high level of residuals). The solution that appears through the past experience is the addition of hydrides to a binder (HTPB or other) or to a binder and a homogeneous fuel or a mixture of both, with or without others additives; within these solutions some will not present any manufacturing problem and some may have a low cost. Nevertheless, the studies of the following phases have to demonstrate the compatibility of the potential regression rate range with a high-performance global design of a hybrid Motor and the manufacturing at a reasonable cost of a hydride giving a high level of performances.

  3. Nuclear propulsion for space exploration

    Science.gov (United States)

    Miller, Thomas J.; Bennett, Gary L.

    1992-01-01

    The results of some recent studies of the application of both nuclear electric and nuclear thermal propulsion systems in space exploration are presented. Issues that require further study and which have a significant effect on the propulsion system design and selection are identified. Attention is given to robotic missions, lunar piloted and cargo missions, and Mars missions.

  4. Numerical Propulsion System Simulation (NPSS): An Award Winning Propulsion System Simulation Tool

    Science.gov (United States)

    Stauber, Laurel J.; Naiman, Cynthia G.

    2002-01-01

    The Numerical Propulsion System Simulation (NPSS) is a full propulsion system simulation tool used by aerospace engineers to predict and analyze the aerothermodynamic behavior of commercial jet aircraft, military applications, and space transportation. The NPSS framework was developed to support aerospace, but other applications are already leveraging the initial capabilities, such as aviation safety, ground-based power, and alternative energy conversion devices such as fuel cells. By using the framework and developing the necessary components, future applications that NPSS could support include nuclear power, water treatment, biomedicine, chemical processing, and marine propulsion. NPSS will dramatically reduce the time, effort, and expense necessary to design and test jet engines. It accomplishes that by generating sophisticated computer simulations of an aerospace object or system, thus enabling engineers to "test" various design options without having to conduct costly, time-consuming real-life tests. The ultimate goal of NPSS is to create a numerical "test cell" that enables engineers to create complete engine simulations overnight on cost-effective computing platforms. Using NPSS, engine designers will be able to analyze different parts of the engine simultaneously, perform different types of analysis simultaneously (e.g., aerodynamic and structural), and perform analysis in a more efficient and less costly manner. NPSS will cut the development time of a new engine in half, from 10 years to 5 years. And NPSS will have a similar effect on the cost of development: new jet engines will cost about a billion dollars to develop rather than two billion. NPSS is also being applied to the development of space transportation technologies, and it is expected that similar efficiencies and cost savings will result. Advancements of NPSS in fiscal year 2001 included enhancing the NPSS Developer's Kit to easily integrate external components of varying fidelities, providing

  5. Controls and Health Management Technologies for Intelligent Aerospace Propulsion Systems

    Science.gov (United States)

    Garg, Sanjay

    2004-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Technology Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of an Intelligent Engine. The key enabling technologies for an Intelligent Engine are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Technology Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  6. High-Lift Propeller System Configuration Selection for NASA's SCEPTOR Distributed Electric Propulsion Flight Demonstrator

    Science.gov (United States)

    Patterson, Michael D.; Derlaga, Joseph M.; Borer, Nicholas K.

    2016-01-01

    Although the primary function of propellers is typically to produce thrust, aircraft equipped with distributed electric propulsion (DEP) may utilize propellers whose main purpose is to act as a form of high-lift device. These \\high-lift propellers" can be placed upstream of wing such that, when the higher-velocity ow in the propellers' slipstreams interacts with the wing, the lift is increased. This technique is a main design feature of a new NASA advanced design project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR). The goal of the SCEPTOR project is design, build, and y a DEP aircraft to demonstrate that such an aircraft can be much more ecient than conventional designs. This paper provides details into the high-lift propeller system con guration selection for the SCEPTOR ight demonstrator. The methods used in the high-lift propeller system conceptual design and the tradeo s considered in selecting the number of propellers are discussed.

  7. Design of a multivariable integrated control for a supersonic propulsion system. [variable stream control engine

    Science.gov (United States)

    Beattie, E. C.

    1980-01-01

    An inlet/engine/nozzle integrated control mode for the propulsion system of an advanced supersonic commercial aircraft was studied. Results show that integration of these control functions can result in both operational and performance benefits for the propulsion system. For example, this integrated control mode may make it possible to minimize the use of inlet bypass doors for shock position control. This may be of benefit to the aircraft as a result of minimizing: (1) bypass bleed drag effects; (2) perturbations to the aircraft resulting from the side thrust effect of the bypass bleeds; and (3) potential unstarts of the inlet. A conceptual integrated control mode was developed which makes use of many cross coupling paths between inlet and engine control variables and inlet and engine sensed variables. A multivariable control design technique based upon linear quadratic regulator theory was applied to designing the feedback gains for this control to allow a simulation evaluation of the benefits of the integrated control mode.

  8. In-Space Propulsion (346620) Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Technologies include, but are not limited to, electric and advanced chemical propulsion, propellantless propulsion such as aerocapture and solar sails, sample...

  9. Review of Nuclear Thermal Propulsion Ground Test Options

    Science.gov (United States)

    Coote, David J.; Power, Kevin P.; Gerrish, Harold P.; Doughty, Glen

    2015-01-01

    High efficiency rocket propulsion systems are essential for humanity to venture beyond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rockets with relatively high thrust and twice the efficiency of highest performing chemical propellant engines. NTP utilizes the coolant of a nuclear reactor to produce propulsive thrust. An NTP engine produces thrust by flowing hydrogen through a nuclear reactor to cool the reactor, heating the hydrogen and expelling it through a rocket nozzle. The hot gaseous hydrogen is nominally expected to be free of radioactive byproducts from the nuclear reactor; however, it has the potential to be contaminated due to off-nominal engine reactor performance. NTP ground testing is more difficult than chemical engine testing since current environmental regulations do not allow/permit open air testing of NTP as was done in the 1960's and 1970's for the Rover/NERVA program. A new and innovative approach to rocket engine ground test is required to mitigate the unique health and safety risks associated with the potential entrainment of radioactive waste from the NTP engine reactor core into the engine exhaust. Several studies have been conducted since the ROVER/NERVA program in the 1970's investigating NTP engine ground test options to understand the technical feasibility, identify technical challenges and associated risks and provide rough order of magnitude cost estimates for facility development and test operations. The options can be divided into two distinct schemes; (1) real-time filtering of the engine exhaust and its release to the environment or (2) capture and storage of engine exhaust for subsequent processing.

  10. Instellar Exploration: Propulsion Options for Precursors and Beyond

    Science.gov (United States)

    Johnson, Charles Les; Leifer, Stephanie

    1999-01-01

    NASA is considering a mission to explore near-interstellar space early in the next decade as the first step toward a vigorous interstellar exploration program. A key enabling technology for such an ambitious science and exploration effort is the development of propulsion systems capable of providing fast trip times; mission duration should not exceed the professional lifetime of the investigative team. Advanced propulsion technologies that might support an interstellar precursor mission early in the next century include some combination of solar sails, nuclear electric propulsion systems, and aerogravity assists. Follow-on missions to far beyond the heliopause will require the development of propulsion technologies that are only at the conceptual stage today. These include 1) matter-antimatter annihilation, 2) beamed-energy sails, and 3) fusion systems. For years, the scientific community has been interested in the development of solar sail technology to support exploration of the inner and outer planets. Progress in thin-film technology and the development of technologies that may enable the remote assembly of large sails in space are only now maturing to the point where ambitious interstellar precursor missions can be considered. Electric propulsion is now being demonstrated for planetary exploration by the Deep Space 1 mission. The primary issues for it's adaptation to interstellar precursor applications include the nuclear reactor that would be required and the engine lifetime. For further term interstellar missions, matter-antimatter annihilation propulsion system concepts have the highest energy density of any propulsion systems using onboard propellants. However, there are numerous challenges to production and storage of antimatter that must be overcome before it can be seriously considered for interstellar flight. Off-board energy systems (laser sails) are candidates for long-distance interstellar flight but development of component technologies and

  11. Assessment of Technologies for Noncryogenic Hybrid Electric Propulsion

    Science.gov (United States)

    Dever, Timothy P.; Duffy, Kirsten P.; Provenza, Andrew J.; Loyselle, Patricia L.; Choi, Benjamin B.; Morrison, Carlos R.; Lowe, Angela M.

    2015-01-01

    The Subsonic Fixed Wing Project of NASA's Fundamental Aeronautics Program is researching aircraft propulsion technologies that will lower noise, emissions, and fuel burn. One promising technology is noncryogenic electric propulsion, which could be either hybrid electric propulsion or turboelectric propulsion. Reducing dependence on the turbine engine would certainly reduce emissions. However, the weight of the electricmotor- related components that would have to be added would adversely impact the benefits of the smaller turbine engine. Therefore, research needs to be done to improve component efficiencies and reduce component weights. This study projects technology improvements expected in the next 15 and 30 years, including motor-related technologies, power electronics, and energy-storage-related technologies. Motor efficiency and power density could be increased through the use of better conductors, insulators, magnets, bearings, structural materials, and thermal management. Energy storage could be accomplished through batteries, flywheels, or supercapacitors, all of which expect significant energy density growth over the next few decades. A first-order approximation of the cumulative effect of each technology improvement shows that motor power density could be improved from 3 hp/lb, the state of the art, to 8 hp/lb in 15 years and 16 hp/lb in 30 years.

  12. Advanced transportation system studies. Alternate propulsion subsystem concepts: Propulsion database

    Science.gov (United States)

    Levack, Daniel

    1993-01-01

    The Advanced Transportation System Studies alternate propulsion subsystem concepts propulsion database interim report is presented. The objective of the database development task is to produce a propulsion database which is easy to use and modify while also being comprehensive in the level of detail available. The database is to be available on the Macintosh computer system. The task is to extend across all three years of the contract. Consequently, a significant fraction of the effort in this first year of the task was devoted to the development of the database structure to ensure a robust base for the following years' efforts. Nonetheless, significant point design propulsion system descriptions and parametric models were also produced. Each of the two propulsion databases, parametric propulsion database and propulsion system database, are described. The descriptions include a user's guide to each code, write-ups for models used, and sample output. The parametric database has models for LOX/H2 and LOX/RP liquid engines, solid rocket boosters using three different propellants, a hybrid rocket booster, and a NERVA derived nuclear thermal rocket engine.

  13. Multimegawatt nuclear power systems for nuclear electric propulsion

    Science.gov (United States)

    George, Jeffrey A.

    1991-01-01

    Results from systems analysis studies of multimegawatt nuclear power systems are presented for application to nuclear electric propulsion. Specific mass estimates are presented for nearer term SP-100 reactor-based potassium Rankine and Brayton power systems for piloted and cargo missions. Growth SP-100/Rankine systems were found to range from roughly 7 to 10 kg/kWe specific mass depending on full power life requirements. The SP-100/Rankine systems were also found to result in a 4-kg/kWe savings in specific mass over SP-100/Brayton systems. The potential of advanced, higher temperature reactor and power conversion technologies for achieving reduced mass Rankine and Brayton systems was also investigated. A target goal of 5 kg/kWe specific mass was deemed reasonable given either 1400 K potassium Rankine with 1500 K lithium-cooled reactors or 2000 K gas cooled reactors with Brayton conversion.

  14. Anatomy of Nanoscale Propulsion.

    Science.gov (United States)

    Yadav, Vinita; Duan, Wentao; Butler, Peter J; Sen, Ayusman

    2015-01-01

    Nature supports multifaceted forms of life. Despite the variety and complexity of these forms, motility remains the epicenter of life. The applicable laws of physics change upon going from macroscales to microscales and nanoscales, which are characterized by low Reynolds number (Re). We discuss motion at low Re in natural and synthetic systems, along with various propulsion mechanisms, including electrophoresis, electrolyte diffusiophoresis, and nonelectrolyte diffusiophoresis. We also describe the newly uncovered phenomena of motility in non-ATP-driven self-powered enzymes and the directional movement of these enzymes in response to substrate gradients. These enzymes can also be immobilized to function as fluid pumps in response to the presence of their substrates. Finally, we review emergent collective behavior arising from interacting motile species, and we discuss the possible biomedical applications of the synthetic nanobots and microbots.

  15. Magnetohydrodynamic Augmented Propulsion Experiment

    Science.gov (United States)

    Litchford, Ron J.

    2008-01-01

    Over the past several years, efforts have been under way to design and develop an operationally flexible research facility for investigating the use of cross-field MHD accelerators as a potential thrust augmentation device for thermal propulsion systems. The baseline configuration for this high-power experimental facility utilizes a 1.5-MWe multi-gas arc-heater as a thermal driver for a 2-MWe MHD accelerator, which resides in a large-bore 2-tesla electromagnet. A preliminary design study using NaK seeded nitrogen as the working fluid led to an externally diagonalized segmented MHD channel configuration based on an expendable heat-sink design concept. The current status report includes a review of engineering/design work and performance optimization analyses and summarizes component hardware fabrication and development efforts, preliminary testing results, and recent progress toward full-up assembly and testing

  16. Circulation control STOL aircraft design aspects

    Science.gov (United States)

    Loth, John L.

    1987-01-01

    Since Davidson patented Circulation Control Airfoils in 1960, there have been only 2 aircraft designed and flown with circulation control (CC). Designing with CC is complex for the following reasons: the relation between lift increase and blowing momentum is nonlinear; for good cruise performance one must change the wing geometry in flight from a round to a sharp trailing edge. The bleed air from the propulsion engines or an auxiliary compressor, must be used efficiently. In designing with CC, the propulsion and control aspects are just as important as aerodynamics. These design aspects were examined and linearized equations are presented in order to facilitate a preliminary analysis of the performance potential of CC. The thrust and lift requirements for takeoff make the calculated runway length very sensitive to the bleed air ratio. Thrust vectoring improves performance and can offset nose down pitching moments. The choice of blowing jet to free stream velocity ratio determines the efficiency of applying bleed air power.

  17. Overview of materials technologies for space nuclear power and propulsion

    Science.gov (United States)

    Zinkle, S. J.; Ott, L. J.; Ingersoll, D. T.; Ellis, R. J.; Grossbeck, M. L.

    2002-01-01

    A wide range of different space nuclear systems are currently being evaluated as part of the DOE Special Purpose Fission Technology program. The near-term subset of systems scheduled to be evaluated range from 50 kWe gas-, pumped liquid metal-, or liquid metal heat pipe-cooled reactors for space propulsion to 3 kWe heat pipe or pumped liquid metal systems for Mars surface power applications. The current status of the materials technologies required for the successful development of near-term space nuclear power and propulsion systems is reviewed. Materials examined in this overview include fuels (UN, UO2, UZrH), cladding and structural materials (stainless steel, superalloys, refractory alloys), neutron reflector materials (Be, BeO), and neutron shield materials (B4C,LiH). The materials technologies issues are considerably less demanding for the 3 kWe reactor systems due to lower operating temperatures, lower fuel burnup, and lower radiation damage levels. A few reactor subcomponents in the 3 kWe reactors under evaluation are being used near or above their engineering limits, which may adversely affect the 5 to 10 year lifetime design goal. It appears that most of these issues for the 3 kWe reactor systems can be accommodated by incorporating a few engineering design changes. Design limits (temperature, burnup, stress, radiation levels) for the various materials proposed for space nuclear reactors will be summarized. For example, the temperature and stress limits for Type 316 stainless steel in the 3 kWe Na-cooled heat pipe reactor (Stirling engine) concept will be controlled by thermal creep and CO2 corrosion considerations rather than radiation damage issues. Conversely, the lower operating temperature limit for the LiH shield material will likely be defined by ionizing radiation damage (radiolysis)-induced swelling, even for the relatively low radiation doses associated with the 3 kWe reactor. .

  18. Nuclear Electric Propulsion for Deep Space Exploration

    Science.gov (United States)

    Schmidt, G.

    Nuclear electric propulsion (NEP) holds considerable promise for deep space exploration in the future. Research and development of this technology is a key element of NASA's Nuclear Systems Initiative (NSI), which is a top priority in the President's FY03 NASA budget. The goal is to develop the subsystem technologies that will enable application of NEP for missions to the outer planets and beyond by the beginning of next decade. The high-performance offered by nuclear-powered electric thrusters will benefit future missions by (1) reducing or eliminating the launch window constraints associated with complex planetary swingbys, (2) providing the capability to perform large spacecraft velocity changes in deep space, (3) increasing the fraction of vehicle mass allocated to payload and other spacecraft systems, and, (3) in some cases, reducing trip times over other propulsion alternatives. Furthermore, the nuclear energy source will provide a power-rich environment that can support more sophisticated science experiments and higher- speed broadband data transmission than current deep space missions. This paper addresses NASA's plans for NEP, and discusses the subsystem technologies (i.e., nuclear reactors, power conversion and electric thrusters) and system concepts being considered for the first generation of NEP vehicles.

  19. Nuclear space propulsion initiative in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Lamartine Nogueira Frutuoso; Nascimento, Jamil Alves do [Institute for Advanced Studies, Sao Jose dos Campos, SP (Brazil). Nuclear Energy Div.]. E-mail: guimarae@ieav.cta.br; Camillo, Giannino Ponchio [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)]. E-mail: gianninocamillo@gmail.com

    2007-07-01

    This paper presents an account of the initial nuclear space propulsion activities at the Institute for Advanced Studies. At this point two laboratories have been assembled: one for heat pipe construction and testing and another one for thermal cycle analysis. It has also started the design of a thermal loop to study heat extraction and electricity generation in a NEP, the development of a dynamic mathematical model to represent this thermal loop, the selection of gas mixtures as working fluids to the thermal cycle, the production of two heat pipes for properties measurements and to establish design criteria to assemble heat pipes to be used as a heat rejection system. For the reactor core area a review of the core concepts proposed in other countries for space applications was initiated. This review will enable the choice of a core concept suitable to Brazilian needs in space. (author)

  20. NASA's Nuclear Thermal Propulsion Project

    Science.gov (United States)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.; Scott, John; Power, Kevin P.

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC- 3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP).

  1. Numerical Propulsion System Simulation: A Common Tool for Aerospace Propulsion Being Developed

    Science.gov (United States)

    Follen, Gregory J.; Naiman, Cynthia G.

    2001-01-01

    The NASA Glenn Research Center is developing an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). This simulation is initially being used to support aeropropulsion in the analysis and design of aircraft engines. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the Aviation Safety Program and Advanced Space Transportation. NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes using the Common Object Request Broker Architecture (CORBA) in the NPSS Developer's Kit to facilitate collaborative engineering. The NPSS Developer's Kit will provide the tools to develop custom components and to use the CORBA capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities will extend NPSS from a zero-dimensional simulation tool to a multifidelity, multidiscipline system-level simulation tool for the full life cycle of an engine.

  2. The Nuclear Cryogenic Propulsion Stage

    Science.gov (United States)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Belvin, Anthony D.; Borowski, Stanley K.; Scott, John H.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) development efforts in the United States have demonstrated the technical viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes in a single burn (NRX-A6 test). Results from Project Rover indicated that an NTP system with a high thrust-to-weight ratio and a specific impulse greater than 900 s would be feasible. Excellent results were also obtained by the former Soviet Union. Although historical programs had promising results, many factors would affect the development of a 21st century nuclear thermal rocket (NTR). Test facilities built in the US during Project Rover no longer exist. However, advances in analytical techniques, the ability to utilize or adapt existing facilities and infrastructure, and the ability to develop a limited number of new test facilities may enable affordable development, qualification, and utilization of a Nuclear Cryogenic Propulsion Stage (NCPS). Bead-loaded graphite fuel was utilized throughout the Rover/NERVA program, and coated graphite composite fuel (tested in the Nuclear Furnace) and cermet fuel both show potential for even higher performance than that demonstrated in the Rover/NERVA engine tests.. NASA's NCPS project was initiated in October, 2011, with the goal of assessing the affordability and viability of an NCPS. FY 2014 activities are focused on fabrication and test (non-nuclear) of both coated graphite composite fuel elements and cermet fuel elements. Additional activities include developing a pre-conceptual design of the NCPS stage and evaluating affordable strategies for NCPS development, qualification, and utilization. NCPS stage designs are focused on supporting human Mars

  3. Rankine-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  4. Rankline-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  5. Propulsion Systems Laboratory, Bldg. 125

    Data.gov (United States)

    Federal Laboratory Consortium — The Propulsion Systems Laboratory (PSL) is NASAs only ground test facility capable of providing true altitude and flight speed simulation for testing full scale gas...

  6. Propulsion IVHM Technology Experiment Overview

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA researchers recently demonstrated successful real-time fault detection and isolation of a virtual reusable launch vehicle main propulsion system. Using a...

  7. Superconducting Aero Propulsion Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Superconducting electric propulsion systems will yield improvements in total ownership costs due to the simplicity of electric drive when compared with gas turbine...

  8. Z-Pinch fusion-based nuclear propulsion

    Science.gov (United States)

    Miernik, J.; Statham, G.; Fabisinski, L.; Maples, C. D.; Adams, R.; Polsgrove, T.; Fincher, S.; Cassibry, J.; Cortez, R.; Turner, M.; Percy, T.

    2013-02-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human space flight missions. The Z-Pinch dense plasma focus method is a Magneto-Inertial Fusion (MIF) approach that may potentially lead to a small, low cost fusion reactor/engine assembly [1]. Recent advancements in experimental and theoretical understanding of this concept suggest favorable scaling of fusion power output yield [2]. The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this process can be pulsed over short timescales (10-6 s). This type of plasma formation is widely used in the field of Nuclear Weapons Effects testing in the defense industry, as well as in fusion energy research. A Z-Pinch propulsion concept was designed for a vehicle based on a previous fusion vehicle study called "Human Outer Planet Exploration" (HOPE), which used Magnetized Target Fusion (MTF) [3] propulsion. The reference mission is the transport of crew and cargo to Mars and back, with a reusable vehicle. The analysis of the Z-Pinch MIF propulsion system concludes that a 40-fold increase of Isp over chemical propulsion is predicted. An Isp of 19,436 s and thrust of 3812 N s/pulse, along with nearly doubling the predicted payload mass fraction, warrants further development of enabling technologies.

  9. Magnetized Target Fusion in Advanced Propulsion Research

    Science.gov (United States)

    Cylar, Rashad

    2003-01-01

    The Magnetized Target Fusion (MTF) Propulsion lab at NASA Marshall Space Flight Center in Huntsville, Alabama has a program in place that has adopted to attempt to create a faster, lower cost and more reliable deep space transportation system. In this deep space travel the physics and development of high velocity plasma jets must be understood. The MTF Propulsion lab is also in attempt to open up the solar system for human exploration and commercial use. Fusion, as compared to fission, is just the opposite. Fusion involves the light atomic nuclei combination to produce denser nuclei. In the process, the energy is created by destroying the mass according to the distinguished equation: E = mc2 . Fusion energy development is being pursued worldwide as a very sustainable form of energy that is environmentally friendly. For the purposes of space exploration fusion reactions considered include the isotopes of hydrogen-deuterium (D2) and tritium (T3). Nuclei have an electrostatic repulsion between them and in order for the nuclei to fuse this repulsion must be overcome. One technique to bypass repulsion is to heat the nuclei to very high temperatures. The temperatures vary according to the type of reactions. For D-D reactions, one billion degrees Celsius is required, and for D-T reactions, one hundred million degrees is sufficient. There has to be energy input for useful output to be obtained form the fusion To make fusion propulsion practical, the mass, the volume, and the cost of the equipment to produce the reactions (generally called the reactor) need to be reduced by an order of magnitude or two from the state-of-the-art fusion machines. Innovations in fusion schemes are therefore required, especially for obtaining thrust for propulsive applications. Magnetized target fusion (MTF) is one of the innovative fusion concepts that have emerged over the last several years. MSFC is working with Los Alamos National Laboratory and other research groups in studying the

  10. Selecting hydrocarbon rocket propulsion technology

    Science.gov (United States)

    Martin, J. A.

    1986-01-01

    Past studies have shown that the dry weight of future earth-to-orbit vehicles can be reduced by the combined use of hydrogen and hydrocarbon propulsion compared to all-hydrogen propulsion. This paper shows that the use of certain hydrocarbon engines with hydrogen engines produces the lowest vehicle dry mass. These hydrocarbon engines use propane or RP-1 fuel, hydrogen cooling, and hydrogen-rich gas generators. Integration of the hydrogen and hydrocarbon nozzles is also beneficial.

  11. Nuclear-electric magnetohydrodynamic propulsion for submarine. Master's thesis

    Energy Technology Data Exchange (ETDEWEB)

    Bednarczyk, A.A.

    1989-05-01

    The thesis analyzes the superconducting technology for a shipboard magnetohydrodynamic propulsion system. Based on the the principles of magnetohydrodynamics (MHD), the concept of open-water efficiency was used to optimize the preliminary design of the MHD thruster. After the baseline submarine hull modeled after the Los Angeles class submarine was selected, propulsive efficiency and the top speed for four variant MHD submarines were evaluated. The design criteria were set at a 100-MWt nuclear reactor power upper limit and a requirement of 30 knots for the top speed. This required advanced reactor plants and advanced energy conversion systems. The selection of High Temperature Gas Reactor (HTGR) and Liquid-Metal Fast Breeder Reactor (LMFBR) was based on the combined merits of safety, environmental impact, high source temperature and maximum-volume power density (KW/L). With the reactor outlet temperatures of 2000 K, direct-cycle energy conversion-systems gave the best results in terms of thermal efficiency and propulsion plant power density. Two energy conversion systems selected were closed-cycle gas turbine geared to a superconducting generator, and closed-cycle liquid-metal MHD generator. Based on submarine reliability and safety, the option of using an intermediate heat exchanger was also considered. Finally, non-nuclear support systems affected by the advanced power plant and MHD propulsion, stressing submarine safety, are proposed.

  12. Hybrid Propulsion Technology Program

    Science.gov (United States)

    Jensen, G. E.; Holzman, A. L.

    1990-01-01

    Future launch systems of the United States will require improvements in booster safety, reliability, and cost. In order to increase payload capabilities, performance improvements are also desirable. The hybrid rocket motor (HRM) offers the potential for improvements in all of these areas. The designs are presented for two sizes of hybrid boosters, a large 4.57 m (180 in.) diameter booster duplicating the Advanced Solid Rocket Motor (ASRM) vacuum thrust-time profile and smaller 2.44 m (96 in.), one-quater thrust level booster. The large booster would be used in tandem, while eight small boosters would be used to achieve the same total thrust. These preliminary designs were generated as part of the NASA Hybrid Propulsion Technology Program. This program is the first phase of an eventual three-phaes program culminating in the demonstration of a large subscale engine. The initial trade and sizing studies resulted in preferred motor diameters, operating pressures, nozzle geometry, and fuel grain systems for both the large and small boosters. The data were then used for specific performance predictions in terms of payload and the definition and selection of the requirements for the major components: the oxidizer feed system, nozzle, and thrust vector system. All of the parametric studies were performed using realistic fuel regression models based upon specific experimental data.

  13. Mars Rocket Propulsion System

    Science.gov (United States)

    Zubrin, Robert; Harber, Dan; Nabors, Sammy

    2008-01-01

    A report discusses the methane and carbon monoxide/LOX (McLOx) rocket for ascent from Mars as well as other critical space propulsion tasks. The system offers a specific impulse over 370 s roughly 50 s higher than existing space-storable bio-propellants. Current Mars in-situ propellant production (ISPP) technologies produce impure methane and carbon monoxide in various combinations. While separation and purification of methane fuel is possible, it adds complexity to the propellant production process and discards an otherwise useful fuel product. The McLOx makes such complex and wasteful processes unnecessary by burning the methane/CO mixtures produced by the Mars ISPP systems without the need for further refinement. Despite the decrease in rocket-specific impulse caused by the CO admixture, the improvement offered by concomitant increased propellant density can provide a net improvement in stage performance. One advantage is the increase of the total amount of propellant produced, but with a decrease in mass and complexity of the required ISPP plant. Methane/CO fuel mixtures also may be produced by reprocessing the organic wastes of a Moon base or a space station, making McLOx engines key for a human Lunar initiative or the International Space Station (ISS) program. Because McLOx propellant components store at a common temperature, very lightweight and compact common bulkhead tanks can be employed, improving overall stage performance further.

  14. Aircraft Landing Dynamics Facility - A unique facility with new capabilities

    Science.gov (United States)

    Davis, P. A.; Stubbs, S. M.; Tanner, J. A.

    1985-01-01

    The Aircraft Landing Dynamics Facility (ALDF), formerly called the Landing Loads Track, is described. The paper gives a historical overview of the original NASA Langley Research Center Landing Loads Track and discusses the unique features of this national test facility. Comparisons are made between the original track characteristics and the new capabilities of the Aircraft Landing Dynamics Facility following the recently completed facility update. Details of the new propulsion and arresting gear systems are presented along with the novel features of the new high-speed carriage. The data acquisition system is described and the paper concludes with a review of future test programs.

  15. Towards Intelligent Control for Next Generation Aircraft

    Science.gov (United States)

    Acosta, Diana Michelle; KrishnaKumar, Kalmanje Srinvas; Frost, Susan Alane

    2008-01-01

    NASA Aeronautics Subsonic Fixed Wing Project is focused on mitigating the environmental and operation impacts expected as aviation operations triple by 2025. The approach is to extend technological capabilities and explore novel civil transport configurations that reduce noise, emissions, fuel consumption and field length. Two Next Generation (NextGen) aircraft have been identified to meet the Subsonic Fixed Wing Project goals - these are the Hybrid Wing-Body (HWB) and Cruise Efficient Short Take-Off and Landing (CESTOL) aircraft. The technologies and concepts developed for these aircraft complicate the vehicle s design and operation. In this paper, flight control challenges for NextGen aircraft are described. The objective of this paper is to examine the potential of state-of-the-art control architectures and algorithms to meet the challenges and needed performance metrics for NextGen flight control. A broad range of conventional and intelligent control approaches are considered, including dynamic inversion control, integrated flight-propulsion control, control allocation, adaptive dynamic inversion control, data-based predictive control and reinforcement learning control.

  16. NASA Electric Aircraft Test Bed (NEAT) Development Plan - Design, Fabrication, Installation

    Science.gov (United States)

    Dyson, Rodger W.

    2016-01-01

    As large airline companies compete to reduce emissions, fuel, noise, and maintenance costs, it is expected that more of their aircraft systems will shift from using turbofan propulsion, pneumatic bleed power, and hydraulic actuation, to instead using electrical motor propulsion, generator power, and electrical actuation. This requires new flight-weight and flight-efficient powertrain components, fault tolerant power management, and electromagnetic interference mitigation technologies. Moreover, initial studies indicate some combination of ambient and cryogenic thermal management and relatively high bus voltages when compared to state of practice will be required to achieve a net system benefit. Developing all these powertrain technologies within a realistic aircraft architectural geometry and under realistic operational conditions requires a unique electric aircraft testbed. This report will summarize existing testbed capabilities located in the U.S. and details the development of a unique complementary testbed that industry and government can utilize to further mature electric aircraft technologies.

  17. Low Energy Nuclear Reaction Aircraft- 2013 ARMD Seedling Fund Phase I Project

    Science.gov (United States)

    Wells, Douglas P.; McDonald, Robert; Campbell, Robbie; Chase, Adam; Daniel, Jason; Darling, Michael; Green, Clayton; MacGregor, Collin; Sudak, Peter; Sykes, Harrison; Waddington, Michael; Fredericks, William J.; Lepsch, Roger A.; Martin, John G.; Moore, Mark D.; Zawodny, Joseph M.; Felder, James L.; Snyder, Christopher A.

    2014-01-01

    This report serves as the final written documentation for the Aeronautic Research Mission Directorate (ARMD) Seedling Fund's Low Energy Nuclear Reaction (LENR) Aircraft Phase I project. The findings presented include propulsion system concepts, synergistic missions, and aircraft concepts. LENR is a form of nuclear energy that potentially has over 4,000 times the energy density of chemical energy sources. It is not expected to have any harmful emissions or radiation which makes it extremely appealing. There is a lot of interest in LENR, but there are no proven theories. This report does not explore the feasibility of LENR. Instead, it assumes that a working system is available. A design space exploration shows that LENR can enable long range and high speed missions. Six propulsion concepts, six missions, and four aircraft concepts are presented. This report also includes discussion of several issues and concerns that were uncovered during the study and potential research areas to infuse LENR aircraft into NASA's aeronautics research.

  18. Negative Mass Propulsion

    Science.gov (United States)

    Winterberg, F.

    Schrödinger's analysis of the Dirac equation gives a hint for the existence of negative masses hidden behind positive masses. But their use for propulsion by reducing the inertia of matter for example, in the limit of macroscopic bodied with zero rest mass, depends on a technical solution to free them from their imprisonment by positive masses. It appears that there are basically two ways this might be achieved: 1. By the application of strong electromagnetic or gravitational fields or by high particle energies. 2. By searching for places in the universe where nature has already done this separation, and from where the negative masses can be mined. The first of these two possibilities is for all practical means excluded, because if possible at all, it would depend on electromagnetic or gravitational fields with strength beyond what is technically attainable, or on extremely large likewise not attainable particle energies. With regard to the 2nd possibility, it has been observed that non-baryonic cold dark matter tends to accumulate near the center of galaxies, or places in the universe which have a large gravitational potential well. Because of the equivalence principle of general relativity, the attraction towards the center of a gravitational potential well, produced by a positive mass, is for negative masses the same as for positive masses, and large amounts of negative masses might have over billions of years been trapped in these gravitational potential wells. Now it just happens that the center of the moon is a potential well, not too deep that it cannot be reached by making a tunnel through the moon, not possible for the deeper potential well of the earth, where the temperature and pressure are too high. Making a tunnel through the moon, provided there is a good supply of negative mass, could revolutionize interstellar space flight. A sequence of thermonuclear shape charges would make such tunnel technically feasible.

  19. Archived 1976-1985 JPL Aircraft SAR Data

    Science.gov (United States)

    Thompson, Thomas W.; Blom, Ronald G.

    2016-01-01

    This report describes archived data from the Jet Propulsion Laboratory (JPL) aircraft radar expeditions in the mid-1970s through the mid-1980s collected by Ron Blom, JPL Radar Geologist. The dataset was collected during Ron's career at JPL from the 1970s through 2015. Synthetic Aperture Radar (SAR) data in the 1970s and 1980s were recorded optically on long strips of film. SAR imagery was produced via an optical, holographic technique that resulted in long strips of film imagery.

  20. The ahead project: Advanced hybrid engines for aircraft development

    OpenAIRE

    Rao, A G; Yin, F.

    2013-01-01

    Aviation is an ever-increasing market and more passengers and cargo are carried each year. The world is becoming ever more connected. However, this does come at a price: aviation has a marked in!uence on the environment. If aviation is to thrive in the future, breakthroughs in aircraft design and propulsion systems are needed. The AHEAD project is an attempt at achieving such a breakthrough.

  1. Review of evolving trends in blended wing body aircraft design

    Science.gov (United States)

    Okonkwo, Paul; Smith, Howard

    2016-04-01

    The desire to produce environmentally friendly aircraft that is aerodynamically efficient and capable of conveying large number of passengers over long ranges at reduced direct operating cost led aircraft designers to develop the Blended Wing Body (BWB) aircraft concept. The BWB aircraft represents a paradigm shift in the design of aircraft. The design provides aerodynamics and environmental benefits and is suitable for the integration of advanced systems and concepts like laminar flow technology, jet flaps and distributed propulsion. However, despite these benefits, the BWB is yet to be developed for commercial air transport due to several challenges. This paper reviews emerging trends in BWB aircraft design highlighting design challenges that have hindered the development of a BWB passenger transport aircraft. The study finds that in order to harness the advantages and reduce the deficiencies of a tightly coupled configuration like the BWB, a multidisciplinary design synthesis optimisation should be conducted with good handling and ride quality as objective functions within acceptable direct operating cost and noise bounds.

  2. Innovative Airbreathing Propulsion Concepts for Access to Space

    Science.gov (United States)

    Whitlow, Jr., Woodrow; Blech, Richard A.; Blankson, Isaiah M.

    2001-01-01

    This paper will present technologies and concepts for novel aeropropulsion systems. These technologies will enhance the safety of operations, reduce life cycle costs, and contribute to reduced costs of air travel and access to space. One of the goals of the NASA program is to reduce the carbon-dioxide emissions of aircraft engines. Engine concepts that use highly efficient fuel cell/electric drive technologies in hydrogen-fueled engines will be presented in the proposed paper. Carbon-dioxide emissions will be eliminated by replacing hydrocarbon fuel with hydrogen, and reduce NOx emissions through better combustion process control. A revolutionary exoskeletal engine concept, in which the engine drum is rotated, will be shown. This concept has the potential to allow a propulsion system that can be used for subsonic through hypersonic flight. Dual fan concepts that have ultra-high bypass ratios, low noise, and low drag will be presented. Flow-controlled turbofans and control-configured turbofans also will be discussed. To increase efficiency, a system of microengines distributed along lifting surfaces and on the fuselage is being investigated. This concept will be presented in the paper. Small propulsion systems for affordable, safe personal transportation vehicles will be discussed. These low-oil/oilless systems use technologies that enable significant cost and weight reductions. Pulse detonation engine-based hybrid-cycle and combined-cycle propulsion systems for aviation and space access will be presented.

  3. Unstructured CFD and Noise Prediction Methods for Propulsion Airframe Aeroacoustics

    Science.gov (United States)

    Pao, S. Paul; Abdol-Hamid, Khaled S.; Campbell, Richard L.; Hunter, Craig A.; Massey, Steven J.; Elmiligui, Alaa A.

    2006-01-01

    Using unstructured mesh CFD methods for Propulsion Airframe Aeroacoustics (PAA) analysis has the distinct advantage of precise and fast computational mesh generation for complex propulsion and airframe integration arrangements that include engine inlet, exhaust nozzles, pylon, wing, flaps, and flap deployment mechanical parts. However, accurate solution values of shear layer velocity, temperature and turbulence are extremely important for evaluating the usually small noise differentials of potential applications to commercial transport aircraft propulsion integration. This paper describes a set of calibration computations for an isolated separate flow bypass ratio five engine nozzle model and the same nozzle system with a pylon. These configurations have measured data along with prior CFD solutions and noise predictions using a proven structured mesh method, which can be used for comparison to the unstructured mesh solutions obtained in this investigation. This numerical investigation utilized the TetrUSS system that includes a Navier-Stokes solver, the associated unstructured mesh generation tools, post-processing utilities, plus some recently added enhancements to the system. New features necessary for this study include the addition of two equation turbulence models to the USM3D code, an h-refinement utility to enhance mesh density in the shear mixing region, and a flow adaptive mesh redistribution method. In addition, a computational procedure was developed to optimize both solution accuracy and mesh economy. Noise predictions were completed using an unstructured mesh version of the JeT3D code.

  4. Propulsion Challenges for Small Spacecraft: 2005

    Institute of Scientific and Technical Information of China (English)

    Vadim Zakirov; LI Luming

    2006-01-01

    Small (<100 kg) spacecrafts are being developed in many countries but their propulsion systems still have many challenges. Although there is demand for small spacecraft propulsion, the number of missions at present is small due to several commercial and technical reasons. Poor performance of existing small spacecraft propulsion systems is one of the main reasons for the small number of missions. Several reasons are given for the poor performance of existing small spacecraft propulsion. Suggested improvements focus on small spacecraft and propulsion hardware mass optimization rather than on specific impulse enhancement. Propellantless propulsion systems are also recommended for small spacecraft interplanetary missions.

  5. Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions

    Science.gov (United States)

    Nguyen, Nhan T.; Tuzcu, Ilhan

    2009-01-01

    This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.

  6. Nuclear thermal propulsion technology: Results of an interagency panel in FY 1991

    International Nuclear Information System (INIS)

    NASA LeRC was selected to lead nuclear propulsion technology development for NASA. Also participating in the project are NASA MSFC and JPL. The U.S. Department of Energy will develop nuclear technology and will conduct nuclear component, subsystem, and system testing at appropriate DOE test facilities. NASA program management is the responsibility of NASA/RP. The project includes both nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) technology development. This report summarizes the efforts of an interagency panel that evaluated NTP technology in 1991. Other panels were also at work in 1991 on other aspects of nuclear propulsion, and the six panels worked closely together. The charters for the other panels and some of their results are also discussed. Important collaborative efforts with other panels are highlighted. The interagency (NASA/DOE/DOD) NTP Technology Panel worked in 1991 to evaluate nuclear thermal propulsion concepts on a consistent basis. Additionally, the panel worked to continue technology development project planning for a joint project in nuclear propulsion for the Space Exploration Initiative (SEI). Five meetings of the panel were held in 1991 to continue the planning for technology development of nuclear thermal propulsion systems. The state-of-the-art of the NTP technologies was reviewed in some detail. The major technologies identified were as follows: fuels, coatings, and other reactor technologies; materials; instrumentation, controls, health monitoring and management, and associated technologies; nozzles; and feed system technology, including turbopump assemblies

  7. An historical collection of papers on nuclear thermal propulsion

    Science.gov (United States)

    The present volume of historical papers on nuclear thermal propulsion (NTP) encompasses NTP technology development regarding solid-core NTP technology, advanced concepts from the early years of NTP research, and recent activities in the field. Specific issues addressed include NERVA rocket-engine technology, the development of nuclear rocket propulsion at Los Alamos, fuel-element development, reactor testing for the Rover program, and an overview of NTP concepts and research emphasizing two decades of NASA research. Also addressed are the development of the 'nuclear light bulb' closed-cycle gas core and a demonstration of a fissioning UF6 gas in an argon vortex. The recent developments reviewed include the application of NTP to NASA's Lunar Space Transportation System, the use of NTP for the Space Exploration Initiative, and the development of nuclear rocket engines in the former Soviet Union.

  8. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    Science.gov (United States)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  9. Flight Simulator Evaluation of Enhanced Propulsion Control Modes for Emergency Operation

    Science.gov (United States)

    Litt, Jonathan, S; Sowers, T.; Owen, A., Karl; Fulton, Christopher, E.; Chicatelli, Amy, K.

    2012-01-01

    This paper describes piloted evaluation of enhanced propulsion control modes for emergency operation of aircraft. Fast Response and Overthrust modes were implemented to assess their ability to help avoid or mitigate potentially catastrophic situations, both on the ground and in flight. Tests were conducted to determine the reduction in takeoff distance achievable using the Overthrust mode. Also, improvements in Dutch roll damping, enabled by using yaw rate feedback to the engines to replace the function of a stuck rudder, were investigated. Finally, pilot workload and ability to handle the impaired aircraft on approach and landing were studied. The results showed that improvement in all aspects is possible with these enhanced propulsion control modes, but the way in which they are initiated and incorporated is important for pilot comfort and perceived benefit.

  10. Materials Advance Chemical Propulsion Technology

    Science.gov (United States)

    2012-01-01

    In the future, the Planetary Science Division of NASA's Science Mission Directorate hopes to use better-performing and lower-cost propulsion systems to send rovers, probes, and observers to places like Mars, Jupiter, and Saturn. For such purposes, a new propulsion technology called the Advanced Materials Bipropellant Rocket (AMBR) was developed under NASA's In-Space Propulsion Technology (ISPT) project, located at Glenn Research Center. As an advanced chemical propulsion system, AMBR uses nitrogen tetroxide oxidizer and hydrazine fuel to propel a spacecraft. Based on current research and development efforts, the technology shows great promise for increasing engine operation and engine lifespan, as well as lowering manufacturing costs. In developing AMBR, ISPT has several goals: to decrease the time it takes for a spacecraft to travel to its destination, reduce the cost of making the propulsion system, and lessen the weight of the propulsion system. If goals like these are met, it could result in greater capabilities for in-space science investigations. For example, if the amount (and weight) of propellant required on a spacecraft is reduced, more scientific instruments (and weight) could be added to the spacecraft. To achieve AMBR s maximum potential performance, the engine needed to be capable of operating at extremely high temperatures and pressure. To this end, ISPT required engine chambers made of iridium-coated rhenium (strong, high-temperature metallic elements) that allowed operation at temperatures close to 4,000 F. In addition, ISPT needed an advanced manufacturing technique for better coating methods to increase the strength of the engine chamber without increasing the costs of fabricating the chamber.

  11. Nuclear propulsion: to go to the moon in 24 hours; Propulsion nucleaire: aller sur la lune en 24 heures

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, M

    1999-10-01

    Nuclear propulsion is a necessary step to give to man the opportunity of developing activities in space. This technique enables rockets to go farther, more quickly and to transport more load than the classical chemical propulsion. Space travel requires huge quantities of energy. An equivalent quantity of energy can be extracted from 13 tons of liquid hydrogen-oxygen, from 20 g of uranium (fission), from 0.5 g of deuterium (fusion) and from 0.02 g of anti-hydrogen-hydrogen (annihilation). The concept of nuclear thermal rocket (NTR) is based on an embarked nuclear reactor whose purpose is to heat hydrogen to 3000 K temperature. The thrust can be increased by injecting liquid oxygen in the nozzle to react with supersonic hydrogen. (A.C.)

  12. Nuclear Propulsion Project Workshop summary

    Science.gov (United States)

    Miller, Thomas J.; Clark, John S.; Barnett, John W.

    1991-01-01

    NASA-Lewis has undertaken the planning and coordination of a joint NASA/DOE/DOD Nuclear Propulsion Project which will investigate both nuclear electric and nuclear thermal concepts. The three-agency team has been tasked with the development of an Interagency Agreement and Memorandum of Understanding, as well as the drafting of a statement as to astronaut crew guidelines and values, the assessment of human-rating requirements, the development of an interagency safety and environmental assessment plan, and the development of test facility requirements. Attention is to be given to the role of SP-100 for nuclear-electric propulsion applications.

  13. Z-Pinch Fusion Propulsion

    Science.gov (United States)

    Miernik, Janie

    2011-01-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Shorter trips are better for humans in the harmful radiation environment of deep space. Nuclear propulsion and power plants can enable high Ispand payload mass fractions because they require less fuel mass. Fusion energy research has characterized the Z-Pinch dense plasma focus method. (1) Lightning is form of pinched plasma electrical discharge phenomena. (2) Wire array Z-Pinch experiments are commonly studied and nuclear power plant configurations have been proposed. (3) Used in the field of Nuclear Weapons Effects (NWE) testing in the defense industry, nuclear weapon x-rays are simulated through Z-Pinch phenomena.

  14. Nuclear Electric Propulsion for Outer Space Missions

    Science.gov (United States)

    Barret, Chris

    2003-01-01

    Today we know of 66 moons in our very own Solar System, and many of these have atmospheres and oceans. In addition, the Hubble (optical) Space Telescope has helped us to discover a total of 100 extra-solar planets, i.e., planets going around other suns, including several solar systems. The Chandra (X-ray) Space Telescope has helped us to discover 33 Black Holes. There are some extremely fascinating things out there in our Universe to explore. In order to travel greater distances into our Universe, and to reach planetary bodies in our Solar System in much less time, new and innovative space propulsion systems must be developed. To this end NASA has created the Prometheus Program. When one considers space missions to the outer edges of our Solar System and far beyond, our Sun cannot be relied on to produce the required spacecraft (s/c) power. Solar energy diminishes as the square of the distance from the Sun. At Mars it is only 43% of that at Earth. At Jupiter, it falls off to only 3.6% of Earth's. By the time we get out to Pluto, solar energy is only .066% what it is on Earth. Therefore, beyond the orbit of Mars, it is not practical to depend on solar power for a s/c. However, the farther out we go the more power we need to heat the s/c and to transmit data back to Earth over the long distances. On Earth, knowledge is power. In the outer Solar System, power is knowledge. It is important that the public be made aware of the tremendous space benefits offered by Nuclear Electric Propulsion (NEP) and the minimal risk it poses to our environment. This paper presents an overview of the reasons for NEP systems, along with their basic components including the reactor, power conversion units (both static and dynamic), electric thrusters, and the launch safety of the NEP system.

  15. Heat transfer of nuclear thermal propulsion systems

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Metzger, J.D.

    1994-12-31

    Nuclear thermal propulsion offers performance capabilities beyond chemical propulsion and is enabling for many planetary missions. Because of the performance capabilities and the number of thermal design issues, NTP offers a productive area for advanced development and research.

  16. Development of Modeling Approaches for Nuclear Thermal Propulsion Test Facilities

    Science.gov (United States)

    Jones, Daniel R.; Allgood, Daniel C.; Nguyen, Ke

    2014-01-01

    High efficiency of rocket propul-sion systems is essential for humanity to venture be-yond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rock-ets with relatively high thrust and twice the efficiency of the Space Shuttle Main Engine. NASA is in the pro-cess of developing a new NTP engine, and is evaluat-ing ground test facility concepts that allow for the thor-ough testing of NTP devices. NTP engine exhaust, hot gaseous hydrogen, is nominally expected to be free of radioactive byproducts from the nuclear reactor; how-ever, it has the potential to be contaminated due to off-nominal engine reactor performance. Several options are being investigated to mitigate this hazard potential with one option in particular that completely contains the engine exhaust during engine test operations. The exhaust products are subsequently disposed of between engine tests. For this concept (see Figure 1), oxygen is injected into the high-temperature hydrogen exhaust that reacts to produce steam, excess oxygen and any trace amounts of radioactive noble gases released by off-nominal NTP engine reactor performance. Water is injected to condense the potentially contaminated steam into water. This water and the gaseous oxygen (GO2) are subsequently passed to a containment area where the water and GO2 are separated into separate containment tanks.

  17. Advanced NSTS propulsion system verification study

    Science.gov (United States)

    Wood, Charles

    1989-01-01

    The merits of propulsion system development testing are discussed. The existing data base of technical reports and specialists is utilized in this investigation. The study encompassed a review of all available test reports of propulsion system development testing for the Saturn stages, the Titan stages, and the Space Shuttle main propulsion system. The knowledge on propulsion system development and system testing available from specialists and managers was also 'tapped' for inclusion.

  18. Nuclear Propulsion Technical Interchange Meeting, volume 2

    Science.gov (United States)

    1993-01-01

    The purpose of the meeting was to review the work performed in fiscal year 1992 in the areas of nuclear thermal and nuclear electric propulsion technology development. These proceedings are an accumulation of the presentations provided at the meeting along with annotations provided by authors. The proceedings cover system concepts, technology development, and system modeling for nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP). The test facilities required for the development of the nuclear propulsion systems are also discussed.

  19. THE FUTURE OF SPACECRAFT NUCLEAR PROPULSION

    OpenAIRE

    Jansen, Frank

    2014-01-01

    This paper summarizes the advantages of space nuclear power and propulsion systems. It describes the actual status of international power level dependent spacecraft nuclear propulsion missions, especially the high power EU-Russian MEGAHIT study including the Russian Megawatt-Class Nuclear Power Propulsion System, the NASA GRC project and the low and medium power EU DiPoP study. Space nuclear propulsion based mission scenarios of these studies are sketched as well.

  20. The Future of Spacecraft Nuclear Propulsion

    Science.gov (United States)

    Jansen, F.

    2014-06-01

    This paper summarizes the advantages of space nuclear power and propulsion systems. It describes the actual status of international power level dependent spacecraft nuclear propulsion missions, especially the high power EU-Russian MEGAHIT study including the Russian Megawatt-Class Nuclear Power Propulsion System, the NASA GRC project and the low and medium power EU DiPoP study. Space nuclear propulsion based mission scenarios of these studies are sketched as well.

  1. CASC Consolidates Its Liquid Propulsion Sector

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ To consolidate its liquid rocket engine development ability, China Aerospace Science and Technology Corporation (CASC) integrated several of its subsidiaries, Beijing Aerospace Propulsion Institute, Beijing Institute of Aerospace Testing Technology, and Shanghai Institute of Space Propulsion (SISP) into the Academy of Aerospace Liquid Propulsion Technology (AALPT). The establishment of the new AALPT was announced on July 22 in Beijing.

  2. Applications of nuclear propulsion to Mars missions

    Science.gov (United States)

    Rosen, Robert; Reck, Gregory M.; Bennett, Gary L.

    1991-01-01

    The basic features of a piloted mission to Mars is described, and it is shown how nuclear propulsion can improve upon the various performance measures of such a mission. An overview of the history and types of nuclear propulsion in the U.S. is presented. Current planning to develop nuclear propulsion technology for the Space Exploration Initiative is addressed.

  3. Conceptual design of hybrid-electric transport aircraft

    Science.gov (United States)

    Pornet, C.; Isikveren, A. T.

    2015-11-01

    The European Flightpath 2050 and corresponding Strategic Research and Innovation Agenda (SRIA) as well as the NASA Environmentally Responsible Aviation N+ series have elaborated aggressive emissions and external noise reduction targets according to chronological waypoints. In order to deliver ultra-low or even zero in-flight emissions levels, there exists an increasing amount of international research and development emphasis on electrification of the propulsion and power systems of aircraft. Since the late 1990s, a series of experimental and a host of burgeouning commercial activities for fixed-wing aviation have focused on glider, ultra-light and light-sport airplane, and this is proving to serve as a cornerstone for more ambitious transport aircraft design and integration technical approaches. The introduction of hybrid-electric technology has dramatically expanded the design space and the full-potential of these technologies will be drawn through synergetic, tightly-coupled morphological and systems integration emphasizing propulsion - as exemplified by the potential afforded by distributed propulsion solutions. With the aim of expanding upon the current repository of knowledge associated with hybrid-electric propulsion systems a quad-fan arranged narrow-body transport aircraft equipped with two advanced Geared-Turbofans (GTF) and two Electrical Fans (EF) in an under-wing podded installation is presented in this technical article. The assessment and implications of an increasing Degree-of-Hybridization for Useful Power (HP,USE) on the overall sizing, performance as well as flight technique optimization of fuel-battery hybrid-electric aircraft is addressed herein. The integrated performance of the concept was analyzed in terms of potential block fuel burn reduction and change in vehicular efficiency in comparison to a suitably projected conventional aircraft employing GTF-only propulsion targeting year 2035. Results showed that by increasing HP,USE, significant

  4. Aircraft fuel conservation. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The bibliography contains citations concerning means to conserve fuel in airline operations. Included are abstracts dealing with aircraft design, engine design, propulsion efficiency, fuels, and operating procedures which conserve fuel.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Magnetohydrodynamic Propulsion for the Classroom

    Science.gov (United States)

    Font, Gabriel I.; Dudley, Scott C.

    2004-10-01

    The cinema industry can sometimes prove to be an ally when searching for material with which to motivate students to learn physics. Consider, for example, the electromagnetic force on a current in the presence of a magnetic field. This phenomenon is at the heart of magnetohydrodynamic (MHD) propulsion systems. A submarine employing this type of propulsion was immortalized in the movie Hunt for Red October. While mentioning this to students certainly gets their attention, it often elicits comments that it is only fiction and not physically possible. Imagine their surprise when a working system is demonstrated! It is neither difficult nor expensive to construct a working system that can be demonstrated in the front of a classroom.2 In addition, all aspects of the engineering hurdles that must be surmounted and myths concerning this "silent propulsion" system are borne out in a simple apparatus. This paper details how to construct an inexpensive MHD propulsion boat that can be demonstrated for students in the classroom.

  6. In-space nuclear propulsion

    Science.gov (United States)

    Bruno, C.; Dujarric, C.

    2013-02-01

    The past and the recent status of nuclear propulsion (NP) for application to space mission is presented. The case for using NP in manned space missions is made based on fundamental physics and on the necessity to ensure safe radiation doses to future astronauts. In fact, the presence of solar and galactic-cosmic radiation poses substantial risks to crews traveling for months in a row to destinations such as asteroids and Mars. Since passive or active shields would be massive to protect against the more energetic part of the radiation energy spectrum, the only alternative is to reduce dose by traveling faster. Hence the importance of propulsion systems with much higher specific impulse than that of current chemical systems, and thus the use of nuclear propulsion. Nuclear-thermal and nuclear-electric propulsions are then discussed in view of their potential application to missions now in the preliminary planning stage by space agencies and industries and being considered by the ISECG international panel. In this context, recent ideas for future use of the ISS that may require NP are also presented.

  7. Performance assessment of low pressure nuclear thermal propulsion

    Science.gov (United States)

    Gerrish, Harrold P., Jr.; Doughty, Glen E.

    1993-01-01

    An increase in Isp for nuclear thermal propulsion systems is desirable for reducing the propellant requirements and cost of future applications, such as the Mars Transfer Vehicle. Several previous design studies have suggested that the Isp could be increased substantially with hydrogen dissociation/recombination. Hydrogen molecules (H2), at high temperatures and low pressures, will dissociate to monatomic hydrogen (H). The reverse process (i.e., formation of H2 from H) is exothermic. The exothermic energy in a nozzle increases the kinetic energy and therefore, increases the Isp. The low pressure nuclear thermal propulsion system (LPNTP) system is expected to maximize the hydrogen dissociation/recombination and Isp by operating at high chamber temperatures and low chamber pressures. The process involves hydrogen flow through a high temperature, low pressure fission reactor, and out a nozzle. The high temperature (approximately 3000 K) of the hydrogen in the reactor is limited by the temperature limits of the reactor material. The minimum chamber pressure is about 1 atm because lower pressures decrease the engines thrust to weight ratio below acceptable limits. This study assumes that hydrogen leaves the reactor and enters the nozzle at the 3000 K equilibrium dissociation level. Hydrogen dissociation in the reactor does not affect LPNTP performance like dissociation in traditional chemical propulsion systems, because energy from the reactor resupplies energy lost due to hydrogen dissociation. Recombination takes place in the nozzle due primarily to a drop in temperature as the Mach number increases. However, as the Mach number increases beyond the nozzle throat, the static pressure and density of the flow decreases and minimizes the recombination. The ideal LPNTP Isp at 3000 K and 10 psia is 1160 seconds due to the added energy from fast recombination rates. The actual Isp depends on the finite kinetic reaction rates which affect the amount of monatomic hydrogen

  8. The impact of technology on fighter aircraft requirements

    Science.gov (United States)

    Dollyhigh, S. M.; Foss, W. E., Jr.

    1985-01-01

    Technology integration studies were made to examine the impact of emerging technologies on fighter aircraft. The technologies examined included advances in aerodynamics, controls, structures, propulsion, and systems and were those which appeared capable of being ready for application by the turn of the century. A primary impetus behind large increases in figher capability will be the rapid increase in fighter engine thrust-to-weight ratio. High thrust-weight engines, integrated with other advanced and emerging technologies, can result in small extremely maneuverable fighter aircraft that have thrust-weight ratios of 1.4+ and weight one-half as much as today's fighters. Future fighter aircraft requirements are likely to include a turn capability in excess of 7g's throughout much of the maneuver envelope, post-stall maneuverability, STOVL or VTOL, and a single engine for low cost.

  9. Designing A Conventional Aircraft

    OpenAIRE

    Sonei, Arash

    2014-01-01

    This paper is explaining the important design phases of dimensioning an unmanned conventional aircraft from scratch and will also design one according to a few chosen requirements. The design phases discussed will be all from wing dimensioning to stability and spin recovery, aircraft performance requirements and how to select a motor which overcomes these. As well as the optimal rate of climb for improved efficiency is discussed. In the end an aircraft which manages the set requirements and i...

  10. Lightning effects on aircraft

    Science.gov (United States)

    1977-01-01

    Direct and indirect effects of lightning on aircraft were examined in relation to aircraft design. Specific trends in design leading to more frequent lightning strikes were individually investigated. These trends included the increasing use of miniaturized, solid state components in aircraft electronics and electric power systems. A second trend studied was the increasing use of reinforced plastics and other nonconducting materials in place of aluminum skins, a practice that reduces the electromagnetic shielding furnished by a conductive skin.

  11. Space reactors: What is a kilogram

    International Nuclear Information System (INIS)

    The use of nuclear electric propulsion can triple payloads to GEO for a single Shuttle launch. Life orbits of 300 years can be used to allow most of the fission and activation products to decay before a reactor reenters the biosphere. Enough radioactive materials remain with very long lifetimes to make it desirable to design the reactor to disperse upon reentry and little additional risk to the biosphere is introduced by initiating NEP operations from 300 km

  12. Space reactors - past, present, and future

    International Nuclear Information System (INIS)

    In the 1990s and beyond, advanced-design nuclear reactors could represent the prime source of both space power and propulsion. Many sophisticated military and civilian space missions of the future will require first kilowatt and then megawatt levels of power. This paper reviews key technology developments that accompanied past US space nuclear power development efforts, describes on-going programs, and then explores reactor technologies that will satisfy megawatt power level needs and beyond

  13. Assessment of NASA's Aircraft Noise Prediction Capability

    Science.gov (United States)

    Dahl, Milo D. (Editor)

    2012-01-01

    A goal of NASA s Fundamental Aeronautics Program is the improvement of aircraft noise prediction. This document provides an assessment, conducted from 2006 to 2009, on the current state of the art for aircraft noise prediction by carefully analyzing the results from prediction tools and from the experimental databases to determine errors and uncertainties and compare results to validate the predictions. The error analysis is included for both the predictions and the experimental data and helps identify where improvements are required. This study is restricted to prediction methods and databases developed or sponsored by NASA, although in many cases they represent the current state of the art for industry. The present document begins with an introduction giving a general background for and a discussion on the process of this assessment followed by eight chapters covering topics at both the system and the component levels. The topic areas, each with multiple contributors, are aircraft system noise, engine system noise, airframe noise, fan noise, liner physics, duct acoustics, jet noise, and propulsion airframe aeroacoustics.

  14. Commercial Aircraft Integrated Vehicle Health Management Study

    Science.gov (United States)

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Jones, Sharon Monica; Kurtoglu, Tolga; Leone, Karen M.; Sandifer, Carl E.; Thomas, Megan A.

    2010-01-01

    Statistical data and literature from academia, industry, and other government agencies were reviewed and analyzed to establish requirements for fixture work in detection, diagnosis, prognosis, and mitigation for IVHM related hardware and software. Around 15 to 20 percent of commercial aircraft accidents between 1988 and 2003 involved inalftfnctions or failures of some aircraft system or component. Engine and landing gear failures/malfunctions dominate both accidents and incidents. The IVI vl Project research technologies were found to map to the Joint Planning and Development Office's National Research and Development Plan (RDP) as well as the Safety Working Group's National Aviation Safety Strategic. Plan (NASSP). Future directions in Aviation Technology as related to IVHlvl were identified by reviewing papers from three conferences across a five year time span. A total of twenty-one trend groups in propulsion, aeronautics and aircraft categories were compiled. Current and ftiture directions of IVHM related technologies were gathered and classified according to eight categories: measurement and inspection, sensors, sensor management, detection, component and subsystem monitoring, diagnosis, prognosis, and mitigation.

  15. Bioelectric Control of a 757 Class High Fidelity Aircraft Simulation

    Science.gov (United States)

    Jorgensen, Charles; Wheeler, Kevin; Stepniewski, Slawomir; Norvig, Peter (Technical Monitor)

    2000-01-01

    This paper presents results of a recent experiment in fine grain Electromyographic (EMG) signal recognition, We demonstrate bioelectric flight control of 757 class simulation aircraft landing at San Francisco International Airport. The physical instrumentality of a pilot control stick is not used. A pilot closes a fist in empty air and performs control movements which are captured by a dry electrode array on the arm, analyzed and routed through a flight director permitting full pilot outer loop control of the simulation. A Vision Dome immersive display is used to create a VR world for the aircraft body mechanics and flight changes to pilot movements. Inner loop surfaces and differential aircraft thrust is controlled using a hybrid neural network architecture that combines a damage adaptive controller (Jorgensen 1998, Totah 1998) with a propulsion only based control system (Bull & Kaneshige 1997). Thus the 757 aircraft is not only being flown bioelectrically at the pilot level but also demonstrates damage adaptive neural network control permitting adaptation to severe changes in the physical flight characteristics of the aircraft at the inner loop level. To compensate for accident scenarios, the aircraft uses remaining control surface authority and differential thrust from the engines. To the best of our knowledge this is the first time real time bioelectric fine-grained control, differential thrust based control, and neural network damage adaptive control have been integrated into a single flight demonstration. The paper describes the EMG pattern recognition system and the bioelectric pattern recognition methodology.

  16. Software To Secure Distributed Propulsion Simulations

    Science.gov (United States)

    Blaser, Tammy M.

    2003-01-01

    Distributed-object computing systems are presented with many security threats, including network eavesdropping, message tampering, and communications middleware masquerading. NASA Glenn Research Center, and its industry partners, has taken an active role in mitigating the security threats associated with developing and operating their proprietary aerospace propulsion simulations. In particular, they are developing a collaborative Common Object Request Broker Architecture (CORBA) Security (CORBASec) test bed to secure their distributed aerospace propulsion simulations. Glenn has been working with its aerospace propulsion industry partners to deploy the Numerical Propulsion System Simulation (NPSS) object-based technology. NPSS is a program focused on reducing the cost and time in developing aerospace propulsion engines

  17. Design of a direct nuclear propulsion system for a resupply mission to Phobos

    Science.gov (United States)

    Frymire, R.; Martinez, R.

    1989-01-01

    For a long-term mission in space, a propulsion system with a high specific impulse and low mass must be designed. The system must also be safe in terms of human lives and must be cost efficient to a degree. The main focus is to design a direct nuclear propulsion system for a resupply mission to Phobos from an orbiting Earth space station and return. The design considered is an annular, packed particle bed nuclear reactor with hydrogen used as the reflector, moderator, coolant, and propellant. The use of hydrogen in all these areas helps reduce the total mass, since the amount of hydrogen required is only that needed for propulsion. The mass of hydrogen required for propulsion is reduced by using a direct nuclear propulsion system with a high specific impulse relative to a hydrogen oxygen system. Certain calculations were not looked at in great detail. This included the aerospace details of the mission. Most of the numbers for this section were found in tables and taken to be correct without extensive calculations. The main objective of the project was to study the thermohydraulic and neutronic aspects of the reactor.

  18. Electric propulsion for control of stationary satellites

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, Roland

    1963-03-15

    The application of electric propulsion engines to attitude control and stationkeeping of 24-hour stationary satellites is analyzed and compared with the performance of contemporary cold gas, monopropellant, and bipropellant propulsion systems. Both a 500-pound spin-stabilized and a 1500-pound three-axis controlled satellite compatible with current boost vehicles are examined, and each type of propulsion system compared as a function of mission duration and maneuver requirements. Solar electric propulsion is shown to be superior to chemical propulsion for long term stationkeeping and three-axis attitude control of the larger satellite. Cold gas and chemical propulsion are superior for attitude control and provide strong competition for electric propulsion in the stationkeeping of the smaller spin-stabilized satellite. (auth)

  19. Concept Design and Risk Assessment of Nuclear Propulsion Ship

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Youngmi; Yoo, Seongjin; Kim, Yeontae; Oh, June; Byun, Yoonchul; Woo, Ilguk [Daewoo Shipbuilding and Marine Engineering Co. Ltd., Seoul (Korea, Republic of); Kim, Jiho; Choi, Suhn [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The nuclear propulsion ships (hereinafter referred to as 'nuclear ships') have been considered as an eco-friendly ship. There have historically been warship and submarine with the source of nuclear power. The use of nuclear ships has been recently extending to the icebreaker, the deep-water exploration ship, and the floating nuclear power plant. Prior to developing the new ship, we evaluated the economics of various types of ships and concluded that the container ship could be appropriate for the nuclear propulsion. In order to verify its safety, we performed the ship calculation based on the optimal arrangement of the nuclear reactor. Finally, we verified its safety by the HAZID. In the former research, we confirmed the applicability of the nuclear propulsion system for the large container ship. In this study, we verified the safety of the nuclear ships according to the HAZID analysis. We expect that this research will lead to safe design of the nuclear ships.

  20. Concept Design and Risk Assessment of Nuclear Propulsion Ship

    International Nuclear Information System (INIS)

    The nuclear propulsion ships (hereinafter referred to as 'nuclear ships') have been considered as an eco-friendly ship. There have historically been warship and submarine with the source of nuclear power. The use of nuclear ships has been recently extending to the icebreaker, the deep-water exploration ship, and the floating nuclear power plant. Prior to developing the new ship, we evaluated the economics of various types of ships and concluded that the container ship could be appropriate for the nuclear propulsion. In order to verify its safety, we performed the ship calculation based on the optimal arrangement of the nuclear reactor. Finally, we verified its safety by the HAZID. In the former research, we confirmed the applicability of the nuclear propulsion system for the large container ship. In this study, we verified the safety of the nuclear ships according to the HAZID analysis. We expect that this research will lead to safe design of the nuclear ships

  1. Cable Tensiometer for Aircraft

    Science.gov (United States)

    Nunnelee, Mark (Inventor)

    2008-01-01

    The invention is a cable tensiometer that can be used on aircraft for real-time, in-flight cable tension measurements. The invention can be used on any aircraft cables with high precision. The invention is extremely light-weight, hangs on the cable being tested and uses a dual bending beam design with a high mill-volt output to determine tension.

  2. Space vehicle design and operation for efficient use of Nuclear Thermal Propulsion

    Science.gov (United States)

    Stancati, Mike L.; Hodge, John R.; Borowski, Stanley K.

    1993-01-01

    Nuclear Thermal Propulsion (NTP) is a high-leverage, and possibly enabling, propulsion choice for sending humans to Mars. Important performance gains are expected for NTP Mars transfer vehicle over their counterparts, the conventional chemical systems. These gains come in spite of vehicle unique requirements for NTP engine development and operations: expected higher development costs, prelaunch and in-space handing safeguards, extra propellant for reactor cool-down after engine burns, and safe, managed disposal of spent NTP engines. Prior studies have also shown that these NTP engines and stages, sized for Mars missions, could increase delivered payloads for some piloted lunar mission as well.

  3. Aircraft operations management manual

    Science.gov (United States)

    1992-01-01

    The NASA aircraft operations program is a multifaceted, highly diverse entity that directly supports the agency mission in aeronautical research and development, space science and applications, space flight, astronaut readiness training, and related activities through research and development, program support, and mission management aircraft operations flights. Users of the program are interagency, inter-government, international, and the business community. This manual provides guidelines to establish policy for the management of NASA aircraft resources, aircraft operations, and related matters. This policy is an integral part of and must be followed when establishing field installation policy and procedures covering the management of NASA aircraft operations. Each operating location will develop appropriate local procedures that conform with the requirements of this handbook. This manual should be used in conjunction with other governing instructions, handbooks, and manuals.

  4. OTV propulsion tecnology programmatic overview

    Science.gov (United States)

    Cooper, L. P.

    1984-04-01

    An advanced orbit transfer vehicles (OTV) which will be an integral part of the national space transportation system to carry men and cargo between low Earth orbit and geosynchronous orbit will perform planetary transfers and deliver large acceleration limited space structures to high Earth orbits is reviewed. The establishment of an advanced propulsion technology base for an OTV for the mid 1990's is outlined. The program supports technology for three unique engine concepts. Work is conducted to generic technologies which benefit all three concepts and specific technology which benefits only one of the concepts. Concept and technology definitions to identify propulsion innovations, and subcomponent research to explore and validate their potential benefits are included.

  5. Progress in revolutionary propulsion physics

    CERN Document Server

    Millis, Marc G

    2011-01-01

    Prior to 1988, traversable wormholes were just science fiction. Prior to 1994, warp drives were just fiction. Since then, these notions matured into published scientific discourse, where key issues and unknowns continue to be raised and investigated. In 2009, the American Institute of Aeronautics and Astronautics published a peer-reviewed, expansive technical volume on these and other investigations toward breakthrough propulsion. This paper summarizes the key assertions from that 739-page volume, describing the collective state-of-the-art and candidate research steps that will lead to discovering if, or how, such breakthroughs might finally be achieved. Coverage includes: prerequisites for space drive physics, manipulating gravity or inertia for propulsion, lessons from superconductor experiments, null results with "lifters", implications of photon momentum in media, quantum vacuum physics, and the faster-than-light implications of general relativity and quantum non-locality.

  6. 基于荷载时程分析法的飞机撞击反应堆安全壳的对比研究%COMPARATIVE STUDY OF IMPACT OF AIRCRAFT ON NUCLEAR REACTOR CONTAINMENT BASED ON FORCE TIME-HISTORY ANALYSIS METHOD

    Institute of Scientific and Technical Information of China (English)

    李亮; 潘蓉; 朱秀云; 胡勐乾; 詹佳硕

    2015-01-01

    应用非线性有限元分析程序LS-DYNA,利用欧洲压水堆EPR核电厂所采用的超设计基准事件大型商用飞机恶意撞击安全壳的等效荷载曲线和HAD101/04《核电厂厂址选择的外部人为事件》中提供的设计基准事件波音707-320小型飞机等效荷载曲线分别作用在某反应堆安全壳上,比较两种不同的荷载曲线对同一反应堆安全壳的响应。%Based on the nonlinear finite element program LS-DYNA, the equivalent load curve of the over designed reference event by the impact of a large commercial aircraft on the containment used for EPR nuclear power plant, and the equivalent load curve of the designed reference event by Boeing 707-320 small plane provided in HAD101/04(1989) were respectively performed on the containment of a nuclear reactor.The responses of the two different load curves on the containment of the same reactor were compared.

  7. Impeller for Water Jet Propulsion

    Science.gov (United States)

    2004-01-01

    Marshall Space Flight Center engineers helped North American Marine Jet (NAMJ), Inc. improve the proposed design of a new impeller for jet propulsion system. With a three-dimensional computer model of the new marine jet engine blades, engineers were able to quickly create a solid ploycarbonate model of it. The rapid prototyping allowed the company to avoid many time-consuming and costly steps in creating the impeller.

  8. Propulsion Systems in Water Tunnel

    Directory of Open Access Journals (Sweden)

    Nobuyuki Fujisawa

    1995-01-01

    agreement with the field experiment with prototype craft. Measurements are also made for the losses in the intake and the nozzle. The optimization study of the water jet systems is conducted by simulating the change of the nozzle outlet diameter with the variable nozzle arrangement. It is suggested that the nozzle outlet diameter should be decreased as the craft velocity increases to obtain an optimum propulsive efficiency in a wide range of craft velocity.

  9. Progress in revolutionary propulsion physics

    OpenAIRE

    Millis, Marc G.

    2011-01-01

    Prior to 1988, traversable wormholes were just science fiction. Prior to 1994, warp drives were just fiction. Since then, these notions matured into published scientific discourse, where key issues and unknowns continue to be raised and investigated. In 2009, the American Institute of Aeronautics and Astronautics published a peer-reviewed, expansive technical volume on these and other investigations toward breakthrough propulsion. This paper summarizes the key assertions from that 739-page vo...

  10. Nuclear Thermal Propulsion Development Risks

    Science.gov (United States)

    Kim, Tony

    2015-01-01

    There are clear advantages of development of a Nuclear Thermal Propulsion (NTP) for a crewed mission to Mars. NTP for in-space propulsion enables more ambitious space missions by providing high thrust at high specific impulse ((is) approximately 900 sec) that is 2 times the best theoretical performance possible for chemical rockets. Missions can be optimized for maximum payload capability to take more payload with reduced total mass to orbit; saving cost on reduction of the number of launch vehicles needed. Or missions can be optimized to minimize trip time significantly to reduce the deep space radiation exposure to the crew. NTR propulsion technology is a game changer for space exploration to Mars and beyond. However, 'NUCLEAR' is a word that is feared and vilified by some groups and the hostility towards development of any nuclear systems can meet great opposition by the public as well as from national leaders and people in authority. The public often associates the 'nuclear' word with weapons of mass destruction. The development NTP is at risk due to unwarranted public fears and clear honest communication of nuclear safety will be critical to the success of the development of the NTP technology. Reducing cost to NTP development is critical to its acceptance and funding. In the past, highly inflated cost estimates of a full-scale development nuclear engine due to Category I nuclear security requirements and costly regulatory requirements have put the NTP technology as a low priority. Innovative approaches utilizing low enriched uranium (LEU). Even though NTP can be a small source of radiation to the crew, NTP can facilitate significant reduction of crew exposure to solar and cosmic radiation by reducing trip times by 3-4 months. Current Human Mars Mission (HMM) trajectories with conventional propulsion systems and fuel-efficient transfer orbits exceed astronaut radiation exposure limits. Utilizing extra propellant from one additional SLS launch and available

  11. Pure Nuclear Fusion Bomb Propulsion

    OpenAIRE

    Winterberg, F.

    2008-01-01

    Recent progress towards the non-fission ignition of thermonuclear micro-explosions raises the prospect for a revival of the nuclear bomb propulsion idea, both for the fast transport of large payloads within the solar system and the launch into earth orbit without the release of fission products into the atmosphere. To reach this goal three areas of research are of importance: 1)Compact thermonuclear ignition drivers. 2)Fast ignition and deuterium burn. 3)Space-craft architecture involving mag...

  12. Engine System Model Development for Nuclear Thermal Propulsion

    Science.gov (United States)

    Nelson, Karl W.; Simpson, Steven P.

    2006-01-01

    In order to design, analyze, and evaluate conceptual Nuclear Thermal Propulsion (NTP) engine systems, an improved NTP design and analysis tool has been developed. The NTP tool utilizes the Rocket Engine Transient Simulation (ROCETS) system tool and many of the routines from the Enabler reactor model found in Nuclear Engine System Simulation (NESS). Improved non-nuclear component models and an external shield model were added to the tool. With the addition of a nearly complete system reliability model, the tool will provide performance, sizing, and reliability data for NERVA-Derived NTP engine systems. A new detailed reactor model is also being developed and will replace Enabler. The new model will allow more flexibility in reactor geometry and include detailed thermal hydraulics and neutronics models. A description of the reactor, component, and reliability models is provided. Another key feature of the modeling process is the use of comprehensive spreadsheets for each engine case. The spreadsheets include individual worksheets for each subsystem with data, plots, and scaled figures, making the output very useful to each engineering discipline. Sample performance and sizing results with the Enabler reactor model are provided including sensitivities. Before selecting an engine design, all figures of merit must be considered including the overall impacts on the vehicle and mission. Evaluations based on key figures of merit of these results and results with the new reactor model will be performed. The impacts of clustering and external shielding will also be addressed. Over time, the reactor model will be upgraded to design and analyze other NTP concepts with CERMET and carbide fuel cores.

  13. N Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The last of Hanfordqaodmasdkwaspemas7ajkqlsmdqpakldnzsdflss nine plutonium production reactors to be built was the N Reactor.This reactor was called a dual purpose...

  14. Space exploration with nuclear propulsion systems

    Energy Technology Data Exchange (ETDEWEB)

    Venetoklis, P.

    1994-12-31

    One of the greatest obstacles to the human exploration of space has been the physical limit in the efficiency of chemical propulsion systems. Chemical propulsion has been a mature technology for decades, and efficiency improvements over this time span have amounted to only a few percent. The limits of chemical propulsion have forced the space exploration community to develop other strategies for overcoming the strictures imposed by gravity in their exploration pursuits. These strategies have their own limits and invariably result in increased costs and mission time. Nuclear propulsion does not face the same physical limitations as chemical propulsion. Nuclear thermal propulsion (NTP) systems generate twice the efficiency of the best modern chemical systems, and nuclear electric propulsion (NEP) systems promise efficiencies 10 to 20 times that of chemical propulsion. These dramatic improvements provide mission planners with such an enormous leap in capability that the full range of possibilities has yet to be identified. This paper identifies the range of missions identified to date that benefit from nuclear propulsion, attempts to quantify the benefits, and discusses issues associated with the incorporation of nuclear propulsion into spacecraft.

  15. Physical Limitations of Nuclear Propulsion for Earth to Orbit

    Science.gov (United States)

    Blevins, John A.; Patton, Bruce; Rhys, Noah O.; Schafer, Charles F. (Technical Monitor)

    2001-01-01

    An assessment of current nuclear propulsion technology for application in Earth to Orbit (ETO) missions has been performed. It can be shown that current nuclear thermal rocket motors are not sufficient to provide single stage performance as has been stated by previous studies. Further, when taking a systems level approach, it can be shown that NTRs do not compete well with chemical engines where thrust to weight ratios of greater than I are necessary, except possibly for the hybrid chemical/nuclear LANTR (LOX Augmented Nuclear Thermal Rocket) engine. Also, the ETO mission requires high power reactors and consequently large shielding weights compared to NTR space missions where shadow shielding can be used. In the assessment, a quick look at the conceptual ASPEN vehicle proposed in 1962 in provided. Optimistic NTR designs are considered in the assessment as well as discussion on other conceptual nuclear propulsion systems that have been proposed for ETO. Also, a quick look at the turbulent, convective heat transfer relationships that restrict the exchange of nuclear energy to thermal energy in the working fluid and consequently drive the reactor mass is included.

  16. Nuclear Thermal Rocket - An Established Space Propulsion Technology

    Science.gov (United States)

    Klein, Milton

    2004-02-01

    From the late 1950s to the early 1970s a major program successfully developed the capability to conduct space exploration using the advanced technology of nuclear rocket propulsion. The program had two primary elements: pioneering and advanced technology work-Rover-at Los Alamos National Laboratory and its contractors provided the basic reactor design, fuel materials development, and reactor testing capability; and engine development-NERVA-by the industrial team of Aerojet and Westinghouse building on and extending the Los Alamos efforts to flight system development. This presentation describes the NERVA program, the engine system testing that demonstrated the space-practical operation capabilities of nuclear thermal rockets, and the mission studies that point the way to most effectively use the NTR capabilities. Together, the two programs established a technology base that includes proven NTR capabilities of (1) over twice the specific impulse of chemical propulsion systems, (2) thrust capabilities ranging from 44kN to 1112kN, and (3) practical thrust-to-weight ratios for future NASA space exploration missions, both manned payloads to Mars and unmanned payloads to the outer planets. The overall nuclear rocket program had a unique management structure that integrated the efforts of the two government agencies involved-NASA and the then-existing Atomic Energy Commission. The objective of this paper is to summarize and convey the technical and management lessons learned in this program as the nation considers the design of its future space exploration activities.

  17. Forty years on: the UK Naval nuclear propulsion programme

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.

    1997-03-01

    The naval nuclear power propulsion programme in the United Kingdom had its origins in the appointment of navy personnel to the Atomic Energy Research Establishment at Harwell in 1946. Atomic power was seen from the outset to be particularly applicable to submarines. It was not till 1955 that work started in earnest, however, and a naval section was established at Harwell. A land-based prototype was seen to be essential and Dounreay was selected as the site for its development. A PWR reactor system was chosen and submarine plant initial criticality by mid-1962 was the objective. However, an agreement with the USA in 1958 to use an American propulsion plant meant that it was possible to build and launch HMS Dreadnought by October 1960. Subsequent submarines were built to all-British designs and the Dounreay prototype contributed for over 35 years to their successful evolution. These submarines, which culminated in the Trafalgar class, are briefly described. In the early 1980s the decision was taken to replace the Polaris strategic weapon system by the Trident system which required a larger and more powerful submarine. The original Dounreay prototype was too small to be useful for the development of the Trident submarine and a new prototype was installed at Dounreay at the Naval Nuclear Reactor Test Establishment. (UK).

  18. Nuclear thermal propulsion transportation systems for lunar/Mars exploration

    International Nuclear Information System (INIS)

    Nuclear thermal propulsion technology development is underway at NASA and DoE for Space Exploration Initiative (SEI) missions to Mars, with initial near-earth flights to validate flight readiness. Several reactor concepts are being considered for these missions, and important selection criteria will be evaluated before final selection of a system. These criteria include: safety and reliability, technical risk, cost, and performance, in that order. Of the concepts evaluated to date, the Nuclear Engine for Rocket Vehicle Applications (NERVA) derivative (NDR) is the only concept that has demonstrated full power, life, and performance in actual reactor tests. Other concepts will require significant design work and must demonstrate proof-of-concept. Technical risk, and hence, development cost should therefore be lowest for the concept, and the NDR concept is currently being considered for the initial SEI missions. As lighter weight, higher performance systems are developed and validated, including appropriate safety and astronaut-rating requirements, they will be considered to support future SEI application. A space transportation system using a modular nuclear thermal rocket (NTR) system for lunar and Mars missions is expected to result in significant life cycle cost savings. Finally, several key issues remain for NTR's, including public acceptance and operational issues. Nonetheless, NTR's are believed to be the next generation of space propulsion systems - the key to space exploration

  19. Powered Flight The Engineering of Aerospace Propulsion

    CERN Document Server

    Greatrix, David R

    2012-01-01

    Whilst most contemporary books in the aerospace propulsion field are dedicated primarily to gas turbine engines, there is often little or no coverage of other propulsion systems and devices such as propeller and helicopter rotors or detailed attention to rocket engines. By taking a wider viewpoint, Powered Flight - The Engineering of Aerospace Propulsion aims to provide a broader context, allowing observations and comparisons to be made across systems that are overlooked by focusing on a single aspect alone. The physics and history of aerospace propulsion are built on step-by-step, coupled with the development of an appreciation for the mathematics involved in the science and engineering of propulsion. Combining the author’s experience as a researcher, an industry professional and a lecturer in graduate and undergraduate aerospace engineering, Powered Flight - The Engineering of Aerospace Propulsion covers its subject matter both theoretically and with an awareness of the practicalities of the industry. To ...

  20. An Overview of Facilities and Capabilities to Support the Development of Nuclear Thermal Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    James Werner; Sam Bhattacharyya; Mike Houts

    2011-02-01

    Abstract. The future of American space exploration depends on the ability to rapidly and economically access locations of interest throughout the solar system. There is a large body of work (both in the US and the Former Soviet Union) that show that Nuclear Thermal Propulsion (NTP) is the most technically mature, advanced propulsion system that can enable this rapid and economical access by its ability to provide a step increase above what is a feasible using a traditional chemical rocket system. For an NTP system to be deployed, the earlier measurements and recent predictions of the performance of the fuel and the reactor system need to be confirmed experimentally prior to launch. Major fuel and reactor system issues to be addressed include fuel performance at temperature, hydrogen compatibility, fission product retention, and restart capability. The prime issue to be addressed for reactor system performance testing involves finding an affordable and environmentally acceptable method to test a range of engine sizes using a combination of nuclear and non-nuclear test facilities. This paper provides an assessment of some of the capabilities and facilities that are available or will be needed to develop and test the nuclear fuel, and reactor components. It will also address briefly options to take advantage of the greatly improvement in computation/simulation and materials processing capabilities that would contribute to making the development of an NTP system more affordable. Keywords: Nuclear Thermal Propulsion (NTP), Fuel fabrication, nuclear testing, test facilities.

  1. Ultra high temperature particle bed reactor design

    Science.gov (United States)

    Lazareth, Otto; Ludewig, Hans; Perkins, K.; Powell, J.

    1990-01-01

    A direct nuclear propulsion engine which could be used for a mission to Mars is designed. The main features of this reactor design are high values for I(sub sp) and very efficient cooling. This particle bed reactor consists of 37 cylindrical fuel elements embedded in a cylinder of beryllium which acts as a moderator and reflector. The fuel consists of a packed bed of spherical fissionable fuel particles. Gaseous H2 passes over the fuel bed, removes the heat, and is exhausted out of the rocket. The design was found to be neutronically critical and to have tolerable heating rates. Therefore, this particle bed reactor design is suitable as a propulsion unit for this mission.

  2. SOLAR AIRCRAFT DESIGN

    OpenAIRE

    RAHMATI, Sadegh; GHASED, Amir

    2015-01-01

    Abstract. Generally domain Aircraft uses conventional fuel. These fuel having limited life, high cost and pollutant. Also nowadays price of petrol and other fuels are going to be higher, because of scarcity of those fuels. So there is great demand of use of non-exhaustible unlimited source of energy like solar energy. Solar aircraft is one of the ways to utilize solar energy. Solar aircraft uses solar panel to collect the solar radiation for immediate use but it also store the remaining part ...

  3. Nuclear Thermal Propulsion Ground Test History

    Science.gov (United States)

    Gerrish, Harold P.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) was started in 1955 under the Atomic Energy Commission as project Rover and was assigned to Los Alamos National Laboratory. The Nevada Test Site was selected in 1956 and facility construction began in 1957. The KIWI-A was tested on July 1, 1959 for 5 minutes at 70MW. KIWI-A1 was tested on July 8, 1960 for 6 minutes at 85MW. KIWI-A3 was tested on October 10, 1960 for 5 minutes at 100MW. The National Aeronautics and Space Administration (NASA) was formed in 1958. On August 31, 1960 the AEC and NASA established the Space Nuclear Propulsion Office and named Harold Finger as Director. Immediately following the formation of SNPO, contracts were awarded for the Reactor In Flight Test (RIFT), master plan for the Nuclear Rocket Engine Development Station (NRDS), and the Nuclear Engine for Rocket Vehicle Application (NERVA). From December 7, 1961 to November 30, 1962, the KIWI-B1A, KIWI-B1B, and KIWI-B4A were tested at test cell A. The last two engines were only tested for several seconds before noticeable failure of the fuel elements. Harold Finger called a stop to any further hot fire testing until the problem was well understood. The KIWI-B4A cold flow test showed the problem to be related to fluid dynamics of hydrogen interstitial flow causing fuel element vibrations. President Kennedy visited the NTS one week after the KIWI-B4A failure and got to see the engine starting to be disassembled in the maintenance facility. The KIWI-B4D and KIWI-B4E were modified to not have the vibration problems and were tested in test cell C. The NERVA NRX program started testing in early 1964 with NRX-A1 cold flow test series (unfueled graphite core), NRX-A2 and NRX-A3 power test series up to 1122 MW for 13 minutes. In March 1966, the NRX-EST (Engine System Test) was the first breadboard using flight functional relationship and total operating time of 116 minutes. The NRX-EST demonstrated the feasibility of a hot bleed cycle. The NRX-A5 had multiple start

  4. Propulsion in Cubomedusae: Mechanisms and Utility

    OpenAIRE

    Colin, Sean P.; Costello, John H.; Kakani Katija; Jamie Seymour; Kristen Kiefer

    2013-01-01

    Evolutionary constraints which limit the forces produced during bell contractions of medusae affect the overall medusan morphospace such that jet propulsion is limited to only small medusae. Cubomedusae, which often possess large prolate bells and are thought to swim via jet propulsion, appear to violate the theoretical constraints which determine the medusan morphospace. To examine propulsion by cubomedusae, we quantified size related changes in wake dynamics, bell shape, swimming and turnin...

  5. Hydrazine Propulsion Module for CubeSats

    OpenAIRE

    Schmuland, Derek; Masse, Robert; Sota, Charles

    2011-01-01

    Cold gas propulsion systems offer today’s CubeSats a relatively simple propulsion solution, but with often limited V capability. Various mission and desired CubeSat capabilities have been identified which would be enhanced or enabled if additional V were available in conjunction with preserving the control authority typically associated with current cold gas propulsion systems. These include large scale orbit transfer for constellation deployment, de-orbit, orbit maintenance, attitude control...

  6. Wind Turbine Propulsion of Boats and Ships

    OpenAIRE

    Bøckmann, Eirik

    2010-01-01

    Increasing focus on reduction of CO2 emissions, and the possibility of future severe shortage of oil have sparked renewed interest in wind as supplementary propulsion of merchant ships. Several alternative solutions are considered, like kites, conventional soft sails, rigid sails, Flettner rotors, and wind turbines. A tempting aspect of wind turbine propulsion is that it can provide propulsive force when sailing directly upwind, something that is impossible with the other mentioned forms of w...

  7. User interactive electric propulsion software design

    Science.gov (United States)

    Aston, Martha B.; Aston, Graeme; Brophy, John R.

    1989-01-01

    As electric propulsion technology matures from laboratory development to flight application, mission planners and spacecraft designers are increasingly required to determine the benefits and integration issues of using this propulsion capability. A computer software tool for supporting these analyses is presented. This tool combines detailed analytical models describing electric propulsion engine performance and subsystem design, and a software structure that is highly user interactive and adaptable. The software design methodology used to develop this software tool is presented in this paper.

  8. Propulsion Design with Freeform Fabrication Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Propulsion Design with Freeform Fabrication (PDFF) will develop and implement a novel design methodology that leverages the rapidly evolving Solid Freeform...

  9. Nuclear Propulsion Technical Interchange Meeting, volume 1

    Science.gov (United States)

    1993-01-01

    The Nuclear Propulsion Technical Interchange Meeting (NP-TIM-92) was sponsored and hosted by the Nuclear Propulsion Office at the NASA Lewis Research Center. The purpose of the meeting was to review the work performed in fiscal year 1992 in the areas of nuclear thermal and nuclear electric propulsion technology development. These proceedings are a compilation of the presentations given at the meeting (many of the papers are presented in outline or viewgraph form). Volume 1 covers the introductory presentations and the system concepts and technology developments related to nuclear thermal propulsion.

  10. NSPWG-recommended safety requirements and guidelines for SEI nuclear propulsion

    Science.gov (United States)

    Marshall, Albert C.; Sawyer, J. C., Jr.; Bari, Robert A.; Brown, Neil W.; Cullingford, Hatice S.; Hardy, Alva C.; Lee, James H.; Mcculloch, William H.; Niederauer, George F.; Remp, Kerry

    1992-01-01

    An interagency Nuclear Safety Policy Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program to facilitate the implementation of mission planning and conceptual design studies. The NSPWG developed a top-level policy to provide the guiding principles for the development and implementation of the nuclear propulsion safety program and the development of safety functional requirements. In addition, the NSPWG reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. Safety requirements were developed for reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, and safeguards. Guidelines were recommended for risk/reliability, operational safety, flight trajectory and mission abort, space debris and meteoroids, and ground test safety. In this paper the specific requirements and guidelines will be discussed.

  11. Space Exploration Initiative Fuels, Materials and Related Nuclear Propulsion Technologies Panel

    Science.gov (United States)

    Bhattacharyya, S. K.; Olsen, C.; Cooper, R.; Matthews, R. B.; Walter, C.; Titran, R. J.

    1993-01-01

    This report was prepared by members of the Fuels, Materials and Related Technologies Panel, with assistance from a number of industry observers as well as laboratory colleagues of the panel members. It represents a consensus view of the panel members. This report was not subjected to a thorough review by DOE, NASA or DoD, and the opinions expressed should not be construed to represent the official position of these organizations, individually or jointly. Topics addressed include: requirement for fuels and materials development for nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP); overview of proposed concepts; fuels technology development plan; materials technology development plan; other reactor technology development; and fuels and materials requirements for advanced propulsion concepts.

  12. An interagency space nuclear propulsion safety policy for SEI - Issues and discussion

    Science.gov (United States)

    Marshall, A. C.; Sawyer, J. C., Jr.

    1991-01-01

    An interagency Nuclear Safety Policy Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative nuclear propulsion program to facilitate the implementation of mission planning and conceptual design studies. The NSPWG developed a top level policy to provide the guiding principles for the development and implementation of the nuclear propulsion safety program and the development of Safety Functional Requirements. In addition, the NSPWG reviewed safety issues for nuclear propulsion and recommended top level safety requirements and guidelines to address these issues. Safety topics include reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, safeguards, risk/reliability, operational safety, ground testing, and other considerations. In this paper the emphasis is placed on the safety policy and the issues and considerations that are addressed by the NSPWG recommendations.

  13. Nuclear safety policy working group recommendations on nuclear propulsion safety for the space exploration initiative

    Science.gov (United States)

    Marshall, Albert C.; Lee, James H.; Mcculloch, William H.; Sawyer, J. Charles, Jr.; Bari, Robert A.; Cullingford, Hatice S.; Hardy, Alva C.; Niederauer, George F.; Remp, Kerry; Rice, John W.

    1993-01-01

    An interagency Nuclear Safety Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program. These recommendations, which are contained in this report, should facilitate the implementation of mission planning and conceptual design studies. The NSPWG has recommended a top-level policy to provide the guiding principles for the development and implementation of the SEI nuclear propulsion safety program. In addition, the NSPWG has reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. These recommendations should be useful for the development of the program's top-level requirements for safety functions (referred to as Safety Functional Requirements). The safety requirements and guidelines address the following topics: reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, safeguards, risk/reliability, operational safety, ground testing, and other considerations.

  14. Aircraft Fire Protection Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Navy Aircraft Protection Laboratory provides complete test support for all Navy air vehicle fire protection systems. The facility allows for the simulation of a...

  15. Depreciation of aircraft

    Science.gov (United States)

    Warner, Edward P

    1922-01-01

    There is a widespread, and quite erroneous, impression to the effect that aircraft are essentially fragile and deteriorate with great rapidity when in service, so that the depreciation charges to be allowed on commercial or private operation are necessarily high.

  16. Aircraft electromagnetic compatibility

    Science.gov (United States)

    Clarke, Clifton A.; Larsen, William E.

    1987-01-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  17. Pure Nuclear Fusion Bomb Propulsion

    CERN Document Server

    Winterberg, F

    2008-01-01

    Recent progress towards the non-fission ignition of thermonuclear micro-explosions raises the prospect for a revival of the nuclear bomb propulsion idea, both for the fast transport of large payloads within the solar system and the launch into earth orbit without the release of fission products into the atmosphere. To reach this goal three areas of research are of importance: 1)Compact thermonuclear ignition drivers. 2)Fast ignition and deuterium burn. 3)Space-craft architecture involving magnetic insulation and GeV electrostatic potentials

  18. Space storable propulsion components development

    Science.gov (United States)

    Hagler, R., Jr.

    1982-01-01

    The current development status of components to control the flow of propellants (liquid fluorine and hydrazine) in a demonstration space storable propulsion system is discussed. The criteria which determined the designs for the pressure regulator, explosive-actuated valves, propellant shutoff valve, latching solenoid-actuated valve and propellant filter are presented. The test philosophy that was followed during component development is outlined. The results from compatibility demonstrations for reusable connectors, flange seals, and CRES/Ti-6Al4V transition tubes and the evaluations of processes for welding (hand-held TIG, automated TIG, and EB), cleaning for fluorine service, and decontamination after fluorine exposure are described.

  19. Propulsion at low Reynolds number

    International Nuclear Information System (INIS)

    We study the propulsion of two model swimmers at low Reynolds number. Inspired by Purcell's model, we propose a very simple one-dimensional swimmer consisting of three spheres that are connected by two arms whose lengths can change between two values. The proposed swimmer can swim with a special type of motion, which breaks the time-reversal symmetry. We also show that an ellipsoidal membrane with tangential travelling wave on it can also propel itself in the direction preferred by the travelling wave. This system resembles the realistic biological animals like Paramecium

  20. Innovative Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    International Nuclear Information System (INIS)

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonably assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible

  1. Aircraft Data Acquisition

    Directory of Open Access Journals (Sweden)

    Elena BALMUS

    2016-03-01

    Full Text Available The introduction of digital systems instead of analog ones has created a major separation in the aviation technology. Although the digital equipment made possible that the increasingly faster controllers take over, we should say that the real world remains essentially analogue [4]. Fly-by-wire designers attempting to control and measure the real feedback of an aircraft were forced to find a way to connect the analogue environment to their digital equipment. In order to manage the implications of this division in aviation, data optimization and comparison has been quite an important task. The interest in using data acquisition boards is being driven by the technology and design standards in the new generation of aircraft and the ongoing efforts of reducing weight and, in some cases addressing the safety risks. This paper presents a sum of technical report data from post processing and diversification of data acquisition from Arinc 429 interface on a research aircraft platform. Arinc 429 is by far the most common data bus in use on civil transport aircraft, regional jets and executive business jets today. Since its introduction on the Boeing 757/767 and Airbus aircraft in the early 1980s hardly any aircraft has been produced without the use of this data bus. It was used widely by the air transport indu

  2. Achievement report (1/2) on R and D in fiscal 1999 on environment adaptive next-generation supersonic propulsion system. R and D of environment adaptive next-generation supersonic aircraft engine; 1999 nendo seika hokokusho. Kankyo tekigo gata jisedai choonsoku suishin system no kenkyu kaihatsu - Kankyo tekigo gata jisedai choonsokuki you enjin kaihatsu (1/2)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    With an objective to develop an environment adaptive next-generation supersonic propulsion system, research and development have been performed on noise reducing technologies, NOx exhaust reducing technologies, CO2 exhaust reducing technologies, and environment adaptive engine systems. This paper summarizes the achievements in fiscal 1999. In the R and D of noise reducing technologies, the following activities have been carried out: selection and evaluation of ceramics as the porous sound absorbing structural material; evaluation on characteristics of axis-symmetrical mixer ejector shape; discussions on application of LES to the CFD analyzing technology; literature investigation for fan noise reduction; and design and fabrication of test equipment. In developing the NOx exhaust reducing technology, conceptual design was performed on a combustor that can achieve the NOx exhaust target, and acquire stable combustion. In addition, researches were carried out on AI control of stable combustion specific type, and AI control of NOx feedback type. In developing a heat resistant liner for the combustor, material characteristics of the CMC combustor were acquired from the tests using test pieces. Specifications were decided on a large CMC parts manufacturing equipment, and the equipment was introduced. (NEDO)

  3. Fly-by-light flight control system architectures for tactical military aircraft

    Science.gov (United States)

    Corrigan, Jack; Jones, Jack E.; Shaw, Brad

    1995-05-01

    Requirements for future advanced tactical aircraft identify the need for flight control system architectures that provide a higher degree of performance with regard to electromagnetic interference immunity, communication bus data rate, propulsion/utility subsystem integration, and affordability. Evolution of highly centralized, digital, fly-by-wire flight/propulsion/utility control system is achieved as modular functions are implemented and integrated by serial, digital, fiber optics communication links. These adaptable architectures allow the user to configure the fly-by-light system to meet unique safety requirements, system performance, and design to cost targets.

  4. Feasibility of MHD submarine propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Doss, E.D. (ed.) (Argonne National Lab., IL (United States)); Sikes, W.C. (ed.) (Newport News Shipbuilding and Dry Dock Co., VA (United States))

    1992-09-01

    This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.

  5. Space nuclear thermal propulsion program

    Energy Technology Data Exchange (ETDEWEB)

    Haslett, R.A.

    1994-12-31

    This report describes te development and funding problems of the space nuclear thermal propulsion program (SNTP). The SNTP program was transferred to the air force, and almost immediately , they indicated that they would have to terminate the program because of a decreasing defense budget and other air force priorities. Congress continued to strongly support the program and $55 million was appropriated for fiscal year 1993, but the air force would not release any of the money to the program. By the summer of 1993, barely 18 months after the program was transferred to the air force, the SNTP team had essentially stopped all work and reduced to a skeleton staff to perform an orderly termination. Despite the significant accomplishments of the program and the endorsements it received from two DSBs, the 1994 Congressional Appropriations Committee had no alternative but to withhold further funding support since no cognizant agency (air force, NASA, or the DOE) was willing to take the lead and continue the technology for future space applications. Once again, the inability to forge cooperation between government agencies for a long-term goal doomed another nuclear technology program. The technology is currently being documented to the extent possible with existing funds because it is clear that a compact lightweight PBR space power and/or propulsion system will be required to enable unmanned and eventually manned exploration of the solar system.

  6. Numerical Propulsion System Simulation Architecture

    Science.gov (United States)

    Naiman, Cynthia G.

    2004-01-01

    The Numerical Propulsion System Simulation (NPSS) is a framework for performing analysis of complex systems. Because the NPSS was developed using the object-oriented paradigm, the resulting architecture is an extensible and flexible framework that is currently being used by a diverse set of participants in government, academia, and the aerospace industry. NPSS is being used by over 15 different institutions to support rockets, hypersonics, power and propulsion, fuel cells, ground based power, and aerospace. Full system-level simulations as well as subsystems may be modeled using NPSS. The NPSS architecture enables the coupling of analyses at various levels of detail, which is called numerical zooming. The middleware used to enable zooming and distributed simulations is the Common Object Request Broker Architecture (CORBA). The NPSS Developer's Kit offers tools for the developer to generate CORBA-based components and wrap codes. The Developer's Kit enables distributed multi-fidelity and multi-discipline simulations, preserves proprietary and legacy codes, and facilitates addition of customized codes. The platforms supported are PC, Linux, HP, Sun, and SGI.

  7. Space Nuclear Thermal Propulsion Nuclear Element Tests at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Nuclear Element Tests (NET) are being performed as part of the U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) Program to evaluate high performance fuel elements intended for use in future nuclear propulsion systems. The NET experiments are to be performed at the Sandia National Laboratories (SNL's) Annular Core Research Reactor (ACRR). Objectives of these experiments are to provide engineering validation and demonstration of critical-fuel-element-related technologies and an experimental data base to support analytical design methods for the SNTP Program. Currently, hardware for the first two fueled NET experiments has been fabricated, and cold flow tests have been accomplished with a representative set of hardware to assure the experimental capability to achieve test objectives in-reactor. Assembly of the first NET experiment to test a representative nuclear fuel element is in progress, and planned operational sequences have been defined

  8. Submersion criticality safety of tungsten-rhenium urania cermet fuel for space propulsion and power applications

    Energy Technology Data Exchange (ETDEWEB)

    A.E. Craft; R. C. O' Brien; S. D. Howe; J. C. King

    2014-07-01

    Nuclear thermal rockets are the preferred propulsion technology for a manned mission to Mars, and tungsten–uranium oxide cermet fuels could provide significant performance and cost advantages for nuclear thermal rockets. A nuclear reactor intended for use in space must remain subcritical before and during launch, and must remain subcritical in launch abort scenarios where the reactor falls back to Earth and becomes submerged in terrestrial materials (including seawater, wet sand, or dry sand). Submersion increases reflection of neutrons and also thermalizes the neutron spectrum, which typically increases the reactivity of the core. This effect is typically very significant for compact, fast-spectrum reactors. This paper provides a submersion criticality safety analysis for a representative tungsten/uranium oxide fueled reactor with a range of fuel compositions. Each submersion case considers both the rhenium content in the matrix alloy and the uranium oxide volume fraction in the cermet. The inclusion of rhenium significantly improves the submersion criticality safety of the reactor. While increased uranium oxide content increases the reactivity of the core, it does not significantly affect the submersion behavior of the reactor. There is no significant difference in submersion behavior between reactors with rhenium distributed within the cermet matrix and reactors with a rhenium clad in the coolant channels. The combination of the flooding of the coolant channels in submersion scenarios and the presence of a significant amount of spectral shift absorbers (i.e. high rhenium concentration) further decreases reactivity for short reactor cores compared to longer cores.

  9. 46 CFR 130.120 - Propulsion control.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion control. 130.120 Section 130.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS VESSEL CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Vessel Control § 130.120 Propulsion control. (a) Each vessel must have—...

  10. Overview of DOE space nuclear propulsion programs

    Science.gov (United States)

    Newhouse, Alan R.

    1993-01-01

    An overview of Department of Energy space nuclear propulsion programs is presented in outline and graphic form. DOE's role in the development and safety assurance of space nuclear propulsion is addressed. Testing issues and facilities are discussed along with development needs and recent research activities.

  11. 46 CFR 109.555 - Propulsion boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping... Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge shall ensure that— (a) Steam pressure does not exceed that allowed by the certificate of inspection; and...

  12. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  13. A structural design for a hypersonic research aircraft

    Science.gov (United States)

    Jackson, L. R.; Taylor, A. H.

    1976-01-01

    A research aircraft is being studied that has potential for large-scale demonstration of advanced propulsive, structural, and aerodynamic technologies for hypersonic application. Versatility is achieved through a large removable payload bay with removable thermal protection, by removable wings, and by the configuration, which considers engine-airframe integration. Design criteria have been applied to an effective heat-sink structure of Lockalloy (Be-38Al), wherein thermal stress alleviation is a prime consideration in the design. Structural analyses are being performed with the SPAR computer program. Results indicate that no critical problems exist and the resulting structural weight is within initial estimates.

  14. Simulating study of the interaction between the propulsion and flight control systems of a subsonic lift fan VTOL

    Science.gov (United States)

    Tinling, B. E.; Cole, G. L.

    1980-01-01

    The possibility of interactions between the propulsion and flight control systems of a three-fan subsonic VTOL aircraft was studied using nonreal time simulation. Time histories of critical internal engine parameters were obtained and possible deleterious effects of engine dynamics on flight control were identified and analyzed. No deleterious effects, with the exception of the effects of the fan actuator deadband, were found. A method of alleviating these effects through feedback of the actuator output to the flight controller was developed.

  15. High Power Nuclear Electric Propulsion (NEP) for Cargo and Propellant Transfer Missions in Cislunar Space

    Science.gov (United States)

    Falck, Robert D.; Borowski, Stanley K.

    2003-01-01

    The performance of Nuclear Electric Propulsion (NEP) in transporting cargo and propellant from Low Earth Orbit (LEO) to the first Earth-Moon Lagrange point (EML1) is examined. The baseline NEP vehicle utilizes a fission reactor system with Brayton power conversion for electric power generation to power multiple liquid hydrogen magnetoplasmadynamic (MPD) thrusters. Vehicle characteristics and performance levels are based on technology availability in a fifteen to twenty year timeframe. Results of numerical trajectory analyses are also provided.

  16. First Breakthrough for Future Air-Breathing Magneto-Plasma Propulsion Systems

    CERN Document Server

    Goksel, Berkant

    2016-01-01

    A new breakthrough in jet propulsion technology since the invention of the jet engine is achieved. The first critical tests for future air-breathing magneto-plasma propulsion systems have been successfully completed. In this regard, it is also the first time that a pinching dense plasma focus discharge could be ignited at one atmosphere and driven in pulse mode using very fast, nanosecond electrostatic excitations to induce self-organized plasma channels for ignition of the propulsive main discharge. Depending on the capacitor voltage (200-600 V) the energy input at one atmosphere varies from 52-320 J/pulse corresponding to impulse bits from 1.2-8.0 mNs. Such a new pulsed plasma propulsion system driven with one thousand pulses per second would already have thrust-to-area ratios (50-150 kN/m2) of modern jet engines. An array of thrusters could enable future aircrafts and airships to start from ground and reach altitudes up to 50km and beyond. The needed high power could be provided by future compact plasma fu...

  17. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    2013-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  18. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  19. Inlet, engine, airframe controls integration development for supercruising aircraft

    Science.gov (United States)

    Houchard, J. H.; Carlin, C. M.; Tjonneland, E.

    1983-01-01

    In connection with a consideration of advanced military aircraft systems, attention is given to research for improving the technology of the design of supersonic cruise aircraft. Syberg et al. (1981) have shown that an analytic design method is now available to accurately predict the flow characteristics of axisymmetric supersonic inlets, including off-design angle of attack operation. On the basis of information regarding the inlet flow characteristics, the control system designer can begin the inlet design and development, before wind tunnel testing has begun. The present investigation is concerned with details and status of inlet control technology. A detailed representation of a supersonic propulsion system is developed. This development demonstrates the feasibility of the selected hybrid computational concept.

  20. Aircraft Engine Gas Path Diagnostic Methods: Public Benchmarking Results

    Science.gov (United States)

    Simon, Donald L.; Borguet, Sebastien; Leonard, Olivier; Zhang, Xiaodong (Frank)

    2013-01-01

    Recent technology reviews have identified the need for objective assessments of aircraft engine health management (EHM) technologies. To help address this issue, a gas path diagnostic benchmark problem has been created and made publicly available. This software tool, referred to as the Propulsion Diagnostic Method Evaluation Strategy (ProDiMES), has been constructed based on feedback provided by the aircraft EHM community. It provides a standard benchmark problem enabling users to develop, evaluate and compare diagnostic methods. This paper will present an overview of ProDiMES along with a description of four gas path diagnostic methods developed and applied to the problem. These methods, which include analytical and empirical diagnostic techniques, will be described and associated blind-test-case metric results will be presented and compared. Lessons learned along with recommendations for improving the public benchmarking processes will also be presented and discussed.

  1. IDENTIFICATION OF AIRCRAFT HAZARDS

    International Nuclear Information System (INIS)

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7)

  2. Aircraft Operations Classification System

    Science.gov (United States)

    Harlow, Charles; Zhu, Weihong

    2001-01-01

    Accurate data is important in the aviation planning process. In this project we consider systems for measuring aircraft activity at airports. This would include determining the type of aircraft such as jet, helicopter, single engine, and multiengine propeller. Some of the issues involved in deploying technologies for monitoring aircraft operations are cost, reliability, and accuracy. In addition, the system must be field portable and acceptable at airports. A comparison of technologies was conducted and it was decided that an aircraft monitoring system should be based upon acoustic technology. A multimedia relational database was established for the study. The information contained in the database consists of airport information, runway information, acoustic records, photographic records, a description of the event (takeoff, landing), aircraft type, and environmental information. We extracted features from the time signal and the frequency content of the signal. A multi-layer feed-forward neural network was chosen as the classifier. Training and testing results were obtained. We were able to obtain classification results of over 90 percent for training and testing for takeoff events.

  3. Identification of Aircraft Hazards

    International Nuclear Information System (INIS)

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7)

  4. IDENTIFICATION OF AIRCRAFT HAZARDS

    Energy Technology Data Exchange (ETDEWEB)

    K.L. Ashley

    2005-03-23

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7).

  5. Identification of Aircraft Hazards

    Energy Technology Data Exchange (ETDEWEB)

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  6. Physics and potentials of fissioning plasmas for space power and propulsion

    Science.gov (United States)

    Thom, K.; Schwenk, F. C.; Schneider, R. T.

    1976-01-01

    Fissioning uranium plasmas are the nuclear fuel in conceptual high-temperature gaseous-core reactors for advanced rocket propulsion in space. A gaseous-core nuclear rocket would be a thermal reactor in which an enriched uranium plasma at about 10,000 K is confined in a reflector-moderator cavity where it is nuclear critical and transfers its fission power to a confining propellant flow for the production of thrust at a specific impulse up to 5000 sec. With a thrust-to-engine weight ratio approaching unity, the gaseous-core nuclear rocket could provide for propulsion capabilities needed for manned missions to the nearby planets and for economical cislunar ferry services. Fueled with enriched uranium hexafluoride and operated at temperatures lower than needed for propulsion, the gaseous-core reactor scheme also offers significant benefits in applications for space and terrestrial power. They include high-efficiency power generation at low specific mass, the burnup of certain fission products and actinides, the breeding of U-233 from thorium with short doubling times, and improved convenience of fuel handling and processing in the gaseous phase.

  7. Design and Development of the MITEE-B Bi-Modal Nuclear Propulsion Engine

    Science.gov (United States)

    Paniagua, John C.; Powell, James R.; Maise, George

    2003-01-01

    Previous studies of compact, ultra-lightweight high performance nuclear thermal propulsion engines have concentrated on systems that only deliver high thrust. However, many potential missions also require substantial amounts of electric power. Studies of a new, very compact and lightweight bi-modal nuclear engine that provides both high propulsive thrust and high electric power for planetary science missions are described. The design is a modification of the MITEE nuclear thermal engine concept that provided only high propulsive thrust. In the new design, MITEE-B, separate closed cooling circuits are incorporated into the reactor, which transfers useful amounts of thermal energy to a small power conversion system that generates continuous electric power over the full life of the mission, even when the engine is not delivering propulsive thrust. Two versions of the MITEE-B design are described and analyzed. Version 1 generates 1 kW(e) of continuous power for control of the spacecraft, sensors, data transmission, etc. This power level eliminates the need for RTG's on missions to the outer planets, and allowing considerably greater operational capability for the spacecraft. This, plus its high thrust and high specific impulse propulsive capabilities, makes MITEE-B very attractive for such missions. In Version 2, of MITEE-B, a total of 20 kW(e) is generated, enabling the use of electric propulsion. The combination of high open cycle propulsion thrust (20,000 Newtons) with a specific impulse of ~1000 seconds for short impulse burns, and long term (months to years), electric propulsion greatly increases MITEE's ΔV capability. Version 2 of MITEE-B also enables the production and replenishment of H2 propellant using in-situ resources, such as electrolysis of water from the ice sheet on Europa and other Jovian moons. This capability would greatly increase the ΔV available for certain planetary science missions. The modifications to the MITEE multiple pressure tube

  8. Toward Reduced Aircraft Community Noise Impact Via a Perception-Influenced Design Approach

    Science.gov (United States)

    Rizzi, Stephen A.

    2016-01-01

    This is an exciting time for aircraft design. New configurations, including small multi-rotor uncrewed aerial systems, fixed- and tilt-wing distributed electric propulsion aircraft, high-speed rotorcraft, hybrid-electric commercial transports, and low-boom supersonic transports, are being made possible through a host of propulsion and airframe technology developments. The resulting noise signatures may be radically different, both spectrally and temporally, than those of the current fleet. Noise certification metrics currently used in aircraft design do not necessarily reflect these characteristics and therefore may not correlate well with human response. Further, as operations and missions become less airport-centric, e.g., those associated with on-demand mobility or package delivery, vehicles may operate in closer proximity to the population than ever before. Fortunately, a new set of tools are available for assessing human perception during the design process in order to affect the final design in a positive manner. The tool chain utilizes system noise prediction methods coupled with auralization and psychoacoustic testing, making possible the inclusion of human response to noise, along with performance criteria and certification requirements, into the aircraft design process. Several case studies are considered to illustrate how this approach could be used to influence the design of future aircraft.

  9. Advanced Aircraft Material

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Prince

    2013-06-01

    Full Text Available There has been long debate on “advanced aircraft material” from past decades & researchers too came out with lots of new advanced material like composites and different aluminum alloys. Now days a new advancement that is in great talk is third generation Aluminum-lithium alloy. Newest Aluminum-lithium alloys are found out to have low density, higher elastic modulus, greater stiffness, greater cryogenic toughness, high resistance to fatigue cracking and improved corrosion resistance properties over the earlier used aircraft material as mentioned in Table 3 [1-5]. Comparison had been made with nowadays used composite material and is found out to be more superior then that

  10. Subsonic Ultra Green Aircraft Research Phase II: N+4 Advanced Concept Development

    Science.gov (United States)

    Bradley, Marty K.; Droney, Christopher K.

    2012-01-01

    This final report documents the work of the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team on Task 1 of the Phase II effort. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. Using a quantitative workshop process, the following technologies, appropriate to aircraft operational in the N+4 2040 timeframe, were identified: Liquefied Natural Gas (LNG), Hydrogen, fuel cell hybrids, battery electric hybrids, Low Energy Nuclear (LENR), boundary layer ingestion propulsion (BLI), unducted fans and advanced propellers, and combinations. Technology development plans were developed.

  11. Intelligent modeling and identification of aircraft nonlinear flight

    Directory of Open Access Journals (Sweden)

    Alireza Roudbari

    2014-08-01

    Full Text Available In this paper, a new approach has been proposed to identify and model the dynamics of a highly maneuverable fighter aircraft through artificial neural networks (ANNs. In general, aircraft flight dynamics is considered as a nonlinear and coupled system whose modeling through ANNs, unlike classical approaches, does not require any aerodynamic or propulsion information and a few flight test data seem sufficient. In this study, for identification and modeling of the aircraft dynamics, two known structures of internal and external recurrent neural networks (RNNs and a proposed structure called hybrid combined recurrent neural network have been used and compared. In order to improve the training process, an appropriate evolutionary method has been applied to simultaneously train and optimize the parameters of ANNs. In this research, it has been shown that six ANNs each with three inputs and one output, trained by flight test data, can model the dynamic behavior of the highly maneuverable aircraft with acceptable accuracy and without any priori knowledge about the system.

  12. Intelligent modeling and identification of aircraft nonlinear flight

    Institute of Scientific and Technical Information of China (English)

    Alireza Roudbari; Fariborz Saghafi

    2014-01-01

    In this paper, a new approach has been proposed to identify and model the dynamics of a highly maneuverable fighter aircraft through artificial neural networks (ANNs). In general, air-craft flight dynamics is considered as a nonlinear and coupled system whose modeling through ANNs, unlike classical approaches, does not require any aerodynamic or propulsion information and a few flight test data seem sufficient. In this study, for identification and modeling of the aircraft dynamics, two known structures of internal and external recurrent neural networks (RNNs) and a proposed structure called hybrid combined recurrent neural network have been used and compared. In order to improve the training process, an appropriate evolutionary method has been applied to simultaneously train and optimize the parameters of ANNs. In this research, it has been shown that six ANNs each with three inputs and one output, trained by flight test data, can model the dynamic behavior of the highly maneuverable aircraft with acceptable accuracy and without any priori knowledge about the system.

  13. Reactors Save Energy, Costs for Hydrogen Production

    Science.gov (United States)

    2014-01-01

    While examining fuel-reforming technology for fuel cells onboard aircraft, Glenn Research Center partnered with Garrettsville, Ohio-based Catacel Corporation through the Glenn Alliance Technology Exchange program and a Space Act Agreement. Catacel developed a stackable structural reactor that is now employed for commercial hydrogen production and results in energy savings of about 20 percent.

  14. Nuclear rockets: High-performance propulsion for Mars

    Energy Technology Data Exchange (ETDEWEB)

    Watson, C.W.

    1994-05-01

    A new impetus to manned Mars exploration was introduced by President Bush in his Space Exploration Initiative. This has led, in turn, to a renewed interest in high-thrust nuclear thermal rocket propulsion (NTP). The purpose of this report is to give a brief tutorial introduction to NTP and provide a basic understanding of some of the technical issues in the realization of an operational NTP engine. Fundamental physical principles are outlined from which a variety of qualitative advantages of NTP over chemical propulsion systems derive, and quantitative performance comparisons are presented for illustrative Mars missions. Key technologies are described for a representative solid-core heat-exchanger class of engine, based on the extensive development work in the Rover and NERVA nuclear rocket programs (1955 to 1973). The most driving technology, fuel development, is discussed in some detail for these systems. Essential highlights are presented for the 19 full-scale reactor and engine tests performed in these programs. On the basis of these tests, the practicality of graphite-based nuclear rocket engines was established. Finally, several higher-performance advanced concepts are discussed. These have received considerable attention, but have not, as yet, developed enough credibility to receive large-scale development.

  15. A Nuclear-Powered Laser-Accelerated Plasma Propulsion System

    Science.gov (United States)

    Kammash, Terry

    2003-01-01

    Recent experiments at the University of Michigan and other laboratories throughout the world have demonstrated that ultrafast (very short pulse length) lasers can accelerate charged particles to relativistic speeds. The terrawatt laser at the University of Michigan has generated a beam of protons containing more than 1010 particles at a mean energy of over one Mev while the petawatt laser at the Lawrence Livermore National Laboratory has produced proton beams containing more than 1014 particles with maximum energy of 58 Mev and a mean energy of about 6 Mev. Using the latter data as a basis for a present-day LAPPS (Laser Accelerated Plasma Propulsion System) propulsion device we show that it can produce a specific impulse of several million seconds albeit at a fraction of a Newton of thrust. We show that if the thrust can be increased to a modest 25 Newtons a fly-by robotic interstellar mission to 10,000 AU can be achieved in about 26 years, while a round trip to Mars will be accomplished in about 6 months. In both instances a one MWe nuclear power system with a mass of about 5 MT will be needed to drive the laser, and the recently announced NASA's Nuclear Space Initiative should be able to address such reactors in the near future.

  16. Cycle Trades for Nuclear Thermal Rocket Propulsion Systems

    Science.gov (United States)

    White, C.; Guidos, M.; Greene, W.

    2003-01-01

    Nuclear fission has been used as a reliable source for utility power in the United States for decades. Even in the 1940's, long before the United States had a viable space program, the theoretical benefits of nuclear power as applied to space travel were being explored. These benefits include long-life operation and high performance, particularly in the form of vehicle power density, enabling longer-lasting space missions. The configurations for nuclear rocket systems and chemical rocket systems are similar except that a nuclear rocket utilizes a fission reactor as its heat source. This thermal energy can be utilized directly to heat propellants that are then accelerated through a nozzle to generate thrust or it can be used as part of an electricity generation system. The former approach is Nuclear Thermal Propulsion (NTP) and the latter is Nuclear Electric Propulsion (NEP), which is then used to power thruster technologies such as ion thrusters. This paper will explore a number of indirect-NTP engine cycle configurations using assumed performance constraints and requirements, discuss the advantages and disadvantages of each cycle configuration, and present preliminary performance and size results. This paper is intended to lay the groundwork for future efforts in the development of a practical NTP system or a combined NTP/NEP hybrid system.

  17. Space Nuclear Thermal Propulsion Test Facilities Subpanel

    Science.gov (United States)

    Allen, George C.; Warren, John W.; Martinell, John; Clark, John S.; Perkins, David

    1993-01-01

    On 20 Jul. 1989, in commemoration of the 20th anniversary of the Apollo 11 lunar landing, President George Bush proclaimed his vision for manned space exploration. He stated, 'First for the coming decade, for the 1990's, Space Station Freedom, the next critical step in our space endeavors. And next, for the new century, back to the Moon. Back to the future. And this time, back to stay. And then, a journey into tomorrow, a journey to another planet, a manned mission to Mars.' On 2 Nov. 1989, the President approved a national space policy reaffirming the long range goal of the civil space program: to 'expand human presence and activity beyond Earth orbit into the solar system.' And on 11 May 1990, he specified the goal of landing Astronauts on Mars by 2019, the 50th anniversary of man's first steps on the Moon. To safely and ever permanently venture beyond near Earth environment as charged by the President, mankind must bring to bear extensive new technologies. These include heavy lift launch capability from Earth to low-Earth orbit, automated space rendezvous and docking of large masses, zero gravity countermeasures, and closed loop life support systems. One technology enhancing, and perhaps enabling, the piloted Mars missions is nuclear propulsion, with great benefits over chemical propulsion. Asserting the potential benefits of nuclear propulsion, NASA has sponsored workshops in Nuclear Electric Propulsion and Nuclear Thermal Propulsion and has initiated a tri-agency planning process to ensure that appropriate resources are engaged to meet this exciting technical challenge. At the core of this planning process, NASA, DOE, and DOD established six Nuclear Propulsion Technical Panels in 1991 to provide groundwork for a possible tri-agency Nuclear Propulsion Program and to address the President's vision by advocating an aggressive program in nuclear propulsion. To this end the Nuclear Electric Propulsion Technology Panel has focused it energies; this final report

  18. Auralization of novel aircraft configurations

    OpenAIRE

    Arntzen, M.; Bertsch, E.L.; Simons, D.G.

    2015-01-01

    A joint initiative of NLR, DLR, and TU Delft has been initiated to streamline the process of generating audible impressions of novel aircraft configurations. The integrated approach adds to the value of the individual tools and allows predicting the sound of future aircraft before they actually fly. Hence, an existing process for the aircraft design and system noise prediction at DLR has been upgraded to generate the required input data for an aircraft auralization framework developed by NLR ...

  19. Long Range Aircraft Trajectory Prediction

    OpenAIRE

    Magister, Tone

    2009-01-01

    The subject of the paper is the improvement of the aircraft future trajectory prediction accuracy for long-range airborne separation assurance. The strategic planning of safe aircraft flights and effective conflict avoidance tactics demand timely and accurate conflict detection based upon future four–dimensional airborne traffic situation prediction which is as accurate as each aircraft flight trajectory prediction. The improved kinematics model of aircraft relative flight considering flight ...

  20. Electric Motors for Non-Cryogenic Hybrid Electric and Turboelectric Propulsion

    Science.gov (United States)

    Duffy, Kirsten P.

    2015-01-01

    NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion concepts for future aircraft to reduce fuel burn, emissions, and noise. Systems studies show that the weight and efficiency of the electric system components need to be improved for this concept to be feasible. However, advances in motor component materials such as soft magnetic materials, hard magnetic materials, conductors, thermal insulation, and structural materials are expected in the coming years, and should improve motor performance. This study investigates several motor types for a one megawatt application, and projects the motor performance benefits of new component materials that might be available in the coming decades.

  1. Electric Motor Considerations for Non-Cryogenic Hybrid Electric and Turboelectric Propulsion

    Science.gov (United States)

    Duffy, Kirsten P.

    2015-01-01

    NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion concepts for future aircraft to reduce fuel burn, emissions, and noise. Systems studies show that the weight and efficiency of the electric system components need to be improved for this concept to be feasible. However, advances in motor component materials such as soft magnetic materials, hard magnetic materials, conductors, thermal insulation, and structural materials are expected in the coming years, and should improve motor performance. This study investigates several motor types for a one megawatt application, and projects the motor performance benefits of new component materials that might be available in the coming decades.

  2. The development and flight test of an electronic integrated propulsion control system

    Science.gov (United States)

    Johnson, H. J.; Painter, W. D.

    1976-01-01

    Advanced technical features of the electronic integrated propulsion control system (IPCS) and flight evaluation tests of IPCS (F-111E with TF30-P-9 engines as test vehicle) are described. Nine baseline flight tests and 15 IPCS flight tests were conducted. Instrumentation, data acquisition and data processing systems, software maintenance procedures, flight test procedures, flight safety criteria, flight test results, and ground and flight testing of the aircraft system are described. Advantages conferred by IPCS include: faster accelerations (both gas generator and afterburner performance), better thrust and flight control, reduced flight idle thrust, reduced engine ground trim, extended service ceiling, automatic stall detection, and stall recovery detection.

  3. The 1993 JANNAF Propulsion Meeting, volume 2

    Science.gov (United States)

    Eggleston, Debra S.

    1993-11-01

    This volume, the second of six volumes, is a collection of 30 unclassified/unlimited distribution papers which were presented at the 1993 Joint Army-Navy-NASA-Air Force (JANNAF) Propulsion Meeting, held 15-19 November 1993 at the Hyatt Regency Hotel and Conference Center and the Naval Postgraduate School in Monterey, California. Specific subjects discussed include grain integrity, hybrid motors, liquid engines, turbopumps, reaction control systems, composite motor cases, continuous propellant mixing, nondestructive testing, solar propulsion, combustion chambers, and foreign propulsion technology.

  4. Fitting aerodynamics and propulsion into the puzzle

    Science.gov (United States)

    Johnston, Patrick J.; Whitehead, Allen H., Jr.; Chapman, Gary T.

    1987-01-01

    The development of an airbreathing single-stage-to-orbit vehicle, in particular the problems of aerodynamics and propulsion integration, is examined. The boundary layer transition on constant pressure surfaces at hypersonic velocities, and the effects of noise on the transition are investigated. The importance of viscosity, real-gas effects, and drag at hypersonic speeds is discussed. A propulsion system with sufficient propulsive lift to enhance the performance of the vehicle is being developed. The difficulties of engine-airframe integration are analyzed.

  5. Integration of Engine, Plume, and CFD Analyses in Conceptual Design of Low-Boom Supersonic Aircraft

    Science.gov (United States)

    Li, Wu; Campbell, Richard; Geiselhart, Karl; Shields, Elwood; Nayani, Sudheer; Shenoy, Rajiv

    2009-01-01

    This paper documents an integration of engine, plume, and computational fluid dynamics (CFD) analyses in the conceptual design of low-boom supersonic aircraft, using a variable fidelity approach. In particular, the Numerical Propulsion Simulation System (NPSS) is used for propulsion system cycle analysis and nacelle outer mold line definition, and a low-fidelity plume model is developed for plume shape prediction based on NPSS engine data and nacelle geometry. This model provides a capability for the conceptual design of low-boom supersonic aircraft that accounts for plume effects. Then a newly developed process for automated CFD analysis is presented for CFD-based plume and boom analyses of the conceptual geometry. Five test cases are used to demonstrate the integrated engine, plume, and CFD analysis process based on a variable fidelity approach, as well as the feasibility of the automated CFD plume and boom analysis capability.

  6. Research reactors

    International Nuclear Information System (INIS)

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  7. Reactor physics and reactor computations

    International Nuclear Information System (INIS)

    Mathematical methods and computer calculations for nuclear and thermonuclear reactor kinetics, reactor physics, neutron transport theory, core lattice parameters, waste treatment by transmutation, breeding, nuclear and thermonuclear fuels are the main interests of the conference

  8. Prometheus Project Reactor Module Final Report, For Naval Reactors Information

    International Nuclear Information System (INIS)

    The Naval Reactors Prime Contractor Team (NRPCT) led the development of a power plant for a civilian nuclear electric propulsion (NEP) system concept as part of the Prometheus Project. This report provides a summary of the facts, technical insights, and programmatic perspectives gained from this two-year program. The Prometheus Project experience has been extensively documented to better position the US for future space reactor development. Major Technological and engineering challenges exist to develop a system that provides useful electric power from a nuclear fission heat source operating in deep space. General issues include meeting mission requirements in a system that has a mass low enough to launch from earth while assuring public safety and remaining safely shutdown during credible launch accidents. These challenges may be overcome in the future if there is a space mission with a compelling need for nuclear power to drive development. Past experience and notional mission requirements indicate that any useful space reactor system will be unlike past space reactors and existing terrestrial reactors

  9. Robots for Aircraft Maintenance

    Science.gov (United States)

    1993-01-01

    Marshall Space Flight Center charged USBI (now Pratt & Whitney) with the task of developing an advanced stripping system based on hydroblasting to strip paint and thermal protection material from Space Shuttle solid rocket boosters. A robot, mounted on a transportable platform, controls the waterjet angle, water pressure and flow rate. This technology, now known as ARMS, has found commercial applications in the removal of coatings from jet engine components. The system is significantly faster than manual procedures and uses only minimal labor. Because the amount of "substrate" lost is minimal, the life of the component is extended. The need for toxic chemicals is reduced, as is waste disposal and human protection equipment. Users of the ARMS work cell include Delta Air Lines and the Air Force, which later contracted with USBI for development of a Large Aircraft Paint Stripping system (LARPS). LARPS' advantages are similar to ARMS, and it has enormous potential in military and civil aircraft maintenance. The technology may also be adapted to aircraft painting, aircraft inspection techniques and paint stripping of large objects like ships and railcars.

  10. Advanced nuclear reactor types and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V. [ed.; Feinberg, O.; Morozov, A. [Russian Research Centre `Kurchatov Institute`, Moscow (Russian Federation); Devell, L. [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1995-07-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary.

  11. Advanced nuclear reactor types and technologies

    International Nuclear Information System (INIS)

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary

  12. Nuclear Propulsion for Space Applications

    Science.gov (United States)

    Houts, M. G.; Bechtel, R. D.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2013-01-01

    Basics of Nuclear Systems: Long history of use on Apollo and space science missions. 44 RTGs and hundreds of RHUs launched by U.S. during past 4 decades. Heat produced from natural alpha (a) particle decay of Plutonium (Pu-238). Used for both thermal management and electricity production. Used terrestrially for over 65 years. Fissioning 1 kg of uranium yields as much energy as burning 2,700,000 kg of coal. One US space reactor (SNAP-10A) flown (1965). Former U.S.S.R. flew 33 space reactors. Heat produced from neutron-induced splitting of a nucleus (e.g. U-235). At steady-state, 1 of the 2 to 3 neutrons released in the reaction causes a subsequent fission in a "chain reaction" process. Heat converted to electricity, or used directly to heat a propellant. Fission is highly versatile with many applications.

  13. Integration of noise control into the product design process : a case study : the Silent Aircraft Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Faszer, A. [Noise Solutions Inc., Calgary, AB (Canada)

    2007-07-01

    The Silent Aircraft Initiative (SAI) is a study being conducted by the Cambridge-MIT Institute to discover ways to significantly reduce aircraft noise. Part of the study focuses on developing aircraft and engine designs that meet the SAI objectives. This presentation included several illustrations of the favoured configuration of a blended wing design, with 4 engines located on the upper surface of a shallow wing which shields engine noise. This presentation described various engine parts such as the low specific thrust turbofan, the variable area nozzle and the acoustic treatment in the intake and exhaust turbomachinery that minimizes noise. The requirements for market viability of the aircraft were discussed as well as the technical challenges in terms of its propulsion systems; structural analysis; mechanical design; low speed aerodynamic performance; cabin layout; and maintenance considerations. It was concluded that the SAI has achieved a credible conceptual aircraft design given the high risk of the technologies used. The project has met objectives of a functionally silent and fuel efficient aircraft. The new conceptual aircraft has potential for fuel burn of 149 pax-miles per imperial gallon and noise of 63 dBA near the perimeter of airports. 1 tab., 48 figs.

  14. Nuclear containment structure subjected to commercial and fighter aircraft crash

    Energy Technology Data Exchange (ETDEWEB)

    Sadique, M.R., E-mail: rehan.sadique@gmail.com; Iqbal, M.A., E-mail: iqbalfce@iitr.ernet.in; Bhargava, P., E-mail: bhpdpfce@iitr.ernet.in

    2013-07-15

    Highlights: • Nuclear containment response has been studied against aircraft crash. • Concrete damaged plasticity and Johnson–Cook elasto-viscoplastic models were employed. • Boeing 747-400 and Boeing 767-400 aircrafts caused global failure of containment. • Airbus A320 and Boeing 707-320 aircrafts caused local damage. • Tension damage of concrete was found more prominent compared to compression damage. -- Abstract: The response of a boiling water reactor (BWR) nuclear containment vessel has been studied against commercial and fighter aircraft crash using a nonlinear finite element code ABAQUS. The aircrafts employed were Boeing 747-400, Boeing 767-400, Airbus A-320, Boeing 707-320 and Phantom F4. The containment was modeled as a three-dimensional deformable reinforced concrete structure while the loading of aircraft was assigned using the respective reaction–time curve. The location of strike was considered near the junction of dome and cylinder, and the angle of incidence, normal to the containment surface. The material behavior of the concrete was incorporated using the damaged plasticity model while that of the reinforcement, the Johnson–Cook elasto-viscoplastic model. The containment could not sustain the impact of Boeing 747-400 and Boeing 767-400 aircrafts and suffered rupture of concrete around the impact region leading to global failure. On the other hand, the maximum local deformation at the point of impact was found to be 0.998 m, 0.099 m, 0.092 m, 0.089 m, and 0.074 m against Boeing 747-400, Phantom F4, Boeing 767, Boeing 707-320 and Airbus A-320 aircrafts respectively. The results of the present study were compared with those of the previous analytical and numerical investigations with respect to the maximum deformation and overall behavior of the containment.

  15. Propulsion in the Chameleon Model

    Science.gov (United States)

    Robertson, Glen A.

    2008-01-01

    The Chameleon model-thin-shell mechanism-proposed by Khoury and Weltman presents a likeness to a stationary warp bubble about masses of significant size and interest to space propulsion. A difference being that the thin-shell mechanism masks the mass of an object from an external Chameleon field comparable to the gravitational field in warp-drive theory. However, the thin-shell mechanism couples to the gravitational field by causing small perturbations limited to an object's effective range, which in essence could act like a warp-bubble under some ``yet to be defined'' conditions where the coupling is made stronger. In this paper, the thin-shell mechanism is discussed and shown to be the underlying physics behind rocket propulsion through the concept of localized oscillating dark matter comprising an increase in the thin-shell localized to a region on one side of an object. This is accomplished by drawing a connection between the localized oscillation of dark matter in this thin-shell region and the rocket equations. As such, it appears that a new physics effect is applied to normal matter; indicating that the results should have been observed decades ago. We argue that the Chameleon Model's thin-shell mechanism is a dark matter/energy field, which has always been in all momentum systems at or above the atomic scale where the mass has some physical significance in respect to the Chameleon model. Therefore, its physical (momentum) effects have already been observed. Further, since the analysis indicates that any motion of an object implies a change to the distribution of dark matter about an object, one can speculate that ``inertia is the change in the dark energy distribution about a mass.'' This being the case, the Chameleon dark matter/energy field about a mass has effects in many aspects of physics, but the laws have not (yet) been formulated to take advantage of the vacuum field aspects, which may provide the connection needed to extend modern rocketry to

  16. High Power Helicon Plasma Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work seeks to develop and optimize an electrode-less plasma propulsion system that is based on a high power helicon (HPH) that is being developed...

  17. Development and Testing of Propulsion Health Management

    Science.gov (United States)

    Hunter, Gary W.; Lekki, John D.; Simon, Donald L.

    2012-01-01

    An Integrated Vehicle Health Management system aims to maintain vehicle health through detection, diagnostics, state awareness, prognostics, and lastly, mitigation of detrimental situations for each of the vehicle subsystems and throughout the vehicle as a whole. This paper discusses efforts to advance Propulsion Health Management technology for in-flight applications to provide improved propulsion sensors measuring a range of parameters, improve ease of propulsion sensor implementation, and to assess and manage the health of gas turbine engine flow-path components. This combined work is intended to enable real-time propulsion state assessments to accurately determine the vehicle health, reduce loss of control, and to improve operator situational awareness. A unique aspect of this work is demonstration of these maturing technologies on an operational engine.

  18. High Power Helicon Plasma Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new thruster has been conceived and tested that is based on a high power helicon (HPH) plasma wave. In this new method of propulsion, an antenna generates and...

  19. Safe, Affordable, Nuclear Thermal Propulsion Systems

    Science.gov (United States)

    Houts, M. G.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Doughty, G. E.

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  20. Breakthrough Propulsion Physics Workshop Preliminary Results

    Science.gov (United States)

    Millis, Marc G.

    1997-01-01

    In August, 1997, a NASA workshop was held to assess the prospects emerging from physics that might lead to creating the ultimate breakthroughs in space transportation: propulsion that requires no propellant mass, attaining the maximum transit speeds physically possible, and breakthrough methods of energy production to power such devices. Because these propulsion goals are presumably far from fruition, a special emphasis was to identify affordable, near-term, and credible research that could make measurable progress toward these propulsion goals. Experiments and theories were discussed regarding the coupling of gravity and electromagnetism, vacuum fluctuation energy, warp drives and wormholes, and superluminal quantum tunneling. Preliminary results of this workshop are presented, along with the status of the Breakthrough Propulsion Physics program that conducted this workshop.

  1. Propulsion Wheel Motor for an Electric Vehicle

    Science.gov (United States)

    Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Waligora, Thomas M. (Inventor); Bluethmann, William J. (Inventor); Farrell, Logan Christopher (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Winn, Ross Briant (Inventor); Eggleston, IV, Raymond Edward (Inventor); Guo, Raymond (Inventor); Weber, Steven J. (Inventor); Junkin, Lucien Q. (Inventor); Rogers, James Jonathan (Inventor)

    2016-01-01

    A wheel assembly for an electric vehicle includes a wheel rim that is concentrically disposed about a central axis. A propulsion-braking module is disposed within an interior region of the wheel rim. The propulsion-braking module rotatably supports the wheel rim for rotation about the central axis. The propulsion-braking module includes a liquid cooled electric motor having a rotor rotatable about the central axis, and a stator disposed radially inside the rotor relative to the central axis. A motor-wheel interface hub is fixedly attached to the wheel rim, and is directly attached to the rotor for rotation with the rotor. The motor-wheel interface hub directly transmits torque from the electric motor to the wheel rim at a 1:1 ratio. The propulsion-braking module includes a drum brake system having an electric motor that rotates a cam device, which actuates the brake shoes.

  2. Nuclear Cryogenic Propulsion Stage for Mars Exploration

    Science.gov (United States)

    Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  3. Nuclear Thermal Propulsion for Advanced Space Exploration

    Science.gov (United States)

    Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  4. Space Nuclear Thermal Propulsion (SNTP) program

    Science.gov (United States)

    Bleeker, Gary A.

    1993-01-01

    An overview of the Space Nuclear Thermal Propulsion program is presented in graphic form. A program organizational chart is presented that shows the government and industry participants. Enabling technologies and test facilities and approaches are also addressed.

  5. Review of Nuclear Thermal Propulsion Systems

    Science.gov (United States)

    Gabrielli, Roland Antonius; Herdrich, Georg

    2015-11-01

    This article offers a summary of past efforts in the development of Nuclear Thermal Propulsion systems for space transportation. First, the generic principle of thermal propulsion is outlined: a propellant is directly heated by a power source prior to being expanded which creates a thrusting force on the rocket. This enables deriving a motivation for the use of Nuclear Thermal Propulsion (NTP) relying on nuclear power sources. Then, a summary of major families of NTP systems is established on the basis of a literature survey. These families are distinguished by the nature of their power source, the most important being systems with radioisotope, fission, and fusion cores. Concepts proposing to harness the annihilation of matter and anti-matter are only touched briefly due to their limited maturity. For each family, an overview of physical fundamentals, technical concepts, and - if available - tested engines' propulsion parameters is given.

  6. Authentication for Propulsion Test Streaming Video Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An application was developed that could enforce two-factor authentication for NASA access to the Propulsion Test Streaming Video System.  To gain access to the...

  7. Reservoir Scandate Cathode for Electric Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to combine two revolutionary cathode technologies into a single device for use in electric space propulsion. This will overcome problems that both...

  8. Braking performance of aircraft tires

    Science.gov (United States)

    Agrawal, Satish K.

    This paper brings under one cover the subject of aircraft braking performance and a variety of related phenomena that lead to aircraft hydroplaning, overruns, and loss of directional control. Complex processes involving tire deformation, tire slipping, and fluid pressures in the tire-runway contact area develop the friction forces for retarding the aircraft; this paper describes the physics of these processes. The paper reviews the past and present research efforts and concludes that the most effective way to combat the hazards associated with aircraft landings and takeoffs on contaminated runways is by measuring and displaying in realtime the braking performance parameters in the aircraft cockpit.

  9. Computational Investigation of a Boundary-Layer Ingesting Propulsion System for the Common Research Model

    Science.gov (United States)

    Blumenthal, Brennan T.; Elmiligui, Alaa; Geiselhart, Karl A.; Campbell, Richard L.; Maughmer, Mark D.; Schmitz, Sven

    2016-01-01

    The present paper examines potential propulsive and aerodynamic benefits of integrating a Boundary-Layer Ingestion (BLI) propulsion system into a typical commercial aircraft using the Common Research Model (CRM) geometry and the NASA Tetrahedral Unstructured Software System (TetrUSS). The Numerical Propulsion System Simulation (NPSS) environment is used to generate engine conditions for CFD analysis. Improvements to the BLI geometry are made using the Constrained Direct Iterative Surface Curvature (CDISC) design method. Previous studies have shown reductions of up to 25% in terms of propulsive power required for cruise for other axisymmetric geometries using the BLI concept. An analysis of engine power requirements, drag, and lift coefficients using the baseline and BLI geometries coupled with the NPSS model are shown. Potential benefits of the BLI system relating to cruise propulsive power are quantified using a power balance method, and a comparison to the baseline case is made. Iterations of the BLI geometric design are shown and any improvements between subsequent BLI designs presented. Simulations are conducted for a cruise flight condition of Mach 0.85 at an altitude of 38,500 feet and an angle of attack of 2 deg for all geometries. A comparison between available wind tunnel data, previous computational results, and the original CRM model is presented for model verification purposes along with full results for BLI power savings. Results indicate a 14.4% reduction in engine power requirements at cruise for the BLI configuration over the baseline geometry. Minor shaping of the aft portion of the fuselage using CDISC has been shown to increase the benefit from Boundary-Layer Ingestion further, resulting in a 15.6% reduction in power requirements for cruise as well as a drag reduction of eighteen counts over the baseline geometry.

  10. Modifications in Wheelchair Propulsion Technique with Speed

    Directory of Open Access Journals (Sweden)

    Ian Miles Russell

    2015-10-01

    Full Text Available Objective: Repetitive loading of the upper limb joints during manual wheelchair propulsion has been identified a factor that contributes to shoulder pain, leading to loss of independence and decreased quality of life. The purpose of this study was to determine how individual manual wheelchair users with paraplegia modify propulsion mechanics to accommodate expected increases in reaction forces generated at the pushrim with self-selected increases in wheelchair propulsion (WCP speed.Methods: Upper extremity kinematics and pushrim reaction forces were measured for 40 experienced manual wheelchair users with paraplegia while propelling on a stationary ergometer at self-selected free and fast propulsion speeds. Upper extremity kinematics and kinetics were compared within-subject between propulsion speeds. Between group and within subject differences were determined (α =0.05.Results: Increased propulsion speed was accompanied by increases in Reaction Force (RF magnitude (22 of 40, >10N and shoulder Net Joint Moment (NJM, 15 of 40, >10Nm and decreases in pushrim contact duration. Within-subject comparison indicated that 27% of participants modified their WCP mechanics with increases in speed by regulating RF orientation relative to the upper extremity segments.Conclusions: Reorientation of the RF relative to the upper extremity segments can be used as an effective strategy for mitigating rotational demands (NJM imposed on the shoulder at increased propulsion speeds. Identification of propulsion strategies that individuals can use to effectively accommodate for increases in RFs is an important step towards preserving musculoskeletal health of the shoulder and improving health-related quality of life.

  11. A Propulsion System Tailored to Cubesat Applications

    OpenAIRE

    Platt, Donald

    2007-01-01

    Cubesats and other nano- and pico-satellite platforms have traditionally not had the capability of on-board propulsion. A complete propulsion system tailored to cubesat and other nano-picosat applications is presented in this paper. This system has been demonstrated and is ready for use in cubesat missions. A diaphragm positive expulsion tank or integral structure/bladder tank has been developed for propellant storage and feed to the thrusters. Propellant systems available include hydrogen pe...

  12. MEGAHIT Roadmap: Applications for Nuclear Electric Propulsion

    OpenAIRE

    Jansen, Frank; Semenkin, Alexander; Bauer, Waldemar; WORMS, Jean-Claude; Detsis, Emmanouil; CLIQUET-MORENO, Elisa; Masson, Frederic; Ruault, Jean-Marc; Gaia, Enrico; Cristina, T.M.; Tinsley, Tim; Hodgson, Zara

    2014-01-01

    The paper introduces the three EC funded nuclear electric propulsion funded projects DiPoP, MEGAHIT and DEMOCRITOS. It describes in detail the European-Russian MEGAHIT project - the study outputs, the proposal for a key technology plan, a plan for a political and public supportable reference space mission. Moreover the content of the MEGAHIT global roadmap for international realization of the INPPS (International Nuclear Power and Propulsion System) is sketched.

  13. SWISSMETRO: Combined Propulsion with Levitation and Guidance

    OpenAIRE

    Cassat, A.; Espanet, C.

    2004-01-01

    Swissmetro is a MAGLEV Project between the main cities of Switzerland, designed for a speed up to 500 [km/h] in two tunnels under partial vacuum. Two propulsion variants are considered: - the short stators of the linear homopolar motors are fixed with the tunnel tracks; - the stator of the motors is on board of the vehicles. The levitation, the guidance and the transfer of energy are independent. The authors investigate the possibilities to combine the propulsion with the levitation and the g...

  14. Comparison of propeller-driven propulsion systems

    OpenAIRE

    Mejergren, Henrik

    2014-01-01

    Global warming caused by combustion of fossil fuels is a hot topic in today’s society and the world is constantly trying to makes steps towards a brighter tomorrow with stricter environmental laws and research of alternative fuels. A great propulsion system is however not great solely of it being environmental friendly, it must also achieve other requirements. A comparison using different propulsion systems and different fuel types has been made and evaluated in four different categories; pow...

  15. Characterization of the frequency and nature of bleed air contamination events in commercial aircraft.

    Science.gov (United States)

    Shehadi, M; Jones, B; Hosni, M

    2016-06-01

    Contamination of the bleed air used to pressurize and ventilate aircraft cabins is of concern due to the potential health and safety hazards for passengers and crew. Databases from the Federal Aviation Administration, NASA, and other sources were examined in detail to determine the frequency of bleed air contamination incidents. The frequency was examined on an aircraft model basis with the intent of identifying aircraft make and models with elevated frequencies of contamination events. The reported results herein may help investigators to focus future studies of bleed air contamination incidents on smaller number of aircrafts. Incident frequency was normalized by the number of aircraft, number of flights, and flight hours for each model to account for the large variations in the number of aircraft of different models. The focus of the study was on aircraft models that are currently in service and are used by major airlines in the United States. Incidents examined in this study include those related to smoke, oil odors, fumes, and any symptom that might be related to exposure to such contamination, reported by crew members, between 2007 and 2012, for US-based carriers for domestic flights and all international flights that either originated or terminated in the US. In addition to the reported frequency of incidents for different aircraft models, the analysis attempted to identify propulsion engines and auxiliary power units associated with aircrafts that had higher frequencies of incidents. While substantial variations were found in frequency of incidents, it was found that the contamination events were widely distributed across nearly all common models of aircraft.

  16. Characterization of the frequency and nature of bleed air contamination events in commercial aircraft.

    Science.gov (United States)

    Shehadi, M; Jones, B; Hosni, M

    2016-06-01

    Contamination of the bleed air used to pressurize and ventilate aircraft cabins is of concern due to the potential health and safety hazards for passengers and crew. Databases from the Federal Aviation Administration, NASA, and other sources were examined in detail to determine the frequency of bleed air contamination incidents. The frequency was examined on an aircraft model basis with the intent of identifying aircraft make and models with elevated frequencies of contamination events. The reported results herein may help investigators to focus future studies of bleed air contamination incidents on smaller number of aircrafts. Incident frequency was normalized by the number of aircraft, number of flights, and flight hours for each model to account for the large variations in the number of aircraft of different models. The focus of the study was on aircraft models that are currently in service and are used by major airlines in the United States. Incidents examined in this study include those related to smoke, oil odors, fumes, and any symptom that might be related to exposure to such contamination, reported by crew members, between 2007 and 2012, for US-based carriers for domestic flights and all international flights that either originated or terminated in the US. In addition to the reported frequency of incidents for different aircraft models, the analysis attempted to identify propulsion engines and auxiliary power units associated with aircrafts that had higher frequencies of incidents. While substantial variations were found in frequency of incidents, it was found that the contamination events were widely distributed across nearly all common models of aircraft. PMID:25864418

  17. Submersion criticality safety of tungsten-rhenium urania cermet fuel for space propulsion and power applications

    Energy Technology Data Exchange (ETDEWEB)

    Craft, A.E., E-mail: aaron.craft@inl.gov [Center for Space Nuclear Research (CSNR), INL, Idaho Falls, ID (United States); O’Brien, R.C., E-mail: Robert.OBrien@inl.gov [Center for Space Nuclear Research (CSNR), INL, Idaho Falls, ID (United States); Howe, S.D., E-mail: Steven.Howe@inl.gov [Center for Space Nuclear Research (CSNR), INL, Idaho Falls, ID (United States); King, J.C., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Metallurgical and Materials Engineering Department, Colorado School of Mines, Golden, CO 80401 (United States)

    2014-07-01

    Highlights: • Criticality safety studies consider a generic space nuclear reactor in reentry scenarios. • Describes the submersion criticality behavior for a reactor fueled with a tungsten cermet fuel. • Study considers effects of varying fuel content, geometry, and other conditions. - Abstract: Nuclear thermal rockets are the preferred propulsion technology for a manned mission to Mars, and tungsten–uranium oxide cermet fuels could provide significant performance and cost advantages for nuclear thermal rockets. A nuclear reactor intended for use in space must remain subcritical before and during launch, and must remain subcritical in launch abort scenarios where the reactor falls back to Earth and becomes submerged in terrestrial materials (including seawater, wet sand, or dry sand). Submersion increases reflection of neutrons and also thermalizes the neutron spectrum, which typically increases the reactivity of the core. This effect is typically very significant for compact, fast-spectrum reactors. This paper provides a submersion criticality safety analysis for a representative tungsten/uranium oxide fueled reactor with a range of fuel compositions. Each submersion case considers both the rhenium content in the matrix alloy and the uranium oxide volume fraction in the cermet. The inclusion of rhenium significantly improves the submersion criticality safety of the reactor. While increased uranium oxide content increases the reactivity of the core, it does not significantly affect the submersion behavior of the reactor. There is no significant difference in submersion behavior between reactors with rhenium distributed within the cermet matrix and reactors with a rhenium clad in the coolant channels. The combination of the flooding of the coolant channels in submersion scenarios and the presence of a significant amount of spectral shift absorbers (i.e. high rhenium concentration) further decreases reactivity for short reactor cores compared to longer cores.

  18. Breakthrough Propulsion Physics Project: Project Management Methods

    Science.gov (United States)

    Millis, Marc G.

    2004-01-01

    To leap past the limitations of existing propulsion, the NASA Breakthrough Propulsion Physics (BPP) Project seeks further advancements in physics from which new propulsion methods can eventually be derived. Three visionary breakthroughs are sought: (1) propulsion that requires no propellant, (2) propulsion that circumvents existing speed limits, and (3) breakthrough methods of energy production to power such devices. Because these propulsion goals are presumably far from fruition, a special emphasis is to identify credible research that will make measurable progress toward these goals in the near-term. The management techniques to address this challenge are presented, with a special emphasis on the process used to review, prioritize, and select research tasks. This selection process includes these key features: (a) research tasks are constrained to only address the immediate unknowns, curious effects or critical issues, (b) reliability of assertions is more important than the implications of the assertions, which includes the practice where the reviewers judge credibility rather than feasibility, and (c) total scores are obtained by multiplying the criteria scores rather than by adding. Lessons learned and revisions planned are discussed.

  19. Propulsion in cubomedusae: mechanisms and utility.

    Directory of Open Access Journals (Sweden)

    Sean P Colin

    Full Text Available Evolutionary constraints which limit the forces produced during bell contractions of medusae affect the overall medusan morphospace such that jet propulsion is limited to only small medusae. Cubomedusae, which often possess large prolate bells and are thought to swim via jet propulsion, appear to violate the theoretical constraints which determine the medusan morphospace. To examine propulsion by cubomedusae, we quantified size related changes in wake dynamics, bell shape, swimming and turning kinematics of two species of cubomedusae, Chironex fleckeri and Chiropsella bronzie. During growth, these cubomedusae transitioned from using jet propulsion at smaller sizes to a rowing-jetting hybrid mode of propulsion at larger sizes. Simple modifications in the flexibility and kinematics of their velarium appeared to be sufficient to alter their propulsive mode. Turning occurs during both bell contraction and expansion and is achieved by generating asymmetric vortex structures during both stages of the swimming cycle. Swimming characteristics were considered in conjunction with the unique foraging strategy used by cubomedusae.

  20. Roadmap for In-Space Propulsion Technology

    Science.gov (United States)

    Meyer, Michael; Johnson, Les; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold

    2012-01-01

    NASA has created a roadmap for the development of advanced in-space propulsion technologies for the NASA Office of the Chief Technologist (OCT). This roadmap was drafted by a team of subject matter experts from within the Agency and then independently evaluated, integrated and prioritized by a National Research Council (NRC) panel. The roadmap describes a portfolio of in-space propulsion technologies that could meet future space science and exploration needs, and shows their traceability to potential future missions. Mission applications range from small satellites and robotic deep space exploration to space stations and human missions to Mars. Development of technologies within the area of in-space propulsion will result in technical solutions with improvements in thrust, specific impulse (Isp), power, specific mass (or specific power), volume, system mass, system complexity, operational complexity, commonality with other spacecraft systems, manufacturability, durability, and of course, cost. These types of improvements will yield decreased transit times, increased payload mass, safer spacecraft, and decreased costs. In some instances, development of technologies within this area will result in mission-enabling breakthroughs that will revolutionize space exploration. There is no single propulsion technology that will benefit all missions or mission types. The requirements for in-space propulsion vary widely according to their intended application. This paper provides an updated summary of the In-Space Propulsion Systems technology area roadmap incorporating the recommendations of the NRC.

  1. The future of cryogenic propulsion

    Science.gov (United States)

    Palerm, S.; Bonhomme, C.; Guelou, Y.; Chopinet, J. N.; Danous, P.

    2015-07-01

    As the French Space Agency, CNES is funding an ambitious program to identify, develop and evaluate the technologies and skills that will enable to design cost efficient future launchers. This program deals together with, researches for mastering complex physical phenomena, set ups of robust and efficient numerical tools for design and justification, and identification of innovative manufacturing processes and hardware. It starts from low Technical Readiness Level (TRL 2) up to a maturation of TRL 6 with the use of demonstrators, level that allows to be ready for a development. This paper focuses on cryogenic propulsion activities conducted with SNECMA and French laboratories to prepare next generation engines. The physics in that type of hardware addresses a large range of highly complex phenomena, among them subcritical and supercritical combustion and possible associated High Frequency oscillations in combustion devices, tribology in bearings and seals, cavitation and rotordynamics in turbopump. The research activities conducted to master those physical phenomena are presented. Moreover, the operating conditions of these engines are very challenging, both thermally and mechanically. The innovative manufacturing processes and designs developed to cope with these conditions while filling cost reduction requirements are described. Finally, the associated demonstrators put in place to prepare the implementation of these new technologies on future engines are presented.

  2. Assessing Hypothetical Gravity Control Propulsion

    CERN Document Server

    Millis, M G

    2006-01-01

    Gauging the benefits of hypothetical gravity control propulsion is difficult, but addressable. The major challenge is that such breakthroughs are still only notional concepts rather than being specific methods from which performance can be rigorously quantified. A recent assessment by Tajmar and Bertolami used the rocket equation to correct naive misconceptions, but a more fundamental analysis requires the use of energy as the basis for comparison. The energy of a rocket is compared to an idealized space drive for the following cases: Earth-to-orbit, interstellar transit, and levitation. The space drive uses 3.6 times less energy for Earth to orbit. For deep space travel, space drive energy scales as the square of delta-v, while rocket energy scales exponentially. This has the effect of rendering a space drive 150-orders-of-magnitude better than a 17,000-sec Specific Impulse rocket for sending a modest 5000 kg probe to traverse 5 light-years in 50 years. Indefinite levitation, which is impossible for a rocket...

  3. Bipropellant propulsion with reciprocating pumps

    Science.gov (United States)

    Whitehead, John C.

    1993-06-01

    A pressure regulated gas generator rocket cycle with alternately pressurized pairs of reciprocating pumps offers thrust-on-demand operation with significantly lower inert mass than conventional spacecraft liquid propulsion systems. The operation of bipropellant feed systems with reciprocating pumps is explained, with consideration for both short and long term missions. There are several methods for startup and shutdown of this self-starting pump-fed system, with preference determined by thrust duty cycle and mission duration. Progress to date includes extensive development testing of components unique to this type of system, and several live tests with monopropellant hydrazine. Pneumatic pump control valves which render pistons and bellows automatically responsive to downstream liquid demand are significantly simpler than those described previously. A compact pumpset mounted to central liquid manifolds has a pair of oxidizer pumps pneumatically slaved to a pair of fuel pumps to reduce vibration. A warm gas pressure reducer for tank expulsion can eliminate any remaining need for inert gas storage.

  4. Improving aircraft energy efficiency

    Science.gov (United States)

    Povinelli, F. P.; Klineberg, J. M.; Kramer, J. J.

    1976-01-01

    Investigations conducted by a NASA task force concerning the development of aeronautical fuel-conservation technology are considered. The task force estimated the fuel savings potential, prospects for implementation in the civil air-transport fleet, and the impact of the technology on air-transport fuel use. Propulsion advances are related to existing engines in the fleet, to new production of current engine types, and to new engine designs. Studies aimed at the evolutionary improvement of aerodynamic design and a laminar flow control program are discussed and possibilities concerning the use of composite structural materials are examined.

  5. Small space reactor power systems for unmanned solar system exploration missions

    International Nuclear Information System (INIS)

    A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model

  6. SSTAC/ARTS Review of the Draft Integrated Technology Plan (ITP). Volume 2: Propulsion Systems

    Science.gov (United States)

    1991-01-01

    The topics addressed are: (1) space propulsion technology program overview; (2) space propulsion technology program fact sheet; (3) low thrust propulsion; (4) advanced propulsion concepts; (5) high-thrust chemical propulsion; (6) cryogenic fluid management; (7) NASA CSTI earth-to-orbit propulsion; (8) advanced main combustion chamber program; (9) earth-to-orbit propulsion turbomachinery; (10) transportation technology; (11) space chemical engines technology; (12) nuclear propulsion; (13) spacecraft on-board propulsion; and (14) low-cost commercial transport.

  7. A critical assembly designed to measure neutronic benchmarks in support of the space nuclear thermal propulsion program

    Science.gov (United States)

    Parma, Edward J.; Ball, Russell M.; Hoovler, Gary S.; Selcow, Elizabeth C.; Cerbone, Ralph J.

    1993-01-01

    A reactor designed to perform criticality experiments in support of the Space Nuclear Thermal Propulsion program is currently in operation at the Sandia National Laboratories' reactor facility. The reactor is a small, water-moderated system that uses highly enriched uranium particle fuel in a 19-element configuration. Its purpose is to obtain neutronic measurements under a variety of experimental conditions that are subsequently used to benchmark rector-design computer codes. Brookhaven National Laboratory, Babcock & Wilcox, and Sandia National Laboratories participated in determining the reactor's performance requirements, design, follow-on experimentation, and in obtaining the licensing approvals. Brookhaven National Laboratory is primarily responsible for the analytical support, Babcock & Wilcox the hardware design, and Sandia National Laboratories the operational safety. All of the team members participate in determining the experimentation requirements, performance, and data reduction. Initial criticality was achieved in October 1989. An overall description of the reactor is presented along with key design features and safety-related aspects.

  8. Evaluation of high-performance space nuclear electric generators for electric propulsion application

    Science.gov (United States)

    Woodcock, Gordon

    2002-01-01

    Electric propulsion applications are enhanced by high power-to-mass ratios for their electric power sources. At multi-megawatt levels, we can expect thrust production systems to be less than 5 kg/kWe. Application of nuclear electric propulsion to human Mars missions becomes an attractive alternative to nuclear thermal propulsion if the propulsion system is less than about 10 kg/kWe. Recent references have projected megawatt-plus nuclear electric sources at specific mass values from less than 1 kg/kWe to about 5 kg/kWe. Various assumptions are made regarding power generation cycle (turbogenerator; MHD) and reactor heat source design. The present paper compares heat source and power generation options on the basis of a parametric model that emphasizes heat transfer design and realizable hardware concepts. Pressure drop (important!) is included in the power cycle analysis, and MHD and turbogenerator cycles arc compared. Results indicate that power source specific mass less than 5 kg/kWe is attainable, even if peak temperatures achievable are limited to 1500 K. Projections of specific mass less than 1 kg/kWe are unrealistic, even at the highest peak temperatures considered. .

  9. Evaluation of High-Performance Space Nuclear Electric Generators for Electric Propulsion Application

    Science.gov (United States)

    Woodcock, Gordon; Kross, Dennis A. (Technical Monitor)

    2002-01-01

    Electric propulsion applications are enhanced by high power-to-mass ratios for their electric power sources. At multi-megawatt levels, we can expect thrust production systems to be less than 5 kg/kWe. Application of nuclear electric propulsion to human Mars missions becomes an attractive alternative to nuclear thermal propulsion if the propulsion system is less than about 10 kg/kWe. Recent references have projected megawatt-plus nuclear electric sources at specific mass values from less than 1 kg/kWe to about 5 kg/kWe. Various assumptions are made regarding power generation cycle (turbogenerator; MHD (magnetohydrodynamics)) and reactor heat source design. The present paper compares heat source and power generation options on the basis of a parametric model that emphasizes heat transfer design and realizable hardware concept. Pressure drop (important!) is included in the power cycle analysis, and MHD and turbogenerator cycles are compared. Results indicate that power source specific mass less than 5 kg/kWe is attainable, even if peak temperatures achievable are limited to 1500 K. Projections of specific mass less than 1 kg/kWe are unrealistic, even at the highest peak temperatures considered.

  10. Reactor building

    International Nuclear Information System (INIS)

    The whole reactor building is accommodated in a shaft and is sealed level with the earth's surface by a building ceiling, which provides protection against penetration due to external effects. The building ceiling is supported on walls of the reactor building, which line the shaft and transfer the vertical components of forces to the foundations. The thickness of the walls is designed to withstand horizontal pressure waves in the floor. The building ceiling has an opening above the reactor, which must be closed by cover plates. Operating equipment for the reactor can be situated above the building ceiling. (orig./HP)

  11. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Science.gov (United States)

    2010-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States (HTSUS) by meeting the following requirements: (1) The aircraft, aircraft engines,...

  12. Effect of workload setting on propulsion technique in handrim wheelchair propulsion

    NARCIS (Netherlands)

    van Drongelen, Stefan; Arnet, Ursina; Veeger, DirkJan (H E. J); van der Woude, Lucas H. V.

    2013-01-01

    Objective: To investigate the influence of workload setting (speed at constant power, method to impose power) on the propulsion technique (i.e. force and timing characteristics) in handrim wheelchair propulsion. Method: Twelve able-bodied men participated in this study. External forces were measured

  13. Adaptations in physiology and propulsion techniques during the initial phase of learning manual wheelchair propulsion

    NARCIS (Netherlands)

    de Groot, S; Veeger, H E J; Hollander, A P; van der Woude, L H V

    2003-01-01

    OBJECTIVE: The purpose of this study was to analyze adaptations in gross mechanical efficiency and wheelchair propulsion technique in novice able-bodied subjects during the initial phase of learning hand-rim wheelchair propulsion. DESIGN: Nine able-bodied subjects performed three 4-min practice bloc

  14. The Rationale/Benefits of Nuclear Thermal Rocket Propulsion for NASA's Lunar Space Transportation System

    Science.gov (United States)

    Borowski, Stanley K.

    1994-01-01

    The solid core nuclear thermal rocket (NTR) represents the next major evolutionary step in propulsion technology. With its attractive operating characteristics, which include high specific impulse (approximately 850-1000 s) and engine thrust-to-weight (approximately 4-20), the NTR can form the basis for an efficient lunar space transportation system (LTS) capable of supporting both piloted and cargo missions. Studies conducted at the NASA Lewis Research Center indicate that an NTR-based LTS could transport a fully-fueled, cargo-laden, lunar excursion vehicle to the Moon, and return it to low Earth orbit (LEO) after mission completion, for less initial mass in LEO than an aerobraked chemical system of the type studied by NASA during its '90-Day Study.' The all-propulsive NTR-powered LTS would also be 'fully reusable' and would have a 'return payload' mass fraction of approximately 23 percent--twice that of the 'partially reusable' aerobraked chemical system. Two NTR technology options are examined--one derived from the graphite-moderated reactor concept developed by NASA and the AEC under the Rover/NERVA (Nuclear Engine for Rocket Vehicle Application) programs, and a second concept, the Particle Bed Reactor (PBR). The paper also summarizes NASA's lunar outpost scenario, compares relative performance provided by different LTS concepts, and discusses important operational issues (e.g., reusability, engine 'end-of life' disposal, etc.) associated with using this important propulsion technology.

  15. Visualizing interior and exterior jet aircraft noise

    Science.gov (United States)

    Moondra, Manmohan S.

    In today's competitive aerospace industry, the quest for quiet has drawn significant attention to both the interior and exterior design of an airplane. Understanding the noise generation mechanisms of a jet aircraft is a crucial first step toward developing the most cost-effective noise and vibrations abatement methods. In this investigation, the Helmholtz Equation Least Squares (HELS) based nearfield acoustic holography will be used to understand noise transmission caused by jet engine and turbulence into the fuselage of a jet aircraft cruising at 30,000 ft. Modern propulsive jet engines produce exterior noise sources with a high amplitude noise field and complicated characteristics, which makes them very difficult to characterize. In particular, there are turbulent eddies that are moving through the jet at high speeds along the jet boundary. These turbulent eddies in the shear layer produce a directional and frequency dependent noise. The original HELS approach assumes a spherical source at the origin and computes the acoustic field based on spherical emission from this source. This assumption of one source at the origin is not sufficient to characterize a complex source like a jet. As such, a modified HELS approach is introduced that will help improve the source characterization as it is not dependent on a single source at the origin but a number of virtual sources throughout the space. Custom microphones are created to take acoustic pressure measurements around the jet engine. These measured acoustic pressures are then taken as input to the modified HELS algorithm to visualize the noise pattern of a subsonic jet engine.

  16. Relativistic propulsion using directed energy

    Science.gov (United States)

    Bible, Johanna; Johansson, Isabella; Hughes, Gary B.; Lubin, Philip M.

    2013-09-01

    We propose a directed energy orbital planetary defense system capable of heating the surface of potentially hazardous objects to the evaporation point as a futuristic but feasible approach to impact risk mitigation. The system is based on recent advances in high efficiency photonic systems. The system could also be used for propulsion of kinetic or nuclear tipped asteroid interceptors or other interplanetary spacecraft. A photon drive is possible using direct photon pressure on a spacecraft similar to a solar sail. Given a laser power of 70GW, a 100 kg craft can be propelled to 1AU in approximately 3 days achieving a speed of 0.4% the speed of light, and a 10,000 kg craft in approximately 30 days. We call the system DE-STAR for Directed Energy System for Targeting of Asteroids and exploRation. DE-STAR is a modular phased array of solid-state lasers, powered by photovoltaic conversion of sunlight. The system is scalable and completely modular so that sub elements can be built and tested as the technology matures. The sub elements can be immediately utilized for testing as well as other applications including space debris mitigation. The ultimate objective of DE-STAR would be to begin direct asteroid vaporization and orbital modification starting at distances beyond 1 AU. Using phased array technology to focus the beam, the surface spot temperature on the asteroid can be raised to more than 3000K, allowing evaporation of all known substances. Additional scientific uses of DE-STAR are also possible.

  17. Nuclear electric propulsion: An integral part of NASA's nuclear propulsion project

    Science.gov (United States)

    Stone, James R.

    1992-01-01

    NASA has initiated a technology program to establish the readiness of nuclear propulsion technology for the Space Exploration Initiative (SEI). This program was initiated with a very modest effort identified with nuclear thermal propulsion (NTP); however, nuclear electric propulsion (NEP) is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. Although the Synthesis Group On America's SEI has identified NEP only as an option for cargo missions, recent studies conducted by NASA-Lewis show that NEP offers the potential for early manned Mars missions as well. Lower power NEP is also of current interest for outer planetary robotic missions. Current plans are reviewed for the overall nuclear propulsion project, with emphasis on NEP and those elements of NTP program which have synergism with NEP.

  18. A Review of Carbide Fuel Corrosion for Nuclear Thermal Propulsion Applications

    Science.gov (United States)

    Pelaccio, Dennis G.; El-Genk, Mohamed S.; Butt, Darryl P.

    1994-07-01

    At the operation conditions of interest in nuclear thermal propulsion reactors, carbide materials have been known to exhibit a number of life limiting phenomena. These include the formation of liquid, loss by vaporization, creep and corresponding gas flow restrictions, and local corrosion and fuel structure degradation due to excessive mechanical and/or thermal loading. In addition, the radiation environment in the reactor core can produce a substantial change in its local physical properties, which can produce high thermal stresses and corresponding stress fractures (cracking). Time-temperature history and cyclic operation of the nuclear reactor can also accelerate some of these processes. The University of New Mexico's Institute for Space Nuclear Power Studies, under NASA sponsorship has recently initiated a study to model the complicated hydrogen corrosion process. In support of this effort, an extensive review of the open literature was performed, and a technical expert workshop was conducted. This paper summarizes the results of this review.

  19. An Examination of the Effect of Boundary Layer Ingestion on Turboelectric Distributed Propulsion Systems

    Science.gov (United States)

    Felder, James L.; Kim, Huyn Dae; Brown, Gerald V.; Chu, Julio

    2011-01-01

    A Turboelectric Distributed Propulsion (TeDP) system differs from other propulsion systems by the use of electrical power to transmit power from the turbine to the fan. Electrical power can be efficiently transmitted over longer distances and with complex topologies. Also the use of power inverters allows the generator and motors speeds to be independent of one another. This decoupling allows the aircraft designer to place the core engines and the fans in locations most advantageous for each. The result can be very different installation environments for the different devices. Thus the installation effects on this system can be quite different than conventional turbofans where the fan and core both see the same installed environments. This paper examines a propulsion system consisting of two superconducting generators, each driven by a turboshaft engine located so that their inlets ingest freestream air, superconducting electrical transmission lines, and an array of superconducting motor driven fan positioned across the upper/rear fuselage area of a hybrid wing body aircraft in a continuous nacelle that ingests all of the upper fuselage boundary layer. The effect of ingesting the boundary layer on the design of the system with a range of design pressure ratios is examined. Also the impact of ingesting the boundary layer on off-design performance is examined. The results show that when examining different design fan pressure ratios it is important to recalculate of the boundary layer mass-average Pt and MN up the height for each inlet height during convergence of the design point for each fan design pressure ratio examined. Correct estimation of off-design performance is dependent on the height of the column of air measured from the aircraft surface immediately prior to any external diffusion that will flow through the fan propulsors. The mass-averaged Pt and MN calculated for this column of air determine the Pt and MN seen by the propulsor inlet. Since the height

  20. Low-order nonlinear dynamic model of IC engine-variable pitch propeller system for general aviation aircraft

    Science.gov (United States)

    Richard, Jacques C.

    1995-01-01

    This paper presents a dynamic model of an internal combustion engine coupled to a variable pitch propeller. The low-order, nonlinear time-dependent model is useful for simulating the propulsion system of general aviation single-engine light aircraft. This model is suitable for investigating engine diagnostics and monitoring and for control design and development. Furthermore, the model may be extended to provide a tool for the study of engine emissions, fuel economy, component effects, alternative fuels, alternative engine cycles, flight simulators, sensors, and actuators. Results show that the model provides a reasonable representation of the propulsion system dynamics from zero to 10 Hertz.