WorldWideScience

Sample records for aircraft parameter estimation

  1. Parameter estimation of an aeroelastic aircraft using neural networks

    Indian Academy of Sciences (India)

    S C Raisinghani; A K Ghosh

    2000-04-01

    Application of neural networks to the problem of aerodynamic modelling and parameter estimation for aeroelastic aircraft is addressed. A neural model capable of predicting generalized force and moment coefficients using measured motion and control variables only, without any need for conventional normal elastic variables ortheirtime derivatives, is proposed. Furthermore, it is shown that such a neural model can be used to extract equivalent stability and control derivatives of a flexible aircraft. Results are presented for aircraft with different levels of flexibility to demonstrate the utility ofthe neural approach for both modelling and estimation of parameters.

  2. Estimation of Aircraft Nonlinear Unsteady Parameters From Wind Tunnel Data

    Science.gov (United States)

    Klein, Vladislav; Murphy, Patrick C.

    1998-01-01

    Aerodynamic equations were formulated for an aircraft in one-degree-of-freedom large amplitude motion about each of its body axes. The model formulation based on indicial functions separated the resulting aerodynamic forces and moments into static terms, purely rotary terms and unsteady terms. Model identification from experimental data combined stepwise regression and maximum likelihood estimation in a two-stage optimization algorithm that can identify the unsteady term and rotary term if necessary. The identification scheme was applied to oscillatory data in two examples. The model identified from experimental data fit the data well, however, some parameters were estimated with limited accuracy. The resulting model was a good predictor for oscillatory and ramp input data.

  3. Optimal Input Design for Aircraft Parameter Estimation using Dynamic Programming Principles

    Science.gov (United States)

    Morelli, Eugene A.; Klein, Vladislav

    1990-01-01

    A new technique was developed for designing optimal flight test inputs for aircraft parameter estimation experiments. The principles of dynamic programming were used for the design in the time domain. This approach made it possible to include realistic practical constraints on the input and output variables. A description of the new approach is presented, followed by an example for a multiple input linear model describing the lateral dynamics of a fighter aircraft. The optimal input designs produced by the new technique demonstrated improved quality and expanded capability relative to the conventional multiple input design method.

  4. Aircraft parameter estimation — A tool for development of aerodynamic databases

    Indian Academy of Sciences (India)

    R V Jategaonkar; F Thielecke

    2000-04-01

    With the evolution of high performance modern aircraft and spiraling developmental and experimental costs, the importance of flight validated databases for flight control design applications and for flight simulators has increased significantly in the recent past. Ground-based and in-flight simulators are increasingly used not only for pilot training but also for other applications such asflight planning, envelope expansion, design and analysis of control laws, and handling qualitiesinvestigations. Most of these demand a high-fidelity aerodynamic database representing the flight vehicle. System identification methodology, evolved over the past three decades, provides a powerful and sophisticated tool to identify from flight data aerodynamic characteristics valid over the entire operational flight envelope. This paper briefly presents aircraft parameter estimation methods for both stable and unstable aircraft, highlighting the developmental work at the DLR Institute of Flight Mechanics. Various aspects of database identification and its validation are presented. Practical aspectslike the proper choice of integration and optimization methods as well as limitations of gradient approximation through finite-differences are brought out. Though the paper focuses on application of system identification methodsto flight vehicles, its use in other applications, like the modelling of inelastic deformations of metallic materials, is also presented. It is shown that there are many similar problems and several challenges requiring additional concepts and algorithms.

  5. Aircraft Flutter Modal Parameter Identification Using a Numerically Robust Least-squares Estimator in Frequency Domain

    Institute of Scientific and Technical Information of China (English)

    Tang Wei; Shi Zhongke; Chen Jie

    2008-01-01

    Recently, frequency-based least-squares (LS) estimators have found wide application in identifying aircraft flutter parameters. However, the frequency methods are often known to suffer from numerical difficulties when identifying a continuous-time model, espe-cially, of broader frequency or higher order. In this article, a numerically robust LS estimator based on vector orthogonal polynomial is proposed to solve the numerical problem of multivariable systems and applied to the flutter testing. The key idea of this method is to represent the frequency response function (FRF) matrix by a right matrix fraction description (RMFD) model, and expand the numerator and denominator polynomial matrices on a vector onhogonal basis. As a result, a perfect numerical condition (numerical condition equals 1) can be obtained for linear LS estimator. Finally, this method is verified by flutter test of a wing model in a wind tunnel and real flight flutter test of an aircraft. The results are compared to those with notably LMS PolyMAX, which is not troubled by the numerical problem as it is established in z domain (e.g. derived from a discrete-time model). The verification has evidenced that this method, apart from overcoming the numerical problem, yields the results comparable to those acquired with LMS PolyMAX, or even considerably better at some frequency bands.

  6. Aircraft flight data processing and parameter identification with iterative extended Kalman filter/smoother and two-step estimator

    Science.gov (United States)

    Yu, Qiuli

    2001-12-01

    Aircraft flight test data are processed by optimal estimation programs to estimate the aircraft state trajectory (3 DOF) and to identify the unknown parameters, including constant biases and scale factor of the measurement instrumentation system. The methods applied in processing aircraft flight test data are the iterative extended Kalman filter/smoother and fixed-point smoother (IEKFSFPS) method and the two-step estimator (TSE) method. The models of an aircraft flight dynamic system and measurement instrumentation system are established. The principles of IEKFSFPS and TSE methods are derived and summarized, and their algorithms are programmed with MATLAB codes. Several numerical experiments of flight data processing and parameter identification are carried out by using IEKFSFPS and TSE algorithm programs. Comparison and discussion of the simulation results with the two methods are made. The TSE+IEKFSFPS combination method is presented and proven to be effective and practical. Figures and tables of the results are presented.

  7. Multi-camera networks for motion parameter estimation of an aircraft

    Directory of Open Access Journals (Sweden)

    Banglei Guan

    2017-02-01

    Full Text Available A multi-camera network is proposed to estimate an aircraft’s motion parameters relative to the reference platform in large outdoor fields. Multiple cameras are arranged to cover the aircraft’s large-scale motion spaces by field stitching. A camera calibration method using dynamic control points created by a multirotor unmanned aerial vehicle is presented under the conditions that the field of view of the cameras is void. The relative deformation of the camera network caused by external environmental factors is measured and compensated using a combination of cameras and laser rangefinders. A series of field experiments have been carried out using a fixed-wing aircraft without artificial makers, and its accuracy is evaluated using an onboard Differential Global Positioning System. The experimental results show that the multi-camera network is precise, robust, and highly dynamic and can improve the aircraft’s landing accuracy.

  8. Simulation and Flight Evaluation of a Parameter Estimation Input Design Method for Hybrid-Wing-Body Aircraft

    Science.gov (United States)

    Taylor, Brian R.; Ratnayake, Nalin A.

    2010-01-01

    As part of an effort to improve emissions, noise, and performance of next generation aircraft, it is expected that future aircraft will make use of distributed, multi-objective control effectors in a closed-loop flight control system. Correlation challenges associated with parameter estimation will arise with this expected aircraft configuration. Research presented in this paper focuses on addressing the correlation problem with an appropriate input design technique and validating this technique through simulation and flight test of the X-48B aircraft. The X-48B aircraft is an 8.5 percent-scale hybrid wing body aircraft demonstrator designed by The Boeing Company (Chicago, Illinois, USA), built by Cranfield Aerospace Limited (Cranfield, Bedford, United Kingdom) and flight tested at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California, USA). Based on data from flight test maneuvers performed at Dryden Flight Research Center, aerodynamic parameter estimation was performed using linear regression and output error techniques. An input design technique that uses temporal separation for de-correlation of control surfaces is proposed, and simulation and flight test results are compared with the aerodynamic database. This paper will present a method to determine individual control surface aerodynamic derivatives.

  9. Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar.

    Science.gov (United States)

    Smalikho, I N; Banakh, V A; Holzäpfel, F; Rahm, S

    2015-09-21

    The method of radial velocities (RV) is applied to estimate aircraft wake vortex parameters from measurements conducted with pulsed coherent Doppler lidar (PCDL). Operations of the Stream Line lidar and the 2-µm PCDL are simulated numerically to analyze the accuracy of the estimated wake vortex parameters with the RV method. The RV method is also used to estimate wake vortex trajectories and circulation from lidar measurements at Tomsk and Munich airports. The method of velocity envelopes and the RV method are compared employing data gathered with the 2-µm PCDL. The domain of applicability of the RV method is determined.

  10. Parameter Estimation

    DEFF Research Database (Denmark)

    2011-01-01

    of optimisation techniques coupled with dynamic solution of the underlying model. Linear and nonlinear approaches to parameter estimation are investigated. There is also the application of maximum likelihood principles in the estimation of parameters, as well as the use of orthogonal collocation to generate a set......In this chapter the importance of parameter estimation in model development is illustrated through various applications related to reaction systems. In particular, rate constants in a reaction system are obtained through parameter estimation methods. These approaches often require the application...... of algebraic equations as the basis for parameter estimation.These approaches are illustrated using estimations of kinetic constants from reaction system models....

  11. AIRCRAFT MOTION PARAMETER ESTIMATION VIA MULTIPATH TIME-DELAY USING A SINGLE GROUND-BASED PASSIVE ACOUSTIC SENSOR

    Institute of Scientific and Technical Information of China (English)

    Dai Hongyan; Zou Hongxing

    2007-01-01

    The time-frequency analysis of the signal acquired by a single ground-based microphone shows a two-dimensional interference pattern in the time-frequency plane,which is caused by the time delay of the received signal emitted from a low flying aircraft via the direct path and the ground-reflected path.A model is developed for estimating the motion parameters of an aircraft flying along a straight line at a constant height and with a constant speed.Monte Carlo simulation results and experimental results are presented to validate the model,and an error analysis of the model is presented to verify the effectiveness of the estimation scheme advocated.

  12. Parameter Estimation

    DEFF Research Database (Denmark)

    Sales-Cruz, Mauricio; Heitzig, Martina; Cameron, Ian;

    2011-01-01

    of optimisation techniques coupled with dynamic solution of the underlying model. Linear and nonlinear approaches to parameter estimation are investigated. There is also the application of maximum likelihood principles in the estimation of parameters, as well as the use of orthogonal collocation to generate a set...

  13. Estimation of aircraft wake vortex parameters from data measured with a 1.5-μm coherent Doppler lidar.

    Science.gov (United States)

    Smalikho, I N; Banakh, V A

    2015-07-15

    A strategy of measurement by a 1.5-μm pulsed coherent Doppler lidar "Stream Line" has been developed, and a method for estimation of aircraft wake vortices from the lidar data has been proposed. The principal possibility of obtaining the information about the vortex situation over an airport airfield with the Stream-Line lidar has been demonstrated.

  14. Aircraft recognition and pose estimation

    Science.gov (United States)

    Hmam, Hatem; Kim, Jijoong

    2000-05-01

    This work presents a geometry based vision system for aircraft recognition and pose estimation using single images. Pose estimation improves the tracking performance of guided weapons with imaging seekers, and is useful in estimating target manoeuvres and aim-point selection required in the terminal phase of missile engagements. After edge detection and straight-line extraction, a hierarchy of geometric reasoning algorithms is applied to form line clusters (or groupings) for image interpretation. Assuming a scaled orthographic projection and coplanar wings, lateral symmetry inherent in the airframe provides additional constraints to further reject spurious line clusters. Clusters that accidentally pass all previous tests are checked against the original image and are discarded. Valid line clusters are then used to deduce aircraft viewing angles. By observing that the leading edges of wings of a number of aircraft of interest are within 45 to 65 degrees from the symmetry axis, a bounded range of aircraft viewing angles can be found. This generic property offers the advantage of not requiring the storage of complete aircraft models viewed from all aspects, and can handle aircraft with flexible wings (e.g. F111). Several aircraft images associated with various spectral bands (i.e. visible and infra-red) are finally used to evaluate the system's performance.

  15. Statistical estimation of aircraft service conditions

    Directory of Open Access Journals (Sweden)

    Боузаієнне Меккі бен Салем

    2005-03-01

    Full Text Available  The question of an estimation of aircraft service conditions in airlines with use of statistical methods is considered at the analysis of maintenance programs of a aircrafts park to normative requirements.

  16. Estimating Cosmological Parameter Covariance

    CERN Document Server

    Taylor, Andy

    2014-01-01

    We investigate the bias and error in estimates of the cosmological parameter covariance matrix, due to sampling or modelling the data covariance matrix, for likelihood width and peak scatter estimators. We show that these estimators do not coincide unless the data covariance is exactly known. For sampled data covariances, with Gaussian distributed data and parameters, the parameter covariance matrix estimated from the width of the likelihood has a Wishart distribution, from which we derive the mean and covariance. This mean is biased and we propose an unbiased estimator of the parameter covariance matrix. Comparing our analytic results to a numerical Wishart sampler of the data covariance matrix we find excellent agreement. An accurate ansatz for the mean parameter covariance for the peak scatter estimator is found, and we fit its covariance to our numerical analysis. The mean is again biased and we propose an unbiased estimator for the peak parameter covariance. For sampled data covariances the width estimat...

  17. Aircraft height estimation using 2-D radar

    CSIR Research Space (South Africa)

    Hakl, H

    2010-01-01

    Full Text Available A method to infer height information from an aircraft tracked with a single 2-D search radar is presented. The method assumes level flight in the target aircraft and a good estimate of the speed of the aircraft. The method yields good results...

  18. Partially Turboelectric Aircraft Drive Key Performance Parameters

    Science.gov (United States)

    Jansen, Ralph H.; Duffy, Kirsten P.; Brown, Gerald V.

    2017-01-01

    The purpose of this paper is to propose electric drive specific power, electric drive efficiency, and electrical propulsion fraction as the key performance parameters for a partially turboelectric aircraft power system and to investigate their impact on the overall aircraft performance. Breguet range equations for a base conventional turbofan aircraft and a partially turboelectric aircraft are found. The benefits and costs that may result from the partially turboelectric system are enumerated. A break even analysis is conducted to find the minimum allowable electric drive specific power and efficiency, for a given electrical propulsion fraction, that can preserve the range, fuel weight, operating empty weight, and payload weight of the conventional aircraft. Current and future power system performance is compared to the required performance to determine the potential benefit.

  19. Aircraft Engine Thrust Estimator Design Based on GSA-LSSVM

    Science.gov (United States)

    Sheng, Hanlin; Zhang, Tianhong

    2017-08-01

    In view of the necessity of highly precise and reliable thrust estimator to achieve direct thrust control of aircraft engine, based on support vector regression (SVR), as well as least square support vector machine (LSSVM) and a new optimization algorithm - gravitational search algorithm (GSA), by performing integrated modelling and parameter optimization, a GSA-LSSVM-based thrust estimator design solution is proposed. The results show that compared to particle swarm optimization (PSO) algorithm, GSA can find unknown optimization parameter better and enables the model developed with better prediction and generalization ability. The model can better predict aircraft engine thrust and thus fulfills the need of direct thrust control of aircraft engine.

  20. Model Identification of Linear Parameter Varying Aircraft Systems

    OpenAIRE

    Fujimore, Atsushi; Ljung, Lennart

    2007-01-01

    This article presents a parameter estimation of continuous-time polytopic models for a linear parameter varying (LPV) system. The prediction error method of linear time invariant (LTI) models is modified for polytopic models. The modified prediction error method is applied to an LPV aircraft system whose varying parameter is the flight velocity and model parameters are the stability and control derivatives (SCDs). In an identification simulation, the polytopic model is more suitable for expre...

  1. Optomechanical parameter estimation

    CERN Document Server

    Ang, Shan Zheng; Bowen, Warwick P; Tsang, Mankei

    2013-01-01

    We propose a statistical framework for the problem of parameter estimation from a noisy optomechanical system. The Cram\\'er-Rao lower bound on the estimation errors in the long-time limit is derived and compared with the errors of radiometer and expectation-maximization (EM) algorithms in the estimation of the force noise power. When applied to experimental data, the EM estimator is found to have the lowest error and follow the Cram\\'er-Rao bound most closely. With its ability to estimate most of the system parameters, the EM algorithm is envisioned to be useful for optomechanical sensing, atomic magnetometry, and classical or quantum system identification applications in general.

  2. Estimating Military Aircraft Cost Using Least Squares Support Vector Machines

    Institute of Scientific and Technical Information of China (English)

    ZHU Jia-yuan; ZHANG Xi-bin; ZHANG Heng-xi; REN Bo

    2004-01-01

    A multi-layer adaptive optimizing parameters algorithm is developed for improving least squares support vector machines(LS-SVM),and a military aircraft life-cycle-cost(LCC)intelligent estimation model is proposed based on the improved LS-SVM.The intelligent cost estimation process is divided into three steps in the model.In the first step,a cost-drive-factor needs to be selected,which is significant for cost estimation.In the second step,military aircraft training samples within costs and cost-drive-factor set are obtained by the LS-SVM.Then the model can be used for new type aircraft cost estimation.Chinese military aircraft costs are estimated in the paper.The results show that the estimated costs by the new model are closer to the true costs than that of the traditionally used methods.

  3. Aircraft Attitude/Heading Estimation Using a Dipole Triad Antenna

    Directory of Open Access Journals (Sweden)

    He Min

    2013-06-01

    Full Text Available This paper performs aircraft attitude/heading estimation using an airborne dipole triad antenna. The signal model is given with the parameters such as the wave Direction Of Arrival (DOA and state of polarization. The algorithms for estimating the source DOA and electric ellipse orientation angle are presented along with their statistical performance analysis. From these parameters, the aircraft gesture angles about pitching, yawing, and rolling, which are needed by autopilot, are produced. Simulation results validate the proposed algorithm’s efficacy.

  4. Parameter Estimation Through Ignorance

    CERN Document Server

    Du, Hailiang

    2015-01-01

    Dynamical modelling lies at the heart of our understanding of physical systems. Its role in science is deeper than mere operational forecasting, in that it allows us to evaluate the adequacy of the mathematical structure of our models. Despite the importance of model parameters, there is no general method of parameter estimation outside linear systems. A new relatively simple method of parameter estimation for nonlinear systems is presented, based on variations in the accuracy of probability forecasts. It is illustrated on the Logistic Map, the Henon Map and the 12-D Lorenz96 flow, and its ability to outperform linear least squares in these systems is explored at various noise levels and sampling rates. As expected, it is more effective when the forecast error distributions are non-Gaussian. The new method selects parameter values by minimizing a proper, local skill score for continuous probability forecasts as a function of the parameter values. This new approach is easier to implement in practice than alter...

  5. Revisiting Cosmological parameter estimation

    CERN Document Server

    Prasad, Jayanti

    2014-01-01

    Constraining theoretical models with measuring the parameters of those from cosmic microwave background (CMB) anisotropy data is one of the most active areas in cosmology. WMAP, Planck and other recent experiments have shown that the six parameters standard $\\Lambda$CDM cosmological model still best fits the data. Bayesian methods based on Markov-Chain Monte Carlo (MCMC) sampling have been playing leading role in parameter estimation from CMB data. In one of the recent studies \\cite{2012PhRvD..85l3008P} we have shown that particle swarm optimization (PSO) which is a population based search procedure can also be effectively used to find the cosmological parameters which are best fit to the WMAP seven year data. In the present work we show that PSO not only can find the best-fit point, it can also sample the parameter space quite effectively, to the extent that we can use the same analysis pipeline to process PSO sampled points which is used to process the points sampled by Markov Chains, and get consistent res...

  6. A generic tool for cost estimating in aircraft design

    NARCIS (Netherlands)

    Castagne, S.; Curran, R.; Rothwell, A.; Price, M.; Benard, E.; Raghunathan, S.

    2008-01-01

    A methodology to estimate the cost implications of design decisions by integrating cost as a design parameter at an early design stage is presented. The model is developed on a hierarchical basis, the manufacturing cost of aircraft fuselage panels being analysed in this paper. The manufacturing cost

  7. Aircraft Combat Survivability Estimation and Synthetic Tradeoff Methods

    Institute of Scientific and Technical Information of China (English)

    LI Shu-lin; LI Shou-an; LI Wei-ji; LI Dong-xia; FENG Feng

    2005-01-01

    A new concept is proposed that susceptibility, vulnerability, reliability, maintainability and supportability should be essential factors of aircraft combat survivability. A weight coefficient method and a synthetic method are proposed to estimate aircraft combat survivability based on the essential factors. Considering that it takes cost to enhance aircraft combat survivability, a synthetic tradeoff model between aircraft combat survivability and life cycle cost is built. The aircraft combat survivability estimation methods and synthetic tradeoff with a life cycle cost model will be helpful for aircraft combat survivability design and enhancement.

  8. Estimating Risk Parameters

    OpenAIRE

    Aswath Damodaran

    1999-01-01

    Over the last three decades, the capital asset pricing model has occupied a central and often controversial place in most corporate finance analysts’ tool chests. The model requires three inputs to compute expected returns – a riskfree rate, a beta for an asset and an expected risk premium for the market portfolio (over and above the riskfree rate). Betas are estimated, by most practitioners, by regressing returns on an asset against a stock index, with the slope of the regression being the b...

  9. Two biased estimation techniques in linear regression: Application to aircraft

    Science.gov (United States)

    Klein, Vladislav

    1988-01-01

    Several ways for detection and assessment of collinearity in measured data are discussed. Because data collinearity usually results in poor least squares estimates, two estimation techniques which can limit a damaging effect of collinearity are presented. These two techniques, the principal components regression and mixed estimation, belong to a class of biased estimation techniques. Detection and assessment of data collinearity and the two biased estimation techniques are demonstrated in two examples using flight test data from longitudinal maneuvers of an experimental aircraft. The eigensystem analysis and parameter variance decomposition appeared to be a promising tool for collinearity evaluation. The biased estimators had far better accuracy than the results from the ordinary least squares technique.

  10. ESTIMATING AIRCRAFT HEADING BASED ON LASERSCANNER DERIVED POINT CLOUDS

    Directory of Open Access Journals (Sweden)

    Z. Koppanyi

    2015-03-01

    Full Text Available Using LiDAR sensors for tracking and monitoring an operating aircraft is a new application. In this paper, we present data processing methods to estimate the heading of a taxiing aircraft using laser point clouds. During the data acquisition, a Velodyne HDL-32E laser scanner tracked a moving Cessna 172 airplane. The point clouds captured at different times were used for heading estimation. After addressing the problem and specifying the equation of motion to reconstruct the aircraft point cloud from the consecutive scans, three methods are investigated here. The first requires a reference model to estimate the relative angle from the captured data by fitting different cross-sections (horizontal profiles. In the second approach, iterative closest point (ICP method is used between the consecutive point clouds to determine the horizontal translation of the captured aircraft body. Regarding the ICP, three different versions were compared, namely, the ordinary 3D, 3-DoF 3D and 2-DoF 3D ICP. It was found that 2-DoF 3D ICP provides the best performance. Finally, the last algorithm searches for the unknown heading and velocity parameters by minimizing the volume of the reconstructed plane. The three methods were compared using three test datatypes which are distinguished by object-sensor distance, heading and velocity. We found that the ICP algorithm fails at long distances and when the aircraft motion direction perpendicular to the scan plane, but the first and the third methods give robust and accurate results at 40m object distance and at ~12 knots for a small Cessna airplane.

  11. PARAMETER ESTIMATION OF EXPONENTIAL DISTRIBUTION

    Institute of Scientific and Technical Information of China (English)

    XU Haiyan; FEI Heliang

    2005-01-01

    Because of the importance of grouped data, many scholars have been devoted to the study of this kind of data. But, few documents have been concerned with the threshold parameter. In this paper, we assume that the threshold parameter is smaller than the first observing point. Then, on the basis of the two-parameter exponential distribution, the maximum likelihood estimations of both parameters are given, the sufficient and necessary conditions for their existence and uniqueness are argued, and the asymptotic properties of the estimations are also presented, according to which approximate confidence intervals of the parameters are derived. At the same time, the estimation of the parameters is generalized, and some methods are introduced to get explicit expressions of these generalized estimations. Also, a special case where the first failure time of the units is observed is considered.

  12. Parameter estimation in food science.

    Science.gov (United States)

    Dolan, Kirk D; Mishra, Dharmendra K

    2013-01-01

    Modeling includes two distinct parts, the forward problem and the inverse problem. The forward problem-computing y(t) given known parameters-has received much attention, especially with the explosion of commercial simulation software. What is rarely made clear is that the forward results can be no better than the accuracy of the parameters. Therefore, the inverse problem-estimation of parameters given measured y(t)-is at least as important as the forward problem. However, in the food science literature there has been little attention paid to the accuracy of parameters. The purpose of this article is to summarize the state of the art of parameter estimation in food science, to review some of the common food science models used for parameter estimation (for microbial inactivation and growth, thermal properties, and kinetics), and to suggest a generic method to standardize parameter estimation, thereby making research results more useful. Scaled sensitivity coefficients are introduced and shown to be important in parameter identifiability. Sequential estimation and optimal experimental design are also reviewed as powerful parameter estimation methods that are beginning to be used in the food science literature.

  13. Parameters estimation in quantum optics

    CERN Document Server

    D'Ariano, G M; Sacchi, M F; Paris, Matteo G. A.; Sacchi, Massimiliano F.

    2000-01-01

    We address several estimation problems in quantum optics by means of the maximum-likelihood principle. We consider Gaussian state estimation and the determination of the coupling parameters of quadratic Hamiltonians. Moreover, we analyze different schemes of phase-shift estimation. Finally, the absolute estimation of the quantum efficiency of both linear and avalanche photodetectors is studied. In all the considered applications, the Gaussian bound on statistical errors is attained with a few thousand data.

  14. Using doppler radar images to estimate aircraft navigational heading error

    Science.gov (United States)

    Doerry, Armin W [Albuquerque, NM; Jordan, Jay D [Albuquerque, NM; Kim, Theodore J [Albuquerque, NM

    2012-07-03

    A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.

  15. Estimation of nonlinear aerodynamic derivatives of a variable geometry fighter aircraft from flight data

    Science.gov (United States)

    Ramachandran, S.; Wells, W. R.

    1974-01-01

    This paper is concerned with the estimation of stability and control parameters of a high performance fighter aircraft from data obtained from high angle of attack flight. The estimation process utilizes a maximum likelihood algorithm derived for the case of a nonlinear aerodynamic force and moment model. The aircraft used was a high speed variable sweep heavy weight fighter with twin vertical tails. Comparisons of results from the nonlinear analysis are made with linear theory and wind tunnel results when available.

  16. Data Handling and Parameter Estimation

    DEFF Research Database (Denmark)

    Sin, Gürkan; Gernaey, Krist

    2016-01-01

    literature that are mostly based on the ActivatedSludge Model (ASM) framework and their appropriate extensions (Henze et al., 2000).The chapter presents an overview of the most commonly used methods in the estimation of parameters from experimental batch data, namely: (i) data handling and validation, (ii...

  17. Aircraft Fault Detection Using Real-Time Frequency Response Estimation

    Science.gov (United States)

    Grauer, Jared A.

    2016-01-01

    A real-time method for estimating time-varying aircraft frequency responses from input and output measurements was demonstrated. The Bat-4 subscale airplane was used with NASA Langley Research Center's AirSTAR unmanned aerial flight test facility to conduct flight tests and collect data for dynamic modeling. Orthogonal phase-optimized multisine inputs, summed with pilot stick and pedal inputs, were used to excite the responses. The aircraft was tested in its normal configuration and with emulated failures, which included a stuck left ruddervator and an increased command path latency. No prior knowledge of a dynamic model was used or available for the estimation. The longitudinal short period dynamics were investigated in this work. Time-varying frequency responses and stability margins were tracked well using a 20 second sliding window of data, as compared to a post-flight analysis using output error parameter estimation and a low-order equivalent system model. This method could be used in a real-time fault detection system, or for other applications of dynamic modeling such as real-time verification of stability margins during envelope expansion tests.

  18. Parameter estimation and inverse problems

    CERN Document Server

    Aster, Richard C; Thurber, Clifford H

    2005-01-01

    Parameter Estimation and Inverse Problems primarily serves as a textbook for advanced undergraduate and introductory graduate courses. Class notes have been developed and reside on the World Wide Web for faciliting use and feedback by teaching colleagues. The authors'' treatment promotes an understanding of fundamental and practical issus associated with parameter fitting and inverse problems including basic theory of inverse problems, statistical issues, computational issues, and an understanding of how to analyze the success and limitations of solutions to these probles. The text is also a practical resource for general students and professional researchers, where techniques and concepts can be readily picked up on a chapter-by-chapter basis.Parameter Estimation and Inverse Problems is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who may not have an extensive mathematical background. It is accompanied by a Web site that...

  19. Parameter Estimation Using VLA Data

    Science.gov (United States)

    Venter, Willem C.

    The main objective of this dissertation is to extract parameters from multiple wavelength images, on a pixel-to-pixel basis, when the images are corrupted with noise and a point spread function. The data used are from the field of radio astronomy. The very large array (VLA) at Socorro in New Mexico was used to observe planetary nebula NGC 7027 at three different wavelengths, 2 cm, 6 cm and 20 cm. A temperature model, describing the temperature variation in the nebula as a function of optical depth, is postulated. Mathematical expressions for the brightness distribution (flux density) of the nebula, at the three observed wavelengths, are obtained. Using these three equations and the three data values available, one from the observed flux density map at each wavelength, it is possible to solve for two temperature parameters and one optical depth parameter at each pixel location. Due to the fact that the number of unknowns equal the number of equations available, estimation theory cannot be used to smooth any noise present in the data values. It was found that a direct solution of the three highly nonlinear flux density equations is very sensitive to noise in the data. Results obtained from solving for the three unknown parameters directly, as discussed above, were not physical realizable. This was partly due to the effect of incomplete sampling at the time when the data were gathered and to noise in the system. The application of rigorous digital parameter estimation techniques result in estimated parameters that are also not physically realizable. The estimated values for the temperature parameters are for example either too high or negative, which is not physically possible. Simulation studies have shown that a "double smoothing" technique improves the results by a large margin. This technique consists of two parts: in the first part the original observed data are smoothed using a running window and in the second part a similar smoothing of the estimated parameters

  20. Aircraft bi-level life cycle cost estimation

    NARCIS (Netherlands)

    Zhao, X.; Verhagen, W.J.C.; Curan, R.

    2015-01-01

    n an integrated aircraft design and analysis practice, Life Cycle Cost (LCC) is essential for decision making. The LCC of an aircraft is ordinarily partially estimated by emphasizing a specific cost type. However, an overview of the LCC including design and development cost, production cost, operati

  1. Aircraft bi-level life cycle cost estimation

    NARCIS (Netherlands)

    Zhao, X.; Verhagen, W.J.C.; Curan, R.

    2015-01-01

    n an integrated aircraft design and analysis practice, Life Cycle Cost (LCC) is essential for decision making. The LCC of an aircraft is ordinarily partially estimated by emphasizing a specific cost type. However, an overview of the LCC including design and development cost, production cost,

  2. Load Estimation from Modal Parameters

    DEFF Research Database (Denmark)

    Aenlle, Manuel López; Brincker, Rune; Fernández, Pelayo Fernández;

    2007-01-01

    In Natural Input Modal Analysis the modal parameters are estimated just from the responses while the loading is not recorded. However, engineers are sometimes interested in knowing some features of the loading acting on a structure. In this paper, a procedure to determine the loading from a FRF...... matrix assembled from modal parameters and the experimental responses recorded using standard sensors, is presented. The method implies the inversion of the FRF which, in general, is not full rank matrix due to the truncation of the modal space. Furthermore, some ecommendations are included to improve...

  3. Optimal Tuner Selection for Kalman-Filter-Based Aircraft Engine Performance Estimation

    Science.gov (United States)

    Simon, Donald L.; Garg, Sanjay

    2011-01-01

    An emerging approach in the field of aircraft engine controls and system health management is the inclusion of real-time, onboard models for the inflight estimation of engine performance variations. This technology, typically based on Kalman-filter concepts, enables the estimation of unmeasured engine performance parameters that can be directly utilized by controls, prognostics, and health-management applications. A challenge that complicates this practice is the fact that an aircraft engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. Through Kalman-filter-based estimation techniques, the level of engine performance degradation can be estimated, given that there are at least as many sensors as health parameters to be estimated. However, in an aircraft engine, the number of sensors available is typically less than the number of health parameters, presenting an under-determined estimation problem. A common approach to address this shortcoming is to estimate a subset of the health parameters, referred to as model tuning parameters. The problem/objective is to optimally select the model tuning parameters to minimize Kalman-filterbased estimation error. A tuner selection technique has been developed that specifically addresses the under-determined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine that seeks to minimize the theoretical mean-squared estimation error of the Kalman filter. This approach can significantly reduce the error in onboard aircraft engine parameter estimation

  4. Mode choice model parameters estimation

    OpenAIRE

    Strnad, Irena

    2010-01-01

    The present work focuses on parameter estimation of two mode choice models: multinomial logit and EVA 2 model, where four different modes and five different trip purposes are taken into account. Mode choice model discusses the behavioral aspect of mode choice making and enables its application to a traffic model. Mode choice model includes mode choice affecting trip factors by using each mode and their relative importance to choice made. When trip factor values are known, it...

  5. Inflation and cosmological parameter estimation

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, J.

    2007-05-15

    In this work, we focus on two aspects of cosmological data analysis: inference of parameter values and the search for new effects in the inflationary sector. Constraints on cosmological parameters are commonly derived under the assumption of a minimal model. We point out that this procedure systematically underestimates errors and possibly biases estimates, due to overly restrictive assumptions. In a more conservative approach, we analyse cosmological data using a more general eleven-parameter model. We find that regions of the parameter space that were previously thought ruled out are still compatible with the data; the bounds on individual parameters are relaxed by up to a factor of two, compared to the results for the minimal six-parameter model. Moreover, we analyse a class of inflation models, in which the slow roll conditions are briefly violated, due to a step in the potential. We show that the presence of a step generically leads to an oscillating spectrum and perform a fit to CMB and galaxy clustering data. We do not find conclusive evidence for a step in the potential and derive strong bounds on quantities that parameterise the step. (orig.)

  6. Support Resources Demand Parameters - Aircraft. Revision A

    Science.gov (United States)

    1980-01-15

    CONT’D PARAMETER NAME TYPE UNITS Securing Technology (Radome) Scaled Convention: 1 = Hinge and Bolts _: 2 = Hinge and Snap Fastners 3 = Cam Locks Total...wE cn m V> e= (m ,", 11’ m> (A - CA -> -- 2: > 0n u~~~~~~ ’,’ U) Xz:>cm(>to nX : i>a.., t--w, ,anE : a nOan a > -- , a,, n> -j a) , a 4 .) 4, J " 0n...WCJO0tC~ .4EC 000000 4-W~~ 4)W E > o 1= to S- 4- o 00 0 3 d > -U 4- 4- 4- 4- 4.- Ox 00 C - to u* 0 CD 0 M: LC) LC Lo LC) LO U) CAD 1dC DC’ 4v

  7. Estimation of Stability & Control Derivatives from Flight Test Data of Fighter Aircraft

    Directory of Open Access Journals (Sweden)

    L. Saraswathi

    2000-04-01

    Full Text Available Longitudinal stability and tontrol derivatives of a fightlfr aircraft are estimated by output error method for different types of input excitation. The uncertainties in the parameters are computed by cortfcting Cramer-Ra(j bounds using fudge factor. In general, the step input response data is not usedfor estimating the derivatives. Therefore, step response time history trajectories were cross-validated using tIle estimated derivatives for standard inputs like doublet and 3211. This proves that the model parameters are estimated with high confidence. By appropriately choosing the mathematical modeland using the corrected flight data for bias and scale factor errors by compatability check for parameter  estimation proves beyond doubt that such a procedure can be adopted for estimating stability and control derivatives of any aircraft.

  8. Applied parameter estimation for chemical engineers

    CERN Document Server

    Englezos, Peter

    2000-01-01

    Formulation of the parameter estimation problem; computation of parameters in linear models-linear regression; Gauss-Newton method for algebraic models; other nonlinear regression methods for algebraic models; Gauss-Newton method for ordinary differential equation (ODE) models; shortcut estimation methods for ODE models; practical guidelines for algorithm implementation; constrained parameter estimation; Gauss-Newton method for partial differential equation (PDE) models; statistical inferences; design of experiments; recursive parameter estimation; parameter estimation in nonlinear thermodynam

  9. Parametric Equations for Estimating Aircraft Airframe Costs

    Science.gov (United States)

    1976-02-01

    prototype program for the first few aircraft is substantially lower because many costs are deferred until a decision to produce for inventory is made...overhead rates. It is necessary to begin with labor hours and convert tbam into dollars. That conversion can result in a serious misstatement of...general and administrative expense (G&A), miscellaneous direct charges (overtime premium, travel, per diem, miscellaneous taxes , etc.), and, in the

  10. An Integrated Approach for Aircraft Engine Performance Estimation and Fault Diagnostics

    Science.gov (United States)

    imon, Donald L.; Armstrong, Jeffrey B.

    2012-01-01

    A Kalman filter-based approach for integrated on-line aircraft engine performance estimation and gas path fault diagnostics is presented. This technique is specifically designed for underdetermined estimation problems where there are more unknown system parameters representing deterioration and faults than available sensor measurements. A previously developed methodology is applied to optimally design a Kalman filter to estimate a vector of tuning parameters, appropriately sized to enable estimation. The estimated tuning parameters can then be transformed into a larger vector of health parameters representing system performance deterioration and fault effects. The results of this study show that basing fault isolation decisions solely on the estimated health parameter vector does not provide ideal results. Furthermore, expanding the number of the health parameters to address additional gas path faults causes a decrease in the estimation accuracy of those health parameters representative of turbomachinery performance deterioration. However, improved fault isolation performance is demonstrated through direct analysis of the estimated tuning parameters produced by the Kalman filter. This was found to provide equivalent or superior accuracy compared to the conventional fault isolation approach based on the analysis of sensed engine outputs, while simplifying online implementation requirements. Results from the application of these techniques to an aircraft engine simulation are presented and discussed.

  11. Digital control of high performance aircraft using adaptive estimation techniques

    Science.gov (United States)

    Van Landingham, H. F.; Moose, R. L.

    1977-01-01

    In this paper, an adaptive signal processing algorithm is joined with gain-scheduling for controlling the dynamics of high performance aircraft. A technique is presented for a reduced-order model (the longitudinal dynamics) of a high performance STOL aircraft. The actual controller views the nonlinear behavior of the aircraft as equivalent to a randomly switching sequence of linear models taken from a preliminary piecewise-linear fit of the system nonlinearities. The adaptive nature of the estimator is necessary to select the proper sequence of linear models along the flight trajectory. Nonlinear behavior is approximated by effective switching of the linear models at random times, with durations reflecting aircraft motion in response to pilot commands.

  12. Application of chaotic theory to parameter estimation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    High precision parameter estimation is very important for control system design and compensation. This paper utilizes the properties of chaotic system for parameter estimation. Theoretical analysis and experimental results indicated that this method has extremely high sensitivity and resolving power. The most important contribution of this paper is apart from the traditional engineering viewpoint and actualizing parameter estimation just based on unstable chaotic systems.

  13. Hover performance estimation and validation of battery powered vertical takeoff and landing aircraft

    Institute of Scientific and Technical Information of China (English)

    王波; 侯中喜; 鲁亚飞; 朱雄峰

    2016-01-01

    Battery powered vertical takeoff and landing (VTOL) aircraft attracts more and more interests from public, while limited hover endurance hinders many prospective applications. Based on the weight models of battery, motor and electronic speed controller, the power consumption model of propeller and the constant power discharge model of battery, an efficient method to estimate the hover endurance of battery powered VTOL aircraft was presented. In order to understand the mechanism of performance improvement, the impacts of propulsion system parameters on hover endurance were analyzed by simulations, including the motor power density, the battery capacity, specific energy and Peukert coefficient. Ground experiment platform was established and validation experiments were carried out, the results of which showed a well agreement with the simulations. The estimation method and the analysis results could be used for optimization design and hover performance evaluation of battery powered VTOL aircraft.

  14. Parameter Estimation in Continuous Time Domain

    Directory of Open Access Journals (Sweden)

    Gabriela M. ATANASIU

    2016-12-01

    Full Text Available This paper will aim to presents the applications of a continuous-time parameter estimation method for estimating structural parameters of a real bridge structure. For the purpose of illustrating this method two case studies of a bridge pile located in a highly seismic risk area are considered, for which the structural parameters for the mass, damping and stiffness are estimated. The estimation process is followed by the validation of the analytical results and comparison with them to the measurement data. Further benefits and applications for the continuous-time parameter estimation method in civil engineering are presented in the final part of this paper.

  15. PARAMETER ESTIMATION OF ENGINEERING TURBULENCE MODEL

    Institute of Scientific and Technical Information of China (English)

    钱炜祺; 蔡金狮

    2001-01-01

    A parameter estimation algorithm is introduced and used to determine the parameters in the standard k-ε two equation turbulence model (SKE). It can be found from the estimation results that although the parameter estimation method is an effective method to determine model parameters, it is difficult to obtain a set of parameters for SKE to suit all kinds of separated flow and a modification of the turbulence model structure should be considered. So, a new nonlinear k-ε two-equation model (NNKE) is put forward in this paper and the corresponding parameter estimation technique is applied to determine the model parameters. By implementing the NNKE to solve some engineering turbulent flows, it is shown that NNKE is more accurate and versatile than SKE. Thus, the success of NNKE implies that the parameter estimation technique may have a bright prospect in engineering turbulence model research.

  16. Earth Rotation Parameter Estimation by GPS Observations

    Institute of Scientific and Technical Information of China (English)

    YAO Yibin

    2006-01-01

    The methods of Earth rotation parameter (ERP) estimation based on IGS SINEX file of GPS solution are discussed in detail. There are two different ways to estimate ERP: one is the parameter transformation method, and the other is direct adjustment method with restrictive conditions. By comparing the estimated results with independent copyright program to IERS results, the residual systemic error can be found in estimated ERP with GPS observations.

  17. Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation

    Science.gov (United States)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A linear point design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. This paper derives theoretical Kalman filter estimation error bias and variance values at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the conventional approach of tuner selection. Experimental simulation results are found to be in agreement with theoretical predictions. The new methodology is shown to yield a significant improvement in on-line engine performance estimation accuracy

  18. Parameter Estimation in Multivariate Gamma Distribution

    Directory of Open Access Journals (Sweden)

    V S Vaidyanathan

    2015-05-01

    Full Text Available Multivariate gamma distribution finds abundant applications in stochastic modelling, hydrology and reliability. Parameter estimation in this distribution is a challenging one as it involves many parameters to be estimated simultaneously. In this paper, the form of multivariate gamma distribution proposed by Mathai and Moschopoulos [10] is considered. This form has nice properties in terms of marginal and conditional densities. A new method of estimation based on optimal search is proposed for estimating the parameters using the marginal distributions and the concepts of maximum likelihood, spacings and least squares. The proposed methodology is easy to implement and is free from calculus. It optimizes the objective function by searching over a wide range of values and determines the estimate of the parameters. The consistency of the estimates is demonstrated in terms of mean, standard deviation and mean square error through simulation studies for different choices of parameters

  19. Estimation of physical parameters in induction motors

    DEFF Research Database (Denmark)

    Børsting, H.; Knudsen, Morten; Rasmussen, Henrik

    1994-01-01

    Parameter estimation in induction motors is a field of great interest, because accurate models are needed for robust dynamic control of induction motors......Parameter estimation in induction motors is a field of great interest, because accurate models are needed for robust dynamic control of induction motors...

  20. On parameter estimation in deformable models

    DEFF Research Database (Denmark)

    Fisker, Rune; Carstensen, Jens Michael

    1998-01-01

    Deformable templates have been intensively studied in image analysis through the last decade, but despite its significance the estimation of model parameters has received little attention. We present a method for supervised and unsupervised model parameter estimation using a general Bayesian...... method is based on a modified version of the EM algorithm. Experimental results for a deformable template used for textile inspection are presented...

  1. Parameter Estimation, Model Reduction and Quantum Filtering

    CERN Document Server

    Chase, Bradley A

    2009-01-01

    This dissertation explores the topics of parameter estimation and model reduction in the context of quantum filtering. Chapters 2 and 3 provide a review of classical and quantum probability theory, stochastic calculus and filtering. Chapter 4 studies the problem of quantum parameter estimation and introduces the quantum particle filter as a practical computational method for parameter estimation via continuous measurement. Chapter 5 applies these techniques in magnetometry and studies the estimator's uncertainty scalings in a double-pass atomic magnetometer. Chapter 6 presents an efficient feedback controller for continuous-time quantum error correction. Chapter 7 presents an exact model of symmetric processes of collective qubit systems.

  2. ESTIMATION ACCURACY OF EXPONENTIAL DISTRIBUTION PARAMETERS

    Directory of Open Access Journals (Sweden)

    muhammad zahid rashid

    2011-04-01

    Full Text Available The exponential distribution is commonly used to model the behavior of units that have a constant failure rate. The two-parameter exponential distribution provides a simple but nevertheless useful model for the analysis of lifetimes, especially when investigating reliability of technical equipment.This paper is concerned with estimation of parameters of the two parameter (location and scale exponential distribution. We used the least squares method (LSM, relative least squares method (RELS, ridge regression method (RR,  moment estimators (ME, modified moment estimators (MME, maximum likelihood estimators (MLE and modified maximum likelihood estimators (MMLE. We used the mean square error MSE, and total deviation TD, as measurement for the comparison between these methods. We determined the best method for estimation using different values for the parameters and different sample sizes

  3. ESTIMATION ACCURACY OF EXPONENTIAL DISTRIBUTION PARAMETERS

    Directory of Open Access Journals (Sweden)

    muhammad zahid rashid

    2011-04-01

    Full Text Available The exponential distribution is commonly used to model the behavior of units that have a constant failure rate. The two-parameter exponential distribution provides a simple but nevertheless useful model for the analysis of lifetimes, especially when investigating reliability of technical equipment.This paper is concerned with estimation of parameters of the two parameter (location and scale exponential distribution. We used the least squares method (LSM, relative least squares method (RELS, ridge regression method (RR,  moment estimators (ME, modified moment estimators (MME, maximum likelihood estimators (MLE and modified maximum likelihood estimators (MMLE. We used the mean square error MSE, and total deviation TD, as measurement for the comparison between these methods. We determined the best method for estimation using different values for the parameters and different sample sizes

  4. Estimating parametes for systems with complicated dynamics

    CERN Document Server

    Goodwin, J; Goodwin, Justin; Brown, Reggie

    1998-01-01

    Changes in parameters of a physical device can eventually give way to catastrophic failure. In this paper we present a method for estimating the parameters of a device from time series data. We also examine the robustness of this method to noise in the data. For our examples, the parameter estimates are good to about two decimal places even at 0 dB signal to noise ratio.

  5. Parameter Estimation in Multivariate Gamma Distribution

    OpenAIRE

    V S Vaidyanathan; R Vani Lakshmi

    2015-01-01

    Multivariate gamma distribution finds abundant applications in stochastic modelling, hydrology and reliability. Parameter estimation in this distribution is a challenging one as it involves many parameters to be estimated simultaneously. In this paper, the form of multivariate gamma distribution proposed by Mathai and Moschopoulos [10] is considered. This form has nice properties in terms of marginal and conditional densities. A new method of estimation based on optimal search is proposed for...

  6. Cosmological parameter estimation using Particle Swarm Optimization

    Science.gov (United States)

    Prasad, J.; Souradeep, T.

    2014-03-01

    Constraining parameters of a theoretical model from observational data is an important exercise in cosmology. There are many theoretically motivated models, which demand greater number of cosmological parameters than the standard model of cosmology uses, and make the problem of parameter estimation challenging. It is a common practice to employ Bayesian formalism for parameter estimation for which, in general, likelihood surface is probed. For the standard cosmological model with six parameters, likelihood surface is quite smooth and does not have local maxima, and sampling based methods like Markov Chain Monte Carlo (MCMC) method are quite successful. However, when there are a large number of parameters or the likelihood surface is not smooth, other methods may be more effective. In this paper, we have demonstrated application of another method inspired from artificial intelligence, called Particle Swarm Optimization (PSO) for estimating cosmological parameters from Cosmic Microwave Background (CMB) data taken from the WMAP satellite.

  7. Estimation Methods for Determination of Drag Characteristics of Fly-by-Wire Aircraft

    Directory of Open Access Journals (Sweden)

    G. Girija

    2001-01-01

    Full Text Available "In this paper, several parameter/state estimation approaches for the determination of drag polars from flight data are described and evaluated for a fly-by-wire (FBW aircraft. Both model-based approaches (MBAs and non-model-based approaches (NMBAs are considered. Dynamic response data from roller coaster and wind- up-turn manoeuvres are generated in a FBW aircraft flight simulator at different flight conditions and the typical performance results are presented. A novel approach to estimate the drag polar has been evaluated. It has been found that the NMBAs perform better than the MBAs. Classically, the MBAs have been used for the determination of drag polars. The merits of an NMBA are that it does not require specification of the detailed model of the aerodynamic coefficients and it can be suitably used for online estimation of drag polars from the flight data of aerospace vehicles

  8. Application of spreadsheet to estimate infiltration parameters

    Directory of Open Access Journals (Sweden)

    Mohammad Zakwan

    2016-09-01

    Full Text Available Infiltration is the process of flow of water into the ground through the soil surface. Soil water although contributes a negligible fraction of total water present on earth surface, but is of utmost importance for plant life. Estimation of infiltration rates is of paramount importance for estimation of effective rainfall, groundwater recharge, and designing of irrigation systems. Numerous infiltration models are in use for estimation of infiltration rates. The conventional graphical approach for estimation of infiltration parameters often fails to estimate the infiltration parameters precisely. The generalised reduced gradient (GRG solver is reported to be a powerful tool for estimating parameters of nonlinear equations and it has, therefore, been implemented to estimate the infiltration parameters in the present paper. Field data of infiltration rate available in literature for sandy loam soils of Umuahia, Nigeria were used to evaluate the performance of GRG solver. A comparative study of graphical method and GRG solver shows that the performance of GRG solver is better than that of conventional graphical method for estimation of infiltration rates. Further, the performance of Kostiakov model has been found to be better than the Horton and Philip's model in most of the cases based on both the approaches of parameter estimation.

  9. State and parameter estimation in bio processes

    Energy Technology Data Exchange (ETDEWEB)

    Maher, M.; Roux, G.; Dahhou, B. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France)]|[Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France)

    1994-12-31

    A major difficulty in monitoring and control of bio-processes is the lack of reliable and simple sensors for following the evolution of the main state variables and parameters such as biomass, substrate, product, growth rate, etc... In this article, an adaptive estimation algorithm is proposed to recover the state and parameters in bio-processes. This estimator utilizes the physical process model and the reference model approach. Experimentations concerning estimation of biomass and product concentrations and specific growth rate, during batch, fed-batch and continuous fermentation processes are presented. The results show the performance of this adaptive estimation approach. (authors) 12 refs.

  10. On Carleman estimates with two large parameters

    Energy Technology Data Exchange (ETDEWEB)

    Le Rousseau, Jerome, E-mail: jlr@univ-orleans.fr [Jerome Le Rousseau. Universite d' Orleans, Laboratoire Mathematiques et Applications, Physique Mathematique d' Orleans, CNRS UMR 6628, Federation Denis-Poisson, FR CNRS 2964, B.P. 6759, 45067 Orleans cedex 2 (France)

    2011-04-01

    We provide a general framework for the analysis and the derivation of Carleman estimates with two large parameters. For an appropriate form of weight functions strong pseudo-convexity conditions are shown to be necessary and sufficient.

  11. Optimization of operational aircraft parameters Reducing Noise Emission

    CERN Document Server

    Abdallah, Lina; Khardi, Salah

    2008-01-01

    The objective of this paper is to develop a model and a minimization method to provide flight path optimums reducing aircraft noise in the vicinity of airports. Optimization algorithm has solved a complex optimal control problem, and generates flight paths minimizing aircraft noise levels. Operational and safety constraints have been considered and their limits satisfied. Results are here presented and discussed.

  12. Estimation of Modal Parameters and their Uncertainties

    DEFF Research Database (Denmark)

    Andersen, P.; Brincker, Rune

    1999-01-01

    In this paper it is shown how to estimate the modal parameters as well as their uncertainties using the prediction error method of a dynamic system on the basis of uotput measurements only. The estimation scheme is assessed by means of a simulation study. As a part of the introduction, an example...

  13. MODFLOW-style parameters in underdetermined parameter estimation

    Science.gov (United States)

    D'Oria, Marco D.; Fienen, Michael N.

    2012-01-01

    In this article, we discuss the use of MODFLOW-Style parameters in the numerical codes MODFLOW_2005 and MODFLOW_2005-Adjoint for the definition of variables in the Layer Property Flow package. Parameters are a useful tool to represent aquifer properties in both codes and are the only option available in the adjoint version. Moreover, for overdetermined parameter estimation problems, the parameter approach for model input can make data input easier. We found that if each estimable parameter is defined by one parameter, the codes require a large computational effort and substantial gains in efficiency are achieved by removing logical comparison of character strings that represent the names and types of the parameters. An alternative formulation already available in the current implementation of the code can also alleviate the efficiency degradation due to character comparisons in the special case of distributed parameters defined through multiplication matrices. The authors also hope that lessons learned in analyzing the performance of the MODFLOW family codes will be enlightening to developers of other Fortran implementations of numerical codes.

  14. PARAMETER ESTIMATION IN BREAD BAKING MODEL

    OpenAIRE

    Hadiyanto Hadiyanto; AJB van Boxtel

    2012-01-01

    Bread product quality is highly dependent to the baking process. A model for the development of product quality, which was obtained by using quantitative and qualitative relationships, was calibrated by experiments at a fixed baking temperature of 200°C alone and in combination with 100 W microwave powers. The model parameters were estimated in a stepwise procedure i.e. first, heat and mass transfer related parameters, then the parameters related to product transformations and finally pro...

  15. Parameter Estimation of Partial Differential Equation Models

    KAUST Repository

    Xun, Xiaolei

    2013-09-01

    Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown and need to be estimated from the measurements of the dynamic system in the presence of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from long-range infrared light detection and ranging data. Supplementary materials for this article are available online. © 2013 American Statistical Association.

  16. Parameter estimation methods for chaotic intercellular networks.

    Science.gov (United States)

    Mariño, Inés P; Ullner, Ekkehard; Zaikin, Alexey

    2013-01-01

    We have investigated simulation-based techniques for parameter estimation in chaotic intercellular networks. The proposed methodology combines a synchronization-based framework for parameter estimation in coupled chaotic systems with some state-of-the-art computational inference methods borrowed from the field of computational statistics. The first method is a stochastic optimization algorithm, known as accelerated random search method, and the other two techniques are based on approximate Bayesian computation. The latter is a general methodology for non-parametric inference that can be applied to practically any system of interest. The first method based on approximate Bayesian computation is a Markov Chain Monte Carlo scheme that generates a series of random parameter realizations for which a low synchronization error is guaranteed. We show that accurate parameter estimates can be obtained by averaging over these realizations. The second ABC-based technique is a Sequential Monte Carlo scheme. The algorithm generates a sequence of "populations", i.e., sets of randomly generated parameter values, where the members of a certain population attain a synchronization error that is lesser than the error attained by members of the previous population. Again, we show that accurate estimates can be obtained by averaging over the parameter values in the last population of the sequence. We have analysed how effective these methods are from a computational perspective. For the numerical simulations we have considered a network that consists of two modified repressilators with identical parameters, coupled by the fast diffusion of the autoinducer across the cell membranes.

  17. Estimates of the climate response to aircraft emissions scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Sausen, R.; Schumann, U.

    1998-03-01

    A combination of linear responses model is used to estimate the changes in the global means of the carbon dioxide (CO{sub 2}) concentration, of the surface temperature, and of the seal level due to aviation. Apart from CO{sub 2}, also the forcing by aircraft induced ozone changes is considered. The model is applied for several CO{sub 2} emission scenarios, which are based on reported fuel consumption for the past and IPCC scenarios for the future, and corresponding nitrogen oxides (NO{sub x}) emissions. The aviation CO{sub 2} emissions from past until 1995 enlarged the atmospheric CO{sub 2} concentration by 1.4 ppmv (1.7% of the anthropogenic CO{sub 2} increase since 1800). The global mean surface temperature increased by about 0.004 K, and the sea level rose by 0.024 cm until 1995. Under the assumption that present-day aircraft induced ozone changes cause an equilibrium surface warming of 0.05 K, the transient responses amount to 0.03 K in surface temperature and 0.15 cm in sea level in 1995. In a scenario, which assumes a threefold increase in aviation fuel consumption until 2050 and an annual increase rate of 1% thereafter until 2100, the model predicts a CO{sub 2} concentration change of 13 ppmv by 2100, causing temperature increases of 0.01, 0.02, 0.05 K, and sea level increases of 0.06, 0.15, 0.34 cm in the years 2015, 2050, 2100, respectively, due to CO{sub 2} emissions alone. The radiative forcing due to aircraft induced ozone increase causes larger temperature and sea level changes than the aircraft CO{sub 2} forcing. Also, climate reacts more promptly to changes in ozone emissions than to changes in CO{sub 2} emissions from aviation. Finally, even under the assumption of a rather small equilibrium temperature change from aircraft induced ozone (0.01 K for the 1992 NO{sub x} emissions), a proposed new combustor technology which reduces specific NO{sub x} emissions causes a smaller temperature change during the next century than the standard technology does

  18. Statistics of Parameter Estimates: A Concrete Example

    KAUST Repository

    Aguilar, Oscar

    2015-01-01

    © 2015 Society for Industrial and Applied Mathematics. Most mathematical models include parameters that need to be determined from measurements. The estimated values of these parameters and their uncertainties depend on assumptions made about noise levels, models, or prior knowledge. But what can we say about the validity of such estimates, and the influence of these assumptions? This paper is concerned with methods to address these questions, and for didactic purposes it is written in the context of a concrete nonlinear parameter estimation problem. We will use the results of a physical experiment conducted by Allmaras et al. at Texas A&M University [M. Allmaras et al., SIAM Rev., 55 (2013), pp. 149-167] to illustrate the importance of validation procedures for statistical parameter estimation. We describe statistical methods and data analysis tools to check the choices of likelihood and prior distributions, and provide examples of how to compare Bayesian results with those obtained by non-Bayesian methods based on different types of assumptions. We explain how different statistical methods can be used in complementary ways to improve the understanding of parameter estimates and their uncertainties.

  19. Uncertainty Analysis in the Noise Parameters Estimation

    Directory of Open Access Journals (Sweden)

    Pawlik P.

    2012-07-01

    Full Text Available The new approach to the uncertainty estimation in modelling acoustic hazards by means of the interval arithmetic is presented in the paper. In the case of the noise parameters estimation the selection of parameters specifying the acoustic wave propagation in an open space as well as parameters which are required in a form of average values – often constitutes a difficult problem. In such case, it is necessary to determine the variance and then, related strictly to it, the uncertainty of model parameters. The application of the interval arithmetic formalism allows to estimate the input data uncertainties without the necessity of the determination their probability distribution, which is required by other methods of uncertainty assessment. A successive problem in the acoustic hazards estimation is a lack of the exact knowledge of the input parameters. In connection with the above, the analysis of the modelling uncertainty in dependence of inaccuracy of model parameters was performed. To achieve this aim the interval arithmetic formalism – representing the value and its uncertainty in a form of an interval – was applied. The proposed approach was illustrated by the example of the application the Dutch RMR SRM Method, recommended by the European Union Directive 2002/49/WE, in the railway noise modelling.

  20. Interval Estimation of Seismic Hazard Parameters

    Science.gov (United States)

    Orlecka-Sikora, Beata; Lasocki, Stanislaw

    2016-11-01

    The paper considers Poisson temporal occurrence of earthquakes and presents a way to integrate uncertainties of the estimates of mean activity rate and magnitude cumulative distribution function in the interval estimation of the most widely used seismic hazard functions, such as the exceedance probability and the mean return period. The proposed algorithm can be used either when the Gutenberg-Richter model of magnitude distribution is accepted or when the nonparametric estimation is in use. When the Gutenberg-Richter model of magnitude distribution is used the interval estimation of its parameters is based on the asymptotic normality of the maximum likelihood estimator. When the nonparametric kernel estimation of magnitude distribution is used, we propose the iterated bias corrected and accelerated method for interval estimation based on the smoothed bootstrap and second-order bootstrap samples. The changes resulted from the integrated approach in the interval estimation of the seismic hazard functions with respect to the approach, which neglects the uncertainty of the mean activity rate estimates have been studied using Monte Carlo simulations and two real dataset examples. The results indicate that the uncertainty of mean activity rate affects significantly the interval estimates of hazard functions only when the product of activity rate and the time period, for which the hazard is estimated, is no more than 5.0. When this product becomes greater than 5.0, the impact of the uncertainty of cumulative distribution function of magnitude dominates the impact of the uncertainty of mean activity rate in the aggregated uncertainty of the hazard functions. Following, the interval estimates with and without inclusion of the uncertainty of mean activity rate converge. The presented algorithm is generic and can be applied also to capture the propagation of uncertainty of estimates, which are parameters of a multiparameter function, onto this function.

  1. The CLICopti RF structure parameter estimator

    CERN Document Server

    Sjobak, Kyrre Ness

    2014-01-01

    This document describes the CLICopti RF structure parameter estimator. This is a C++ library which makes it possible to quickly estimate the parameters of an RF structure from its length, apertures, tapering, and basic cell type. Typical estimated parameters are the input power required to reach a certain voltage with a given beam current, the maximum safe pulse length for a given input power and the minimum bunch spacing in RF cycles allowed by a given long-range wake limit. The document describes the implemented physics, usage of the library through its Application Programming Interface (API) and the relation between the different parts of the library. Also discussed is how the library is checked for correctness, and the example programs included with the sources are described.

  2. Parameter Estimation for Thurstone Choice Models

    Energy Technology Data Exchange (ETDEWEB)

    Vojnovic, Milan [London School of Economics (United Kingdom); Yun, Seyoung [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-24

    We consider the estimation accuracy of individual strength parameters of a Thurstone choice model when each input observation consists of a choice of one item from a set of two or more items (so called top-1 lists). This model accommodates the well-known choice models such as the Luce choice model for comparison sets of two or more items and the Bradley-Terry model for pair comparisons. We provide a tight characterization of the mean squared error of the maximum likelihood parameter estimator. We also provide similar characterizations for parameter estimators defined by a rank-breaking method, which amounts to deducing one or more pair comparisons from a comparison of two or more items, assuming independence of these pair comparisons, and maximizing a likelihood function derived under these assumptions. We also consider a related binary classification problem where each individual parameter takes value from a set of two possible values and the goal is to correctly classify all items within a prescribed classification error. The results of this paper shed light on how the parameter estimation accuracy depends on given Thurstone choice model and the structure of comparison sets. In particular, we found that for unbiased input comparison sets of a given cardinality, when in expectation each comparison set of given cardinality occurs the same number of times, for a broad class of Thurstone choice models, the mean squared error decreases with the cardinality of comparison sets, but only marginally according to a diminishing returns relation. On the other hand, we found that there exist Thurstone choice models for which the mean squared error of the maximum likelihood parameter estimator can decrease much faster with the cardinality of comparison sets. We report empirical evaluation of some claims and key parameters revealed by theory using both synthetic and real-world input data from some popular sport competitions and online labor platforms.

  3. Parameter Estimation of Turbo Code Encoder

    Directory of Open Access Journals (Sweden)

    Mehdi Teimouri

    2014-01-01

    Full Text Available The problem of reconstruction of a channel code consists of finding out its design parameters solely based on its output. This paper investigates the problem of reconstruction of parallel turbo codes. Reconstruction of a turbo code has been addressed in the literature assuming that some of the parameters of the turbo encoder, such as the number of input and output bits of the constituent encoders and puncturing pattern, are known. However in practical noncooperative situations, these parameters are unknown and should be estimated before applying reconstruction process. Considering such practical situations, this paper proposes a novel method to estimate the above-mentioned code parameters. The proposed algorithm increases the efficiency of the reconstruction process significantly by judiciously reducing the size of search space based on an analysis of the observed channel code output. Moreover, simulation results show that the proposed algorithm is highly robust against channel errors when it is fed with noisy observations.

  4. LISA parameter estimation using numerical merger waveforms

    Energy Technology Data Exchange (ETDEWEB)

    Thorpe, J I; McWilliams, S T; Kelly, B J; Fahey, R P; Arnaud, K; Baker, J G, E-mail: James.I.Thorpe@nasa.go [NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771 (United States)

    2009-05-07

    Recent advances in numerical relativity provide a detailed description of the waveforms of coalescing massive black hole binaries (MBHBs), expected to be the strongest detectable LISA sources. We present a preliminary study of LISA's sensitivity to MBHB parameters using a hybrid numerical/analytic waveform for equal-mass, non-spinning holes. The Synthetic LISA software package is used to simulate the instrument response, and the Fisher information matrix method is used to estimate errors in the parameters. Initial results indicate that inclusion of the merger signal can significantly improve the precision of some parameter estimates. For example, the median parameter errors for an ensemble of systems with total redshifted mass of 10{sup 6} M{sub o-dot} at a redshift of z approx 1 were found to decrease by a factor of slightly more than two for signals with merger as compared to signals truncated at the Schwarzchild ISCO.

  5. LISA parameter estimation using numerical merger waveforms

    CERN Document Server

    Thorpe, J I; Kelly, B J; Fahey, R P; Arnaud, K; Baker, J G

    2008-01-01

    Recent advances in numerical relativity provide a detailed description of the waveforms of coalescing massive black hole binaries (MBHBs), expected to be the strongest detectable LISA sources. We present a preliminary study of LISA's sensitivity to MBHB parameters using a hybrid numerical/analytic waveform for equal-mass, non-spinning holes. The Synthetic LISA software package is used to simulate the instrument response and the Fisher information matrix method is used to estimate errors in the parameters. Initial results indicate that inclusion of the merger signal can significantly improve the precision of some parameter estimates. For example, the median parameter errors for an ensemble of systems with total redshifted mass of one million Solar masses at a redshift of one were found to decrease by a factor of slightly more than two for signals with merger as compared to signals truncated at the Schwarzchild ISCO.

  6. Parameter inference with estimated covariance matrices

    CERN Document Server

    Sellentin, Elena

    2015-01-01

    When inferring parameters from a Gaussian-distributed data set by computing a likelihood, a covariance matrix is needed that describes the data errors and their correlations. If the covariance matrix is not known a priori, it may be estimated and thereby becomes a random object with some intrinsic uncertainty itself. We show how to infer parameters in the presence of such an estimated covariance matrix, by marginalising over the true covariance matrix, conditioned on its estimated value. This leads to a likelihood function that is no longer Gaussian, but rather an adapted version of a multivariate $t$-distribution, which has the same numerical complexity as the multivariate Gaussian. As expected, marginalisation over the true covariance matrix improves inference when compared with Hartlap et al.'s method, which uses an unbiased estimate of the inverse covariance matrix but still assumes that the likelihood is Gaussian.

  7. Multi-Parameter Estimation for Orthorhombic Media

    KAUST Repository

    Masmoudi, Nabil

    2015-08-19

    Building reliable anisotropy models is crucial in seismic modeling, imaging and full waveform inversion. However, estimating anisotropy parameters is often hampered by the trade off between inhomogeneity and anisotropy. For instance, one way to estimate the anisotropy parameters is to relate them analytically to traveltimes, which is challenging in inhomogeneous media. Using perturbation theory, we develop travel-time approximations for orthorhombic media as explicit functions of the anellipticity parameters η1, η2 and a parameter Δγ in inhomogeneous background media. Specifically, our expansion assumes inhomogeneous ellipsoidal anisotropic background model, which can be obtained from well information and stacking velocity analysis. This approach has two main advantages: in one hand, it provides a computationally efficient tool to solve the orthorhombic eikonal equation, on the other hand, it provides a mechanism to scan for the best fitting anisotropy parameters without the need for repetitive modeling of traveltimes, because the coefficients of the traveltime expansion are independent of the perturbed parameters. Furthermore, the coefficients of the traveltime expansion provide insights on the sensitivity of the traveltime with respect to the perturbed parameters. We show the accuracy of the traveltime approximations as well as an approach for multi-parameter scanning in orthorhombic media.

  8. Parameter Estimation of Noise Corrupted Sinusoids

    CERN Document Server

    O'Brien, Francis J; Johnnie, Nathan

    2011-01-01

    Existing algorithms for fitting the parameters of a sinusoid to noisy discrete time observations are not always successful due to initial value sensitivity and other issues. This paper demonstrates the techniques of FIR filtering, Fast Fourier Transform, and nonlinear least squares minimization as useful in the parameter estimation of amplitude, frequency and phase exemplified for a low-frequency time-delayed sinusoid describing simple harmonic motion. Alternative means are described for estimating frequency and phase angle. An autocorrelation function for harmonic motion is also derived.

  9. Hurst Parameter Estimation Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    S..Ledesma-Orozco

    2011-08-01

    Full Text Available The Hurst parameter captures the amount of long-range dependence (LRD in a time series. There are severalmethods to estimate the Hurst parameter, being the most popular: the variance-time plot, the R/S plot, theperiodogram, and Whittle’s estimator. The first three are graphical methods, and the estimation accuracy depends onhow the plot is interpreted and calculated. In contrast, Whittle’s estimator is based on a maximum likelihood techniqueand does not depend on a graph reading; however, it is computationally expensive. A new method to estimate theHurst parameter is proposed. This new method is based on an artificial neural network. Experimental results showthat this method outperforms traditional approaches, and can be used on applications where a fast and accurateestimate of the Hurst parameter is required, i.e., computer network traffic control. Additionally, the Hurst parameterwas computed on series of different length using several methods. The simulation results show that the proposedmethod is at least ten times faster than traditional methods.

  10. Discriminative Parameter Estimation for Random Walks Segmentation

    OpenAIRE

    Baudin, Pierre-Yves; Goodman, Danny; Kumar, Puneet; Azzabou, Noura; Carlier, Pierre G.; Paragios, Nikos; Pawan Kumar, M.

    2013-01-01

    International audience; The Random Walks (RW) algorithm is one of the most e - cient and easy-to-use probabilistic segmentation methods. By combining contrast terms with prior terms, it provides accurate segmentations of medical images in a fully automated manner. However, one of the main drawbacks of using the RW algorithm is that its parameters have to be hand-tuned. we propose a novel discriminative learning framework that estimates the parameters using a training dataset. The main challen...

  11. Robust estimation of hydrological model parameters

    Directory of Open Access Journals (Sweden)

    A. Bárdossy

    2008-11-01

    Full Text Available The estimation of hydrological model parameters is a challenging task. With increasing capacity of computational power several complex optimization algorithms have emerged, but none of the algorithms gives a unique and very best parameter vector. The parameters of fitted hydrological models depend upon the input data. The quality of input data cannot be assured as there may be measurement errors for both input and state variables. In this study a methodology has been developed to find a set of robust parameter vectors for a hydrological model. To see the effect of observational error on parameters, stochastically generated synthetic measurement errors were applied to observed discharge and temperature data. With this modified data, the model was calibrated and the effect of measurement errors on parameters was analysed. It was found that the measurement errors have a significant effect on the best performing parameter vector. The erroneous data led to very different optimal parameter vectors. To overcome this problem and to find a set of robust parameter vectors, a geometrical approach based on Tukey's half space depth was used. The depth of the set of N randomly generated parameters was calculated with respect to the set with the best model performance (Nash-Sutclife efficiency was used for this study for each parameter vector. Based on the depth of parameter vectors, one can find a set of robust parameter vectors. The results show that the parameters chosen according to the above criteria have low sensitivity and perform well when transfered to a different time period. The method is demonstrated on the upper Neckar catchment in Germany. The conceptual HBV model was used for this study.

  12. Parameter estimation methods for chaotic intercellular networks.

    Directory of Open Access Journals (Sweden)

    Inés P Mariño

    Full Text Available We have investigated simulation-based techniques for parameter estimation in chaotic intercellular networks. The proposed methodology combines a synchronization-based framework for parameter estimation in coupled chaotic systems with some state-of-the-art computational inference methods borrowed from the field of computational statistics. The first method is a stochastic optimization algorithm, known as accelerated random search method, and the other two techniques are based on approximate Bayesian computation. The latter is a general methodology for non-parametric inference that can be applied to practically any system of interest. The first method based on approximate Bayesian computation is a Markov Chain Monte Carlo scheme that generates a series of random parameter realizations for which a low synchronization error is guaranteed. We show that accurate parameter estimates can be obtained by averaging over these realizations. The second ABC-based technique is a Sequential Monte Carlo scheme. The algorithm generates a sequence of "populations", i.e., sets of randomly generated parameter values, where the members of a certain population attain a synchronization error that is lesser than the error attained by members of the previous population. Again, we show that accurate estimates can be obtained by averaging over the parameter values in the last population of the sequence. We have analysed how effective these methods are from a computational perspective. For the numerical simulations we have considered a network that consists of two modified repressilators with identical parameters, coupled by the fast diffusion of the autoinducer across the cell membranes.

  13. Parameter estimation for an expanding universe

    Directory of Open Access Journals (Sweden)

    Jieci Wang

    2015-03-01

    Full Text Available We study the parameter estimation for excitations of Dirac fields in the expanding Robertson–Walker universe. We employ quantum metrology techniques to demonstrate the possibility for high precision estimation for the volume rate of the expanding universe. We show that the optimal precision of the estimation depends sensitively on the dimensionless mass m˜ and dimensionless momentum k˜ of the Dirac particles. The optimal precision for the ratio estimation peaks at some finite dimensionless mass m˜ and momentum k˜. We find that the precision of the estimation can be improved by choosing the probe state as an eigenvector of the hamiltonian. This occurs because the largest quantum Fisher information is obtained by performing projective measurements implemented by the projectors onto the eigenvectors of specific probe states.

  14. Parameter estimation of harmonic polluting industrial loads

    Energy Technology Data Exchange (ETDEWEB)

    Maza-Ortega, J.M.; Gomez-Exposito, A.; Trigo-Garcia, J.L.; Burgos-Payan, M. [University of Sevilla, Sevilla (Spain). Department of Electrical Engineering

    2005-12-01

    This paper develops a methodology for the estimation of relevant parameters characterizing harmonic polluting industrial loads through a set of measurements acquired at the point of common coupling. The proposed method is capable of obtaining an accurate load model in absence of detailed information about its internal structure and composition. (author)

  15. Using Digital Filtration for Hurst Parameter Estimation

    Directory of Open Access Journals (Sweden)

    J. Prochaska

    2009-06-01

    Full Text Available We present a new method to estimate the Hurst parameter. The method exploits the form of the autocorrelation function for second-order self-similar processes and is based on one-pass digital filtration. We compare the performance and properties of the new method with that of the most common methods.

  16. Sensor Placement for Modal Parameter Subset Estimation

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Bernal, Dionisio; Damkilde, Lars

    2016-01-01

    The present paper proposes an approach for deciding on sensor placements in the context of modal parameter estimation from vibration measurements. The approach is based on placing sensors, of which the amount is determined a priori, such that the minimum Fisher information that the frequency resp...

  17. Discriminative parameter estimation for random walks segmentation.

    Science.gov (United States)

    Baudin, Pierre-Yves; Goodman, Danny; Kumrnar, Puneet; Azzabou, Noura; Carlier, Pierre G; Paragios, Nikos; Kumar, M Pawan

    2013-01-01

    The Random Walks (RW) algorithm is one of the most efficient and easy-to-use probabilistic segmentation methods. By combining contrast terms with prior terms, it provides accurate segmentations of medical images in a fully automated manner. However, one of the main drawbacks of using the RW algorithm is that its parameters have to be hand-tuned. we propose a novel discriminative learning framework that estimates the parameters using a training dataset. The main challenge we face is that the training samples are not fully supervised. Specifically, they provide a hard segmentation of the images, instead of a probabilistic segmentation. We overcome this challenge by treating the optimal probabilistic segmentation that is compatible with the given hard segmentation as a latent variable. This allows us to employ the latent support vector machine formulation for parameter estimation. We show that our approach significantly outperforms the baseline methods on a challenging dataset consisting of real clinical 3D MRI volumes of skeletal muscles.

  18. Parameter estimation in stochastic differential equations

    CERN Document Server

    Bishwal, Jaya P N

    2008-01-01

    Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modelling complex phenomena and making beautiful decisions. The subject has attracted researchers from several areas of mathematics and other related fields like economics and finance. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods. Useful because of the current availability of high frequency data is the study of refined asymptotic properties of several estimators when the observation time length is large and the observation time interval is small. Also space time white noise driven models, useful for spatial data, and more sophisticated non-Markovian and non-semimartingale models like fractional diffusions that model the long memory phenomena are examined in this volume.

  19. Input Excitation Techniques for Aerodynamic Derivatives Estimation of Highly Augmented Fighter Aircraft

    Directory of Open Access Journals (Sweden)

    N. Shantha Kumar

    1999-07-01

    Full Text Available This paper presents the results of an investigation related to the estimation of lateral-directional aerodynamic derivatives of highly augmented and advanced fighter aircraft from the flight like response data. Different types of pilot inputs are used to generate aircraft response data in the engineer-in-loop flight simulator to determine which input excitation flight provide the most accurate estimates of aircraft stability and control derivatives. Also, MATILABI SIMULINK-based simulation platform is used to generate aircraft response with single-surface excitation to evaluate the usefulness of the method for stability and control derivatives estimation. The maximum likelihood estimation, based on output error utilisation technique is used to estimate the derivatives from the aircraft simulation response data. The results indicate that accuracy of the estimated derivatives improve with persistence excitation and single-surface excitation.

  20. Sensor Placement for Modal Parameter Subset Estimation

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Bernal, Dionisio; Damkilde, Lars

    2016-01-01

    The present paper proposes an approach for deciding on sensor placements in the context of modal parameter estimation from vibration measurements. The approach is based on placing sensors, of which the amount is determined a priori, such that the minimum Fisher information that the frequency...... responses carry on the selected modal parameter subset is, in some sense, maximized. The approach is validated in the context of a simple 10-DOF mass-spring-damper system by computing the variance of a set of identified modal parameters in a Monte Carlo setting for a set of sensor configurations, whose......). It is shown that the widely used Effective Independence (EI) method, which uses the modal amplitudes as surrogates for the parameters of interest, provides sensor configurations yielding theoretical lower bound variances whose maxima are up to 30 % larger than those obtained by use of the max-min approach....

  1. Nonparametric estimation of location and scale parameters

    KAUST Repository

    Potgieter, C.J.

    2012-12-01

    Two random variables X and Y belong to the same location-scale family if there are constants μ and σ such that Y and μ+σX have the same distribution. In this paper we consider non-parametric estimation of the parameters μ and σ under minimal assumptions regarding the form of the distribution functions of X and Y. We discuss an approach to the estimation problem that is based on asymptotic likelihood considerations. Our results enable us to provide a methodology that can be implemented easily and which yields estimators that are often near optimal when compared to fully parametric methods. We evaluate the performance of the estimators in a series of Monte Carlo simulations. © 2012 Elsevier B.V. All rights reserved.

  2. Parameter estimation in channel network flow simulation

    Institute of Scientific and Technical Information of China (English)

    Han Longxi

    2008-01-01

    Simulations of water flow in channel networks require estimated values of roughness for all the individual channel segments that make up a network. When the number of individual channel segments is large, the parameter calibration workload is substantial and a high level of uncertainty in estimated roughness cannot be avoided. In this study, all the individual channel segments are graded according to the factors determining the value of roughness. It is assumed that channel segments with the same grade have the same value of roughness. Based on observed hydrological data, an optimal model for roughness estimation is built. The procedure of solving the optimal problem using the optimal model is described. In a test of its efficacy, this estimation method was applied successfully in the simulation of tidal water flow in a large complicated channel network in the lower reach of the Yangtze River in China.

  3. Multiple Parameter Estimation With Quantized Channel Output

    CERN Document Server

    Mezghani, Amine; Nossek, Josef A

    2010-01-01

    We present a general problem formulation for optimal parameter estimation based on quantized observations, with application to antenna array communication and processing (channel estimation, time-of-arrival (TOA) and direction-of-arrival (DOA) estimation). The work is of interest in the case when low resolution A/D-converters (ADCs) have to be used to enable higher sampling rate and to simplify the hardware. An Expectation-Maximization (EM) based algorithm is proposed for solving this problem in a general setting. Besides, we derive the Cramer-Rao Bound (CRB) and discuss the effects of quantization and the optimal choice of the ADC characteristic. Numerical and analytical analysis reveals that reliable estimation may still be possible even when the quantization is very coarse.

  4. On closure parameter estimation in chaotic systems

    Directory of Open Access Journals (Sweden)

    J. Hakkarainen

    2012-02-01

    Full Text Available Many dynamical models, such as numerical weather prediction and climate models, contain so called closure parameters. These parameters usually appear in physical parameterizations of sub-grid scale processes, and they act as "tuning handles" of the models. Currently, the values of these parameters are specified mostly manually, but the increasing complexity of the models calls for more algorithmic ways to perform the tuning. Traditionally, parameters of dynamical systems are estimated by directly comparing the model simulations to observed data using, for instance, a least squares approach. However, if the models are chaotic, the classical approach can be ineffective, since small errors in the initial conditions can lead to large, unpredictable deviations from the observations. In this paper, we study numerical methods available for estimating closure parameters in chaotic models. We discuss three techniques: off-line likelihood calculations using filtering methods, the state augmentation method, and the approach that utilizes summary statistics from long model simulations. The properties of the methods are studied using a modified version of the Lorenz 95 system, where the effect of fast variables are described using a simple parameterization.

  5. Quantum Estimation of Parameters of Classical Spacetimes

    CERN Document Server

    Downes, T G; Knill, E; Milburn, G J; Caves, C M

    2016-01-01

    We describe a quantum limit to measurement of classical spacetimes. Specifically, we formulate a quantum Cramer-Rao lower bound for estimating the single parameter in any one-parameter family of spacetime metrics. We employ the locally covariant formulation of quantum field theory in curved spacetime, which allows for a manifestly background-independent derivation. The result is an uncertainty relation that applies to all globally hyperbolic spacetimes. Among other examples, we apply our method to detection of gravitational waves using the electromagnetic field as a probe, as in laser-interferometric gravitational-wave detectors. Other applications are discussed, from terrestrial gravimetry to cosmology.

  6. Parameter estimation using B-Trees

    DEFF Research Database (Denmark)

    Schmidt, Albrecht; Bøhlen, Michael H.

    2004-01-01

    This paper presents a method for accelerating algorithms for computing common statistical operations like parameter estimation or sampling on B-Tree indexed data; the work was carried out in the context of visualisation of large scientific data sets. The underlying idea is the following: the shape...... at opportunities and limitations of this approach for visualisation of large data sets. The advantages of the method are manifold. Not only does it enable advanced algorithms through a performance boost for basic operations like density estimation, but it also builds on functionality that is already present...

  7. Sensor Selection for Aircraft Engine Performance Estimation and Gas Path Fault Diagnostics

    Science.gov (United States)

    Simon, Donald L.; Rinehart, Aidan W.

    2016-01-01

    This paper presents analytical techniques for aiding system designers in making aircraft engine health management sensor selection decisions. The presented techniques, which are based on linear estimation and probability theory, are tailored for gas turbine engine performance estimation and gas path fault diagnostics applications. They enable quantification of the performance estimation and diagnostic accuracy offered by different candidate sensor suites. For performance estimation, sensor selection metrics are presented for two types of estimators including a Kalman filter and a maximum a posteriori estimator. For each type of performance estimator, sensor selection is based on minimizing the theoretical sum of squared estimation errors in health parameters representing performance deterioration in the major rotating modules of the engine. For gas path fault diagnostics, the sensor selection metric is set up to maximize correct classification rate for a diagnostic strategy that performs fault classification by identifying the fault type that most closely matches the observed measurement signature in a weighted least squares sense. Results from the application of the sensor selection metrics to a linear engine model are presented and discussed. Given a baseline sensor suite and a candidate list of optional sensors, an exhaustive search is performed to determine the optimal sensor suites for performance estimation and fault diagnostics. For any given sensor suite, Monte Carlo simulation results are found to exhibit good agreement with theoretical predictions of estimation and diagnostic accuracies.

  8. Renal parameter estimates in unrestrained dogs

    Science.gov (United States)

    Rader, R. D.; Stevens, C. M.

    1974-01-01

    A mathematical formulation has been developed to describe the hemodynamic parameters of a conceptualized kidney model. The model was developed by considering regional pressure drops and regional storage capacities within the renal vasculature. Estimation of renal artery compliance, pre- and postglomerular resistance, and glomerular filtration pressure is feasible by considering mean levels and time derivatives of abdominal aortic pressure and renal artery flow. Changes in the smooth muscle tone of the renal vessels induced by exogenous angiotensin amide, acetylcholine, and by the anaesthetic agent halothane were estimated by use of the model. By employing totally implanted telemetry, the technique was applied on unrestrained dogs to measure renal resistive and compliant parameters while the dogs were being subjected to obedience training, to avoidance reaction, and to unrestrained caging.

  9. Bayesian parameter estimation for effective field theories

    CERN Document Server

    Wesolowski, S; Furnstahl, R J; Phillips, D R; Thapaliya, A

    2015-01-01

    We present procedures based on Bayesian statistics for effective field theory (EFT) parameter estimation from data. The extraction of low-energy constants (LECs) is guided by theoretical expectations that supplement such information in a quantifiable way through the specification of Bayesian priors. A prior for natural-sized LECs reduces the possibility of overfitting, and leads to a consistent accounting of different sources of uncertainty. A set of diagnostic tools are developed that analyze the fit and ensure that the priors do not bias the EFT parameter estimation. The procedures are illustrated using representative model problems and the extraction of LECs for the nucleon mass expansion in SU(2) chiral perturbation theory from synthetic lattice data.

  10. Rapid Compact Binary Coalescence Parameter Estimation

    Science.gov (United States)

    Pankow, Chris; Brady, Patrick; O'Shaughnessy, Richard; Ochsner, Evan; Qi, Hong

    2016-03-01

    The first observation run with second generation gravitational-wave observatories will conclude at the beginning of 2016. Given their unprecedented and growing sensitivity, the benefit of prompt and accurate estimation of the orientation and physical parameters of binary coalescences is obvious in its coupling to electromagnetic astrophysics and observations. Popular Bayesian schemes to measure properties of compact object binaries use Markovian sampling to compute the posterior. While very successful, in some cases, convergence is delayed until well after the electromagnetic fluence has subsided thus diminishing the potential science return. With this in mind, we have developed a scheme which is also Bayesian and simply parallelizable across all available computing resources, drastically decreasing convergence time to a few tens of minutes. In this talk, I will emphasize the complementary use of results from low latency gravitational-wave searches to improve computational efficiency and demonstrate the capabilities of our parameter estimation framework with a simulated set of binary compact object coalescences.

  11. CosmoSIS: modular cosmological parameter estimation

    CERN Document Server

    Zuntz, Joe; Jennings, Elise; Rudd, Douglas; Manzotti, Alessandro; Dodelson, Scott; Bridle, Sarah; Sehrish, Saba; Kowalkowski, James

    2014-01-01

    Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology and systematic uncertainties. In this paper we argue that modularity is the key to addressing these challenges: calculations should be broken up into interchangeable modular units with inputs and outputs clearly defined. We present a new framework for cosmological parameter estimation, CosmoSIS, designed to connect together, share, and advance development of inference tools across the community. We describe the modules already available in CosmoSIS, including CAMB, Planck, cosmic shear calculations, and a suite of samplers. We illustrate it using demonstration code that you can run out-of-the-box with the installer available at http://bitbucket.org/joezuntz/cosmosis

  12. Bayesian parameter estimation for effective field theories

    Science.gov (United States)

    Wesolowski, S.; Klco, N.; Furnstahl, R. J.; Phillips, D. R.; Thapaliya, A.

    2016-07-01

    We present procedures based on Bayesian statistics for estimating, from data, the parameters of effective field theories (EFTs). The extraction of low-energy constants (LECs) is guided by theoretical expectations in a quantifiable way through the specification of Bayesian priors. A prior for natural-sized LECs reduces the possibility of overfitting, and leads to a consistent accounting of different sources of uncertainty. A set of diagnostic tools is developed that analyzes the fit and ensures that the priors do not bias the EFT parameter estimation. The procedures are illustrated using representative model problems, including the extraction of LECs for the nucleon-mass expansion in SU(2) chiral perturbation theory from synthetic lattice data.

  13. Optimal design criteria - prediction vs. parameter estimation

    Science.gov (United States)

    Waldl, Helmut

    2014-05-01

    G-optimality is a popular design criterion for optimal prediction, it tries to minimize the kriging variance over the whole design region. A G-optimal design minimizes the maximum variance of all predicted values. If we use kriging methods for prediction it is self-evident to use the kriging variance as a measure of uncertainty for the estimates. Though the computation of the kriging variance and even more the computation of the empirical kriging variance is computationally very costly and finding the maximum kriging variance in high-dimensional regions can be time demanding such that we cannot really find the G-optimal design with nowadays available computer equipment in practice. We cannot always avoid this problem by using space-filling designs because small designs that minimize the empirical kriging variance are often non-space-filling. D-optimality is the design criterion related to parameter estimation. A D-optimal design maximizes the determinant of the information matrix of the estimates. D-optimality in terms of trend parameter estimation and D-optimality in terms of covariance parameter estimation yield basically different designs. The Pareto frontier of these two competing determinant criteria corresponds with designs that perform well under both criteria. Under certain conditions searching the G-optimal design on the above Pareto frontier yields almost as good results as searching the G-optimal design in the whole design region. In doing so the maximum of the empirical kriging variance has to be computed only a few times though. The method is demonstrated by means of a computer simulation experiment based on data provided by the Belgian institute Management Unit of the North Sea Mathematical Models (MUMM) that describe the evolution of inorganic and organic carbon and nutrients, phytoplankton, bacteria and zooplankton in the Southern Bight of the North Sea.

  14. Dynamic systems models new methods of parameter and state estimation

    CERN Document Server

    2016-01-01

    This monograph is an exposition of a novel method for solving inverse problems, a method of parameter estimation for time series data collected from simulations of real experiments. These time series might be generated by measuring the dynamics of aircraft in flight, by the function of a hidden Markov model used in bioinformatics or speech recognition or when analyzing the dynamics of asset pricing provided by the nonlinear models of financial mathematics. Dynamic Systems Models demonstrates the use of algorithms based on polynomial approximation which have weaker requirements than already-popular iterative methods. Specifically, they do not require a first approximation of a root vector and they allow non-differentiable elements in the vector functions being approximated. The text covers all the points necessary for the understanding and use of polynomial approximation from the mathematical fundamentals, through algorithm development to the application of the method in, for instance, aeroplane flight dynamic...

  15. Errors on errors - Estimating cosmological parameter covariance

    CERN Document Server

    Joachimi, Benjamin

    2014-01-01

    Current and forthcoming cosmological data analyses share the challenge of huge datasets alongside increasingly tight requirements on the precision and accuracy of extracted cosmological parameters. The community is becoming increasingly aware that these requirements not only apply to the central values of parameters but, equally important, also to the error bars. Due to non-linear effects in the astrophysics, the instrument, and the analysis pipeline, data covariance matrices are usually not well known a priori and need to be estimated from the data itself, or from suites of large simulations. In either case, the finite number of realisations available to determine data covariances introduces significant biases and additional variance in the errors on cosmological parameters in a standard likelihood analysis. Here, we review recent work on quantifying these biases and additional variances and discuss approaches to remedy these effects.

  16. Online Dynamic Parameter Estimation of Synchronous Machines

    Science.gov (United States)

    West, Michael R.

    Traditionally, synchronous machine parameters are determined through an offline characterization procedure. The IEEE 115 standard suggests a variety of mechanical and electrical tests to capture the fundamental characteristics and behaviors of a given machine. These characteristics and behaviors can be used to develop and understand machine models that accurately reflect the machine's performance. To perform such tests, the machine is required to be removed from service. Characterizing a machine offline can result in economic losses due to down time, labor expenses, etc. Such losses may be mitigated by implementing online characterization procedures. Historically, different approaches have been taken to develop methods of calculating a machine's electrical characteristics, without removing the machine from service. Using a machine's input and response data combined with a numerical algorithm, a machine's characteristics can be determined. This thesis explores such characterization methods and strives to compare the IEEE 115 standard for offline characterization with the least squares approximation iterative approach implemented on a 20 h.p. synchronous machine. This least squares estimation method of online parameter estimation shows encouraging results for steady-state parameters, in comparison with steady-state parameters obtained through the IEEE 115 standard.

  17. Parameter estimation, model reduction and quantum filtering

    Science.gov (United States)

    Chase, Bradley A.

    This thesis explores the topics of parameter estimation and model reduction in the context of quantum filtering. The last is a mathematically rigorous formulation of continuous quantum measurement, in which a stream of auxiliary quantum systems is used to infer the state of a target quantum system. Fundamental quantum uncertainties appear as noise which corrupts the probe observations and therefore must be filtered in order to extract information about the target system. This is analogous to the classical filtering problem in which techniques of inference are used to process noisy observations of a system in order to estimate its state. Given the clear similarities between the two filtering problems, I devote the beginning of this thesis to a review of classical and quantum probability theory, stochastic calculus and filtering. This allows for a mathematically rigorous and technically adroit presentation of the quantum filtering problem and solution. Given this foundation, I next consider the related problem of quantum parameter estimation, in which one seeks to infer the strength of a parameter that drives the evolution of a probe quantum system. By embedding this problem in the state estimation problem solved by the quantum filter, I present the optimal Bayesian estimator for a parameter when given continuous measurements of the probe system to which it couples. For cases when the probe takes on a finite number of values, I review a set of sufficient conditions for asymptotic convergence of the estimator. For a continuous-valued parameter, I present a computational method called quantum particle filtering for practical estimation of the parameter. Using these methods, I then study the particular problem of atomic magnetometry and review an experimental method for potentially reducing the uncertainty in the estimate of the magnetic field beyond the standard quantum limit. The technique involves double-passing a probe laser field through the atomic system, giving

  18. Optimization of flapping-wing micro aircrafts based on the kinematic parameters using genetic algorithm method

    Directory of Open Access Journals (Sweden)

    Ebrahim BARATI

    2013-03-01

    Full Text Available In this paper the optimization of kinematics, which has great influence in performance of flapping foil propulsion, is investigated. The purpose of optimization is to design a flapping-wing micro aircraft with appropriate kinematics and aerodynamics features, making the micro aircraft suitable for transportation over large distance with minimum energy consumption. On the point of optimal design, the pitch amplitude, wing reduced frequency and phase difference between plunging and pitching are considered as given parameters and consumed energy, generated thrust by wings and lost power are computed using the 2D quasi-steady aerodynamic model and multi-objective genetic algorithm. Based on the thrust optimization, the increase in pitch amplitude reduces the power consumption. In this case the lost power increases and the maximum thrust coefficient is computed of 2.43. Based on the power optimization, the results show that the increase in pitch amplitude leads to power consumption increase. Additionally, the minimum lost power obtained in this case is 23% at pitch amplitude of 25°, wing reduced frequency of 0.42 and phase angle difference between plunging and pitching of 77°. Furthermore, the wing reduced frequency can be estimated using regression with respect to pitch amplitude, because reduced frequency variations with pitch amplitude is approximately a linear function.

  19. PARAMETER ESTIMATION IN BREAD BAKING MODEL

    Directory of Open Access Journals (Sweden)

    Hadiyanto Hadiyanto

    2012-05-01

    Full Text Available Bread product quality is highly dependent to the baking process. A model for the development of product quality, which was obtained by using quantitative and qualitative relationships, was calibrated by experiments at a fixed baking temperature of 200°C alone and in combination with 100 W microwave powers. The model parameters were estimated in a stepwise procedure i.e. first, heat and mass transfer related parameters, then the parameters related to product transformations and finally product quality parameters. There was a fair agreement between the calibrated model results and the experimental data. The results showed that the applied simple qualitative relationships for quality performed above expectation. Furthermore, it was confirmed that the microwave input is most meaningful for the internal product properties and not for the surface properties as crispness and color. The model with adjusted parameters was applied in a quality driven food process design procedure to derive a dynamic operation pattern, which was subsequently tested experimentally to calibrate the model. Despite the limited calibration with fixed operation settings, the model predicted well on the behavior under dynamic convective operation and on combined convective and microwave operation. It was expected that the suitability between model and baking system could be improved further by performing calibration experiments at higher temperature and various microwave power levels.  Abstrak  PERKIRAAN PARAMETER DALAM MODEL UNTUK PROSES BAKING ROTI. Kualitas produk roti sangat tergantung pada proses baking yang digunakan. Suatu model yang telah dikembangkan dengan metode kualitatif dan kuantitaif telah dikalibrasi dengan percobaan pada temperatur 200oC dan dengan kombinasi dengan mikrowave pada 100 Watt. Parameter-parameter model diestimasi dengan prosedur bertahap yaitu pertama, parameter pada model perpindahan masa dan panas, parameter pada model transformasi, dan

  20. Parameter estimation in tree graph metabolic networks

    Directory of Open Access Journals (Sweden)

    Laura Astola

    2016-09-01

    Full Text Available We study the glycosylation processes that convert initially toxic substrates to nutritionally valuable metabolites in the flavonoid biosynthesis pathway of tomato (Solanum lycopersicum seedlings. To estimate the reaction rates we use ordinary differential equations (ODEs to model the enzyme kinetics. A popular choice is to use a system of linear ODEs with constant kinetic rates or to use Michaelis–Menten kinetics. In reality, the catalytic rates, which are affected among other factors by kinetic constants and enzyme concentrations, are changing in time and with the approaches just mentioned, this phenomenon cannot be described. Another problem is that, in general these kinetic coefficients are not always identifiable. A third problem is that, it is not precisely known which enzymes are catalyzing the observed glycosylation processes. With several hundred potential gene candidates, experimental validation using purified target proteins is expensive and time consuming. We aim at reducing this task via mathematical modeling to allow for the pre-selection of most potential gene candidates. In this article we discuss a fast and relatively simple approach to estimate time varying kinetic rates, with three favorable properties: firstly, it allows for identifiable estimation of time dependent parameters in networks with a tree-like structure. Secondly, it is relatively fast compared to usually applied methods that estimate the model derivatives together with the network parameters. Thirdly, by combining the metabolite concentration data with a corresponding microarray data, it can help in detecting the genes related to the enzymatic processes. By comparing the estimated time dynamics of the catalytic rates with time series gene expression data we may assess potential candidate genes behind enzymatic reactions. As an example, we show how to apply this method to select prominent glycosyltransferase genes in tomato seedlings.

  1. Uncertainty relation based on unbiased parameter estimations

    Science.gov (United States)

    Sun, Liang-Liang; Song, Yong-Shun; Qiao, Cong-Feng; Yu, Sixia; Chen, Zeng-Bing

    2017-02-01

    Heisenberg's uncertainty relation has been extensively studied in spirit of its well-known original form, in which the inaccuracy measures used exhibit some controversial properties and don't conform with quantum metrology, where the measurement precision is well defined in terms of estimation theory. In this paper, we treat the joint measurement of incompatible observables as a parameter estimation problem, i.e., estimating the parameters characterizing the statistics of the incompatible observables. Our crucial observation is that, in a sequential measurement scenario, the bias induced by the first unbiased measurement in the subsequent measurement can be eradicated by the information acquired, allowing one to extract unbiased information of the second measurement of an incompatible observable. In terms of Fisher information we propose a kind of information comparison measure and explore various types of trade-offs between the information gains and measurement precisions, which interpret the uncertainty relation as surplus variance trade-off over individual perfect measurements instead of a constraint on extracting complete information of incompatible observables.

  2. Toward unbiased estimations of the statefinder parameters

    Science.gov (United States)

    Aviles, Alejandro; Klapp, Jaime; Luongo, Orlando

    2017-09-01

    With the use of simulated supernova catalogs, we show that the statefinder parameters turn out to be poorly and biased estimated by standard cosmography. To this end, we compute their standard deviations and several bias statistics on cosmologies near the concordance model, demonstrating that these are very large, making standard cosmography unsuitable for future and wider compilations of data. To overcome this issue, we propose a new method that consists in introducing the series of the Hubble function into the luminosity distance, instead of considering the usual direct Taylor expansions of the luminosity distance. Moreover, in order to speed up the numerical computations, we estimate the coefficients of our expansions in a hierarchical manner, in which the order of the expansion depends on the redshift of every single piece of data. In addition, we propose two hybrids methods that incorporates standard cosmography at low redshifts. The methods presented here perform better than the standard approach of cosmography both in the errors and bias of the estimated statefinders. We further propose a one-parameter diagnostic to reject non-viable methods in cosmography.

  3. Parameter estimation for lithium ion batteries

    Science.gov (United States)

    Santhanagopalan, Shriram

    With an increase in the demand for lithium based batteries at the rate of about 7% per year, the amount of effort put into improving the performance of these batteries from both experimental and theoretical perspectives is increasing. There exist a number of mathematical models ranging from simple empirical models to complicated physics-based models to describe the processes leading to failure of these cells. The literature is also rife with experimental studies that characterize the various properties of the system in an attempt to improve the performance of lithium ion cells. However, very little has been done to quantify the experimental observations and relate these results to the existing mathematical models. In fact, the best of the physics based models in the literature show as much as 20% discrepancy when compared to experimental data. The reasons for such a big difference include, but are not limited to, numerical complexities involved in extracting parameters from experimental data and inconsistencies in interpreting directly measured values for the parameters. In this work, an attempt has been made to implement simplified models to extract parameter values that accurately characterize the performance of lithium ion cells. The validity of these models under a variety of experimental conditions is verified using a model discrimination procedure. Transport and kinetic properties are estimated using a non-linear estimation procedure. The initial state of charge inside each electrode is also maintained as an unknown parameter, since this value plays a significant role in accurately matching experimental charge/discharge curves with model predictions and is not readily known from experimental data. The second part of the dissertation focuses on parameters that change rapidly with time. For example, in the case of lithium ion batteries used in Hybrid Electric Vehicle (HEV) applications, the prediction of the State of Charge (SOC) of the cell under a variety of

  4. Composite likelihood estimation of demographic parameters

    Directory of Open Access Journals (Sweden)

    Garrigan Daniel

    2009-11-01

    Full Text Available Abstract Background Most existing likelihood-based methods for fitting historical demographic models to DNA sequence polymorphism data to do not scale feasibly up to the level of whole-genome data sets. Computational economies can be achieved by incorporating two forms of pseudo-likelihood: composite and approximate likelihood methods. Composite likelihood enables scaling up to large data sets because it takes the product of marginal likelihoods as an estimator of the likelihood of the complete data set. This approach is especially useful when a large number of genomic regions constitutes the data set. Additionally, approximate likelihood methods can reduce the dimensionality of the data by summarizing the information in the original data by either a sufficient statistic, or a set of statistics. Both composite and approximate likelihood methods hold promise for analyzing large data sets or for use in situations where the underlying demographic model is complex and has many parameters. This paper considers a simple demographic model of allopatric divergence between two populations, in which one of the population is hypothesized to have experienced a founder event, or population bottleneck. A large resequencing data set from human populations is summarized by the joint frequency spectrum, which is a matrix of the genomic frequency spectrum of derived base frequencies in two populations. A Bayesian Metropolis-coupled Markov chain Monte Carlo (MCMCMC method for parameter estimation is developed that uses both composite and likelihood methods and is applied to the three different pairwise combinations of the human population resequence data. The accuracy of the method is also tested on data sets sampled from a simulated population model with known parameters. Results The Bayesian MCMCMC method also estimates the ratio of effective population size for the X chromosome versus that of the autosomes. The method is shown to estimate, with reasonable

  5. Toward unbiased estimations of the statefinder parameters

    CERN Document Server

    Aviles, Alejandro; Luongo, Orlando

    2016-01-01

    With the use of simulated supernova catalogs, we show that the statefinder parameters turn out to be poorly and biased estimated by standard cosmography. To this end, we compute their standard deviations and several bias statistics on cosmologies near the concordance model, demonstrating that these are very large, making standard cosmography unsuitable for future and wider compilations of data. To overcome this issue, we propose a new method that consists in introducing the series of the Hubble function into the luminosity distance, instead of considering the usual direct Taylor expansions of the luminosity distance. Moreover, in order to speed up the numerical computations, we estimate the coefficients of our expansions in a hierarchical manner, in which the order of the expansion depends on the redshift of every single piece of data. In addition, we propose two hybrids methods that incorporates standard cosmography at low redshifts. The methods presented here perform better than the standard approach of cos...

  6. An Algorithm for Motion Parameter Direct Estimate

    Directory of Open Access Journals (Sweden)

    Roberto Caldelli

    2004-06-01

    Full Text Available Motion estimation in image sequences is undoubtedly one of the most studied research fields, given that motion estimation is a basic tool for disparate applications, ranging from video coding to pattern recognition. In this paper a new methodology which, by minimizing a specific potential function, directly determines for each image pixel the motion parameters of the object the pixel belongs to is presented. The approach is based on Markov random fields modelling, acting on a first-order neighborhood of each point and on a simple motion model that accounts for rotations and translations. Experimental results both on synthetic (noiseless and noisy and real world sequences have been carried out and they demonstrate the good performance of the adopted technique. Furthermore a quantitative and qualitative comparison with other well-known approaches has confirmed the goodness of the proposed methodology.

  7. Estimation of Model Parameters for Steerable Needles

    Science.gov (United States)

    Park, Wooram; Reed, Kyle B.; Okamura, Allison M.; Chirikjian, Gregory S.

    2010-01-01

    Flexible needles with bevel tips are being developed as useful tools for minimally invasive surgery and percutaneous therapy. When such a needle is inserted into soft tissue, it bends due to the asymmetric geometry of the bevel tip. This insertion with bending is not completely repeatable. We characterize the deviations in needle tip pose (position and orientation) by performing repeated needle insertions into artificial tissue. The base of the needle is pushed at a constant speed without rotating, and the covariance of the distribution of the needle tip pose is computed from experimental data. We develop the closed-form equations to describe how the covariance varies with different model parameters. We estimate the model parameters by matching the closed-form covariance and the experimentally obtained covariance. In this work, we use a needle model modified from a previously developed model with two noise parameters. The modified needle model uses three noise parameters to better capture the stochastic behavior of the needle insertion. The modified needle model provides an improvement of the covariance error from 26.1% to 6.55%. PMID:21643451

  8. Estimation of Model Parameters for Steerable Needles.

    Science.gov (United States)

    Park, Wooram; Reed, Kyle B; Okamura, Allison M; Chirikjian, Gregory S

    2010-01-01

    Flexible needles with bevel tips are being developed as useful tools for minimally invasive surgery and percutaneous therapy. When such a needle is inserted into soft tissue, it bends due to the asymmetric geometry of the bevel tip. This insertion with bending is not completely repeatable. We characterize the deviations in needle tip pose (position and orientation) by performing repeated needle insertions into artificial tissue. The base of the needle is pushed at a constant speed without rotating, and the covariance of the distribution of the needle tip pose is computed from experimental data. We develop the closed-form equations to describe how the covariance varies with different model parameters. We estimate the model parameters by matching the closed-form covariance and the experimentally obtained covariance. In this work, we use a needle model modified from a previously developed model with two noise parameters. The modified needle model uses three noise parameters to better capture the stochastic behavior of the needle insertion. The modified needle model provides an improvement of the covariance error from 26.1% to 6.55%.

  9. Parameter Estimation in Active Plate Structures

    DEFF Research Database (Denmark)

    Araujo, A. L.; Lopes, H. M. R.; Vaz, M. A. P.

    2006-01-01

    In this paper two non-destructive methods for elastic and piezoelectric parameter estimation in active plate structures with surface bonded piezoelectric patches are presented. These methods rely on experimental undamped natural frequencies of free vibration. The first solves the inverse problem...... through gradient based optimization techniques, while the second is based on a metamodel of the inverse problem, using artificial neural networks. A numerical higher order finite element laminated plate model is used in both methods and results are compared and discussed through a simulated...

  10. Estimating Infiltration Parameters from Basic Soil Properties

    Science.gov (United States)

    van de Genachte, G.; Mallants, D.; Ramos, J.; Deckers, J. A.; Feyen, J.

    1996-05-01

    Infiltration data were collected on two rectangular grids with 25 sampling points each. Both experimental grids were located in tropical rain forest (Guyana), the first in an Arenosol area and the second in a Ferralsol field. Four different infiltration models were evaluated based on their performance in describing the infiltration data. The model parameters were estimated using non-linear optimization techniques. The infiltration behaviour in the Ferralsol was equally well described by the equations of Philip, Green-Ampt, Kostiakov and Horton. For the Arenosol, the equations of Philip, Green-Ampt and Horton were significantly better than the Kostiakov model. Basic soil properties such as textural composition (percentage sand, silt and clay), organic carbon content, dry bulk density, porosity, initial soil water content and root content were also determined for each sampling point of the two grids. The fitted infiltration parameters were then estimated based on other soil properties using multiple regression. Prior to the regression analysis, all predictor variables were transformed to normality. The regression analysis was performed using two information levels. The first information level contained only three texture fractions for the Ferralsol (sand, silt and clay) and four fractions for the Arenosol (coarse, medium and fine sand, and silt and clay). At the first information level the regression models explained up to 60% of the variability of some of the infiltration parameters for the Ferralsol field plot. At the second information level the complete textural analysis was used (nine fractions for the Ferralsol and six for the Arenosol). At the second information level a principal components analysis (PCA) was performed prior to the regression analysis to overcome the problem of multicollinearity among the predictor variables. Regression analysis was then carried out using the orthogonally transformed soil properties as the independent variables. Results for

  11. State estimation approach for live aircraft engagement in a C2 simulation environment

    CSIR Research Space (South Africa)

    Duvenhage, A

    2007-01-01

    Full Text Available react to or engage targets between live and simulated worlds in various ways. State estimation of live aircraft can be a challenge when data from dedicated aircraft transponders is not available. In such cases air picture data have to be used. Often...

  12. Surface Pressure Estimates for Pitching Aircraft Model at High Angles-of-attack (Short Communication)

    OpenAIRE

    A.A. Pashilkar

    2002-01-01

    The surface pressure on a pitching delta wing aircraft is estimated from the normal force and the pitching moment characteristics. The pressure model is based on parametrising the surface pressure distribution on a simple delta wing. This model is useful as a first approximation of the load distribution on the aircraft wing. Leeward surface pressure distributions computed by this method are presented.

  13. Fast cosmological parameter estimation using neural networks

    CERN Document Server

    Auld, T; Hobson, M P; Gull, S F

    2006-01-01

    We present a method for accelerating the calculation of CMB power spectra, matter power spectra and likelihood functions for use in cosmological parameter estimation. The algorithm, called CosmoNet, is based on training a multilayer perceptron neural network and shares all the advantages of the recently released Pico algorithm of Fendt & Wandelt, but has several additional benefits in terms of simplicity, computational speed, memory requirements and ease of training. We demonstrate the capabilities of CosmoNet by computing CMB power spectra over a box in the parameter space of flat \\Lambda CDM models containing the 3\\sigma WMAP1 confidence region. We also use CosmoNet to compute the WMAP3 likelihood for flat \\Lambda CDM models and show that marginalised posteriors on parameters derived are very similar to those obtained using CAMB and the WMAP3 code. We find that the average error in the power spectra is typically 2-3% of cosmic variance, and that CosmoNet is \\sim 7 \\times 10^4 faster than CAMB (for flat ...

  14. Cosmological parameter estimation: impact of CMB aberration

    CERN Document Server

    Catena, Riccardo

    2012-01-01

    The peculiar motion of an observer with respect to the CMB rest frame induces an apparent deflection of the observed CMB photons, i.e. aberration, and a shift in their frequency, i.e. Doppler effect. Both effects distort the temperature multipoles a_lm's via a mixing matrix at any l. The common lore when performing a CMB based cosmological parameter estimation is to consider that Doppler affects only the l=1 multipole, and neglect any other corrections. In this paper we reconsider the validity of this assumption, showing that it is actually not robust when sky cuts are included to model CMB foreground contaminations. Assuming a simple fiducial cosmological model with five parameters, we simulated CMB temperature maps of the sky in a WMAP-like and in a Planck-like experiment and added aberration and Doppler effects to the maps. We then analyzed with a MCMC in a Bayesian framework the maps with and without aberration and Doppler effects in order to assess the ability of reconstructing the parameters of the fidu...

  15. Using aircraft as wind sensors for estimating accurate wind fields for air traffic management applications

    OpenAIRE

    Hernando Guadaño, Laura; Arnaldo Valdes, Rosa Maria; Saez Nieto, Francisco Javier

    2014-01-01

    A study which examines the use of aircraft as wind sensors in a terminal area for real-time wind estimation in order to improve aircraft trajectory prediction is presented in this paper. We describe not only different sources in the aircraft systems that provide the variables needed to derivate the wind velocity but the capabilities which allow us to present this information for ATM Applications. Based on wind speed samples from aircraft landing at Madrid-Barajas airport, a real-time wind fie...

  16. New method for estimating current and future transport aircraft operating economics. Contractor report, Jan 1976--Oct 1977

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    A methodology was developed by which the operating cost associated with variations in aircraft design and technology characteristics can be assessed. This methodology addresses aircraft related operating cost elements and is based on an in-depth examination of airline operating experiences and relevant operating data. The assessment method produces a base line estimate of the operating cost elements relating to such design specification features as seat capacity, avionic equipment, design range, and design definition features such as maximum takeoff gross weight, and number of engines. Means for determining the deviations from this base line of the design or technological difference at the specific ATA System level are provided. The methodology was applied to assess the operating cost of one potential future advanced technology transport aircraft. An analysis was included to show the relative sensitivity of the operating cost to design parameters. Areas of potential future research on operating cost related technologies are identified.

  17. Noncoherent sampling technique for communications parameter estimations

    Science.gov (United States)

    Su, Y. T.; Choi, H. J.

    1985-01-01

    This paper presents a method of noncoherent demodulation of the PSK signal for signal distortion analysis at the RF interface. The received RF signal is downconverted and noncoherently sampled for further off-line processing. Any mismatch in phase and frequency is then compensated for by the software using the estimation techniques to extract the baseband waveform, which is needed in measuring various signal parameters. In this way, various kinds of modulated signals can be treated uniformly, independent of modulation format, and additional distortions introduced by the receiver or the hardware measurement instruments can thus be eliminated. Quantization errors incurred by digital sampling and ensuing software manipulations are analyzed and related numerical results are presented also.

  18. Parameter estimation in LISA Pathfinder operational exercises

    CERN Document Server

    Nofrarias, Miquel; Congedo, Giuseppe; Hueller, Mauro; Armano, M; Diaz-Aguilo, M; Grynagier, A; Hewitson, M

    2011-01-01

    The LISA Pathfinder data analysis team has been developing in the last years the infrastructure and methods required to run the mission during flight operations. These are gathered in the LTPDA toolbox, an object oriented MATLAB toolbox that allows all the data analysis functionalities for the mission, while storing the history of all operations performed to the data, thus easing traceability and reproducibility of the analysis. The parameter estimation methods in the toolbox have been applied recently to data sets generated with the OSE (Off-line Simulations Environment), a detailed LISA Pathfinder non-linear simulator that will serve as a reference simulator during mission operations. These operational exercises aim at testing the on-orbit experiments in a realistic environment in terms of software and time constraints. These simulations, so called operational exercises, are the last verification step before translating these experiments into tele-command sequences for the spacecraft, producing therefore ve...

  19. Noncoherent sampling technique for communications parameter estimations

    Science.gov (United States)

    Su, Y. T.; Choi, H. J.

    1985-01-01

    This paper presents a method of noncoherent demodulation of the PSK signal for signal distortion analysis at the RF interface. The received RF signal is downconverted and noncoherently sampled for further off-line processing. Any mismatch in phase and frequency is then compensated for by the software using the estimation techniques to extract the baseband waveform, which is needed in measuring various signal parameters. In this way, various kinds of modulated signals can be treated uniformly, independent of modulation format, and additional distortions introduced by the receiver or the hardware measurement instruments can thus be eliminated. Quantization errors incurred by digital sampling and ensuing software manipulations are analyzed and related numerical results are presented also.

  20. Estimation of dynamic rotor loads for the rotor systems research aircraft: Methodology development and validation

    Science.gov (United States)

    Duval, R. W.; Bahrami, M.

    1985-01-01

    The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission systm from the fuselage. A mathematical model relating applied rotor loads and inertial loads of the rotor/transmission system to the load cell response is required to allow the load cells to be used to estimate rotor loads from flight data. Such a model is derived analytically by applying a force and moment balance to the isolated rotor/transmission system. The model is tested by comparing its estimated values of applied rotor loads with measured values obtained from a ground based shake test. Discrepancies in the comparison are used to isolate sources of unmodeled external loads. Once the structure of the mathematical model has been validated by comparison with experimental data, the parameters must be identified. Since the parameters may vary with flight condition it is desirable to identify the parameters directly from the flight data. A Maximum Likelihood identification algorithm is derived for this purpose and tested using a computer simulation of load cell data. The identification is found to converge within 10 samples. The rapid convergence facilitates tracking of time varying parameters of the load cell model in flight.

  1. Rapid Estimation of Aircraft Performance Models using Differential Vortex Panel Method and Extended Kalman Filter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The problem of estimating the aerodynamic models for flight control of damaged aircraft using an innovative differential vortex lattice method tightly coupled with...

  2. Rapid Estimation of Aircraft Performance Models using Differential Vortex Panel Method and Extended Kalman Filter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Estimation of aerodynamic models for the control of damaged aircraft using an innovative differential vortex lattice method tightly coupled with an extended Kalman...

  3. Longitudinal control of aircraft dynamics based on optimization of PID parameters

    Science.gov (United States)

    Deepa, S. N.; Sudha, G.

    2016-03-01

    Recent years many flight control systems and industries are employing PID controllers to improve the dynamic behavior of the characteristics. In this paper, PID controller is developed to improve the stability and performance of general aviation aircraft system. Designing the optimum PID controller parameters for a pitch control aircraft is important in expanding the flight safety envelope. Mathematical model is developed to describe the longitudinal pitch control of an aircraft. The PID controller is designed based on the dynamic modeling of an aircraft system. Different tuning methods namely Zeigler-Nichols method (ZN), Modified Zeigler-Nichols method, Tyreus-Luyben tuning, Astrom-Hagglund tuning methods are employed. The time domain specifications of different tuning methods are compared to obtain the optimum parameters value. The results prove that PID controller tuned by Zeigler-Nichols for aircraft pitch control dynamics is better in stability and performance in all conditions. Future research work of obtaining optimum PID controller parameters using artificial intelligence techniques should be carried out.

  4. Parameter Estimation from Near Stall Flight Data using Conventional and Neural-based Methods

    Directory of Open Access Journals (Sweden)

    S. Saderla

    2016-12-01

    Full Text Available The current research paper is an endeavour to estimate the parameters from near stall flight data of manned and unmanned research flight vehicles using conventional and neural based methods. For an aircraft undergoing stall, the aerodynamic model at these high angles of attack becomes non linear due to the influence of unsteady, transient and flow separation phenomena. In order to address these issues the Kirchhoff’s flow separation theory was used to incorporate the nonlinearity in the aerodynamic model in terms of flow separation point and stall characteristic parameters. The classical Maximum Likelihood (MLE method and Neural Gauss-Newton (NGN method have been employed to estimate the nonlinear parameters of two manned and one unmanned research aircrafts. The estimated static stall parameter and the break point, for the flight vehicles under consideration, were observed to be consistent from both the methods. Moreover the efficacy of the methods is also evident from the consistent estimates of post stall hysteresis time constant. It can also be inferred that the considered quasi steady model is able to adequately capture the drag and pitching moment coefficients in the post stall regime. The confidence in these estimates have been significantly enhanced with the observed lower values of Cramer-Rao bounds. Further the estimated nonlinear parameters were validated by performing a proof of match exercise for the considered flight vehicles. Interestingly the NGN method, which doesn’t involve solving equations of motion, was able to perform on a par with the MLE method.

  5. Real-Time Radar-Based Tracking and State Estimation of Multiple Non-Conformant Aircraft

    Science.gov (United States)

    Cook, Brandon; Arnett, Timothy; Macmann, Owen; Kumar, Manish

    2017-01-01

    In this study, a novel solution for automated tracking of multiple unknown aircraft is proposed. Many current methods use transponders to self-report state information and augment track identification. While conformant aircraft typically report transponder information to alert surrounding aircraft of its state, vehicles may exist in the airspace that are non-compliant and need to be accurately tracked using alternative methods. In this study, a multi-agent tracking solution is presented that solely utilizes primary surveillance radar data to estimate aircraft state information. Main research challenges include state estimation, track management, data association, and establishing persistent track validity. In an effort to realize these challenges, techniques such as Maximum a Posteriori estimation, Kalman filtering, degree of membership data association, and Nearest Neighbor Spanning Tree clustering are implemented for this application.

  6. Aircraft

    Science.gov (United States)

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  7. Aircraft

    Science.gov (United States)

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  8. Multiple nonlinear parameter estimation using PI feedback control

    NARCIS (Netherlands)

    Lith, van P. F.; Witteveen, H.; Betlem, B.H.L.; Roffel, B.

    2001-01-01

    Nonlinear parameters often need to be estimated during the building of chemical process models. To accomplish this, many techniques are available. This paper discusses an alternative view to parameter estimation, where the concept of PI feedback control is used to estimate model parameters. The appr

  9. Estimation of high altitude Martian dust parameters

    Science.gov (United States)

    Pabari, Jayesh; Bhalodi, Pinali

    2016-07-01

    Dust devils are known to occur near the Martian surface mostly during the mid of Southern hemisphere summer and they play vital role in deciding background dust opacity in the atmosphere. The second source of high altitude Martian dust could be due to the secondary ejecta caused by impacts on Martian Moons, Phobos and Deimos. Also, the surfaces of the Moons are charged positively due to ultraviolet rays from the Sun and negatively due to space plasma currents. Such surface charging may cause fine grains to be levitated, which can easily escape the Moons. It is expected that the escaping dust form dust rings within the orbits of the Moons and therefore also around the Mars. One more possible source of high altitude Martian dust is interplanetary in nature. Due to continuous supply of the dust from various sources and also due to a kind of feedback mechanism existing between the ring or tori and the sources, the dust rings or tori can sustain over a period of time. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, it is mystery how dust has reached to such high altitudes. Estimation of dust parameters before-hand is necessary to design an instrument for the detection of high altitude Martian dust from a future orbiter. In this work, we have studied the dust supply rate responsible primarily for the formation of dust ring or tori, the life time of dust particles around the Mars, the dust number density as well as the effect of solar radiation pressure and Martian oblateness on dust dynamics. The results presented in this paper may be useful to space scientists for understanding the scenario and designing an orbiter based instrument to measure the dust surrounding the Mars for solving the mystery. The further work is underway.

  10. Bayesian approach to decompression sickness model parameter estimation.

    Science.gov (United States)

    Howle, L E; Weber, P W; Nichols, J M

    2017-03-01

    We examine both maximum likelihood and Bayesian approaches for estimating probabilistic decompression sickness model parameters. Maximum likelihood estimation treats parameters as fixed values and determines the best estimate through repeated trials, whereas the Bayesian approach treats parameters as random variables and determines the parameter probability distributions. We would ultimately like to know the probability that a parameter lies in a certain range rather than simply make statements about the repeatability of our estimator. Although both represent powerful methods of inference, for models with complex or multi-peaked likelihoods, maximum likelihood parameter estimates can prove more difficult to interpret than the estimates of the parameter distributions provided by the Bayesian approach. For models of decompression sickness, we show that while these two estimation methods are complementary, the credible intervals generated by the Bayesian approach are more naturally suited to quantifying uncertainty in the model parameters.

  11. Surface Pressure Estimates for Pitching Aircraft Model at High Angles-of-attack (Short Communication

    Directory of Open Access Journals (Sweden)

    A. A. Pashilkar

    2002-10-01

    Full Text Available The surface pressure on a pitching delta wing aircraft is estimated from the normal force and the pitching moment characteristics. The pressure model is based on parametrising the surface pressure distribution on a simple delta wing. This model is useful as a first approximation of the load distribution on the aircraft wing. Leeward surface pressure distributions computed by this method are presented.

  12. Estimates of Mode-S EHS aircraft-derived wind observation errors using triple collocation

    Science.gov (United States)

    de Haan, Siebren

    2016-08-01

    Information on the accuracy of meteorological observation is essential to assess the applicability of the measurements. In general, accuracy information is difficult to obtain in operational situations, since the truth is unknown. One method to determine this accuracy is by comparison with the model equivalent of the observation. The advantage of this method is that all measured parameters can be evaluated, from 2 m temperature observation to satellite radiances. The drawback is that these comparisons also contain the (unknown) model error. By applying the so-called triple-collocation method , on two independent observations at the same location in space and time, combined with model output, and assuming uncorrelated observations, the three error variances can be estimated. This method is applied in this study to estimate wind observation errors from aircraft, obtained utilizing information from air traffic control surveillance radar with Selective Mode Enhanced Surveillance capabilities Mode-S EHS, see. Radial wind measurements from Doppler weather radar and wind vector measurements from sodar, together with equivalents from a non-hydrostatic numerical weather prediction model, are used to assess the accuracy of the Mode-S EHS wind observations. The Mode-S EHS wind (zonal and meridional) observation error is estimated to be less than 1.4 ± 0.1 m s-1 near the surface and around 1.1 ± 0.3 m s-1 at 500 hPa.

  13. ESTIMATION OF THE PARAMETERS: ONESTEP ESTIMATORS ARE MORE PREFERABLE THAN MAXIMUM LIKELIHOOD ESTIMATORS

    Directory of Open Access Journals (Sweden)

    Orlov A. I.

    2015-05-01

    Full Text Available According to the new paradigm of applied mathematical statistics one should prefer non-parametric methods and models. However, in applied statistics we currently use a variety of parametric models. The term "parametric" means that the probabilistic-statistical model is fully described by a finite-dimensional vector of fixed dimension, and this dimension does not depend on the size of the sample. In parametric statistics the estimation problem is to estimate the unknown value (for statistician of parameter by means of the best (in some sense method. In the statistical problems of standardization and quality control we use a three-parameter family of gamma distributions. In this article, it is considered as an example of the parametric distribution family. We compare the methods for estimating the parameters. The method of moments is universal. However, the estimates obtained with the help of method of moments have optimal properties only in rare cases. Maximum likelihood estimation (MLE belongs to the class of the best asymptotically normal estimates. In most cases, analytical solutions do not exist; therefore, to find MLE it is necessary to apply numerical methods. However, the use of numerical methods creates numerous problems. Convergence of iterative algorithms requires justification. In a number of examples of the analysis of real data, the likelihood function has many local maxima, and because of that natural iterative procedures do not converge. We suggest the use of one-step estimates (OS-estimates. They have equally good asymptotic properties as the maximum likelihood estimators, under the same conditions of regularity that MLE. One-step estimates are written in the form of explicit formulas. In this article it is proved that the one-step estimates are the best asymptotically normal estimates (under natural conditions. We have found OS-estimates for the gamma distribution and given the results of calculations using data on operating time

  14. Linear parameter estimation of rational biokinetic functions

    NARCIS (Netherlands)

    Doeswijk, T.G.; Keesman, K.J.

    2009-01-01

    For rational biokinetic functions such as the Michaelis-Menten equation, in general, a nonlinear least-squares method is a good estimator. However, a major drawback of a nonlinear least-squares estimator is that it can end up in a local minimum. Rearranging and linearizing rational biokinetic

  15. Bayesian parameter estimation by continuous homodyne detection

    DEFF Research Database (Denmark)

    Kiilerich, Alexander Holm; Molmer, Klaus

    2016-01-01

    and we show that the ensuing transient evolution is more sensitive to system parameters than the steady state of the system. The parameter sensitivity can be quantified by the Fisher information, and we investigate numerically and analytically how the temporal noise correlations in the measurement signal......We simulate the process of continuous homodyne detection of the radiative emission from a quantum system, and we investigate how a Bayesian analysis can be employed to determine unknown parameters that govern the system evolution. Measurement backaction quenches the system dynamics at all times...

  16. Bayesian parameter estimation by continuous homodyne detection

    Science.gov (United States)

    Kiilerich, Alexander Holm; Mølmer, Klaus

    2016-09-01

    We simulate the process of continuous homodyne detection of the radiative emission from a quantum system, and we investigate how a Bayesian analysis can be employed to determine unknown parameters that govern the system evolution. Measurement backaction quenches the system dynamics at all times and we show that the ensuing transient evolution is more sensitive to system parameters than the steady state of the system. The parameter sensitivity can be quantified by the Fisher information, and we investigate numerically and analytically how the temporal noise correlations in the measurement signal contribute to the ultimate sensitivity limit of homodyne detection.

  17. Unscented Kalman filter with parameter identifiability analysis for the estimation of multiple parameters in kinetic models

    OpenAIRE

    Baker Syed; Poskar C; Junker Björn

    2011-01-01

    Abstract In systems biology, experimentally measured parameters are not always available, necessitating the use of computationally based parameter estimation. In order to rely on estimated parameters, it is critical to first determine which parameters can be estimated for a given model and measurement set. This is done with parameter identifiability analysis. A kinetic model of the sucrose accumulation in the sugar cane culm tissue developed by Rohwer et al. was taken as a test case model. Wh...

  18. Estimation of Kinetic Parameters in an Automotive SCR Catalyst Model

    DEFF Research Database (Denmark)

    Åberg, Andreas; Widd, Anders; Abildskov, Jens;

    2016-01-01

    A challenge during the development of models for simulation of the automotive Selective Catalytic Reduction catalyst is the parameter estimation of the kinetic parameters, which can be time consuming and problematic. The parameter estimation is often carried out on small-scale reactor tests, or p...

  19. An approach for parameter estimation of biotechnological processes

    Energy Technology Data Exchange (ETDEWEB)

    Ljubenova, V. (Central Lab. of Bioinstrumentation and Automation, Bulgarian Academy of Sciences, Sofia (Bulgaria)); Ignatova, M.

    1994-08-01

    An approach for parameter estimators design of biotechnological processes (BTP) is presented in case of lack of real time information about state variables. It is based on general reaction rate models and measurements of at least one reaction rate. A general parameter estimator of BTP is designed with the help of which specific rate estimators are synthesized. Stability and convergence of an estimator of specific growth rate for a class of aerobic batch processes are proved. Its effectiveness is illustrated by simulation results. The proposed on-line parameter estimation approach can be used for design of BTP on-line variable estimation algorithms (variable observers of BTP). (orig.)

  20. Parameter and Uncertainty Estimation in Groundwater Modelling

    DEFF Research Database (Denmark)

    Jensen, Jacob Birk

    The data basis on which groundwater models are constructed is in general very incomplete, and this leads to uncertainty in model outcome. Groundwater models form the basis for many, often costly decisions and if these are to be made on solid grounds, the uncertainty attached to model results must...... be quantified. This study was motivated by the need to estimate the uncertainty involved in groundwater models.Chapter 2 presents an integrated surface/subsurface unstructured finite difference model that was developed and applied to a synthetic case study.The following two chapters concern calibration...... and uncertainty estimation. Essential issues relating to calibration are discussed. The classical regression methods are described; however, the main focus is on the Generalized Likelihood Uncertainty Estimation (GLUE) methodology. The next two chapters describe case studies in which the GLUE methodology...

  1. The potential performance of microwave remote sensing for the estimation of stratospheric aircraft effect on ozone layer

    Energy Technology Data Exchange (ETDEWEB)

    Kadygrov, E.; Sorokin, M.; Troitsky, A. [Central Aerological Observatory, Moscow (Russian Federation)

    1997-12-31

    A remote sensing capability is described for measurement of temperature fluctuation and some important gas species concentration at the wake vortex and wake dispersion regimes behind the supersonic aircraft at cruise altitude. The proposed new method of observation is based on the measurement of radio-brightness contrast between the ambient atmosphere and perturbed area behind the aircraft by using millimeter or submillimeter wave scanning spectroradiometers with specially selected spectral parameters. The qualitative estimation of the sensitivity of measurement to temperature fluctuation, changing concentration of ozone, water vapour, nitrogen oxide and sulfur dioxide were calculated. The preliminary test of a new equipment were conducted from high-altitude balloon (temperature profiles and fluctuation and ozone concentrations) and from the ground (sulfur dioxide relative concentration) measurement. (author) 9 refs.

  2. METHOD ON ESTIMATION OF DRUG'S PENETRATED PARAMETERS

    Institute of Scientific and Technical Information of China (English)

    刘宇红; 曾衍钧; 许景锋; 张梅

    2004-01-01

    Transdermal drug delivery system (TDDS) is a new method for drug delivery. The analysis of plenty of experiments in vitro can lead to a suitable mathematical model for the description of the process of the drug's penetration through the skin, together with the important parameters that are related to the characters of the drugs.After the research work of the experiments data,a suitable nonlinear regression model was selected. Using this model, the most important parameter-penetrated coefficient of 20 drugs was computed.In the result one can find, this work supports the theory that the skin can be regarded as singular membrane.

  3. A Comparative Study of Distribution System Parameter Estimation Methods

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yannan; Williams, Tess L.; Gourisetti, Sri Nikhil Gup

    2016-07-17

    In this paper, we compare two parameter estimation methods for distribution systems: residual sensitivity analysis and state-vector augmentation with a Kalman filter. These two methods were originally proposed for transmission systems, and are still the most commonly used methods for parameter estimation. Distribution systems have much lower measurement redundancy than transmission systems. Therefore, estimating parameters is much more difficult. To increase the robustness of parameter estimation, the two methods are applied with combined measurement snapshots (measurement sets taken at different points in time), so that the redundancy for computing the parameter values is increased. The advantages and disadvantages of both methods are discussed. The results of this paper show that state-vector augmentation is a better approach for parameter estimation in distribution systems. Simulation studies are done on a modified version of IEEE 13-Node Test Feeder with varying levels of measurement noise and non-zero error in the other system model parameters.

  4. Postprocessing MPEG based on estimated quantization parameters

    DEFF Research Database (Denmark)

    Forchhammer, Søren

    2009-01-01

    Postprocessing of MPEG(-2) video is widely used to attenuate the coding artifacts, especially deblocking but also deringing have been addressed. The focus has been on filters where the decoder has access to the code stream and e.g. utilizes information about the quantization parameter. We consider...

  5. Estimation of motility parameters from trajectory data

    DEFF Research Database (Denmark)

    Vestergaard, Christian L.; Pedersen, Jonas Nyvold; Mortensen, Kim I.;

    2015-01-01

    Given a theoretical model for a self-propelled particle or micro-organism, how does one optimally determine the parameters of the model from experimental data in the form of a time-lapse recorded trajectory? For very long trajectories, one has very good statistics, and optimality may matter little...... to which similar results may be obtained also for self-propelled particles....

  6. minimum variance estimation of yield parameters of rubber tree with ...

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... STAMP, an OxMetric modular software system for time series analysis, was used to estimate the yield ... derlying regression techniques. .... Kalman Filter Minimum Variance Estimation of Rubber Tree Yield Parameters. 83.

  7. Parameter estimation and error analysis in environmental modeling and computation

    Science.gov (United States)

    Kalmaz, E. E.

    1986-01-01

    A method for the estimation of parameters and error analysis in the development of nonlinear modeling for environmental impact assessment studies is presented. The modular computer program can interactively fit different nonlinear models to the same set of data, dynamically changing the error structure associated with observed values. Parameter estimation techniques and sequential estimation algorithms employed in parameter identification and model selection are first discussed. Then, least-square parameter estimation procedures are formulated, utilizing differential or integrated equations, and are used to define a model for association of error with experimentally observed data.

  8. A Modified Extended Bayesian Method for Parameter Estimation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper presents a modified extended Bayesian method for parameter estimation. In this method the mean value of the a priori estimation is taken from the values of the estimated parameters in the previous iteration step. In this way, the parameter covariance matrix can be automatically updated during the estimation procedure, thereby avoiding the selection of an empirical parameter. Because the extended Bayesian method can be regarded as a Tikhonov regularization, this new method is more stable than both the least-squares method and the maximum likelihood method. The validity of the proposed method is illustrated by two examples: one based on simulated data and one based on real engineering data.

  9. Parameter estimation using compensatory neural networks

    Indian Academy of Sciences (India)

    M Sinha; P K Kalra; K Kumar

    2000-04-01

    Proposed here is a new neuron model, a basis for Compensatory Neural Network Architecture (CNNA), which not only reduces the total number of interconnections among neurons but also reduces the total computing time for training. The suggested model has properties of the basic neuron model as well as the higher neuron model (multiplicative aggregation function). It can adapt to standard neuron and higher order neuron, as well as a combination of the two. This approach is found to estimate the orbit with accuracy significantly better than Kalman Filter (KF) and Feedforward Multilayer Neural Network (FMNN) (also simply referred to as Artificial Neural Network, ANN) with lambda-gamma learning. The typical simulation runs also bring out the superiority of the proposed scheme over Kalman filter from the standpoint of computation time and the amount of data needed for the desired degree of estimated accuracy for the specific problem of orbit determination.

  10. Muscle parameters estimation based on biplanar radiography.

    Science.gov (United States)

    Dubois, G; Rouch, P; Bonneau, D; Gennisson, J L; Skalli, W

    2016-11-01

    The evaluation of muscle and joint forces in vivo is still a challenge. Musculo-Skeletal (musculo-skeletal) models are used to compute forces based on movement analysis. Most of them are built from a scaled-generic model based on cadaver measurements, which provides a low level of personalization, or from Magnetic Resonance Images, which provide a personalized model in lying position. This study proposed an original two steps method to access a subject-specific musculo-skeletal model in 30 min, which is based solely on biplanar X-Rays. First, the subject-specific 3D geometry of bones and skin envelopes were reconstructed from biplanar X-Rays radiography. Then, 2200 corresponding control points were identified between a reference model and the subject-specific X-Rays model. Finally, the shape of 21 lower limb muscles was estimated using a non-linear transformation between the control points in order to fit the muscle shape of the reference model to the X-Rays model. Twelfth musculo-skeletal models were reconstructed and compared to their reference. The muscle volume was not accurately estimated with a standard deviation (SD) ranging from 10 to 68%. However, this method provided an accurate estimation the muscle line of action with a SD of the length difference lower than 2% and a positioning error lower than 20 mm. The moment arm was also well estimated with SD lower than 15% for most muscle, which was significantly better than scaled-generic model for most muscle. This method open the way to a quick modeling method for gait analysis based on biplanar radiography.

  11. Bias in parameter estimation of form errors

    Science.gov (United States)

    Zhang, Xiangchao; Zhang, Hao; He, Xiaoying; Xu, Min

    2014-09-01

    The surface form qualities of precision components are critical to their functionalities. In precision instruments algebraic fitting is usually adopted and the form deviations are assessed in the z direction only, in which case the deviations at steep regions of curved surfaces will be over-weighted, making the fitted results biased and unstable. In this paper the orthogonal distance fitting is performed for curved surfaces and the form errors are measured along the normal vectors of the fitted ideal surfaces. The relative bias of the form error parameters between the vertical assessment and orthogonal assessment are analytically calculated and it is represented as functions of the surface slopes. The parameter bias caused by the non-uniformity of data points can be corrected by weighting, i.e. each data is weighted by the 3D area of the Voronoi cell around the projection point on the fitted surface. Finally numerical experiments are given to compare different fitting methods and definitions of the form error parameters. The proposed definition is demonstrated to show great superiority in terms of stability and unbiasedness.

  12. Parameter Estimation for Improving Association Indicators in Binary Logistic Regression

    Directory of Open Access Journals (Sweden)

    Mahdi Bashiri

    2012-02-01

    Full Text Available The aim of this paper is estimation of Binary logistic regression parameters for maximizing the log-likelihood function with improved association indicators. In this paper the parameter estimation steps have been explained and then measures of association have been introduced and their calculations have been analyzed. Moreover a new related indicators based on membership degree level have been expressed. Indeed association measures demonstrate the number of success responses occurred in front of failure in certain number of Bernoulli independent experiments. In parameter estimation, existing indicators values is not sensitive to the parameter values, whereas the proposed indicators are sensitive to the estimated parameters during the iterative procedure. Therefore, proposing a new association indicator of binary logistic regression with more sensitivity to the estimated parameters in maximizing the log- likelihood in iterative procedure is innovation of this study.

  13. Estimation of motility parameters from trajectory data

    DEFF Research Database (Denmark)

    Vestergaard, Christian L.; Pedersen, Jonas Nyvold; Mortensen, Kim I.;

    2015-01-01

    Given a theoretical model for a self-propelled particle or micro-organism, how does one optimally determine the parameters of the model from experimental data in the form of a time-lapse recorded trajectory? For very long trajectories, one has very good statistics, and optimality may matter little....... However, for biological micro-organisms, one may not control the duration of recordings, and then optimality can matter. This is especially the case if one is interested in individuality and hence cannot improve statistics by taking population averages over many trajectories. One can learn much about...

  14. Control and Estimation of Distributed Parameter Systems

    CERN Document Server

    Kappel, F; Kunisch, K

    1998-01-01

    Consisting of 23 refereed contributions, this volume offers a broad and diverse view of current research in control and estimation of partial differential equations. Topics addressed include, but are not limited to - control and stability of hyperbolic systems related to elasticity, linear and nonlinear; - control and identification of nonlinear parabolic systems; - exact and approximate controllability, and observability; - Pontryagin's maximum principle and dynamic programming in PDE; and - numerics pertinent to optimal and suboptimal control problems. This volume is primarily geared toward control theorists seeking information on the latest developments in their area of expertise. It may also serve as a stimulating reader to any researcher who wants to gain an impression of activities at the forefront of a vigorously expanding area in applied mathematics.

  15. Two-state filtering for joint state-parameter estimation

    CERN Document Server

    Santitissadeekorn, Naratip

    2014-01-01

    This paper presents an approach for simultaneous estimation of the state and unknown parameters in a sequential data assimilation framework. The state augmentation technique, in which the state vector is augmented by the model parameters, has been investigated in many previous studies and some success with this technique has been reported in the case where model parameters are additive. However, many geophysical or climate models contains non-additive parameters such as those arising from physical parametrization of sub-grid scale processes, in which case the state augmentation technique may become ineffective since its inference about parameters from partially observed states based on the cross covariance between states and parameters is inadequate if states and parameters are not linearly correlated. In this paper, we propose a two-stages filtering technique that runs particle filtering (PF) to estimate parameters while updating the state estimate using Ensemble Kalman filter (ENKF; these two "sub-filters" ...

  16. Estimating parameters for generalized mass action models with connectivity information

    Directory of Open Access Journals (Sweden)

    Voit Eberhard O

    2009-05-01

    Full Text Available Abstract Background Determining the parameters of a mathematical model from quantitative measurements is the main bottleneck of modelling biological systems. Parameter values can be estimated from steady-state data or from dynamic data. The nature of suitable data for these two types of estimation is rather different. For instance, estimations of parameter values in pathway models, such as kinetic orders, rate constants, flux control coefficients or elasticities, from steady-state data are generally based on experiments that measure how a biochemical system responds to small perturbations around the steady state. In contrast, parameter estimation from dynamic data requires time series measurements for all dependent variables. Almost no literature has so far discussed the combined use of both steady-state and transient data for estimating parameter values of biochemical systems. Results In this study we introduce a constrained optimization method for estimating parameter values of biochemical pathway models using steady-state information and transient measurements. The constraints are derived from the flux connectivity relationships of the system at the steady state. Two case studies demonstrate the estimation results with and without flux connectivity constraints. The unconstrained optimal estimates from dynamic data may fit the experiments well, but they do not necessarily maintain the connectivity relationships. As a consequence, individual fluxes may be misrepresented, which may cause problems in later extrapolations. By contrast, the constrained estimation accounting for flux connectivity information reduces this misrepresentation and thereby yields improved model parameters. Conclusion The method combines transient metabolic profiles and steady-state information and leads to the formulation of an inverse parameter estimation task as a constrained optimization problem. Parameter estimation and model selection are simultaneously carried out

  17. Shape parameter estimate for a glottal model without time position

    OpenAIRE

    Degottex, Gilles; Roebel, Axel; Rodet, Xavier

    2009-01-01

    cote interne IRCAM: Degottex09a; None / None; National audience; From a recorded speech signal, we propose to estimate a shape parameter of a glottal model without estimating his time position. Indeed, the literature usually propose to estimate the time position first (ex. by detecting Glottal Closure Instants). The vocal-tract filter estimate is expressed as a minimum-phase envelope estimation after removing the glottal model and a standard lips radiation model. Since this filter is mainly b...

  18. Statistical methods for cosmological parameter selection and estimation

    CERN Document Server

    Liddle, Andrew R

    2009-01-01

    The estimation of cosmological parameters from precision observables is an important industry with crucial ramifications for particle physics. This article discusses the statistical methods presently used in cosmological data analysis, highlighting the main assumptions and uncertainties. The topics covered are parameter estimation, model selection, multi-model inference, and experimental design, all primarily from a Bayesian perspective.

  19. Estimating a weighted average of stratum-specific parameters.

    Science.gov (United States)

    Brumback, Babette A; Winner, Larry H; Casella, George; Ghosh, Malay; Hall, Allyson; Zhang, Jianyi; Chorba, Lorna; Duncan, Paul

    2008-10-30

    This article investigates estimators of a weighted average of stratum-specific univariate parameters and compares them in terms of a design-based estimate of mean-squared error (MSE). The research is motivated by a stratified survey sample of Florida Medicaid beneficiaries, in which the parameters are population stratum means and the weights are known and determined by the population sampling frame. Assuming heterogeneous parameters, it is common to estimate the weighted average with the weighted sum of sample stratum means; under homogeneity, one ignores the known weights in favor of precision weighting. Adaptive estimators arise from random effects models for the parameters. We propose adaptive estimators motivated from these random effects models, but we compare their design-based performance. We further propose selecting the tuning parameter to minimize a design-based estimate of mean-squared error. This differs from the model-based approach of selecting the tuning parameter to accurately represent the heterogeneity of stratum means. Our design-based approach effectively downweights strata with small weights in the assessment of homogeneity, which can lead to a smaller MSE. We compare the standard random effects model with identically distributed parameters to a novel alternative, which models the variances of the parameters as inversely proportional to the known weights. We also present theoretical and computational details for estimators based on a general class of random effects models. The methods are applied to estimate average satisfaction with health plan and care among Florida beneficiaries just prior to Medicaid reform.

  20. Estimation of Physical Parameters in Linear and Nonlinear Dynamic Systems

    DEFF Research Database (Denmark)

    Knudsen, Morten

    and estimation of physical parameters in particular. 2. To apply the new methods for modelling of specific objects, such as loudspeakers, ac- and dc-motors wind turbines and beat exchangers. A reliable quality measure of an obtained parameter estimate is a prerequisite for any reasonable use of the result...

  1. On Estimating the Parameters of Truncated Trivariate Normal Distributions

    Directory of Open Access Journals (Sweden)

    M. N. Bhattacharyya

    1969-07-01

    Full Text Available Maximum likehood estimates of the parameters of a trivariate normal distribution, with single truncation on two-variates, have been derived in this paper. The information matrix has also been given from which the asymptotic variances and covariances might be obtained for the estimates of the parameters of the restricted variables. Numerical examples have been worked out.

  2. Parameter estimation of hydrologic models using data assimilation

    Science.gov (United States)

    Kaheil, Y. H.

    2005-12-01

    The uncertainties associated with the modeling of hydrologic systems sometimes demand that data should be incorporated in an on-line fashion in order to understand the behavior of the system. This paper represents a Bayesian strategy to estimate parameters for hydrologic models in an iterative mode. The paper presents a modified technique called localized Bayesian recursive estimation (LoBaRE) that efficiently identifies the optimum parameter region, avoiding convergence to a single best parameter set. The LoBaRE methodology is tested for parameter estimation for two different types of models: a support vector machine (SVM) model for predicting soil moisture, and the Sacramento Soil Moisture Accounting (SAC-SMA) model for estimating streamflow. The SAC-SMA model has 13 parameters that must be determined. The SVM model has three parameters. Bayesian inference is used to estimate the best parameter set in an iterative fashion. This is done by narrowing the sampling space by imposing uncertainty bounds on the posterior best parameter set and/or updating the "parent" bounds based on their fitness. The new approach results in fast convergence towards the optimal parameter set using minimum training/calibration data and evaluation of fewer parameter sets. The efficacy of the localized methodology is also compared with the previously used Bayesian recursive estimation (BaRE) algorithm.

  3. Bayesian Parameter Estimation for Heavy-Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Eric; Konan, Arnaud; Duran, Adam

    2017-03-28

    Accurate vehicle parameters are valuable for design, modeling, and reporting. Estimating vehicle parameters can be a very time-consuming process requiring tightly-controlled experimentation. This work describes a method to estimate vehicle parameters such as mass, coefficient of drag/frontal area, and rolling resistance using data logged during standard vehicle operation. The method uses Monte Carlo to generate parameter sets which is fed to a variant of the road load equation. Modeled road load is then compared to measured load to evaluate the probability of the parameter set. Acceptance of a proposed parameter set is determined using the probability ratio to the current state, so that the chain history will give a distribution of parameter sets. Compared to a single value, a distribution of possible values provides information on the quality of estimates and the range of possible parameter values. The method is demonstrated by estimating dynamometer parameters. Results confirm the method's ability to estimate reasonable parameter sets, and indicates an opportunity to increase the certainty of estimates through careful selection or generation of the test drive cycle.

  4. Parameter and State Estimator for State Space Models

    Directory of Open Access Journals (Sweden)

    Ruifeng Ding

    2014-01-01

    Full Text Available This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective.

  5. Parameter and state estimator for state space models.

    Science.gov (United States)

    Ding, Ruifeng; Zhuang, Linfan

    2014-01-01

    This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective.

  6. Estimation of ground water hydraulic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hvilshoej, Soeren

    1998-11-01

    The main objective was to assess field methods to determine ground water hydraulic parameters and to develop and apply new analysis methods to selected field techniques. A field site in Vejen, Denmark, which previously has been intensively investigated on the basis of a large amount of mini slug tests and tracer tests, was chosen for experimental application and evaluation. Particular interest was in analysing partially penetrating pumping tests and a recently proposed single-well dipole test. Three wells were constructed in which partially penetrating pumping tests and multi-level single-well dipole tests were performed. In addition, multi-level slug tests, flow meter tests, gamma-logs, and geologic characterisation of soil samples were carried out. In addition to the three Vejen analyses, data from previously published partially penetrating pumping tests were analysed assuming homogeneous anisotropic aquifer conditions. In the present study methods were developed to analyse partially penetrating pumping tests and multi-level single-well dipole tests based on an inverse numerical model. The obtained horizontal hydraulic conductivities from the partially penetrating pumping tests were in accordance with measurements obtained from multi-level slug tests and mini slug tests. Accordance was also achieved between the anisotropy ratios determined from partially penetrating pumping tests and multi-level single-well dipole tests. It was demonstrated that the partially penetrating pumping test analysed by and inverse numerical model is a very valuable technique that may provide hydraulic information on the storage terms and the vertical distribution of the horizontal and vertical hydraulic conductivity under both confined and unconfined aquifer conditions. (EG) 138 refs.

  7. Multi-Axis Identifiability Using Single-Surface Parameter Estimation Maneuvers on the X-48B Blended Wing Body

    Science.gov (United States)

    Ratnayake, Nalin A.; Koshimoto, Ed T.; Taylor, Brian R.

    2011-01-01

    The problem of parameter estimation on hybrid-wing-body type aircraft is complicated by the fact that many design candidates for such aircraft involve a large number of aero- dynamic control effectors that act in coplanar motion. This fact adds to the complexity already present in the parameter estimation problem for any aircraft with a closed-loop control system. Decorrelation of system inputs must be performed in order to ascertain individual surface derivatives with any sort of mathematical confidence. Non-standard control surface configurations, such as clamshell surfaces and drag-rudder modes, further complicate the modeling task. In this paper, asymmetric, single-surface maneuvers are used to excite multiple axes of aircraft motion simultaneously. Time history reconstructions of the moment coefficients computed by the solved regression models are then compared to each other in order to assess relative model accuracy. The reduced flight-test time required for inner surface parameter estimation using multi-axis methods was found to come at the cost of slightly reduced accuracy and statistical confidence for linear regression methods. Since the multi-axis maneuvers captured parameter estimates similar to both longitudinal and lateral-directional maneuvers combined, the number of test points required for the inner, aileron-like surfaces could in theory have been reduced by 50%. While trends were similar, however, individual parameters as estimated by a multi-axis model were typically different by an average absolute difference of roughly 15-20%, with decreased statistical significance, than those estimated by a single-axis model. The multi-axis model exhibited an increase in overall fit error of roughly 1-5% for the linear regression estimates with respect to the single-axis model, when applied to flight data designed for each, respectively.

  8. An Algorithm for Positive Definite Least Square Estimation of Parameters.

    Science.gov (United States)

    1986-05-01

    This document presents an algorithm for positive definite least square estimation of parameters. This estimation problem arises from the PILOT...dynamic macro-economic model and is equivalent to an infinite convex quadratic program. It differs from ordinary least square estimations in that the

  9. PARAMETER ESTIMATION IN LINEAR REGRESSION MODELS FOR LONGITUDINAL CONTAMINATED DATA

    Institute of Scientific and Technical Information of China (English)

    QianWeimin; LiYumei

    2005-01-01

    The parameter estimation and the coefficient of contamination for the regression models with repeated measures are studied when its response variables are contaminated by another random variable sequence. Under the suitable conditions it is proved that the estimators which are established in the paper are strongly consistent estimators.

  10. Research on the estimation method for Earth rotation parameters

    Science.gov (United States)

    Yao, Yibin

    2008-12-01

    In this paper, the methods of earth rotation parameter (ERP) estimation based on IGS SINEX file of GPS solution are discussed in details. To estimate ERP, two different ways are involved: one is the parameter transformation method, and the other is direct adjustment method with restrictive conditions. With the IGS daily SINEX files produced by GPS tracking stations can be used to estimate ERP. The parameter transformation method can simplify the process. The process result indicates that the systemic error will exist in the estimated ERP by only using GPS observations. As to the daily GPS SINEX files, why the distinct systemic error is exist in the ERP, or whether this systemic error will affect other parameters estimation, and what its influenced magnitude being, it needs further study in the future.

  11. Parameter Estimation for Generalized Brownian Motion with Autoregressive Increments

    CERN Document Server

    Fendick, Kerry

    2011-01-01

    This paper develops methods for estimating parameters for a generalization of Brownian motion with autoregressive increments called a Brownian ray with drift. We show that a superposition of Brownian rays with drift depends on three types of parameters - a drift coefficient, autoregressive coefficients, and volatility matrix elements, and we introduce methods for estimating each of these types of parameters using multidimensional times series data. We also cover parameter estimation in the contexts of two applications of Brownian rays in the financial sphere: queuing analysis and option valuation. For queuing analysis, we show how samples of queue lengths can be used to estimate the conditional expectation functions for the length of the queue and for increments in its net input and lost potential output. For option valuation, we show how the Black-Scholes-Merton formula depends on the price of the security on which the option is written through estimates not only of its volatility, but also of a coefficient ...

  12. Modeling and Parameter Estimation of a Small Wind Generation System

    Directory of Open Access Journals (Sweden)

    Carlos A. Ramírez Gómez

    2013-11-01

    Full Text Available The modeling and parameter estimation of a small wind generation system is presented in this paper. The system consists of a wind turbine, a permanent magnet synchronous generator, a three phase rectifier, and a direct current load. In order to estimate the parameters wind speed data are registered in a weather station located in the Fraternidad Campus at ITM. Wind speed data were applied to a reference model programed with PSIM software. From that simulation, variables were registered to estimate the parameters. The wind generation system model together with the estimated parameters is an excellent representation of the detailed model, but the estimated model offers a higher flexibility than the programed model in PSIM software.

  13. Catchment tomography - An approach for spatial parameter estimation

    Science.gov (United States)

    Baatz, D.; Kurtz, W.; Hendricks Franssen, H. J.; Vereecken, H.; Kollet, S. J.

    2017-09-01

    The use of distributed-physically based hydrological models is often hampered by the lack of information on key parameters and their spatial distribution and temporal dynamics. Typically, the estimation of parameter values is impeded by the lack of sufficient observations leading to mathematically underdetermined estimation problems and thus non-uniqueness. Catchment tomography (CT) presents a method to estimate spatially distributed model parameters by resolving the integrated signal of stream runoff in response to precipitation. Basically CT exploits the information content generated by a distributed precipitation signal both in time and space. In a moving transmitter-receiver concept, high resolution, radar based precipitation data are applied with a distributed surface runoff model. Synthetic stream water level observations, serving as receivers, are assimilated with an Ensemble Kalman Filter. With a joint state-parameter update the spatially distributed Manning's roughness coefficient, n, is estimated using the coupled Terrestrial Systems Modelling Platform and the Parallel Data Assimilation Framework (TerrSysMP-PDAF). The sequential data assimilation in combination with the distributed precipitation continuously integrates new information into the model, thus, increasingly constraining the parameter space. With this large amount of data included for the parameter estimation, CT reduces the problem of underdetermined model parameters. The initially biased Manning's coefficients spatially distributed in two and four fixed parameter zones are estimated with errors of less than 3% and 17%, respectively, with only 64 model realizations. It is shown that the distributed precipitation is of major importance for this approach.

  14. Aerodynamic derivatives for an oblique wing aircraft estimated from flight data by using a maximum likelihood technique

    Science.gov (United States)

    Maine, R. E.

    1978-01-01

    There are several practical problems in using current techniques with five degree of freedom equations to estimate the stability and control derivatives of oblique wing aircraft from flight data. A technique was developed to estimate these derivatives by separating the analysis of the longitudinal and lateral directional motion without neglecting cross coupling effects. Although previously applied to symmetrical aircraft, the technique was not expected to be adequate for oblique wing vehicles. The application of the technique to flight data from a remotely piloted oblique wing aircraft is described. The aircraft instrumentation and data processing were reviewed, with particular emphasis on the digital filtering of the data. A complete set of flight determined stability and control derivative estimates is presented and compared with predictions. The results demonstrated that the relatively simple approach developed was adequate to obtain high quality estimates of the aerodynamic derivatives of such aircraft.

  15. Weibull Parameters Estimation Based on Physics of Failure Model

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    Reliability estimation procedures are discussed for the example of fatigue development in solder joints using a physics of failure model. The accumulated damage is estimated based on a physics of failure model, the Rainflow counting algorithm and the Miner’s rule. A threshold model is used...... distribution. Methods from structural reliability analysis are used to model the uncertainties and to assess the reliability for fatigue failure. Maximum Likelihood and Least Square estimation techniques are used to estimate fatigue life distribution parameters....

  16. Parameter Estimation in Epidemiology: from Simple to Complex Dynamics

    Science.gov (United States)

    Aguiar, Maíra; Ballesteros, Sebastién; Boto, João Pedro; Kooi, Bob W.; Mateus, Luís; Stollenwerk, Nico

    2011-09-01

    We revisit the parameter estimation framework for population biological dynamical systems, and apply it to calibrate various models in epidemiology with empirical time series, namely influenza and dengue fever. When it comes to more complex models like multi-strain dynamics to describe the virus-host interaction in dengue fever, even most recently developed parameter estimation techniques, like maximum likelihood iterated filtering, come to their computational limits. However, the first results of parameter estimation with data on dengue fever from Thailand indicate a subtle interplay between stochasticity and deterministic skeleton. The deterministic system on its own already displays complex dynamics up to deterministic chaos and coexistence of multiple attractors.

  17. A simulation of water pollution model parameter estimation

    Science.gov (United States)

    Kibler, J. F.

    1976-01-01

    A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.

  18. UPDATING AND DOWNDATING FOR PARAMETER ESTIMATION WITH BOUNDED UNCERTAIN DATA

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The bounded parameter estimation problem and its solution lead to moie meaningful results. Its superior performance is due to the fact that the new method guarantees that the effect of the uncertainties will never be unnecessarily overestimated.We then consider how to update and downdate the bounded parameter estimation problem. When updating and downdating of SVD are used to the new problem, special technologies are taken to avoid forming U and V explicitly, then increase the algorithm performance. Because of the link between the bounded parameter estimation and Tikhonov regularization procedure, we point out that our algorithms can also be used to modify regularization problem.

  19. Numerical estimation of aircrafts' unsteady lateral-directional stability derivatives

    Directory of Open Access Journals (Sweden)

    Maričić N.L.

    2006-01-01

    Full Text Available A technique for predicting steady and oscillatory aerodynamic loads on general configuration has been developed. The prediction is based on the Doublet-Lattice Method, Slender Body Theory and Method of Images. The chord and span wise loading on lifting surfaces and longitudinal bodies (in horizontal and vertical plane load distributions are determined. The configuration may be composed of an assemblage of lifting surfaces (with control surfaces and bodies (with circular cross sections and a longitudinal variation of radius. Loadings predicted by this method are used to calculate (estimate steady and unsteady (dynamic lateral-directional stability derivatives. The short outline of the used methods is given in [1], [2], [3], [4] and [5]. Applying the described methodology software DERIV is developed. The obtained results from DERIV are compared to NASTRAN examples HA21B and HA21D from [4]. In the first example (HA21B, the jet transport wing (BAH wing is steady rolling and lateral stability derivatives are determined. In the second example (HA21D, lateral-directional stability derivatives are calculated for forward- swept-wing (FSW airplane in antisymmetric quasi-steady maneuvers. Acceptable agreement is achieved comparing the results from [4] and DERIV.

  20. A new estimate of the parameters in linear mixed models

    Institute of Scientific and Technical Information of China (English)

    王松桂; 尹素菊

    2002-01-01

    In linear mixed models, there are two kinds of unknown parameters: one is the fixed effect, theother is the variance component. In this paper, new estimates of these parameters, called the spectral decom-position estimates, are proposed, Some important statistical properties of the new estimates are established,in particular the linearity of the estimates of the fixed effects with many statistical optimalities. A new methodis applied to two important models which are used in economics, finance, and mechanical fields. All estimatesobtained have good statistical and practical meaning.

  1. Parameter Estimation for the Thurstone Case III Model.

    Science.gov (United States)

    Mackay, David B.; Chaiy, Seoil

    1982-01-01

    The ability of three estimation criteria to recover parameters of the Thurstone Case V and Case III models from comparative judgment data was investigated via Monte Carlo techniques. Significant differences in recovery are shown to exist. (Author/JKS)

  2. Another Look at the EWMA Control Chart with Estimated Parameters

    NARCIS (Netherlands)

    Saleh, N.A.; Mahmoud, M.A.; Jones-Farmer, L.A.; Zwetsloot, I.; Woodall, W.H.

    2015-01-01

    The authors assess the in-control performance of the exponentially weighted moving average (EWMA) control chart in terms of the SDARL and percentiles of the ARL distribution when the process parameters are estimated.

  3. Parameter estimation in stochastic rainfall-runoff models

    DEFF Research Database (Denmark)

    Jonsdottir, Harpa; Madsen, Henrik; Palsson, Olafur Petur

    2006-01-01

    the parameters, including the noise terms. The parameter estimation method is a maximum likelihood method (ML) where the likelihood function is evaluated using a Kalman filter technique. The ML method estimates the parameters in a prediction error settings, i.e. the sum of squared prediction error is minimized....... For a comparison the parameters are also estimated by an output error method, where the sum of squared simulation error is minimized. The former methodology is optimal for short-term prediction whereas the latter is optimal for simulations. Hence, depending on the purpose it is possible to select whether...... the parameter values are optimal for simulation or prediction. The data originates from Iceland and the model is designed for Icelandic conditions, including a snow routine for mountainous areas. The model demands only two input data series, precipitation and temperature and one output data series...

  4. Kalman filter data assimilation: targeting observations and parameter estimation.

    Science.gov (United States)

    Bellsky, Thomas; Kostelich, Eric J; Mahalov, Alex

    2014-06-01

    This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly located observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation.

  5. Beef quality parameters estimation using ultrasound and color images

    OpenAIRE

    Nunes, Jose Luis; Piquerez, Martín; Pujadas, Leonardo; Armstrong,Eileen; Alicia FERNÁNDEZ; Lecumberry, Federico

    2015-01-01

    Background Beef quality measurement is a complex task with high economic impact. There is high interest in obtaining an automatic quality parameters estimation in live cattle or post mortem. In this paper we set out to obtain beef quality estimates from the analysis of ultrasound (in vivo) and color images (post mortem), with the measurement of various parameters related to tenderness and amount of meat: rib eye area, percentage of intramuscular fat and backfat thickness or subcutaneous fat. ...

  6. Beef quality parameters estimation using ultrasound and color images

    OpenAIRE

    Nunes, Jose Luis; Piquerez, Mart?n; Pujadas, Leonardo; Armstrong,Eileen; Fern?ndez, Alicia; Lecumberry, Federico

    2015-01-01

    Background Beef quality measurement is a complex task with high economic impact. There is high interest in obtaining an automatic quality parameters estimation in live cattle or post mortem. In this paper we set out to obtain beef quality estimates from the analysis of ultrasound (in vivo) and color images (post mortem), with the measurement of various parameters related to tenderness and amount of meat: rib eye area, percentage of intramuscular fat and backfat thickness or subcutaneous fat. ...

  7. Semidefinite Programming for Approximate Maximum Likelihood Sinusoidal Parameter Estimation

    OpenAIRE

    2009-01-01

    We study the convex optimization approach for parameter estimation of several sinusoidal models, namely, single complex/real tone, multiple complex sinusoids, and single two-dimensional complex tone, in the presence of additive Gaussian noise. The major difficulty for optimally determining the parameters is that the corresponding maximum likelihood (ML) estimators involve finding the global minimum or maximum of multimodal cost functions because the frequencies are nonlinear in the observed s...

  8. An estimation method for direct maintenance cost of aircraft components based on particle swarm optimization with immunity algorithm

    Institute of Scientific and Technical Information of China (English)

    WU Jing-min; ZUO Hong-fu; CHEN Yong

    2005-01-01

    A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented.Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune selection mechanisms were used to prevent the undulate phenomenon during the evolutionary process. The algorithm was introduced through an application in the direct maintenance cost (DMC) estimation of aircraft components. Experiments results show that the algorithm can compute simply and run quickly. It resolves the combinatorial optimization problem of component DMC estimation with simple and available parameters. And it has higher accuracy than individual methods, such as PLS, BP and v-SVM, and also has better performance than other combined methods, such as basic PSO and BP neural network.

  9. Simultaneous optimal experimental design for in vitro binding parameter estimation.

    Science.gov (United States)

    Ernest, C Steven; Karlsson, Mats O; Hooker, Andrew C

    2013-10-01

    Simultaneous optimization of in vitro ligand binding studies using an optimal design software package that can incorporate multiple design variables through non-linear mixed effect models and provide a general optimized design regardless of the binding site capacity and relative binding rates for a two binding system. Experimental design optimization was employed with D- and ED-optimality using PopED 2.8 including commonly encountered factors during experimentation (residual error, between experiment variability and non-specific binding) for in vitro ligand binding experiments: association, dissociation, equilibrium and non-specific binding experiments. Moreover, a method for optimizing several design parameters (ligand concentrations, measurement times and total number of samples) was examined. With changes in relative binding site density and relative binding rates, different measurement times and ligand concentrations were needed to provide precise estimation of binding parameters. However, using optimized design variables, significant reductions in number of samples provided as good or better precision of the parameter estimates compared to the original extensive sampling design. Employing ED-optimality led to a general experimental design regardless of the relative binding site density and relative binding rates. Precision of the parameter estimates were as good as the extensive sampling design for most parameters and better for the poorly estimated parameters. Optimized designs for in vitro ligand binding studies provided robust parameter estimation while allowing more efficient and cost effective experimentation by reducing the measurement times and separate ligand concentrations required and in some cases, the total number of samples.

  10. A new method for parameter estimation in nonlinear dynamical equations

    Science.gov (United States)

    Wang, Liu; He, Wen-Ping; Liao, Le-Jian; Wan, Shi-Quan; He, Tao

    2015-01-01

    Parameter estimation is an important scientific problem in various fields such as chaos control, chaos synchronization and other mathematical models. In this paper, a new method for parameter estimation in nonlinear dynamical equations is proposed based on evolutionary modelling (EM). This will be achieved by utilizing the following characteristics of EM which includes self-organizing, adaptive and self-learning features which are inspired by biological natural selection, and mutation and genetic inheritance. The performance of the new method is demonstrated by using various numerical tests on the classic chaos model—Lorenz equation (Lorenz 1963). The results indicate that the new method can be used for fast and effective parameter estimation irrespective of whether partial parameters or all parameters are unknown in the Lorenz equation. Moreover, the new method has a good convergence rate. Noises are inevitable in observational data. The influence of observational noises on the performance of the presented method has been investigated. The results indicate that the strong noises, such as signal noise ratio (SNR) of 10 dB, have a larger influence on parameter estimation than the relatively weak noises. However, it is found that the precision of the parameter estimation remains acceptable for the relatively weak noises, e.g. SNR is 20 or 30 dB. It indicates that the presented method also has some anti-noise performance.

  11. Aircraft Aerodynamic Parameter Detection Using Micro Hot-Film Flow Sensor Array and BP Neural Network Identification

    Science.gov (United States)

    Que, Ruiyi; Zhu, Rong

    2012-01-01

    Air speed, angle of sideslip and angle of attack are fundamental aerodynamic parameters for controlling most aircraft. For small aircraft for which conventional detecting devices are too bulky and heavy to be utilized, a novel and practical methodology by which the aerodynamic parameters are inferred using a micro hot-film flow sensor array mounted on the surface of the wing is proposed. A back-propagation neural network is used to model the coupling relationship between readings of the sensor array and aerodynamic parameters. Two different sensor arrangements are tested in wind tunnel experiments and dependence of the system performance on the sensor arrangement is analyzed. PMID:23112638

  12. Accelerated maximum likelihood parameter estimation for stochastic biochemical systems

    Directory of Open Access Journals (Sweden)

    Daigle Bernie J

    2012-05-01

    Full Text Available Abstract Background A prerequisite for the mechanistic simulation of a biochemical system is detailed knowledge of its kinetic parameters. Despite recent experimental advances, the estimation of unknown parameter values from observed data is still a bottleneck for obtaining accurate simulation results. Many methods exist for parameter estimation in deterministic biochemical systems; methods for discrete stochastic systems are less well developed. Given the probabilistic nature of stochastic biochemical models, a natural approach is to choose parameter values that maximize the probability of the observed data with respect to the unknown parameters, a.k.a. the maximum likelihood parameter estimates (MLEs. MLE computation for all but the simplest models requires the simulation of many system trajectories that are consistent with experimental data. For models with unknown parameters, this presents a computational challenge, as the generation of consistent trajectories can be an extremely rare occurrence. Results We have developed Monte Carlo Expectation-Maximization with Modified Cross-Entropy Method (MCEM2: an accelerated method for calculating MLEs that combines advances in rare event simulation with a computationally efficient version of the Monte Carlo expectation-maximization (MCEM algorithm. Our method requires no prior knowledge regarding parameter values, and it automatically provides a multivariate parameter uncertainty estimate. We applied the method to five stochastic systems of increasing complexity, progressing from an analytically tractable pure-birth model to a computationally demanding model of yeast-polarization. Our results demonstrate that MCEM2 substantially accelerates MLE computation on all tested models when compared to a stand-alone version of MCEM. Additionally, we show how our method identifies parameter values for certain classes of models more accurately than two recently proposed computationally efficient methods

  13. A FAST PARAMETER ESTIMATION ALGORITHM FOR POLYPHASE CODED CW SIGNALS

    Institute of Scientific and Technical Information of China (English)

    Li Hong; Qin Yuliang; Wang Hongqiang; Li Yanpeng; Li Xiang

    2011-01-01

    A fast parameter estimation algorithm is discussed for a polyphase coded Continuous Waveform (CW) signal in Additive White Gaussian Noise (AWGN).The proposed estimator is based on the sum of the modulus square of the ambiguity function at the different Doppler shifts.An iterative refinement stage is proposed to avoid the effect of the spurious peaks that arise when the summation length of the estimator exceeds the subcode duration.The theoretical variance of the subcode rate estimate is derived.The Monte-Carlo simulation results show that the proposed estimator is highly accurate and effective at moderate Signal-to-Noise Ratio (SNR).

  14. Estimation of Parameters of the Beta-Extreme Value Distribution

    Directory of Open Access Journals (Sweden)

    Zafar Iqbal

    2008-09-01

    Full Text Available In this research paper The Beta Extreme Value Type (III distribution which is developed by Zafar and Aleem (2007 is considered and parameters are estimated by using moments of the Beta-Extreme Value (Type III Distribution when the parameters ‘m’ & ‘n’ are real and moments of the Beta-Extreme Value (Type III Distribution when the parameters ‘m��� & ‘n’ are integers and then a Comparison between rth moments about origin when parameters are ‘m’ & ‘n’ are real and when parameters are ‘m’ & ‘n’ are integers. At the end second method, method of Maximum Likelihood is used to estimate the unknown parameters of the Beta Extreme Value Type (III distribution.

  15. Estimation of shape model parameters for 3D surfaces

    DEFF Research Database (Denmark)

    Erbou, Søren Gylling Hemmingsen; Darkner, Sune; Fripp, Jurgen;

    2008-01-01

    Statistical shape models are widely used as a compact way of representing shape variation. Fitting a shape model to unseen data enables characterizing the data in terms of the model parameters. In this paper a Gauss-Newton optimization scheme is proposed to estimate shape model parameters of 3D s...

  16. Parameter Estimation for a Computable General Equilibrium Model

    DEFF Research Database (Denmark)

    Arndt, Channing; Robinson, Sherman; Tarp, Finn

    . Second, it permits incorporation of prior information on parameter values. Third, it can be applied in the absence of copious data. Finally, it supplies measures of the capacity of the model to reproduce the historical record and the statistical significance of parameter estimates. The method is applied...

  17. In-Flight Parameter Estimation for Multirotor Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    de Castro Davi Ferreira

    2016-01-01

    Full Text Available This paper proposes a method for in-flight parameter estimation for Multirotor Aerial Vehicles (MAV. This task is important because it provides parameters with better accuracy for the actual vehicle operation. In order to simulate a flight it is adopted a simulation environment Software-In-the-Loop (SIL.

  18. Parameter estimation of gravitational wave compact binary coalescences

    Science.gov (United States)

    Haster, Carl-Johan; LIGO Scientific Collaboration Collaboration

    2017-01-01

    The first detections of gravitational waves from coalescing binary black holes have allowed unprecedented inference on the astrophysical parameters of such binaries. Given recent updates in detector capabilities, gravitational wave model templates and data analysis techniques, in this talk I will describe the prospects of parameter estimation of compact binary coalescences during the second observation run of the LIGO-Virgo collaboration.

  19. Simultaneous estimation of parameters in the bivariate Emax model.

    Science.gov (United States)

    Magnusdottir, Bergrun T; Nyquist, Hans

    2015-12-10

    In this paper, we explore inference in multi-response, nonlinear models. By multi-response, we mean models with m > 1 response variables and accordingly m relations. Each parameter/explanatory variable may appear in one or more of the relations. We study a system estimation approach for simultaneous computation and inference of the model and (co)variance parameters. For illustration, we fit a bivariate Emax model to diabetes dose-response data. Further, the bivariate Emax model is used in a simulation study that compares the system estimation approach to equation-by-equation estimation. We conclude that overall, the system estimation approach performs better for the bivariate Emax model when there are dependencies among relations. The stronger the dependencies, the more we gain in precision by using system estimation rather than equation-by-equation estimation.

  20. Parameter Estimation for a Computable General Equilibrium Model

    DEFF Research Database (Denmark)

    Arndt, Channing; Robinson, Sherman; Tarp, Finn

    2002-01-01

    We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of non-linear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...

  1. Parameter estimation of hidden periodic model in random fields

    Institute of Scientific and Technical Information of China (English)

    何书元

    1999-01-01

    Two-dimensional hidden periodic model is an important model in random fields. The model is used in the field of two-dimensional signal processing, prediction and spectral analysis. A method of estimating the parameters for the model is designed. The strong consistency of the estimators is proved.

  2. Parameter Estimation for a Computable General Equilibrium Model

    DEFF Research Database (Denmark)

    Arndt, Channing; Robinson, Sherman; Tarp, Finn

    We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of nonlinear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...

  3. On the Nature of SEM Estimates of ARMA Parameters.

    Science.gov (United States)

    Hamaker, Ellen L.; Dolan, Conor V.; Molenaar, Peter C. M.

    2002-01-01

    Reexamined the nature of structural equation modeling (SEM) estimates of autoregressive moving average (ARMA) models, replicated the simulation experiments of P. Molenaar, and examined the behavior of the log-likelihood ratio test. Simulation studies indicate that estimates of ARMA parameters observed with SEM software are identical to those…

  4. Distribution Line Parameter Estimation Under Consideration of Measurement Tolerances

    DEFF Research Database (Denmark)

    Prostejovsky, Alexander; Gehrke, Oliver; Kosek, Anna Magdalena

    2016-01-01

    State estimation and control approaches in electric distribution grids rely on precise electric models that may be inaccurate. This work presents a novel method of estimating distribution line parameters using only root mean square voltage and power measurements under consideration of measurement...

  5. Bayesian parameter estimation for nonlinear modelling of biological pathways

    Directory of Open Access Journals (Sweden)

    Ghasemi Omid

    2011-12-01

    Full Text Available Abstract Background The availability of temporal measurements on biological experiments has significantly promoted research areas in systems biology. To gain insight into the interaction and regulation of biological systems, mathematical frameworks such as ordinary differential equations have been widely applied to model biological pathways and interpret the temporal data. Hill equations are the preferred formats to represent the reaction rate in differential equation frameworks, due to their simple structures and their capabilities for easy fitting to saturated experimental measurements. However, Hill equations are highly nonlinearly parameterized functions, and parameters in these functions cannot be measured easily. Additionally, because of its high nonlinearity, adaptive parameter estimation algorithms developed for linear parameterized differential equations cannot be applied. Therefore, parameter estimation in nonlinearly parameterized differential equation models for biological pathways is both challenging and rewarding. In this study, we propose a Bayesian parameter estimation algorithm to estimate parameters in nonlinear mathematical models for biological pathways using time series data. Results We used the Runge-Kutta method to transform differential equations to difference equations assuming a known structure of the differential equations. This transformation allowed us to generate predictions dependent on previous states and to apply a Bayesian approach, namely, the Markov chain Monte Carlo (MCMC method. We applied this approach to the biological pathways involved in the left ventricle (LV response to myocardial infarction (MI and verified our algorithm by estimating two parameters in a Hill equation embedded in the nonlinear model. We further evaluated our estimation performance with different parameter settings and signal to noise ratios. Our results demonstrated the effectiveness of the algorithm for both linearly and nonlinearly

  6. NEW DOCTORAL DEGREE Parameter estimation problem in the Weibull model

    OpenAIRE

    Marković, Darija

    2009-01-01

    In this dissertation we consider the problem of the existence of best parameters in the Weibull model, one of the most widely used statistical models in reliability theory and life data theory. Particular attention is given to a 3-parameter Weibull model. We have listed some of the many applications of this model. We have described some of the classical methods for estimating parameters of the Weibull model, two graphical methods (Weibull probability plot and hazard plot), and two analyt...

  7. Parameter Estimation and Experimental Design in Groundwater Modeling

    Institute of Scientific and Technical Information of China (English)

    SUN Ne-zheng

    2004-01-01

    This paper reviews the latest developments on parameter estimation and experimental design in the field of groundwater modeling. Special considerations are given when the structure of the identified parameter is complex and unknown. A new methodology for constructing useful groundwater models is described, which is based on the quantitative relationships among the complexity of model structure, the identifiability of parameter, the sufficiency of data, and the reliability of model application.

  8. Adaptive Unified Biased Estimators of Parameters in Linear Model

    Institute of Scientific and Technical Information of China (English)

    Hu Yang; Li-xing Zhu

    2004-01-01

    To tackle multi collinearity or ill-conditioned design matrices in linear models,adaptive biased estimators such as the time-honored Stein estimator,the ridge and the principal component estimators have been studied intensively.To study when a biased estimator uniformly outperforms the least squares estimator,some suficient conditions are proposed in the literature.In this paper,we propose a unified framework to formulate a class of adaptive biased estimators.This class includes all existing biased estimators and some new ones.A suficient condition for outperforming the least squares estimator is proposed.In terms of selecting parameters in the condition,we can obtain all double-type conditions in the literature.

  9. MPEG2 video parameter and no reference PSNR estimation

    DEFF Research Database (Denmark)

    Li, Huiying; Forchhammer, Søren

    2009-01-01

    MPEG coded video may be processed for quality assessment or postprocessed to reduce coding artifacts or transcoded. Utilizing information about the MPEG stream may be useful for these tasks. This paper deals with estimating MPEG parameter information from the decoded video stream without access t...... DCT coefficients, the PSNR is estimated from the decoded video without reference images. Tests on decoded fixed rate MPEG2 sequences demonstrate perfect detection rates and good performance of the PSNR estimation....

  10. Global parameter estimation methods for stochastic biochemical systems

    Directory of Open Access Journals (Sweden)

    Poovathingal Suresh

    2010-08-01

    Full Text Available Abstract Background The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as chemical master equation. As in other modelling frameworks, the accompanying rate constants are important for the end-applications like analyzing system properties (e.g. robustness or predicting the effects of genetic perturbations. Prior knowledge of kinetic constants is usually limited and the model identification routine typically includes parameter estimation from experimental data. Although the subject of parameter estimation is well-established for deterministic models, it is not yet routine for the chemical master equation. In addition, recent advances in measurement technology have made the quantification of genetic substrates possible to single molecular levels. Thus, the purpose of this work is to develop practical and effective methods for estimating kinetic model parameters in the chemical master equation and other stochastic models from single cell and cell population experimental data. Results Three parameter estimation methods are proposed based on the maximum likelihood and density function distance, including probability and cumulative density functions. Since stochastic models such as chemical master equations are typically solved using a Monte Carlo approach in which only a finite number of Monte Carlo realizations are computationally practical, specific considerations are given to account for the effect of finite sampling in the histogram binning of the state density functions. Applications to three practical case studies showed that while maximum likelihood method can effectively handle low replicate measurements, the density function distance methods, particularly the cumulative density function distance estimation, are more robust in estimating the parameters with consistently higher accuracy, even for systems showing multimodality. Conclusions The parameter

  11. Algorithms of optimum location of sensors for solidification parameters estimation

    Directory of Open Access Journals (Sweden)

    J. Mendakiewicz

    2010-10-01

    Full Text Available The algorithms of optimal sensor location for estimation of solidification parameters are discussed. These algorithms base on the Fisher Information Matrix and A-optimality or D-optimality criterion. Numerical examples of planning algorithms are presented and next foroptimal position of sensors the inverse problems connected with the identification of unknown parameters are solved. The examplespresented concern the simultaneous estimation of mould thermophysical parameters (volumetric specific heat and thermal conductivityand also the components of volumetric latent heat of cast iron.

  12. Estimation of the input parameters in the Feller neuronal model

    Science.gov (United States)

    Ditlevsen, Susanne; Lansky, Petr

    2006-06-01

    The stochastic Feller neuronal model is studied, and estimators of the model input parameters, depending on the firing regime of the process, are derived. Closed expressions for the first two moments of functionals of the first-passage time (FTP) through a constant boundary in the suprathreshold regime are derived, which are used to calculate moment estimators. In the subthreshold regime, the exponentiality of the FTP is utilized to characterize the input parameters. The methods are illustrated on simulated data. Finally, approximations of the first-passage-time moments are suggested, and biological interpretations and comparisons of the parameters in the Feller and the Ornstein-Uhlenbeck models are discussed.

  13. Estimating Illumination Parameters Using Spherical Harmonics Coefficients in Frequency Space

    Institute of Scientific and Technical Information of China (English)

    XIE Feng; TAO Linmi; XU Guangyou

    2007-01-01

    An algorithm is presented for estimating the direction and strength of point light with the strength of ambient illumination. Existing approaches evaluate these illumination parameters directly in the high dimensional image space, while we estimate the parameters in two steps:first by projecting the image to an orthogonal linear subspace based on spherical harmonic basis functions and then by calculating the parameters in the low dimensional subspace.The test results using the CMU PIE database and Yale Database B show the stability and effectiveness of the method.The resulting illumination information can be used to synthesize more realistic relighting images and to recognize objects under variable illumination.

  14. Maximum Likelihood Estimation of the Identification Parameters and Its Correction

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By taking the subsequence out of the input-output sequence of a system polluted by white noise, anindependent observation sequence and its probability density are obtained and then a maximum likelihood estimation of theidentification parameters is given. In order to decrease the asymptotic error, a corrector of maximum likelihood (CML)estimation with its recursive algorithm is given. It has been proved that the corrector has smaller asymptotic error thanthe least square methods. A simulation example shows that the corrector of maximum likelihood estimation is of higherapproximating precision to the true parameters than the least square methods.

  15. Parameter Estimation of the Extended Vasiček Model

    OpenAIRE

    Rujivan, Sanae

    2010-01-01

    In this paper, an estimate of the drift and diffusion parameters of the extended Vasiček model is presented. The estimate is based on the method of maximum likelihood. We derive a closed-form expansion for the transition (probability) density of the extended Vasiček process and use the expansion to construct an approximate log-likelihood function of a discretely sampled data of the process. Approximate maximum likelihood estimators (AMLEs) of the parameters are obtained by maximizing the appr...

  16. Dynamic Load Model using PSO-Based Parameter Estimation

    Science.gov (United States)

    Taoka, Hisao; Matsuki, Junya; Tomoda, Michiya; Hayashi, Yasuhiro; Yamagishi, Yoshio; Kanao, Norikazu

    This paper presents a new method for estimating unknown parameters of dynamic load model as a parallel composite of a constant impedance load and an induction motor behind a series constant reactance. An adequate dynamic load model is essential for evaluating power system stability, and this model can represent the behavior of actual load by using appropriate parameters. However, the problem of this model is that a lot of parameters are necessary and it is not easy to estimate a lot of unknown parameters. We propose an estimating method based on Particle Swarm Optimization (PSO) which is a non-linear optimization method by using the data of voltage, active power and reactive power measured at voltage sag.

  17. Parameter Estimation of Damped Compound Pendulum Using Bat Algorithm

    Directory of Open Access Journals (Sweden)

    Saad Mohd Sazli

    2016-01-01

    Full Text Available In this study, the parameter identification of the damped compound pendulum system is proposed using one of the most promising nature inspired algorithms which is Bat Algorithm (BA. The procedure used to achieve the parameter identification of the experimental system consists of input-output data collection, ARX model order selection and parameter estimation using bat algorithm (BA method. PRBS signal is used as an input signal to regulate the motor speed. Whereas, the output signal is taken from position sensor. Both, input and output data is used to estimate the parameter of the autoregressive with exogenous input (ARX model. The performance of the model is validated using mean squares error (MSE between the actual and predicted output responses of the models. Finally, comparative study is conducted between BA and the conventional estimation method (i.e. Least Square. Based on the results obtained, MSE produce from Bat Algorithm (BA is outperformed the Least Square (LS method.

  18. Iterative methods for distributed parameter estimation in parabolic PDE

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, C.R. [Montana State Univ., Bozeman, MT (United States); Wade, J.G. [Bowling Green State Univ., OH (United States)

    1994-12-31

    The goal of the work presented is the development of effective iterative techniques for large-scale inverse or parameter estimation problems. In this extended abstract, a detailed description of the mathematical framework in which the authors view these problem is presented, followed by an outline of the ideas and algorithms developed. Distributed parameter estimation problems often arise in mathematical modeling with partial differential equations. They can be viewed as inverse problems; the `forward problem` is that of using the fully specified model to predict the behavior of the system. The inverse or parameter estimation problem is: given the form of the model and some observed data from the system being modeled, determine the unknown parameters of the model. These problems are of great practical and mathematical interest, and the development of efficient computational algorithms is an active area of study.

  19. Robust Parameter and Signal Estimation in Induction Motors

    DEFF Research Database (Denmark)

    Børsting, H.

    in nonlinear systems, have been exposed. The main objectives of this project are: - analysis and application of theories and methods for robust estimation of parameters in a model structure, obtained from knowledge of the physics of the induction motor. - analysis and application of theories and methods......-time approximation. All methods and theories have been evaluated on the basis of experimental results obtained from measurements on a laboratory setup. Standard methods have been modified and combined to obtain usable solutions to the estimation problems. The major results of the work can be summarized as follows......: - identifiability has been treated in theory and practice in connection with parameter and signal estimation in induction motors. - a non recursive prediction error method has successfully been used to estimate physical related parameters in a continuous-time model of the induction motor. The speed of the rotor has...

  20. Tube-Load Model Parameter Estimation for Monitoring Arterial Hemodynamics

    Directory of Open Access Journals (Sweden)

    Guanqun eZhang

    2011-11-01

    Full Text Available A useful model of the arterial system is the uniform, lossless tube with parametric load. This tube-load model is able to account for wave propagation and reflection (unlike lumped-parameter models such as the Windkessel while being defined by only a few parameters (unlike comprehensive distributed-parameter models. As a result, the parameters may be readily estimated by accurate fitting of the model to available arterial pressure and flow waveforms so as to permit improved monitoring of arterial hemodynamics. In this paper, we review tube-load model parameter estimation techniques that have appeared in the literature for monitoring wave reflection, large artery compliance, pulse transit time, and central aortic pressure. We begin by motivating the use of the tube-load model for parameter estimation. We then describe the tube-load model, its assumptions and validity, and approaches for estimating its parameters. We next summarize the various techniques and their experimental results while highlighting their advantages over conventional techniques. We conclude the review by suggesting future research directions and describing potential applications.

  1. Tube-Load Model Parameter Estimation for Monitoring Arterial Hemodynamics

    Science.gov (United States)

    Zhang, Guanqun; Hahn, Jin-Oh; Mukkamala, Ramakrishna

    2011-01-01

    A useful model of the arterial system is the uniform, lossless tube with parametric load. This tube-load model is able to account for wave propagation and reflection (unlike lumped-parameter models such as the Windkessel) while being defined by only a few parameters (unlike comprehensive distributed-parameter models). As a result, the parameters may be readily estimated by accurate fitting of the model to available arterial pressure and flow waveforms so as to permit improved monitoring of arterial hemodynamics. In this paper, we review tube-load model parameter estimation techniques that have appeared in the literature for monitoring wave reflection, large artery compliance, pulse transit time, and central aortic pressure. We begin by motivating the use of the tube-load model for parameter estimation. We then describe the tube-load model, its assumptions and validity, and approaches for estimating its parameters. We next summarize the various techniques and their experimental results while highlighting their advantages over conventional techniques. We conclude the review by suggesting future research directions and describing potential applications. PMID:22053157

  2. A software for parameter estimation in dynamic models

    Directory of Open Access Journals (Sweden)

    M. Yuceer

    2008-12-01

    Full Text Available A common problem in dynamic systems is to determine parameters in an equation used to represent experimental data. The goal is to determine the values of model parameters that provide the best fit to measured data, generally based on some type of least squares or maximum likelihood criterion. In the most general case, this requires the solution of a nonlinear and frequently non-convex optimization problem. Some of the available software lack in generality, while others do not provide ease of use. A user-interactive parameter estimation software was needed for identifying kinetic parameters. In this work we developed an integration based optimization approach to provide a solution to such problems. For easy implementation of the technique, a parameter estimation software (PARES has been developed in MATLAB environment. When tested with extensive example problems from literature, the suggested approach is proven to provide good agreement between predicted and observed data within relatively less computing time and iterations.

  3. The Minimax Estimator of Stochastic Regression Coefficients and Parameters in the Class of All Estimators

    Institute of Scientific and Technical Information of China (English)

    Li Wen XU; Song Gui WANG

    2007-01-01

    In this paper, the authors address the problem of the minimax estimator of linear com-binations of stochastic regression coefficients and parameters in the general normal linear model with random effects. Under a quadratic loss function, the minimax property of linear estimators is inves- tigated. In the class of all estimators, the minimax estimator of estimable functions, which is unique with probability 1, is obtained under a multivariate normal distribution.

  4. Velocity-Aided Attitude Estimation for Helicopter Aircraft Using Microelectromechanical System Inertial-Measurement Units

    Directory of Open Access Journals (Sweden)

    Sang Cheol Lee

    2016-12-01

    Full Text Available This paper presents an algorithm for velocity-aided attitude estimation for helicopter aircraft using a microelectromechanical system inertial-measurement unit. In general, high- performance gyroscopes are used for estimating the attitude of a helicopter, but this type of sensor is very expensive. When designing a cost-effective attitude system, attitude can be estimated by fusing a low cost accelerometer and a gyro, but the disadvantage of this method is its relatively low accuracy. The accelerometer output includes a component that occurs primarily as the aircraft turns, as well as the gravitational acceleration. When estimating attitude, the accelerometer measurement terms other than gravitational ones can be considered as disturbances. Therefore, errors increase in accordance with the flight dynamics. The proposed algorithm is designed for using velocity as an aid for high accuracy at low cost. It effectively eliminates the disturbances of accelerometer measurements using the airspeed. The algorithm was verified using helicopter experimental data. The algorithm performance was confirmed through a comparison with an attitude estimate obtained from an attitude heading reference system based on a high accuracy optic gyro, which was employed as core attitude equipment in the helicopter.

  5. Development of a probabilistic safety assessment framework for an interim dry storage facility subjected to an aircraft crash using best-estimate structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Almomani, Belal; Jang, Dong Chan [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, Sang Hoon [Dept. of Mechanical and Automotive Engineering, Keimyung University, Daegu (Korea, Republic of); Kang, Hyun Gook [Dept. of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy (United States)

    2017-03-15

    Using a probabilistic safety assessment, a risk evaluation framework for an aircraft crash into an interim spent fuel storage facility is presented. Damage evaluation of a detailed generic cask model in a simplified building structure under an aircraft impact is discussed through a numerical structural analysis and an analytical fragility assessment. Sequences of the impact scenario are shown in a developed event tree, with uncertainties considered in the impact analysis and failure probabilities calculated. To evaluate the influence of parameters relevant to design safety, risks are estimated for three specification levels of cask and storage facility structures. The proposed assessment procedure includes the determination of the loading parameters, reference impact scenario, structural response analyses of facility walls, cask containment, and fuel assemblies, and a radiological consequence analysis with dose–risk estimation. The risk results for the proposed scenario in this study are expected to be small relative to those of design basis accidents for best-estimated conservative values. The importance of this framework is seen in its flexibility to evaluate the capability of the facility to withstand an aircraft impact and in its ability to anticipate potential realistic risks; the framework also provides insight into epistemic uncertainty in the available data and into the sensitivity of the design parameters for future research.

  6. Parameter estimation and forecasting for multiplicative log-normal cascades.

    Science.gov (United States)

    Leövey, Andrés E; Lux, Thomas

    2012-04-01

    We study the well-known multiplicative log-normal cascade process in which the multiplication of Gaussian and log normally distributed random variables yields time series with intermittent bursts of activity. Due to the nonstationarity of this process and the combinatorial nature of such a formalism, its parameters have been estimated mostly by fitting the numerical approximation of the associated non-Gaussian probability density function to empirical data, cf. Castaing et al. [Physica D 46, 177 (1990)]. More recently, alternative estimators based upon various moments have been proposed by Beck [Physica D 193, 195 (2004)] and Kiyono et al. [Phys. Rev. E 76, 041113 (2007)]. In this paper, we pursue this moment-based approach further and develop a more rigorous generalized method of moments (GMM) estimation procedure to cope with the documented difficulties of previous methodologies. We show that even under uncertainty about the actual number of cascade steps, our methodology yields very reliable results for the estimated intermittency parameter. Employing the Levinson-Durbin algorithm for best linear forecasts, we also show that estimated parameters can be used for forecasting the evolution of the turbulent flow. We compare forecasting results from the GMM and Kiyono et al.'s procedure via Monte Carlo simulations. We finally test the applicability of our approach by estimating the intermittency parameter and forecasting of volatility for a sample of financial data from stock and foreign exchange markets.

  7. Traveltime approximations and parameter estimation for orthorhombic media

    KAUST Repository

    Masmoudi, Nabil

    2016-05-30

    Building anisotropy models is necessary for seismic modeling and imaging. However, anisotropy estimation is challenging due to the trade-off between inhomogeneity and anisotropy. Luckily, we can estimate the anisotropy parameters Building anisotropy models is necessary for seismic modeling and imaging. However, anisotropy estimation is challenging due to the trade-off between inhomogeneity and anisotropy. Luckily, we can estimate the anisotropy parameters if we relate them analytically to traveltimes. Using perturbation theory, we have developed traveltime approximations for orthorhombic media as explicit functions of the anellipticity parameters η1, η2, and Δχ in inhomogeneous background media. The parameter Δχ is related to Tsvankin-Thomsen notation and ensures easier computation of traveltimes in the background model. Specifically, our expansion assumes an inhomogeneous ellipsoidal anisotropic background model, which can be obtained from well information and stacking velocity analysis. We have used the Shanks transform to enhance the accuracy of the formulas. A homogeneous medium simplification of the traveltime expansion provided a nonhyperbolic moveout description of the traveltime that was more accurate than other derived approximations. Moreover, the formulation provides a computationally efficient tool to solve the eikonal equation of an orthorhombic medium, without any constraints on the background model complexity. Although, the expansion is based on the factorized representation of the perturbation parameters, smooth variations of these parameters (represented as effective values) provides reasonable results. Thus, this formulation provides a mechanism to estimate the three effective parameters η1, η2, and Δχ. We have derived Dix-type formulas for orthorhombic medium to convert the effective parameters to their interval values.

  8. An Object-Oriented Computer Code for Aircraft Engine Weight Estimation

    Science.gov (United States)

    Tong, Michael T.; Naylor, Bret A.

    2009-01-01

    Reliable engine-weight estimation at the conceptual design stage is critical to the development of new aircraft engines. It helps to identify the best engine concept amongst several candidates. At NASA Glenn Research Center (GRC), the Weight Analysis of Turbine Engines (WATE) computer code, originally developed by Boeing Aircraft, has been used to estimate the engine weight of various conceptual engine designs. The code, written in FORTRAN, was originally developed for NASA in 1979. Since then, substantial improvements have been made to the code to improve the weight calculations for most of the engine components. Most recently, to improve the maintainability and extensibility of WATE, the FORTRAN code has been converted into an object-oriented version. The conversion was done within the NASA's NPSS (Numerical Propulsion System Simulation) framework. This enables WATE to interact seamlessly with the thermodynamic cycle model which provides component flow data such as airflows, temperatures, and pressures, etc., that are required for sizing the components and weight calculations. The tighter integration between the NPSS and WATE would greatly enhance system-level analysis and optimization capabilities. It also would facilitate the enhancement of the WATE code for next-generation aircraft and space propulsion systems. In this paper, the architecture of the object-oriented WATE code (or WATE++) is described. Both the FORTRAN and object-oriented versions of the code are employed to compute the dimensions and weight of a 300-passenger aircraft engine (GE90 class). Both versions of the code produce essentially identical results as should be the case.

  9. Adaptive distributed parameter and input estimation in linear parabolic PDEs

    KAUST Repository

    Mechhoud, Sarra

    2016-01-01

    In this paper, we discuss the on-line estimation of distributed source term, diffusion, and reaction coefficients of a linear parabolic partial differential equation using both distributed and interior-point measurements. First, new sufficient identifiability conditions of the input and the parameter simultaneous estimation are stated. Then, by means of Lyapunov-based design, an adaptive estimator is derived in the infinite-dimensional framework. It consists of a state observer and gradient-based parameter and input adaptation laws. The parameter convergence depends on the plant signal richness assumption, whereas the state convergence is established using a Lyapunov approach. The results of the paper are illustrated by simulation on tokamak plasma heat transport model using simulated data.

  10. Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model

    Science.gov (United States)

    Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami

    2017-06-01

    A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.

  11. Interval Estimations of the Two-Parameter Exponential Distribution

    Directory of Open Access Journals (Sweden)

    Lai Jiang

    2012-01-01

    Full Text Available In applied work, the two-parameter exponential distribution gives useful representations of many physical situations. Confidence interval for the scale parameter and predictive interval for a future independent observation have been studied by many, including Petropoulos (2011 and Lawless (1977, respectively. However, interval estimates for the threshold parameter have not been widely examined in statistical literature. The aim of this paper is to, first, obtain the exact significance function of the scale parameter by renormalizing the p∗-formula. Then the approximate Studentization method is applied to obtain the significance function of the threshold parameter. Finally, a predictive density function of the two-parameter exponential distribution is derived. A real-life data set is used to show the implementation of the method. Simulation studies are then carried out to illustrate the accuracy of the proposed methods.

  12. Unscented Kalman filter with parameter identifiability analysis for the estimation of multiple parameters in kinetic models

    Directory of Open Access Journals (Sweden)

    Baker Syed

    2011-01-01

    Full Text Available Abstract In systems biology, experimentally measured parameters are not always available, necessitating the use of computationally based parameter estimation. In order to rely on estimated parameters, it is critical to first determine which parameters can be estimated for a given model and measurement set. This is done with parameter identifiability analysis. A kinetic model of the sucrose accumulation in the sugar cane culm tissue developed by Rohwer et al. was taken as a test case model. What differentiates this approach is the integration of an orthogonal-based local identifiability method into the unscented Kalman filter (UKF, rather than using the more common observability-based method which has inherent limitations. It also introduces a variable step size based on the system uncertainty of the UKF during the sensitivity calculation. This method identified 10 out of 12 parameters as identifiable. These ten parameters were estimated using the UKF, which was run 97 times. Throughout the repetitions the UKF proved to be more consistent than the estimation algorithms used for comparison.

  13. Unscented Kalman filter with parameter identifiability analysis for the estimation of multiple parameters in kinetic models.

    Science.gov (United States)

    Baker, Syed Murtuza; Poskar, C Hart; Junker, Björn H

    2011-10-11

    In systems biology, experimentally measured parameters are not always available, necessitating the use of computationally based parameter estimation. In order to rely on estimated parameters, it is critical to first determine which parameters can be estimated for a given model and measurement set. This is done with parameter identifiability analysis. A kinetic model of the sucrose accumulation in the sugar cane culm tissue developed by Rohwer et al. was taken as a test case model. What differentiates this approach is the integration of an orthogonal-based local identifiability method into the unscented Kalman filter (UKF), rather than using the more common observability-based method which has inherent limitations. It also introduces a variable step size based on the system uncertainty of the UKF during the sensitivity calculation. This method identified 10 out of 12 parameters as identifiable. These ten parameters were estimated using the UKF, which was run 97 times. Throughout the repetitions the UKF proved to be more consistent than the estimation algorithms used for comparison.

  14. Parameter estimation and model selection in computational biology.

    Directory of Open Access Journals (Sweden)

    Gabriele Lillacci

    2010-03-01

    Full Text Available A central challenge in computational modeling of biological systems is the determination of the model parameters. Typically, only a fraction of the parameters (such as kinetic rate constants are experimentally measured, while the rest are often fitted. The fitting process is usually based on experimental time course measurements of observables, which are used to assign parameter values that minimize some measure of the error between these measurements and the corresponding model prediction. The measurements, which can come from immunoblotting assays, fluorescent markers, etc., tend to be very noisy and taken at a limited number of time points. In this work we present a new approach to the problem of parameter selection of biological models. We show how one can use a dynamic recursive estimator, known as extended Kalman filter, to arrive at estimates of the model parameters. The proposed method follows. First, we use a variation of the Kalman filter that is particularly well suited to biological applications to obtain a first guess for the unknown parameters. Secondly, we employ an a posteriori identifiability test to check the reliability of the estimates. Finally, we solve an optimization problem to refine the first guess in case it should not be accurate enough. The final estimates are guaranteed to be statistically consistent with the measurements. Furthermore, we show how the same tools can be used to discriminate among alternate models of the same biological process. We demonstrate these ideas by applying our methods to two examples, namely a model of the heat shock response in E. coli, and a model of a synthetic gene regulation system. The methods presented are quite general and may be applied to a wide class of biological systems where noisy measurements are used for parameter estimation or model selection.

  15. Parameter Estimation of Damped Compound Pendulum Differential Evolution Algorithm

    Directory of Open Access Journals (Sweden)

    Saad Mohd Sazli

    2016-01-01

    Full Text Available This paper present the parameter identification of damped compound pendulum using differential evolution algorithm. The procedure used to achieve the parameter identification of the experimental system consisted of input output data collection, ARX model order selection and parameter estimation using conventional method least square (LS and differential evolution (DE algorithm. PRBS signal is used to be input signal to regulate the motor speed. Whereas, the output signal is taken from position sensor. Both, input and output data is used to estimate the parameter of the ARX model. The residual error between the actual and predicted output responses of the models is validated using mean squares error (MSE. Analysis showed that, MSE value for LS is 0.0026 and MSE value for DE is 3.6601×10-5. Based results obtained, it was found that DE have lower MSE than the LS method.

  16. Towards predictive food process models: A protocol for parameter estimation.

    Science.gov (United States)

    Vilas, Carlos; Arias-Méndez, Ana; Garcia, Miriam R; Alonso, Antonio A; Balsa-Canto, E

    2016-05-31

    Mathematical models, in particular, physics-based models, are essential tools to food product and process design, optimization and control. The success of mathematical models relies on their predictive capabilities. However, describing physical, chemical and biological changes in food processing requires the values of some, typically unknown, parameters. Therefore, parameter estimation from experimental data is critical to achieving desired model predictive properties. This work takes a new look into the parameter estimation (or identification) problem in food process modeling. First, we examine common pitfalls such as lack of identifiability and multimodality. Second, we present the theoretical background of a parameter identification protocol intended to deal with those challenges. And, to finish, we illustrate the performance of the proposed protocol with an example related to the thermal processing of packaged foods.

  17. Estimation of distances to stars with stellar parameters from LAMOST

    CERN Document Server

    Carlin, Jeffrey L; Newberg, Heidi Jo; Beers, Timothy C; Chen, Li; Deng, Licai; Guhathakurta, Puragra; Hou, Jinliang; Hou, Yonghui; Lepine, Sebastien; Li, Guangwei; Luo, A-Li; Smith, Martin C; Wu, Yue; Yang, Ming; Yanny, Brian; Zhang, Haotong; Zheng, Zheng

    2015-01-01

    We present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star's absolute magnitude. This technique is tailored specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ~5-degree diameter "plate" that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and target selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show ...

  18. Parameter Estimation of Photovoltaic Models via Cuckoo Search

    Directory of Open Access Journals (Sweden)

    Jieming Ma

    2013-01-01

    Full Text Available Since conventional methods are incapable of estimating the parameters of Photovoltaic (PV models with high accuracy, bioinspired algorithms have attracted significant attention in the last decade. Cuckoo Search (CS is invented based on the inspiration of brood parasitic behavior of some cuckoo species in combination with the Lévy flight behavior. In this paper, a CS-based parameter estimation method is proposed to extract the parameters of single-diode models for commercial PV generators. Simulation results and experimental data show that the CS algorithm is capable of obtaining all the parameters with extremely high accuracy, depicted by a low Root-Mean-Squared-Error (RMSE value. The proposed method outperforms other algorithms applied in this study.

  19. Accurate parameter estimation for unbalanced three-phase system.

    Science.gov (United States)

    Chen, Yuan; So, Hing Cheung

    2014-01-01

    Smart grid is an intelligent power generation and control console in modern electricity networks, where the unbalanced three-phase power system is the commonly used model. Here, parameter estimation for this system is addressed. After converting the three-phase waveforms into a pair of orthogonal signals via the α β-transformation, the nonlinear least squares (NLS) estimator is developed for accurately finding the frequency, phase, and voltage parameters. The estimator is realized by the Newton-Raphson scheme, whose global convergence is studied in this paper. Computer simulations show that the mean square error performance of NLS method can attain the Cramér-Rao lower bound. Moreover, our proposal provides more accurate frequency estimation when compared with the complex least mean square (CLMS) and augmented CLMS.

  20. Parameter Estimation of the Extended Vasiček Model

    Directory of Open Access Journals (Sweden)

    Sanae RUJIVAN

    2010-01-01

    Full Text Available In this paper, an estimate of the drift and diffusion parameters of the extended Vasiček model is presented. The estimate is based on the method of maximum likelihood. We derive a closed-form expansion for the transition (probability density of the extended Vasiček process and use the expansion to construct an approximate log-likelihood function of a discretely sampled data of the process. Approximate maximum likelihood estimators (AMLEs of the parameters are obtained by maximizing the approximate log-likelihood function. The convergence of the AMLEs to the true maximum likelihood estimators is obtained by increasing the number of terms in the expansions with a small time step size.

  1. Accuracy of Parameter Estimation in Gibbs Sampling under the Two-Parameter Logistic Model.

    Science.gov (United States)

    Kim, Seock-Ho; Cohen, Allan S.

    The accuracy of Gibbs sampling, a Markov chain Monte Carlo procedure, was considered for estimation of item and ability parameters under the two-parameter logistic model. Memory test data were analyzed to illustrate the Gibbs sampling procedure. Simulated data sets were analyzed using Gibbs sampling and the marginal Bayesian method. The marginal…

  2. Parameter estimation of stable distribution based on zero - order statistics

    Science.gov (United States)

    Chen, Jian; Chen, Hong; Cai, Xiaoxia; Weng, Pengfei; Nie, Hao

    2017-08-01

    With the increasing complexity of the channel, there are many impulse noise signals in the real channel. The statistical properties of such processes are significantly deviated from the Gaussian distribution, and the Alpha stable distribution provides a very useful theoretical tool for this process. This paper focuses on the parameter estimation method of the Alpha stable distribution. First, the basic theory of Alpha stable distribution is introduced. Then, the concept of logarithmic moment and geometric power are proposed. Finally, the parameter estimation of Alpha stable distribution is realized based on zero order statistic (ZOS). This method has better toughness and precision.

  3. Estimation of octanol/water partition coefficients using LSER parameters

    Science.gov (United States)

    Luehrs, Dean C.; Hickey, James P.; Godbole, Kalpana A.; Rogers, Tony N.

    1998-01-01

    The logarithms of octanol/water partition coefficients, logKow, were regressed against the linear solvation energy relationship (LSER) parameters for a training set of 981 diverse organic chemicals. The standard deviation for logKow was 0.49. The regression equation was then used to estimate logKow for a test of 146 chemicals which included pesticides and other diverse polyfunctional compounds. Thus the octanol/water partition coefficient may be estimated by LSER parameters without elaborate software but only moderate accuracy should be expected.

  4. Parameter Estimation in Stochastic Differential Equations; An Overview

    DEFF Research Database (Denmark)

    Nielsen, Jan Nygaard; Madsen, Henrik; Young, P. C.

    2000-01-01

    This paper presents an overview of the progress of research on parameter estimation methods for stochastic differential equations (mostly in the sense of Ito calculus) over the period 1981-1999. These are considered both without measurement noise and with measurement noise, where the discretely...... observed stochastic differential equations are embedded in a continuous-discrete time state space model. Every attempts has been made to include results from other scientific disciplines. Maximum likelihood estimation of parameters in nonlinear stochastic differential equations is in general not possible...

  5. Estimation of regional pulmonary perfusion parameters from microfocal angiograms

    Science.gov (United States)

    Clough, Anne V.; Al-Tinawi, Amir; Linehan, John H.; Dawson, Christopher A.

    1995-05-01

    An important application of functional imaging is the estimation of regional blood flow and volume using residue detection of vascular indicators. An indicator-dilution model applicable to tissue regions distal from the inlet site was developed. Theoretical methods for determining regional blood flow, volume, and mean transit time parameters from time-absorbance curves arise from this model. The robustness of the parameter estimation methods was evaluated using a computer-simulated vessel network model. Flow through arterioles, networks of capillaries, and venules was simulated. Parameter identification and practical implementation issues were addressed. The shape of the inlet concentration curve and moderate amounts of random noise did not effect the ability of the method to recover accurate parameter estimates. The parameter estimates degraded in the presence of significant dispersion of the measured inlet concentration curve as it traveled through arteries upstream from the microvascular region. The methods were applied to image data obtained using microfocal x-ray angiography to study the pulmonary microcirculation. Time- absorbance curves were acquired from a small feeding artery, the surrounding microvasculature and a draining vein of an isolated dog lung as contrast material passed through the field-of-view. Changes in regional microvascular volume were determined from these curves.

  6. Parameter Estimation for Single Diode Models of Photovoltaic Modules

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Clifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photovoltaic and Distributed Systems Integration Dept.

    2015-03-01

    Many popular models for photovoltaic system performance employ a single diode model to compute the I - V curve for a module or string of modules at given irradiance and temperature conditions. A single diode model requires a number of parameters to be estimated from measured I - V curves. Many available parameter estimation methods use only short circuit, o pen circuit and maximum power points for a single I - V curve at standard test conditions together with temperature coefficients determined separately for individual cells. In contrast, module testing frequently records I - V curves over a wide range of irradi ance and temperature conditions which, when available , should also be used to parameterize the performance model. We present a parameter estimation method that makes use of a fu ll range of available I - V curves. We verify the accuracy of the method by recov ering known parameter values from simulated I - V curves . We validate the method by estimating model parameters for a module using outdoor test data and predicting the outdoor performance of the module.

  7. Parameter Estimation Technique of Nonlinear Prosthetic Hand System

    Directory of Open Access Journals (Sweden)

    M.H.Jali

    2016-10-01

    Full Text Available This paper illustrated the parameter estimation technique of motorized prosthetic hand system. Prosthetic hands have become importance device to help amputee to gain a normal functional hand. By integrating various types of actuators such as DC motor, hydraulic and pneumatic as well as mechanical part, a highly useful and functional prosthetic device can be produced. One of the first steps to develop a prosthetic device is to design a control system. Mathematical modeling is derived to ease the control design process later on. This paper explained the parameter estimation technique of a nonlinear dynamic modeling of the system using Lagrangian equation. The model of the system is derived by considering the energies of the finger when it is actuated by the DC motor. The parameter estimation technique is implemented using Simulink Design Optimization toolbox in MATLAB. All the parameters are optimized until it achieves a satisfactory output response. The results show that the output response of the system with parameter estimation value produces a better response compare to the default value

  8. Robust Nonlinear Regression in Enzyme Kinetic Parameters Estimation

    Directory of Open Access Journals (Sweden)

    Maja Marasović

    2017-01-01

    Full Text Available Accurate estimation of essential enzyme kinetic parameters, such as Km and Vmax, is very important in modern biology. To this date, linearization of kinetic equations is still widely established practice for determining these parameters in chemical and enzyme catalysis. Although simplicity of linear optimization is alluring, these methods have certain pitfalls due to which they more often then not result in misleading estimation of enzyme parameters. In order to obtain more accurate predictions of parameter values, the use of nonlinear least-squares fitting techniques is recommended. However, when there are outliers present in the data, these techniques become unreliable. This paper proposes the use of a robust nonlinear regression estimator based on modified Tukey’s biweight function that can provide more resilient results in the presence of outliers and/or influential observations. Real and synthetic kinetic data have been used to test our approach. Monte Carlo simulations are performed to illustrate the efficacy and the robustness of the biweight estimator in comparison with the standard linearization methods and the ordinary least-squares nonlinear regression. We then apply this method to experimental data for the tyrosinase enzyme (EC 1.14.18.1 extracted from Solanum tuberosum, Agaricus bisporus, and Pleurotus ostreatus. The results on both artificial and experimental data clearly show that the proposed robust estimator can be successfully employed to determine accurate values of Km and Vmax.

  9. Estimation of the parameters of ETAS models by Simulated Annealing

    OpenAIRE

    Lombardi, Anna Maria

    2015-01-01

    This paper proposes a new algorithm to estimate the maximum likelihood parameters of an Epidemic Type Aftershock Sequences (ETAS) model. It is based on Simulated Annealing, a versatile method that solves problems of global optimization and ensures convergence to a global optimum. The procedure is tested on both simulated and real catalogs. The main conclusion is that the method performs poorly as the size of the catalog decreases because the effect of the correlation of the ETAS parameters is...

  10. CADLIVE optimizer: web-based parameter estimation for dynamic models

    Directory of Open Access Journals (Sweden)

    Inoue Kentaro

    2012-08-01

    Full Text Available Abstract Computer simulation has been an important technique to capture the dynamics of biochemical networks. In most networks, however, few kinetic parameters have been measured in vivo because of experimental complexity. We develop a kinetic parameter estimation system, named the CADLIVE Optimizer, which comprises genetic algorithms-based solvers with a graphical user interface. This optimizer is integrated into the CADLIVE Dynamic Simulator to attain efficient simulation for dynamic models.

  11. Human ECG signal parameters estimation during controlled physical activity

    Science.gov (United States)

    Maciejewski, Marcin; Surtel, Wojciech; Dzida, Grzegorz

    2015-09-01

    ECG signal parameters are commonly used indicators of human health condition. In most cases the patient should remain stationary during the examination to decrease the influence of muscle artifacts. During physical activity, the noise level increases significantly. The ECG signals were acquired during controlled physical activity on a stationary bicycle and during rest. Afterwards, the signals were processed using a method based on Pan-Tompkins algorithms to estimate their parameters and to test the method.

  12. Iterative Smooth Variable Structure Filter for Parameter Estimation

    OpenAIRE

    Mohammad Al-Shabi; Saeid Habibi

    2011-01-01

    The smooth variable structure filter (SVSF) is a recently proposed predictor-corrector filter for state and parameter estimation. The SVSF is based on the sliding mode control concept. It defines a hyperplane in terms of the state trajectory and then applies a discontinuous corrective action that forces the estimate to go back and forth across that hyperplane. The SVSF is robust and stable to modeling uncertainties making it suitable for fault detection application. The discontinuous action o...

  13. Targeted estimation of nuisance parameters to obtain valid statistical inference.

    Science.gov (United States)

    van der Laan, Mark J

    2014-01-01

    In order to obtain concrete results, we focus on estimation of the treatment specific mean, controlling for all measured baseline covariates, based on observing independent and identically distributed copies of a random variable consisting of baseline covariates, a subsequently assigned binary treatment, and a final outcome. The statistical model only assumes possible restrictions on the conditional distribution of treatment, given the covariates, the so-called propensity score. Estimators of the treatment specific mean involve estimation of the propensity score and/or estimation of the conditional mean of the outcome, given the treatment and covariates. In order to make these estimators asymptotically unbiased at any data distribution in the statistical model, it is essential to use data-adaptive estimators of these nuisance parameters such as ensemble learning, and specifically super-learning. Because such estimators involve optimal trade-off of bias and variance w.r.t. the infinite dimensional nuisance parameter itself, they result in a sub-optimal bias/variance trade-off for the resulting real-valued estimator of the estimand. We demonstrate that additional targeting of the estimators of these nuisance parameters guarantees that this bias for the estimand is second order and thereby allows us to prove theorems that establish asymptotic linearity of the estimator of the treatment specific mean under regularity conditions. These insights result in novel targeted minimum loss-based estimators (TMLEs) that use ensemble learning with additional targeted bias reduction to construct estimators of the nuisance parameters. In particular, we construct collaborative TMLEs (C-TMLEs) with known influence curve allowing for statistical inference, even though these C-TMLEs involve variable selection for the propensity score based on a criterion that measures how effective the resulting fit of the propensity score is in removing bias for the estimand. As a particular special

  14. Parameter estimation and investigation of a bolted joint model

    Science.gov (United States)

    Shiryayev, O. V.; Page, S. M.; Pettit, C. L.; Slater, J. C.

    2007-11-01

    Mechanical joints are a primary source of variability in the dynamics of built-up structures. Physical phenomena in the joint are quite complex and therefore too impractical to model at the micro-scale. This motivates the development of lumped parameter joint models with discrete interfaces so that they can be easily implemented in finite element codes. Among the most important considerations in choosing a model for dynamically excited systems is its ability to model energy dissipation. This translates into the need for accurate and reliable methods to measure model parameters and estimate their inherent variability from experiments. The adjusted Iwan model was identified as a promising candidate for representing joint dynamics. Recent research focused on this model has exclusively employed impulse excitation in conjunction with neural networks to identify the model parameters. This paper presents an investigation of an alternative parameter estimation approach for the adjusted Iwan model, which employs data from oscillatory forcing. This approach is shown to produce parameter estimates with precision similar to the impulse excitation method for a range of model parameters.

  15. Bayesian estimation of parameters in a regional hydrological model

    Directory of Open Access Journals (Sweden)

    K. Engeland

    2002-01-01

    Full Text Available This study evaluates the applicability of the distributed, process-oriented Ecomag model for prediction of daily streamflow in ungauged basins. The Ecomag model is applied as a regional model to nine catchments in the NOPEX area, using Bayesian statistics to estimate the posterior distribution of the model parameters conditioned on the observed streamflow. The distribution is calculated by Markov Chain Monte Carlo (MCMC analysis. The Bayesian method requires formulation of a likelihood function for the parameters and three alternative formulations are used. The first is a subjectively chosen objective function that describes the goodness of fit between the simulated and observed streamflow, as defined in the GLUE framework. The second and third formulations are more statistically correct likelihood models that describe the simulation errors. The full statistical likelihood model describes the simulation errors as an AR(1 process, whereas the simple model excludes the auto-regressive part. The statistical parameters depend on the catchments and the hydrological processes and the statistical and the hydrological parameters are estimated simultaneously. The results show that the simple likelihood model gives the most robust parameter estimates. The simulation error may be explained to a large extent by the catchment characteristics and climatic conditions, so it is possible to transfer knowledge about them to ungauged catchments. The statistical models for the simulation errors indicate that structural errors in the model are more important than parameter uncertainties. Keywords: regional hydrological model, model uncertainty, Bayesian analysis, Markov Chain Monte Carlo analysis

  16. Bayesian parameter estimation in spectral quantitative photoacoustic tomography

    Science.gov (United States)

    Pulkkinen, Aki; Cox, Ben T.; Arridge, Simon R.; Kaipio, Jari P.; Tarvainen, Tanja

    2016-03-01

    Photoacoustic tomography (PAT) is an imaging technique combining strong contrast of optical imaging to high spatial resolution of ultrasound imaging. These strengths are achieved via photoacoustic effect, where a spatial absorption of light pulse is converted into a measurable propagating ultrasound wave. The method is seen as a potential tool for small animal imaging, pre-clinical investigations, study of blood vessels and vasculature, as well as for cancer imaging. The goal in PAT is to form an image of the absorbed optical energy density field via acoustic inverse problem approaches from the measured ultrasound data. Quantitative PAT (QPAT) proceeds from these images and forms quantitative estimates of the optical properties of the target. This optical inverse problem of QPAT is illposed. To alleviate the issue, spectral QPAT (SQPAT) utilizes PAT data formed at multiple optical wavelengths simultaneously with optical parameter models of tissue to form quantitative estimates of the parameters of interest. In this work, the inverse problem of SQPAT is investigated. Light propagation is modelled using the diffusion equation. Optical absorption is described with chromophore concentration weighted sum of known chromophore absorption spectra. Scattering is described by Mie scattering theory with an exponential power law. In the inverse problem, the spatially varying unknown parameters of interest are the chromophore concentrations, the Mie scattering parameters (power law factor and the exponent), and Gruneisen parameter. The inverse problem is approached with a Bayesian method. It is numerically demonstrated, that estimation of all parameters of interest is possible with the approach.

  17. Estimates of area-averaged turbulent energy fluxes in a convectively driven boundary layer using aircraft measurements

    Science.gov (United States)

    Scherf, A.; Roth, R.

    1996-12-01

    During the field campaign of EFEDA II several aircraft measurements were performed in order to evaluate area mean values of turbulent energy fluxes over a relatively flat terrain in a desertification threatened area in Spain. Since earlier field experiments indicated differences between airborne measurements and surface observations, we tried to close the gap by carefully analysing the turbulence measurements. In order to evaluate the influence of the temporal variation of the convective boundary layer, the rise of the inversion, derived from simultaneously performed radiosonde ascents, was taken into account. By estimating the linear approximated fields of the meteorological parameters, it was possible to calculate the mean values of these quantities as well as the temporal and spatial derivatives, which are necessary for the evaluation of the advective terms of the energy budget. In this way is possible to examine the terms of the conservation equations in a supplementary way.

  18. Revisiting Boltzmann learning: parameter estimation in Markov random fields

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Andersen, Lars Nonboe; Kjems, Ulrik

    1996-01-01

    This article presents a generalization of the Boltzmann machine that allows us to use the learning rule for a much wider class of maximum likelihood and maximum a posteriori problems, including both supervised and unsupervised learning. Furthermore, the approach allows us to discuss regularization...... and generalization in the context of Boltzmann machines. We provide an illustrative example concerning parameter estimation in an inhomogeneous Markov field. The regularized adaptation produces a parameter set that closely resembles the “teacher” parameters, hence, will produce segmentations that closely reproduce...

  19. Parameter identification and slip estimation of induction machine

    Science.gov (United States)

    Orman, Maciej; Orkisz, Michal; Pinto, Cajetan T.

    2011-05-01

    This paper presents a newly developed algorithm for induction machine rotor speed estimation and parameter detection. The proposed algorithm is based on spectrum analysis of the stator current. The main idea is to find the best fit of motor parameters and rotor slip with the group of characteristic frequencies which are always present in the current spectrum. Rotor speed and parameters such as pole pairs or number of rotor slots are the results of the presented algorithm. Numerical calculations show that the method yields very accurate results and can be an important part of machine monitoring systems.

  20. Parameter Estimation in Stochastic Grey-Box Models

    DEFF Research Database (Denmark)

    Kristensen, Niels Rode; Madsen, Henrik; Jørgensen, Sten Bay

    2004-01-01

    An efficient and flexible parameter estimation scheme for grey-box models in the sense of discretely, partially observed Ito stochastic differential equations with measurement noise is presented along with a corresponding software implementation. The estimation scheme is based on the extended...... Kalman filter and features maximum likelihood as well as maximum a posteriori estimation on multiple independent data sets, including irregularly sampled data sets and data sets with occasional outliers and missing observations. The software implementation is compared to an existing software tool...

  1. Low Complexity Parameter Estimation For Off-the-Grid Targets

    KAUST Repository

    Jardak, Seifallah

    2015-10-05

    In multiple-input multiple-output radar, to estimate the reflection coefficient, spatial location, and Doppler shift of a target, a derived cost function is usually evaluated and optimized over a grid of points. The performance of such algorithms is directly affected by the size of the grid: increasing the number of points will enhance the resolution of the algorithm but exponentially increase its complexity. In this work, to estimate the parameters of a target, a reduced complexity super resolution algorithm is proposed. For off-the-grid targets, it uses a low order two dimensional fast Fourier transform to determine a suboptimal solution and then an iterative algorithm to jointly estimate the spatial location and Doppler shift. Simulation results show that the mean square estimation error of the proposed estimators achieve the Cram\\'er-Rao lower bound. © 2015 IEEE.

  2. A methodology for computing nonlinear fracture parameters for a bulging crack in a pressurised aircraft fuselage

    Science.gov (United States)

    Shenoy, V. B.; Potyondy, D. O.; Atluri, S. N.

    1994-09-01

    A computational methodology for obtaining nonlinear fracture parameters which account for the effects of plasticity at the tips of a bulging crack in a pressurised aircraft fuselage is developed. The methodology involves a hierarchical three stage analysis (global, intermediate, and local) of the cracked fuselage, with the crack incorporated into the model at each stage. The global analysis is performed using a linear elastic shell finite element model in which the stiffeners are treated as beam elements. The geometrically nonlinear nature of the bulging phenomenon is emulated in the intermediate analysis using a geometrically nonlinear shell finite element model. The local analysis is a three-dimensional solid finite element model of the cracked skin using a hypoelastic-plastic rate formulation. Kinematic boundary conditions for each stage are obtained from the preceding stage in the hierarchy using a general mesh independent mechanism. The T *integral, which accounts for both large deformations and plasticity, is taken to be the fracture parameter characterising the severity of the conditions at the crack tip, and is evaluated from the local analysis using the Equivalent Domain Integral (EDI) method. The implementation of the EDI technique for finite deformations in shell space is also outlined. The methodology is applied to a number of example problems for which correction factors relating the nonlinear T * values to those obtained from a linear elastic stiffened shell analysis are computed. The issue of flapping is addressed by investigating the behaviour of the longitudinal stress parallel to the crack for various cases.

  3. Online vegetation parameter estimation using passive microwave remote sensing observations

    Science.gov (United States)

    In adaptive system identification the Kalman filter can be used to identify the coefficient of the observation operator of a linear system. Here the ensemble Kalman filter is tested for adaptive online estimation of the vegetation opacity parameter of a radiative transfer model. A state augmentatio...

  4. On Modal Parameter Estimates from Ambient Vibration Tests

    DEFF Research Database (Denmark)

    Agneni, A.; Brincker, Rune; Coppotelli, B.

    2004-01-01

    Modal parameter estimates from ambient vibration testing are turning into the preferred technique when one is interested in systems under actual loadings and operational conditions. Moreover, with this approach, expensive devices to excite the structure are not needed, since it can be adequately...

  5. Cubic spline approximation techniques for parameter estimation in distributed systems

    Science.gov (United States)

    Banks, H. T.; Crowley, J. M.; Kunisch, K.

    1983-01-01

    Approximation schemes employing cubic splines in the context of a linear semigroup framework are developed for both parabolic and hyperbolic second-order partial differential equation parameter estimation problems. Convergence results are established for problems with linear and nonlinear systems, and a summary of numerical experiments with the techniques proposed is given.

  6. Estimation of coal quality parameters using disjunctive kriging

    Energy Technology Data Exchange (ETDEWEB)

    Tercan, A.E. [Hacettepe University, Department of Mining Engineering, Beytepe (Turkey)

    1998-07-01

    Disjunctive kriging is a nonlinear estimation technique that allows the conditional probability that the value of coal quality parameter is greater than a cutoff value. The method can be used in management decision making to help control blending and make coal quality sampling. The use of disjunctive kriging is illustrated using the data from Kangal coal deposit. 7 refs.

  7. Synchronous Generator Model Parameter Estimation Based on Noisy Dynamic Waveforms

    Science.gov (United States)

    Berhausen, Sebastian; Paszek, Stefan

    2016-01-01

    In recent years, there have occurred system failures in many power systems all over the world. They have resulted in a lack of power supply to a large number of recipients. To minimize the risk of occurrence of power failures, it is necessary to perform multivariate investigations, including simulations, of power system operating conditions. To conduct reliable simulations, the current base of parameters of the models of generating units, containing the models of synchronous generators, is necessary. In the paper, there is presented a method for parameter estimation of a synchronous generator nonlinear model based on the analysis of selected transient waveforms caused by introducing a disturbance (in the form of a pseudorandom signal) in the generator voltage regulation channel. The parameter estimation was performed by minimizing the objective function defined as a mean square error for deviations between the measurement waveforms and the waveforms calculated based on the generator mathematical model. A hybrid algorithm was used for the minimization of the objective function. In the paper, there is described a filter system used for filtering the noisy measurement waveforms. The calculation results of the model of a 44 kW synchronous generator installed on a laboratory stand of the Institute of Electrical Engineering and Computer Science of the Silesian University of Technology are also given. The presented estimation method can be successfully applied to parameter estimation of different models of high-power synchronous generators operating in a power system.

  8. IRT parameter estimation with response times as collateral information

    NARCIS (Netherlands)

    Linden, W.J. van der; RKlein Entink, R.H.; Fox, J.-P.

    2010-01-01

    Hierarchical modeling of responses and response times on test items facilitates the use of response times as collateral information in the estimation of the response parameters. In addition to the regular information in the response data, two sources of collateral information are identified: (a) the

  9. Parameter Estimates in Differential Equation Models for Population Growth

    Science.gov (United States)

    Winkel, Brian J.

    2011-01-01

    We estimate the parameters present in several differential equation models of population growth, specifically logistic growth models and two-species competition models. We discuss student-evolved strategies and offer "Mathematica" code for a gradient search approach. We use historical (1930s) data from microbial studies of the Russian biologist,…

  10. A Sparse Bayesian Learning Algorithm With Dictionary Parameter Estimation

    DEFF Research Database (Denmark)

    Hansen, Thomas Lundgaard; Badiu, Mihai Alin; Fleury, Bernard Henri

    2014-01-01

    This paper concerns sparse decomposition of a noisy signal into atoms which are specified by unknown continuous-valued parameters. An example could be estimation of the model order, frequencies and amplitudes of a superposition of complex sinusoids. The common approach is to reduce the continuous...

  11. Visco-piezo-elastic parameter estimation in laminated plate structures

    DEFF Research Database (Denmark)

    Araujo, A. L.; Mota Soares, C. M.; Herskovits, J.;

    2009-01-01

    A parameter estimation technique is presented in this article, for identification of elastic, piezoelectric and viscoelastic properties of active laminated composite plates with surface-bonded piezoelectric patches. The inverse method presented uses experimental data in the form of a set of measu...

  12. Statistical estimation of service cracks and maintenance cost for aircraft structures

    Science.gov (United States)

    Yang, J.-N.

    1975-01-01

    A method is developed for the statistical estimation of the number of cracks to be repaired in service as well as the repair and the maintenance costs. The present approach accounts for the statistical distribution of the initial crack size, the statistical nature of the NDI technique used for detecting the crack, and the renewal process for the crack propagation of repaired cracks. The mean and the standard deviation of the cumulative number of cracks to be repaired are computed as a function of service time. The statistics of the costs of repair and maintenance, expressed in terms of the percentage of the cost of replacement, are estimated as a function of service time. The results of the present study provide relevant information for the decision of fleet management, the estimation of life cycle cost, and procurement specifications. The present study is essential to the design and cost optimization of aircraft structures.

  13. Cosmological parameter estimation with free-form primordial power spectrum

    CERN Document Server

    Hazra, Dhiraj Kumar; Souradeep, Tarun

    2013-01-01

    Constraints on the main cosmological parameters using CMB or large scale structure data are usually based on power-law assumption of the primordial power spectrum (PPS). However, in the absence of a preferred model for the early universe, this raises a concern that current cosmological parameter estimates are strongly prejudiced by the assumed power-law form of PPS. In this paper, for the first time, we perform cosmological parameter estimation allowing the free form of the primordial spectrum. This is in fact the most general approach to estimate cosmological parameters without assuming any particular form for the primordial spectrum. We use direct reconstruction of the PPS for any point in the cosmological parameter space using recently modified Richardson-Lucy algorithm however other alternative reconstruction methods could be used for this purpose as well. We use WMAP 9 year data in our analysis considering CMB lensing effect and we report, for the first time, that the flat spatial universe with no cosmol...

  14. Effect of noncircularity of experimental beam on CMB parameter estimation

    Science.gov (United States)

    Das, Santanu; Mitra, Sanjit; Tabitha Paulson, Sonu

    2015-03-01

    Measurement of Cosmic Microwave Background (CMB) anisotropies has been playing a lead role in precision cosmology by providing some of the tightest constrains on cosmological models and parameters. However, precision can only be meaningful when all major systematic effects are taken into account. Non-circular beams in CMB experiments can cause large systematic deviation in the angular power spectrum, not only by modifying the measurement at a given multipole, but also introducing coupling between different multipoles through a deterministic bias matrix. Here we add a mechanism for emulating the effect of a full bias matrix to the PLANCK likelihood code through the parameter estimation code SCoPE. We show that if the angular power spectrum was measured with a non-circular beam, the assumption of circular Gaussian beam or considering only the diagonal part of the bias matrix can lead to huge error in parameter estimation. We demonstrate that, at least for elliptical Gaussian beams, use of scalar beam window functions obtained via Monte Carlo simulations starting from a fiducial spectrum, as implemented in PLANCK analyses for example, leads to only few percent of sigma deviation of the best-fit parameters. However, we notice more significant differences in the posterior distributions for some of the parameters, which would in turn lead to incorrect errorbars. These differences can be reduced, so that the errorbars match within few percent, by adding an iterative reanalysis step, where the beam window function would be recomputed using the best-fit spectrum estimated in the first step.

  15. Tsunami Prediction and Earthquake Parameters Estimation in the Red Sea

    KAUST Repository

    Sawlan, Zaid A

    2012-12-01

    Tsunami concerns have increased in the world after the 2004 Indian Ocean tsunami and the 2011 Tohoku tsunami. Consequently, tsunami models have been developed rapidly in the last few years. One of the advanced tsunami models is the GeoClaw tsunami model introduced by LeVeque (2011). This model is adaptive and consistent. Because of different sources of uncertainties in the model, observations are needed to improve model prediction through a data assimilation framework. Model inputs are earthquake parameters and topography. This thesis introduces a real-time tsunami forecasting method that combines tsunami model with observations using a hybrid ensemble Kalman filter and ensemble Kalman smoother. The filter is used for state prediction while the smoother operates smoothing to estimate the earthquake parameters. This method reduces the error produced by uncertain inputs. In addition, state-parameter EnKF is implemented to estimate earthquake parameters. Although number of observations is small, estimated parameters generates a better tsunami prediction than the model. Methods and results of prediction experiments in the Red Sea are presented and the prospect of developing an operational tsunami prediction system in the Red Sea is discussed.

  16. Estimation of rice biophysical parameters using multitemporal RADARSAT-2 images

    Science.gov (United States)

    Li, S.; Ni, P.; Cui, G.; He, P.; Liu, H.; Li, L.; Liang, Z.

    2016-04-01

    Compared with optical sensors, synthetic aperture radar (SAR) has the capability of acquiring images in all-weather conditions. Thus, SAR images are suitable for using in rice growth regions that are characterized by frequent cloud cover and rain. The objective of this paper was to evaluate the probability of rice biophysical parameters estimation using multitemporal RADARSAT-2 images, and to develop the estimation models. Three RADARSTA-2 images were acquired during the rice critical growth stages in 2014 near Meishan, Sichuan province, Southwest China. Leaf area index (LAI), the fraction of photosynthetically active radiation (FPAR), height, biomass and canopy water content (WC) were observed at 30 experimental plots over 5 periods. The relationship between RADARSAT-2 backscattering coefficients (σ 0) or their ratios and rice biophysical parameters were analysed. These biophysical parameters were significantly and consistently correlated with the VV and VH σ 0 ratio (σ 0 VV/ σ 0 VH) throughout all growth stages. The regression model were developed between biophysical parameters and σ 0 VV/ σ 0 VH. The results suggest that the RADARSAT-2 data has great potential capability for the rice biophysical parameters estimation and the timely rice growth monitoring.

  17. PARAMETER ESTIMATION METHODOLOGY FOR NONLINEAR SYSTEMS: APPLICATION TO INDUCTION MOTOR

    Institute of Scientific and Technical Information of China (English)

    G.KENNE; F.FLORET; H.NKWAWO; F.LAMNABHI-LAGARRIGUE

    2005-01-01

    This paper deals with on-line state and parameter estimation of a reasonably large class of nonlinear continuous-time systems using a step-by-step sliding mode observer approach. The method proposed can also be used for adaptation to parameters that vary with time. The other interesting feature of the method is that it is easily implementable in real-time. The efficiency of this technique is demonstrated via the on-line estimation of the electrical parameters and rotor flux of an induction motor. This application is based on the standard model of the induction motor expressed in rotor coordinates with the stator current and voltage as well as the rotor speed assumed to be measurable.Real-time implementation results are then reported and the ability of the algorithm to rapidly estimate the motor parameters is demonstrated. These results show the robustness of this approach with respect to measurement noise, discretization effects, parameter uncertainties and modeling inaccuracies.Comparisons between the results obtained and those of the classical recursive least square algorithm are also presented. The real-time implementation results show that the proposed algorithm gives better performance than the recursive least square method in terms of the convergence rate and the robustness with respect to measurement noise.

  18. Estimation of parameter sensitivities for stochastic reaction networks

    KAUST Repository

    Gupta, Ankit

    2016-01-07

    Quantification of the effects of parameter uncertainty is an important and challenging problem in Systems Biology. We consider this problem in the context of stochastic models of biochemical reaction networks where the dynamics is described as a continuous-time Markov chain whose states represent the molecular counts of various species. For such models, effects of parameter uncertainty are often quantified by estimating the infinitesimal sensitivities of some observables with respect to model parameters. The aim of this talk is to present a holistic approach towards this problem of estimating parameter sensitivities for stochastic reaction networks. Our approach is based on a generic formula which allows us to construct efficient estimators for parameter sensitivity using simulations of the underlying model. We will discuss how novel simulation techniques, such as tau-leaping approximations, multi-level methods etc. can be easily integrated with our approach and how one can deal with stiff reaction networks where reactions span multiple time-scales. We will demonstrate the efficiency and applicability of our approach using many examples from the biological literature.

  19. Hybrid fault diagnosis of nonlinear systems using neural parameter estimators.

    Science.gov (United States)

    Sobhani-Tehrani, E; Talebi, H A; Khorasani, K

    2014-02-01

    This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems taking advantage of both the system's mathematical model and the adaptive nonlinear approximation capability of computational intelligence techniques. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPEs) associated with a set of single-parameter fault models. The NPEs continuously estimate unknown fault parameters (FPs) that are indicators of faults in the system. Two NPE structures, series-parallel and parallel, are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. In contrast, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the two NPEs that originally assumes full state measurements for systems that have only partial state measurements. The proposed FTO is a neural state estimator that can estimate unmeasured states even in the presence of faults. The estimated and the measured states then comprise the inputs to the two proposed FDII schemes. Simulation results for FDII of reaction wheels of a three-axis stabilized satellite in the presence of disturbances and noise demonstrate the effectiveness of the proposed FDII solutions under partial state measurements.

  20. Nonlinear Parameter Estimation in Microbiological Degradation Systems and Statistic Test for Common Estimation

    DEFF Research Database (Denmark)

    Sommer, Helle Mølgaard; Holst, Helle; Spliid, Henrik;

    1995-01-01

    and the growth of the biomass are described by the Monod model consisting of two nonlinear coupled first-order differential equations. The objective of this study was to estimate the kinetic parameters in the Monod model and to test whether the parameters from the three identical experiments have the same values....... Estimation of the parameters was obtained using an iterative maximum likelihood method and the test used was an approximative likelihood ratio test. The test showed that the three sets of parameters were identical only on a 4% alpha level....

  1. Estimating Arrhenius parameters using temperature programmed molecular dynamics

    Science.gov (United States)

    Imandi, Venkataramana; Chatterjee, Abhijit

    2016-07-01

    Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight various aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times.

  2. Power Network Parameter Estimation Method Based on Data Mining Technology

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qi-ping; WANG Cheng-min; HOU Zhi-fian

    2008-01-01

    The parameter values which actually change with the circumstances, weather and load level etc.produce great effect to the result of state estimation. A new parameter estimation method based on data mining technology was proposed. The clustering method was used to classify the historical data in supervisory control and data acquisition (SCADA) database as several types. The data processing technology was impliedto treat the isolated point, missing data and yawp data in samples for classified groups. The measurement data which belong to each classification were introduced to the linear regression equation in order to gain the regression coefficient and actual parameters by the least square method. A practical system demonstrates the high correctness, reliability and strong practicability of the proposed method.

  3. Estimation of Soft Tissue Mechanical Parameters from Robotic Manipulation Data.

    Science.gov (United States)

    Boonvisut, Pasu; Cavuşoğlu, M Cenk

    2013-10-01

    Robotic motion planning algorithms used for task automation in robotic surgical systems rely on availability of accurate models of target soft tissue's deformation. Relying on generic tissue parameters in constructing the tissue deformation models is problematic because, biological tissues are known to have very large (inter- and intra-subject) variability. A priori mechanical characterization (e.g., uniaxial bench test) of the target tissues before a surgical procedure is also not usually practical. In this paper, a method for estimating mechanical parameters of soft tissue from sensory data collected during robotic surgical manipulation is presented. The method uses force data collected from a multiaxial force sensor mounted on the robotic manipulator, and tissue deformation data collected from a stereo camera system. The tissue parameters are then estimated using an inverse finite element method. The effects of measurement and modeling uncertainties on the proposed method are analyzed in simulation. The results of experimental evaluation of the method are also presented.

  4. Estimating Arrhenius parameters using temperature programmed molecular dynamics.

    Science.gov (United States)

    Imandi, Venkataramana; Chatterjee, Abhijit

    2016-07-21

    Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight various aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times.

  5. Prediction and simulation errors in parameter estimation for nonlinear systems

    Science.gov (United States)

    Aguirre, Luis A.; Barbosa, Bruno H. G.; Braga, Antônio P.

    2010-11-01

    This article compares the pros and cons of using prediction error and simulation error to define cost functions for parameter estimation in the context of nonlinear system identification. To avoid being influenced by estimators of the least squares family (e.g. prediction error methods), and in order to be able to solve non-convex optimisation problems (e.g. minimisation of some norm of the free-run simulation error), evolutionary algorithms were used. Simulated examples which include polynomial, rational and neural network models are discussed. Our results—obtained using different model classes—show that, in general the use of simulation error is preferable to prediction error. An interesting exception to this rule seems to be the equation error case when the model structure includes the true model. In the case of error-in-variables, although parameter estimation is biased in both cases, the algorithm based on simulation error is more robust.

  6. Parameter estimation and reliable fault detection of electric motors

    Institute of Scientific and Technical Information of China (English)

    Dusan PROGOVAC; Le Yi WANG; George YIN

    2014-01-01

    Accurate model identification and fault detection are necessary for reliable motor control. Motor-characterizing parameters experience substantial changes due to aging, motor operating conditions, and faults. Consequently, motor parameters must be estimated accurately and reliably during operation. Based on enhanced model structures of electric motors that accommodate both normal and faulty modes, this paper introduces bias-corrected least-squares (LS) estimation algorithms that incorporate functions for correcting estimation bias, forgetting factors for capturing sudden faults, and recursive structures for efficient real-time implementation. Permanent magnet motors are used as a benchmark type for concrete algorithm development and evaluation. Algorithms are presented, their properties are established, and their accuracy and robustness are evaluated by simulation case studies under both normal operations and inter-turn winding faults. Implementation issues from different motor control schemes are also discussed.

  7. Semidefinite Programming for Approximate Maximum Likelihood Sinusoidal Parameter Estimation

    Directory of Open Access Journals (Sweden)

    Kenneth W. K. Lui

    2009-01-01

    Full Text Available We study the convex optimization approach for parameter estimation of several sinusoidal models, namely, single complex/real tone, multiple complex sinusoids, and single two-dimensional complex tone, in the presence of additive Gaussian noise. The major difficulty for optimally determining the parameters is that the corresponding maximum likelihood (ML estimators involve finding the global minimum or maximum of multimodal cost functions because the frequencies are nonlinear in the observed signals. By relaxing the nonconvex ML formulations using semidefinite programs, high-fidelity approximate solutions are obtained in a globally optimum fashion. Computer simulations are included to contrast the estimation performance of the proposed semi-definite relaxation methods with the iterative quadratic maximum likelihood technique as well as Cramér-Rao lower bound.

  8. Semidefinite Programming for Approximate Maximum Likelihood Sinusoidal Parameter Estimation

    Science.gov (United States)

    Lui, Kenneth W. K.; So, H. C.

    2009-12-01

    We study the convex optimization approach for parameter estimation of several sinusoidal models, namely, single complex/real tone, multiple complex sinusoids, and single two-dimensional complex tone, in the presence of additive Gaussian noise. The major difficulty for optimally determining the parameters is that the corresponding maximum likelihood (ML) estimators involve finding the global minimum or maximum of multimodal cost functions because the frequencies are nonlinear in the observed signals. By relaxing the nonconvex ML formulations using semidefinite programs, high-fidelity approximate solutions are obtained in a globally optimum fashion. Computer simulations are included to contrast the estimation performance of the proposed semi-definite relaxation methods with the iterative quadratic maximum likelihood technique as well as Cramér-Rao lower bound.

  9. Comparison of Parameter Estimation Methods for Transformer Weibull Lifetime Modelling

    Institute of Scientific and Technical Information of China (English)

    ZHOU Dan; LI Chengrong; WANG Zhongdong

    2013-01-01

    Two-parameter Weibull distribution is the most widely adopted lifetime model for power transformers.An appropriate parameter estimation method is essential to guarantee the accuracy of a derived Weibull lifetime model.Six popular parameter estimation methods (i.e.the maximum likelihood estimation method,two median rank regression methods including the one regressing X on Y and the other one regressing Y on X,the Kaplan-Meier method,the method based on cumulative hazard plot,and the Li's method) are reviewed and compared in order to find the optimal one that suits transformer's Weibull lifetime modelling.The comparison took several different scenarios into consideration:10 000 sets of lifetime data,each of which had a sampling size of 40 ~ 1 000 and a censoring rate of 90%,were obtained by Monte-Carlo simulations for each scienario.Scale and shape parameters of Weibull distribution estimated by the six methods,as well as their mean value,median value and 90% confidence band are obtained.The cross comparison of these results reveals that,among the six methods,the maximum likelihood method is the best one,since it could provide the most accurate Weibull parameters,i.e.parameters having the smallest bias in both mean and median values,as well as the shortest length of the 90% confidence band.The maximum likelihood method is therefore recommended to be used over the other methods in transformer Weibull lifetime modelling.

  10. Estimating model parameters in nonautonomous chaotic systems using synchronization

    Science.gov (United States)

    Yang, Xiaoli; Xu, Wei; Sun, Zhongkui

    2007-05-01

    In this Letter, a technique is addressed for estimating unknown model parameters of multivariate, in particular, nonautonomous chaotic systems from time series of state variables. This technique uses an adaptive strategy for tracking unknown parameters in addition to a linear feedback coupling for synchronizing systems, and then some general conditions, by means of the periodic version of the LaSalle invariance principle for differential equations, are analytically derived to ensure precise evaluation of unknown parameters and identical synchronization between the concerned experimental system and its corresponding receiver one. Exemplifies are presented by employing a parametrically excited 4D new oscillator and an additionally excited Ueda oscillator. The results of computer simulations reveal that the technique not only can quickly track the desired parameter values but also can rapidly respond to changes in operating parameters. In addition, the technique can be favorably robust against the effect of noise when the experimental system is corrupted by bounded disturbance and the normalized absolute error of parameter estimation grows almost linearly with the cutoff value of noise strength in simulation.

  11. Estimating model parameters in nonautonomous chaotic systems using synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoli [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)]. E-mail: yangxl205@mail.nwpu.edu.cn; Xu, Wei [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); Sun, Zhongkui [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2007-05-07

    In this Letter, a technique is addressed for estimating unknown model parameters of multivariate, in particular, nonautonomous chaotic systems from time series of state variables. This technique uses an adaptive strategy for tracking unknown parameters in addition to a linear feedback coupling for synchronizing systems, and then some general conditions, by means of the periodic version of the LaSalle invariance principle for differential equations, are analytically derived to ensure precise evaluation of unknown parameters and identical synchronization between the concerned experimental system and its corresponding receiver one. Exemplifies are presented by employing a parametrically excited 4D new oscillator and an additionally excited Ueda oscillator. The results of computer simulations reveal that the technique not only can quickly track the desired parameter values but also can rapidly respond to changes in operating parameters. In addition, the technique can be favorably robust against the effect of noise when the experimental system is corrupted by bounded disturbance and the normalized absolute error of parameter estimation grows almost linearly with the cutoff value of noise strength in simulation.

  12. Influence of measurement errors and estimated parameters on combustion diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Payri, F.; Molina, S.; Martin, J. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n. 46022 Valencia (Spain); Armas, O. [Departamento de Mecanica Aplicada e Ingenieria de proyectos, Universidad de Castilla-La Mancha. Av. Camilo Jose Cela s/n 13071,Ciudad Real (Spain)

    2006-02-01

    Thermodynamic diagnosis models are valuable tools for the study of Diesel combustion. Inputs required by such models comprise measured mean and instantaneous variables, together with suitable values for adjustable parameters used in different submodels. In the case of measured variables, one may estimate the uncertainty associated with measurement errors; however, the influence of errors in model parameter estimation may not be so easily established on an experimental basis. In this paper, a simulated pressure cycle has been used along with known input parameters, so that any uncertainty in the inputs is avoided. Then, the influence of errors in measured variables and geometric and heat transmission parameters on the results of a diagnosis combustion model for direct injection diesel engines have been studied. This procedure allowed to establish the relative importance of these parameters and to set limits to the maximal errors of the model, accounting for both the maximal expected errors in the input parameters and the sensitivity of the model to those errors. (author)

  13. Summary of the DREAM8 Parameter Estimation Challenge: Toward Parameter Identification for Whole-Cell Models.

    Directory of Open Access Journals (Sweden)

    Jonathan R Karr

    2015-05-01

    Full Text Available Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model's structure and in silico "experimental" data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation.

  14. Multi-parameter estimating photometric redshifts with artificial neural networks

    CERN Document Server

    Li, L; Zhao, Y; Yang, D; Li, Lili; Zhang, Yanxia; Zhao, Yongheng; Yang, Dawei

    2006-01-01

    We calculate photometric redshifts from the Sloan Digital Sky Survey Data Release 2 Galaxy Sample using artificial neural networks (ANNs). Different input patterns based on various parameters (e.g. magnitude, color index, flux information) are explored and their performances for redshift prediction are compared. For ANN technique, any parameter may be easily incorporated as input, but our results indicate that using reddening magnitude produces photometric redshift accuracies often better than the Petrosian magnitude or model magnitude. Similarly, the model magnitude is also superior to Petrosian magnitude. In addition, ANNs also show better performance when the more effective parameters increase in the training set. Finally, the method is tested on a sample of 79, 346 galaxies from the SDSS DR2. When using 19 parameters based on the reddening magnitude, the rms error in redshift estimation is sigma(z)=0.020184. The ANN is highly competitive tool when compared with traditional template-fitting methods where a...

  15. Cosmological parameter estimation using Particle Swarm Optimization (PSO)

    CERN Document Server

    Prasad, Jayanti

    2011-01-01

    Obtaining the set of cosmological parameters consistent with observational data is an important exercise in current cosmological research. It involves finding the global maximum of the likelihood function in the multi-dimensional parameter space. Currently sampling based methods, which are in general stochastic in nature, like Markov-Chain Monte Carlo(MCMC), are being commonly used for parameter estimation. The beauty of stochastic methods is that the computational cost grows, at the most, linearly in place of exponentially (as in grid based approaches) with the dimensionality of the search space. MCMC methods sample the full joint probability distribution (posterior) from which one and two dimensional probability distributions, best fit (average) values of parameters and then error bars can be computed. In the present work we demonstrate the application of another stochastic method, named Particle Swarm Optimization (PSO), that is widely used in the field of engineering and artificial intelligence, for cosmo...

  16. Adaptive Estimation of Intravascular Shear Rate Based on Parameter Optimization

    Science.gov (United States)

    Nitta, Naotaka; Takeda, Naoto

    2008-05-01

    The relationships between the intravascular wall shear stress, controlled by flow dynamics, and the progress of arteriosclerosis plaque have been clarified by various studies. Since the shear stress is determined by the viscosity coefficient and shear rate, both factors must be estimated accurately. In this paper, an adaptive method for improving the accuracy of quantitative shear rate estimation was investigated. First, the parameter dependence of the estimated shear rate was investigated in terms of the differential window width and the number of averaged velocity profiles based on simulation and experimental data, and then the shear rate calculation was optimized. The optimized result revealed that the proposed adaptive method of shear rate estimation was effective for improving the accuracy of shear rate calculation.

  17. Consistent Parameter and Transfer Function Estimation using Context Free Grammars

    Science.gov (United States)

    Klotz, Daniel; Herrnegger, Mathew; Schulz, Karsten

    2017-04-01

    This contribution presents a method for the inference of transfer functions for rainfall-runoff models. Here, transfer functions are defined as parametrized (functional) relationships between a set of spatial predictors (e.g. elevation, slope or soil texture) and model parameters. They are ultimately used for estimation of consistent, spatially distributed model parameters from a limited amount of lumped global parameters. Additionally, they provide a straightforward method for parameter extrapolation from one set of basins to another and can even be used to derive parameterizations for multi-scale models [see: Samaniego et al., 2010]. Yet, currently an actual knowledge of the transfer functions is often implicitly assumed. As a matter of fact, for most cases these hypothesized transfer functions can rarely be measured and often remain unknown. Therefore, this contribution presents a general method for the concurrent estimation of the structure of transfer functions and their respective (global) parameters. Note, that by consequence an estimation of the distributed parameters of the rainfall-runoff model is also undertaken. The method combines two steps to achieve this. The first generates different possible transfer functions. The second then estimates the respective global transfer function parameters. The structural estimation of the transfer functions is based on the context free grammar concept. Chomsky first introduced context free grammars in linguistics [Chomsky, 1956]. Since then, they have been widely applied in computer science. But, to the knowledge of the authors, they have so far not been used in hydrology. Therefore, the contribution gives an introduction to context free grammars and shows how they can be constructed and used for the structural inference of transfer functions. This is enabled by new methods from evolutionary computation, such as grammatical evolution [O'Neill, 2001], which make it possible to exploit the constructed grammar as a

  18. Estimation of common cause failure parameters with periodic tests

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Anne [Institut Charles Delaunay - Universite de technologie de Troyes - FRE CNRS 2848, 12, rue Marie Curie - BP 2060 -10010 Troyes cedex (France)], E-mail: anne.barros@utt.fr; Grall, Antoine [Institut Charles Delaunay - Universite de technologie de Troyes - FRE CNRS 2848, 12, rue Marie Curie - BP 2060 -10010 Troyes cedex (France); Vasseur, Dominique [Electricite de France, EDF R and D - Industrial Risk Management Department 1, av. du General de Gaulle- 92141 Clamart (France)

    2009-04-15

    In the specific case of safety systems, CCF parameters estimators for standby components depend on the periodic test schemes. Classically, the testing schemes are either staggered (alternation of tests on redundant components) or non-staggered (all components are tested at the same time). In reality, periodic tests schemes performed on safety components are more complex and combine staggered tests, when the plant is in operation, to non-staggered tests during maintenance and refueling outage periods of the installation. Moreover, the CCF parameters estimators described in the US literature are derived in a consistent way with US Technical Specifications constraints that do not apply on the French Nuclear Power Plants for staggered tests on standby components. Given these issues, the evaluation of CCF parameters from the operating feedback data available within EDF implies the development of methodologies that integrate the testing schemes specificities. This paper aims to formally propose a solution for the estimation of CCF parameters given two distinct difficulties respectively related to a mixed testing scheme and to the consistency with EDF's specific practices inducing systematic non-simultaneity of the observed failures in a staggered testing scheme.

  19. Parameter estimation method for blurred cell images from fluorescence microscope

    Science.gov (United States)

    He, Fuyun; Zhang, Zhisheng; Luo, Xiaoshu; Zhao, Shulin

    2016-10-01

    Microscopic cell image analysis is indispensable to cell biology. Images of cells can easily degrade due to optical diffraction or focus shift, as this results in low signal-to-noise ratio (SNR) and poor image quality, hence affecting the accuracy of cell analysis and identification. For a quantitative analysis of cell images, restoring blurred images to improve the SNR is the first step. A parameter estimation method for defocused microscopic cell images based on the power law properties of the power spectrum of cell images is proposed. The circular radon transform (CRT) is used to identify the zero-mode of the power spectrum. The parameter of the CRT curve is initially estimated by an improved differential evolution algorithm. Following this, the parameters are optimized through the gradient descent method. Using synthetic experiments, it was confirmed that the proposed method effectively increased the peak SNR (PSNR) of the recovered images with high accuracy. Furthermore, experimental results involving actual microscopic cell images verified that the superiority of the proposed parameter estimation method for blurred microscopic cell images other method in terms of qualitative visual sense as well as quantitative gradient and PSNR.

  20. Anisotropic parameter estimation using velocity variation with offset analysis

    Energy Technology Data Exchange (ETDEWEB)

    Herawati, I.; Saladin, M.; Pranowo, W.; Winardhie, S.; Priyono, A. [Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung, 40132 (Indonesia)

    2013-09-09

    Seismic anisotropy is defined as velocity dependent upon angle or offset. Knowledge about anisotropy effect on seismic data is important in amplitude analysis, stacking process and time to depth conversion. Due to this anisotropic effect, reflector can not be flattened using single velocity based on hyperbolic moveout equation. Therefore, after normal moveout correction, there will still be residual moveout that relates to velocity information. This research aims to obtain anisotropic parameters, ε and δ, using two proposed methods. The first method is called velocity variation with offset (VVO) which is based on simplification of weak anisotropy equation. In VVO method, velocity at each offset is calculated and plotted to obtain vertical velocity and parameter δ. The second method is inversion method using linear approach where vertical velocity, δ, and ε is estimated simultaneously. Both methods are tested on synthetic models using ray-tracing forward modelling. Results show that δ value can be estimated appropriately using both methods. Meanwhile, inversion based method give better estimation for obtaining ε value. This study shows that estimation on anisotropic parameters rely on the accuracy of normal moveout velocity, residual moveout and offset to angle transformation.

  1. METAHEURISTIC OPTIMIZATION METHODS FOR PARAMETERS ESTIMATION OF DYNAMIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    V. Panteleev Andrei

    2017-01-01

    Full Text Available The article considers the usage of metaheuristic methods of constrained global optimization: “Big Bang - Big Crunch”, “Fireworks Algorithm”, “Grenade Explosion Method” in parameters of dynamic systems estimation, described with algebraic-differential equations. Parameters estimation is based upon the observation results from mathematical model behavior. Their values are derived after criterion minimization, which describes the total squared error of state vector coordinates from the deduced ones with precise values observation at different periods of time. Paral- lelepiped type restriction is imposed on the parameters values. Used for solving problems, metaheuristic methods of constrained global extremum don’t guarantee the result, but allow to get a solution of a rather good quality in accepta- ble amount of time. The algorithm of using metaheuristic methods is given. Alongside with the obvious methods for solving algebraic-differential equation systems, it is convenient to use implicit methods for solving ordinary differen- tial equation systems. Two ways of solving the problem of parameters evaluation are given, those parameters differ in their mathematical model. In the first example, a linear mathematical model describes the chemical action parameters change, and in the second one, a nonlinear mathematical model describes predator-prey dynamics, which characterize the changes in both kinds’ population. For each of the observed examples there are calculation results from all the three methods of optimization, there are also some recommendations for how to choose methods parameters. The obtained numerical results have demonstrated the efficiency of the proposed approach. The deduced parameters ap- proximate points slightly differ from the best known solutions, which were deduced differently. To refine the results one should apply hybrid schemes that combine classical methods of optimization of zero, first and second orders and

  2. Experimental design for parameter estimation of gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Bernhard Steiert

    Full Text Available Systems biology aims for building quantitative models to address unresolved issues in molecular biology. In order to describe the behavior of biological cells adequately, gene regulatory networks (GRNs are intensively investigated. As the validity of models built for GRNs depends crucially on the kinetic rates, various methods have been developed to estimate these parameters from experimental data. For this purpose, it is favorable to choose the experimental conditions yielding maximal information. However, existing experimental design principles often rely on unfulfilled mathematical assumptions or become computationally demanding with growing model complexity. To solve this problem, we combined advanced methods for parameter and uncertainty estimation with experimental design considerations. As a showcase, we optimized three simulated GRNs in one of the challenges from the Dialogue for Reverse Engineering Assessment and Methods (DREAM. This article presents our approach, which was awarded the best performing procedure at the DREAM6 Estimation of Model Parameters challenge. For fast and reliable parameter estimation, local deterministic optimization of the likelihood was applied. We analyzed identifiability and precision of the estimates by calculating the profile likelihood. Furthermore, the profiles provided a way to uncover a selection of most informative experiments, from which the optimal one was chosen using additional criteria at every step of the design process. In conclusion, we provide a strategy for optimal experimental design and show its successful application on three highly nonlinear dynamic models. Although presented in the context of the GRNs to be inferred for the DREAM6 challenge, the approach is generic and applicable to most types of quantitative models in systems biology and other disciplines.

  3. Circuit realization, chaos synchronization and estimation of parameters of a hyperchaotic system with unknown parameters

    Directory of Open Access Journals (Sweden)

    A. Elsonbaty

    2014-10-01

    Full Text Available In this article, the adaptive chaos synchronization technique is implemented by an electronic circuit and applied to the hyperchaotic system proposed by Chen et al. We consider the more realistic and practical case where all the parameters of the master system are unknowns. We propose and implement an electronic circuit that performs the estimation of the unknown parameters and the updating of the parameters of the slave system automatically, and hence it achieves the synchronization. To the best of our knowledge, this is the first attempt to implement a circuit that estimates the values of the unknown parameters of chaotic system and achieves synchronization. The proposed circuit has a variety of suitable real applications related to chaos encryption and cryptography. The outputs of the implemented circuits and numerical simulation results are shown to view the performance of the synchronized system and the proposed circuit.

  4. Parameter Estimation for Groundwater Models under Uncertain Irrigation Data.

    Science.gov (United States)

    Demissie, Yonas; Valocchi, Albert; Cai, Ximing; Brozovic, Nicholas; Senay, Gabriel; Gebremichael, Mekonnen

    2015-01-01

    The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression-based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least-squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least-squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least-squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes.

  5. Terrain mechanical parameters online estimation for lunar rovers

    Science.gov (United States)

    Liu, Bing; Cui, Pingyuan; Ju, Hehua

    2007-11-01

    This paper presents a new method for terrain mechanical parameters estimation for a wheeled lunar rover. First, after deducing the detailed distribution expressions of normal stress and sheer stress at the wheel-terrain interface, the force/torque balance equations of the drive wheel for computing terrain mechanical parameters is derived through analyzing the rigid drive wheel of a lunar rover which moves with uniform speed in deformable terrain. Then a two-points Guass-Lengendre numerical integral method is used to simplify the balance equations, after simplifying and rearranging the resolve model are derived which are composed of three non-linear equations. Finally the iterative method of Newton and the steepest descent method are combined to solve the non-linear equations, and the outputs of on-board virtual sensors are used for computing terrain key mechanical parameters i.e. internal friction angle and press-sinkage parameters. Simulation results show correctness under high noises disturbance and effectiveness with low computational complexity, which allows a lunar rover for online terrain mechanical parameters estimation.

  6. Parameter estimation for groundwater models under uncertain irrigation data

    Science.gov (United States)

    Demissie, Yonas; Valocchi, Albert J.; Cai, Ximing; Brozovic, Nicholas; Senay, Gabriel; Gebremichael, Mekonnen

    2015-01-01

    The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression-based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least-squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least-squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least-squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes.

  7. Observable Priors: Limiting Biases in Estimated Parameters for Incomplete Orbits

    Science.gov (United States)

    Kosmo, Kelly; Martinez, Gregory; Hees, Aurelien; Witzel, Gunther; Ghez, Andrea M.; Do, Tuan; Sitarski, Breann; Chu, Devin; Dehghanfar, Arezu

    2017-01-01

    Over twenty years of monitoring stellar orbits at the Galactic center has provided an unprecedented opportunity to study the physics and astrophysics of the supermassive black hole (SMBH) at the center of the Milky Way Galaxy. In order to constrain the mass of and distance to the black hole, and to evaluate its gravitational influence on orbiting bodies, we use Bayesian statistics to infer black hole and stellar orbital parameters from astrometric and radial velocity measurements of stars orbiting the central SMBH. Unfortunately, most of the short period stars in the Galactic center have periods much longer than our twenty year time baseline of observations, resulting in incomplete orbital phase coverage--potentially biasing fitted parameters. Using the Bayesian statistical framework, we evaluate biases in the black hole and orbital parameters of stars with varying phase coverage, using various prior models to fit the data. We present evidence that incomplete phase coverage of an orbit causes prior assumptions to bias statistical quantities, and propose a solution to reduce these biases for orbits with low phase coverage. The explored solution assumes uniformity in the observables rather than in the inferred model parameters, as is the current standard method of orbit fitting. Of the cases tested, priors that assume uniform astrometric and radial velocity observables reduce the biases in the estimated parameters. The proposed method will not only improve orbital estimates of stars orbiting the central SMBH, but can also be extended to other orbiting bodies with low phase coverage such as visual binaries and exoplanets.

  8. Iterative procedure for camera parameters estimation using extrinsic matrix decomposition

    Science.gov (United States)

    Goshin, Yegor V.; Fursov, Vladimir A.

    2016-03-01

    This paper addresses the problem of 3D scene reconstruction in cases when the extrinsic parameters (rotation and translation) of the camera are unknown. This problem is both important and urgent because the accuracy of the camera parameters significantly influences the resulting 3D model. A common approach is to determine the fundamental matrix from corresponding points on two views of a scene and then to use singular value decomposition for camera projection matrix estimation. However, this common approach is very sensitive to fundamental matrix errors. In this paper we propose a novel approach in which camera parameters are determined directly from the equations of the projective transformation by using corresponding points on the views. The proposed decomposition allows us to use an iterative procedure for determining the parameters of the camera. This procedure is implemented in two steps: the translation determination and the rotation determination. The experimental results of the camera parameters estimation and 3D scene reconstruction demonstrate the reliability of the proposed approach.

  9. Bayesian adaptive Markov chain Monte Carlo estimation of genetic parameters.

    Science.gov (United States)

    Mathew, B; Bauer, A M; Koistinen, P; Reetz, T C; Léon, J; Sillanpää, M J

    2012-10-01

    Accurate and fast estimation of genetic parameters that underlie quantitative traits using mixed linear models with additive and dominance effects is of great importance in both natural and breeding populations. Here, we propose a new fast adaptive Markov chain Monte Carlo (MCMC) sampling algorithm for the estimation of genetic parameters in the linear mixed model with several random effects. In the learning phase of our algorithm, we use the hybrid Gibbs sampler to learn the covariance structure of the variance components. In the second phase of the algorithm, we use this covariance structure to formulate an effective proposal distribution for a Metropolis-Hastings algorithm, which uses a likelihood function in which the random effects have been integrated out. Compared with the hybrid Gibbs sampler, the new algorithm had better mixing properties and was approximately twice as fast to run. Our new algorithm was able to detect different modes in the posterior distribution. In addition, the posterior mode estimates from the adaptive MCMC method were close to the REML (residual maximum likelihood) estimates. Moreover, our exponential prior for inverse variance components was vague and enabled the estimated mode of the posterior variance to be practically zero, which was in agreement with the support from the likelihood (in the case of no dominance). The method performance is illustrated using simulated data sets with replicates and field data in barley.

  10. Parameter Estimation as a Problem in Statistical Thermodynamics

    Science.gov (United States)

    Earle, Keith A.; Schneider, David J.

    2011-01-01

    In this work, we explore the connections between parameter fitting and statistical thermodynamics using the maxent principle of Jaynes as a starting point. In particular, we show how signal averaging may be described by a suitable one particle partition function, modified for the case of a variable number of particles. These modifications lead to an entropy that is extensive in the number of measurements in the average. Systematic error may be interpreted as a departure from ideal gas behavior. In addition, we show how to combine measurements from different experiments in an unbiased way in order to maximize the entropy of simultaneous parameter fitting. We suggest that fit parameters may be interpreted as generalized coordinates and the forces conjugate to them may be derived from the system partition function. From this perspective, the parameter fitting problem may be interpreted as a process where the system (spectrum) does work against internal stresses (non-optimum model parameters) to achieve a state of minimum free energy/maximum entropy. Finally, we show how the distribution function allows us to define a geometry on parameter space, building on previous work[1, 2]. This geometry has implications for error estimation and we outline a program for incorporating these geometrical insights into an automated parameter fitting algorithm. PMID:21927520

  11. A Method for Evaluating Aircraft Stability Parameters from Flight Test Data

    Science.gov (United States)

    1952-06-01

    solving for the aircraft longitudinal moment of inertia. The transfer function A2 is directly proportional to the moment of inertia. All the remaining...a method for evaluating aircraft longitudinal stability derivatives from frequency response data pro- vided the linear dependency existing between the

  12. Maximum-likelihood estimation of circle parameters via convolution.

    Science.gov (United States)

    Zelniker, Emanuel E; Clarkson, I Vaughan L

    2006-04-01

    The accurate fitting of a circle to noisy measurements of circumferential points is a much studied problem in the literature. In this paper, we present an interpretation of the maximum-likelihood estimator (MLE) and the Delogne-Kåsa estimator (DKE) for circle-center and radius estimation in terms of convolution on an image which is ideal in a certain sense. We use our convolution-based MLE approach to find good estimates for the parameters of a circle in digital images. In digital images, it is then possible to treat these estimates as preliminary estimates into various other numerical techniques which further refine them to achieve subpixel accuracy. We also investigate the relationship between the convolution of an ideal image with a "phase-coded kernel" (PCK) and the MLE. This is related to the "phase-coded annulus" which was introduced by Atherton and Kerbyson who proposed it as one of a number of new convolution kernels for estimating circle center and radius. We show that the PCK is an approximate MLE (AMLE). We compare our AMLE method to the MLE and the DKE as well as the Cramér-Rao Lower Bound in ideal images and in both real and synthetic digital images.

  13. On-line identification, flutter testing and adaptive notching of structural parameters for V-22 tiltrotor aircraft

    Indian Academy of Sciences (India)

    R K Mehra; P O Arambel; A M Sampath; R K Prasanth; T C Parham

    2000-04-01

    New algorithms and results are presented for flutter testing and adaptive notching of structural modes in V-22 tiltrotor aircraft based on simulated and flight-test data from Bell Helicopter Textron, Inc. (BHTI). For flutter testing and the identification of structural mode frequencies, dampings and mode shapes, time domain state space techniques based on Deterministic Stochastic Realization Algorithms (DSRA) are used to accurately identify multiple modessimultaneously from sine sweep and other multifrequency data, resulting in great savings over the conventional Prony method. Two different techniques for adaptive notching are explored in order to design an Integrated Flight Structural Control (IFSC) system. The first technique is based on on-line identification of structural mode parameters using DSRA algorithm and tuning of a notch filter. The second technique is based on decoupling rigid-body and structural modes of the aircraft by means of a Kalman filter and using rigid-body estimates in the feedback control loop. The difference between the two approaches is that on-line identification and adaptive notching in the first approach are entirely based on the knowledge of structural modes, whereas the Kalman filter design in the second approach is based on the rigid-body dynamic model only.In the first IFSC design, on-line identification is necessary for flight envelope expansion and to adjust the notch filter frequencies and suppress aero-servoelastic instabilities due to changing flight conditionssuch as gross weight, sling loads, and airspeed. It isshown that by tuning the notch filterfrequency to the identified frequency, the phase lag is reduced and the corresponding structural mode is effectively suppressed and stability is maintained. In the second IFSC design using Kalman filter design, the structural modes are again effectively suppressed. Furthermore, the rigid-body estimates are found to be fairly insensitive to both natural frequency and damping factor

  14. PYMORPH: automated galaxy structural parameter estimation using PYTHON

    Science.gov (United States)

    Vikram, Vinu; Wadadekar, Yogesh; Kembhavi, Ajit K.; Vijayagovindan, G. V.

    2010-12-01

    We present a new software pipeline - PYMORPH- for automated estimation of structural parameters of galaxies. Both parametric fits through a two-dimensional bulge disc decomposition and structural parameter measurements like concentration, asymmetry etc. are supported. The pipeline is designed to be easy to use yet flexible; individual software modules can be replaced with ease. A find-and-fit mode is available so that all galaxies in an image can be measured with a simple command. A parallel version of the PYMORPH pipeline runs on computer clusters and a virtual observatory compatible web enabled interface is under development.

  15. Estimation of the parameters of ETAS models by Simulated Annealing

    Science.gov (United States)

    Lombardi, Anna Maria

    2015-02-01

    This paper proposes a new algorithm to estimate the maximum likelihood parameters of an Epidemic Type Aftershock Sequences (ETAS) model. It is based on Simulated Annealing, a versatile method that solves problems of global optimization and ensures convergence to a global optimum. The procedure is tested on both simulated and real catalogs. The main conclusion is that the method performs poorly as the size of the catalog decreases because the effect of the correlation of the ETAS parameters is more significant. These results give new insights into the ETAS model and the efficiency of the maximum-likelihood method within this context.

  16. Estimation of drying parameters in rotary dryers using differential evolution

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, F S; Jr, V Steffen; Barrozo, M A S; Arruda, E B, E-mail: vsteffen@mecanica.ufu.br, E-mail: masbarrozo@ufu.br

    2008-11-01

    Inverse problems arise from the necessity of obtaining parameters of theoretical models to simulate the behavior of the system for different operating conditions. Several heuristics that mimic different phenomena found in nature have been proposed for the solution of this kind of problem. In this work, the Differential Evolution Technique is used for the estimation of drying parameters in realistic rotary dryers, which is formulated as an optimization problem by using experimental data. Test case results demonstrate both the feasibility and the effectiveness of the proposed methodology.

  17. J-A Hysteresis Model Parameters Estimation using GA

    Directory of Open Access Journals (Sweden)

    Bogomir Zidaric

    2005-01-01

    Full Text Available This paper presents the Jiles and Atherton (J-A hysteresis model parameter estimation for soft magnetic composite (SMC material. The calculation of Jiles and Atherton hysteresis model parameters is based on experimental data and genetic algorithms (GA. Genetic algorithms operate in a given area of possible solutions. Finding the best solution of a problem in wide area of possible solutions is uncertain. A new approach in use of genetic algorithms is proposed to overcome this uncertainty. The basis of this approach is in genetic algorithm built in another genetic algorithm.

  18. Parameter estimation in X-ray astronomy using maximum likelihood

    Science.gov (United States)

    Wachter, K.; Leach, R.; Kellogg, E.

    1979-01-01

    Methods of estimation of parameter values and confidence regions by maximum likelihood and Fisher efficient scores starting from Poisson probabilities are developed for the nonlinear spectral functions commonly encountered in X-ray astronomy. It is argued that these methods offer significant advantages over the commonly used alternatives called minimum chi-squared because they rely on less pervasive statistical approximations and so may be expected to remain valid for data of poorer quality. Extensive numerical simulations of the maximum likelihood method are reported which verify that the best-fit parameter value and confidence region calculations are correct over a wide range of input spectra.

  19. Propagation channel characterization, parameter estimation, and modeling for wireless communications

    CERN Document Server

    Yin, Xuefeng

    2016-01-01

    Thoroughly covering channel characteristics and parameters, this book provides the knowledge needed to design various wireless systems, such as cellular communication systems, RFID and ad hoc wireless communication systems. It gives a detailed introduction to aspects of channels before presenting the novel estimation and modelling techniques which can be used to achieve accurate models. To systematically guide readers through the topic, the book is organised in three distinct parts. The first part covers the fundamentals of the characterization of propagation channels, including the conventional single-input single-output (SISO) propagation channel characterization as well as its extension to multiple-input multiple-output (MIMO) cases. Part two focuses on channel measurements and channel data post-processing. Wideband channel measurements are introduced, including the equipment, technology and advantages and disadvantages of different data acquisition schemes. The channel parameter estimation methods are ...

  20. CosmoSIS: A System for MC Parameter Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Zuntz, Joe [Manchester U.; Paterno, Marc [Fermilab; Jennings, Elise [Chicago U., EFI; Rudd, Douglas [U. Chicago; Manzotti, Alessandro [Chicago U., Astron. Astrophys. Ctr.; Dodelson, Scott [Chicago U., Astron. Astrophys. Ctr.; Bridle, Sarah [Manchester U.; Sehrish, Saba [Fermilab; Kowalkowski, James [Fermilab

    2015-01-01

    Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology and systematic uncertainties. In this paper we argue that modularity is the key to addressing these challenges: calculations should be broken up into interchangeable modular units with inputs and outputs clearly defined. We present a new framework for cosmological parameter estimation, CosmoSIS, designed to connect together, share, and advance development of inference tools across the community. We describe the modules already available in Cosmo- SIS, including camb, Planck, cosmic shear calculations, and a suite of samplers. We illustrate it using demonstration code that you can run out-of-the-box with the installer available at http://bitbucket.org/joezuntz/cosmosis.

  1. Bayesian parameter estimation for chiral effective field theory

    Science.gov (United States)

    Wesolowski, Sarah; Furnstahl, Richard; Phillips, Daniel; Klco, Natalie

    2016-09-01

    The low-energy constants (LECs) of a chiral effective field theory (EFT) interaction in the two-body sector are fit to observable data using a Bayesian parameter estimation framework. By using Bayesian prior probability distributions (pdfs), we quantify relevant physical expectations such as LEC naturalness and include them in the parameter estimation procedure. The final result is a posterior pdf for the LECs, which can be used to propagate uncertainty resulting from the fit to data to the final observable predictions. The posterior pdf also allows an empirical test of operator redundancy and other features of the potential. We compare results of our framework with other fitting procedures, interpreting the underlying assumptions in Bayesian probabilistic language. We also compare results from fitting all partial waves of the interaction simultaneously to cross section data compared to fitting to extracted phase shifts, appropriately accounting for correlations in the data. Supported in part by the NSF and DOE.

  2. Real-Time Parameter Estimation Using Output Error

    Science.gov (United States)

    Grauer, Jared A.

    2014-01-01

    Output-error parameter estimation, normally a post- ight batch technique, was applied to real-time dynamic modeling problems. Variations on the traditional algorithm were investigated with the goal of making the method suitable for operation in real time. Im- plementation recommendations are given that are dependent on the modeling problem of interest. Application to ight test data showed that accurate parameter estimates and un- certainties for the short-period dynamics model were available every 2 s using time domain data, or every 3 s using frequency domain data. The data compatibility problem was also solved in real time, providing corrected sensor measurements every 4 s. If uncertainty corrections for colored residuals are omitted, this rate can be increased to every 0.5 s.

  3. A Bayesian framework for parameter estimation in dynamical models.

    Directory of Open Access Journals (Sweden)

    Flávio Codeço Coelho

    Full Text Available Mathematical models in biology are powerful tools for the study and exploration of complex dynamics. Nevertheless, bringing theoretical results to an agreement with experimental observations involves acknowledging a great deal of uncertainty intrinsic to our theoretical representation of a real system. Proper handling of such uncertainties is key to the successful usage of models to predict experimental or field observations. This problem has been addressed over the years by many tools for model calibration and parameter estimation. In this article we present a general framework for uncertainty analysis and parameter estimation that is designed to handle uncertainties associated with the modeling of dynamic biological systems while remaining agnostic as to the type of model used. We apply the framework to fit an SIR-like influenza transmission model to 7 years of incidence data in three European countries: Belgium, the Netherlands and Portugal.

  4. Improving gravitational-wave parameter estimation using Gaussian process regression

    CERN Document Server

    Moore, Christopher J; Chua, Alvin J K; Gair, Jonathan R

    2015-01-01

    Folding uncertainty in theoretical models into Bayesian parameter estimation is necessary in order to make reliable inferences. A general means of achieving this is by marginalising over model uncertainty using a prior distribution constructed using Gaussian process regression (GPR). Here, we apply this technique to (simulated) gravitational-wave signals from binary black holes that could be observed using advanced-era gravitational-wave detectors. Unless properly accounted for, uncertainty in the gravitational-wave templates could be the dominant source of error in studies of these systems. We explain our approach in detail and provide proofs of various features of the method, including the limiting behaviour for high signal-to-noise, where systematic model uncertainties dominate over noise errors. We find that the marginalised likelihood constructed via GPR offers a significant improvement in parameter estimation over the standard, uncorrected likelihood. We also examine the dependence of the method on the ...

  5. Probabilistic estimation of the constitutive parameters of polymers

    Directory of Open Access Journals (Sweden)

    Siviour C.R.

    2012-08-01

    Full Text Available The Mulliken-Boyce constitutive model predicts the dynamic response of crystalline polymers as a function of strain rate and temperature. This paper describes the Mulliken-Boyce model-based estimation of the constitutive parameters in a Bayesian probabilistic framework. Experimental data from dynamic mechanical analysis and dynamic compression of PVC samples over a wide range of strain rates are analyzed. Both experimental uncertainty and natural variations in the material properties are simultaneously considered as independent and joint distributions; the posterior probability distributions are shown and compared with prior estimates of the material constitutive parameters. Additionally, particular statistical distributions are shown to be effective at capturing the rate and temperature dependence of internal phase transitions in DMA data.

  6. PARAMETER ESTIMATION OF THE HYBRID CENSORED LOMAX DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Samir Kamel Ashour

    2010-12-01

    Full Text Available Survival analysis is used in various fields for analyzing data involving the duration between two events. It is also known as event history analysis, lifetime data analysis, reliability analysis or time to event analysis. One of the difficulties which arise in this area is the presence of censored data. The lifetime of an individual is censored when it cannot be exactly measured but partial information is available. Different circumstances can produce different types of censoring. The two most common censoring schemes used in life testing experiments are Type-I and Type-II censoring schemes. Hybrid censoring scheme is mixture of Type-I and Type-II censoring scheme. In this paper we consider the estimation of parameters of Lomax distribution based on hybrid censored data. The parameters are estimated by the maximum likelihood and Bayesian methods. The Fisher information matrix has been obtained and it can be used for constructing asymptotic confidence intervals.

  7. Estimating stellar atmospheric parameters based on Lasso features

    Science.gov (United States)

    Liu, Chuan-Xing; Zhang, Pei-Ai; Lu, Yu

    2014-04-01

    With the rapid development of large scale sky surveys like the Sloan Digital Sky Survey (SDSS), GAIA and LAMOST (Guoshoujing telescope), stellar spectra can be obtained on an ever-increasing scale. Therefore, it is necessary to estimate stellar atmospheric parameters such as Teff, log g and [Fe/H] automatically to achieve the scientific goals and make full use of the potential value of these observations. Feature selection plays a key role in the automatic measurement of atmospheric parameters. We propose to use the least absolute shrinkage selection operator (Lasso) algorithm to select features from stellar spectra. Feature selection can reduce redundancy in spectra, alleviate the influence of noise, improve calculation speed and enhance the robustness of the estimation system. Based on the extracted features, stellar atmospheric parameters are estimated by the support vector regression model. Three typical schemes are evaluated on spectral data from both the ELODIE library and SDSS. Experimental results show the potential performance to a certain degree. In addition, results show that our method is stable when applied to different spectra.

  8. Estimating Hydraulic Parameters When Poroelastic Effects Are Significant

    Science.gov (United States)

    Berg, S.J.; Hsieh, P.A.; Illman, W.A.

    2011-01-01

    For almost 80 years, deformation-induced head changes caused by poroelastic effects have been observed during pumping tests in multilayered aquifer-aquitard systems. As water in the aquifer is released from compressive storage during pumping, the aquifer is deformed both in the horizontal and vertical directions. This deformation in the pumped aquifer causes deformation in the adjacent layers, resulting in changes in pore pressure that may produce drawdown curves that differ significantly from those predicted by traditional groundwater theory. Although these deformation-induced head changes have been analyzed in several studies by poroelasticity theory, there are at present no practical guidelines for the interpretation of pumping test data influenced by these effects. To investigate the impact that poroelastic effects during pumping tests have on the estimation of hydraulic parameters, we generate synthetic data for three different aquifer-aquitard settings using a poroelasticity model, and then analyze the synthetic data using type curves and parameter estimation techniques, both of which are based on traditional groundwater theory and do not account for poroelastic effects. Results show that even when poroelastic effects result in significant deformation-induced head changes, it is possible to obtain reasonable estimates of hydraulic parameters using methods based on traditional groundwater theory, as long as pumping is sufficiently long so that deformation-induced effects have largely dissipated. ?? 2011 The Author(s). Journal compilation ?? 2011 National Ground Water Association.

  9. Estimating cellular parameters through optimization procedures: elementary principles and applications

    Directory of Open Access Journals (Sweden)

    Akatsuki eKimura

    2015-03-01

    Full Text Available Construction of quantitative models is a primary goal of quantitative biology, which aims to understand cellular and organismal phenomena in a quantitative manner. In this article, we introduce optimization procedures to search for parameters in a quantitative model that can reproduce experimental data. The aim of optimization is to minimize the sum of squared errors (SSE in a prediction or to maximize likelihood. A (local maximum of likelihood or (local minimum of the SSE can efficiently be identified using gradient approaches. Addition of a stochastic process enables us to identify the global maximum/minimum without becoming trapped in local maxima/minima. Sampling approaches take advantage of increasing computational power to test numerous sets of parameters in order to determine the optimum set. By combining Bayesian inference with gradient or sampling approaches, we can estimate both the optimum parameters and the form of the likelihood function related to the parameters. Finally, we introduce four examples of research that utilize parameter optimization to obtain biological insights from quantified data: transcriptional regulation, bacterial chemotaxis, morphogenesis, and cell cycle regulation. With practical knowledge of parameter optimization, cell and developmental biologists can develop realistic models that reproduce their observations and thus, obtain mechanistic insights into phenomena of interest.

  10. Parameter estimation in a spatial unit root autoregressive model

    CERN Document Server

    Baran, Sándor

    2011-01-01

    Spatial autoregressive model $X_{k,\\ell}=\\alpha X_{k-1,\\ell}+\\beta X_{k,\\ell-1}+\\gamma X_{k-1,\\ell-1}+\\epsilon_{k,\\ell}$ is investigated in the unit root case, that is when the parameters are on the boundary of the domain of stability that forms a tetrahedron with vertices $(1,1,-1), \\ (1,-1,1),\\ (-1,1,1)$ and $(-1,-1,-1)$. It is shown that the limiting distribution of the least squares estimator of the parameters is normal and the rate of convergence is $n$ when the parameters are in the faces or on the edges of the tetrahedron, while on the vertices the rate is $n^{3/2}$.

  11. Genetic Algorithm-based Affine Parameter Estimation for Shape Recognition

    Directory of Open Access Journals (Sweden)

    Yuxing Mao

    2014-06-01

    Full Text Available Shape recognition is a classically difficult problem because of the affine transformation between two shapes. The current study proposes an affine parameter estimation method for shape recognition based on a genetic algorithm (GA. The contributions of this study are focused on the extraction of affine-invariant features, the individual encoding scheme, and the fitness function construction policy for a GA. First, the affine-invariant characteristics of the centroid distance ratios (CDRs of any two opposite contour points to the barycentre are analysed. Using different intervals along the azimuth angle, the different numbers of CDRs of two candidate shapes are computed as representations of the shapes, respectively. Then, the CDRs are selected based on predesigned affine parameters to construct the fitness function. After that, a GA is used to search for the affine parameters with optimal matching between candidate shapes, which serve as actual descriptions of the affine transformation between the shapes. Finally, the CDRs are resampled based on the estimated parameters to evaluate the similarity of the shapes for classification. The experimental results demonstrate the robust performance of the proposed method in shape recognition with translation, scaling, rotation and distortion.

  12. Accelerated gravitational wave parameter estimation with reduced order modeling.

    Science.gov (United States)

    Canizares, Priscilla; Field, Scott E; Gair, Jonathan; Raymond, Vivien; Smith, Rory; Tiglio, Manuel

    2015-02-20

    Inferring the astrophysical parameters of coalescing compact binaries is a key science goal of the upcoming advanced LIGO-Virgo gravitational-wave detector network and, more generally, gravitational-wave astronomy. However, current approaches to parameter estimation for these detectors require computationally expensive algorithms. Therefore, there is a pressing need for new, fast, and accurate Bayesian inference techniques. In this Letter, we demonstrate that a reduced order modeling approach enables rapid parameter estimation to be performed. By implementing a reduced order quadrature scheme within the LIGO Algorithm Library, we show that Bayesian inference on the 9-dimensional parameter space of nonspinning binary neutron star inspirals can be sped up by a factor of ∼30 for the early advanced detectors' configurations (with sensitivities down to around 40 Hz) and ∼70 for sensitivities down to around 20 Hz. This speedup will increase to about 150 as the detectors improve their low-frequency limit to 10 Hz, reducing to hours analyses which could otherwise take months to complete. Although these results focus on interferometric gravitational wave detectors, the techniques are broadly applicable to any experiment where fast Bayesian analysis is desirable.

  13. Maximum-likelihood fits to histograms for improved parameter estimation

    CERN Document Server

    Fowler, Joseph W

    2013-01-01

    Straightforward methods for adapting the familiar chi^2 statistic to histograms of discrete events and other Poisson distributed data generally yield biased estimates of the parameters of a model. The bias can be important even when the total number of events is large. For the case of estimating a microcalorimeter's energy resolution at 6 keV from the observed shape of the Mn K-alpha fluorescence spectrum, a poor choice of chi^2 can lead to biases of at least 10% in the estimated resolution when up to thousands of photons are observed. The best remedy is a Poisson maximum-likelihood fit, through a simple modification of the standard Levenberg-Marquardt algorithm for chi^2 minimization. Where the modification is not possible, another approach allows iterative approximation of the maximum-likelihood fit.

  14. Estimation of multiexponential fluorescence decay parameters using compressive sensing.

    Science.gov (United States)

    Yang, Sejung; Lee, Joohyun; Lee, Youmin; Lee, Minyung; Lee, Byung-Uk

    2015-09-01

    Fluorescence lifetime imaging microscopy (FLIM) is a microscopic imaging technique to present an image of fluorophore lifetimes. It circumvents the problems of typical imaging methods such as intensity attenuation from depth since a lifetime is independent of the excitation intensity or fluorophore concentration. The lifetime is estimated from the time sequence of photon counts observed with signal-dependent noise, which has a Poisson distribution. Conventional methods usually estimate single or biexponential decay parameters. However, a lifetime component has a distribution or width, because the lifetime depends on macromolecular conformation or inhomogeneity. We present a novel algorithm based on a sparse representation which can estimate the distribution of lifetime. We verify the enhanced performance through simulations and experiments.

  15. Learn-As-You-Go Acceleration of Cosmological Parameter Estimates

    CERN Document Server

    Aslanyan, Grigor; Price, Layne C

    2015-01-01

    Cosmological analyses can be accelerated by approximating slow calculations using a training set, which is either precomputed or generated dynamically. However, this approach is only safe if the approximations are well understood and controlled. This paper surveys issues associated with the use of machine-learning based emulation strategies for accelerating cosmological parameter estimation. We describe a learn-as-you-go algorithm that is implemented in the Cosmo++ code and (1) trains the emulator while simultaneously estimating posterior probabilities; (2) identifies unreliable estimates, computing the exact numerical likelihoods if necessary; and (3) progressively learns and updates the error model as the calculation progresses. We explicitly describe and model the emulation error and show how this can be propagated into the posterior probabilities. We apply these techniques to the Planck likelihood and the calculation of $\\Lambda$CDM posterior probabilities. The computation is significantly accelerated wit...

  16. Chloramine demand estimation using surrogate chemical and microbiological parameters.

    Science.gov (United States)

    Moradi, Sina; Liu, Sanly; Chow, Christopher W K; van Leeuwen, John; Cook, David; Drikas, Mary; Amal, Rose

    2017-07-01

    A model is developed to enable estimation of chloramine demand in full scale drinking water supplies based on chemical and microbiological factors that affect chloramine decay rate via nonlinear regression analysis method. The model is based on organic character (specific ultraviolet absorbance (SUVA)) of the water samples and a laboratory measure of the microbiological (Fm) decay of chloramine. The applicability of the model for estimation of chloramine residual (and hence chloramine demand) was tested on several waters from different water treatment plants in Australia through statistical test analysis between the experimental and predicted data. Results showed that the model was able to simulate and estimate chloramine demand at various times in real drinking water systems. To elucidate the loss of chloramine over the wide variation of water quality used in this study, the model incorporates both the fast and slow chloramine decay pathways. The significance of estimated fast and slow decay rate constants as the kinetic parameters of the model for three water sources in Australia was discussed. It was found that with the same water source, the kinetic parameters remain the same. This modelling approach has the potential to be used by water treatment operators as a decision support tool in order to manage chloramine disinfection. Copyright © 2017. Published by Elsevier B.V.

  17. Variance estimation of modal parameters from output-only and input/output subspace-based system identification

    Science.gov (United States)

    Mellinger, Philippe; Döhler, Michael; Mevel, Laurent

    2016-09-01

    An important step in the operational modal analysis of a structure is to infer on its dynamic behavior through its modal parameters. They can be estimated by various modal identification algorithms that fit a theoretical model to measured data. When output-only data is available, i.e. measured responses of the structure, frequencies, damping ratios and mode shapes can be identified assuming that ambient sources like wind or traffic excite the system sufficiently. When also input data is available, i.e. signals used to excite the structure, input/output identification algorithms are used. The use of input information usually provides better modal estimates in a desired frequency range. While the identification of the modal mass is not considered in this paper, we focus on the estimation of the frequencies, damping ratios and mode shapes, relevant for example for modal analysis during in-flight monitoring of aircrafts. When identifying the modal parameters from noisy measurement data, the information on their uncertainty is most relevant. In this paper, new variance computation schemes for modal parameters are developed for four subspace algorithms, including output-only and input/output methods, as well as data-driven and covariance-driven methods. For the input/output methods, the known inputs are considered as realizations of a stochastic process. Based on Monte Carlo validations, the quality of identification, accuracy of variance estimations and sensor noise robustness are discussed. Finally these algorithms are applied on real measured data obtained during vibrations tests of an aircraft.

  18. Basic MR sequence parameters systematically bias automated brain volume estimation

    Energy Technology Data Exchange (ETDEWEB)

    Haller, Sven [University of Geneva, Faculty of Medicine, Geneva (Switzerland); Affidea Centre de Diagnostique Radiologique de Carouge CDRC, Geneva (Switzerland); Falkovskiy, Pavel; Roche, Alexis; Marechal, Benedicte [Siemens Healthcare HC CEMEA SUI DI BM PI, Advanced Clinical Imaging Technology, Lausanne (Switzerland); University Hospital (CHUV), Department of Radiology, Lausanne (Switzerland); Meuli, Reto [University Hospital (CHUV), Department of Radiology, Lausanne (Switzerland); Thiran, Jean-Philippe [LTS5, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Krueger, Gunnar [Siemens Medical Solutions USA, Inc., Boston, MA (United States); Lovblad, Karl-Olof [University of Geneva, Faculty of Medicine, Geneva (Switzerland); University Hospitals of Geneva, Geneva (Switzerland); Kober, Tobias [Siemens Healthcare HC CEMEA SUI DI BM PI, Advanced Clinical Imaging Technology, Lausanne (Switzerland); LTS5, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland)

    2016-11-15

    Automated brain MRI morphometry, including hippocampal volumetry for Alzheimer disease, is increasingly recognized as a biomarker. Consequently, a rapidly increasing number of software tools have become available. We tested whether modifications of simple MR protocol parameters typically used in clinical routine systematically bias automated brain MRI segmentation results. The study was approved by the local ethical committee and included 20 consecutive patients (13 females, mean age 75.8 ± 13.8 years) undergoing clinical brain MRI at 1.5 T for workup of cognitive decline. We compared three 3D T1 magnetization prepared rapid gradient echo (MPRAGE) sequences with the following parameter settings: ADNI-2 1.2 mm iso-voxel, no image filtering, LOCAL- 1.0 mm iso-voxel no image filtering, LOCAL+ 1.0 mm iso-voxel with image edge enhancement. Brain segmentation was performed by two different and established analysis tools, FreeSurfer and MorphoBox, using standard parameters. Spatial resolution (1.0 versus 1.2 mm iso-voxel) and modification in contrast resulted in relative estimated volume difference of up to 4.28 % (p < 0.001) in cortical gray matter and 4.16 % (p < 0.01) in hippocampus. Image data filtering resulted in estimated volume difference of up to 5.48 % (p < 0.05) in cortical gray matter. A simple change of MR parameters, notably spatial resolution, contrast, and filtering, may systematically bias results of automated brain MRI morphometry of up to 4-5 %. This is in the same range as early disease-related brain volume alterations, for example, in Alzheimer disease. Automated brain segmentation software packages should therefore require strict MR parameter selection or include compensatory algorithms to avoid MR parameter-related bias of brain morphometry results. (orig.)

  19. Combined Estimation of Hydrogeologic Conceptual Model and Parameter Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Philip D.; Ye, Ming; Neuman, Shlomo P.; Cantrell, Kirk J.

    2004-03-01

    The objective of the research described in this report is the development and application of a methodology for comprehensively assessing the hydrogeologic uncertainties involved in dose assessment, including uncertainties associated with conceptual models, parameters, and scenarios. This report describes and applies a statistical method to quantitatively estimate the combined uncertainty in model predictions arising from conceptual model and parameter uncertainties. The method relies on model averaging to combine the predictions of a set of alternative models. Implementation is driven by the available data. When there is minimal site-specific data the method can be carried out with prior parameter estimates based on generic data and subjective prior model probabilities. For sites with observations of system behavior (and optionally data characterizing model parameters), the method uses model calibration to update the prior parameter estimates and model probabilities based on the correspondence between model predictions and site observations. The set of model alternatives can contain both simplified and complex models, with the requirement that all models be based on the same set of data. The method was applied to the geostatistical modeling of air permeability at a fractured rock site. Seven alternative variogram models of log air permeability were considered to represent data from single-hole pneumatic injection tests in six boreholes at the site. Unbiased maximum likelihood estimates of variogram and drift parameters were obtained for each model. Standard information criteria provided an ambiguous ranking of the models, which would not justify selecting one of them and discarding all others as is commonly done in practice. Instead, some of the models were eliminated based on their negligibly small updated probabilities and the rest were used to project the measured log permeabilities by kriging onto a rock volume containing the six boreholes. These four

  20. Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems

    Directory of Open Access Journals (Sweden)

    Banga Julio R

    2006-11-01

    Full Text Available Abstract Background We consider the problem of parameter estimation (model calibration in nonlinear dynamic models of biological systems. Due to the frequent ill-conditioning and multi-modality of many of these problems, traditional local methods usually fail (unless initialized with very good guesses of the parameter vector. In order to surmount these difficulties, global optimization (GO methods have been suggested as robust alternatives. Currently, deterministic GO methods can not solve problems of realistic size within this class in reasonable computation times. In contrast, certain types of stochastic GO methods have shown promising results, although the computational cost remains large. Rodriguez-Fernandez and coworkers have presented hybrid stochastic-deterministic GO methods which could reduce computation time by one order of magnitude while guaranteeing robustness. Our goal here was to further reduce the computational effort without loosing robustness. Results We have developed a new procedure based on the scatter search methodology for nonlinear optimization of dynamic models of arbitrary (or even unknown structure (i.e. black-box models. In this contribution, we describe and apply this novel metaheuristic, inspired by recent developments in the field of operations research, to a set of complex identification problems and we make a critical comparison with respect to the previous (above mentioned successful methods. Conclusion Robust and efficient methods for parameter estimation are of key importance in systems biology and related areas. The new metaheuristic presented in this paper aims to ensure the proper solution of these problems by adopting a global optimization approach, while keeping the computational effort under reasonable values. This new metaheuristic was applied to a set of three challenging parameter estimation problems of nonlinear dynamic biological systems, outperforming very significantly all the methods previously

  1. Estimating unknown parameters in haemophilia using expert judgement elicitation.

    Science.gov (United States)

    Fischer, K; Lewandowski, D; Janssen, M P

    2013-09-01

    The increasing attention to healthcare costs and treatment efficiency has led to an increasing demand for quantitative data concerning patient and treatment characteristics in haemophilia. However, most of these data are difficult to obtain. The aim of this study was to use expert judgement elicitation (EJE) to estimate currently unavailable key parameters for treatment models in severe haemophilia A. Using a formal expert elicitation procedure, 19 international experts provided information on (i) natural bleeding frequency according to age and onset of bleeding, (ii) treatment of bleeds, (iii) time needed to control bleeding after starting secondary prophylaxis, (iv) dose requirements for secondary prophylaxis according to onset of bleeding, and (v) life-expectancy. For each parameter experts provided their quantitative estimates (median, P10, P90), which were combined using a graphical method. In addition, information was obtained concerning key decision parameters of haemophilia treatment. There was most agreement between experts regarding bleeding frequencies for patients treated on demand with an average onset of joint bleeding (1.7 years): median 12 joint bleeds per year (95% confidence interval 0.9-36) for patients ≤ 18, and 11 (0.8-61) for adult patients. Less agreement was observed concerning estimated effective dose for secondary prophylaxis in adults: median 2000 IU every other day The majority (63%) of experts expected that a single minor joint bleed could cause irreversible damage, and would accept up to three minor joint bleeds or one trauma related joint bleed annually on prophylaxis. Expert judgement elicitation allowed structured capturing of quantitative expert estimates. It generated novel data to be used in computer modelling, clinical care, and trial design. © 2013 John Wiley & Sons Ltd.

  2. Maximum profile likelihood estimation of differential equation parameters through model based smoothing state estimates.

    Science.gov (United States)

    Campbell, D A; Chkrebtii, O

    2013-12-01

    Statistical inference for biochemical models often faces a variety of characteristic challenges. In this paper we examine state and parameter estimation for the JAK-STAT intracellular signalling mechanism, which exemplifies the implementation intricacies common in many biochemical inference problems. We introduce an extension to the Generalized Smoothing approach for estimating delay differential equation models, addressing selection of complexity parameters, choice of the basis system, and appropriate optimization strategies. Motivated by the JAK-STAT system, we further extend the generalized smoothing approach to consider a nonlinear observation process with additional unknown parameters, and highlight how the approach handles unobserved states and unevenly spaced observations. The methodology developed is generally applicable to problems of estimation for differential equation models with delays, unobserved states, nonlinear observation processes, and partially observed histories.

  3. In-Service Aircraft Engine System Life Monitor Using Advanced Life-Estimating Technique Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to develop an accurate in-service aircraft engine life monitor system for the prediction of remaining component and system life for aircraft engines....

  4. Parameter Estimation of Induction Motors Using Water Cycle Optimization

    Directory of Open Access Journals (Sweden)

    M. Yazdani-Asrami

    2013-12-01

    Full Text Available This paper presents the application of recently introduced water cycle algorithm (WCA to optimize the parameters of exact and approximate induction motor from the nameplate data. Considering that induction motors are widely used in industrial applications, these parameters have a significant effect on the accuracy and efficiency of the motors and, ultimately, the overall system performance. Therefore, it is essential to develop algorithms for the parameter estimation of the induction motor. The fundamental concepts and ideas which underlie the proposed method is inspired from nature and based on the observation of water cycle process and how rivers and streams flow to the sea in the real world. The objective function is defined as the minimization of the real values of the relative error between the measured and estimated torques of the machine in different slip points. The proposed WCA approach has been applied on two different sample motors. Results of the proposed method have been compared with other previously applied Meta heuristic methods on the problem, which show the feasibility and the fast convergence of the proposed approach.

  5. Effect of noncircularity of experimental beam on CMB parameter estimation

    CERN Document Server

    Das, Santanu; Paulson, Sonu Tabitha

    2015-01-01

    Measurement of Cosmic Microwave Background (CMB) anisotropies has been playing a lead role in precision cosmology by providing some of the tightest constrains on cosmological models and parameters. However, precision can only be meaningful when all major systematic effects are taken into account. Non-circular beams in CMB experiments can cause large systematic deviation in the angular power spectrum, not only by modifying the measurement at a given multipole, but also introducing coupling between different multipoles through a deterministic bias matrix. Here we add a mechanism for emulating the effect of a full bias matrix to the Planck likelihood code through the parameter estimation code SCoPE. We show that if the angular power spectrum was measured with a non-circular beam, the assumption of circular Gaussian beam or considering only the diagonal part of the bias matrix can lead to huge error in parameter estimation. We demonstrate that, at least for elliptical Gaussian beams, use of scalar beam window fun...

  6. Matched-filtering and parameter estimation of ringdown waveforms

    CERN Document Server

    Berti, Emanuele; Cardoso, Vitor; Cavaglia, Marco

    2007-01-01

    Using recent results from numerical relativity simulations of non-spinning binary black hole mergers we revisit the problem of detecting ringdown waveforms and of estimating the source parameters, considering both LISA and Earth-based interferometers. We find that Advanced LIGO and EGO could detect intermediate-mass black holes of mass up to about 1000 solar masses out to a luminosity distance of a few Gpc. For typical multipolar energy distributions, we show that the single-mode ringdown templates presently used for ringdown searches in the LIGO data stream can produce a significant event loss (> 10% for all detectors in a large interval of black hole masses) and very large parameter estimation errors on the black hole's mass and spin. We estimate that more than 10^6 templates would be needed for a single-stage multi-mode search. Therefore, we recommend a "two stage" search to save on computational costs: single-mode templates can be used for detection, but multi-mode templates or Prony methods should be use...

  7. Temporal Parameters Estimation for Wheelchair Propulsion Using Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Manoela Ojeda

    2014-01-01

    Full Text Available Due to lower limb paralysis, individuals with spinal cord injury (SCI rely on their upper limbs for mobility. The prevalence of upper extremity pain and injury is high among this population. We evaluated the performance of three triaxis accelerometers placed on the upper arm, wrist, and under the wheelchair, to estimate temporal parameters of wheelchair propulsion. Twenty-six participants with SCI were asked to push their wheelchair equipped with a SMARTWheel. The estimated stroke number was compared with the criterion from video observations and the estimated push frequency was compared with the criterion from the SMARTWheel. Mean absolute errors (MAE and mean absolute percentage of error (MAPE were calculated. Intraclass correlation coefficients and Bland-Altman plots were used to assess the agreement. Results showed reasonable accuracies especially using the accelerometer placed on the upper arm where the MAPE was 8.0% for stroke number and 12.9% for push frequency. The ICC was 0.994 for stroke number and 0.916 for push frequency. The wrist and seat accelerometer showed lower accuracy with a MAPE for the stroke number of 10.8% and 13.4% and ICC of 0.990 and 0.984, respectively. Results suggested that accelerometers could be an option for monitoring temporal parameters of wheelchair propulsion.

  8. PARAMETER ESTIMATION OF VALVE STICTION USING ANT COLONY OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    S. Kalaivani

    2012-07-01

    Full Text Available In this paper, a procedure for quantifying valve stiction in control loops based on ant colony optimization has been proposed. Pneumatic control valves are widely used in the process industry. The control valve contains non-linearities such as stiction, backlash, and deadband that in turn cause oscillations in the process output. Stiction is one of the long-standing problems and it is the most severe problem in the control valves. Thus the measurement data from an oscillating control loop can be used as a possible diagnostic signal to provide an estimate of the stiction magnitude. Quantification of control valve stiction is still a challenging issue. Prior to doing stiction detection and quantification, it is necessary to choose a suitable model structure to describe control-valve stiction. To understand the stiction phenomenon, the Stenman model is used. Ant Colony Optimization (ACO, an intelligent swarm algorithm, proves effective in various fields. The ACO algorithm is inspired from the natural trail following behaviour of ants. The parameters of the Stenman model are estimated using ant colony optimization, from the input-output data by minimizing the error between the actual stiction model output and the simulated stiction model output. Using ant colony optimization, Stenman model with known nonlinear structure and unknown parameters can be estimated.

  9. Parameter estimation for stochastic hybrid model applied to urban traffic flow estimation

    OpenAIRE

    2015-01-01

    This study proposes a novel data-based approach for estimating the parameters of a stochastic hybrid model describing the traffic flow in an urban traffic network with signalized intersections. The model represents the evolution of the traffic flow rate, measuring the number of vehicles passing a given location per time unit. This traffic flow rate is described using a mode-dependent first-order autoregressive (AR) stochastic process. The parameters of the AR process take different values dep...

  10. Estimating parameters in stochastic systems: A variational Bayesian approach

    Science.gov (United States)

    Vrettas, Michail D.; Cornford, Dan; Opper, Manfred

    2011-11-01

    This work is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variation of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here a new extended framework is derived that is based on a local polynomial approximation of a recently proposed variational Bayesian algorithm. The paper begins by showing that the new extension of this variational algorithm can be used for state estimation (smoothing) and converges to the original algorithm. However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new approach is validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, the exact likelihood of which can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz ’63 (3D model). As a special case the algorithm is also applied to the 40 dimensional stochastic Lorenz ’96 system. In our investigation we compare this new approach with a variety of other well known methods, such as the hybrid Monte Carlo, dual unscented Kalman filter, full weak-constraint 4D-Var algorithm and analyse empirically their asymptotic behaviour as a function of observation density or length of time window increases. In particular we show that we are able to estimate parameters in both the drift (deterministic) and the diffusion (stochastic) part of the model evolution equations using our new methods.

  11. Error estimation and adaptivity for transport problems with uncertain parameters

    Science.gov (United States)

    Sahni, Onkar; Li, Jason; Oberai, Assad

    2016-11-01

    Stochastic partial differential equations (PDEs) with uncertain parameters and source terms arise in many transport problems. In this study, we develop and apply an adaptive approach based on the variational multiscale (VMS) formulation for discretizing stochastic PDEs. In this approach we employ finite elements in the physical domain and generalize polynomial chaos based spectral basis in the stochastic domain. We demonstrate our approach on non-trivial transport problems where the uncertain parameters are such that the advective and diffusive regimes are spanned in the stochastic domain. We show that the proposed method is effective as a local error estimator in quantifying the element-wise error and in driving adaptivity in the physical and stochastic domains. We will also indicate how this approach may be extended to the Navier-Stokes equations. NSF Award 1350454 (CAREER).

  12. Pedotransfer functions estimating soil hydraulic properties using different soil parameters

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Iversen, Bo Vangsø; Jacobsen, Ole Hørbye;

    2008-01-01

    Estimates of soil hydraulic properties using pedotransfer functions (PTF) are useful in many studies such as hydrochemical modelling and soil mapping. The objective of this study was to calibrate and test parametric PTFs that predict soil water retention and unsaturated hydraulic conductivity...... parameters. The PTFs are based on neural networks and the Bootstrap method using different sets of predictors and predict the van Genuchten/Mualem parameters. A Danish soil data set (152 horizons) dominated by sandy and sandy loamy soils was used in the development of PTFs to predict the Mualem hydraulic...... of the hydraulic properties of the studied soils. We found that introducing measured water content as a predictor generally gave lower errors for water retention predictions and higher errors for conductivity predictions. The best of the developed PTFs for predicting hydraulic conductivity was tested against PTFs...

  13. Acoustical estimation of parameters of porous road pavement

    Science.gov (United States)

    Valyaev, V. Yu.; Shanin, A. V.

    2012-11-01

    In the simplest case, porous road pavement of a known thickness is described by such parameters as porosity, tortuosity, and flow resistance. The problem of estimating these parameters is investigated in this paper. An acoustic signal reflected by the pavement is used for this. It is shown that this problem can be solved by an experiment conducted in the time domain (i.e., the pulse response of the media is recorded). The incident sound wave is thrown at a grazing angle to the surface between the pavement and the air to improve penetration into the porous medium. The procedure of computing of the pulse response using the Morse-Ingard model is described in detail.

  14. Estimation of the reconstruction parameters for Atom Probe Tomography

    CERN Document Server

    Gault, Baptiste; Stephenson, Leigh T; Moody, Michael P; Muddle, Barry C; Ringer, Simon P

    2015-01-01

    The application of wide field-of-view detection systems to atom probe experiments emphasizes the importance of careful parameter selection in the tomographic reconstruction of the analysed volume, as the sensitivity to errors rises steeply with increases in analysis dimensions. In this paper, a self-consistent method is presented for the systematic determination of the main reconstruction parameters. In the proposed approach, the compression factor and the field factor are determined using geometrical projections from the desorption images. A 3D Fourier transform is then applied to a series of reconstructions and, comparing to the known material crystallography, the efficiency of the detector is estimated. The final results demonstrate a significant improvement in the accuracy of the reconstructed volumes.

  15. Synchronization and parameter estimations of an uncertain Rikitake system

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Ibanez, Carlos, E-mail: caguilar@cic.ipn.m [CIC-IPN, Av. Juan de Dios Batiz s/n, Esq. Manuel Othon de M., Unidad Profesional Adolfo Lopez Mateos, Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, C.P. 07738, Mexico D.F. (Mexico); Martinez-Guerra, Rafael, E-mail: rguerra@ctrl.cinvestav.m [CINVESTAV-IPN, Departamento de Control Automatico, Av. Instituto Politecnico Nacional 2508, Col. San Pedro Zacatenco, Mexico, D. F., 07360 (Mexico); Aguilar-Lopez, Ricardo [CINVESTAV-IPN, Departamento de Biotecnologia y Bioingenieria (Mexico); Mata-Machuca, Juan L. [CINVESTAV-IPN, Departamento de Control Automatico, Av. Instituto Politecnico Nacional 2508, Col. San Pedro Zacatenco, Mexico, D. F., 07360 (Mexico)

    2010-08-02

    In this Letter we address the synchronization and parameter estimation of the uncertain Rikitake system, under the assumption the state is partially known. To this end we use the master/slave scheme in conjunction with the adaptive control technique. Our control approach consists of proposing a slave system which has to follow asymptotically the uncertain Rikitake system, refereed as the master system. The gains of the slave system are adjusted continually according to a convenient adaptation control law, until the measurable output errors converge to zero. The convergence analysis is carried out by using the Barbalat's Lemma. Under this context, uncertainty means that although the system structure is known, only a partial knowledge of the corresponding parameter values is available.

  16. Estimating seismic demand parameters using the endurance time method

    Institute of Scientific and Technical Information of China (English)

    Ramin MADARSHAHIAN; Homayoon ESTEKANCHI; Akbar MAHVASHMOHAMMADI

    2011-01-01

    The endurance time (ET) method is a time history based dynamic analysis in which structures are subjected to gradually intensifying excitations and their performances are judged based on their responses at various excitation levels.Using this method,the computational effort required for estimating probable seismic demand parameters can be reduced by an order of magnitude.Calculation of the maximum displacement or target displacement is a basic requirement for estimating performance based on structural design.The purpose of this paper is to compare the results of the nonlinear ET method with the nonlinear static pushover (NSP) method of FEMA 356 by evaluating performances and target displacements of steel frames.This study will lead to a deeper insight into the capabilities and limitations of the ET method.The results are further compared with those of the standard nonlinear response history analysis.We conclude that results from the ET analysis are in proper agreement with those from standard procedures.

  17. Estimation of growth parameters using a nonlinear mixed Gompertz model.

    Science.gov (United States)

    Wang, Z; Zuidhof, M J

    2004-06-01

    In order to maximize the utility of simulation models for decision making, accurate estimation of growth parameters and associated variances is crucial. A mixed Gompertz growth model was used to account for between-bird variation and heterogeneous variance. The mixed model had several advantages over the fixed effects model. The mixed model partitioned BW variation into between- and within-bird variation, and the covariance structure assumed with the random effect accounted for part of the BW correlation across ages in the same individual. The amount of residual variance decreased by over 55% with the mixed model. The mixed model reduced estimation biases that resulted from selective sampling. For analysis of longitudinal growth data, the mixed effects growth model is recommended.

  18. Area-to-point parameter estimation with geographically weighted regression

    Science.gov (United States)

    Murakami, Daisuke; Tsutsumi, Morito

    2015-07-01

    The modifiable areal unit problem (MAUP) is a problem by which aggregated units of data influence the results of spatial data analysis. Standard GWR, which ignores aggregation mechanisms, cannot be considered to serve as an efficient countermeasure of MAUP. Accordingly, this study proposes a type of GWR with aggregation mechanisms, termed area-to-point (ATP) GWR herein. ATP GWR, which is closely related to geostatistical approaches, estimates the disaggregate-level local trend parameters by using aggregated variables. We examine the effectiveness of ATP GWR for mitigating MAUP through a simulation study and an empirical study. The simulation study indicates that the method proposed herein is robust to the MAUP when the spatial scales of aggregation are not too global compared with the scale of the underlying spatial variations. The empirical studies demonstrate that the method provides intuitively consistent estimates.

  19. Optimization-based particle filter for state and parameter estimation

    Institute of Scientific and Technical Information of China (English)

    Li Fu; Qi Fei; Shi Guangming; Zhang Li

    2009-01-01

    In recent years, the theory of particle filter has been developed and widely used for state and parameter estimation in nonlinear/non-Gaussian systems. Choosing good importance density is a critical issue in particle filter design. In order to improve the approximation of posterior distribution, this paper provides an optimization-based algorithm (the steepest descent method) to generate the proposal distribution and then sample particles from the distribution. This algorithm is applied in 1-D case, and the simulation results show that the proposed particle filter performs better than the extended Kalman filter (EKF), the standard particle filter (PF), the extended Kalman particle filter (PF-EKF) and the unscented particle filter (UPF) both in efficiency and in estimation precision.

  20. Energy parameter estimation in solar powered wireless sensor networks

    KAUST Repository

    Mousa, Mustafa

    2014-02-24

    The operation of solar powered wireless sensor networks is associated with numerous challenges. One of the main challenges is the high variability of solar power input and battery capacity, due to factors such as weather, humidity, dust and temperature. In this article, we propose a set of tools that can be implemented onboard high power wireless sensor networks to estimate the battery condition and capacity as well as solar power availability. These parameters are very important to optimize sensing and communications operations and maximize the reliability of the complete system. Experimental results show that the performance of typical Lithium Ion batteries severely degrades outdoors in a matter of weeks or months, and that the availability of solar energy in an urban solar powered wireless sensor network is highly variable, which underlines the need for such power and energy estimation algorithms.

  1. Methodology to estimate particulate matter emissions from certified commercial aircraft engines.

    Science.gov (United States)

    Wayson, Roger L; Fleming, Gregg G; Lovinelli, Ralph

    2009-01-01

    Today, about one-fourth of U.S. commercial service airports, including 41 of the busiest 50, are either in nonattainment or maintenance areas per the National Ambient Air Quality Standards. U.S. aviation activity is forecasted to triple by 2025, while at the same time, the U.S. Environmental Protection Agency (EPA) is evaluating stricter particulate matter (PM) standards on the basis of documented human health and welfare impacts. Stricter federal standards are expected to impede capacity and limit aviation growth if regulatory mandated emission reductions occur as for other non-aviation sources (i.e., automobiles, power plants, etc.). In addition, strong interest exists as to the role aviation emissions play in air quality and climate change issues. These reasons underpin the need to quantify and understand PM emissions from certified commercial aircraft engines, which has led to the need for a methodology to predict these emissions. Standardized sampling techniques to measure volatile and nonvolatile PM emissions from aircraft engines do not exist. As such, a first-order approximation (FOA) was derived to fill this need based on available information. FOA1.0 only allowed prediction of nonvolatile PM. FOA2.0 was a change to include volatile PM emissions on the basis of the ratio of nonvolatile to volatile emissions. Recent collaborative efforts by industry (manufacturers and airlines), research establishments, and regulators have begun to provide further insight into the estimation of the PM emissions. The resultant PM measurement datasets are being analyzed to refine sampling techniques and progress towards standardized PM measurements. These preliminary measurement datasets also support the continued refinement of the FOA methodology. FOA3.0 disaggregated the prediction techniques to allow for independent prediction of nonvolatile and volatile emissions on a more theoretical basis. The Committee for Aviation Environmental Protection of the International Civil

  2. Singularity of Some Software Reliability Models and Parameter Estimation Method

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    According to the principle, “The failure data is the basis of software reliability analysis”, we built a software reliability expert system (SRES) by adopting the artificial intelligence technology. By reasoning out the conclusion from the fitting results of failure data of a software project, the SRES can recommend users “the most suitable model” as a software reliability measurement model. We believe that the SRES can overcome the inconsistency in applications of software reliability models well. We report investigation results of singularity and parameter estimation methods of experimental models in SRES.

  3. Lunar ~3He estimations and related parameters analyses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    As a potential nuclear fuel, 3He element is significant for both the solution of impending human energy crisis and the conservation of natural environment. Lunar regolith contains abundant and easily extracted 3He. Based on the analyses of the impact factors of 3He abundance, here we have compared a few key assessment parameters and approaches used in lunar regolith 3He reserve estimation and some representative estimation results, and discussed the issues concerned in 3He abundance variation and 3He reserve estimation. Our studies suggest that in a range of at least meters deep, 3He abundance in lunar regolith is homogeneously distributed and generally does not depend on the depth; lunar regolith has long been in a saturation state of 3He trapped by minerals through chemical bonds, and the temperature fluctuation on the lunar surface exerts little influence on the lattice 3He abundance. In terms of above conclusions and the newest lunar regolith depth data from the microwave brightness temperature retrieval of the "ChangE-1" Lunar Microwave Sounder, a new 3He reserve estimation has been presented.

  4. Quantitative analysis of aircraft multispectral-scanner data and mapping of water-quality parameters in the James River in Virginia

    Science.gov (United States)

    Johnson, R. W.; Bahn, G. S.

    1977-01-01

    Statistical analysis techniques were applied to develop quantitative relationships between in situ river measurements and the remotely sensed data that were obtained over the James River in Virginia on 28 May 1974. The remotely sensed data were collected with a multispectral scanner and with photographs taken from an aircraft platform. Concentration differences among water quality parameters such as suspended sediment, chlorophyll a, and nutrients indicated significant spectral variations. Calibrated equations from the multiple regression analysis were used to develop maps that indicated the quantitative distributions of water quality parameters and the dispersion characteristics of a pollutant plume entering the turbid river system. Results from further analyses that use only three preselected multispectral scanner bands of data indicated that regression coefficients and standard errors of estimate were not appreciably degraded compared with results from the 10-band analysis.

  5. In-flight dose estimates for aircraft crew and pregnant female crew members in military transport missions.

    Science.gov (United States)

    Alves, J G; Mairos, J C

    2007-01-01

    Aircraft fighter pilots may experience risks other than the exposure to cosmic radiation due to the characteristics of a typical fighter flight. The combined risks for fighter pilots due to the G-forces, hypobaric hypoxia, cosmic radiation exposure, etc. have determined that pregnant female pilots should remain on ground. However, several military transport missions can be considered an ordinary civil aircraft flight and the question arises whether a pregnant female crew member could still be part of the aircraft crew. The cosmic radiation dose received was estimated for transport missions carried out on the Hercules C-130 type of aircraft by a single air squad in 1 month. The flights departed from Lisboa to areas such as: the Azores, several countries in central and southern Africa, the eastern coast of the USA and the Balkans, and an estimate of the cosmic radiation dose received on each flight was carried out. A monthly average cosmic radiation dose to the aircraft crew was determined and the dose values obtained were discussed in relation to the limits established by the European Union Council Directive 96/29/Euratom. The cosmic radiation dose estimates were performed using the EPCARD v3.2 and the CARI-6 computing codes. EPCARD v3.2 was kindly made available by GSF-National Research Centre for Environment and Health, Institute of Radiation Protection (Neuherberg, Germany). CARI-6 (version July 7, 2004) was downloaded from the web site of the Civil Aerospace Medical Institute, Federal Aviation Administration (USA). In this study an estimate of the cosmic radiation dose received by military aircraft crew on typical transport missions is made.

  6. Nonlinear Parameter Estimation in Microbiological Degradation Systems and Statistic Test for Common Estimation

    DEFF Research Database (Denmark)

    Sommer, Helle Mølgaard; Holst, Helle; Spliid, Henrik

    1995-01-01

    Three identical microbiological experiments were carried out and analysed in order to examine the variability of the parameter estimates. The microbiological system consisted of a substrate (toluene) and a biomass (pure culture) mixed together in an aquifer medium. The degradation of the substrate...

  7. Parameter estimation and hypothesis testing in linear models

    CERN Document Server

    Koch, Karl-Rudolf

    1999-01-01

    The necessity to publish the second edition of this book arose when its third German edition had just been published. This second English edition is there­ fore a translation of the third German edition of Parameter Estimation and Hypothesis Testing in Linear Models, published in 1997. It differs from the first English edition by the addition of a new chapter on robust estimation of parameters and the deletion of the section on discriminant analysis, which has been more completely dealt with by the author in the book Bayesian In­ ference with Geodetic Applications, Springer-Verlag, Berlin Heidelberg New York, 1990. Smaller additions and deletions have been incorporated, to im­ prove the text, to point out new developments or to eliminate errors which became apparent. A few examples have been also added. I thank Springer-Verlag for publishing this second edition and for the assistance in checking the translation, although the responsibility of errors remains with the author. I also want to express my thanks...

  8. A robust methodology for modal parameters estimation applied to SHM

    Science.gov (United States)

    Cardoso, Rharã; Cury, Alexandre; Barbosa, Flávio

    2017-10-01

    The subject of structural health monitoring is drawing more and more attention over the last years. Many vibration-based techniques aiming at detecting small structural changes or even damage have been developed or enhanced through successive researches. Lately, several studies have focused on the use of raw dynamic data to assess information about structural condition. Despite this trend and much skepticism, many methods still rely on the use of modal parameters as fundamental data for damage detection. Therefore, it is of utmost importance that modal identification procedures are performed with a sufficient level of precision and automation. To fulfill these requirements, this paper presents a novel automated time-domain methodology to identify modal parameters based on a two-step clustering analysis. The first step consists in clustering modes estimates from parametric models of different orders, usually presented in stabilization diagrams. In an automated manner, the first clustering analysis indicates which estimates correspond to physical modes. To circumvent the detection of spurious modes or the loss of physical ones, a second clustering step is then performed. The second step consists in the data mining of information gathered from the first step. To attest the robustness and efficiency of the proposed methodology, numerically generated signals as well as experimental data obtained from a simply supported beam tested in laboratory and from a railway bridge are utilized. The results appeared to be more robust and accurate comparing to those obtained from methods based on one-step clustering analysis.

  9. Linear Estimation of Location and Scale Parameters Using Partial Maxima

    CERN Document Server

    Papadatos, Nickos

    2010-01-01

    Consider an i.i.d. sample X^*_1,X^*_2,...,X^*_n from a location-scale family, and assume that the only available observations consist of the partial maxima (or minima)sequence, X^*_{1:1},X^*_{2:2},...,X^*_{n:n}, where X^*_{j:j}=max{X^*_1,...,X^*_j}. This kind of truncation appears in several circumstances, including best performances in athletics events. In the case of partial maxima, the form of the BLUEs (best linear unbiased estimators) is quite similar to the form of the well-known Lloyd's (1952, Least-squares estimation of location and scale parameters using order statistics, Biometrika, vol. 39, pp. 88-95) BLUEs, based on (the sufficient sample of) order statistics, but, in contrast to the classical case, their consistency is no longer obvious. The present paper is mainly concerned with the scale parameter, showing that the variance of the partial maxima BLUE is at most of order O(1/log n), for a wide class of distributions.

  10. Estimation of Secondary Meteorological Parameters Using Mining Data Techniques

    Directory of Open Access Journals (Sweden)

    Rosabel Zerquera Díaz

    2010-10-01

    Full Text Available This work develops a process of Knowledge Discovery in Databases (KDD at the Higher Polytechnic Institute José Antonio Echeverría for the group of Environmental Research in collaboration with the Center of Information Management and Energy Development (CUBAENERGÍA in order to obtain a data model to estimate the behavior of secondary weather parameters from surface data. It describes some aspects of Data Mining and its application in the meteorological environment, also selects and describes the CRISP-DM methodology and data analysis tool WEKA. Tasks used: attribute selection and regression, technique: neural network of multilayer perceptron type and algorithms: CfsSubsetEval, BestFirst and MultilayerPerceptron. Estimation models are obtained for secondary meteorological parameters: height of convective mixed layer, height of mechanical mixed layer and convective velocity scale, necessary for the study of patterns of dispersion of pollutants in Cujae's area. The results set a precedent for future research and for the continuity of this in its first stage.

  11. Parameter estimation in space systems using recurrent neural networks

    Science.gov (United States)

    Parlos, Alexander G.; Atiya, Amir F.; Sunkel, John W.

    1991-01-01

    The identification of time-varying parameters encountered in space systems is addressed, using artificial neural systems. A hybrid feedforward/feedback neural network, namely a recurrent multilayer perception, is used as the model structure in the nonlinear system identification. The feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of temporal variations in the system nonlinearities. The standard back-propagation-learning algorithm is modified and it is used for both the off-line and on-line supervised training of the proposed hybrid network. The performance of recurrent multilayer perceptron networks in identifying parameters of nonlinear dynamic systems is investigated by estimating the mass properties of a representative large spacecraft. The changes in the spacecraft inertia are predicted using a trained neural network, during two configurations corresponding to the early and late stages of the spacecraft on-orbit assembly sequence. The proposed on-line mass properties estimation capability offers encouraging results, though, further research is warranted for training and testing the predictive capabilities of these networks beyond nominal spacecraft operations.

  12. Periodic orbits of hybrid systems and parameter estimation via AD.

    Energy Technology Data Exchange (ETDEWEB)

    Guckenheimer, John. (Cornell University); Phipps, Eric Todd; Casey, Richard (INRIA Sophia-Antipolis)

    2004-07-01

    Rhythmic, periodic processes are ubiquitous in biological systems; for example, the heart beat, walking, circadian rhythms and the menstrual cycle. Modeling these processes with high fidelity as periodic orbits of dynamical systems is challenging because: (1) (most) nonlinear differential equations can only be solved numerically; (2) accurate computation requires solving boundary value problems; (3) many problems and solutions are only piecewise smooth; (4) many problems require solving differential-algebraic equations; (5) sensitivity information for parameter dependence of solutions requires solving variational equations; and (6) truncation errors in numerical integration degrade performance of optimization methods for parameter estimation. In addition, mathematical models of biological processes frequently contain many poorly-known parameters, and the problems associated with this impedes the construction of detailed, high-fidelity models. Modelers are often faced with the difficult problem of using simulations of a nonlinear model, with complex dynamics and many parameters, to match experimental data. Improved computational tools for exploring parameter space and fitting models to data are clearly needed. This paper describes techniques for computing periodic orbits in systems of hybrid differential-algebraic equations and parameter estimation methods for fitting these orbits to data. These techniques make extensive use of automatic differentiation to accurately and efficiently evaluate derivatives for time integration, parameter sensitivities, root finding and optimization. The boundary value problem representing a periodic orbit in a hybrid system of differential algebraic equations is discretized via multiple-shooting using a high-degree Taylor series integration method [GM00, Phi03]. Numerical solutions to the shooting equations are then estimated by a Newton process yielding an approximate periodic orbit. A metric is defined for computing the distance

  13. Parameter and uncertainty estimation for mechanistic, spatially explicit epidemiological models

    Science.gov (United States)

    Finger, Flavio; Schaefli, Bettina; Bertuzzo, Enrico; Mari, Lorenzo; Rinaldo, Andrea

    2014-05-01

    Epidemiological models can be a crucially important tool for decision-making during disease outbreaks. The range of possible applications spans from real-time forecasting and allocation of health-care resources to testing alternative intervention mechanisms such as vaccines, antibiotics or the improvement of sanitary conditions. Our spatially explicit, mechanistic models for cholera epidemics have been successfully applied to several epidemics including, the one that struck Haiti in late 2010 and is still ongoing. Calibration and parameter estimation of such models represents a major challenge because of properties unusual in traditional geoscientific domains such as hydrology. Firstly, the epidemiological data available might be subject to high uncertainties due to error-prone diagnosis as well as manual (and possibly incomplete) data collection. Secondly, long-term time-series of epidemiological data are often unavailable. Finally, the spatially explicit character of the models requires the comparison of several time-series of model outputs with their real-world counterparts, which calls for an appropriate weighting scheme. It follows that the usual assumption of a homoscedastic Gaussian error distribution, used in combination with classical calibration techniques based on Markov chain Monte Carlo algorithms, is likely to be violated, whereas the construction of an appropriate formal likelihood function seems close to impossible. Alternative calibration methods, which allow for accurate estimation of total model uncertainty, particularly regarding the envisaged use of the models for decision-making, are thus needed. Here we present the most recent developments regarding methods for parameter and uncertainty estimation to be used with our mechanistic, spatially explicit models for cholera epidemics, based on informal measures of goodness of fit.

  14. Bayesian Approach in Estimation of Scale Parameter of Nakagami Distribution

    Directory of Open Access Journals (Sweden)

    Azam Zaka

    2014-08-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE Nakagami distribution is a flexible life time distribution that may offer a good fit to some failure data sets. It has applications in attenuation of wireless signals traversing multiple paths, deriving unit hydrographs in hydrology, medical imaging studies etc. In this research, we obtain Bayesian estimators of the scale parameter of Nakagami distribution. For the posterior distribution of this parameter, we consider Uniform, Inverse Exponential and Levy priors. The three loss functions taken up are Squared Error Loss function, Quadratic Loss Function and Precautionary Loss function. The performance of an estimator is assessed on the basis of its relative posterior risk. Monte Carlo Simulations are used to compare the performance of the estimators. It is discovered that the PLF produces the least posterior risk when uniform priors is used. SELF is the best when inverse exponential and Levy Priors are used. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;}

  15. Thermodynamic criteria for estimating the kinetic parameters of catalytic reactions

    Science.gov (United States)

    Mitrichev, I. I.; Zhensa, A. V.; Kol'tsova, E. M.

    2017-01-01

    Kinetic parameters are estimated using two criteria in addition to the traditional criterion that considers the consistency between experimental and modeled conversion data: thermodynamic consistency and the consistency with entropy production (i.e., the absolute rate of the change in entropy due to exchange with the environment is consistent with the rate of entropy production in the steady state). A special procedure is developed and executed on a computer to achieve the thermodynamic consistency of a set of kinetic parameters with respect to both the standard entropy of a reaction and the standard enthalpy of a reaction. A problem of multi-criterion optimization, reduced to a single-criterion problem by summing weighted values of the three criteria listed above, is solved. Using the reaction of NO reduction with CO on a platinum catalyst as an example, it is shown that the set of parameters proposed by D.B. Mantri and P. Aghalayam gives much worse agreement with experimental values than the set obtained on the basis of three criteria: the sum of the squares of deviations for conversion, the thermodynamic consistency, and the consistency with entropy production.

  16. Parameter Estimation of Nonlinear Systems by Dynamic Cuckoo Search.

    Science.gov (United States)

    Liao, Qixiang; Zhou, Shudao; Shi, Hanqing; Shi, Weilai

    2017-04-01

    In order to address with the problem of the traditional or improved cuckoo search (CS) algorithm, we propose a dynamic adaptive cuckoo search with crossover operator (DACS-CO) algorithm. Normally, the parameters of the CS algorithm are kept constant or adapted by empirical equation that may result in decreasing the efficiency of the algorithm. In order to solve the problem, a feedback control scheme of algorithm parameters is adopted in cuckoo search; Rechenberg's 1/5 criterion, combined with a learning strategy, is used to evaluate the evolution process. In addition, there are no information exchanges between individuals for cuckoo search algorithm. To promote the search progress and overcome premature convergence, the multiple-point random crossover operator is merged into the CS algorithm to exchange information between individuals and improve the diversification and intensification of the population. The performance of the proposed hybrid algorithm is investigated through different nonlinear systems, with the numerical results demonstrating that the method can estimate parameters accurately and efficiently. Finally, we compare the results with the standard CS algorithm, orthogonal learning cuckoo search algorithm (OLCS), an adaptive and simulated annealing operation with the cuckoo search algorithm (ACS-SA), a genetic algorithm (GA), a particle swarm optimization algorithm (PSO), and a genetic simulated annealing algorithm (GA-SA). Our simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.

  17. Estimating negative binomial parameters from occurrence data with detection times.

    Science.gov (United States)

    Hwang, Wen-Han; Huggins, Richard; Stoklosa, Jakub

    2016-11-01

    The negative binomial distribution is a common model for the analysis of count data in biology and ecology. In many applications, we may not observe the complete frequency count in a quadrat but only that a species occurred in the quadrat. If only occurrence data are available then the two parameters of the negative binomial distribution, the aggregation index and the mean, are not identifiable. This can be overcome by data augmentation or through modeling the dependence between quadrat occupancies. Here, we propose to record the (first) detection time while collecting occurrence data in a quadrat. We show that under what we call proportionate sampling, where the time to survey a region is proportional to the area of the region, that both negative binomial parameters are estimable. When the mean parameter is larger than two, our proposed approach is more efficient than the data augmentation method developed by Solow and Smith (, Am. Nat. 176, 96-98), and in general is cheaper to conduct. We also investigate the effect of misidentification when collecting negative binomially distributed data, and conclude that, in general, the effect can be simply adjusted for provided that the mean and variance of misidentification probabilities are known. The results are demonstrated in a simulation study and illustrated in several real examples.

  18. On-line estimation of concentration parameters in fermentation processes

    Institute of Scientific and Technical Information of China (English)

    XIONG Zhi-hua; HUANG Guo-hong; SHAO Hui-he

    2005-01-01

    It has long been thought that bioprocess, with their inherent measurement difficulties and complex dynamics, posed almost insurmountable problems to engineers. A novel software sensor is proposed to make more effective use of those measurements that are already available, which enable improvement in fermentation process control. The proposed method is based on mixtures of Gaussian processes (GP) with expectation maximization (EM) algorithm employed for parameter estimation of mixture of models. The mixture model can alleviate computational complexity of GP and also accord with changes of operating condition in fermentation processes, i.e., it would certainly be able to examine what types of process-knowledge would be most relevant for local models' specific operating points of the process and then combine them into a global one. Demonstrated by on-line estimate of yeast concentration in fermentation industry as an example, it is shown that soft sensor based state estimation is a powerful technique for both enhancing automatic control performance of biological systems and implementing on-line monitoring and optimization.

  19. Parameter Estimations for Signal Type Classification of Korean Disordered Voices

    Directory of Open Access Journals (Sweden)

    JiYeoun Lee

    2015-12-01

    Full Text Available Although many signal-typing studies have been published, they are primarily based on manual inspection and experts’ judgments of voice samples’ acoustic content. Software may be required to automatically and objectively classify pathological voices into the four signal types and to facilitate experts’ opinion formation by providing specific signal type determination criteria. This paper suggests the coefficient of normalized skewness variation (CSV, coefficient of normalized kurtosis variation (CKV, and bicoherence value (BV based on the linear predictive coding (LPC residual to categorize voice signals. Its objective is to improve the performances of acoustic parameters such as jitter, shimmer, and the signal-to-noise ratio (SNR in signal type classification. In this study, the classification and regression tree (CART was used to estimate the performances of the acoustic, CSV, CKV, and BV parameters by using the LPC residual. In the investigation of acoustic parameters such as jitter, shimmer, and the SNR, the optimal tree generated by jitter alone yielded an average accuracy of 78.6%. When the acoustic, CSV, CKV, and BV parameters together were used to generate the decision tree, the average accuracy was 82.1%. In this case, the optimal tree formed by jitter and the BV effectively discriminated between the signal types. To perform accurate acoustic pathological voice analysis, signal type quantification is of great interest. Automatic pathological voice classification can be an important objective tool as the signal type can be numerically measured. Future investigations will incorporate multiple pathological data in classification methods to improve their performance and implement more reliable detectors.

  20. Estimation of the Alpha Factor Parameters Using the ICDE Database

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Il; Hwang, M. J.; Han, S. H

    2007-04-15

    Detailed common cause failure (CCF) analysis generally need for the data for CCF events of other nuclear power plants because the CCF events rarely occur. KAERI has been participated at the international common cause failure data exchange (ICDE) project to get the data for the CCF events. The operation office of the ICDE project sent the CCF event data for EDG to the KAERI at December 2006. As a pilot study, we performed the detailed CCF analysis of EDGs for Yonggwang Units 3 and 4 and Ulchin Units 3 and 4 using the ICDE database. There are two onsite EDGs for each NPP. When an offsite power and the two onsite EDGs are not available, one alternate AC (AAC) diesel generator (hereafter AAC) is provided. Two onsite EDGs and the AAC are manufactured by the same company, but they are designed differently. We estimated the Alpha Factor and the CCF probability for the cases where three EDGs were assumed to be identically designed, and for those were assumed to be not identically designed. For the cases where three EDGs were assumed to be identically designed, double CCF probabilities of Yonggwang Units 3/4 and Ulchin Units 3/4 for 'fails to start' were estimated as 2.20E-4 and 2.10E-4, respectively. Triple CCF probabilities of those were estimated as 2.39E-4 and 2.42E-4, respectively. As each NPP has no experience for 'fails to run', Yonggwang Units 3/4 and Ulchin Units 3/4 have the same CCF probability. The estimated double and triple CCF probabilities for 'fails to run' are 4.21E-4 and 4.61E-4, respectively. Quantification results show that the system unavailability for the cases where the three EDGs are identical is higher than that where the three EDGs are different. The estimated system unavailability of the former case was increased by 3.4% comparing with that of the latter. As a future study, a computerization work for the estimations of the CCF parameters will be performed.

  1. Colocated MIMO Radar: Beamforming, Waveform design, and Target Parameter Estimation

    KAUST Repository

    Jardak, Seifallah

    2014-04-01

    Thanks to its improved capabilities, the Multiple Input Multiple Output (MIMO) radar is attracting the attention of researchers and practitioners alike. Because it transmits orthogonal or partially correlated waveforms, this emerging technology outperformed the phased array radar by providing better parametric identifiability, achieving higher spatial resolution, and designing complex beampatterns. To avoid jamming and enhance the signal to noise ratio, it is often interesting to maximize the transmitted power in a given region of interest and minimize it elsewhere. This problem is known as the transmit beampattern design and is usually tackled as a two-step process: a transmit covariance matrix is firstly designed by minimizing a convex optimization problem, which is then used to generate practical waveforms. In this work, we propose simple novel methods to generate correlated waveforms using finite alphabet constant and non-constant-envelope symbols. To generate finite alphabet waveforms, the proposed method maps easily generated Gaussian random variables onto the phase-shift-keying, pulse-amplitude, and quadrature-amplitude modulation schemes. For such mapping, the probability density function of Gaussian random variables is divided into M regions, where M is the number of alphabets in the corresponding modulation scheme. By exploiting the mapping function, the relationship between the cross-correlation of Gaussian and finite alphabet symbols is derived. The second part of this thesis covers the topic of target parameter estimation. To determine the reflection coefficient, spatial location, and Doppler shift of a target, maximum likelihood estimation yields the best performance. However, it requires a two dimensional search problem. Therefore, its computational complexity is prohibitively high. So, we proposed a reduced complexity and optimum performance algorithm which allows the two dimensional fast Fourier transform to jointly estimate the spatial location

  2. Cosmological Parameter Estimation with Large Scale Structure Observations

    CERN Document Server

    Di Dio, Enea; Durrer, Ruth; Lesgourgues, Julien

    2014-01-01

    We estimate the sensitivity of future galaxy surveys to cosmological parameters, using the redshift dependent angular power spectra of galaxy number counts, $C_\\ell(z_1,z_2)$, calculated with all relativistic corrections at first order in perturbation theory. We pay special attention to the redshift dependence of the non-linearity scale and present Fisher matrix forecasts for Euclid-like and DES-like galaxy surveys. We compare the standard $P(k)$ analysis with the new $C_\\ell(z_1,z_2)$ method. We show that for surveys with photometric redshifts the new analysis performs significantly better than the $P(k)$ analysis. For spectroscopic redshifts, however, the large number of redshift bins which would be needed to fully profit from the redshift information, is severely limited by shot noise. We also identify surveys which can measure the lensing contribution and we study the monopole, $C_0(z_1,z_2)$.

  3. Optimal segmentation of pupillometric images for estimating pupil shape parameters.

    Science.gov (United States)

    De Santis, A; Iacoviello, D

    2006-12-01

    The problem of determining the pupil morphological parameters from pupillometric data is considered. These characteristics are of great interest for non-invasive early diagnosis of the central nervous system response to environmental stimuli of different nature, in subjects suffering some typical diseases such as diabetes, Alzheimer disease, schizophrenia, drug and alcohol addiction. Pupil geometrical features such as diameter, area, centroid coordinates, are estimated by a procedure based on an image segmentation algorithm. It exploits the level set formulation of the variational problem related to the segmentation. A discrete set up of this problem that admits a unique optimal solution is proposed: an arbitrary initial curve is evolved towards the optimal segmentation boundary by a difference equation; therefore no numerical approximation schemes are needed, as required in the equivalent continuum formulation usually adopted in the relevant literature.

  4. Robustness of Modal Parameter Estimation Methods Applied to Lightweight Structures

    DEFF Research Database (Denmark)

    Dickow, Kristoffer Ahrens; Kirkegaard, Poul Henning; Andersen, Lars Vabbersgaard

    2013-01-01

    of nominally identical test subjects. However, the literature on modal testing of timber structures is rather limited and the applicability and robustness of dierent curve tting methods for modal analysis of such structures is not described in detail. The aim of this paper is to investigate the robustness...... of two parameter estimation methods built into the commercial modal testing software B&K Pulse Re ex Advanced Modal Analysis. The investigations are done by means of frequency response functions generated from a nite-element model and subjected to articial noise before being analyzed with Pulse Re ex...... and the Polyreference Time method are fairly robust and well suited for the structure being analyzed....

  5. Robustness of Modal Parameter Estimation Methods Applied to Lightweight Structures

    DEFF Research Database (Denmark)

    Dickow, Kristoffer Ahrens; Kirkegaard, Poul Henning; Andersen, Lars Vabbersgaard

    2013-01-01

    of nominally identical test subjects. However, the literature on modal testing of timber structures is rather limited and the applicability and robustness of dierent curve tting methods for modal analysis of such structures is not described in detail. The aim of this paper is to investigate the robustness....... The ability to handle closely spaced modes and broad frequency ranges is investigated for a numerical model of a lightweight junction under dierent signal-to-noise ratios. The selection of both excitation points and response points are discussed. It is found that both the Rational Fraction Polynomial-Z method...... of two parameter estimation methods built into the commercial modal testing software B&K Pulse Re ex Advanced Modal Analysis. The investigations are done by means of frequency response functions generated from a nite-element model and subjected to articial noise before being analyzed with Pulse Re ex...

  6. Optimal Bayesian experimental design for contaminant transport parameter estimation

    CERN Document Server

    Tsilifis, Panagiotis; Hajali, Paris

    2015-01-01

    Experimental design is crucial for inference where limitations in the data collection procedure are present due to cost or other restrictions. Optimal experimental designs determine parameters that in some appropriate sense make the data the most informative possible. In a Bayesian setting this is translated to updating to the best possible posterior. Information theoretic arguments have led to the formation of the expected information gain as a design criterion. This can be evaluated mainly by Monte Carlo sampling and maximized by using stochastic approximation methods, both known for being computationally expensive tasks. We propose an alternative framework where a lower bound of the expected information gain is used as the design criterion. In addition to alleviating the computational burden, this also addresses issues concerning estimation bias. The problem of permeability inference in a large contaminated area is used to demonstrate the validity of our approach where we employ the massively parallel vers...

  7. MANOVA, LDA, and FA criteria in clusters parameter estimation

    Directory of Open Access Journals (Sweden)

    Stan Lipovetsky

    2015-12-01

    Full Text Available Multivariate analysis of variance (MANOVA and linear discriminant analysis (LDA apply such well-known criteria as the Wilks’ lambda, Lawley–Hotelling trace, and Pillai’s trace test for checking quality of the solutions. The current paper suggests using these criteria for building objectives for finding clusters parameters because optimizing such objectives corresponds to the best distinguishing between the clusters. Relation to Joreskog’s classification for factor analysis (FA techniques is also considered. The problem can be reduced to the multinomial parameterization, and solution can be found in a nonlinear optimization procedure which yields the estimates for the cluster centers and sizes. This approach for clustering works with data compressed into covariance matrix so can be especially useful for big data.

  8. Application of Genetic Algorithms for Parameter Estimation in Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Orestes Llanes Santiago

    2011-11-01

    Full Text Available Normal 0 21 false false false ES X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} In chromatography, complex inverse problems related to the parameters estimation and process optimization are presented. Metaheuristics methods are known as general purpose approximated algorithms which seek and hopefully find good solutions at a reasonable computational cost. These methods are iterative process to perform a robust search of a solution space. Genetic algorithms are optimization techniques based on the principles of genetics and natural selection. They have demonstrated very good performance as global optimizers in many types of applications, including inverse problems. In this work, the effectiveness of genetic algorithms is investigated to estimate parameters in liquid chromatography.

  9. Procedure for estimating stability and control parameters from flight test data by using maximum likelihood methods employing a real-time digital system

    Science.gov (United States)

    Grove, R. D.; Bowles, R. L.; Mayhew, S. C.

    1972-01-01

    A maximum likelihood parameter estimation procedure and program were developed for the extraction of the stability and control derivatives of aircraft from flight test data. Nonlinear six-degree-of-freedom equations describing aircraft dynamics were used to derive sensitivity equations for quasilinearization. The maximum likelihood function with quasilinearization was used to derive the parameter change equations, the covariance matrices for the parameters and measurement noise, and the performance index function. The maximum likelihood estimator was mechanized into an iterative estimation procedure utilizing a real time digital computer and graphic display system. This program was developed for 8 measured state variables and 40 parameters. Test cases were conducted with simulated data for validation of the estimation procedure and program. The program was applied to a V/STOL tilt wing aircraft, a military fighter airplane, and a light single engine airplane. The particular nonlinear equations of motion, derivation of the sensitivity equations, addition of accelerations into the algorithm, operational features of the real time digital system, and test cases are described.

  10. Analysis of Wave Directional Spreading by Bayesian Parameter Estimation

    Institute of Scientific and Technical Information of China (English)

    钱桦; 莊士贤; 高家俊

    2002-01-01

    A spatial array of wave gauges installed on an observatoion platform has been designed and arranged to measure the lo-cal features of winter monsoon directional waves off Taishi coast of Taiwan. A new method, named the Bayesian ParameterEstimation Method( BPEM), is developed and adopted to determine the main direction and the directional spreading parame-ter of directional spectra. The BPEM could be considered as a regression analysis to find the maximum joint probability ofparameters, which best approximates the observed data from the Bayesian viewpoint. The result of the analysis of field wavedata demonstrates the highly dependency of the characteristics of normalized directional spreading on the wave age. The Mit-suyasu type empirical formula of directional spectnun is therefore modified to be representative of monsoon wave field. More-over, it is suggested that Smax could be expressed as a function of wave steepness. The values of Smax decrease with increas-ing steepness. Finally, a local directional spreading model, which is simple to be utilized in engineering practice, is prop-osed.

  11. Estimation of fracture parameters using elastic full-waveform inversion

    KAUST Repository

    Zhang, Zhendong

    2017-08-17

    Current methodologies to characterize fractures at the reservoir scale have serious limitations in spatial resolution and suffer from uncertainties in the inverted parameters. Here, we propose to estimate the spatial distribution and physical properties of fractures using full-waveform inversion (FWI) of multicomponent surface seismic data. An effective orthorhombic medium with five clusters of vertical fractures distributed in a checkboard fashion is used to test the algorithm. A shape regularization term is added to the objective function to improve the estimation of the fracture azimuth, which is otherwise poorly constrained. The cracks are assumed to be penny-shaped to reduce the nonuniqueness in the inverted fracture weaknesses and achieve a faster convergence. To better understand the inversion results, we analyze the radiation patterns induced by the perturbations in the fracture weaknesses and orientation. Due to the high-resolution potential of elastic FWI, the developed algorithm can recover the spatial fracture distribution and identify localized “sweet spots” of intense fracturing. However, the fracture azimuth can be resolved only using long-offset data.

  12. Parameter Estimation in Ultrasonic Measurements on Trabecular Bone

    Science.gov (United States)

    Marutyan, Karen R.; Anderson, Christian C.; Wear, Keith A.; Holland, Mark R.; Miller, James G.; Bretthorst, G. Larry

    2007-11-01

    Ultrasonic tissue characterization has shown promise for clinical diagnosis of diseased bone (e.g., osteoporosis) by establishing correlations between bone ultrasonic characteristics and the state of disease. Porous (trabecular) bone supports propagation of two compressional modes, a fast wave and a slow wave, each of which is characterized by an approximately linear-with-frequency attenuation coefficient and monotonically increasing with frequency phase velocity. Only a single wave, however, is generally apparent in the received signals. The ultrasonic parameters that govern propagation of this single wave appear to be causally inconsistent [1]. Specifically, the attenuation coefficient rises approximately linearly with frequency, but the phase velocity exhibits a decrease with frequency. These inconsistent results are obtained when the data are analyzed under the assumption that the received signal is composed of one wave. The inconsistency disappears if the data are analyzed under the assumption that the signal is composed of superposed fast and slow waves. In the current investigation, Bayesian probability theory is applied to estimate the ultrasonic characteristics underlying the propagation of the fast and slow wave from computer simulations. Our motivation is the assumption that identifying the intrinsic material properties of bone will provide more reliable estimates of bone quality and fracture risk than the apparent properties derived by analyzing the data using a one-mode model.

  13. Parameter estimation for models of ligninolytic and cellulolytic enzyme kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gangsheng [ORNL; Post, Wilfred M [ORNL; Mayes, Melanie [ORNL; Frerichs, Joshua T [ORNL; Jagadamma, Sindhu [ORNL

    2012-01-01

    While soil enzymes have been explicitly included in the soil organic carbon (SOC) decomposition models, there is a serious lack of suitable data for model parameterization. This study provides well-documented enzymatic parameters for application in enzyme-driven SOC decomposition models from a compilation and analysis of published measurements. In particular, we developed appropriate kinetic parameters for five typical ligninolytic and cellulolytic enzymes ( -glucosidase, cellobiohydrolase, endo-glucanase, peroxidase, and phenol oxidase). The kinetic parameters included the maximum specific enzyme activity (Vmax) and half-saturation constant (Km) in the Michaelis-Menten equation. The activation energy (Ea) and the pH optimum and sensitivity (pHopt and pHsen) were also analyzed. pHsen was estimated by fitting an exponential-quadratic function. The Vmax values, often presented in different units under various measurement conditions, were converted into the same units at a reference temperature (20 C) and pHopt. Major conclusions are: (i) Both Vmax and Km were log-normal distributed, with no significant difference in Vmax exhibited between enzymes originating from bacteria or fungi. (ii) No significant difference in Vmax was found between cellulases and ligninases; however, there was significant difference in Km between them. (iii) Ligninases had higher Ea values and lower pHopt than cellulases; average ratio of pHsen to pHopt ranged 0.3 0.4 for the five enzymes, which means that an increase or decrease of 1.1 1.7 pH units from pHopt would reduce Vmax by 50%. (iv) Our analysis indicated that the Vmax values from lab measurements with purified enzymes were 1 2 orders of magnitude higher than those for use in SOC decomposition models under field conditions.

  14. Quantiles, parametric-select density estimation, and bi-information parameter estimators

    Science.gov (United States)

    Parzen, E.

    1982-01-01

    A quantile-based approach to statistical analysis and probability modeling of data is presented which formulates statistical inference problems as functional inference problems in which the parameters to be estimated are density functions. Density estimators can be non-parametric (computed independently of model identified) or parametric-select (approximated by finite parametric models that can provide standard models whose fit can be tested). Exponential models and autoregressive models are approximating densities which can be justified as maximum entropy for respectively the entropy of a probability density and the entropy of a quantile density. Applications of these ideas are outlined to the problems of modeling: (1) univariate data; (2) bivariate data and tests for independence; and (3) two samples and likelihood ratios. It is proposed that bi-information estimation of a density function can be developed by analogy to the problem of identification of regression models.

  15. Genetic parameter estimation of reproductive traits of Litopenaeus vannamei

    Science.gov (United States)

    Tan, Jian; Kong, Jie; Cao, Baoxiang; Luo, Kun; Liu, Ning; Meng, Xianhong; Xu, Shengyu; Guo, Zhaojia; Chen, Guoliang; Luan, Sheng

    2017-02-01

    In this study, the heritability, repeatability, phenotypic correlation, and genetic correlation of the reproductive and growth traits of L. vannamei were investigated and estimated. Eight traits of 385 shrimps from forty-two families, including the number of eggs (EN), number of nauplii (NN), egg diameter (ED), spawning frequency (SF), spawning success (SS), female body weight (BW) and body length (BL) at insemination, and condition factor (K), were measured,. A total of 519 spawning records including multiple spawning and 91 no spawning records were collected. The genetic parameters were estimated using an animal model, a multinomial logit model (for SF), and a sire-dam and probit model (for SS). Because there were repeated records, permanent environmental effects were included in the models. The heritability estimates for BW, BL, EN, NN, ED, SF, SS, and K were 0.49 ± 0.14, 0.51 ± 0.14, 0.12 ± 0.08, 0, 0.01 ± 0.04, 0.06 ± 0.06, 0.18 ± 0.07, and 0.10 ± 0.06, respectively. The genetic correlation was 0.99 ± 0.01 between BW and BL, 0.90 ± 0.19 between BW and EN, 0.22 ± 0.97 between BW and ED, -0.77 ± 1.14 between EN and ED, and -0.27 ± 0.36 between BW and K. The heritability of EN estimated without a covariate was 0.12 ± 0.08, and the genetic correlation was 0.90 ± 0.19 between BW and EN, indicating that improving BW may be used in selection programs to genetically improve the reproductive output of L. vannamei during the breeding. For EN, the data were also analyzed using body weight as a covariate (EN-2). The heritability of EN-2 was 0.03 ± 0.05, indicating that it is difficult to improve the reproductive output by genetic improvement. Furthermore, excessive pursuit of this selection is often at the expense of growth speed. Therefore, the selection of high-performance spawners using BW and SS may be an important strategy to improve nauplii production.

  16. Parameter Estimation of Jelinski-Moranda Model Based on Weighted Nonlinear Least Squares and Heteroscedasticity

    OpenAIRE

    Liu, Jingwei; Liu, Yi; Xu, Meizhi

    2015-01-01

    Parameter estimation method of Jelinski-Moranda (JM) model based on weighted nonlinear least squares (WNLS) is proposed. The formulae of resolving the parameter WNLS estimation (WNLSE) are derived, and the empirical weight function and heteroscedasticity problem are discussed. The effects of optimization parameter estimation selection based on maximum likelihood estimation (MLE) method, least squares estimation (LSE) method and weighted nonlinear least squares estimation (WNLSE) method are al...

  17. Clinical refinement of the automatic lung parameter estimator (ALPE).

    Science.gov (United States)

    Thomsen, Lars P; Karbing, Dan S; Smith, Bram W; Murley, David; Weinreich, Ulla M; Kjærgaard, Søren; Toft, Egon; Thorgaard, Per; Andreassen, Steen; Rees, Stephen E

    2013-06-01

    The automatic lung parameter estimator (ALPE) method was developed in 2002 for bedside estimation of pulmonary gas exchange using step changes in inspired oxygen fraction (FIO₂). Since then a number of studies have been conducted indicating the potential for clinical application and necessitating systems evolution to match clinical application. This paper describes and evaluates the evolution of the ALPE method from a research implementation (ALPE1) to two commercial implementations (ALPE2 and ALPE3). A need for dedicated implementations of the ALPE method was identified: one for spontaneously breathing (non-mechanically ventilated) patients (ALPE2) and one for mechanically ventilated patients (ALPE3). For these two implementations, design issues relating to usability and automation are described including the mixing of gasses to achieve FIO₂ levels, and the automatic selection of FIO₂. For ALPE2, these improvements are evaluated against patients studied using the system. The major result is the evolution of the ALPE method into two dedicated implementations, namely ALPE2 and ALPE3. For ALPE2, the usability and automation of FIO₂ selection has been evaluated in spontaneously breathing patients showing that variability of gas delivery is 0.3 % (standard deviation) in 1,332 breaths from 20 patients. Also for ALPE2, the automated FIO2 selection method was successfully applied in 287 patient cases, taking 7.2 ± 2.4 min and was shown to be safe with only one patient having SpO₂ < 86 % when the clinician disabled the alarms. The ALPE method has evolved into two practical, usable systems targeted at clinical application, namely ALPE2 for spontaneously breathing patients and ALPE3 for mechanically ventilated patients. These systems may promote the exploration of the use of more detailed descriptions of pulmonary gas exchange in clinical practice.

  18. Estimating Turbulent Surface Fluxes from Small Unmanned Aircraft: Evaluation of Current Abilities

    Science.gov (United States)

    de Boer, G.; Lawrence, D.; Elston, J.; Cassano, J. J.; Mack, J.; Wildmann, N.; Nigro, M. A.; Ivey, M.; Wolfe, D. E.; Muschinski, A.

    2014-12-01

    Heat transfer between the atmosphere and Earth's surface represents a key component to understanding Earth energy balance, making it important in understanding and simulating climate. Arguably, the oceanic air-sea interface and Polar sea-ice-air interface are amongst the most challenging in which to measure these fluxes. This difficulty results partially from challenges associated with infrastructure deployment on these surfaces and partially from an inability to obtain spatially representative values over a potentially inhomogeneous surface. Traditionally sensible (temperature) and latent (moisture) fluxes are estimated using one of several techniques. A preferred method involves eddy-correlation where cross-correlation between anomalies in vertical motion (w) and temperature (T) or moisture (q) is used to estimate heat transfer. High-frequency measurements of these quantities can be derived using tower-mounted instrumentation. Such systems have historically been deployed over land surfaces or on ships and buoys to calculate fluxes at the air-land or air-sea interface, but such deployments are expensive and challenging to execute, resulting in a lack of spatially diverse measurements. A second ("bulk") technique involves the observation of horizontal windspeed, temperature and moisture at a given altitude over an extended time period in order to estimate the surface fluxes. Small Unmanned Aircraft Systems (sUAS) represent a unique platform from which to derive these fluxes. These sUAS can be small ( 1 m), lightweight ( 700 g), low cost ( $2000) and relatively easy to deploy to remote locations and over inhomogeneous surfaces. We will give an overview of the ability of sUAS to provide measurements necessary for estimating surface turbulent fluxes. This discussion is based on flights in the vicinity of the 1000 ft. Boulder Atmospheric Observatory (BAO) tower, and over the US Department of Energy facility at Oliktok Point, Alaska. We will present initial comparisons

  19. Comparative study on parameter estimation methods for attenuation relationships

    Science.gov (United States)

    Sedaghati, Farhad; Pezeshk, Shahram

    2016-12-01

    In this paper, the performance and advantages and disadvantages of various regression methods to derive coefficients of an attenuation relationship have been investigated. A database containing 350 records out of 85 earthquakes with moment magnitudes of 5-7.6 and Joyner-Boore distances up to 100 km in Europe and the Middle East has been considered. The functional form proposed by Ambraseys et al (2005 Bull. Earthq. Eng. 3 1-53) is selected to compare chosen regression methods. Statistical tests reveal that although the estimated parameters are different for each method, the overall results are very similar. In essence, the weighted least squares method and one-stage maximum likelihood perform better than the other considered regression methods. Moreover, using a blind weighting matrix or a weighting matrix related to the number of records would not yield in improving the performance of the results. Further, to obtain the true standard deviation, the pure error analysis is necessary. Assuming that the correlation between different records of a specific earthquake exists, the one-stage maximum likelihood considering the true variance acquired by the pure error analysis is the most preferred method to compute the coefficients of a ground motion predication equation.

  20. Modeling and parameter estimation for hydraulic system of excavator's arm

    Institute of Scientific and Technical Information of China (English)

    HE Qing-hua; HAO Peng; ZHANG Da-qing

    2008-01-01

    A retrofitted electro-bydraulic proportional system for hydraulic excavator was introduced firstly. According to the principle and characteristic of load independent flow distribution(LUDV)system, taking boom hydraulic system as an example and ignoring the leakage of hydraulic cylinder and the mass of oil in it,a force equilibrium equation and a continuous equation of hydraulic cylinder were set up.Based On the flow equation of electro-hydraulic proportional valve, the pressure passing through the valve and the difference of pressure were tested and analyzed.The results show that the difference of pressure does not change with load, and it approximates to 2.0 MPa. And then, assume the flow across the valve is directly proportional to spool displacement andis not influenced by load, a simplified model of electro-hydraulic system was put forward. At the same time, by analyzing the structure and load-bearing of boom instrument, and combining moment equivalent equation of manipulator with rotating law, the estimation methods and equations for such parameters as equivalent mass and bearing force of hydraulic cylinder were set up. Finally, the step response of flow of boom cylinder was tested when the electro-hydraulic proportional valve was controlled by the stepcurrent. Based on the experiment curve, the flow gain coefficient of valve is identified as 2.825×10-4m3/(s·A)and the model is verified.

  1. Parameter estimation for the subcritical Heston model based on discrete time observations

    OpenAIRE

    2014-01-01

    We study asymptotic properties of some (essentially conditional least squares) parameter estimators for the subcritical Heston model based on discrete time observations derived from conditional least squares estimators of some modified parameters.

  2. Justification of Estimates for Fiscal Year 1985 Submitted to Congress February 1984. Aircraft Procurement, Air Force

    Science.gov (United States)

    1984-02-01

    lA 4 olllionl: T•he aircraft selhcted will be ured for sei surveillance, telemetry rela). and drone control to zupport 1M altitude, multiple drone ...safety. The aircraft will relay test data, control. =Itiple drones , znd clear "te tea. area of cther air/water craft. The-e aircraft will be procured as...providezz higi manet ~verztl:aity. antI sufficient peiuer for aecezsory/senasor operat.onz.. "It 11 NI -r;r~ ieqleen a1 Fr;rci~ fecrreer~t F- cci31

  3. Insights on the role of accurate state estimation in coupled model parameter estimation by a conceptual climate model study

    Science.gov (United States)

    Yu, Xiaolin; Zhang, Shaoqing; Lin, Xiaopei; Li, Mingkui

    2017-03-01

    The uncertainties in values of coupled model parameters are an important source of model bias that causes model climate drift. The values can be calibrated by a parameter estimation procedure that projects observational information onto model parameters. The signal-to-noise ratio of error covariance between the model state and the parameter being estimated directly determines whether the parameter estimation succeeds or not. With a conceptual climate model that couples the stochastic atmosphere and slow-varying ocean, this study examines the sensitivity of state-parameter covariance on the accuracy of estimated model states in different model components of a coupled system. Due to the interaction of multiple timescales, the fast-varying atmosphere with a chaotic nature is the major source of the inaccuracy of estimated state-parameter covariance. Thus, enhancing the estimation accuracy of atmospheric states is very important for the success of coupled model parameter estimation, especially for the parameters in the air-sea interaction processes. The impact of chaotic-to-periodic ratio in state variability on parameter estimation is also discussed. This simple model study provides a guideline when real observations are used to optimize model parameters in a coupled general circulation model for improving climate analysis and predictions.

  4. Estimation of uranium migration parameters in sandstone aquifers.

    Science.gov (United States)

    Malov, A I

    2016-03-01

    The chemical composition and isotopes of carbon and uranium were investigated in groundwater samples that were collected from 16 wells and 2 sources in the Northern Dvina Basin, Northwest Russia. Across the dataset, the temperatures in the groundwater ranged from 3.6 to 6.9 °C, the pH ranged from 7.6 to 9.0, the Eh ranged from -137 to +128 mV, the total dissolved solids (TDS) ranged from 209 to 22,000 mg L(-1), and the dissolved oxygen (DO) ranged from 0 to 9.9 ppm. The (14)C activity ranged from 0 to 69.96 ± 0.69 percent modern carbon (pmC). The uranium content in the groundwater ranged from 0.006 to 16 ppb, and the (234)U:(238)U activity ratio ranged from 1.35 ± 0.21 to 8.61 ± 1.35. The uranium concentration and (234)U:(238)U activity ratio increased from the recharge area to the redox barrier; behind the barrier, the uranium content is minimal. The results were systematized by creating a conceptual model of the Northern Dvina Basin's hydrogeological system. The use of uranium isotope dating in conjunction with radiocarbon dating allowed the determination of important water-rock interaction parameters, such as the dissolution rate:recoil loss factor ratio Rd:p (a(-1)) and the uranium retardation factor:recoil loss factor ratio R:p in the aquifer. The (14)C age of the water was estimated to be between modern and >35,000 years. The (234)U-(238)U age of the water was estimated to be between 260 and 582,000 years. The Rd:p ratio decreases with increasing groundwater residence time in the aquifer from n × 10(-5) to n × 10(-7) a(-1). This finding is observed because the TDS increases in that direction from 0.2 to 9 g L(-1), and accordingly, the mineral saturation indices increase. Relatively high values of R:p (200-1000) characterize aquifers in sandy-clayey sediments from the Late Pleistocene and the deepest parts of the Vendian strata. In samples from the sandstones of the upper part of the Vendian strata, the R:p value is ∼ 24, i.e., sorption processes are

  5. Automated Modal Parameter Estimation of Civil Engineering Structures

    DEFF Research Database (Denmark)

    Andersen, Palle; Brincker, Rune; Goursat, Maurice

    In this paper the problems of doing automatic modal parameter extraction of ambient excited civil engineering structures is considered. Two different approaches for obtaining the modal parameters automatically are presented: The Frequency Domain Decomposition (FDD) technique and a correlation...

  6. Variational methods to estimate terrestrial ecosystem model parameters

    Science.gov (United States)

    Delahaies, Sylvain; Roulstone, Ian

    2016-04-01

    Carbon is at the basis of the chemistry of life. Its ubiquity in the Earth system is the result of complex recycling processes. Present in the atmosphere in the form of carbon dioxide it is adsorbed by marine and terrestrial ecosystems and stored within living biomass and decaying organic matter. Then soil chemistry and a non negligible amount of time transform the dead matter into fossil fuels. Throughout this cycle, carbon dioxide is released in the atmosphere through respiration and combustion of fossils fuels. Model-data fusion techniques allow us to combine our understanding of these complex processes with an ever-growing amount of observational data to help improving models and predictions. The data assimilation linked ecosystem carbon (DALEC) model is a simple box model simulating the carbon budget allocation for terrestrial ecosystems. Over the last decade several studies have demonstrated the relative merit of various inverse modelling strategies (MCMC, ENKF, 4DVAR) to estimate model parameters and initial carbon stocks for DALEC and to quantify the uncertainty in the predictions. Despite its simplicity, DALEC represents the basic processes at the heart of more sophisticated models of the carbon cycle. Using adjoint based methods we study inverse problems for DALEC with various data streams (8 days MODIS LAI, monthly MODIS LAI, NEE). The framework of constraint optimization allows us to incorporate ecological common sense into the variational framework. We use resolution matrices to study the nature of the inverse problems and to obtain data importance and information content for the different type of data. We study how varying the time step affect the solutions, and we show how "spin up" naturally improves the conditioning of the inverse problems.

  7. On Parameters Estimation of Lomax Distribution under General Progressive Censoring

    Directory of Open Access Journals (Sweden)

    Bander Al-Zahrani

    2013-01-01

    Full Text Available We consider the estimation problem of the probability S=P(Yestimator and Bayes estimators are obtained using the symmetric and asymmetric balanced loss functions. The Markov chain Monte Carlo (MCMC methods are used to accomplish some complex calculations. Comparisons are made between Bayesian and maximum likelihood estimators via Monte Carlo simulation study.

  8. Comparison of Estimation Techniques for the Four Parameter Beta Distribution.

    Science.gov (United States)

    1981-12-01

    estimators. Mendenhall and Scheaffer define an estimator as ##a rule that tells us how to calculate an estimate based on the measurements contained...Dynamics Laboratory, October 1976. 19. Mendenhall, William and Richard L. Scheaffer . Mathema- tical Statistics with ApflAlicions. North Scituate

  9. Estimation of cirrus parameters from multispectral measurements in the near-infrared and statements about multilayered clouds

    Science.gov (United States)

    Costanzo, Claudio; Bakan, Stephan

    1997-01-01

    During the aircraft campaign EUCREX 94 different missions with the multispectral sensor OVID were flown inside frontal ice cloud systems. This study present estimated effective radii and cloud optical depths from measurements around 1.05 and 1.6 micrometer under the assumption of different particle shapes. The best agreement with independent measurements of other instruments result from the assumption of an irregular polycrystal. The measured effective radii vary between 18 and 46 micrometer which is compatible with published particle size distributions of moderate ambient temperatures between minus 45 and minus 55 degrees Celsius. An additional consideration of spatial features allow the distinction of cloud layers in different altitudes in the atmosphere and perhaps the estimation of cloud parameters from individual layers. This study show an example of such a recognition and discuss the potential for an operational algorithm.

  10. A method to estimate weight and dimensions of aircraft gas turbine engines. Volume 1: Method of analysis

    Science.gov (United States)

    Pera, R. J.; Onat, E.; Klees, G. W.; Tjonneland, E.

    1977-01-01

    Weight and envelope dimensions of aircraft gas turbine engines are estimated within plus or minus 5% to 10% using a computer method based on correlations of component weight and design features of 29 data base engines. Rotating components are estimated by a preliminary design procedure where blade geometry, operating conditions, material properties, shaft speed, hub-tip ratio, etc., are the primary independent variables used. The development and justification of the method selected, the various methods of analysis, the use of the program, and a description of the input/output data are discussed.

  11. A general method of estimating stellar astrophysical parameters from photometry

    CERN Document Server

    Belikov, A N

    2008-01-01

    Applying photometric catalogs to the study of the population of the Galaxy is obscured by the impossibility to map directly photometric colors into astrophysical parameters. Most of all-sky catalogs like ASCC or 2MASS are based upon broad-band photometric systems, and the use of broad photometric bands complicates the determination of the astrophysical parameters for individual stars. This paper presents an algorithm for determining stellar astrophysical parameters (effective temperature, gravity and metallicity) from broad-band photometry even in the presence of interstellar reddening. This method suits the combination of narrow bands as well. We applied the method of interval-cluster analysis to finding stellar astrophysical parameters based on the newest Kurucz models calibrated with the use of a compiled catalog of stellar parameters. Our new method of determining astrophysical parameters allows all possible solutions to be located in the effective temperature-gravity-metallicity space for the star and se...

  12. Estimating atmospheric parameters and reducing noise for multispectral imaging

    Science.gov (United States)

    Conger, James Lynn

    2014-02-25

    A method and system for estimating atmospheric radiance and transmittance. An atmospheric estimation system is divided into a first phase and a second phase. The first phase inputs an observed multispectral image and an initial estimate of the atmospheric radiance and transmittance for each spectral band and calculates the atmospheric radiance and transmittance for each spectral band, which can be used to generate a "corrected" multispectral image that is an estimate of the surface multispectral image. The second phase inputs the observed multispectral image and the surface multispectral image that was generated by the first phase and removes noise from the surface multispectral image by smoothing out change in average deviations of temperatures.

  13. Hierarchical parameter estimation of DFIG and drive train system in a wind turbine generator

    Science.gov (United States)

    Pan, Xueping; Ju, Ping; Wu, Feng; Jin, Yuqing

    2017-09-01

    A new hierarchical parameter estimation method for doubly fed induction generator (DFIG) and drive train system in a wind turbine generator (WTG) is proposed in this paper. Firstly, the parameters of the DFIG and the drive train are estimated locally under different types of disturbances. Secondly, a coordination estimation method is further applied to identify the parameters of the DFIG and the drive train simultaneously with the purpose of attaining the global optimal estimation results. The main benefit of the proposed scheme is the improved estimation accuracy. Estimation results confirm the applicability of the proposed estimation technique.

  14. Estimated performance of an adaptive trailing-edge device aimed at reducing fuel consumption on a medium-size aircraft

    Science.gov (United States)

    Diodati, Gianluca; Concilio, Antonio; Ricci, Sergio; De Gaspari, Alessandro; Huvelin, Fabien; Dumont, Antoine; Godard, Jean-Luc

    2013-03-01

    This paper deals with the estimation of the performance of a medium-size aircraft (3-hour flight range) equipped with an adaptive trailing edge device (ATED) that runs span-wise from the wing root in the flap zone and extends chord-wise for a limited percentage of the MAC. Computations are calculated referring to the full wing and do not refer to the complete aircraft configuration. Aerodynamic computations, taking into account ideal shapes, have been performed by using both Euler and Navier- Stokes method in order to extract the wing polars for the reference and the optimal wing, implementing an ATED, deflected upwards and downwards. A comparison of the achieved results is discussed. Considering the shape domain, a suitable interpolation procedure has been set up to obtain the wing polar envelop of the adaptive wing, intended as the set of "best" values, picked by each different polar. At the end, the performances of the complete reference and adaptive wing are computed and compared for a symmetric, centered, leveled and steady cruise flight for a medium size aircraft. A significant fuel burn reduction estimate or, alternatively, an increased range capability is demonstrated, with margins of further improvements. The research leading to these results has gratefully received funding from the European Union Seventh Framework Programme (FP7/2007- 2013) under Grant Agreement n° 284562.

  15. Aircraft-based CH4 flux estimates for validation of emissions from an agriculturally dominated area in Switzerland

    Science.gov (United States)

    Hiller, Rebecca V.; Neininger, Bruno; Brunner, Dominik; Gerbig, Christoph; Bretscher, Daniel; Künzle, Thomas; Buchmann, Nina; Eugster, Werner

    2014-04-01

    For regional-scale investigations of greenhouse gas budgets the spatially explicit information from local emission sources is needed, which then can be compared with flux measurements. Here we present the first validation of a section of a spatially explicit CH4 emission inventory of Switzerland. The validation was done for the agriculturally dominated Reuss Valley using measurements from a low-flying aircraft (50-500 m above ground level). We distributed national emission estimates to a grid with 500 m cell size using available geostatistical data. Validation flux measurements were obtained using the eddy covariance (EC) technique and the boundary layer budgeting (BLB) approach that only uses the mean concentrations of the same aircraft transects. Inventory estimates for the flux footprint of the aircraft measurements were lowest (median 0.40 μg CH4m-2s-1), and BLB fluxes were highest (1.02 μg CH4m-2s-1) for the Reuss Valley, with EC fluxes in between (0.62 μg CH4m-2s-1). Flux estimates from measurements and inventory are within the same order of magnitude, but measured fluxes were significantly larger than the inventory emission estimates. The differences are larger than the uncertainties associated with storage of manure, temperature dependence of emissions, diurnal cycle of enteric fermentation by cattle, and the limitations of the inventory that only covers ≥90% of all expected methane emissions. From this we deduce that it is not unlikely that the Swiss CH4 emission inventory estimates are too low.

  16. Simultaneous Estimation of Geophysical Parameters with Microwave Radiometer Data based on Accelerated Simulated Annealing: SA

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2012-07-01

    Full Text Available Method for geophysical parameter estimations with microwave radiometer data based on Simulated Annealing: SA is proposed. Geophysical parameters which are estimated with microwave radiometer data are closely related each other. Therefore simultaneous estimation makes constraints in accordance with the relations. On the other hand, SA requires huge computer resources for convergence. In order to accelerate convergence process, oscillated decreasing function is proposed for cool down function. Experimental results show that remarkable improvements are observed for geophysical parameter estimations.

  17. Asymptotic Parameter Estimation for a Class of Linear Stochastic Systems Using Kalman-Bucy Filtering

    Directory of Open Access Journals (Sweden)

    Xiu Kan

    2012-01-01

    Full Text Available The asymptotic parameter estimation is investigated for a class of linear stochastic systems with unknown parameter θ:dXt=(θα(t+β(tXtdt+σ(tdWt. Continuous-time Kalman-Bucy linear filtering theory is first used to estimate the unknown parameter θ based on Bayesian analysis. Then, some sufficient conditions on coefficients are given to analyze the asymptotic convergence of the estimator. Finally, the strong consistent property of the estimator is discussed by comparison theorem.

  18. Estimating winter wheat phenological parameters: Implications for crop modeling

    Science.gov (United States)

    Crop parameters, such as the timing of developmental events, are critical for accurate simulation results in crop simulation models, yet uncertainty often exists in determining the parameters. Factors contributing to the uncertainty include: a) sources of variation within a plant (i.e., within diffe...

  19. Estimation of Medium Voltage Cable Parameters for PD Detection

    DEFF Research Database (Denmark)

    Villefrance, Rasmus; Holbøll, Joachim T.; Henriksen, Mogens

    1998-01-01

    Medium voltage cable characteristics have been determined with respect to the parameters having influence on the evaluation of results from PD-measurements on paper/oil and XLPE-cables. In particular, parameters essential for discharge quantification and location were measured. In order to relate...

  20. Robust Speed and Parameter Estimation in Induction Motors

    DEFF Research Database (Denmark)

    Børsting, H.; Vadstrup, P.

    1995-01-01

    This paper presents a Model Reference Adaptive System (MRAS) for the estimation of the induction motor speed, based on measured terminal voltages and currents.......This paper presents a Model Reference Adaptive System (MRAS) for the estimation of the induction motor speed, based on measured terminal voltages and currents....

  1. CUSUM Charts with Controlled Conditional Performance Under Estimated Parameters

    NARCIS (Netherlands)

    Saleh, N.A.; Zwetsloot, I.M.; Mahmoud, M.A.; Woodall, W.H.

    2016-01-01

    We study the effect of the Phase I estimation error on the cumulative sum (CUSUM) chart. Impractically large amounts of Phase I data are needed to sufficiently reduce the variation in the in-control average run lengths (ARL) between practitioners. To reduce the effect of estimation error on the char

  2. CUSUM Chart with Controlled Conditional Performance Under Estimated Parameters

    NARCIS (Netherlands)

    Saleh, N.A.; Zwetsloot, I.M.; Mahmoud, M.A.; Woodall, W.H.

    2016-01-01

    We study the effect of the Phase I estimation error on the cumulative sum (CUSUM) chart. Impractically large amounts of Phase I data are needed to sufficiently reduce the variation in the in-control average run lengths (ARL) between practitioners. To reduce the effect of estimation error on the char

  3. Astrophysical Prior Information and Gravitational-wave Parameter Estimation

    CERN Document Server

    Pankow, Chris; Perri, Leah; Chase, Eve; Coughlin, Scott; Zevin, Michael; Kalogera, Vassiliki

    2016-01-01

    The detection of electromagnetic counterparts to gravitational waves has great promise for the investigation of many scientific questions. It has long been hoped that in addition to providing extra, non-gravitational information about the sources of these signals, the detection of an electromagnetic signal in conjunction with a gravitational wave could aid in the analysis of the gravitational signal itself. That is, knowledge of the sky location, inclination, and redshift of a binary could break degeneracies between these extrinsic, coordinate-dependent parameters and the physical parameters, such as mass and spin, that are intrinsic to the binary. In this paper, we investigate this issue by assuming a perfect knowledge of extrinsic parameters, and assessing the maximal impact of this knowledge on our ability to extract intrinsic parameters. However, we find only modest improvements in a few parameters --- namely the primary component's spin --- and conclude that, even in the best case, the use of additional ...

  4. Distributed Dynamic State Estimator, Generator Parameter Estimation and Stability Monitoring Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Meliopoulos, Sakis [Georgia Inst. of Technology, Atlanta, GA (United States); Cokkinides, George [Georgia Inst. of Technology, Atlanta, GA (United States); Fardanesh, Bruce [New York Power Authority, NY (United States); Hedrington, Clinton [U.S. Virgin Islands Water and Power Authority (WAPA), St. Croix (U.S. Virgin Islands)

    2013-12-31

    This is the final report for this project that was performed in the period: October1, 2009 to June 30, 2013. In this project, a fully distributed high-fidelity dynamic state estimator (DSE) that continuously tracks the real time dynamic model of a wide area system with update rates better than 60 times per second is achieved. The proposed technology is based on GPS-synchronized measurements but also utilizes data from all available Intelligent Electronic Devices in the system (numerical relays, digital fault recorders, digital meters, etc.). The distributed state estimator provides the real time model of the system not only the voltage phasors. The proposed system provides the infrastructure for a variety of applications and two very important applications (a) a high fidelity generating unit parameters estimation and (b) an energy function based transient stability monitoring of a wide area electric power system with predictive capability. Also the dynamic distributed state estimation results are stored (the storage scheme includes data and coincidental model) enabling an automatic reconstruction and “play back” of a system wide disturbance. This approach enables complete play back capability with fidelity equal to that of real time with the advantage of “playing back” at a user selected speed. The proposed technologies were developed and tested in the lab during the first 18 months of the project and then demonstrated on two actual systems, the USVI Water and Power Administration system and the New York Power Authority’s Blenheim-Gilboa pumped hydro plant in the last 18 months of the project. The four main thrusts of this project, mentioned above, are extremely important to the industry. The DSE with the achieved update rates (more than 60 times per second) provides a superior solution to the “grid visibility” question. The generator parameter identification method fills an important and practical need of the industry. The “energy function” based

  5. Application of Parameter Estimation for Diffusions and Mixture Models

    DEFF Research Database (Denmark)

    Nolsøe, Kim

    with the posterior score function. From an application point of view this methology is easy to apply, since the optimal estimating function G(;Xt1 ; : : : ;Xtn ) is equal to the classical optimal estimating function, plus a correction term which takes into account the prior information. The methology is particularly...... useful in situations where prior information is available and only few observations are present. The resulting estimators in some sense have better properties than the classical estimators. The second idea is to formulate Michael Sørensens method "prediction based estimating function" for measurement...... from a posterior distribution. The sampling algorithm is constructed from a Markov chain which allows the dimension of each sample to vary, this is obtained by utilizing the Reversible jumps methology proposed by Peter Green. Each sample is constructed such that the corresponding structures...

  6. Parameter Estimation of Population Pharmacokinetic Models with Stochastic Differential Equations: Implementation of an Estimation Algorithm

    Directory of Open Access Journals (Sweden)

    Fang-Rong Yan

    2014-01-01

    Full Text Available Population pharmacokinetic (PPK models play a pivotal role in quantitative pharmacology study, which are classically analyzed by nonlinear mixed-effects models based on ordinary differential equations. This paper describes the implementation of SDEs in population pharmacokinetic models, where parameters are estimated by a novel approximation of likelihood function. This approximation is constructed by combining the MCMC method used in nonlinear mixed-effects modeling with the extended Kalman filter used in SDE models. The analysis and simulation results show that the performance of the approximation of likelihood function for mixed-effects SDEs model and analysis of population pharmacokinetic data is reliable. The results suggest that the proposed method is feasible for the analysis of population pharmacokinetic data.

  7. Uncertainty of Modal Parameters Estimated by ARMA Models

    DEFF Research Database (Denmark)

    Jensen, Jacob Laigaard; Brincker, Rune; Rytter, Anders

    1990-01-01

    In this paper the uncertainties of identified modal parameters such as eidenfrequencies and damping ratios are assed. From the measured response of dynamic excited structures the modal parameters may be identified and provide important structural knowledge. However the uncertainty of the parameters...... by simulation study of a lightly damped single degree of freedom system. Identification by ARMA models has been choosen as system identification method. It is concluded that both the sampling interval and number of sampled points may play a significant role with respect to the statistical errors. Furthermore...

  8. BIASED BEARINGS-ONIKY PARAMETER ESTIMATION FOR BISTATIC SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Xu Benlian; Wang Zhiquan

    2007-01-01

    According to the biased angles provided by the bistatic sensors,the necessary condition of observability and Cramer-Rao low bounds for the bistatic system are derived and analyzed,respectively.Additionally,a dual Kalman filter method is presented with the purpose of eliminating the effect of biased angles on the state variable estimation.Finally,Monte-Carlo simulations are conducted in the observable scenario.Simulation results show that the proposed theory holds true,and the dual Kalman filter method can estimate state variable and biased angles simultaneously.Furthermore,the estimated results can achieve their Cramer-Rao low bounds.

  9. Nearly best linear estimates of logistic parameters based on complete ordered statistics

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Deals with the determination of the nearly best linear estimates of location and scale parameters of a logistic population, when both parameters are unknown, by introducing Bloms semi-empirical α, β-correction′into the asymptotic mean and covariance formulae with complete and ordered samples taken into consideration and various nearly best linear estimates established and points out the high efficiency of these estimators relative to the best linear unbiased estimators (BLUEs) and other linear estimators makes them useful in practice.

  10. DEFINITION OF OPERATING PARAMETERS OUTPUT RANGE OF FUNCTIONAL SUBSYSTEMS HYDRAULIC SYSTEMS OF THE AIRCRAFT

    Directory of Open Access Journals (Sweden)

    M. A. Bobrin

    2014-01-01

    Full Text Available To evaluate the operational tolerance field hydraulic output parameters under various working conditions and the flight stages are mathematical relationships and the results obtained in the environment Mathcad in graphical form.

  11. Estimation of poroelastic parameters from seismograms using Biot theory

    CERN Document Server

    De Barros, Louis

    2010-01-01

    We investigate the possibility to extract information contained in seismic waveforms propagating in fluid-filled porous media by developing and using a full waveform inversion procedure valid for layered structures. To reach this objective, we first solve the forward problem by implementing the Biot theory in a reflectivity-type simulation program. We then study the sensitivity of the seismic response of stratified media to the poroelastic parameters. Our numerical tests indicate that the porosity and consolidation parameter are the most sensitive parameters in forward and inverse modeling, whereas the permeability has only a very limited influence on the seismic response. Next, the analytical expressions of the sensitivity operators are introduced in a generalized least-square inversion algorithm based on an iterative modeling of the seismic waveforms. The application of this inversion procedure to synthetic data shows that the porosity as well as the fluid and solid parameters can be correctly reconstructed...

  12. estimation of climatic parameters from solar indices using ground ...

    African Journals Online (AJOL)

    User

    show the effect of solar forcing on the climatic parameters at different locations in Kenya. Solar ... the various layers of the Earth's atmosphere. .... near Kericho town, in the western high lands of ... Ocean environment that covers the whole of the.

  13. Uncertainty of Modal Parameters Estimated by ARMA Models

    DEFF Research Database (Denmark)

    Jensen, Jakob Laigaard; Brincker, Rune; Rytter, Anders

    In this paper the uncertainties of identified modal parameters such as eigenfrequencies and damping ratios are assessed. From the measured response of dynamic excited structures the modal parameters may be identified and provide important structural knowledge. However the uncertainty of the param......In this paper the uncertainties of identified modal parameters such as eigenfrequencies and damping ratios are assessed. From the measured response of dynamic excited structures the modal parameters may be identified and provide important structural knowledge. However the uncertainty...... by a simulation study of a lightly damped single degree of freedom system. Identification by ARMA models has been chosen as system identification method. It is concluded that both the sampling interval and number of sampled points may play a significant role with respect to the statistical errors. Furthermore...

  14. Estimation of unknown parameters and adaptive synchronization of hyperchaotic systems

    Science.gov (United States)

    Austin, Francis; Sun, Wen; Lu, Xiaoqing

    2009-12-01

    This paper investigates the chaos synchronization of two hyperchaotic systems. Based on Lasalle invariance principle, adaptive schemes are derived to make two unidirectional coupling and mutual coupling hyperchaotic systems asymptotically synchronized whether the parameters are given or uncertain, and unknown parameters are identified simultaneously in the process of synchronization. Numerical simulations of hyperchaotic Chen systems are presented to show the effectiveness of the proposed chaos synchronization schemes.

  15. Bayesian and Non Bayesian Parameter Estimation for Bivariate Pareto Distribution Based on Censored Samples

    Directory of Open Access Journals (Sweden)

    Rania, M. Shalaby

    2015-10-01

    Full Text Available This paper deals with Bayesian and non-Bayesian methods for estimating parameters of the bivariate Pareto (BP distribution based on censored samples are considered with shape parameters λ and known scale parameter β. The maximum likelihood estimators MLE of the unknown parameters are derived. The Bayes estimators are obtained with respect to the squared error loss function and the prior distributions allow for prior dependence among the components of the parameter vector. .Posterior distributions for parameters of interest are derived and their properties are described. If the scale parameter is known, the Bayes estimators of the unknown parameters can be obtained in explicit forms under the assumptions of independent priors. An extensive computer simulation is used to compare the performance of the proposed estimators using MathCAD (14.

  16. Retrospective forecast of ETAS model with daily parameters estimate

    Science.gov (United States)

    Falcone, Giuseppe; Murru, Maura; Console, Rodolfo; Marzocchi, Warner; Zhuang, Jiancang

    2016-04-01

    We present a retrospective ETAS (Epidemic Type of Aftershock Sequence) model based on the daily updating of free parameters during the background, the learning and the test phase of a seismic sequence. The idea was born after the 2011 Tohoku-Oki earthquake. The CSEP (Collaboratory for the Study of Earthquake Predictability) Center in Japan provided an appropriate testing benchmark for the five 1-day submitted models. Of all the models, only one was able to successfully predict the number of events that really happened. This result was verified using both the real time and the revised catalogs. The main cause of the failure was in the underestimation of the forecasted events, due to model parameters maintained fixed during the test. Moreover, the absence in the learning catalog of an event similar to the magnitude of the mainshock (M9.0), which drastically changed the seismicity in the area, made the learning parameters not suitable to describe the real seismicity. As an example of this methodological development we show the evolution of the model parameters during the last two strong seismic sequences in Italy: the 2009 L'Aquila and the 2012 Reggio Emilia episodes. The achievement of the model with daily updated parameters is compared with that of same model where the parameters remain fixed during the test time.

  17. An improved method for nonlinear parameter estimation: a case study of the Rössler model

    Science.gov (United States)

    He, Wen-Ping; Wang, Liu; Jiang, Yun-Di; Wan, Shi-Quan

    2016-08-01

    Parameter estimation is an important research topic in nonlinear dynamics. Based on the evolutionary algorithm (EA), Wang et al. (2014) present a new scheme for nonlinear parameter estimation and numerical tests indicate that the estimation precision is satisfactory. However, the convergence rate of the EA is relatively slow when multiple unknown parameters in a multidimensional dynamical system are estimated simultaneously. To solve this problem, an improved method for parameter estimation of nonlinear dynamical equations is provided in the present paper. The main idea of the improved scheme is to use all of the known time series for all of the components in some dynamical equations to estimate the parameters in single component one by one, instead of estimating all of the parameters in all of the components simultaneously. Thus, we can estimate all of the parameters stage by stage. The performance of the improved method was tested using a classic chaotic system—Rössler model. The numerical tests show that the amended parameter estimation scheme can greatly improve the searching efficiency and that there is a significant increase in the convergence rate of the EA, particularly for multiparameter estimation in multidimensional dynamical equations. Moreover, the results indicate that the accuracy of parameter estimation and the CPU time consumed by the presented method have no obvious dependence on the sample size.

  18. Estimated genetic parameters for carcass traits of Brahman cattle.

    Science.gov (United States)

    Riley, D G; Chase, C C; Hammond, A C; West, R L; Johnson, D D; Olson, T A; Coleman, S W

    2002-04-01

    Heritabilities and genetic and phenotypic correlations were estimated from feedlot and carcass data collected from Brahman calves (n = 504) in central Florida from 1996 to 2000. Data were analyzed using animal models in MTDFREML. Models included contemporary group (n = 44; groups of calves of the same sex, fed in the same pen, slaughtered on the same day) as a fixed effect and calf age in days at slaughter as a continuous variable. Estimated feedlot trait heritabilities were 0.64, 0.67, 0.47, and 0.26 for ADG, hip height at slaughter, slaughter weight, and shrink. The USDA yield grade estimated heritability was 0.71; heritabilities for component traits of yield grade, including hot carcass weight, adjusted 12th rib backfat thickness, loin muscle area, and percentage kidney, pelvic, and heart fat were 0.55, 0.63, 0.44, and 0.46, respectively. Heritability estimates for dressing percentage, marbling score, USDA quality grade, cutability, retail yield, and carcass hump height were 0.77, 0.44, 0.47, 0.71, 0.5, and 0.54, respectively. Estimated genetic correlations of adjusted 12th rib backfat thickness with ADG, slaughter weight, marbling score, percentage kidney, pelvic, and heart fat, and yield grade (0.49, 0.46, 0.56, 0.63, and 0.93, respectively) were generally larger than most literature estimates. Estimated genetic correlations of marbling score with ADG, percentage shrink, loin muscle area, percentage kidney, pelvic, and heart fat, USDA yield grade, cutability, retail yield, and carcass hump height were 0.28, 0.49, 0.44, 0.27, 0.45, -0.43, 0.27, and 0.43, respectively. Results indicate that sufficient genetic variation exists within the Brahman breed for design and implementation of effective selection programs for important carcass quality and yield traits.

  19. Roll maneuvering of flexible aircraft with distributed-parameter actuation via modal synthesis

    Science.gov (United States)

    Oz, Hayrani; Khot, Narendra S.

    1999-06-01

    The focus is on obtaining and identifying optimal distributed- parameter-control equivalent actuation profiles for desired roll maneuvers by a modal synthesis approach. The solution for distributed-parameter-control of an aeroelastic system is developed by synthesis of modal-state-space controllers designed via the globally power optimal Independent Modal- Space Control (IMSC) technique. The desired maneuver (set- point) control performance is achieved by a modal-performance- output synthesis (MPOS) approach. The MPOS approach requires that each independent modal controller be allocated a desired portion of the total desired output performance. In view of this, a modal performance-output allocation optimization problem is also defined, which minimizes a hybrid measure of control power and elastic strain energy of the structure during aeroelastic control. Insight to distributed-parameter- control equivalent actuation solutions are sought by considering the aeroservoelastic interactions among vehicle motion, aerodynamics, structural flexibility and control actuators from the perspective of work-energy, control power, and control loading requirements. The modal synthesis approach is illustrated for a flight vehicle wing design to achieve a 90 deg/sec roll-rate in a Mach 2 flight condition at altitude (20000 ft) via distributed-parameter equivalent actuation. The preliminary results indicate that such a roll-rate maneuver can be accomplished via distributed-parameter actuation with feasible levels of control power, work-energy, and control loadings through eliciting favorable aeroservoelastic interactions.

  20. Empirical estimation of school siting parameter towards improving children's safety

    Science.gov (United States)

    Aziz, I. S.; Yusoff, Z. M.; Rasam, A. R. A.; Rahman, A. N. N. A.; Omar, D.

    2014-02-01

    Distance from school to home is a key determination in ensuring the safety of hildren. School siting parameters are made to make sure that a particular school is located in a safe environment. School siting parameters are made by Department of Town and Country Planning Malaysia (DTCP) and latest review was on June 2012. These school siting parameters are crucially important as they can affect the safety, school reputation, and not to mention the perception of the pupil and parents of the school. There have been many studies to review school siting parameters since these change in conjunction with this ever-changing world. In this study, the focus is the impact of school siting parameter on people with low income that live in the urban area, specifically in Johor Bahru, Malaysia. In achieving that, this study will use two methods which are on site and off site. The on site method is to give questionnaires to people and off site is to use Geographic Information System (GIS) and Statistical Product and Service Solutions (SPSS), to analyse the results obtained from the questionnaire. The output is a maps of suitable safe distance from school to house. The results of this study will be useful to people with low income as their children tend to walk to school rather than use transportation.

  1. Efficient estimates of cochlear hearing loss parameters in individual listeners

    DEFF Research Database (Denmark)

    Fereczkowski, Michal; Jepsen, Morten Løve; Dau, Torsten

    2013-01-01

    It has been suggested that the level corresponding to the knee-point of the basilar membrane (BM) input/output (I/O) function can be used to estimate the amount of inner- and outer hair-cell loss (IHL, OHL) in listeners with a moderate cochlear hearing impairment Plack et al. (2004). According...... to Jepsen and Dau (2011) IHL + OHL = HLT [dB], where HLT stands for total hearing loss. Hence having estimates of the total hearing loss and OHC loss, one can estimate the IHL. In the present study, results from forward masking experiments based on temporal masking curves (TMC; Nelson et al., 2001...... estimates of the knee-point level. Further, it is explored whether it is possible to estimate the compression ratio using only on-frequency TMCs. 10 normal-hearing and 10 hearing-impaired listeners (with mild-to-moderate sensorineural hearing loss) were tested at 1, 2 and 4 kHz. The results showed...

  2. Analysis of distorted measurements -- parameter estimation and unfolding

    CERN Document Server

    Zech, Guenter

    2016-01-01

    1. Parameter inference from distorted measurements is discussed. 2. Smeared measurements are unfolded without explicit regularization. The corresponding results are unbiased and permit to fit parameters and to apply quantitative goodness-of-fit tests. 3. Common unfolding methods (iterative EM with early stopping, truncated SVD, ML fits with curvature, entropy and norm penalties) are tested and compared to each other with the regularization parameter adjusted to minimize the integrated square error (ISE) in all cases. Apart from histogram representations, spline approximations are considered. All simulations indicate that the EM method leads to smaller ISEs than the competing approaches. Especially promising is the EM unfolding to spline approximations. The studies are based on different distributions, event numbers, resolutions and enough independent simulations to obtain conclusive results. It is proposed to unfold data with the EM method to b-spline approximations and to supplement the results with histogra...

  3. Estimation of Stiffness Parameter on the Common Carotid Artery

    Science.gov (United States)

    Koya, Yoshiharu; Mizoshiri, Isao; Matsui, Kiyoaki; Nakamura, Takashi

    The arteriosclerosis is on the increase with an aging or change of our living environment. For that reason, diagnosis of the common carotid artery using echocardiogram is doing to take precautions carebropathy. Up to the present, several methods to measure stiffness parameter of the carotid artery have been proposed. However, they have analyzed at the only one point of common carotid artery. In this paper, we propose the method of analysis extended over a wide area of common carotid artery. In order to measure stiffness parameter of common carotid artery from echocardiogram, it is required to detect two border curves which are boundaries between vessel wall and blood. The method is composed of two steps. The first step is the detection of border curves, and the second step is the calculation of stiffness parameter using diameter of common carotid artery. Experimental results show the validity of the proposed method.

  4. Multivariate phase type distributions - Applications and parameter estimation

    DEFF Research Database (Denmark)

    Meisch, David

    and reducing model uncertainties. Research has shown that the errors on cost estimates for infrastructure projects clearly do not follow a normal distribution but is skewed towards cost overruns. This skewness can be described using phase type distributions. Cost benefit analysis assesses potential future...... to the class of phase type distributions. Phase type distributions have several advantages. They are versatile in the sense that they can be used to approximate any given probability distribution on the positive reals. There exist general probabilistic results for the entire class of phase type distributions......, allowing for different estimation methods for the whole class or subclasses of phase type distributions. These attributes make this class of distributions an interesting alternative to the normal distribution. When facing multivariate problems, the only general distribution that allows for estimation...

  5. Sugarcane maturity estimation through edaphic-climatic parameters

    Directory of Open Access Journals (Sweden)

    Scarpari Maximiliano Salles

    2004-01-01

    Full Text Available Sugarcane (Saccharum officinarum L. grows under different weather conditions directly affecting crop maturation. Raw material quality predicting models are important tools in sugarcane crop management; the goal of these models is to provide productivity estimates during harvesting, increasing the efficiency of strategical and administrative decisions. The objective of this work was developing a model to predict Total Recoverable Sugars (TRS during harvesting, using data related to production factors such as soil water storage and negative degree-days. The database of a sugar mill for the crop seasons 1999/2000, 2000/2001 and 2001/2002 was analyzed, and statistical models were tested to estimate raw material. The maturity model for a one-year old sugarcane proved to be significant, with a coefficient of determination (R² of 0.7049*. No differences were detected between measured and estimated data in the simulation (P < 0.05.

  6. An Introduction to Goodness of Fit for PMU Parameter Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Riepnieks, Artis; Kirkham, Harold

    2017-10-01

    New results of measurements of phasor-like signals are presented based on our previous work on the topic. In this document an improved estimation method is described. The algorithm (which is realized in MATLAB software) is discussed. We examine the effect of noisy and distorted signals on the Goodness of Fit metric. The estimation method is shown to be performing very well with clean data and with a measurement window as short as a half a cycle and as few as 5 samples per cycle. The Goodness of Fit decreases predictably with added phase noise, and seems to be acceptable even with visible distortion in the signal. While the exact results we obtain are specific to our method of estimation, the Goodness of Fit method could be implemented in any phasor measurement unit.

  7. Laboratory longitudinal diffusion tests: 2. Parameter estimation by inverse analysis

    Science.gov (United States)

    Takeda, M.; Zhang, M.; Nakajima, H.; Hiratsuka, T.

    2008-04-01

    This study focuses on the verification of test interpretations for different state analyses of diffusion experiments. Part 1 of this study identified that steady, quasi-steady and equilibrium state analyses for the through- and in-diffusion tests with solution reservoirs are generally feasible where the tracer is not highly sorptive. In Part 2 we investigate parameter identifiability in transient-state analysis of reservoir concentration variation using a numerical approach. For increased generality, the analytical models, objective functions and Jacobian matrix necessary for inverse analysis of transient-state data are reformulated using unified dimensionless parameters. In these dimensionless forms, the number of unknown parameters is reduced and a single dimensionless parameter represents the sorption property. The dimensionless objective functions are evaluated for individual test methods and parameter identifiability is discussed in relation to the sorption property. The effects of multiple minima and measurement error on parameter identifiability are also investigated. The main findings are that inverse problems for inlet and outlet reservoir concentration analyses are generally unstable and well-posed, respectively. Where the tracer is sorptive, the inverse problem for the inlet reservoir concentration analysis may have multiple minima. When insufficient measurement data is collected, multiple solutions may result and this should be taken into consideration when inversely analyzing data including that of inlet reservoir concentration. Verification of test interpretation by cross-checking different state analyses is feasible where the tracer is not highly sorptive. In an actual experiment, test interpretation validity is demonstrated through consistency between theory and practice for different state analyses.

  8. LIKELIHOOD ESTIMATION OF PARAMETERS USING SIMULTANEOUSLY MONITORED PROCESSES

    DEFF Research Database (Denmark)

    Friis-Hansen, Peter; Ditlevsen, Ove Dalager

    2004-01-01

    The topic is maximum likelihood inference from several simultaneously monitored response processes of a structure to obtain knowledge about the parameters of other not monitored but important response processes when the structure is subject to some Gaussian load field in space and time. The consi......The topic is maximum likelihood inference from several simultaneously monitored response processes of a structure to obtain knowledge about the parameters of other not monitored but important response processes when the structure is subject to some Gaussian load field in space and time....... The considered example is a ship sailing with a given speed through a Gaussian wave field....

  9. Proper estimation of hydrological parameters from flood forecasting aspects

    Science.gov (United States)

    Miyamoto, Mamoru; Matsumoto, Kazuhiro; Tsuda, Morimasa; Yamakage, Yuzuru; Iwami, Yoichi; Yanami, Hitoshi; Anai, Hirokazu

    2016-04-01

    The hydrological parameters of a flood forecasting model are normally calibrated based on an entire hydrograph of past flood events by means of an error assessment function such as mean square error and relative error. However, the specific parts of a hydrograph, i.e., maximum discharge and rising parts, are particularly important for practical flood forecasting in the sense that underestimation may lead to a more dangerous situation due to delay in flood prevention and evacuation activities. We conducted numerical experiments to find the most proper parameter set for practical flood forecasting without underestimation in order to develop an error assessment method for calibration appropriate for flood forecasting. A distributed hydrological model developed in Public Works Research Institute (PWRI) in Japan was applied to fifteen past floods in the Gokase River basin of 1,820km2 in Japan. The model with gridded two-layer tanks for the entire target river basin included hydrological parameters, such as hydraulic conductivity, surface roughness and runoff coefficient, which were set according to land-use and soil-type distributions. Global data sets, e.g., Global Map and Digital Soil Map of the World (DSMW), were employed as input data for elevation, land use and soil type. The values of fourteen types of parameters were evenly sampled with 10,001 patterns of parameter sets determined by the Latin Hypercube Sampling within the search range of each parameter. Although the best reproduced case showed a high Nash-Sutcliffe Efficiency of 0.9 for all flood events, the maximum discharge was underestimated in many flood cases. Therefore, two conditions, which were non-underestimation in the maximum discharge and rising parts of a hydrograph, were added in calibration as the flood forecasting aptitudes. The cases with non-underestimation in the maximum discharge and rising parts of the hydrograph also showed a high Nash-Sutcliffe Efficiency of 0.9 except two flood cases

  10. Phase noise effects on turbulent weather radar spectrum parameter estimation

    Science.gov (United States)

    Lee, Jonggil; Baxa, Ernest G., Jr.

    1990-01-01

    Accurate weather spectrum moment estimation is important in the use of weather radar for hazardous windshear detection. The effect of the stable local oscillator (STALO) instability (jitter) on the spectrum moment estimation algorithm is investigated. Uncertainty in the stable local oscillator will affect both the transmitted signal and the received signal since the STALO provides transmitted and reference carriers. The proposed approach models STALO phase jitter as it affects the complex autocorrelation of the radar return. The results can therefore by interpreted in terms of any source of system phase jitter for which the model is appropriate and, in particular, may be considered as a cumulative effect of all radar system sources.

  11. DETERMINATION OF OPERATING FIELDS OF TOLERANCES OF HYDRAULIC SYSTEMS PARAMETERS FOR AIRCRAFT BOARD COMPUTER COMPLEX

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available To determine the operating fields of the tolerances of hydraulic systems parameters for various conditions of work and phases of flight given mathematical relationships and the results obtained in Mathcad in analytical form for the board computer system.

  12. Genetic parameter estimates for tick resistance in Bonsmara cattle

    African Journals Online (AJOL)

    user

    East Coast fever in sub-Saharan Africa during 1989 alone (Mukhebi et al., 1992). ... in natural disease resistance appears to be of genetic origin (Adams & ..... unknown phenotypic variation that was not accounted for by the effects in the model. ... Genetic parameters for tropical beef cattle in northern Australia: A Review.

  13. Hierarchical Bayesian parameter estimation for cumulative prospect theory

    NARCIS (Netherlands)

    Nilsson, H.; Rieskamp, J.; Wagenmakers, E.-J.

    2011-01-01

    Cumulative prospect theory (CPT Tversky & Kahneman, 1992) has provided one of the most influential accounts of how people make decisions under risk. CPT is a formal model with parameters that quantify psychological processes such as loss aversion, subjective values of gains and losses, and

  14. Improved parameter estimation for hydrological models using weighted object functions

    NARCIS (Netherlands)

    Stein, A.; Zaadnoordijk, W.J.

    1999-01-01

    This paper discusses the sensitivity of calibration of hydrological model parameters to different objective functions. Several functions are defined with weights depending upon the hydrological background. These are compared with an objective function based upon kriging. Calibration is applied to pi

  15. Online Parameter Estimation for a Centrifugal Decanter System

    DEFF Research Database (Denmark)

    Larsen, Jesper Abildgaard; Alstrøm, Preben

    2014-01-01

    In many processing plants decanter systems are used for separation of heterogenious mixtures, and even though they account for a large fraction of the energy consumption, most decanters just runs at a fixed setpoint. Here, multi model estimation is applied to a waste water treatment plant...

  16. A Simplified Estimation of Latent State--Trait Parameters

    Science.gov (United States)

    Hagemann, Dirk; Meyerhoff, David

    2008-01-01

    The latent state-trait (LST) theory is an extension of the classical test theory that allows one to decompose a test score into a true trait, a true state residual, and an error component. For practical applications, the variances of these latent variables may be estimated with standard methods of structural equation modeling (SEM). These…

  17. Estimates of roughness parameters for arrays of obstacles

    DEFF Research Database (Denmark)

    Duijm, N.J.

    1999-01-01

    Some methods are evaluated and extended to estimate roughness length and zero plane displacement height for atmospheric flow over arrays of obstacles, typically buildings. It appears that the method proposed by Bottema, with an extension to account for low density obstacle arrays, performs best. ...

  18. Estimating the Parameters of the Beta-Binomial Distribution.

    Science.gov (United States)

    Wilcox, Rand R.

    1979-01-01

    For some situations the beta-binomial distribution might be used to describe the marginal distribution of test scores for a particular population of examinees. Several different methods of approximating the maximum likelihood estimate were investigated, and it was found that the Newton-Raphson method should be used when it yields admissable…

  19. An Non-parametrical Approach to Estimate Location Parameters under Simple Order

    Institute of Scientific and Technical Information of China (English)

    孙旭

    2005-01-01

    This paper deals with estimating parameters under simple order when samples come from location models. Based on the idea of Hodges and Lehmann estimator (H-L estimator), a new approach to estimate parameters is proposed, which is difference with the classical L1 isotoaic regression and L2 isotonic regression. An algorithm to corupute estimators is given. Simulations by the Monte-Carlo method is applied to compare the likelihood functions with respect to L1 estimators and weighted isotonic H-L estimators.

  20. Effect of Adjusting Pseudo-Guessing Parameter Estimates on Test Scaling When Item Parameter Drift Is Present

    Directory of Open Access Journals (Sweden)

    Kyung T. Han

    2015-07-01

    Full Text Available In item response theory test scaling/equating with the three-parameter model, the scaling coefficients A and B have no impact on the c-parameter estimates of the test items since the c-parameter estimates are not adjusted in the scaling/equating procedure. The main research question in this study concerned how serious the consequences would be if c-parameter estimates are not adjusted in the test equating procedure when item-parameter drift (IPD is present. This drift is commonly observed in equating studies and hence, has been the source of considerable research. The results from a series of Monte-Carlo simulation studies conducted under 32 different combinations of conditions showed that some calibration strategies in the study, where the c-parameters were adjusted to be identical across two test forms, resulted in more robust equating performance in the presence of IPD. This paper discusses the practical effectiveness and the theoretical importance of appropriately adjusting c-parameter estimates in equating.

  1. Time-course window estimator for ordinary differential equations linear in the parameters

    NARCIS (Netherlands)

    Vujacic, Ivan; Dattner, Itai; Gonzalez, Javier; Wit, Ernst

    2015-01-01

    In many applications obtaining ordinary differential equation descriptions of dynamic processes is scientifically important. In both, Bayesian and likelihood approaches for estimating parameters of ordinary differential equations, the speed and the convergence of the estimation procedure may crucial

  2. Time-course window estimator for ordinary differential equations linear in the parameters

    NARCIS (Netherlands)

    Vujacic, Ivan; Dattner, Itai; Gonzalez, Javier; Wit, Ernst

    2015-01-01

    In many applications obtaining ordinary differential equation descriptions of dynamic processes is scientifically important. In both, Bayesian and likelihood approaches for estimating parameters of ordinary differential equations, the speed and the convergence of the estimation procedure may

  3. A Note on Parameter Estimations of Panel Vector Autoregressive Models with Intercorrelation

    Institute of Scientific and Technical Information of China (English)

    Jian-hong Wu; Li-xing Zhu; Zai-xing Li

    2009-01-01

    This note considers parameter estimation for panel vector autoregressive models with intercorrela-tion. Conditional least squares estimators are derived and the asymptotic normality is established. A simulation is carried out for illustration.

  4. Experimental parameter estimation method for nonlinear viscoelastic composite material models: an application on arterial tissue.

    Science.gov (United States)

    Sunbuloglu, Emin; Bozdag, Ergun; Toprak, Tuncer; Islak, Civan

    2013-01-01

    This study is aimed at setting a method of experimental parameter estimation for large-deforming nonlinear viscoelastic continuous fibre-reinforced composite material model. Specifically, arterial tissue was investigated during experimental research and parameter estimation studies, due to medical, scientific and socio-economic importance of soft tissue research. Using analytical formulations for specimens under combined inflation/extension/torsion on thick-walled cylindrical tubes, in vitro experiments were carried out with fresh sheep arterial segments, and parameter estimation procedures were carried out on experimental data. Model restrictions were pointed out using outcomes from parameter estimation. Needs for further studies that can be developed are discussed.

  5. An Iterated Local Search Algorithm for Estimating the Parameters of the Gamma/Gompertz Distribution

    Directory of Open Access Journals (Sweden)

    Behrouz Afshar-Nadjafi

    2014-01-01

    Full Text Available Extensive research has been devoted to the estimation of the parameters of frequently used distributions. However, little attention has been paid to estimation of parameters of Gamma/Gompertz distribution, which is often encountered in customer lifetime and mortality risks distribution literature. This distribution has three parameters. In this paper, we proposed an algorithm for estimating the parameters of Gamma/Gompertz distribution based on maximum likelihood estimation method. Iterated local search (ILS is proposed to maximize likelihood function. Finally, the proposed approach is computationally tested using some numerical examples and results are analyzed.

  6. Comparing Three Estimation Methods for the Three-Parameter Logistic IRT Model

    Science.gov (United States)

    Lamsal, Sunil

    2015-01-01

    Different estimation procedures have been developed for the unidimensional three-parameter item response theory (IRT) model. These techniques include the marginal maximum likelihood estimation, the fully Bayesian estimation using Markov chain Monte Carlo simulation techniques, and the Metropolis-Hastings Robbin-Monro estimation. With each…

  7. THE SUPERIORITY OF EMPIRICAL BAYES ESTIMATION OF PARAMETERS IN PARTITIONED NORMAL LINEAR MODEL

    Institute of Scientific and Technical Information of China (English)

    Zhang Weiping; Wei Laisheng

    2008-01-01

    In this article, the empirical Bayes (EB) estimators are constructed for the estimable functions of the parameters in partitioned normal linear model. The superiorities of the EB estimators over ordinary least-squares (LS) estimator are investigated under mean square error matrix (MSEM) criterion.

  8. A Method For Determination And Standardization Of Performance Parameters For Aircrafts With Electric Drives

    Directory of Open Access Journals (Sweden)

    Jakielaszek Zbigniew

    2014-12-01

    Full Text Available The study outlines the technique for flight tests carried out for a plane powered by an electric drive and the method for standardization of performance parameters applicable to evaluation of test results. Due to the relatively new type of drive, which is an electric motor, the literature references provide no descriptions of such issues. Therefore the solutions presented in the paper are the own contribution of the research team from Air Force Institute of Technology (ITWL.

  9. Estimating stellar parameters and interstellar extinction from evolutionary tracks

    Science.gov (United States)

    Sichevsky, S.; Malkov, O.

    Developing methods for analyzing and extracting information from modern sky surveys is a challenging task in astrophysical studies. We study possibilities of parameterizing stars and interstellar medium from multicolor photometry performed in three modern photometric surveys: GALEX, SDSS, and 2MASS. For this purpose, we have developed a method to estimate stellar radius from effective temperature and gravity with the help of evolutionary tracks and model stellar atmospheres. In accordance with the evolution rate at every point of the evolutionary track, star formation rate, and initial mass function, a weight is assigned to the resulting value of radius that allows us to estimate the radius more accurately. The method is verified for the most populated areas of the Hertzsprung-Russell diagram: main-sequence stars and red giants, and it was found to be rather precise (for main-sequence stars, the average relative error of radius and its standard deviation are 0.03% and 3.87%, respectively).

  10. Estimation of Soft Tissue Mechanical Parameters from Robotic Manipulation Data

    OpenAIRE

    Boonvisut, Pasu; Çavuşoğlu, M. Cenk

    2013-01-01

    Robotic motion planning algorithms used for task automation in robotic surgical systems rely on availability of accurate models of target soft tissue’s deformation. Relying on generic tissue parameters in constructing the tissue deformation models is problematic because, biological tissues are known to have very large (inter- and intra-subject) variability. A priori mechanical characterization (e.g., uniaxial bench test) of the target tissues before a surgical procedure is also not usually pr...

  11. Estimation of Soft Tissue Mechanical Parameters from Robotic Manipulation Data

    OpenAIRE

    Boonvisut, Pasu; Jackson, Russell; Çavuşoğlu, M. Cenk

    2012-01-01

    Robotic motion planning algorithms used for task automation in robotic surgical systems rely on availability of accurate models of target soft tissue’s deformation. Relying on generic tissue parameters in constructing the tissue deformation models is problematic; because, biological tissues are known to have very large (inter- and intra-subject) variability. A priori mechanical characterization (e.g., uniaxial bench test) of the target tissues before a surgical procedure is ...

  12. Modified Moment, Maximum Likelihood and Percentile Estimators for the Parameters of the Power Function Distribution

    Directory of Open Access Journals (Sweden)

    Azam Zaka

    2014-10-01

    Full Text Available This paper is concerned with the modifications of maximum likelihood, moments and percentile estimators of the two parameter Power function distribution. Sampling behavior of the estimators is indicated by Monte Carlo simulation. For some combinations of parameter values, some of the modified estimators appear better than the traditional maximum likelihood, moments and percentile estimators with respect to bias, mean square error and total deviation.

  13. PARAMETER-ESTIMATION FOR ARMA MODELS WITH INFINITE VARIANCE INNOVATIONS

    NARCIS (Netherlands)

    MIKOSCH, T; GADRICH, T; KLUPPELBERG, C; ADLER, RJ

    We consider a standard ARMA process of the form phi(B)X(t) = B(B)Z(t), where the innovations Z(t) belong to the domain of attraction of a stable law, so that neither the Z(t) nor the X(t) have a finite variance. Our aim is to estimate the coefficients of phi and theta. Since maximum likelihood

  14. Optimal Parameter and Uncertainty Estimation of a Land Surface Model: Sensitivity to Parameter Ranges and Model Complexities

    Institute of Scientific and Technical Information of China (English)

    Youlong XIA; Zong-Liang YANG; Paul L. STOFFA; Mrinal K. SEN

    2005-01-01

    Most previous land-surface model calibration studies have defined global ranges for their parameters to search for optimal parameter sets. Little work has been conducted to study the impacts of realistic versus global ranges as well as model complexities on the calibration and uncertainty estimates. The primary purpose of this paper is to investigate these impacts by employing Bayesian Stochastic Inversion (BSI)to the Chameleon Surface Model (CHASM). The CHASM was designed to explore the general aspects of land-surface energy balance representation within a common modeling framework that can be run from a simple energy balance formulation to a complex mosaic type structure. The BSI is an uncertainty estimation technique based on Bayes theorem, importance sampling, and very fast simulated annealing.The model forcing data and surface flux data were collected at seven sites representing a wide range of climate and vegetation conditions. For each site, four experiments were performed with simple and complex CHASM formulations as well as realistic and global parameter ranges. Twenty eight experiments were conducted and 50 000 parameter sets were used for each run. The results show that the use of global and realistic ranges gives similar simulations for both modes for most sites, but the global ranges tend to produce some unreasonable optimal parameter values. Comparison of simple and complex modes shows that the simple mode has more parameters with unreasonable optimal values. Use of parameter ranges and model complexities have significant impacts on frequency distribution of parameters, marginal posterior probability density functions, and estimates of uncertainty of simulated sensible and latent heat fluxes.Comparison between model complexity and parameter ranges shows that the former has more significant impacts on parameter and uncertainty estimations.

  15. Rapid gravitational wave parameter estimation with a single spin: Systematic uncertainties in parameter estimation with the SpinTaylorF2 approximation

    CERN Document Server

    Miller, Brandon; Littenberg, Tyson B; Farr, Ben

    2015-01-01

    Reliable low-latency gravitational wave parameter estimation is essential to target limited electromagnetic followup facilities toward astrophysically interesting and electromagnetically relevant sources of gravitational waves. In this study, we examine the tradeoff between speed and accuracy. Specifically, we estimate the astrophysical relevance of systematic errors in the posterior parameter distributions derived using a fast-but-approximate waveform model, SpinTaylorF2 (STF2), in parameter estimation with lalinference_mcmc. Though efficient, the STF2 approximation to compact binary inspiral employs approximate kinematics (e.g., a single spin) and an approximate waveform (e.g., frequency domain versus time domain). More broadly, using a large astrophysically-motivated population of generic compact binary merger signals, we report on the effectualness and limitations of this single-spin approximation as a method to infer parameters of generic compact binary sources. For most low-mass compact binary sources, ...

  16. Estimation of Regurgitant Volume and Orifice in Aortic Regurgitation Combining CW Doppler and Parameter Estimation in a Windkessel Like Model

    Directory of Open Access Journals (Sweden)

    Bjørn A.J. Angelsen

    1991-01-01

    Full Text Available A method for noninvasive estimation of regurgitant orifice and volume in aortic regurgitation is proposed and tested in anaesthesized open chested pigs. The method can be used with noninvasive measurement of regurgitant jet velocity with continuous wave ultrasound Doppler measurements together with cuff measurements of systolic and diastolic systemic pressure in the arm. These measurements are then used for parameter estimation in a Windkessel-like model which include the regurgitant orifice as a parameter. The aortic volume compliance and the peripheral resistance are also included as parameters and estimated in the same process. For the test of the method, invasive measurements in the open chest pigs are used. Electromagnetic flow measurements in the ascending aorta and pulmonary artery are used for control, and a correlation between regurgitant volume obtained from parameter estimation and electromagnetic flow measurements of 0.95 over a range from 2.1 to 17.8 mL is obtained.

  17. Improved Differential Evolution Algorithm for Parameter Estimation to Improve the Production of Biochemical Pathway

    Directory of Open Access Journals (Sweden)

    Chuii Khim Chong

    2012-06-01

    Full Text Available This paper introduces an improved Differential Evolution algorithm (IDE which aims at improving its performance in estimating the relevant parameters for metabolic pathway data to simulate glycolysis pathway for yeast. Metabolic pathway data are expected to be of significant help in the development of efficient tools in kinetic modeling and parameter estimation platforms. Many computation algorithms face obstacles due to the noisy data and difficulty of the system in estimating myriad of parameters, and require longer computational time to estimate the relevant parameters. The proposed algorithm (IDE in this paper is a hybrid of a Differential Evolution algorithm (DE and a Kalman Filter (KF. The outcome of IDE is proven to be superior than Genetic Algorithm (GA and DE. The results of IDE from experiments show estimated optimal kinetic parameters values, shorter computation time and increased accuracy for simulated results compared with other estimation algorithms

  18. Estimation of distributional parameters for censored trace level water quality data. 2. Verification and applications

    Science.gov (United States)

    Helsel, D.R.; Gilliom, R.J.

    1986-01-01

    Estimates of distributional parameters (mean, standard deviation, median, interquartile range) are often desired for data sets containing censored observations. Eight methods for estimating these parameters have been evaluated by R. J. Gilliom and D. R. Helsel (this issue) using Monte Carlo simulations. To verify those findings, the same methods are now applied to actual water quality data. The best method (lowest root-mean-squared error (rmse)) over all parameters, sample sizes, and censoring levels is log probability regression (LR), the method found best in the Monte Carlo simulations. Best methods for estimating moment or percentile parameters separately are also identical to the simulations. Reliability of these estimates can be expressed as confidence intervals using rmse and bias values taken from the simulation results. Finally, a new simulation study shows that best methods for estimating uncensored sample statistics from censored data sets are identical to those for estimating population parameters.

  19. Parameters influencing deposit estimation when using water sensitive papers

    Directory of Open Access Journals (Sweden)

    Emanuele Cerruto

    2013-10-01

    Full Text Available The aim of the study was to assess the possibility of using water sensitive papers (WSP to estimate the amount of deposit on the target when varying the spray characteristics. To identify the main quantities influencing the deposit, some simplifying hypotheses were applied to simulate WSP behaviour: log-normal distribution of the diameters of the drops and circular stains randomly placed on the images. A very large number (4704 of images of WSPs were produced by means of simulation. The images were obtained by simulating drops of different arithmetic mean diameter (40-300 μm, different coefficient of variation (0.1-1.5, and different percentage of covered surface (2-100%, not considering overlaps. These images were considered to be effective WSP images and then analysed using image processing software in order to measure the percentage of covered surface, the number of particles, and the area of each particle; the deposit was then calculated. These data were correlated with those used to produce the images, varying the spray characteristics. As far as the drop populations are concerned, a classification based on the volume median diameter only should be avoided, especially in case of high variability. This, in fact, results in classifying sprays with very low arithmetic mean diameter as extremely or ultra coarse. The WSP image analysis shows that the relation between simulated and computed percentage of covered surface is independent of the type of spray, whereas impact density and unitary deposit can be estimated from the computed percentage of covered surface only if the spray characteristics (arithmetic mean and coefficient of variation of the drop diameters are known. These data can be estimated by analysing the particles on the WSP images. The results of a validation test show good agreement between simulated and computed deposits, testified by a high (0.93 coefficient of determination.

  20. Estimation of genetic parameters for wool fiber diameter measures.

    Science.gov (United States)

    Iman, N Y; Johnson, C L; Russell, W C; Stobart, R H

    1992-04-01

    Genetic and phenotypic correlations and heritability estimates of side, britch, and core diameters; side and britch CV; side and britch diameter difference; and clean fleece weight were investigated using 385 western white-faced ewes produced by 50 sires and maintained at two locations on a selection study. Data were analyzed using analysis of variance procedures, and effects in the final model included breed of sire-selection line combination, sire within breed-selection line, and location. Heritabilities were estimated by paternal half-sib analysis. Sires within breed-selection line represented a significant source of variation for all traits studied. Location had a significant effect on side diameter, side and britch diameter difference, and clean fleece weight. Age of ewe only affected clean fleece weight. Phenotypic and genetic correlations among side, britch, and core diameter measures were high and positive. Phenotypic correlations ranged from .68 to .75 and genetic correlations ranged from .74 to .89. The genetic correlations between side and britch diameter difference and side diameter or core diameter were small (-.16 and .28, respectively). However, there was a stronger genetic correlation between side and britch diameter difference and britch diameter (.55). Heritability of the difference between side and britch diameter was high (.46 +/- .16) and similar to heritability estimates reported for other wool traits. Results of this study indicate that relatively rapid genetic progress through selection for fiber diameter should be possible. In addition, increased uniformity in fiber diameter should be possible through selection for either side and britch diameter difference or side or britch CV.