WorldWideScience

Sample records for aircraft materials

  1. Advanced Aircraft Material

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Prince

    2013-06-01

    Full Text Available There has been long debate on “advanced aircraft material” from past decades & researchers too came out with lots of new advanced material like composites and different aluminum alloys. Now days a new advancement that is in great talk is third generation Aluminum-lithium alloy. Newest Aluminum-lithium alloys are found out to have low density, higher elastic modulus, greater stiffness, greater cryogenic toughness, high resistance to fatigue cracking and improved corrosion resistance properties over the earlier used aircraft material as mentioned in Table 3 [1-5]. Comparison had been made with nowadays used composite material and is found out to be more superior then that

  2. Advanced materials for aircraft engine applications.

    Science.gov (United States)

    Backman, D G; Williams, J C

    1992-02-28

    A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time.

  3. Aircraft gas turbine materials and processes.

    Science.gov (United States)

    Kear, B H; Thompson, E R

    1980-05-23

    Materials and processing innovations that have been incorporated into the manufacture of critical components for high-performance aircraft gas turbine engines are described. The materials of interest are the nickel- and cobalt-base superalloys for turbine and burner sections of the engine, and titanium alloys and composites for compressor and fan sections of the engine. Advanced processing methods considered include directional solidification, hot isostatic pressing, superplastic foring, directional recrystallization, and diffusion brazing. Future trends in gas turbine technology are discussed in terms of materials availability, substitution, and further advances in air-cooled hardware.

  4. Analysis of Aircraft Fuels and Related Materials

    Science.gov (United States)

    1982-09-01

    electrical charges can be generated when fuel is added to aircraft fuel tanks containing reticulated polyurethane foam. On several occasions electrical...to be a mixture of cellulose and synthetic fibers plus pieces of fuel tank foam. These materials, however, were not specifically characterized. The...oxides. The presence of inorganic carbonate is also suggested by a weak band at approxi- mately 7 microns. The presence of some cellulose from scraping

  5. Lectures on Composite Materials for Aircraft Structures,

    Science.gov (United States)

    1982-10-01

    lectures are related to structural applications of composites . In Lecture 7, the basic theory that is needed for composite structural analysis is...which composites have been taken up for aeronautical applications. Several specific applications of composites in aircraft structures am described in

  6. Advanced materials research for long-haul aircraft turbine engines

    Science.gov (United States)

    Signorelli, R. A.; Blankenship, C. P.

    1978-01-01

    The status of research efforts to apply low to intermediate temperature composite materials and advanced high temperature materials to engine components is reviewed. Emerging materials technologies and their potential benefits to aircraft gas turbines were emphasized. The problems were identified, and the general state of the technology for near term use was assessed.

  7. Quality-Oriented Classification of Aircraft Material Based on SVM

    Directory of Open Access Journals (Sweden)

    Hongxia Cai

    2014-01-01

    Full Text Available The existing material classification is proposed to improve the inventory management. However, different materials have the different quality-related attributes, especially in the aircraft industry. In order to reduce the cost without sacrificing the quality, we propose a quality-oriented material classification system considering the material quality character, Quality cost, and Quality influence. Analytic Hierarchy Process helps to make feature selection and classification decision. We use the improved Kraljic Portfolio Matrix to establish the three-dimensional classification model. The aircraft materials can be divided into eight types, including general type, key type, risk type, and leveraged type. Aiming to improve the classification accuracy of various materials, the algorithm of Support Vector Machine is introduced. Finally, we compare the SVM and BP neural network in the application. The results prove that the SVM algorithm is more efficient and accurate and the quality-oriented material classification is valuable.

  8. Release-rate calorimetry of multilayered materials for aircraft seats

    Science.gov (United States)

    Fewell, L. L.; Parker, J. A.; Duskin, F.; Speith, H.; Trabold, E.

    1980-01-01

    Multilayered samples of contemporary and improved fire-resistant aircraft seat materials were evaluated for their rates of heat release and smoke generation. Top layers with glass-fiber block cushion were evaluated to determine which materials, based on their minimum contributions to the total heat release of the multilayered assembly, may be added or deleted. The smoke and heat release rates of multilayered seat materials were then measured at heat fluxes of 1.5 and 3.5 W/cm2. Abrasion tests were conducted on the decorative fabric covering and slip sheet to ascertain service life and compatibility of layers

  9. Material Distribution Optimization for the Shell Aircraft Composite Structure

    Science.gov (United States)

    Shevtsov, S.; Zhilyaev, I.; Oganesyan, P.; Axenov, V.

    2016-09-01

    One of the main goal in aircraft structures designing isweight decreasing and stiffness increasing. Composite structures recently became popular in aircraft because of their mechanical properties and wide range of optimization possibilities.Weight distribution and lay-up are keys to creating lightweight stiff strictures. In this paperwe discuss optimization of specific structure that undergoes the non-uniform air pressure at the different flight conditions and reduce a level of noise caused by the airflowinduced vibrations at the constrained weight of the part. Initial model was created with CAD tool Siemens NX, finite element analysis and post processing were performed with COMSOL Multiphysicsr and MATLABr. Numerical solutions of the Reynolds averaged Navier-Stokes (RANS) equations supplemented by k-w turbulence model provide the spatial distributions of air pressure applied to the shell surface. At the formulation of optimization problem the global strain energy calculated within the optimized shell was assumed as the objective. Wall thickness has been changed using parametric approach by an initiation of auxiliary sphere with varied radius and coordinates of the center, which were the design variables. To avoid a local stress concentration, wall thickness increment was defined as smooth function on the shell surface dependent of auxiliary sphere position and size. Our study consists of multiple steps: CAD/CAE transformation of the model, determining wind pressure for different flow angles, optimizing wall thickness distribution for specific flow angles, designing a lay-up for optimal material distribution. The studied structure was improved in terms of maximum and average strain energy at the constrained expense ofweight growth. Developed methods and tools can be applied to wide range of shell-like structures made of multilayered quasi-isotropic laminates.

  10. Aircraft

    Science.gov (United States)

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  11. Graphene/Epoxy Coating as Multifunctional Material for Aircraft Structures

    Directory of Open Access Journals (Sweden)

    Tullio Monetta

    2015-06-01

    Full Text Available Recently, the use of graphene as a conductive nanofiller in the preparation of inorganic/polymer nanocomposites has attracted increasing interest in the aerospace field. The reason for this is the possibility of overcoming problems strictly connected to the aircraft structures, such as electrical conductivity and thus lightning strike protection. In addition, graphene is an ideal candidate to enhance the anti-corrosion properties of the resin, since it absorbs most of the light and provides hydrophobicity for repelling water. An important aspect of these multifunctional materials is that all these improvements can be realized even at very low filler loadings in the polymer matrix. In this work, graphene nanoflakes were incorporated into a water-based epoxy resin, and then the hybrid coating was applied to Al 2024-T3 samples. The addition of graphene considerably improved some physical properties of the hybrid coating as demonstrated by Electrochemical Impedance Spectroscopy (EIS analysis, ameliorating anti-corrosion performances of raw material. DSC measurements and Cross-cut Test showed that graphene did not affect the curing process or the adhesion properties. Moreover, an increment of water contact angle was displayed.

  12. Special Issue: Adaptive/Smart Structures and Multifunctional Materials with Application to Morphing Aircraft

    Directory of Open Access Journals (Sweden)

    Rafic Ajaj

    2014-12-01

    Full Text Available Recent advances in smart structures and multifunctional materials have facilitated many novel aerospace technologies such as morphing aircraft. A morphing aircraft, bio-inspired by natural fliers, has gained a lot of interest as a potential technology to meet the ambitious goals of the Advisory Council for Aeronautics Research in Europe (ACARE Vision 2020 and the FlightPath 2050 documents. A morphing aircraft continuously adjusts its wing geometry to enhance flight performance, control authority, and multi-mission capability.[...

  13. Fire Safety Aspects of Polymeric Materials. Volume 6. Aircraft. Civil and Military

    Science.gov (United States)

    1977-01-01

    Materials 6.3.1 Transport Aircraft The United States commercial aircraft manufacturing industry dominates the world market for commercial transport...r S a> oo o z O OC E U OC QC 5 5^2 z < o "• > 8 ? 5 < E 1X1 z UJ o z "■ K 2 io 8 iy 9 E 2 2 251

  14. MIIT Convened Work Meeting for Upstream and Downstream Cooperation Mechanism of Aluminum Material For Civilian Aircraft

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    On September 15,2015,the Department of Raw Material Industry and the Department of Equipment Industry of the Ministry of Industry and Information Technology(MIIT)jointly organized and convened the first work meeting for upstream and downstream cooperation mechanism of aluminum material for civilian aircraft in Shanghai.Entrusted by Vice

  15. Damage monitoring of aircraft structures made of composite materials using wavelet transforms

    Science.gov (United States)

    Molchanov, D.; Safin, A.; Luhyna, N.

    2016-10-01

    The present article is dedicated to the study of the acoustic properties of composite materials and the application of non-destructive testing methods to aircraft components. A mathematical model of a wavelet transformed signal is presented. The main acoustic (vibration) properties of different composite material structures were researched. Multiple vibration parameter dependencies on the noise reduction factor were derived. The main steps of a research procedure and new method algorithm are presented. The data obtained was compared with the data from a three dimensional laser-Doppler scanning vibrometer, to validate the results. The new technique was tested in the laboratory and on civil aircraft at a training airfield.

  16. First Principles Identification of New Aircraft Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The identification of new, structurally sound, thermally stable materials for aviation applications will enable a wide range of technologies. The identification of...

  17. DETECTING DEFECTS IN AIRCRAFT MATERIALS BY NUCLEAR TECHNIQUE (PAS)

    OpenAIRE

    EMAD A. BADAWI

    2005-01-01

    Positron annihilation spectroscopy (PAS) is one of the nuclear techniques used in material science. The present measurements are used to study the behavior of defect concentration in one of the most important materials aluminum alloys which is the 7075 alloy. It has been shown that positrons can become trapped at imperfect locations in solids and their mean lifetime can be influenced by changes in the concentration of such defects. No changes have been observed in the mean lifetime values aft...

  18. NASA-UVa Light Aerospace Alloy and Structures Technology Program: Aluminum-Based Materials for High Speed Aircraft

    Science.gov (United States)

    Starke, E. A., Jr. (Editor)

    1996-01-01

    This report is concerned with 'Aluminum-Based Materials for High Speed Aircraft' which was initiated to identify the technology needs associated with advanced, low-cost aluminum base materials for use as primary structural materials. Using a reference baseline aircraft, these materials concept will be further developed and evaluated both technically and economically to determine the most attractive combinations of designs, materials, and manufacturing techniques for major structural sections of an HSCT. Once this has been accomplished, the baseline aircraft will be resized, if applicable, and performance objectives and economic evaluations made to determine aircraft operating costs. The two primary objectives of this study are: (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials, and (2) to assess these materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT.

  19. Detecting Defects in Aircraft Materials by Nuclear Technique (pas)

    Science.gov (United States)

    Badawi, Emad. A.

    Positron annihilation spectroscopy (PAS) is one of the nuclear techniques used in material science. The present measurements are used to study the behavior of defect concentration in one of the most important materials aluminum alloys which is the 7075 alloy. It has been shown that positrons can become trapped at imperfect locations in solids and their mean lifetime can be influenced by changes in the concentration of such defects. No changes have been observed in the mean lifetime values after the saturation of defect concentration. The mean lifetime and trapping rates are studied for samples deformed up to 58.3%. The concentration of defect range vary from 1015 to 1018cm-3 at the thickness reduction from 2.3 to 58.3%. The dislocation density varies from 108 to 1011cm/cm3.

  20. Advanced materials and fabrication processes for supersonic cruise aircraft

    Science.gov (United States)

    Guess, M. K.; Kaneko, R. S.; Wald, G. G.

    1981-01-01

    Research and development programs to develop high-strength aluminum alloys and low-cost materials and fabrication techniques for titanium alloys are being conducted. Thirteen aluminum alloy compositions are being evaluated. A section of a production component was fabricated using superplastic forming and diffusion bonding (SPF/DB) and fabrication studies are being conducted on three low temperature forming beta titanium alloys. Cost studies indicate substantial structural cost reduction potentials resulting from the use of both aluminum alloys and low-cost titanium fabrication techniques. Lowest overall costs are indicated for a composite/aluminum or composite titanium structure.

  1. Certification of Discontinuous Composite Material Forms for Aircraft Structures

    Science.gov (United States)

    Arce, Michael Roger

    New, high performance chopped, discontinuous, or short fiber composites (DFCs), DFCs, such as HexMC and Lytex, made by compression molding of randomly oriented pre-impregnated unidirectional tape, can be formed into complex geometry while retaining mechanical properties suitable for structural use. These DFCs provide the performance benefits of Continuous Fiber Composites (CFCs) in form factors that were previously unavailable. These materials demonstrate some notably different properties from continuous fiber composites, especially with respect to damage tolerance and failure behavior. These behaviors are not very well understood, and fundamental research efforts are ongoing to better characterize the material and to ease certification for future uses. Despite this, these new DFCs show such promise that they are already in service in the aerospace industry, for instance in the Boeing 787. Unfortunately, the relative novelty of these parts means that they needed to be certified by “point design”, an excess of physical testing, rather than by a mix of physical testing and finite element analysis, which would be the case for CFCs or metals. In this study, one particular approach to characterizing both linear-elastic and failure behaviors are considered. The Stochastic Laminate Analogy, which represents a novel approach to modeling DFCs, and its combination with a Ply Discount scheme. Owing to limited available computational resources, only preliminary results are available, but those results are quite promising and warrant further investigation.

  2. Cost benefit study of advanced materials technology for aircraft turbine engines

    Science.gov (United States)

    Hillery, R. V.; Johnston, R. P.

    1977-01-01

    The cost/benefits of eight advanced materials technologies were evaluated for two aircraft missions. The overall study was based on a time frame of commercial engine use of the advanced material technologies by 1985. The material technologies evaluated were eutectic turbine blades, titanium aluminide components, ceramic vanes, shrouds and combustor liners, tungsten composite FeCrAly blades, gamma prime oxide dispersion strengthened (ODS) alloy blades, and no coat ODS alloy combustor liners. They were evaluated in two conventional takeoff and landing missions, one transcontinental and one intercontinental.

  3. Study of Aerospace Materials, Coatings, Adhesions and Processes. Aircraft Icing Processes. Volume 1.

    Science.gov (United States)

    1984-09-14

    AP A160 413 STUDY OF AEROSPACE MATERIALS CATIS AD|SIOS A - PROCESSES AIRCRAFT IC.. (UI INSTITUbO NACIONAL DE TECNICA AEROESPACIAL MORID ISPAIN) E I...Approved for public release; distribution unlimited. Prepared for INSTITTTTO NACIONAL DE TECNICA AEROESPACIAL "Esteban Terradas". Torrejdn de Ardoz...ADDRESS il0. PROGRAM ELEMENT. PROJECT, TASKC Thstituto Naciorial Tecnica Aeroespacial Dto. Aerodindmica y Navegabilidad 2301 / D1 Torrejcn de Ardoz

  4. X-ray inspection of composite materials for aircraft structures using detectors of Medipix type

    Science.gov (United States)

    Jandejsek, I.; Jakubek, J.; Jakubek, M.; Prucha, P.; Krejci, F.; Soukup, P.; Turecek, D.; Vavrik, D.; Zemlicka, J.

    2014-05-01

    This work presents an overview of promising X-ray imaging techniques employed for non-destructive defectoscopy inspections of composite materials intended for the Aircraft industry. The major emphasis is placed on non-tomographic imaging techniques which do not require demanding spatial and time measurement conditions. Imaging methods for defects visualisation, delamination detection and porosity measurement of various composite materials such as carbon fibre reinforced polymers and honeycomb sendwiches are proposed. We make use of the new large area WidePix X-ray imaging camera assembled from up to 100 edgeless Medipix type detectors which is highly suitable for this type of measurements.

  5. Development Orientation of Aircraft Material Management%航材管理发展方向研究

    Institute of Scientific and Technical Information of China (English)

    常玉; 同姗姗

    2012-01-01

    How to seek after the maximum economic benefit under the prerequisite to ensure safety is an important problem in aircraft maintenance.Through the study on the requirements of aircraft material management development in CAAC, some suggestions for building economic benefit type aircraft material management mode are put forward from transferring aircraft material management concepts, enhancing aircraft material cost control and establishing aircraft material sharing platform in order to reduce costs, to ensure flight safety and to raise the competitiveness of the company.%如何在保证安全的前提下,追求最大的经济效益,是摆在飞机维修单位面前的一个重要问题.通过对CAAC航材管理发展要求的研读,从转变航材管理观念、加强航材成本控制、建立航材共享平台等方面提出了建立经济效益型航材管理模式的建议,以降低公司成本,保障飞行安全,提高公司的竞争力.

  6. Computer program for prediction of the deposition of material released from fixed and rotary wing aircraft

    Science.gov (United States)

    Teske, M. E.

    1984-01-01

    This is a user manual for the computer code ""AGDISP'' (AGricultural DISPersal) which has been developed to predict the deposition of material released from fixed and rotary wing aircraft in a single-pass, computationally efficient manner. The formulation of the code is novel in that the mean particle trajectory and the variance about the mean resulting from turbulent fluid fluctuations are simultaneously predicted. The code presently includes the capability of assessing the influence of neutral atmospheric conditions, inviscid wake vortices, particle evaporation, plant canopy and terrain on the deposition pattern.

  7. Methods of saving energy and materials in the manufacture of integrated aircraft structure components

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, J.C.; Welschof, K.; Janssen, W.; Mahlke, M.; Sprangers, W.; Binding, J.

    1987-11-01

    In the framework of a special research unit, methods for saving energy and raw materials are investigated for selected production processes. Integral construction components of the aircraft industry which today are mostly produced by metal-cutting processes, are the basis of the joint research work of six of the total of nineteen participating projects. Research is carried out on the possibilities for reducing the expenditure of material and energy by the application of alternative production processes in the field of primary shaping, deforming and joining as well as by structural optimization. By means of a computer-aided evaluation of the possible production methods, the alternatives can be compared with regard to their energy and raw material requirements.

  8. EVALUATION OF THE PROBABILITY DISTRIBUTION OF PITTING CORROSION FATIGUE LIFE IN AIRCRAFT MATERIALS

    Institute of Scientific and Technical Information of China (English)

    王清远; N.KAWAGOISHI; Q.CHEN; R.M.PIDAPARTI

    2003-01-01

    Corrosion and fatigue properties of aircraft materials axe known to have a considerablescatter due to the random nature of materials, loading, and environmental conditions. A probabilisticapproach for predicting the pitting corrosion fatigue life has been investigated which captures the effectof the interaction of the cyclic load and corrosive environment and all stages of the corrosion fatigueprocess (i.e. the pit nucleation and growth, pit-crack transition, short- and long-crack propagation).The probabilistic model investigated considers the uncertainties in the initial pit size, corrosion pittingcurrent, and material properties due to the scatter found in the experimental data. Monte Carlo simu-lations were performed to define the failure probability distribution. Predicted cumulative distributionfunctions of fatigue life agreed reasonably well with the existing experimental data.

  9. EVALUATION OF THE PROBABILITY DISTRIBUTION OF PITTING CORROSION FATIGUE LIFE IN AIRCRAFT MATERIALS

    Institute of Scientific and Technical Information of China (English)

    WANG Qingyuan (王清远); N.KAWAGOISHI; Q.CHEN; R.M.PIDAPARTI

    2003-01-01

    Corrosion and fatigue properties of aircraft materials are known to have a considerable scatter due to the random nature of materials,loading,and environmental conditions.A probabilistic approach for predicting the pitting corrosion fatigue life has been investigated which captures the effect of the interaction of the cyclic load and corrosive environment and all stages of the corrosion fatigue process (i.e.the pit nucleation and growth,pit-crack transition,short- and long-crack propagation).The probabilistic model investigated considers the uncertainties in the initial pit size,corrosion pitting current,and material properties due to the scatter found in the experimental data.Monte Carlo simulations were performed to define the failure probability distribution.Predicted cumulative distribution functions of fatigue life agreed reasonably well with the existing experimental data.

  10. Standard Test Method for Stress-Corrosion of Titanium Alloys by Aircraft Engine Cleaning Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This test method establishes a test procedure for determining the propensity of aircraft turbine engine cleaning and maintenance materials for causing stress corrosion cracking of titanium alloy parts. 1.2 The evaluation is conducted on representative titanium alloys by determining the effect of contact with cleaning and maintenance materials on tendency of prestressed titanium alloys to crack when subsequently heated to elevated temperatures. 1.3 Test conditions are based upon manufacturer's maximum recommended operating solution concentration. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see and .

  11. Ozone consumption and volatile byproduct formation from surface reactions with aircraft cabin materials and clothing fabrics

    Science.gov (United States)

    Coleman, Beverly K.; Destaillats, Hugo; Hodgson, Alfred T.; Nazaroff, William W.

    We measured ozone consumption and byproduct formation on materials commonly found in aircraft cabins at flight-relevant conditions. Two series of small-chamber experiments were conducted, with most runs at low relative humidity (10%) and high air-exchange rate (˜20 h -1). New and used cabin materials (seat fabric, carpet, and plastic) and laundered and worn clothing fabrics (cotton, polyester, and wool) were studied. We measured ozone deposition to many material samples, and we measured ozone uptake and primary and secondary emissions of volatile organic compounds (VOCs) from a subset of samples. Deposition velocities ranged from 0.06 to 0.54 cm s -1. Emissions of VOCs were higher with ozone than without ozone in every case. The most commonly detected secondary emissions were C 1 through C 10 saturated aldehydes and the squalene oxidation products 6-methyl-5-hepten-2-one and acetone. For the compounds measured, summed VOC emission rates in the presence of 55-128 ppb (residual level) ozone ranged from 1.0 to 8.9 μmol h -1 m -2. Total byproduct yield ranged from 0.07 to 0.24 moles of product volatilized per mole of ozone consumed. Results were used to estimate the relative contribution of different materials to ozone deposition and byproduct emissions in a typical aircraft cabin. The dominant contributor to both was clothing fabrics, followed by seat fabric. Results indicate that ozone reactions with surfaces substantially reduce the ozone concentration in the cabin but also generate volatile byproducts of potential concern for the health and comfort of passengers and crew.

  12. The effect of material heterogeneity in curved composite beams for use in aircraft structures

    Science.gov (United States)

    Otoole, Brendan J.; Santare, Michael H.

    1992-01-01

    A design tool is presented for predicting the effect of material heterogeneity on the performance of curved composite beams for use in aircraft fuselage structures. Material heterogeneity can be induced during processes such as sheet forming and stretch forming of thermoplastic composites. This heterogeneity can be introduced in the form of fiber realignment and spreading during the manufacturing process causing a gradient in material properties in both the radial and tangential directions. The analysis procedure uses a separate two-dimensional elasticity solution for the stresses in the flanges and web sections of the beam. The separate solutions are coupled by requiring the forces and displacements match at the section boundaries. Analysis is performed for curved beams loaded in pure bending and uniform pressure. The beams can be of any general cross-section such as a hat, T-, I-, or J-beam. Preliminary results show that geometry of the beam dictates the effect of heterogeneity on performance. Heterogeneity plays a much larger role in beams with a small average radius to depth ratio, R/t, where R is the average radius of the beam and t is the difference between the inside and outside radius. Results of the analysis are in the form of stresses and displacements, and they are compared to both mechanics of materials and numerical solutions obtained using finite element analysis.

  13. Analysis of dental materials as an aid to identification in aircraft accidents

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, G.S.; Cruickshanks-Boyd, D.W.

    1982-04-01

    The failure to achieve positive identification of aircrew following an aircraft accident need not prevent a full autopsy and toxicological examination to ascertain possible medical factors involved in the accident. Energy-dispersive electron microprobe analysis provides morphological, qualitative, and accurate quantitative analysis of the composition of dental amalgam. Wet chemical analysis can be used to determine the elemental composition of crowns, bridges and partial dentures. Unfilled resin can be analyzed by infrared spectroscopy. Detailed analysis of filled composite restorative resins has not yet been achieved in the as-set condition to permit discrimination between manufacturers' products. Future work will involve filler studies and pyrolysis of the composite resins by thermogravimetric analysis to determine percentage weight loss when the sample examined is subjected to a controlled heating regime. With these available techniques, corroborative evidence achieved from the scientific study of materials can augment standard forensic dental results to obtain a positive identification.

  14. NASA-UVa light aerospace alloy and structures technology program supplement: Aluminum-based materials for high speed aircraft

    Science.gov (United States)

    Starke, E. A., Jr. (Editor)

    1995-01-01

    This report on the NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from July 1, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) Ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) Powder metallurgy 2XXX alloys, (3) Rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) Discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  15. Advanced composite structural concepts and materials technologies for primary aircraft structures: Advanced material concepts

    Science.gov (United States)

    Lau, Kreisler S. Y.; Landis, Abraham L.; Chow, Andrea W.; Hamlin, Richard D.

    1993-01-01

    To achieve acceptable performance and long-term durability at elevated temperatures (350 to 600 F) for high-speed transport systems, further improvements of the high-performance matrix materials will be necessary to achieve very long-term (60,000-120,000 service hours) retention of mechanical properties and damage tolerance. This report emphasizes isoimide modification as a complementary technique to semi-interpenetrating polymer networks (SIPN's) to achieve greater processibility, better curing dynamics, and possibly enhanced thermo-mechanical properties in composites. A key result is the demonstration of enhanced processibility of isoimide-modified linear and thermo-setting polyimide systems.

  16. Standard Test Method for Effects of Cleaning and Chemical Maintenance Materials on Painted Aircraft Surfaces

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers determination of the effects of cleaning solutions and liquid cleaner concentrates on painted aircraft surfaces (Note 1). Streaking, discoloration, and blistering may be determined visually. Softening is determined with a series of specially prepared pencils wherein determination of the softest pencil to rupture the paint film is made. Note 1—This test method is applicable to any paint film that is exposed to cleaning materials. MIL-PRF-85285 has been selected as a basic example. When other paint finishes are used, refer to the applicable material specification for panel preparation and system curing prior to testing. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user ...

  17. NASA-UVA Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft

    Science.gov (United States)

    Starke, E. A., Jr.

    1997-01-01

    This is the final report of the study "Aluminum-Based Materials for High Speed Aircraft" which had the objectives (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials and (2) to assess the materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT. The research team consisted of ALCOA, Allied-Signal, Boeing, McDonnell Douglas, Reynolds Metals and the University of Virginia. Four classes of aluminum alloys were investigated: (1) I/M 2XXX containing Li and I/M 2XXX without Li, (2) I/M 6XXX, (3) two P/M 2XXX alloys, and (4) two different aluminum-based metal matrix composites (MMC). The I/M alloys were targeted for a Mach 2.0 aircraft and the P/M and MMC alloys were targeted for a Mach 2.4 aircraft. Design studies were conducted using several different concepts including skin/stiffener (baseline), honeycomb sandwich, integrally stiffened and hybrid adaptations (conventionally stiffened thin-sandwich skins). Alloy development included fundamental studies of coarsening behavior, the effect of stress on nucleation and growth of precipitates, and fracture toughness as a function of temperature were an integral part of this program. The details of all phases of the research are described in this final report.

  18. Firefighting and Emergency Response Study of Advanced Composites Aircraft; Objective 1: Composite Material Damage in Minor Aircraft Fires

    Science.gov (United States)

    2013-05-18

    absorbed by the reaction,  is the fraction of decomposed material, and Q is heat flux. The process is exothermic for negative values of H and... endothermic for positive values (the decomposition/phase change model allowed for endothermic reactions only). The decomposition rate term is typically...considered definitive because it could indicate when a small crack occurred around an individual TC and not be a good indicator of plate-wide delamination

  19. Investigation of vulnerability of aircraft structure and materials towards cabin explosions

    NARCIS (Netherlands)

    Wentzel, C.M.; Kasteele, R.M. van de; Soetens, F.

    2007-01-01

    Damage Tolerance of aircraft fuselage structures has a strong link to explosion resistance. Though accidental explosions can and do occur, intentional explosions are more common as the terrorist threat increases. Structural toughness is as welcome in these scenarios as it is under penetration of non

  20. Comparative study on structure, corrosion and hardness of Zn-Ni alloy deposition on AISI 347 steel aircraft material

    Energy Technology Data Exchange (ETDEWEB)

    Gnanamuthu, RM. [Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Gihung, Yongin, Gyeonggi 446-701 (Korea, Republic of); Mohan, S., E-mail: sanjnamohan@yahoo.com [Central Electrochemical Research Institute, (CSIR), Karaikudi 630 006, Tamilnadu (India); Saravanan, G. [Central Electrochemical Research Institute, (CSIR), Karaikudi 630 006, Tamilnadu (India); Lee, Chang Woo, E-mail: cwlee@khu.ac.kr [Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Gihung, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Electrodeposition of Zn-Ni alloy on AISI 347 steel as an aircraft material has been carried out from various baths. Black-Right-Pointing-Pointer The effect of pulse duty cycle on thickness, current efficiency and hardness reached maximum values at 40% duty cycle and for 50 Hz frequencies average current density of 4 A dm{sup -2}. Black-Right-Pointing-Pointer The XRF characterizations of 88:12% Zn-Ni alloy provided excellent corrosion resistance. Black-Right-Pointing-Pointer It is found that Zn-Ni alloy on AISI 347 aircraft material has better structure and corrosion resistance by pulse electrodeposits from electrolyte-4. - Abstract: Zn-Ni alloys were electrodeposited on AISI 347 steel aircraft materials from various electrolytes under direct current (DCD) and pulsed electrodepositing (PED) techniques. The effects of pulse duty cycle on thickness, current efficiency and hardness of electrodeposits were studied. Alloy phases of the Zn-Ni were indexed by X-ray diffraction (XRD) techniques. Microstructural morphology, topography and elemental compositions were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray fluorescence spectroscopy (XRF). The corrosion resistance properties of electrodeposited Zn-Ni alloy in 3.5% NaCl aqueous solution obtained by DCD and PED were compared using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) technique. Elemental analysis showed that 88% of Zn and 12% of Ni obtained from electrolyte-4 by PED technique at 40% duty cycle for 50 Hz frequencies having better corrosion resistance than that of deposits obtained from other electrolytes.

  1. Synthesis and processing of intelligent cost-effective structures phase II (SPICES II): smart materials aircraft applications evaluation

    Science.gov (United States)

    Dunne, James P.; Jacobs, Steven W.; Baumann, Erwin W.

    1998-06-01

    The second phase of the synthesis and processing of intelligent cost effective structures (SPICES II) program sought to identify high payoff areas for both naval and aerospace military systems and to evaluate military systems and to evaluate the benefits of smart materials incorporation based on their ability to redefine the mission scenario of the candidate platforms in their respective theaters of operation. The SPICES II consortium, consisting of The Boeing Company, Electric Boat Corporation, United Technologies Research Center, and Pennsylvania State University, surveyed the state-of-the-art in smart structures and evaluated potential applications to military aircraft, marine and propulsion systems components and missions. Eleven baseline platforms comprising a wide variety of missions were chosen for evaluation. Each platform was examined in its field of operation for areas which can be improved using smart materials insertion. Over 250 smart materials applications were proposed to enhance the platforms. The applications were examined and, when possible, quantitatively analyzed for their effect on mission performance. The applications were then ranked for payoff, risk, and time frame for development and demonstration. Details of the efforts made in the SPICES II program pertaining to smart structure applications on military and transport aircraft will be presented. A brief discussion of the core technologies will be followed by presentation of the criteria used in ranking each application. Thereafter, a selection of the higher ranking proposed concepts are presented in detail.

  2. Material combinations and parametric study of thermal and mechanical performance of pyramidal core sandwich panels used for hypersonic aircrafts

    Science.gov (United States)

    Zhang, Ruiping; Zhang, Xiaoqing; Lorenzini, Giulio; Xie, Gongnan

    2016-11-01

    A novel kind of lightweight integrated thermal protection system, named pyramidal core sandwich panel, is proposed to be a good safeguard for hypersonic aircrafts in the current study. Such system is considered as not only an insulation structure but also a load-bearing structure. In the context of design for hypersonic aircrafts, an efficient optimization should be paid enough attention. This paper concerns with the homogenization of the proposed pyramidal sandwich core panel using two-dimensional model in subsequent research for material selection. According to the required insulation performance and thermal-mechanical properties, several suitable material combinations are chosen as candidates for the pyramidal core sandwich panel by adopting finite element analysis and approximate response surface. To obtain lightweight structure with an excellent capability of heat insulation and load-bearing, an investigation on some specific design variables, which are significant for thermal-mechanical properties of the structure, is performed. Finally, a good balance between the insulation performance, the capability of load-bearing and the lightweight has attained.

  3. Aircraft Environmental System Mechanic, 2-9. Block IV--Utility Systems and Flight Line Maintenance. Military Curriculum Materials for Vocational and Technical Education.

    Science.gov (United States)

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This publication contains a teaching guide and student instructional materials for conducting a high school or adult vocational education course to train persons to perform duties as an aircraft environmental systems mechanic. The instructional design for this course is self-paced and/or small group-paced. Instructor materials contained in the…

  4. Design of a Low-Cost Easy-to-Fly STOL Ultralight Aircraft in Composite Material

    Directory of Open Access Journals (Sweden)

    D. P. Coiro

    2005-01-01

    Full Text Available The paper deals with the design of an aircraft, starting from a market survey, the conceptual design loop and the preliminary choice of dimensions, and leading to the detailed design of efficient high-lift systems and a low-drag fuselage shape. Technological challenges regarding the design of low-cost systems for flap/slat retraction and a simple wing folding system are highlighted. Aiming at an efficient optimization algorithm, we developed a new integration technique between CAD, aerodynamic and structural numerical calculation. Examples deriving from this new approach are presented. 

  5. Pre-crack fatigue life assessment of relevant aircraft materials using fractal analysis of eddy current test data

    Science.gov (United States)

    Schreiber, Jürgen; Cikalova, Ulana; Hillmann, Susanne; Meyendorf, Norbert; Hoffmann, Jochen

    2013-01-01

    Successful determination of residual fatigue life requires a comprehensive understanding of the fatigue related material deformation mechanism. Neither macroscopic continuum mechanics nor micromechanic observations provide sufficient data to explain subsequent deformation structures occurring during the fatigue life of a metallic structure. Instead mesomechanic deformation on different scaling levels can be studied by applying fractal analysis of various means of nondestructive inspection measurements. The resulting fractal dimension data can be correlated to the actual material damage states, providing an estimation of the remaining residual fatigue life before macroscopic fracture develops. Recent efforts were aimed to apply the fractal concept to aerospace relevant materials AA7075-T6 and Ti-6Al-4V. Proven and newly developed fractal analysis methods were applied to eddy current (EC) measurements of fatigued specimens, with the potential to transition this approach to an aircraft for an in-situ nondestructive inspection. The occurrence of mesomechanic deformation at the material surface of both AA7075-T6 and Ti-6Al-4V specimens could be established via topography images using confocal microscopy (CM). Furthermore, a pulsed eddy current (PEC) approach was developed, combined with a sophisticated new fractal analysis algorithm based on short pulse excitation and evaluation of EC relaxation behavior. This paper presents concept, experimental realization, fractal analysis procedures, and results of this effort.

  6. Enhanced radiographic imaging of defects in aircraft structure materials with the dehazing method

    Science.gov (United States)

    Yahaghi, Effat; Movafeghi, Amir; Mohmmadzadeh, Nooreddin

    2015-04-01

    The aircraft structures are made of aluminium alloys because of its various advantages, including ease of manufacture, high tolerance and ease of maintenance. Corrosions and cracks are often found in high-strength aluminium alloys. The industrial radiographic testing method and digital radiography are two most important tools for detecting different kinds of defects in aluminium structures. However, because of greater sensitivity and dynamic range of phosphor plates in computed radiography than in film, digital radiography can produce clear and high-contrast images, but digital radiography images appear foggy. In this study, a dehazing algorithm is implemented for the digital radiography images of airplane parts to remove fog. The used dehazing algorithm is based on the dark channel prior and it is based on the statistics of outdoor haze-free images. In most of the local regions of the radiography images, some pixels very often have very low intensity in at least one colour (RGB: red, green, blue) channel which are called dark pixels. In hazy radiography images, the intensity of these dark pixels in that channel is mainly contributed by scattering. Therefore, these dark pixels can directly provide an accurate estimation of the haze transmission and combining a haze imaging model and a soft matting interpolation method can be recovered a high-quality haze free in the radiography image and produce a good depth map and the defects. The results show that the fog-removed images have better contrast and the shapes of defects are very clear. In addition, some invisible cracks in the digital images can be seen in the defogged image.

  7. Innovative Structural and Material Concepts for Low-Weight Low-Drag Aircraft Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this multi-phase project is to explore, develop, integrate, and test several innovative structural design concepts and new material...

  8. Cost/benefit analysis of advanced materials technologies for future aircraft turbine engines

    Science.gov (United States)

    Stephens, G. E.

    1980-01-01

    The materials technologies studied included thermal barrier coatings for turbine airfoils, turbine disks, cases, turbine vanes and engine and nacelle composite materials. The cost/benefit of each technology was determined in terms of Relative Value defined as change in return on investment times probability of success divided by development cost. A recommended final ranking of technologies was based primarily on consideration of Relative Values with secondary consideration given to changes in other economic parameters. Technologies showing the most promising cost/benefits were thermal barrier coated temperature nacelle/engine system composites.

  9. Characterization of Graphite Composite Material Particulates from United States Air Force Aircraft Maintenance Operations

    Science.gov (United States)

    2011-03-01

    1998). Oberdörster also revealed that particulate matter deposited in the nasal area may travel up the olfactory nerve to the olfactory bulb in...which is marketed for materials analysis. A polytetrafluoroethylene (PTFE) control filter (SKC 225-2748), which is utilized in the GRIMM PAS, was

  10. Fullerenes for enhanced performance of novel nano-exploited aircraft materials

    OpenAIRE

    Inam, Fawad; Okolo, Chichi

    2016-01-01

    Fullerene is an allotropic form of carbon having a large spheroidal molecule consisting of a hollow case of sixty or more carbon atoms. In the past decade, this family of super carbonaceous materials is subject of significant research interest for their utilization in an increasing number of applications including energy, transportation, defense, automotive, aerospace, sporting goods, and infrastructure sectors. Carbon nanotubes and graphene are some of the common types of fullerenes. This pr...

  11. Cost/benefit studies of advanced materials technologies for future aircraft turbine engines: Materials for advanced turbine engines

    Science.gov (United States)

    Stearns, M.; Wilbers, L.

    1982-01-01

    Cost benefit studies were conducted on six advanced materials and processes technologies applicable to commercial engines planned for production in the 1985 to 1990 time frame. These technologies consisted of thermal barrier coatings for combustor and high pressure turbine airfoils, directionally solidified eutectic high pressure turbine blades, (both cast and fabricated), and mixers, tail cones, and piping made of titanium-aluminum alloys. A fabricated titanium fan blisk, an advanced turbine disk alloy with improved low cycle fatigue life, and a long-life high pressure turbine blade abrasive tip and ceramic shroud system were also analyzed. Technologies showing considerable promise as to benefits, low development costs, and high probability of success were thermal barrier coating, directionally solidified eutectic turbine blades, and abrasive-tip blades/ceramic-shroud turbine systems.

  12. Materials and Additive Manufacturing for Energy Efficiency in Wind Turbine and Aircraft Industries

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, Panos G [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Polyzos, Georgios [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Clemons, Art [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bolton, Paul [Piedmont Propulsion Systems, LLC, Winston-Salem, NC (United States); Hollander, Aaron [First Aviation Services Inc., Westport, CT (United States)

    2016-05-04

    The purpose of this project was to develop surface treatments which will inhibit the formation of ice on turbine blades and propellers. ORNL worked with Piedmont Propulsion Systems, LLC and First Aviation Services Inc. to demonstrate a new surface treatment for two primary markets, aviation and wind turbines, as well as secondary markets such as power lines, bridges, boats, roofs and antennas among others. Exploring alternative surface treatments for wind turbines will provide anti-icing properties and erosion/abrasion prevention properties similar to those for aviation applications. A series of superhydrophobic coating materials was synthesized and successfully applied on anti-ice tape materials that could be used in a wide range of wind turbine and aviation applications to prevent ice accumulation. The coatings developed in this project were based on superhydrophobic particles of different geometries and sizes that were homogeneously dispersed in polymeric binders. The superhydrophobic features of the coatings are volumetric and their abrasion resistance was evaluated. Future research will involve the demonstration of anti-icing properties of the surface treatment developed in this project.

  13. Effect of Wire Material on Productivity and Surface Integrity of WEDM-Processed Inconel 706 for Aircraft Application

    Science.gov (United States)

    Sharma, Priyaranjan; Chakradhar, D.; Narendranath, S.

    2016-09-01

    Inconel 706 is a recently developed superalloy for aircraft application, particularly in turbine disk which is among the most critical components in the gas turbine engines. Recently, wire electrical discharge machining (WEDM) attained success in machining of gas turbine components which require complex shape profiles with high precision. To achieve the feasibility in machining of these components, the research work has been conducted on Inconel 706 superalloy using WEDM process. And, the effect of different wire materials (i.e., hard brass wire, diffused wire, and zinc-coated wire) on WEDM performance characteristics such as cutting speed, surface topography, surface roughness, recast layer formation, residual stresses, and microstructural and metallurgical alterations have been investigated. Even though, zinc-coated wire exhibits improved productivity, hard brass wire was found to be beneficial in terms of improved surface quality of the machined parts. Additionally, lower tensile residual stresses were obtained with hard brass wire. However, diffused wire has a moderate effect on productivity and surface quality. Under high discharge energy, higher elemental changes were observed and also the white layer was detected.

  14. NASA-UVA Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft. Final report, 1 December 1991-31 March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Starke, E.A. Jr.

    1996-05-01

    This is the final report of the study `Aluminum-Based Materials for high Speed Aircraft` which had the objectives (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials and (2) to assess the materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT. The research team consisted of ALCOA, Allied-Signal, Boeing, McDonnell Douglas, Reynolds Metals and the University of Virginia. Four classes of aluminum alloys were investigated: (1) I/M 2XXX containing Li and I/M 2XXX with Li, (2) I/M 6XXX, (3) two P/M 2XXX alloys and (4) two different aluminum-based metal matrix composites (MMC). The I/M alloys were targeted for a Mach 2.0 aircraft and the P/M and MMC alloys were targeted for a Mach 2.4 aircraft. Design studies were conducted using several different concepts including skin/stiffener (baseline), honeycomb sandwich, integrally stiffened and hybrid adaptations (conventionally stiffened thin-sandwich skins). Alloy development included fundamental studies of coarsening behavior, the effect of stress on nucleation and growth of precipitates, and fracture toughness as a function of temperature were an integral part of this program. The details of all phases of the research are described in this final report.

  15. The application of EOQ and lead time crashing cost models in material with limited life time (Case study: CN-235 Aircraft at PT Dirgantara Indonesia)

    Science.gov (United States)

    Agustina Hidayat, Yosi; Ria Kasanah, Aprilia; Yudhistira, Titah

    2016-02-01

    PT. Dirgantara Indonesia, one of State Owned Enterprises engaging in the aerospace industry, targets to control 30% of world market for light and medium sized aircraft. One type of the aircrafts produced by PT. DI every year is CN-235. Currently, the cost of material procurement reaches 50% of the total cost of production. Material has a variety of characteristics, one of which is having a lifetime. The demand characteristic of the material with expiration for the CN-235 aircraft is deterministic. PT DI does not have any scientific background for its procurement of raw material policy. In addition, there are two methods of transportation used for delivering materials, i.e. by land and air. Each method has different lead time. Inventory policies used in this research are deterministic and probabilistic. Both deterministic and probabilistic single and multi-item inventory policies have order quantity, time to order, reorder point, and lead time as decision variables. The performance indicator for this research is total inventory cost. Inventory policy using the single item EOQ and considering expiration factor inventory results in a reduction in total costs up to 69.58% and multi item results in a decrease in total costs amounted to 71.16%. Inventory policy proposal using the model of a single item by considering expiration factor and lead time crashing cost results in a decrease in total costs amounted to 71.5% and multi item results in a decrease in total costs amounted to 71.62%. Subsequently, wasted expired materials, with the proposed models have been successfully decreased to 95%.

  16. Development of New Material for Fast Repair of Aircraft Structure%一种飞机结构快速修理新材料的研究

    Institute of Scientific and Technical Information of China (English)

    魏东; 韩斐; 刘成武

    2011-01-01

    光固化复合材料修理补片是一种用于飞机结构快速修理的新材料。运用光敏树脂浸渍纤维增强材料制成了预浸料修理补片,采用正交设计方法确定了制备补片的最佳工艺条件,进而对补片的相关特性进行了分析与实验;最终通过模拟某歼击机机翼下蒙皮应力水平最高处的试验;得出结论:使用该材料对飞机结构进行修理所需设备少、结构增重小、修补强度高、通用性强,可适用于多种材质、多种损伤模式下复杂结构的快速修理。%Light-cured complex material repair patch is a kind of new fast repair material for aircraft structure. A reinforcing material of light-sensitive resin impregnated fiber was used to make a flexible prepare repair patch. Orthogonal design was applied in determining the best technical condition to fabricate the patch, and the characteristic of the patch was analyzed. The experiment of aircraft under wing covering stress with the patch showed that the patch for aircraft structure repair has the features of fewer types of equipment needed, light structural weight, high repair strength, and strong universal property, which is suitable for complex structure fast repair with various material and multiple damage models.

  17. Aircraft Design

    Science.gov (United States)

    Bowers, Albion H. (Inventor); Uden, Edward (Inventor)

    2016-01-01

    The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.

  18. Deformation of Titanium Alloy Materials for China Aircraft%我国航空用变形钛合金材料

    Institute of Scientific and Technical Information of China (English)

    张利军; 薛祥义; 常辉

    2012-01-01

    Titanium alloy appears as a mid-twentieth century, and developed new structural materials, because of its excellent corrosion resistance, high specific strength and non-magnetic and a series of unique advantages, such as high-end in the aerospace industry access to a wide range of applications, the current structure of the airframe bulkheads, beams, landing gear and the aircraft engine compressor tray, roulette, blades and other parts of extensive use of titanium bearing materials. 60s in the last century, the United States, Britain, the former Soviet Union and other industrialized countries has been in the manufacture of aircraft and aero-engine heavy use of titanium material. Titanium alloy material of the application in the aviation industry started late 80's until the last century, one after another in the manufacture of aircraft and aircraft engines use a small amount of titanium alloy materials, but the 21st century, China~ aviation induswy application level of a large titanium alloy Rate increase, this article in China has entered the industrial production of and access to en- gineering applications in the aviation industry formulation of deformation of titanium alloy materials.%钛合金材料作为一种20世纪中叶出现并发展起来的新兴结构材料,因其具有优异的耐腐蚀性、高的比强度以及无磁性等一系列独特的优点,在航空航天等高端工业部门获得了广泛应用,目前飞机机体结构中的隔框、大梁、起落架以及航空发动机压气机匣、轮盘、叶片等承力部件大量使用钛合金材料制造。在上世纪60年代,美国、英国、前苏联等工业发达国家就已经在弋机及航空发动机制造中大量使用钛合金材料。我国钛合金材料在航空工业中的应用起步较晚,上世纪80年代开始才陆续在飞机及航空发动机制造中少量使用钛合金材料,但是进入21世纪之后,我国航空工业钛合金材料的应用水平大

  19. Fire resistant aircraft seat program

    Science.gov (United States)

    Fewell, L. A.

    1979-01-01

    Foams, textiles, and thermoformable plastics were tested to determine which materials were fire retardant, and safe for aircraft passenger seats. Seat components investigated were the decorative fabric cover, slip covers, fire blocking layer, cushion reinforcement, and the cushioning layer.

  20. Amphibious Aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — A brief self composed research article on Amphibious Aircrafts discussing their use, origin and modern day applications along with their advantages and disadvantages...

  1. Exploration of Questions Regarding Modelling of Crack Growth Behaviour under Practical Combinations of Aircraft Spectra, Stress Levels and Materials

    Science.gov (United States)

    2011-07-01

    the material fracture toughness (Forman Equation [11], for example). All, however, are empirical models that fit equations to experimental data...surface breaking constituent particles (or their voids left by etching) in the parent material . Coupons from sheet aluminium material clad by a thin... fracture toughness all become influential. The final stage of growth leading to unstable fracture is generally given less attention when performing

  2. Separation of airborne and structureborne noise radiated by plates constructed of conventional and composite materials with applications for prediction of interior noise paths in propeller driven aircraft. Ph.D. Thesis

    Science.gov (United States)

    Mcgary, M. C.

    1986-01-01

    The anticipated application of advanced turboprop propulsion systems and use of composite materials in primary structure is expected to increase the interior noise of future aircraft to unacceptability high levels. The absence of technically and economically feasible noise source-path diagnostic tools has been a primer obstacle in the development of efficient noise control treatments for propeller driven aircraft. A new diagnostic method which permits the separation and prediction of the fully coherent airborne and structureborne components of the sound radiated by plates or thin shells has been developed. Analytical and experimental studies of the proposed method were performed on plates constructed of both conventional and composite materials. The results of the study indicate that the proposed method can be applied to a variety of aircraft materials, could be used in flight, and has fewer encumbrances than the other diagnostic tools currently available. The study has also revealed that the noise radiation of vibrating plates in the low frequency regime due to combined airborne and structureborne inputs possesses a strong synergistic nature. The large influence of the interaction between the airborne and structureborne terms has been hitherto ignored by researchers of aircraft interior noise problems.

  3. Structural Framework for Flight: NASA's Role in Development of Advanced Composite Materials for Aircraft and Space Structures

    Science.gov (United States)

    Tenney, Darrel R.; Davis, John G., Jr.; Johnston, Norman J.; Pipes, R. Byron; McGuire, Jack F.

    2011-01-01

    This serves as a source of collated information on Composite Research over the past four decades at NASA Langley Research Center, and is a key reference for readers wishing to grasp the underlying principles and challenges associated with developing and applying advanced composite materials to new aerospace vehicle concepts. Second, it identifies the major obstacles encountered in developing and applying composites on advanced flight vehicles, as well as lessons learned in overcoming these obstacles. Third, it points out current barriers and challenges to further application of composites on future vehicles. This is extremely valuable for steering research in the future, when new breakthroughs in materials or processing science may eliminate/minimize some of the barriers that have traditionally blocked the expanded application of composite to new structural or revolutionary vehicle concepts. Finally, a review of past work and identification of future challenges will hopefully inspire new research opportunities and development of revolutionary materials and structural concepts to revolutionize future flight vehicles.

  4. Development of Spray Coating Methods and Materials to Replace Aluminum Cladding of Aging Aircraft for Corrosion Protection

    Science.gov (United States)

    2007-06-01

    is applied through roll bonding prior to the final heat treatment of the skin material during the original manufacture of the air frame. While this...EM = early transition metal, LM = late transition metal, R = rare earth metal) ternary alloys without metalloid because higher GFA (glass-formation...electrolyte of saturated sodium chloride in water . 11.5,2. SWAATCorrosion Test SWAAT tests were performed on coated substrate coupons according to ASTM

  5. Aircraft cybernetics

    Science.gov (United States)

    1977-01-01

    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  6. Robots for Aircraft Maintenance

    Science.gov (United States)

    1993-01-01

    Marshall Space Flight Center charged USBI (now Pratt & Whitney) with the task of developing an advanced stripping system based on hydroblasting to strip paint and thermal protection material from Space Shuttle solid rocket boosters. A robot, mounted on a transportable platform, controls the waterjet angle, water pressure and flow rate. This technology, now known as ARMS, has found commercial applications in the removal of coatings from jet engine components. The system is significantly faster than manual procedures and uses only minimal labor. Because the amount of "substrate" lost is minimal, the life of the component is extended. The need for toxic chemicals is reduced, as is waste disposal and human protection equipment. Users of the ARMS work cell include Delta Air Lines and the Air Force, which later contracted with USBI for development of a Large Aircraft Paint Stripping system (LARPS). LARPS' advantages are similar to ARMS, and it has enormous potential in military and civil aircraft maintenance. The technology may also be adapted to aircraft painting, aircraft inspection techniques and paint stripping of large objects like ships and railcars.

  7. Commercial aircraft composite technology

    CERN Document Server

    Breuer, Ulf Paul

    2016-01-01

    This book is based on lectures held at the faculty of mechanical engineering at the Technical University of Kaiserslautern. The focus is on the central theme of societies overall aircraft requirements to specific material requirements and highlights the most important advantages and challenges of carbon fiber reinforced plastics (CFRP) compared to conventional materials. As it is fundamental to decide on the right material at the right place early on the main activities and milestones of the development and certification process and the systematic of defining clear requirements are discussed. The process of material qualification - verifying material requirements is explained in detail. All state-of-the-art composite manufacturing technologies are described, including changes and complemented by examples, and their improvement potential for future applications is discussed. Tangible case studies of high lift and wing structures emphasize the specific advantages and challenges of composite technology. Finally,...

  8. Aircraft Carriers

    DEFF Research Database (Denmark)

    Nødskov, Kim; Kværnø, Ole

    in Asia and will balance the carrier acquisitions of the United States, the United Kingdom, Russia and India. China’s current military strategy is predominantly defensive, its offensive elements being mainly focused on Taiwan. If China decides to acquire a large carrier with offensive capabilities......, then the country will also acquire the capability to project military power into the region beyond Taiwan, which it does not possess today. In this way, China will have the military capability to permit a change of strategy from the mainly defensive, mainland, Taiwan-based strategy to a more assertive strategy...... catapult with which to launch the fi ghter aircraft, not to mention the possible development of a nuclear power plant for the ship. The Russian press has indicated that China is negotiating to buy SU-33 fi ghters, which Russia uses on the Kuznetsov carrier. The SU-33 is, in its modernized version...

  9. Hydrogen aircraft technology

    Science.gov (United States)

    Brewer, G. D.

    1991-01-01

    A comprehensive evaluation is conducted of the technology development status, economics, commercial feasibility, and infrastructural requirements of LH2-fueled aircraft, with additional consideration of hydrogen production, liquefaction, and cryostorage methods. Attention is given to the effects of LH2 fuel cryotank accommodation on the configurations of prospective commercial transports and military airlifters, SSTs, and HSTs, as well as to the use of the plentiful heatsink capacity of LH2 for innovative propulsion cycles' performance maximization. State-of-the-art materials and structural design principles for integral cryotank implementation are noted, as are airport requirements and safety and environmental considerations.

  10. Aircraft Electric Secondary Power

    Science.gov (United States)

    1983-01-01

    Technologies resulted to aircraft power systems and aircraft in which all secondary power is supplied electrically are discussed. A high-voltage dc power generating system for fighter aircraft, permanent magnet motors and generators for aircraft, lightweight transformers, and the installation of electric generators on turbine engines are among the topics discussed.

  11. Materials

    Science.gov (United States)

    Glaessgen, Edward H.; Schoeppner, Gregory A.

    2006-01-01

    NASA Langley Research Center has successfully developed an electron beam freeform fabrication (EBF3) process, a rapid metal deposition process that works efficiently with a variety of weldable alloys. The EBF3 process can be used to build a complex, unitized part in a layer-additive fashion, although the more immediate payoff is for use as a manufacturing process for adding details to components fabricated from simplified castings and forgings or plate products. The EBF3 process produces structural metallic parts with strengths comparable to that of wrought product forms and has been demonstrated on aluminum, titanium, and nickel-based alloys to date. The EBF3 process introduces metal wire feedstock into a molten pool that is created and sustained using a focused electron beam in a vacuum environment. Operation in a vacuum ensures a clean process environment and eliminates the need for a consumable shield gas. Advanced metal manufacturing methods such as EBF3 are being explored for fabrication and repair of aerospace structures, offering potential for improvements in cost, weight, and performance to enhance mission success for aircraft, launch vehicles, and spacecraft. Near-term applications of the EBF3 process are most likely to be implemented for cost reduction and lead time reduction through addition of details onto simplified preforms (casting or forging). This is particularly attractive for components with protruding details that would require a significantly large volume of material to be machined away from an oversized forging, offering significant reductions to the buy-to-fly ratio. Future far-term applications promise improved structural efficiency through reduced weight and improved performance by exploiting the layer-additive nature of the EBF3 process to fabricate tailored unitized structures with functionally graded microstructures and compositions.

  12. Aircraft Electronics Maintenance Training Simulator. Curriculum Outlines.

    Science.gov (United States)

    Blackhawk Technical Coll., Janesville, WI.

    Instructional materials are provided for nine courses in an aircraft electronics maintenance training program. Courses are as follows: aviation basic electricity, direct current and alternating current electronics, basic avionic installations, analog electronics, digital electronics, microcomputer electronics, radio communications, aircraft…

  13. Propulsion controlled aircraft computer

    Science.gov (United States)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  14. Unmanned aircraft systems

    Science.gov (United States)

    Unmanned platforms have become increasingly more common in recent years for acquiring remotely sensed data. These aircraft are referred to as Unmanned Airborne Vehicles (UAV), Remotely Piloted Aircraft (RPA), Remotely Piloted Vehicles (RPV), or Unmanned Aircraft Systems (UAS), the official term used...

  15. 低成本材料技术在美国新型航母上的应用研究%Applied Research of Low Cost Materials and Technologies in American aircraft carrier

    Institute of Scientific and Technical Information of China (English)

    邓贤辉; 郭爱红; 廖志谦

    2012-01-01

    During the period of 2010-2011, NMC has participated in many research projects on low cost materials and technologies applied in American new aircraft carrier, including R&D of advanced material and manufacturing technology, advanced jointing technology, new surface and coating technology,and so on. The research progress of these projects are summarized in this article. The economic and social benefits of improving properties and reducing cost on the aircraft carrier building are expected, which may inspire us in the R&D of advanced material and manufacturing technology for shipbuilding.%本文概述了美国海军金属加工中心(NMC)在2010-2011年间参与开展的新型航空母舰用先进材料、先进制造技术、先进连接技术、新型表面涂装与处理技术等方面开展的低成本材料技术研发工作所取得的进展.预测了研究成果转让给海军应用时,给航空母舰建造提高性能、降低成本所带来的巨大经济效益和社会效益.这将对我国开展舰船用先进材料及制造技术方面的研究与开发工作起重要启示作用.

  16. Numerical Study of Bird Impact on the Aircraft Windshield Structure with Composite Material%民机机头复合材料风挡结构鸟撞分析

    Institute of Scientific and Technical Information of China (English)

    简成文; 李书

    2015-01-01

    The relative velocity is always very large when the bird impacting on the aircraft windshield, and the body of the bird will present the property of fluid. This kind of problem belongs to the category of fluid dynamics. At first, this paper analyzed a numerical simulation of bird impacting on aluminum plate with the method of ALE, and the result of simulation and the test data are compared. Then a full scale model which contains windshield, framework and the skin is set up. The framework and the skin are made of composite materials. Numerical study of bird strike on this model is done and the result proves that the structure meets the design requirements. At present, a full scale framework of aircraft windshield with composite materials has not been applied to the civil aircraft yet, so the study of this windshield structure with composite materials is of great significance.%在鸟体撞击风挡结构过程中,鸟体与风挡结构撞击相对速度很大,呈现出流体特性,属于典型的流固耦合瞬态冲击动力学问题。首先针对文献中的鸟撞铝板试验采用任意的拉格朗日-欧拉( ALE )流固耦合方法进行了分析,对计算方法与鸟体模型进行了验证。然后建立了包括风挡玻璃、风挡骨架以及蒙皮在内的民机全尺寸风挡结构抗鸟撞动响应分析的有限元模型,进行了鸟撞数值模拟,其中风挡骨架与蒙皮采用复合材料。全尺寸的复合材料风挡骨架目前还没有应用到民机上,因此,对复合材料风挡结构的研究是很有意义的。

  17. 航天飞机及高超飞行器用刚性隔热材料研究进展%The Research Development of Rigid Insulation Materials for the Space Shuttle and Hypersonic Aircraft

    Institute of Scientific and Technical Information of China (English)

    杨杰; 隋学叶; 刘瑞祥; 周长灵; 王重海

    2015-01-01

    The thermal protection materials is one of the keys to safety of the space shuttle and hy-personic aircrafts.Rigid efficient heat insulation materials have the advantages of high temperature resistant and good structure stability,become the important thermal protection and structural materi-als used by space shuttle and hypersonic flight vehicle in high temperature and large areas.This arti-cle reviewed the rigid efficient insulation material in the application of thermal protection system of hypersonic aircraft,reviewed of the progress the rigid insulation technology research and application status,and introduced the application of rigid insulation materials in the USA space shuttle and air-craft,especially the new heat - insulating integration of the application of ceramic tile.In addition, the article summarized the domestic research situation of rigid insulation materials,finally prospected the application development in insulation of hypersonic flight vehicle in the future.%航天飞机及高超飞行器热防护材料是关系航天飞机及高超飞行器安全的关键之一。刚性高效隔热材料具有耐高温和稳定性好等优点,成为航天飞机和高超声速飞行器高温区和大面积区域所用的重要的热防护结构材料。本文回顾了刚性高效隔热材料在高超声速飞行器热防护系统中的应用,综述美国刚性隔热材料技术研究进展与应用现状,介绍了刚性隔热材料在美国航天飞机及飞行器中的应用,特别是新型的防热-隔热一体化陶瓷瓦的应用。此外,概括了国内刚性隔热材料的研究情况,最后展望了应用于高超声速飞行器中的隔热材料未来发展。

  18. Multifunctional Composite Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Polymeric composite materials that are currently utilized in aircraft structures are susceptible to significant damage from lightning strikes. Enhanced electrical...

  19. Aircraft Noise Prediction

    OpenAIRE

    2014-01-01

    This contribution addresses the state-of-the-art in the field of aircraft noise prediction, simulation and minimisation. The point of view taken in this context is that of comprehensive models that couple the various aircraft systems with the acoustic sources, the propagation and the flight trajectories. After an exhaustive review of the present predictive technologies in the relevant fields (airframe, propulsion, propagation, aircraft operations, trajectory optimisation), the paper add...

  20. Survival analysis of aging aircraft

    Science.gov (United States)

    Benavides, Samuel

    work demonstrates the development of a probabilistic corrosion failure model using survival analysis methods and techniques. Using a parsimonious approach, the coefficients of a Cox proportional hazards model were derived from a set of environmental, geographical and operational predictor variables. To determine if the variables satisfied the proportional hazard assumption, numerous statistical tests were performed---such as the equivalence tests of the log rank, Wilcoxon, Peto-Peto and Fleming-Harrington---and graphical plots generated such as observed-versus-expected plots and log(-log) survival curves. Finally, in a paradigm enhancement to current design methodologies, this dissertation place sets survival analysis modeling in the context of an emerging holistic structural integrity philosophy. While traditional aircraft design and life prediction methodologies consider only the cyclic fatigue domain without consideration to the environmental or unique operating spectrum that aircraft may fly in, a holistic approach considers the cradle-to-grave driving forces in the life of a component, such as corrosion assisted crack nucleation in a material. This dissertation, which uses real-world failure data obtained from structural aircraft components, is poised to narrow the cradle-to-grave loop and provide holistic feedback in the understanding of aircraft structural system failures.

  1. Parabolic aircraft solidification experiments

    Science.gov (United States)

    Workman, Gary L. (Principal Investigator); Smith, Guy A.; OBrien, Susan

    1996-01-01

    A number of solidification experiments have been utilized throughout the Materials Processing in Space Program to provide an experimental environment which minimizes variables in solidification experiments. Two techniques of interest are directional solidification and isothermal casting. Because of the wide-spread use of these experimental techniques in space-based research, several MSAD experiments have been manifested for space flight. In addition to the microstructural analysis for interpretation of the experimental results from previous work with parabolic flights, it has become apparent that a better understanding of the phenomena occurring during solidification can be better understood if direct visualization of the solidification interface were possible. Our university has performed in several experimental studies such as this in recent years. The most recent was in visualizing the effect of convective flow phenomena on the KC-135 and prior to that were several successive contracts to perform directional solidification and isothermal casting experiments on the KC-135. Included in this work was the modification and utilization of the Convective Flow Analyzer (CFA), the Aircraft Isothermal Casting Furnace (ICF), and the Three-Zone Directional Solidification Furnace. These studies have contributed heavily to the mission of the Microgravity Science and Applications' Materials Science Program.

  2. Cable Tensiometer for Aircraft

    Science.gov (United States)

    Nunnelee, Mark (Inventor)

    2008-01-01

    The invention is a cable tensiometer that can be used on aircraft for real-time, in-flight cable tension measurements. The invention can be used on any aircraft cables with high precision. The invention is extremely light-weight, hangs on the cable being tested and uses a dual bending beam design with a high mill-volt output to determine tension.

  3. Aircraft operations management manual

    Science.gov (United States)

    1992-01-01

    The NASA aircraft operations program is a multifaceted, highly diverse entity that directly supports the agency mission in aeronautical research and development, space science and applications, space flight, astronaut readiness training, and related activities through research and development, program support, and mission management aircraft operations flights. Users of the program are interagency, inter-government, international, and the business community. This manual provides guidelines to establish policy for the management of NASA aircraft resources, aircraft operations, and related matters. This policy is an integral part of and must be followed when establishing field installation policy and procedures covering the management of NASA aircraft operations. Each operating location will develop appropriate local procedures that conform with the requirements of this handbook. This manual should be used in conjunction with other governing instructions, handbooks, and manuals.

  4. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    Science.gov (United States)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  5. Inhalation Toxicology. V. Evaluation of Relative Toxicity to Rats of Thermal Decomposition Products from Two Aircraft Seat Fire-Blocking Materials.

    Science.gov (United States)

    1985-11-01

    only. The relative toxicity of the combustion gases was measured by determining time-to-incapacitation (ti) in the laboratory rat , the same endpoint... the laboratory rat was the measured response used to compare the relative toxicity of the combustion gases produced from the two materials. Because of

  6. Development of powder metallurgy 2XXX series Al alloy plate and sheet materials for high temperature aircraft structural applications, FY 1983/1984

    Science.gov (United States)

    Chellman, D. J.

    1985-01-01

    The objective of this investigation is to fabricate and evaluate PM 2124 Al alloy plate and sheet materials according to NASA program goals for damage tolerance and fatigue resistance. Previous research has indicated the outstanding strength-toughness relationship available with PM 2124 Al-Zr modified alloy compositions in extruded product forms. The range of processing conditions was explored in the fabrication of plate and sheet gage materials, as well as the resultant mechanical and metallurgical properties. The PM composition based on Al-3.70 Cu-1.85 Mg-0.20 Mn with 0.60 wt. pct. Zr was selected. Flat rolled material consisting of 0.250 in. thick plate was fabricated using selected thermal mechanical treatments (TMT). The schedule of TMT operations was designed to yield the extreme conditions of grain structure normally encountered in the fabrication of flat rolled products, specifically recrystallized and unrecrystallized. The PM Al alloy plate and sheet materials exhibited improved strength properties at thin gages compared to IM Al alloys, as a consequence of their enhanced ability to inhibit recrystallization and grain growth. In addition, the PM 2124 Al alloys offer much better combinations of strength and toughnessover equivalent IM Al. The alloy microstructures were examined by optical metallographic texture techniques in order to establish the metallurgical basis for these significant property improvements.

  7. Predicting Visibility of Aircraft

    Science.gov (United States)

    Watson, Andrew; Ramirez, Cesar V.; Salud, Ellen

    2009-01-01

    Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO). In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration. PMID:19462007

  8. Application and Development of Carbon Brake Disc Materials for Commercial Aircraft%大型商用飞机炭刹车盘材料的应用进展

    Institute of Scientific and Technical Information of China (English)

    季光明

    2011-01-01

    From the 70 years of the 20th century(1970s), the research and application of carbon brake disc composite has experienced five generations. C/C composite material has become the first choice of carbon brake disc for corrmlercial aircraft and has been widely used in Airbus and Boeing because of its excellent features of light weight, good friction characteristics, long life and high heat-absorbing capacity. The domestic carbon brake material has made considerable development after several years of development, and has been used as PMA in B757 and A320. However, the further improvement of density uniformity, quality consistency of domestic carbon brake material, anti-oxidation coating reliabilit, and low cost technology is necessary.%炭刹车盘材料具有质量轻、摩擦特性好、使用寿命长、吸热能力高等一系列优良特性。从20世纪70年代问世以来,炭刹车盘复合材料的研制和应用总共经历了五代发展历程,已经成为商用飞机炭刹车副的首选材料,被广泛应用于空客和波音系列飞机。经过几十年的发展,国内炭刹车材料取得了长足的发展,已经作为PMA件应用于B757和A320机型,但仍需进一步提高国产炭刹车材料的密度均匀性、质量一致性、抗氧化涂层的可靠性及降低生产成本。

  9. Tropospheric sampling with aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Daum, P.H.; Springston, S.R.

    1991-03-01

    Aircraft constitute a unique environment which places stringent requirements on the instruments used to measure the concentrations of atmospheric trace gases and aerosols. Some of these requirements such as minimization of size, weight, and power consumption are general; others are specific to individual techniques. This review presents the basic principles and considerations governing the deployment of trace gas and aerosol instrumentation on an aircraft. An overview of common instruments illustrates these points and provides guidelines for designing and using instruments on aircraft-based measurement programs.

  10. Lightning hazards to aircraft

    Science.gov (United States)

    Corn, P. B.

    1978-01-01

    Lightning hazards and, more generally, aircraft static electricity are discussed by a representative for the Air Force Flight Dynamics Laboratory. An overview of these atmospheric electricity hazards to aircraft and their systems is presented with emphasis on electrical and electronic subsystems. The discussion includes reviewing some of the characteristics of lightning and static electrification, trends in weather and lightning-related mishaps, some specific threat mechanisms and susceptible aircraft subsystems and some of the present technology gaps. A roadmap (flow chart) is presented to show the direction needed to address these problems.

  11. SOLAR AIRCRAFT DESIGN

    OpenAIRE

    RAHMATI, Sadegh; GHASED, Amir

    2015-01-01

    Abstract. Generally domain Aircraft uses conventional fuel. These fuel having limited life, high cost and pollutant. Also nowadays price of petrol and other fuels are going to be higher, because of scarcity of those fuels. So there is great demand of use of non-exhaustible unlimited source of energy like solar energy. Solar aircraft is one of the ways to utilize solar energy. Solar aircraft uses solar panel to collect the solar radiation for immediate use but it also store the remaining part ...

  12. Method of making counterrotating aircraft propeller blades

    Science.gov (United States)

    Nelson, Joey L. (Inventor); Elston, III, Sidney B. (Inventor); Tseng, Wu-Yang (Inventor); Hemsworth, Martin C. (Inventor)

    1990-01-01

    An aircraft propeller blade is constructed by forming two shells of composite material laminates and bonding the two shells to a metallic spar with foam filler pieces interposed between the shells at desired locations. The blade is then balanced radially and chordwise.

  13. Aircraft Integral Fuel Tank Corrosion Study

    Science.gov (United States)

    2007-11-02

    biology of Amorphoteca resinae . Materials und Organismen, 6, (3), p. 161, (1971). 8. D. Cabral. Corrosion by microorganisms of jet aircraft integral fuel...the mycelium of the fungus Hormoconis resinae in the MIC of Al alloys. Proc. XI Int. Corrosion Congress, Houston, USA, 5B, p. 3773, (1993). 14. M

  14. Depreciation of aircraft

    Science.gov (United States)

    Warner, Edward P

    1922-01-01

    There is a widespread, and quite erroneous, impression to the effect that aircraft are essentially fragile and deteriorate with great rapidity when in service, so that the depreciation charges to be allowed on commercial or private operation are necessarily high.

  15. Essentials of aircraft armaments

    CERN Document Server

    Kaushik, Mrinal

    2017-01-01

    This book aims to provide a complete exposure about armaments from their design to launch from the combat aircraft. The book details modern ammunition and their tactical roles in warfare. The proposed book discusses aerodynamics, propulsion, structural as well as navigation, control, and guidance of aircraft armament. It also introduces the various types of ammunition developed by different countries and their changing trends. The book imparts knowledge in the field of design, and development of aircraft armaments to aerospace engineers and covers the role of the United Nations in peacekeeping and disarmament. The book will be very useful to researchers, students, and professionals working in design and manufacturing of aircraft armaments. The book will also serve air force and naval aspirants, and those interested in working on defence research and developments organizations. .

  16. Solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  17. Aircraft electromagnetic compatibility

    Science.gov (United States)

    Clarke, Clifton A.; Larsen, William E.

    1987-06-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  18. Aircraft Fire Protection Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Navy Aircraft Protection Laboratory provides complete test support for all Navy air vehicle fire protection systems.The facility allows for the simulation of a...

  19. Aircraft Fire Protection Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Navy Aircraft Protection Laboratory provides complete test support for all Navy air vehicle fire protection systems. The facility allows for the simulation of a...

  20. Improving transient analysis technology for aircraft structures

    Science.gov (United States)

    Melosh, R. J.; Chargin, Mladen

    1989-01-01

    Aircraft dynamic analyses are demanding of computer simulation capabilities. The modeling complexities of semi-monocoque construction, irregular geometry, high-performance materials, and high-accuracy analysis are present. At issue are the safety of the passengers and the integrity of the structure for a wide variety of flight-operating and emergency conditions. The technology which supports engineering of aircraft structures using computer simulation is examined. Available computer support is briefly described and improvement of accuracy and efficiency are recommended. Improved accuracy of simulation will lead to a more economical structure. Improved efficiency will result in lowering development time and expense.

  1. CFRP materials reinforced with LCP fibres for applications in vehicle and aircraft engineering. Final report; Faserverbundkunststoffe mit einer LCP-Faserverstaerkung fuer Anwendungen im Fahrzeug- und Flugzeugbau. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-11

    CFRP materials reinforced with liquid crystalline polyester (LCP) fibres were produced and characterized with regard to their physical and mechanical characteristics. Compared with non-reinforced plastics, polypropylene/LCP fibre-UD laminates produced by filmstacking, epoxy resin/LCP fibre-UD laminates produced by spooling and epoxy resin composites with internal LCP fibre fleece had significantly higher strength and stiffness as well as high thermoforming resistance and waterproofness. [Deutsch] In diesem Forschungsvorhaben wurden Faserverbundkunststoffe mit einer Verstaerkungsfaser auf Basis eines thermotropen fluessigkristallinen Polyester [Liquid Crystalline Polyester, abgekuerzt LCP] hergestellt und bezueglich der physikalisch-mechanischen Eigenschaften charakterisiert. Die im `filmstacking`-Verfahren hergestellte Polypropylen/LCP-Faser-UD-Laminate und mittels Bewicklung gewonnene Epoxidharz/LCP-Faser-UD-Laminate sowie Epoxidharzverbunde mit eingearbeiteten LCP-Faservlies zeigen gegenueber den unverstaerkten Kunststoffmaterialien einen betraechtlichen Anstieg von Festigkeit und Steifigkeit. Die Faserverbunde weisen ausserdem eine hohe Waermeformbestaendigkeit und Wassersperrwirkung auf. (orig.)

  2. Automatic aircraft recognition

    Science.gov (United States)

    Hmam, Hatem; Kim, Jijoong

    2002-08-01

    Automatic aircraft recognition is very complex because of clutter, shadows, clouds, self-occlusion and degraded imaging conditions. This paper presents an aircraft recognition system, which assumes from the start that the image is possibly degraded, and implements a number of strategies to overcome edge fragmentation and distortion. The current vision system employs a bottom up approach, where recognition begins by locating image primitives (e.g., lines and corners), which are then combined in an incremental fashion into larger sets of line groupings using knowledge about aircraft, as viewed from a generic viewpoint. Knowledge about aircraft is represented in the form of whole/part shape description and the connectedness property, and is embedded in production rules, which primarily aim at finding instances of the aircraft parts in the image and checking the connectedness property between the parts. Once a match is found, a confidence score is assigned and as evidence in support of an aircraft interpretation is accumulated, the score is increased proportionally. Finally a selection of the resulting image interpretations with the highest scores, is subjected to competition tests, and only non-ambiguous interpretations are allowed to survive. Experimental results demonstrating the effectiveness of the current recognition system are given.

  3. Techno-economic requirements for composite aircraft components

    Science.gov (United States)

    Palmer, Ray

    1993-01-01

    The primary reason for use of composites is to save structural weight. A well designed composite aircraft structure will usually save 25-30 percent of a well designed metal structure. The weight savings then translates into improved performance of the aircraft in measures of greater payload, increased flying range or improved efficiency - less use of fuel. Composite materials offer technical advantages. Key technical advantages that composites offer are high stiffness, tailored strength capability, fatigue resistance, and corrosion resistance. Low thermal expansion properties produce dimensionally stable structures over a wide range of temperature. Specialty resin 'char' forming characteristics in a fire environment offer potential fire barrier application and safer aircraft. The materials and processes of composite fabrication offer the potential for lower cost structures in the near future. The application of composite materials to aircraft are discussed.

  4. Bonded structure application for aircraft. Kokuki ni okeru secchaku gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, O. (Japan Airlines Co. Ltd., Tokyo (Japan))

    1991-01-05

    Adhesives play an important role in a technology of the aircraft structure for which lightness and strength are required. The paper explains the present situation of bonding technology employed for aircraft, the honeycomb structure, production of composite materials and the related problems. Advantages and purposes of employing adhesives as substitutes for fasteners like screws, rivets, etc. are as follows: decreases in stress concentration, weight reduction, smoothing of surfaces, improvement of acoustic fatigue by adhesives flexibility, prevention of gas-liquid leakage. Epoxide adhesives are mainly used for aircraft. Together with tear straps, which are metal-metal bonded to the rear fuselage plate of aircraft, and waffle doublers, an aluminium honeycomb sandwich structure, whose weight is 1/7 of an aluminium plate same in rigidity, is used in such parts of aircraft as spoilers, outer plates of flaps, etc. The problem of the bonded structure is detachment. Therefore, how to prevent, discover and repair it is most important. 3 figs.

  5. Identification of Aircraft Hazards

    Energy Technology Data Exchange (ETDEWEB)

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  6. IDENTIFICATION OF AIRCRAFT HAZARDS

    Energy Technology Data Exchange (ETDEWEB)

    K.L. Ashley

    2005-03-23

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7).

  7. Aircraft Operations Classification System

    Science.gov (United States)

    Harlow, Charles; Zhu, Weihong

    2001-01-01

    Accurate data is important in the aviation planning process. In this project we consider systems for measuring aircraft activity at airports. This would include determining the type of aircraft such as jet, helicopter, single engine, and multiengine propeller. Some of the issues involved in deploying technologies for monitoring aircraft operations are cost, reliability, and accuracy. In addition, the system must be field portable and acceptable at airports. A comparison of technologies was conducted and it was decided that an aircraft monitoring system should be based upon acoustic technology. A multimedia relational database was established for the study. The information contained in the database consists of airport information, runway information, acoustic records, photographic records, a description of the event (takeoff, landing), aircraft type, and environmental information. We extracted features from the time signal and the frequency content of the signal. A multi-layer feed-forward neural network was chosen as the classifier. Training and testing results were obtained. We were able to obtain classification results of over 90 percent for training and testing for takeoff events.

  8. Subsonic Ultra Green Aircraft Research

    Science.gov (United States)

    Bradley, Marty K.; Droney, Christopher K.

    2011-01-01

    This Final Report summarizes the work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team in Phase 1, which includes the time period of October 2008 through March 2010. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. The team completed the development of a comprehensive future scenario for world-wide commercial aviation, selected baseline and advanced configurations for detailed study, generated technology suites for each configuration, conducted detailed performance analysis, calculated noise and emissions, assessed technology risks, and developed technology roadmaps. Five concepts were evaluated in detail: 2008 baseline, N+3 reference, N+3 high span strut braced wing, N+3 gas turbine battery electric concept, and N+3 hybrid wing body. A wide portfolio of technologies was identified to address the NASA N+3 goals. Significant improvements in air traffic management, aerodynamics, materials and structures, aircraft systems, propulsion, and acoustics are needed. Recommendations for Phase 2 concept and technology projects have been identified.

  9. Aircraft Fuel Systems Career Ladder.

    Science.gov (United States)

    1985-09-01

    type fittings remove and install fuel cells clean work areas inspect aircraft for safety pin installation purge tanks or cells using blow purge method...INSPECT AIRCRAFT FOR SAFETY PIN INSTALLATION 84 H254 PURGE TANKS OR CELLS USING BLOW PURGE METHOD 83 H227 CHECK AIRCRAFT FOR LIQUID OXYGEN (LOX...H243 INSPECT AIRCRAFT FOR SAFETY PIN INSTALLATION 52 M483 MIX SEALANTS BY HAND 48 K372 CONNECT OR DISCONNECT WIGGINS TYPE FITTINGS 48 H236 DISCONNECT

  10. The Effects of Employing HVM on C-130 Aircraft at WR-ALC to Aircraft Availability

    Science.gov (United States)

    2011-06-01

    information system capability 16 enables the synchronized planning, scheduling, data collection, and analysis required to implement a highly choreographed ...support requirements such as standard work through visual workcards, choreographed tasks, and required material through POU kits to ensure the...is accomplished on the aircraft. If daily work is standardized in terms of work performed and choreographed in sequence; the condition of the

  11. Reengineering Aircraft Structural Life Prediction Using a Digital Twin

    Directory of Open Access Journals (Sweden)

    Eric J. Tuegel

    2011-01-01

    Full Text Available Reengineering of the aircraft structural life prediction process to fully exploit advances in very high performance digital computing is proposed. The proposed process utilizes an ultrahigh fidelity model of individual aircraft by tail number, a Digital Twin, to integrate computation of structural deflections and temperatures in response to flight conditions, with resulting local damage and material state evolution. A conceptual model of how the Digital Twin can be used for predicting the life of aircraft structure and assuring its structural integrity is presented. The technical challenges to developing and deploying a Digital Twin are discussed in detail.

  12. Properties of Aircraft Fuels and Related Materials

    Science.gov (United States)

    1984-03-01

    carboxaldehyde 0.42 7.12 Cumene 4.09 7.67 P-Methylstyrene 0.34 1) 7.85 n-propylbenzene 2.65 8.07 Methylethyl benzene + ethylcyclohexane 1.65 8.48...naphthalenes. These compounds were found to be above their normal levels in the subject sample. Polymerization or other internal reactions are extremely

  13. Properties of Aircraft Fuels and Related Materials.

    Science.gov (United States)

    1991-07-29

    Packs Sample C: 7/1/87 SN-0014 System A-63 Sample D: 7/20/87 SN-062040 S/B Control Sample E: Blank Filter (Millipore MF type-mixed Ester of Cellulose ...SECTION 2.0 EXPERIMENTAL All samples were received as residue on 47-mm Millipore MF-type filters (mixed ester of cellulose ). Each sample was visually...IOOX magnification. A I-millimeter (mm) graduated reticule permits the major and minor axis of the scar to’be measured to the nearest 0.01 mm. The

  14. Aging analyses of aircraft wire insulation

    Energy Technology Data Exchange (ETDEWEB)

    GILLEN,KENNETH T.; CLOUGH,ROGER LEE; CELINA,MATHIAS C.; AUBERT,JAMES H.; MALONE,G. MICHAEL

    2000-05-08

    Over the past two decades, Sandia has developed a variety of specialized analytical techniques for evaluating the long-term aging and stability of cable insulation and other related materials. These techniques have been applied to cable reliability studies involving numerous insulation types and environmental factors. This work has allowed the monitoring of the occurrence and progression of cable material deterioration in application environments, and has provided insights into material degradation mechanisms. It has also allowed development of more reliable lifetime prediction methodologies. As a part of the FAA program for intrusive inspection of aircraft wiring, they are beginning to apply a battery of techniques to assessing the condition of cable specimens removed from retired aircraft. It is anticipated that in a future part of this program, they may employ these techniques in conjunction with accelerated aging methodologies and models that the authros have developed and employed in the past to predict cable lifetimes. The types of materials to be assessed include 5 different wire types: polyimide, PVC/Glass/Nylon, extruded XL-polyalkene/PVDF, Poly-X, and XL-ETFE. This presentation provides a brief overview of the main techniques that will be employed in assessing the state of health of aircraft wire insulation. The discussion will be illustrated with data from their prior cable aging studies, highlighting the methods used and their important conclusions. A few of the techniques that they employ are widely used in aging studies on polymers, but others are unique to Sandia. All of their techniques are non-proprietary, and maybe of interest for use by others in terms of application to aircraft wiring analysis. At the end of this report is a list showing some leading references to papers that have been published in the open literature which provide more detailed information on the analytical techniques for elastomer aging studies. The first step in the

  15. Aircraft Oxygen Generation

    Science.gov (United States)

    2012-02-01

    aircraft use some form of on-board oxygen generation provided by one of two corporations that dominate this market . A review of safety incident data...manufacture of synthetic resins (e.g., Bakelite), and for 161 making dyestuffs, flavorings, perfumes , and other chemicals. Some are used as

  16. Aircraft noise prediction

    Science.gov (United States)

    Filippone, Antonio

    2014-07-01

    This contribution addresses the state-of-the-art in the field of aircraft noise prediction, simulation and minimisation. The point of view taken in this context is that of comprehensive models that couple the various aircraft systems with the acoustic sources, the propagation and the flight trajectories. After an exhaustive review of the present predictive technologies in the relevant fields (airframe, propulsion, propagation, aircraft operations, trajectory optimisation), the paper addresses items for further research and development. Examples are shown for several airplanes, including the Airbus A319-100 (CFM engines), the Bombardier Dash8-Q400 (PW150 engines, Dowty R408 propellers) and the Boeing B737-800 (CFM engines). Predictions are done with the flight mechanics code FLIGHT. The transfer function between flight mechanics and the noise prediction is discussed in some details, along with the numerical procedures for validation and verification. Some code-to-code comparisons are shown. It is contended that the field of aircraft noise prediction has not yet reached a sufficient level of maturity. In particular, some parametric effects cannot be investigated, issues of accuracy are not currently addressed, and validation standards are still lacking.

  17. Aircraft Emissions Characterization

    Science.gov (United States)

    1988-03-01

    sample from each trap through a heated (1500C) six-port valve ’ Carle Instruments Model 5621) and onto the analytical column. The coLoponents in each...Environmental Protection, Vol. II. Aircraft Engine Emissions, Int. Civil Aviation Organ., 1981. 7. Nebel , G. J., "Benzene in Auto Exhaust," J. Air Poll

  18. Program for establishing long-time flight service performance of composite materials in the center wing structure of C-130 aircraft. Phase 5: flight service and inspection. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kizer, J.A.

    1981-10-01

    Inspections of the C-130 composite-reinforced center wings were conducted over the flight service monitoring period of more than six years. Twelve inspections were conducted on each of the two C-130H airplanes having composite reinforced center wing boxes. Each inspection consisted of visual and ultrasonic inspection of the selective boron-epoxy reinforced center wings which included the inspection of the boron-epoxy laminates and the boron-epoxy reinforcement/aluminum structure adhesive bondlines. During the flight service monitoring period, the two C-130H aircraft accumulated more than 10,000 flight hours and no defects were detected in the inspections over this period. The successful performance of the C-130H aircraft with composite-reinforced center wings allowed the transfer of the responsibilities of inspecting and maintaining these two aircraft to the U. S. Air Force.

  19. Propeller aircraft interior noise model

    Science.gov (United States)

    Pope, L. D.; Wilby, E. G.; Wilby, J. F.

    1984-01-01

    An analytical model was developed to predict the interior noise of propeller-driven aircraft. The fuselage model is that of a cylinder with a structurally-integral floor. The cabin sidewall is stiffened by stringers and ring frames, and the floor by longitudinal beams. The cabin interior is covered with a sidewall treatments consisting of layers of porous material and an impervious trim septum. Representation of the propeller pressure field is utilized as input data in the form of the propeller noise signature at a series of locations on a grid over the fuselage structure. Results obtained from the analytical model are compared with test data measured by NASA in a scale model cylindrical fuselage excited by a model propeller.

  20. Braking performance of aircraft tires

    Science.gov (United States)

    Agrawal, Satish K.

    This paper brings under one cover the subject of aircraft braking performance and a variety of related phenomena that lead to aircraft hydroplaning, overruns, and loss of directional control. Complex processes involving tire deformation, tire slipping, and fluid pressures in the tire-runway contact area develop the friction forces for retarding the aircraft; this paper describes the physics of these processes. The paper reviews the past and present research efforts and concludes that the most effective way to combat the hazards associated with aircraft landings and takeoffs on contaminated runways is by measuring and displaying in realtime the braking performance parameters in the aircraft cockpit.

  1. Reengineering Aircraft Structural Life Prediction Using a Digital Twin

    OpenAIRE

    Eric J. Tuegel; Anthony R. Ingraffea; Eason, Thomas G.; S. Michael Spottswood

    2011-01-01

    Reengineering of the aircraft structural life prediction process to fully exploit advances in very high performance digital computing is proposed. The proposed process utilizes an ultrahigh fidelity model of individual aircraft by tail number, a Digital Twin, to integrate computation of structural deflections and temperatures in response to flight conditions, with resulting local damage and material state evolution. A conceptual model of how the Digital Twin can be used for predicting the lif...

  2. Corrosion Sensor Development for Condition-Based Maintenance of Aircraft

    Directory of Open Access Journals (Sweden)

    Gino Rinaldi

    2012-01-01

    Full Text Available Aircraft routinely operate in atmospheric environments that, over time, will impact their structural integrity. Material protection and selection schemes notwithstanding, recurrent exposure to chlorides, pollution, temperature gradients, and moisture provide the necessary electrochemical conditions for the development and profusion of corrosion in aircraft structures. For aircraft operators, this becomes an important safety matter as corrosion found in a given aircraft must be assumed to be present in all of that type of aircraft. This safety protocol and its associated unscheduled maintenance requirement drive up the operational costs of the fleet and limit the availability of the aircraft. Hence, there is an opportunity at present for developing novel sensing technologies and schemes to aid in shifting time-based maintenance schedules towards condition-based maintenance procedures. In this work, part of the ongoing development of a multiparameter integrated corrosion sensor is presented. It consists of carbon nanotube/polyaniline polymer sensors and commercial-off-the-shelf sensors. It is being developed primarily for monitoring environmental and material factors for the purpose of providing a means to more accurately assess the structural integrity of aerospace aluminium alloys through fusion of multiparameter sensor data. Preliminary experimental test results are presented for chloride ion concentration, hydrogen gas evolution, humidity variations, and material degradation.

  3. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Science.gov (United States)

    2010-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States (HTSUS) by meeting the following requirements: (1) The aircraft, aircraft engines,...

  4. Electrochemical Machining – Special Equipment and Applications in Aircraft Industry

    Directory of Open Access Journals (Sweden)

    Ruszaj Adam

    2016-06-01

    Full Text Available Electrochemical machining is an unique method of shaping in which, for optimal parameters tool has no wear, surface layer properties after machining are similar to the core material and surface quality and accuracy increase together with material removal rate increase. Such advantages of electrochemical machining, besides of some ecological problems, create industry interest in the range of manufacturing elements made of materials with special properties (i.e. turbine blades of flow aircrafts engines. In the paper the nowadays possibilities and recent practical application of electrochemical machining in aircraft have been presented.

  5. Aircraft Data Acquisition

    OpenAIRE

    Elena BALMUS

    2016-01-01

    The introduction of digital systems instead of analog ones has created a major separation in the aviation technology. Although the digital equipment made possible that the increasingly faster controllers take over, we should say that the real world remains essentially analogue [4]. Fly-by-wire designers attempting to control and measure the real feedback of an aircraft were forced to find a way to connect the analogue environment to their digital equipment. In order to manage the implications...

  6. Airline and Aircraft Reliability

    OpenAIRE

    Hauka, Maris; Paramonovs, Jurijs

    2014-01-01

    Development of the inspection programme of fatigue-prone aircraft construction under limitation of airline fatigue failure rate. The highest economical effectiveness of airline under limitation of fatigue failure rate and failure probability is discussed. For computing is used exponential regression, Monte Carlo method, Log Normal distribution, Markov chains and semi-Markov process theory. The minimax approach is offered for processing the results of full-scale fatigue approval test of an air...

  7. Slotted Aircraft Wing

    Science.gov (United States)

    McLean, James D. (Inventor); Witkowski, David P. (Inventor); Campbell, Richard L. (Inventor)

    2006-01-01

    A swept aircraft wing includes a leading airfoil element and a trailing airfoil element. At least one full-span slot is defined by the wing during at least one transonic condition of the wing. The full-span slot allows a portion of the air flowing along the lower surface of the leading airfoil element to split and flow over the upper surface of the trailing airfoil element so as to achieve a performance improvement in the transonic condition.

  8. Interaction of Aircraft Wakes From Laterally Spaced Aircraft

    Science.gov (United States)

    Proctor, Fred H.

    2009-01-01

    Large Eddy Simulations are used to examine wake interactions from aircraft on closely spaced parallel paths. Two sets of experiments are conducted, with the first set examining wake interactions out of ground effect (OGE) and the second set for in ground effect (IGE). The initial wake field for each aircraft represents a rolled-up wake vortex pair generated by a B-747. Parametric sets include wake interactions from aircraft pairs with lateral separations of 400, 500, 600, and 750 ft. The simulation of a wake from a single aircraft is used as baseline. The study shows that wake vortices from either a pair or a formation of B-747 s that fly with very close lateral spacing, last longer than those from an isolated B-747. For OGE, the inner vortices between the pair of aircraft, ascend, link and quickly dissipate, leaving the outer vortices to decay and descend slowly. For the IGE scenario, the inner vortices ascend and last longer, while the outer vortices decay from ground interaction at a rate similar to that expected from an isolated aircraft. Both OGE and IGE scenarios produce longer-lasting wakes for aircraft with separations less than 600 ft. The results are significant because concepts to increase airport capacity have been proposed that assume either aircraft formations and/or aircraft pairs landing on very closely spaced runways.

  9. Challenge to Aviation: Hatching a Leaner Pterosauer. [Improving Commercial Aircraft Design for Greater Fuel Efficiency

    Science.gov (United States)

    Moss, F. E.

    1975-01-01

    Modifications in commercial aircraft design, particularly the development of lighter aircraft, are discussed as effective means of reducing aviation fuel consumption. The modifications outlined include: (1) use of the supercritical wing; (2) generation of the winglet; (3) production and flight testing of composite materials; and, (4) implementation of fly-by-wire control systems. Attention is also given to engineering laminar air flow control, improving cargo payloads, and adapting hydrogen fuels for aircraft use.

  10. Guidance Systems of Fighter Aircraft

    Directory of Open Access Journals (Sweden)

    K.N. Rajanikanth

    2005-07-01

    Full Text Available Mission performance of a fighter aircraft is crucial for survival and strike capabilities in todays' aerial warfare scenario. The guidance functions of such an aircraft play a vital role inmeeting the requirements and accomplishing the mission success. This paper presents the requirements of precision guidance for various missions of a fighter aircraft. The concept ofguidance system as a pilot-in-loop system is pivotal in understanding and designing such a system. Methodologies of designing such a system are described.

  11. Guidance Systems of Fighter Aircraft

    OpenAIRE

    K.N. Rajanikanth; Rao, R S; P. S. Subramanyam; Ajai Vohra

    2005-01-01

    Mission performance of a fighter aircraft is crucial for survival and strike capabilities in todays' aerial warfare scenario. The guidance functions of such an aircraft play a vital role inmeeting the requirements and accomplishing the mission success. This paper presents the requirements of precision guidance for various missions of a fighter aircraft. The concept ofguidance system as a pilot-in-loop system is pivotal in understanding and designing such a system. Methodologies of designing s...

  12. Scheduling of an aircraft fleet

    Science.gov (United States)

    Paltrinieri, Massimo; Momigliano, Alberto; Torquati, Franco

    1992-01-01

    Scheduling is the task of assigning resources to operations. When the resources are mobile vehicles, they describe routes through the served stations. To emphasize such aspect, this problem is usually referred to as the routing problem. In particular, if vehicles are aircraft and stations are airports, the problem is known as aircraft routing. This paper describes the solution to such a problem developed in OMAR (Operative Management of Aircraft Routing), a system implemented by Bull HN for Alitalia. In our approach, aircraft routing is viewed as a Constraint Satisfaction Problem. The solving strategy combines network consistency and tree search techniques.

  13. Optics in aircraft engines

    Science.gov (United States)

    Vachon, James; Malhotra, Subhash

    The authors describe optical IR&D (independent research and development) programs designed to demonstrate and evaluate optical technologies for incorporation into next-generation military and commercial aircraft engines. Using a comprehensive demonstration program to validate this technology in an on-engine environment, problems encountered can be resolved early and risk can be minimized. In addition to specific activities related to the optics demonstration on the fighter engine, there are other optical programs underway, including a solenoid control system, a light off detection system, and an optical communication link. Research is also underway in simplifying opto-electronics and exploiting multiplexing to further reduce cost and weight.

  14. Aircraft propeller control

    Science.gov (United States)

    Day, Stanley G. (Inventor)

    1990-01-01

    In the invention, the speeds of both propellers in a counterrotating aircraft propeller pair are measured. Each speed is compared, using a feedback loop, with a demanded speed and, if actual speed does not equal demanded speed for either propeller, pitch of the proper propeller is changed in order to attain the demanded speed. A proportional/integral controller is used in the feedback loop. Further, phase of the propellers is measured and, if the phase does not equal a demanded phase, the speed of one propeller is changed, by changing pitch, until the proper phase is attained.

  15. Commercial Aircraft Protection

    Energy Technology Data Exchange (ETDEWEB)

    Ehst, David A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-26

    This report summarizes the results of theoretical research performed during 3 years of P371 Project implementation. In results of such research a new scientific conceptual technology of quasi-passive individual infrared protection of heat-generating objects – Spatial Displacement of Thermal Image (SDTI technology) was developed. Theoretical substantiation and description of working processes of civil aircraft individual IR-protection system were conducted. The mathematical models and methodology were presented, there were obtained the analytical dependencies which allow performing theoretical research of the affect of intentionally arranged dynamic field of the artificial thermal interferences with variable contrast onto main parameters of optic-electronic tracking and homing systems.

  16. Chemistry in aircraft plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kraabol, A.G.; Stordal, F.; Knudsen, S. [Norwegian Inst. for Air Research, Kjeller (Norway); Konopka, P. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    An expanding plume model with chemistry has been used to study the chemical conversion of NO{sub x} to reservoir species in aircraft plumes. The heterogeneous conversion of N{sub 2}O{sub 5} to HNO{sub 3}(s) has been investigated when the emissions take place during night-time. The plume from an B747 has been simulated. During a ten-hour calculation the most important reservoir species was HNO{sub 3} for emissions at noon. The heterogeneous reactions had little impact on the chemical loss of NO{sub x} to reservoir species for emissions at night. (author) 4 refs.

  17. An environmentally safe and effective paint removal process for aircraft

    Science.gov (United States)

    Kozol, Joseph

    2001-03-01

    To reduce hazardous waste from fleet and depot aircraft paint stripping and to conform to regulations banning toxic chemical paint strippers, the U.S. Naval Air Systems Team (materials division, depots, and head-quarters) teamed with the U.S. Air Force at Warner Robins Air Logistics Center for concept development, characterization, and demonstration of a mature, advanced paint-removal system, the Boeing xenon/flashlamp CO2 (Flashjet®) process. Extensive metallic and composite-materials testing was conducted. This paper describes the development and characterization program leading to authorization of the process for use on fixed-wing navy aircraft.

  18. MISSILES AND AIRCRAFT (PART1

    Directory of Open Access Journals (Sweden)

    C.M. Meyer

    2012-02-01

    Full Text Available Many sources maintain that the role played by air power in the 1973 Yom Kippur War was important. Other interpretations state that control of air space over the battlefield areas, (either by aircraft or anti-aircraft defences, was vital.

  19. A study on the utilization of advanced composites in commercial aircraft wing structure: Executive summary

    Science.gov (United States)

    Watts, D. J.

    1978-01-01

    The overall wing study objectives are to study and plan the effort by commercial transport aircraft manufacturers to accomplish the transition from current conventional materials and practices to extensive use of advanced composites in wings of aircraft that will enter service in the 1985-1990 time period. Specific wing study objectives are to define the technology and data needed to support an aircraft manufacturer's commitment to utilize composites primary wing structure in future production aircraft and to develop plans for a composite wing technology program which will provide the needed technology and data.

  20. Aircraft landing using GPS

    Science.gov (United States)

    Lawrence, David Gary

    The advent of the Global Positioning System (GPS) is revolutionizing the field of navigation. Commercial aviation has been particularly influenced by this worldwide navigation system. From ground vehicle guidance to aircraft landing applications, GPS has the potential to impact many areas of aviation. GPS is already being used for non-precision approach guidance; current research focuses on its application to more critical regimes of flight. To this end, the following contributions were made: (1) Development of algorithms and a flexible software architecture capable of providing real-time position solutions accurate to the centimeter level with high integrity. This architecture was used to demonstrate 110 automatic landings of a Boeing 737. (2) Assessment of the navigation performance provided by two GPS-based landing systems developed at Stanford, the Integrity Beacon Landing System, and the Wide Area Augmentation System. (3) Preliminary evaluation of proposed enhancements to traditional techniques for GPS positioning, specifically, dual antenna positioning and pseudolite augmentation. (4) Introduction of a new concept for positioning using airport pseudolites. The results of this research are promising, showing that GPS-based systems can potentially meet even the stringent requirements of a Category III (zero visibility) landing system. Although technical and logistical hurdles still exist, it is likely that GPS will soon provide aircraft guidance in all phases of flight, including automatic landing, roll-out, and taxi.

  1. Design of a Three Surfaces R/C Aircraft Model

    Directory of Open Access Journals (Sweden)

    D. P. Coiro

    2002-01-01

    Full Text Available Design of a three lifting surfaces radio-controlled model has been carried out at Dipartimento di Progettazione Aeronautica (DPA by the authors in the last year. The model is intended to be a UAV prototype and is now under construction. The main goal of this small aircraft's design is to check the influence of the canard surface on the aircraft's aerodynamic characteristics and flight behavior, especially at high angles of attack. The aircraft model is also intended to be a flying platform to test sensors, measurement and acquisition systems for research purposes and a valid and low-cost teaching instrument for flight dynamics and flight maneuvering. The aircraft has been designed to fly with and without canard, and all problems relative to aircraft balance and stability have been carefully analyzed and solved. The innovative configuration and the mixed wooden-composite material structure has been obtained with very simple shapes and all the design is focused on realizing a low-cost model. A complete aerodynamic analysis of the configuration up to high angles of attack and a preliminary aircraft stability and performance prediction will be presented.

  2. Damage assessment of nuclear containment against aircraft crash

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Mohd Ashraf, E-mail: iqbal_ashraf@rediffmail.com; Sadique, Md. Rehan, E-mail: rehan.sadique@gmail.com; Bhargava, Pradeep, E-mail: bhpdpfce@iitr.ac.in; Bhandari, N.M., E-mail: nmbcefce@iitr.ac.in

    2014-10-15

    Highlights: • Damage assessment of nuclear containment is studied against aircraft crash. • Four impact locations have been identified at the outer containment shell. • The mid of the total height has been found to be most vulnerable location. • The crown of dome has been found to be the strongest location. • Phantom F4 caused more localized and severe damage compared to other aircrafts. - Abstract: The behavior of nuclear containment structure has been studied against aircraft crash with an emphasis on the influence of strike location. The impact locations identified on the BWR Mark III type nuclear containment structure are mid-height, junction of dome and cylinder, crown of dome and arc of dome. The containment at each of the above locations has been impacted normally by Phantom F-4, Boeing 707-320 and Airbus A320 aircrafts. The loading of the aircraft has been assigned through the corresponding reaction-time response curve. ABAQUS/Explicit finite element code has been used to carry out the three-dimensional numerical simulations. The concrete damaged plasticity model was used to simulate the behavior of concrete while the behavior of steel reinforcement was incorporated using the Johnson–Cook elasto-viscoplastic material model. The mid-height of containment has been found to experience most severe deformation against each aircraft. Phantom F4 has been found to be most disastrous at each location. The results have been compared with those of the available studies with respect to the containment deformation.

  3. Nuclear containment structure subjected to commercial and fighter aircraft crash

    Energy Technology Data Exchange (ETDEWEB)

    Sadique, M.R., E-mail: rehan.sadique@gmail.com; Iqbal, M.A., E-mail: iqbalfce@iitr.ernet.in; Bhargava, P., E-mail: bhpdpfce@iitr.ernet.in

    2013-07-15

    Highlights: • Nuclear containment response has been studied against aircraft crash. • Concrete damaged plasticity and Johnson–Cook elasto-viscoplastic models were employed. • Boeing 747-400 and Boeing 767-400 aircrafts caused global failure of containment. • Airbus A320 and Boeing 707-320 aircrafts caused local damage. • Tension damage of concrete was found more prominent compared to compression damage. -- Abstract: The response of a boiling water reactor (BWR) nuclear containment vessel has been studied against commercial and fighter aircraft crash using a nonlinear finite element code ABAQUS. The aircrafts employed were Boeing 747-400, Boeing 767-400, Airbus A-320, Boeing 707-320 and Phantom F4. The containment was modeled as a three-dimensional deformable reinforced concrete structure while the loading of aircraft was assigned using the respective reaction–time curve. The location of strike was considered near the junction of dome and cylinder, and the angle of incidence, normal to the containment surface. The material behavior of the concrete was incorporated using the damaged plasticity model while that of the reinforcement, the Johnson–Cook elasto-viscoplastic model. The containment could not sustain the impact of Boeing 747-400 and Boeing 767-400 aircrafts and suffered rupture of concrete around the impact region leading to global failure. On the other hand, the maximum local deformation at the point of impact was found to be 0.998 m, 0.099 m, 0.092 m, 0.089 m, and 0.074 m against Boeing 747-400, Phantom F4, Boeing 767, Boeing 707-320 and Airbus A-320 aircrafts respectively. The results of the present study were compared with those of the previous analytical and numerical investigations with respect to the maximum deformation and overall behavior of the containment.

  4. Aircraft control system

    Science.gov (United States)

    Lisoski, Derek L. (Inventor); Kendall, Greg T. (Inventor)

    2007-01-01

    A solar rechargeable, long-duration, span-loaded flying wing, having no fuselage or rudder. Having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn, pitch and yaw. The wing is configured to deform under flight loads to position the propellers such that the control can be achieved. Each of five segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other segments, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface.

  5. Aircraft recognition and pose estimation

    Science.gov (United States)

    Hmam, Hatem; Kim, Jijoong

    2000-05-01

    This work presents a geometry based vision system for aircraft recognition and pose estimation using single images. Pose estimation improves the tracking performance of guided weapons with imaging seekers, and is useful in estimating target manoeuvres and aim-point selection required in the terminal phase of missile engagements. After edge detection and straight-line extraction, a hierarchy of geometric reasoning algorithms is applied to form line clusters (or groupings) for image interpretation. Assuming a scaled orthographic projection and coplanar wings, lateral symmetry inherent in the airframe provides additional constraints to further reject spurious line clusters. Clusters that accidentally pass all previous tests are checked against the original image and are discarded. Valid line clusters are then used to deduce aircraft viewing angles. By observing that the leading edges of wings of a number of aircraft of interest are within 45 to 65 degrees from the symmetry axis, a bounded range of aircraft viewing angles can be found. This generic property offers the advantage of not requiring the storage of complete aircraft models viewed from all aspects, and can handle aircraft with flexible wings (e.g. F111). Several aircraft images associated with various spectral bands (i.e. visible and infra-red) are finally used to evaluate the system's performance.

  6. Portable catapult launcher for small aircraft

    Science.gov (United States)

    Rosenbaum, Bernard J. (Inventor); Petter, George E. (Inventor); Gessler, Joseph A. (Inventor); Hughes, Michael G. (Inventor)

    2005-01-01

    An apparatus for launching an aircraft having a multiplicity of interconnected elongated tracks of rigid material forming a track system and wherein each elongated track has a predetermined elongated track cross-sectional design, a winch system connected to the track system wherein the winch system has a variable mechanical advantage, one or more elongated elastic members wherein one end of each of the one or more elongated elastic members is adjustably connected to the track system, and a carrier slidably mounted to the track system wherein the carrier is connected to the winch system and to the other end of each of the one or more elongated elastic members.

  7. Composite Axial Flow Propulsor for Small Aircraft

    OpenAIRE

    2005-01-01

    This work focuses on the design of an axial flow ducted fan driven by a reciprocating engine. The solution minimizes the turbulization of the flow around the aircraft. The fan has a rotor - stator configuration. Due to the need for low weight of the fan, a carbon/epoxy composite material was chosen for the blades and the driving shaft.The fan is designed for optimal isentropic efficiency and free vortex flow. A stress analysis of the rotor blade was performed using the Finite Element  Method....

  8. 40 CFR 87.6 - Aircraft safety.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Aircraft safety. 87.6 Section 87.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.6 Aircraft safety. The provisions...

  9. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Science.gov (United States)

    2010-01-01

    ... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on... provisions of §§ 21.183(c), 21.184(b), or 21.185(c); and (2) New aircraft engines or propellers...

  10. 78 FR 54385 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Science.gov (United States)

    2013-09-04

    ... Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration... directive (AD) for various aircraft equipped with Rotax Aircraft Engines 912 A Series Engine. This AD...; phone: +43 7246 601 0; fax: +43 7246 601 9130; Internet: http://www.rotax-aircraft-engines.com . You...

  11. 77 FR 21420 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2012-04-10

    ... adopting a new airworthiness directive (AD) for certain Cessna Aircraft Company Model 680 airplanes. This..., 1601 Lind Avenue SW., Renton, Washington. For information on the availability of this material at the... refer to certain applicable AFM TCs, and incorrectly addresses the procedure change in the recently...

  12. Demonstrate a Low Biochemical Oxygen Demand Aircraft Deicing Fluid

    Science.gov (United States)

    2013-06-01

    and hazardous proprietary additive materials such as corrosion inhibitors . Specifically, the test objectives were as follows: 1. Illustrate...concentrations of deicing fluids are known to cause acute aquatic toxicological effects, due mainly to additives (e.g., to improve corrosion inhibition... coats the aircraft surface in a smooth and consistent manner with no foam. Fluid has good wetting characteristics and exhibits no pitting

  13. Fundamental Hyperelastic Material Study Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This research is part of an innovative effort to use hyperelastic materials to produce flexible and seamless aircraft structures that reduce drag and...

  14. 14 CFR 91.9 - Civil aircraft flight manual, marking, and placard requirements.

    Science.gov (United States)

    2010-01-01

    ... available in the aircraft a current approved Airplane or Rotorcraft Flight Manual, approved manual material... prohibited range takes place over water on which a safe ditching can be accomplished and if the helicopter is... emergency ditching on open water....

  15. VTOL to Transonic Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The cyclogyro, an aircraft propulsion concept with the potential for VTOL to the lower bounds of transonic flight, is conceptually simple but structurally and...

  16. Western Pacific Typhoon Aircraft Fixes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Western Pacific typhoon aircraft reconnaissance data from the years 1946 - 1965 and 1978, excluding 1952, were transcribed from original documents, or copy of...

  17. Causes of aircraft electrical failures

    Science.gov (United States)

    Galler, Donald; Slenski, George

    1991-08-01

    The results of a survey of data on failures of aircraft electronic and electrical components that was conducted to identify problematic components are reported. The motivation for the work was to determine priorities for future work on the development of accident investigation techniques for aircraft electrical components. The primary source of data was the Airforce Mishap Database, which is maintained by the Directorate of Aerospace Safety at Norton Air Force Base. Published data from the Air Force Avionics Integrity Program (AVIP) and Hughes Aircraft were also reviewed. Statistical data from these three sources are presented. Two major conclusions are that problems with interconnections are major contributors to aircraft electrical equipment failures, and that environmental factors, especially corrosion, are significant contributors to connector problems.

  18. Aircraft recognition and tracking device

    Science.gov (United States)

    Filis, Dimitrios P.; Renios, Christos I.

    2011-11-01

    The technology of aircraft recognition and tracking has various applications in all areas of air navigation, be they civil or military, spanning from air traffic control and regulation at civilian airports to anti-aircraft weapon handling and guidance for military purposes.1, 18 The system presented in this thesis is an alternative implementation of identifying and tracking flying objects, which benefits from the optical spectrum by using an optical camera built into a servo motor (pan-tilt unit). More specifically, through the purpose-developed software, when a target (aircraft) enters the field of view of the camera18, it is both detected and identified.5, 22 Then the servo motor, being provided with data on target position and velocity, tracks the aircraft while it is in constant communication with the camera (Fig. 1). All the features are so designed as to operate under real time conditions.

  19. Structural Dynamics of Maneuvering Aircraft.

    Science.gov (United States)

    1987-09-01

    AD-RI92 376 STRUCTURAL DYNAMICS OF MANEUVERING RIRCRAFT(U) CONRAD I TECHNOLOGIES INC KING OF PRUSSIA PR M M REDDI SEP 97 CTI-8601 NRDC-88014-69...REPORT NO. NADC-8014-60 STRUCTURAL DYNAMICS OF MANEUVERING AIRCRAFT M. Mahadeva Reddi .4 Conrad Technologies, Inc. 650 S. Henderson Rd. D T IQ King of...NO A0 CCESSION NO. R02303001 107601 11. TITLE (Include Security Classfication) (u) STRUCTURAL DYNAMICS OF MANEUVERING AIRCRAFT 12. PERSONAL AUTHORS) M

  20. Integrated Control with Structural Feedback to Enable Lightweight Aircraft

    Science.gov (United States)

    Taylor, Brian R.

    2011-01-01

    This presentation for the Fundamental Aeronautics Program Technical Conference covers the benefits of active structural control, related research areas, and focuses on the use of optimal control allocation for the prevention of critical loads. Active control of lightweight structures has the potential to reduce aircraft weight and fuel burn. Sensor, control law, materials, control effector, and system level research will be necessary to enable active control of lightweight structures. Optimal control allocation with structural feedback has been shown in simulation to be feasible in preventing critical loads and is one example of a control law to enable future lightweight aircraft.

  1. D/B/F 98: Final Report Of the AIAA Student Aircraft Design, Build & Fly Competition

    Science.gov (United States)

    2007-11-02

    December with the intention of molding a composite center section and attaching various wing panels, such as wings with winglets or anhedral, to solve...integrity needed to fulfill the mission. Initially, the use of composite materials was investigated for use in the fabrication of the aircraft, but...material currently being removed from many commercial aircraft. (Newer airline floorboards use a Kevlar/Nomex composite sandwich, with a much higher

  2. Development of composite aircraft components in INCDT COMOTI, Bucharest

    Directory of Open Access Journals (Sweden)

    Raluca VOICU

    2012-12-01

    Full Text Available This paper presents the recent research activities within INCDT COMOTI, in the composite materials field. The author makes a short introduction of this field and presents an example of application developed within the composite materials laboratory from INCDT COMOTI, targeting the aeronautic field. The aircraft component is a stator blade made of CFRP composites, integrating new active noise reduction technologies and manufactured by means of the autoclave technology.

  3. KC-130J Transport Aircraft (KC-130J)

    Science.gov (United States)

    2015-12-01

    integrated logistics support and aircraft sustainment (follow-on case to provide support upon depletion of KU-P- SBF funds) Kuwait 3/11/2014 47.9 FMS...management of products, supply chain , inventory, material movement, and warehousing until Material Support Date, scheduled for October 1, 2016, when...normal military supply system that includes NAVSUP WSS, U.S. Air Force (USAF) ALCs, and Defense Logistics Agency. Antecedent Information The antecedent

  4. Aircraft vibration and flutter

    Directory of Open Access Journals (Sweden)

    R. R. Aggarwal

    1958-04-01

    Full Text Available "The paper outlines the theoretical and experimental procedure one has to adopt for flutter prevention during the various stages (project, design and prototype of the development of modern aircraft. With the advent of high speed, the aerodynamic coefficients have to be calculated with due regards to the effects of compressibility, finite aspect ratio of the lifting surfaces, sweep back and other peculiar shapes of the wings. The use of thin, small aspect ratio with external masses, necessitates the computation of higher frequency modes of vibration. Single degree of freedom flutter and the effect of control surface non-linearities has also become very important. Thus, it is shown how the availability of high speed computing machines, improved experimental technique for model and full scale testing has not kept pace with the uncertainties associated with the transonic speeds, low aspect ratio and the high frequency modes. Cross-checking of theoretical and experimental results at every stage seem to be the only answer."

  5. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Anderson, M.R.; Miake-Lye, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)

    1997-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  6. Structural analysis of Aircraft fuselage splice joint

    Science.gov (United States)

    Udaya Prakash, R.; Kumar, G. Raj; Vijayanandh, R.; Senthil Kumar, M.; Ramganesh, T.

    2016-09-01

    In Aviation sector, composite materials and its application to each component are one of the prime factors of consideration due to the high strength to weight ratio, design flexibility and non-corrosive so that the composite materials are widely used in the low weight constructions and also it can be treated as a suitable alternative to metals. The objective of this paper is to estimate and compare the suitability of a composite skin joint in an aircraft fuselage with different joints by simulating the displacement, normal stress, vonmises stress and shear stress with the help of numerical solution methods. The reference Z-stringer component of this paper is modeled by CATIA and numerical simulation is carried out by ANSYS has been used for splice joint presents in the aircraft fuselage with three combinations of joints such as riveted joint, bonded joint and hybrid joint. Nowadays the stringers are using to avoid buckling of fuselage skin, it has joined together by rivets and they are connected end to end by splice joint. Design and static analysis of three-dimensional models of joints such as bonded, riveted and hybrid are carried out and results are compared.

  7. Aircraft Cabin Environmental Quality Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Gundel, Lara; Kirchstetter, Thomas; Spears, Michael; Sullivan, Douglas

    2010-05-06

    The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Results from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.

  8. 49 CFR 175.702 - Separation distance requirements for packages containing Class 7 (radioactive) materials in cargo...

    Science.gov (United States)

    2010-10-01

    ... containing Class 7 (radioactive) materials in cargo aircraft. 175.702 Section 175.702 Transportation Other... (radioactive) materials in cargo aircraft. (a) No person may carry in a cargo aircraft any package required by... separation distance between the surfaces of the radioactive materials packages, overpacks or...

  9. Dynamics and control of robotic aircraft with articulated wings

    Science.gov (United States)

    Paranjape, Aditya Avinash

    , and compare the steady state performance of rigid and flexible-winged aircraft. We present an intuitive but very useful notion, called the effective dihedral, which allows us to extend some of the stability and performance results derived for rigid aircraft to flexible aircraft. In the process, we identify the extent of flexibility needed to induce substantial performance benefits, and conversely the extent to which results derived for rigid aircraft apply to a flexible aircraft. We demonstrate, interestingly enough, that wing flexibility actually causes a deterioration in the maximum achievable turn rate when the sideslip is regulated. We also present experimental results which help demonstrate the capability of wing dihedral for control and for executing maneuvers such as slow, rapid descent and perching. Open loop as well as closed loop experiments are performed to demonstrate (a) the effectiveness of symmetric dihedral for flight path angle control, (b) yaw control using asymmetric dihedral, and (c) the elements of perching. Using a simple order of magnitude analysis, we derive conditions under which the wing is structurally statically stable, as well as conditions under which there exists time scale separation between the bending and twisting dynamics. We show that the time scale separation depends on the geometry of the wing cross section, the Poisson's ratio of the wing material, the flight speed and the aspect ratio of the wing. We design independent control laws for bending and twisting. A key contribution of this thesis is the formulation of a partial differential equation (PDE) boundary control problem for wing deformation. PDE-backstepping is used to derive tracking and exponentially stabilizing boundary control laws for wing twist which ensure that a weighted integral of the wing twist (net lift or the rolling moment) tracks the desired time-varying reference input. We show that a control law which only ensures tracking of a weighted integral improves the

  10. Military aircraft and missile technology at the Langley Research Center: A selected bibliography

    Science.gov (United States)

    Maddalon, D. V.

    1980-01-01

    A compilation of reference material is presented on the Langley Research Center's efforts in developing advanced military aircraft and missile technology over the past twenty years. Reference material includes research made in aerodynamics, performance, stability, control, stall-spin, propulsion integration, flutter, materials, and structures.

  11. The design and testing of subscale smart aircraft wing bolts

    Science.gov (United States)

    Vugampore, J. M. V.; Bemont, C.

    2012-07-01

    Presently costly periodic inspection is vital in guaranteeing the structural integrity of aircraft. This investigation assesses the potential for significantly reducing aircraft maintenance costs without modification of aircraft structures by implementing smart wing bolts, manufactured from TRIP steel, which can be monitored for damage in situ. TRIP steels undergo a transformation from paramagnetic austenite to ferromagnetic martensite during deformation. Subscale smart aircraft wing bolts were manufactured from hot rolled TRIP steel. These wing bolts were used to demonstrate that washers incorporating embedded inductance coils can be utilized to measure the martensitic transformation occurring in the TRIP steel during bolt deformation. Early in situ warning of a critical bolt stress level was thereby facilitated, potentially reducing the costly requirement for periodic wing bolt removal and inspection. The hot rolled TRIP steels that were utilized in these subscale bolts do not however exhibit the mechanical properties required of wing bolt material. Thus warm rolled TRIP steel alloys were also investigated. The mechanical properties of the best warm rolled TRIP steel alloy tested almost matched those of AISI 4340. The warm rolled alloys were also shown to exhibit transformation before yield, allowing for earlier warning when overload occurs. Further work will be required relating to fatigue crack detection, environmental temperature fluctuation and more thorough material characterization. However, present results show that in situ early detection of wing bolt overload is feasible via the use of high alloy warm rolled TRIP steel wing bolts in combination with inductive sensor embedded washers.

  12. Modular Electric Propulsion Test Bed Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An all electric aircraft test bed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered aircraft....

  13. Versatile Electric Propulsion Aircraft Testbed Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An all-electric aircraft testbed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered aircraft....

  14. Introduction to unmanned aircraft systems

    CERN Document Server

    Marshall, Douglas M; Hottman, Stephen B; Shappee, Eric; Most, Michael Thomas

    2011-01-01

    Introduction to Unmanned Aircraft Systems is the editors' response to their unsuccessful search for suitable university-level textbooks on this subject. A collection of contributions from top experts, this book applies the depth of their expertise to identify and survey the fundamentals of unmanned aircraft system (UAS) operations. Written from a nonengineering civilian operational perspective, the book starts by detailing the history of UASs and then explores current technology and what is expected for the future. Covering all facets of UAS elements and operation-including an examination of s

  15. Future aircraft networks and schedules

    Science.gov (United States)

    Shu, Yan

    2011-07-01

    Because of the importance of air transportation scheduling, the emergence of small aircraft and the vision of future fuel-efficient aircraft, this thesis has focused on the study of aircraft scheduling and network design involving multiple types of aircraft and flight services. It develops models and solution algorithms for the schedule design problem and analyzes the computational results. First, based on the current development of small aircraft and on-demand flight services, this thesis expands a business model for integrating on-demand flight services with the traditional scheduled flight services. This thesis proposes a three-step approach to the design of aircraft schedules and networks from scratch under the model. In the first step, both a frequency assignment model for scheduled flights that incorporates a passenger path choice model and a frequency assignment model for on-demand flights that incorporates a passenger mode choice model are created. In the second step, a rough fleet assignment model that determines a set of flight legs, each of which is assigned an aircraft type and a rough departure time is constructed. In the third step, a timetable model that determines an exact departure time for each flight leg is developed. Based on the models proposed in the three steps, this thesis creates schedule design instances that involve almost all the major airports and markets in the United States. The instances of the frequency assignment model created in this thesis are large-scale non-convex mixed-integer programming problems, and this dissertation develops an overall network structure and proposes iterative algorithms for solving these instances. The instances of both the rough fleet assignment model and the timetable model created in this thesis are large-scale mixed-integer programming problems, and this dissertation develops subproblem schemes for solving these instances. Based on these solution algorithms, this dissertation also presents

  16. An Immunized Aircraft Maneuver Selection System

    Science.gov (United States)

    Karr, Charles L.

    2003-01-01

    The objective of this project, as stated in the original proposal, was to develop an immunized aircraft maneuver selection (IAMS) system. The IAMS system was to be composed of computational and informational building blocks that resemble structures in natural immune systems. The ultimate goal of the project was to develop a software package that could be flight tested on aircraft models. This report describes the work performed in the first year of what was to have been a two year project. This report also describes efforts that would have been made in the final year to have completed the project, had it been continued for the final year. After introductory material is provided in Section 2, the end-of-year-one status of the effort is discussed in Section 3. The remainder of the report provides an accounting of first year efforts. Section 4 provides background information on natural immune systems while Section 5 describes a generic ar&itecture developed for use in the IAMS. Section 6 describes the application of the architecture to a system identification problem. Finally, Section 7 describes steps necessary for completing the project.

  17. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Science.gov (United States)

    2010-01-01

    ..., airframes, aircraft engines, propellers, appliances, or component parts for return to service after... Administrator, may approve an aircraft, airframe, aircraft engine, propeller, appliance, or component part for..., airframe, aircraft engine, propeller, appliance, or component part for return to service as provided...

  18. 77 FR 1626 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Science.gov (United States)

    2012-01-11

    ... Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration (FAA), DOT... various aircraft equipped with Rotax Aircraft Engines 912 A series engine. This AD results from mandatory... Rotax Aircraft Engines BRP has issued Alert Service Bulletin ASB- 912-059 and ASB-914-042...

  19. 76 FR 31465 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Science.gov (United States)

    2011-06-01

    ... Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration...://www.rotax-aircraft-engines.com . You may review copies of the referenced service information at the... by examining the MCAI in the AD docket. Relevant Service Information Rotax Aircraft Engines...

  20. Analyses of Aircraft Responses to Atmospheric Turbulence

    OpenAIRE

    Van Staveren, W.H.J.J.

    2003-01-01

    The response of aircraft to stochastic atmospheric turbulence plays an important role in aircraft-design (load calculations), Flight Control System (FCS) design and flight-simulation (handling qualities research and pilot training). In order to simulate these aircraft responses, an accurate mathematical model is required. Two classical models will be discussed in this thesis, that is the Delft University of Technology (DUT) model and the Four Point Aircraft (FPA) model. Although they are well...

  1. THE AIRPORT DE-ICING OF AIRCRAFTS

    Directory of Open Access Journals (Sweden)

    Robert KONIECZKA

    2015-03-01

    Full Text Available This article provides a summary of the issues involved in de-icing several kinds of aircrafts before flight. The basic risks of an iced aircraft and the factors that can influence its intensity are stated. It discusses the methods for de-icing and protecting against ice formation on small aircrafts, helicopters, and large aircrafts. It also classifies the fluids and other methods used for these de-icing operations, and explains the characteristics and limitations of their use.

  2. Residents' Annoyance Responses to Aircraft Noise Events

    OpenAIRE

    United States, National Aeronautics and Space Administration

    1983-01-01

    In a study conducted in the vicinity of Salt Lake City International Airport, community residents reported their annoyance with individual aircraft flyovers during rating sessions conducted in their homes. Annoyance ratings were obtained at different times of the day. Aircraft noise levels were measured, and other characteristics of the aircraft were noted by trained observers. Metrics commonly used for assessing aircraft noise were compared, but none performed significantly better than A-...

  3. Quantitative Inspection Technologies for Aging Military Aircraft

    Science.gov (United States)

    2013-11-01

    177 Figure 133. Aircraft Mockup With EDM Notches Marked As Red Dots And Numbered In Magnified Photos...178 ix Approved for public release; distribution is unlimited Figure 134. First Test Of The Pantograph Scanner On The Mockup Aircraft...180 Figure 137. CAD Model Of Arc Scanner And Simulated Aircraft Fitting Mockup Panel ..................................... 181 Figure 138

  4. Policy and the evaluation of aircraft noise

    NARCIS (Netherlands)

    Kroesen, M.; Molin, E.J.E.; Van Wee, G.P.

    2010-01-01

    In this paper, we hypothesize and test the ideas that (1) people’s subjectivity in relation to aircraft noise is shaped by the policy discourse, (2) this results in a limited number of frames towards aircraft noise, (3) the frames inform people how to think and feel about aircraft noise and (4) the

  5. 19 CFR 122.37 - Precleared aircraft.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Precleared aircraft. 122.37 Section 122.37 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Landing Requirements § 122.37 Precleared aircraft. (a) Application. This section applies when aircraft carrying...

  6. 19 CFR 122.64 - Other aircraft.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Other aircraft. 122.64 Section 122.64 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Clearance of Aircraft and Permission To Depart § 122.64 Other aircraft. Clearance or permission to depart shall be...

  7. Analyses of Aircraft Responses to Atmospheric Turbulence

    NARCIS (Netherlands)

    Van Staveren, W.H.J.J.

    2003-01-01

    The response of aircraft to stochastic atmospheric turbulence plays an important role in aircraft-design (load calculations), Flight Control System (FCS) design and flight-simulation (handling qualities research and pilot training). In order to simulate these aircraft responses, an accurate mathemat

  8. 14 CFR 91.117 - Aircraft speed.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aircraft speed. 91.117 Section 91.117... speed. (a) Unless otherwise authorized by the Administrator, no person may operate an aircraft below 10... than the maximum speed prescribed in this section, the aircraft may be operated at that minimum speed....

  9. MATE. Multi Aircraft Training Environment

    DEFF Research Database (Denmark)

    Hauland, G.; Bove, T.; Andersen, Henning Boje

    2002-01-01

    . The cockpit switches and instruments in MATE are computer-generated graphics. The graphics are back projected onto semi-transparent touch screen panels in a hybrid cockpit mock-up. Thus, the MATE is relativelycheap, it is always available, it is reconfigurable (e.g. between types of aircraft...

  10. Aircraft Lightning Electromagnetic Environment Measurement

    Science.gov (United States)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.

    2011-01-01

    This paper outlines a NASA project plan for demonstrating a prototype lightning strike measurement system that is suitable for installation onto research aircraft that already operate in thunderstorms. This work builds upon past data from the NASA F106, FAA CV-580, and Transall C-180 flight projects, SAE ARP5412, and the European ILDAS Program. The primary focus is to capture airframe current waveforms during attachment, but may also consider pre and post-attachment current, electric field, and radiated field phenomena. New sensor technologies are being developed for this system, including a fiber-optic Faraday polarization sensor that measures lightning current waveforms from DC to over several Megahertz, and has dynamic range covering hundreds-of-volts to tens-of-thousands-of-volts. A study of the electromagnetic emission spectrum of lightning (including radio wave, microwave, optical, X-Rays and Gamma-Rays), and a compilation of aircraft transfer-function data (including composite aircraft) are included, to aid in the development of other new lightning environment sensors, their placement on-board research aircraft, and triggering of the onboard instrumentation system. The instrumentation system will leverage recent advances in high-speed, high dynamic range, deep memory data acquisition equipment, and fiber-optic interconnect.

  11. Human Response to Aircraft Noise

    NARCIS (Netherlands)

    Kroesen, M.

    2011-01-01

    How can it be that one person is extremely annoyed by the sounds of aircrafts, while his neighbour claims not to be bothered at all? The present thesis attempts to explain this observation by applying a range of quantitative methods to field data gathered among residents living near large airports.

  12. Aircraft Natural/Artificial Icing

    Science.gov (United States)

    2009-02-12

    axial vibration is caused by an oscillator driving a coil in the probe to create a magnetostrictive force. A sensing coil within the probe senses the...Consequence TOP 7-3-537 12 February 2009 C-1 APPENDIX C. ICING TEST SITE SELECTION 1. INTRODUCTION Unlike large fixed-wing aircraft, helicopters

  13. Aircraft Simulators and Pilot Training.

    Science.gov (United States)

    Caro, Paul W.

    Flight simulators are built as realistically as possible, presumably to enhance their training value. Yet, their training value is determined by the way they are used. Traditionally, simulators have been less important for training than have aircraft, but they are currently emerging as primary pilot training vehicles. This new emphasis is an…

  14. Composite Axial Flow Propulsor for Small Aircraft

    Directory of Open Access Journals (Sweden)

    R. Poul

    2005-01-01

    Full Text Available This work focuses on the design of an axial flow ducted fan driven by a reciprocating engine. The solution minimizes the turbulization of the flow around the aircraft. The fan has a rotor - stator configuration. Due to the need for low weight of the fan, a carbon/epoxy composite material was chosen for the blades and the driving shaft.The fan is designed for optimal isentropic efficiency and free vortex flow. A stress analysis of the rotor blade was performed using the Finite Element  Method. The skin of the blade is calculated as a laminate and the foam core as a solid. A static and dynamic analysis were made. The RTM technology is compared with other technologies and is described in detail. 

  15. Factors influencing aircraft ground handling performance

    Science.gov (United States)

    Yager, T. J.

    1983-01-01

    Problems associated with aircraft ground handling operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from tests with instrumented ground vehicles and aircraft, and aircraft wet runway accident investigation are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.

  16. Hydrogen Storage for Aircraft Applications Overview

    Science.gov (United States)

    Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)

    2002-01-01

    Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.

  17. Flight service evaluation of Kevlar-49/epoxy composite panels in wide-bodied commercial transport aircraft

    Science.gov (United States)

    Stone, R. H.

    1977-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after three years' service, and found to be performing satisfactorily. There are six Kevlar-49 panels on each aircraft, including sandwich and solid laminate wing-body panels, and 150 C service aft engine fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  18. Analysis and Experiment of an Ultra-light Flapping Wing Aircraft

    OpenAIRE

    Hu, Xiaowei

    2013-01-01

    II Inspired by flying animals in nature especially birds, human has designed and attempted to achieve man-powered flapping wing aircraft in very early aviation history. Limited by the understanding of the aerodynamic theory and materials in practise, the bird-like aircraft remains as a dream and ambition for over a contrary. As the relevant knowledge and technology are fast developing in the last decade, the research topic becomes attractive again with encouraging results fr...

  19. Aircraft Fire Safety

    Science.gov (United States)

    1982-05-01

    feel of the fabric, the ability of the fabric to absorb or pull water away from the skin and evaporate it on the surface of the fabric, the suppleness... Polymeric Materials. Polymer , vol. 16, 1975, p. 615. 13. Kourtides, D. A.; Parker, J. A.; and Hilado, C. J.: Thermuchemical Characterization of Some...foam on the energy used to foam the solution 250- k ExPonstonratho 69 E 00 - !: L it Water i" x. Syntetic foam monufocture A ’ w ot Syntetic foam

  20. Nondestructive materials characterization with applications to aerospace materials

    CERN Document Server

    Nagy, Peter; Rokhlin, Stanislav

    2004-01-01

    With an emphasis on aircraft materials, this book describes techniques for the material characterization to detect and quantify degradation processes such as corrosion and fatigue. It introduces readers to these techniques based on x-ray, ultrasonic, optical and thermal principles and demonstrates the potential of the techniques for a wide variety of applications concerning aircraft materials, especially aluminum and titanium alloys. The advantages and disadvantages of various techniques are evaluated. An introductory chapter describes the typical degradation mechanisms that must be considered and the microstructure features that have to be detected by NDE methods. Finally, some approaches for making lifetime predictions are discussed. It is suitable as a textbook in special training courses in advanced NDE and aircraft materials characterization.

  1. Structural Weight Optimization of Aircraft Wing Component Using FEM Approach.

    OpenAIRE

    Arockia Ruban M,; Kaveti Aruna

    2015-01-01

    One of the main challenges for the civil aviation industry is the reduction of its environmental impact by better fuel efficiency by virtue of Structural optimization. Over the past years, improvements in performance and fuel efficiency have been achieved by simplifying the design of the structural components and usage of composite materials to reduce the overall weight of the structure. This paper deals with the weight optimization of transport aircraft with low wing configuratio...

  2. Aircraft Propeller Hub Repair

    Energy Technology Data Exchange (ETDEWEB)

    Muth, Thomas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peter, William H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-02-13

    The team performed a literature review, conducted residual stress measurements, performed failure analysis, and demonstrated a solid state additive manufacturing repair technique on samples removed from a scrapped propeller hub. The team evaluated multiple options for hub repair that included existing metal buildup technologies that the Federal Aviation Administration (FAA) has already embraced, such as cold spray, high velocity oxy-fuel deposition (HVOF), and plasma spray. In addition the team helped Piedmont Propulsion Systems, LLC (PPS) evaluate three potential solutions that could be deployed at different stages in the life cycle of aluminum alloy hubs, in addition to the conventional spray coating method for repair. For new hubs, a machining practice to prevent fretting with the steel drive shaft was recommended. For hubs that were refurbished with some material remaining above the minimal material condition (MMC), a silver interface applied by an electromagnetic pulse additive manufacturing method was recommended. For hubs that were at or below the MMC, a solid state additive manufacturing technique using ultrasonic welding (UW) of thin layers of 7075 aluminum to the hub interface was recommended. A cladding demonstration using the UW technique achieved mechanical bonding of the layers showing promise as a viable repair method.

  3. Phenomena of Foamed Concrete under Rolling of Aircraft Wheels

    Science.gov (United States)

    Jiang, Chun-shui; Yao, Hong-yu; Xiao, Xian-bo; Kong, Xiang-jun; Shi, Ya-jie

    2014-04-01

    Engineered Material Arresting System (EMAS) is an effective technique to reduce hazards associated with aircraft overrunning runway. In order to ascertain phenomena of the foamed concrete used for EMAS under rolling of aircraft wheel, a specially designed experimental setup was built which employed Boeing 737 aircraft wheels bearing actual vertical loads to roll through the foamed concrete. A number of experiments were conducted upon this setup. It is discovered that the wheel rolls the concrete in a pure rolling manner and crushes the concrete downwards, instead of crushing it forward, as long as the concrete is not higher than the wheel axle. The concrete is compressed into powder in-situ by the wheel and then is brought to bottom of the wheel. The powder under the wheel is loose and thus is not able to sustain wheel braking. It is also found that after being rolled by the wheel the concrete exhibits either of two states, i.e. either 'crushed through' whole thickness of the concrete or 'crushed halfway', depending on combination of strength of the concrete, thickness of the concrete, vertical load the wheel carries, tire dimension and tire pressure. A new EMAS design concept is developed that if an EMAS design results in the 'crushed through' state for the main gears while the 'crushed halfway' state for the nose gear, the arresting bed would be optimal to accommodate the large difference in strength between the nose gear and the main gear of an aircraft.

  4. Standard Test Method to Determine Color Change and Staining Caused by Aircraft Maintenance Chemicals upon Aircraft Cabin Interior Hard Surfaces

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This test method covers the determination of color change and staining from liquid solutions, such as cleaning or disinfecting chemicals or both, on painted metallic surfaces and nonmetallic surfaces of materials being used inside the aircraft cabin. The effects upon the exposed specimens are measured with the AATCC Gray Scale for Color Change and AATCC Gray Color Scale for Staining. Note 1—This test method is applicable to any colored nonmetallic hard surface in contact with liquids. The selected test specimens are chosen because these materials are present in the majority of aircraft cabin interiors. 1.2This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  5. Potential emissions savings of lightweight composite aircraft components evaluated through life cycle assessment

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available A cradle-to-grave life cycle assessment (LCA of structural aircraft materials has been utilised to assess and compare the total emissions produced during manufacturing, use and disposal of aerospace materials and their selected components. First, a comparison of aluminium, GLARE and carbon fibre reinforced polymer (CFRP plates was performed to investigate the potential of lightweight composites in reducing aviation emissions. Subsequently, a case study is presented on a tubular component for which more accurate manufacturing data were directly available. A structural steel tube was replaced with a composite tubular component. The analysis has shown that once the composite material is used as a component in the aircraft, there is a cumulative saving of aircraft fuel and emissions, in particular from CFRP structures. The environmental analysis included the long-term use predictions for CFRPs, involving detailed raw materials production, use and operation, and disposal scenarios.

  6. Development and characterization of Powder Metallurgy (PM) 2XXX series Al alloy products and Metal Matrix Composite (MMC) 2XXX Al/SiC materials for high temperature aircraft structural applications

    Science.gov (United States)

    Chellman, D. J.; Gurganus, T. B.; Walker, J. A.

    1992-01-01

    The results of a series of material studies performed by the Lockheed Aeronautical Systems Company over the time period from 1980 to 1991 are discussed. The technical objective of these evaluations was to develop and characterize advanced aluminum alloy materials with temperature capabilities extending to 350 F. An overview is given of the first five alloy development efforts under this contract. Prior work conducted during the first five modifications of the alloy development program are listed. Recent developments based on the addition of high Zr levels to an optimum Al-Cu-Mg alloy composition by powder metallurgy processing are discussed. Both reinforced and SiC or B4C ceramic reinforced alloys were explored to achieve specific target goals for high temperature aluminum alloy applications.

  7. Aircraft systems design methodology and dispatch reliability prediction

    OpenAIRE

    Bineid, Mansour

    2005-01-01

    Aircraft despatch reliability was the main subject of this research in the wider content of aircraft reliability. The factors effecting dispatch reliability, aircraft delay, causes of aircraft delays, and aircraft delay costs and magnitudes were examined. Delay cost elements and aircraft delay scenarios were also studied. It concluded that aircraft dispatch reliability is affected by technical and non-technical factors, and that the former are under the designer's control. It showed that ...

  8. Perception of aircraft Deviation Cues

    Science.gov (United States)

    Martin, Lynne; Azuma, Ronald; Fox, Jason; Verma, Savita; Lozito, Sandra

    2005-01-01

    To begin to address the need for new displays, required by a future airspace concept to support new roles that will be assigned to flight crews, a study of potentially informative display cues was undertaken. Two cues were tested on a simple plan display - aircraft trajectory and flight corridor. Of particular interest was the speed and accuracy with which participants could detect an aircraft deviating outside its flight corridor. Presence of the trajectory cue significantly reduced participant reaction time to a deviation while the flight corridor cue did not. Although non-significant, the flight corridor cue seemed to have a relationship with the accuracy of participants judgments rather than their speed. As this is the second of a series of studies, these issues will be addressed further in future studies.

  9. CID Aircraft slap-down

    Science.gov (United States)

    1984-01-01

    In this photograph the B-720 is seen during the moments of initial impact. The left wing is digging into the lakebed while the aircraft continues sliding towards wing openers. In 1984 NASA Dryden Flight Research Facility and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID). The test involved crashing a Boeing 720 aircraft with four JT3C-7 engines burning a mixture of standard fuel with an additive, Anti-misting Kerosene (AMK), designed to supress fire. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1

  10. Static Aeroelasticity in Combat Aircraft.

    Science.gov (United States)

    1986-01-01

    Simulation Maneuverability Performance System Integration Design Load Spectren FIG. 1 HIGH PERFORMANCE AIRCRAFT DESIGN Simulation has a great potential...Aeroelasticity has also a great effect on the flight control system design. If the basic control powers are reduced by increasing dynamic pressure...Components Flight Envelope Structure Concept a Total Aircraf Analysis FIG, 2 BASIC DATAS FOR AEROELASTIC DESIGN STUDIES Aeroelastic activities are now devided

  11. Aircraft Derived Data Validation Algorithms

    Science.gov (United States)

    2012-08-06

    to be equipped with Flight Management Systems (FMSs) that use sophisticated digital computers to assist pilots, allowing them to fly more fuel...some basic data is prepared. These include calculations of aircraft position projeted on a three-dimensional Cartesian coordinate system, and...Administration FMS Flight Management System GA General Aviation NextGen Next Generation Air Transportation System NGA National Geospatial-Intelligence

  12. Stochastic Methods for Aircraft Design

    Science.gov (United States)

    Pelz, Richard B.; Ogot, Madara

    1998-01-01

    The global stochastic optimization method, simulated annealing (SA), was adapted and applied to various problems in aircraft design. The research was aimed at overcoming the problem of finding an optimal design in a space with multiple minima and roughness ubiquitous to numerically generated nonlinear objective functions. SA was modified to reduce the number of objective function evaluations for an optimal design, historically the main criticism of stochastic methods. SA was applied to many CFD/MDO problems including: low sonic-boom bodies, minimum drag on supersonic fore-bodies, minimum drag on supersonic aeroelastic fore-bodies, minimum drag on HSCT aeroelastic wings, FLOPS preliminary design code, another preliminary aircraft design study with vortex lattice aerodynamics, HSR complete aircraft aerodynamics. In every case, SA provided a simple, robust and reliable optimization method which found optimal designs in order 100 objective function evaluations. Perhaps most importantly, from this academic/industrial project, technology has been successfully transferred; this method is the method of choice for optimization problems at Northrop Grumman.

  13. Elevated-temperature Al alloys for aircraft structure

    Energy Technology Data Exchange (ETDEWEB)

    Rainen, R.A.; Ekvall, J.C.

    1988-05-01

    Elevated-temperature powder metallurgy (P/M) aluminum alloys are being developed to replace titanium aircraft structure materials for operation in the 300-600 F temperature range. Typical mechanical properties of P/M Al-Fe-Ce and Al-Fe-V-Si alloys are superior to those of conventional materials, and cost savings of 50 to 70 percent have been projected for these alloys which can be fabricated and processed using methods similar to those used in the production of conventional aluminum. 5 references.

  14. AIRTV: Broadband Direct to Aircraft

    Science.gov (United States)

    Sorbello, R.; Stone, R.; Bennett, S. B.; Bertenyi, E.

    2002-01-01

    Airlines have been continuously upgrading their wide-body, long-haul aircraft with IFE (in-flight entertainment) systems that can support from 12 to 24 channels of video entertainment as well as provide the infrastructure to enable in-seat delivery of email and internet services. This is a direct consequence of increased passenger demands for improved in-flight services along with the expectations that broadband delivery systems capable of providing live entertainment (news, sports, financial information, etc.) and high speed data delivery will soon be available. The recent events of Sept. 11 have slowed the airline's upgrade of their IFE systems, but have also highlighted the compelling need for broadband aeronautical delivery systems to include operational and safety information. Despite the impact of these events, it is estimated that by 2005 more than 3000 long haul aircraft (servicing approximately 1 billion passengers annually) will be fully equipped with modern IFE systems. Current aircraft data delivery systems, which use either Inmarsat or NATS, are lacking in bandwidth and consequently are unsuitable to satisfy passenger demands for broadband email/internet services or the airlines' burgeoning data requirements. Present live video delivery services are limited to regional coverage and are not readily expandable to global or multiregional service. Faced with a compelling market demand for high data transport to aircraft, AirTV has been developing a broadband delivery system that will meet both passengers' and airlines' needs. AirTV is a global content delivery system designed to provide a range of video programming and data services to commercial airlines. When AirTV is operational in 2004, it will provide a broadband connection directly to the aircraft, delivering live video entertainment, internet/email service and essential operational and safety data. The system has been designed to provide seamless global service to all airline routes except for those

  15. Design Methods and Optimization for Morphing Aircraft

    Science.gov (United States)

    Crossley, William A.

    2005-01-01

    This report provides a summary of accomplishments made during this research effort. The major accomplishments are in three areas. The first is the use of a multiobjective optimization strategy to help identify potential morphing features that uses an existing aircraft sizing code to predict the weight, size and performance of several fixed-geometry aircraft that are Pareto-optimal based upon on two competing aircraft performance objectives. The second area has been titled morphing as an independent variable and formulates the sizing of a morphing aircraft as an optimization problem in which the amount of geometric morphing for various aircraft parameters are included as design variables. This second effort consumed most of the overall effort on the project. The third area involved a more detailed sizing study of a commercial transport aircraft that would incorporate a morphing wing to possibly enable transatlantic point-to-point passenger service.

  16. 78 FR 65554 - Exhaust Emission Standards for New Aircraft Turbine Engines and Identification Plate for Aircraft...

    Science.gov (United States)

    2013-11-01

    ... Aircraft Turbine Engines and Identification Plate for Aircraft Engines Correction In rule document 2013... for Subsonic Engines'', in the third column, in the last row, the entry ``rO > 26.7'' is corrected...

  17. A Qualitative Analysis of SAC Aircraft Maintenance.

    Science.gov (United States)

    1982-09-01

    A122 815 A QUALITATIVE ANALYSIS OF SAC AIRCRAFT MRINTENANCE(U) 112 AIR FORCE INST OF TECH WRIGHT-PRTTERSON AFB OH SCHOOL OF SYSTEMS AND LOGISTICS D...Wright-Patterson Air Force Base, Ohio ’ ; " ... ..... ... ... . .. .. A QUALITATIVE ANALYSIS OF SAC AIRCRAFT MAINTENANCE Douglas P. Cook, Captain... QUALITATIVE ANALYSIS OF SAC Master’s Thesis AIRCRAFT MAINTENANCE 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(q) S. CONTRACT OR GRANT NUMBER(a) Douglas

  18. Visualization of Aircraft Longitudinal-Axis Motion

    OpenAIRE

    Peter Kvasnica

    2015-01-01

    In this paper, the use of continuous mathematical models of an aircraft in an aircraft simulator is described. The models are of lower degree and less time-consuming for calculation. Computer implementation of the models capable to work faster and more accurately and efficiently is also described. The suggested approach allows to achieve the required precision at accelerated simulation speed using the continuous mathematical models of an aircraft. Frequency of the computation of continuous ma...

  19. Advanced Aerostructural Optimization Techniques for Aircraft Design

    OpenAIRE

    Yingtao Zuo; Pingjian Chen; Lin Fu; Zhenghong Gao; Gang Chen

    2015-01-01

    Traditional coupled aerostructural design optimization (ASDO) of aircraft based on high-fidelity models is computationally expensive and inefficient. To improve the efficiency, the key is to predict aerostructural performance of the aircraft efficiently. The cruise shape of the aircraft is parameterized and optimized in this paper, and a methodology named reverse iteration of structural model (RISM) is adopted to get the aerostructural performance of cruise shape efficiently. A new mathematic...

  20. Aircraft Survivability. Susceptibility Reduction. Fall 2010

    Science.gov (United States)

    2010-01-01

    to determine the degree of control available with manual manipulation of engine throttles for various transport aircraft. Simulations included...Boeing 727, 737, 747, 757, 767, 777, MD-11, MD-90, C-17, and Airbus A320 and A300 transport aircraft. Preliminary missile impact effects were...shown, for most aircraft tested, that using only manual TOC it is very difficult to make a safe runway landing due to difficulty in controlling the

  1. Structural Load Alleviation Applied to Next Generation Aircraft and Wind Turbines

    Science.gov (United States)

    Frost, Susan

    2011-01-01

    Reducing the environmental impact of aviation is a goal of the Subsonic Fixed Wing Project under the Fundamental Aeronautics Program of NASAs Aeronautics Research Mission Directorate. Environmental impact of aviation is being addressed by novel aircraft configurations and materials that reduce aircraft weight and increase aerodynamic efficiency. NASA is developing tools to address the challenges of increased airframe flexibility created by wings constructed with reduced structural material and novel light-weight materials. This talk will present a framework and demonstration of a flight control system using optimal control allocation with structural load feedback and constraints to achieve safe aircraft operation. As wind turbines age, they become susceptible to many forms of blade degradation. Results will be presented on work in progress that uses adaptive contingency control for load mitigation in a wind turbine simulation with blade damage progression modeled.

  2. Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL) provides a variety of research, design engineering and prototype fabrication services...

  3. Research on Emerging and Descending Aircraft Noise

    Directory of Open Access Journals (Sweden)

    Monika Bartkevičiūtė

    2013-12-01

    Full Text Available Along with an increase in the aircraft engine power and growth in air traffic, noise level at airports and their surrounding environs significantly increases. Aircraft noise is high level noise spreading within large radius and intensively irritating the human body. Air transport is one of the main sources of noise having a particularly strong negative impact on the environment. The article deals with activities and noises taking place in the largest nationwide Vilnius International Airport.The level of noise and its dispersion was evaluated conducting research on the noise generated by emerging and descending aircrafts in National Vilnius Airport. Investigation was carried out at 2 measuring points located in a residential area. There are different types of aircrafts causing different sound levels. It has been estimated the largest exceedances that occur when an aircraft is approaching. In this case, the noisiest types of aircrafts are B733, B738 and AT72. The sound level varies from 70 to 85 dBA. The quietest aircrafts are RJ1H and F70. When taking off, the equivalent of the maximum sound level value of these aircrafts does not exceed the authorized limits. The paper describes the causes of noise in aircrafts, the sources of origin and the impact of noise on humans and the environment.Article in Lithuanian

  4. Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL) provides a variety of research, design engineering and prototype fabrication services...

  5. Developments in silicon carbide for aircraft propulsion system applications

    Science.gov (United States)

    Przybylko, Stephen J.

    1993-06-01

    The physical and electrical properties of silicon carbide make it the foremost semiconductor material for high-temperature, radiation-resistant, and high-power electronic devices. These attributes make SiC particularly suitable for application to aircraft engines. Recent proof-of-concept efforts have verified SiC's potential. Field-effect transistors have shown high-temperature operating capability from 350 C to 650 C. JFETs, MOSFETs, and MESFETs have been fabricated. Ultraviolet photodiodes with high quantum efficiencies and extremely low dark currents have been fabricated and tested. Blue light-emitting diodes are for sale in production quantities as are one-inch diameter wafers. These developments have established a sufficient level of confidence to pursue the development of devices for aircraft-engine applications.

  6. Titanium Alloys and Processing for High Speed Aircraft

    Science.gov (United States)

    Brewer, William D.; Bird, R. Keith; Wallace, Terryl A.

    1996-01-01

    Commercially available titanium alloys as well as emerging titanium alloys with limited or no production experience are being considered for a variety of applications to high speed commercial aircraft structures. A number of government and industry programs are underway to improve the performance of promising alloys by chemistry and/or processing modifications and to identify appropriate alloys and processes for specific aircraft structural applications. This paper discusses some of the results on the effects of heat treatment, service temperatures from - 54 C to +177 C, and selected processing on the mechanical properties of several candidate beta and alpha-beta titanium alloys. Included are beta alloys Timetal 21S, LCB, Beta C, Beta CEZ, and Ti-10-2-3 and alpha-beta alloys Ti-62222, Ti-6242S, Timetal 550, Ti-62S, SP-700, and Corona-X. The emphasis is on properties of rolled sheet product form and on the superplastic properties and processing of the materials.

  7. COMPARATIVE ANALYSIS OF TRANSPORT AIRCRAFT, BACKROUND FOR SHORT/ MEDIUM COURIER TRANSPORT AIRCRAFT PROCUREMENT

    Directory of Open Access Journals (Sweden)

    Matei POPA

    2010-03-01

    Full Text Available In accordance with Air Force requirements, the comparative analysis of short/medium transport aircraft comes to sustain procurement decision of short/medium transport aircraft. This paper presents, in short, the principles and the results of the comparative analysis for short/medium military transport aircraft.

  8. 75 FR 50865 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Science.gov (United States)

    2010-08-18

    ... Equipped With Rotax Aircraft Engines 912 A Series Engines AGENCY: Federal Aviation Administration (FAA... 912 A series engine installed in various aircraft does not have an engine type certificate; instead, the engine is part of the aircraft type design. Comments We gave the public the opportunity...

  9. 75 FR 32315 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Science.gov (United States)

    2010-06-08

    ... Equipped With Rotax Aircraft Engines 912 A Series Engines AGENCY: Federal Aviation Administration (FAA... certificated in the United States. However, the Model 912 A series engine installed in various aircraft does not have an engine type certificate; instead, the engine is part of the aircraft type design. You...

  10. 76 FR 40219 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Science.gov (United States)

    2011-07-08

    ... Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration (FAA), DOT... Rotax Aircraft Engines Mandatory Service Bulletin SB-912-058 SB-914-041, dated April 15, 2011, listed in... 601 0; fax: +43 7246 601 9130; Internet: http://www.rotax-aircraft-engines.com . You may review...

  11. Advanced composite materials and processes

    Science.gov (United States)

    Baucom, Robert M.

    1991-01-01

    Composites are generally defined as two or more individual materials, which, when combined into a single material system, results in improved physical and/or mechanical properties. The freedom of choice of the starting components for composites allows the generation of materials that can be specifically tailored to meet a variety of applications. Advanced composites are described as a combination of high strength fibers and high performance polymer matrix materials. These advanced materials are required to permit future aircraft and spacecraft to perform in extended environments. Advanced composite precursor materials, processes for conversion of these materials to structures, and selected applications for composites are reviewed.

  12. Development of Textile Reinforced Composites for Aircraft Structures

    Science.gov (United States)

    Dexter, H. Benson

    1998-01-01

    NASA has been a leader in development of composite materials for aircraft applications during the past 25 years. In the early 1980's NASA and others conducted research to improve damage tolerance of composite structures through the use of toughened resins but these resins were not cost-effective. The aircraft industry wanted affordable, robust structures that could withstand the rigors of flight service with minimal damage. The cost and damage tolerance barriers of conventional laminated composites led NASA to focus on new concepts in composites which would incorporate the automated manufacturing methods of the textiles industry and which would incorporate through-the-thickness reinforcements. The NASA Advanced Composites Technology (ACT) Program provided the resources to extensively investigate the application of textile processes to next generation aircraft wing and fuselage structures. This paper discusses advanced textile material forms that have been developed, innovative machine concepts and key technology advancements required for future application of textile reinforced composites in commercial transport aircraft. Multiaxial warp knitting, triaxial braiding and through-the-thickness stitching are the three textile processes that have surfaced as the most promising for further development. Textile reinforced composite structural elements that have been developed in the NASA ACT Program are discussed. Included are braided fuselage frames and window-belt reinforcements, woven/stitched lower fuselage side panels, stitched multiaxial warp knit wing skins, and braided wing stiffeners. In addition, low-cost processing concepts such as resin transfer molding (RTM), resin film infusion (RFI), and vacuum-assisted resin transfer molding (VARTM) are discussed. Process modeling concepts to predict resin flow and cure in textile preforms are also discussed.

  13. LCC-OPS: Life Cycle Cost Application in Aircraft Operations

    NARCIS (Netherlands)

    Suwondo, E.

    2007-01-01

    Observation of current practices in aircraft operations and maintenance shows limited consideration of cost savings applied by aircraft modifications, maintenance program optimisation and aircraft selection. This is due to hidden (maintenance dependent) costs and difficulties in quantifying the util

  14. 77 FR 58301 - Technical Amendment; Airworthiness Standards: Aircraft Engines; Correction

    Science.gov (United States)

    2012-09-20

    ... Technical Amendment entitled, ``Airworthiness Standards: Aircraft Engine'' (77 FR 39623). In that technical... Administration 14 CFR Part 33 RIN 2120-AF57 Technical Amendment; Airworthiness Standards: Aircraft Engines... technical amendment, the FAA clarified aircraft engine vibration test requirements in the...

  15. 77 FR 39623 - Airworthiness Standards: Aircraft Engines; Technical Amendment

    Science.gov (United States)

    2012-07-05

    ... Federal Aviation Administration 14 CFR Part 33 Airworthiness Standards: Aircraft Engines; Technical.... SUMMARY: This amendment clarifies aircraft engine vibration test requirements in the airworthiness... 33--AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES 0 1. The authority citation for part 33 continues...

  16. Development of fire-resistant, low smoke generating, thermally stable end items for aircraft and spacecraft

    Science.gov (United States)

    Gagliani, J.; Sorathia, U. A. K.; Wilcoxson, A. L.

    1977-01-01

    Materials were developed to improve aircraft interior materials by modifying existing polymer structures, refining the process parameters, and by the use of mechanical configurations designed to overcome specific deficiencies. The optimization, selection, and fabrication of five fire resistant, low smoke emitting open cell foams are described for five different types of aircraft cabin structures. These include: resilient foams, laminate floor and wall paneling, thermal/acoustical insulation, molded shapes, and coated fabrics. All five have been produced from essentially the same polyimide precursor and have resulted in significant benefits from transfer of technology between the various tasks.

  17. Aircraft type influence on contrail properties

    Directory of Open Access Journals (Sweden)

    P. Jeßberger

    2013-05-01

    Full Text Available The investigation of the impact of aircraft parameters on contrail properties helps to better understand the climate impact from aviation. Yet, in observations, it is a challenge to separate aircraft and meteorological influences on contrail formation. During the CONCERT campaign in November 2008, contrails from 3 Airbus passenger aircraft of type A319-111, A340-311 and A380-841 were probed at cruise under similar meteorological conditions with in-situ instruments on board the DLR research aircraft Falcon. Within the 2 min old contrails detected near ice saturation, we find similar effective diameters Deff (5.2–5.9 μm, but differences in particle number densities nice (162–235 cm−3 and in vertical contrail extensions (120–290 m, resulting in large differences in contrail optical depths τ (0.25–0.94. Hence larger aircraft produce optically thicker contrails. Based on the observations, we apply the EULAG-LCM model with explicit ice microphysics and in addition the Contrail and Cirrus Prediction model CoCiP to calculate the aircraft type impact on young contrails under identical meteorological conditions. The observed increase in τ for heavier aircraft is confirmed by the models, yet for generally smaller τ. An aircraft dependence of climate relevant contrail properties persists during contrail lifetime, adding importance to aircraft dependent model initialization. We finally derive an analytical relationship between contrail, aircraft and meteorological parameters. Near ice saturation, contrail width × τ scales linearly with fuel flow rate as confirmed by observations. For higher saturation ratios approximations from theory suggest a non-linear increase in the form (RHI–12/3. Summarized our combined results could help to more accurately assess the climate impact from aviation using an aircraft dependent contrail parameterization.

  18. Concept to Reality: Contributions of the Langley Research Center to US Civil Aircraft of the 1990s

    Science.gov (United States)

    Chambers, Joseph R.

    2003-01-01

    This document is intended to be a companion to NASA SP-2000-4519, 'Partners in Freedom: Contributions of the Langley Research Center to U.S. Military Aircraft of the 1990s'. Material included in the combined set of volumes provides informative and significant examples of the impact of Langley's research on U.S. civil and military aircraft of the 1990s. This volume, 'Concept to Reality: Contributions of the NASA Langley Research Center to U.S. Civil Aircraft of the 1990s', highlights significant Langley contributions to safety, cruise performance, takeoff and landing capabilities, structural integrity, crashworthiness, flight deck technologies, pilot-vehicle interfaces, flight characteristics, stall and spin behavior, computational design methods, and other challenging technical areas for civil aviation. The contents of this volume include descriptions of some of the more important applications of Langley research to current civil fixed-wing aircraft (rotary-wing aircraft are not included), including commercial airliners, business aircraft, and small personal-owner aircraft. In addition to discussions of specific aircraft applications, the document also covers contributions of Langley research to the operation of civil aircraft, which includes operating problems. This document is organized according to disciplinary technologies, for example, aerodynamics, structures, materials, and flight systems. Within each discussion, examples are cited where industry applied Langley technologies to specific aircraft that were in operational service during the 1990s and the early years of the new millennium. This document is intended to serve as a key reference for national policy makers, internal NASA policy makers, Congressional committees, the media, and the general public. Therefore, it has been written for a broad general audience and does not presume any significant technical expertise. An extensive bibliography is provided for technical specialists and others who desire a

  19. Material Characterization for Hypersonic Vehicles by the Fast Mutipole Boundary Element Method Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hypersonic aircraft are subjected to extreme conditions with respect to mechanical thermal and acoustic loads. Materials with complex microstructure, such as...

  20. 49 CFR 175.701 - Separation distance requirements for packages containing Class 7 (radioactive) materials in...

    Science.gov (United States)

    2010-10-01

    ... containing Class 7 (radioactive) materials in passenger-carrying aircraft. 175.701 Section 175.701... packages containing Class 7 (radioactive) materials in passenger-carrying aircraft. (a) The following table... Class 7 (radioactive) materials labeled RADIOACTIVE YELLOW-II or RADIOACTIVE YELLOW-III and...

  1. A Turbo-Brayton Cryocooler for Aircraft Superconducting Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hybrid turboelectric aircraft with gas turbines driving electric generators connected to electric propulsion motors have the potential to transform the aircraft...

  2. An Instrument to Measure Aircraft Sulfate Particle Emissions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft particle emissions contribute a modest, but growing, portion of the overall particle emissions budget. Characterizing aircraft particle emissions is...

  3. Key Technology of Advanced Composite Materials from Aircraft to Automobile%先进复合材料从飞机转向汽车应用的关键技术

    Institute of Scientific and Technical Information of China (English)

    张靠民; 李敏; 顾轶卓; 张佐光

    2013-01-01

    Lightweight is a critical approach for sustainable development of auto industry .Advanced composite materials ( ACM) , especially carbon fiber reinforced plastics ( CFRP) , supply the most feasible way due to the lightweight and high strength characteristics.Although there has been forty years since the application of ACM in aviation industry , character-istics of auto industry obviously differ from aviation industry , the most prominent of which is the higher requirement on production efficiency.Taking consideration of the features of ACM in combination with the important requirements of auto industry, the related research plans of developed country and the latest typical applications of ACM in automobile structure were introduced first.On the basis of this, key technologies which block potential application development of ACM in auto industry including integration design and manufacture of composite , low cost carbon fiber, efficient processing and recy-cling issues are discussed, it will be our best wishes if the paper is helpful to develop advanced technology of composite suited auto industry .%轻量化是汽车工业实现可持续发展的重要途径,先进复合材料( Advanced Composite Mate-rials, ACM)特别是碳纤维增强聚合物基复合材料具有质轻高强的性能特点,是最为重要的轻量化材料之一。 ACM在航空工业已有四十年的技术和应用积累,但汽车工业的产业特点明显不同于航空,其中最突出的就是对成本和生产效率的要求更高。因此,将 ACM的技术特点与汽车工业的重要需求相结合,本文首先介绍了碳纤维复合材料用于汽车结构的最新应用进展,列举了发达国家的相关研发计划。在此基础上,从复合材料设计制造一体化、低成本碳纤维、复合材料高效制造和材料循环利用等四个方面讨论了制约汽车用 ACM规模化应用的关键技术。以期为研究发展适合我国汽车工业的

  4. Safer Aviation Materials Tested

    Science.gov (United States)

    Palaszewski, Bryan A.

    2001-01-01

    A series of thermally stable polymer samples were tested. These materials are called low heat release materials and are designed for aircraft interior decorative materials. The materials are designed to give off a minimum amount of noxious gases when heated, which increases the possibility that people can escape from a burning aircraft. New cabin materials have suitably low heat release so that fire does not spread, toxic chemicals are not given off, and the fire-emergency escape time for crew and passengers is lengthened. These low heat-release materials have a variety of advantages and applications: interiors for ground-based facilities, interiors of space vehicles, and many commercial fire-protection environments. A microscale combustion calorimeter at the Federal Aviation Administration's (FAA) Technical Center tested NASA Langley Research Center materials samples. The calorimeter is shown. A sharp, quantitative, and reproducible heat-release-rate peak is obtained in the microscale heat-release-rate test. The newly tested NASA materials significantly reduced the heat release capacity and total heat release. The thermal stability and flammability behavior of the samples was very good. The new materials demonstrated a factor of 4 reduction in total heat release over ULTEM (a currently used material). This information is provided in the following barchart. In other tests, the materials showed greater than a factor 9 reduction in heat-release capacity over ULTEM. The newly tested materials were developed for low dielectric constant, low color, and good solubility. A scale up of the material samples is needed to determine the repeatability of the performance in larger samples. Larger panels composed of the best candidate materials will be tested in a larger scale FAA Technical Center fire facility. The NASA Glenn Research Center, Langley (Jeff Hinkley), and the FAA Technical Center (Richard Lyon) cooperatively tested these materials for the Accident Mitigation

  5. 14 CFR 91.209 - Aircraft lights.

    Science.gov (United States)

    2010-01-01

    ...; or (iii) is in an area that is marked by obstruction lights; (3) Anchor an aircraft unless the aircraft— (i) Has lighted anchor lights; or (ii) Is in an area where anchor lights are not required on vessels; or (b) Operate an aircraft that is equipped with an anticollision light system, unless it...

  6. The longitudinal static stability of tailless aircraft

    OpenAIRE

    de Castro, Helena V.

    2001-01-01

    This paper describes the development of a simple theory of the longitudinal controls fixed static stability of tailless aeroplanes. The classical theory, as developed for the conventional aircraft, is modified to accommodate the particular features of the tailless aeroplanes. The theory was then applied to a particular blended-wing-body tailless civil transport aircraft, BWB-98. Cranfield University

  7. Trajectory Control for Very Flexible Aircraft

    Science.gov (United States)

    2006-10-30

    total airspeed and the classic aircraft longitudinal , lateral, and vertical velocity components are u positive out the nose, v positive out the right...wing flexibility is a secondary and minimal contribution to aircraft longitudinal motion. Using this assumption and the previous assumptions of

  8. A Wind Tunnel Captive Aircraft Testing Technique

    Science.gov (United States)

    1976-04-01

    Flight/Wind Tunnel Correlation of Aircraft Longitudinal Motion ....................................... 14 10. Fright/Wind Tunnel Correlation of...I 2 3 4 5 6 T IME, s e c Figure 9. Flight/wind tunnel correla- tion of aircraft longitudinal motion. ’ D A n ~ v i i i | ~ 0 0 - 4 0

  9. Maintenance of air worthiness of aircrafts

    Directory of Open Access Journals (Sweden)

    В. А. Горячев

    2000-09-01

    Full Text Available Described are modem conditions of operation of Russian civil aviation, state of aircraft stock, the main principles of maintaining air worthiness of airplanes and helicopters. Considered is a stage by stage prolongation of the service life of each specimen of aircraft with certification being obligatory

  10. Intraocular lens in a fighter aircraft pilot.

    OpenAIRE

    Loewenstein, A; Geyer, O; Biger, Y; Bracha, R; Shochat, I; Lazar, M.

    1991-01-01

    A pseudophakic pilot of the Israeli air force flying an F-15 (Eagle) aircraft was followed up for three years. He experienced about 100 flying hours, 5% of the time under high g stress. The intraocular lens did not dislocate and no complications were observed. It seems that flying high performance fighter aircraft is not contraindicated in pseudophakic pilots.

  11. Noise Control in Propeller-Driven Aircraft

    Science.gov (United States)

    Rennison, D. C.; Wilby, J. F.

    1983-01-01

    Analytical model predicts noise levels inside propeller-driven aircraft during cruise at mach 0.8. Double wall sidewalls minimize interior noise and weight. Model applied to three aircraft with fuselages of different size (wide-body, narrow-body, and small-diameter) to determine noise reductions required to achieve A-weighted sound level not to exceed 80 dB.

  12. Study on Impedance Characteristics of Aircraft Cables

    Directory of Open Access Journals (Sweden)

    Weilin Li

    2016-01-01

    Full Text Available Voltage decrease and power loss in distribution lines of aircraft electric power system are harmful to the normal operation of electrical equipment and may even threaten the safety of aircraft. This study investigates how the gap distance (the distance between aircraft cables and aircraft skin and voltage frequency (variable frequency power supply will be adopted for next generation aircraft will affect the impedance of aircraft cables. To be more precise, the forming mechanism of cable resistance and inductance is illustrated in detail and their changing trends with frequency and gap distance are analyzed with the help of electromagnetic theoretical analysis. An aircraft cable simulation model is built with Maxwell 2D and the simulation results are consistent with the conclusions drawn from the theoretical analysis. The changing trends of the four core parameters of interest are analyzed: resistance, inductance, reactance, and impedance. The research results can be used as reference for the applications in Variable Speed Variable Frequency (VSVF aircraft electric power system.

  13. Lift augmentation for highly swept wing aircraft

    Science.gov (United States)

    Rao, Dhanvada M. (Inventor)

    1993-01-01

    A pair of spaced slots, disposed on each side of an aircraft centerline and spaced well inboard of the wing leading edges, are provided in the wing upper surfaces and directed tangentially spanwise toward thin sharp leading wing edges of a highly swept, delta wing aircraft. The slots are individually connected through separate plenum chambers to separate compressed air tanks and serve, collectively, as a system for providing aircraft lift augmentation. A compressed air supply is tapped from the aircraft turbojet power plant. Suitable valves, under the control of the aircraft pilot, serve to selective provide jet blowing from the individual slots to provide spanwise sheets of jet air closely adjacent to the upper surfaces and across the aircraft wing span to thereby create artificial vortices whose suction generate additional lift on the aircraft. When desired, or found necessary, unequal or one-side wing blowing is employed to generate rolling moments for augmented lateral control. Trailing flaps are provided that may be deflected differentially, individually, or in unison, as needed for assistance in take-off or landing of the aircraft.

  14. 14 CFR 121.538 - Aircraft security.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft security. 121.538 Section 121.538..., FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.538 Aircraft security. Certificate holders conducting operations under this part must comply with the applicable security requirements in 49 CFR...

  15. 14 CFR 135.125 - Aircraft security.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft security. 135.125 Section 135.125....125 Aircraft security. Certificate holders conducting operators conducting operations under this part must comply with the applicable security requirements in 49 CFR chapter XII....

  16. Cycle Counting Methods of the Aircraft Engine

    Science.gov (United States)

    Fedorchenko, Dmitrii G.; Novikov, Dmitrii K.

    2016-01-01

    The concept of condition-based gas turbine-powered aircraft operation is realized all over the world, which implementation requires knowledge of the end-of-life information related to components of aircraft engines in service. This research proposes an algorithm for estimating the equivalent cyclical running hours. This article provides analysis…

  17. 19 CFR 122.42 - Aircraft entry.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Aircraft entry. 122.42 Section 122.42 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Entry and Entry Documents; Electronic Manifest Requirements...

  18. Unmanned aircraft systems as wingmen

    Science.gov (United States)

    Garcia, Richard; Barnes, Laura; Fields, MaryAnne

    2010-04-01

    This paper introduces a concept towards integrating manned and Unmanned Aircraft Systems (UASs) into a highly functional team though the design and implementation of 3-D distributed formation/flight control algorithms with the goal to act as wingmen for a manned aircraft. This method is designed to minimize user input for team control, dynamically modify formations as required, utilize standard operating formations to reduce pilot resistance to integration, and support splinter groups for surveillance and/or as safeguards between potential threats and manned vehicles. The proposed work coordinates UAS members by utilizing artificial potential functions whose values are based on the state of the unmanned and manned assets including the desired formation, obstacles, task assignments, and perceived intentions. The overall unmanned team geometry is controlled using weighted potential fields. Individual UAS utilize fuzzy logic controllers for stability and navigation as well as a fuzzy reasoning engine for flight path intention prediction. Approaches are demonstrated in simulation using the commercial simulator X-Plane and controllers designed in Matlab/Simulink. Experiments include trail and right echelon formations as well as splinter group surveillance.

  19. Multispectral imaging of aircraft exhaust

    Science.gov (United States)

    Berkson, Emily E.; Messinger, David W.

    2016-05-01

    Aircraft pollutants emitted during the landing-takeoff (LTO) cycle have significant effects on the local air quality surrounding airports. There are currently no inexpensive, portable, and unobtrusive sensors to quantify the amount of pollutants emitted from aircraft engines throughout the LTO cycle or to monitor the spatial-temporal extent of the exhaust plume. We seek to thoroughly characterize the unburned hydrocarbon (UHC) emissions from jet engine plumes and to design a portable imaging system to remotely quantify the emitted UHCs and temporally track the distribution of the plume. This paper shows results from the radiometric modeling of a jet engine exhaust plume and describes a prototype long-wave infrared imaging system capable of meeting the above requirements. The plume was modeled with vegetation and sky backgrounds, and filters were selected to maximize the detectivity of the plume. Initial calculations yield a look-up chart, which relates the minimum amount of emitted UHCs required to detect the presence of a plume to the noise-equivalent radiance of a system. Future work will aim to deploy the prototype imaging system at the Greater Rochester International Airport to assess the applicability of the system on a national scale. This project will help monitor the local pollution surrounding airports and allow better-informed decision-making regarding emission caps and pollution bylaws.

  20. Flux Sampling Errors for Aircraft and Towers

    Science.gov (United States)

    Mahrt, Larry

    1998-01-01

    Various errors and influences leading to differences between tower- and aircraft-measured fluxes are surveyed. This survey is motivated by reports in the literature that aircraft fluxes are sometimes smaller than tower-measured fluxes. Both tower and aircraft flux errors are larger with surface heterogeneity due to several independent effects. Surface heterogeneity may cause tower flux errors to increase with decreasing wind speed. Techniques to assess flux sampling error are reviewed. Such error estimates suffer various degrees of inapplicability in real geophysical time series due to nonstationarity of tower time series (or inhomogeneity of aircraft data). A new measure for nonstationarity is developed that eliminates assumptions on the form of the nonstationarity inherent in previous methods. When this nonstationarity measure becomes large, the surface energy imbalance increases sharply. Finally, strategies for obtaining adequate flux sampling using repeated aircraft passes and grid patterns are outlined.

  1. Scorpion: Close Air Support (CAS) aircraft

    Science.gov (United States)

    Allen, Chris; Cheng, Rendy; Koehler, Grant; Lyon, Sean; Paguio, Cecilia

    1991-01-01

    The objective is to outline the results of the preliminary design of the Scorpion, a proposed close air support aircraft. The results obtained include complete preliminary analysis of the aircraft in the areas of aerodynamics, structures, avionics and electronics, stability and control, weight and balance, propulsion systems, and costs. A conventional wing, twin jet, twin-tail aircraft was chosen to maximize the desirable characteristics. The Scorpion will feature low speed maneuverability, high survivability, low cost, and low maintenance. The life cycle cost per aircraft will be 17.5 million dollars. The maximum takeoff weight will be 52,760 pounds. Wing loading will be 90 psf. The thrust to weight will be 0.6 lbs/lb. This aircraft meets the specified mission requirements. Some modifications have been suggested to further optimize the design.

  2. Advanced aircraft analysis of an F-4 Phantom on a reinforced concrete building

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyoungsoo, E-mail: kylee@pvamu.edu [Center for Energy and Environmental Sustainability, Prairie View A and M University, Prairie View, TX 77446 (United States); Jung, Jae-Wook, E-mail: jaewook1987@kaist.ac.kr [Department of Civil and Environmental Engineering, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Hong, Jung-Wuk, E-mail: jwhong@alum.mit.edu [Department of Civil and Environmental Engineering, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2014-07-01

    Highlights: • Aircraft impact analyses are performed using the missile-target interaction method. • Three types of FE models of a F4-Phantom aircraft considering the fuel mass effect are considered with erosion effect. • The aircraft impact models are verified through the comparative studies with experimental data. • The parametric studies on the fictitious nuclear concrete containment wall are investigated. • The SPH or Hybrid models show severe damage to the deformable constrained concrete wall than does Lagrangian based model. - Abstract: The nonlinear dynamic fracture and collapse characteristics of an F-4 Phantom aircraft under an extreme load caused by the impact of an F-4 Phantom are investigated. Three types of FE models considering the fuel mass effect are developed to investigate the superiority of the developed model. A rigid wall impact test is conducted to determine the material properties and the eroding failure criteria. The impact forces exerted by the aircraft against mounted thick concrete walls are then verified by comparing the results here with earlier experimental data obtained from an actual-scale F-4 Phantom aircraft impact test conducted by Sandia National Laboratory. Validation of the methodology is further investigated by extending the comparative studies to a constrained thin concrete wall similar to the type used in nuclear power plant containment buildings. The experimental and simulation results are also analyzed and discussed.

  3. 76 FR 6525 - Airworthiness Directives; Cessna Aircraft Company (Type Certificate Previously Held by Columbia...

    Science.gov (United States)

    2011-02-07

    ... Company (Type Certificate Previously Held by Columbia Aircraft Manufacturing (Previously the Lancair... Aircraft Company (Type Certificate Previously Held by Columbia Aircraft Manufacturing (Previously The... Aircraft Company (type certificate previously held by Columbia Aircraft Manufacturing (previously...

  4. Studies of molecular properties of polymeric materials

    Science.gov (United States)

    Harries, W. L.; Long, Sheila Ann T.; Long, Edward R., Jr.

    1990-01-01

    Aerospace environment effects (high energy electrons, thermal cycling, atomic oxygen, and aircraft fluids) on polymeric and composite materials considered for structural use in spacecraft and advanced aircraft are examined. These materials include Mylar, Ultem, and Kapton. In addition to providing information on the behavior of the materials, attempts are made to relate the measurements to the molecular processes occurring in the material. A summary and overview of the technical aspects are given along with a list of the papers that resulted from the studies. The actual papers are included in the appendices and a glossary of technical terms and definitions is included in the front matter.

  5. Turboprop aircraft against terrorism: a SWOT analysis of turboprop aircraft in CAS operations

    Science.gov (United States)

    Yavuz, Murat; Akkas, Ali; Aslan, Yavuz

    2012-06-01

    Today, the threat perception is changing. Not only for countries but also for defence organisations like NATO, new threat perception is pointing terrorism. Many countries' air forces become responsible of fighting against terorism or Counter-Insurgency (COIN) Operations. Different from conventional warfare, alternative weapon or weapon systems are required for such operatioins. In counter-terrorism operations modern fighter jets are used as well as helicopters, subsonic jets, Unmanned Aircraft Systems (UAS), turboprop aircraft, baloons and similar platforms. Succes and efficiency of the use of these platforms can be determined by evaluating the conditions, the threats and the area together. Obviously, each platform has advantages and disadvantages for different cases. In this research, examples of turboprop aircraft usage against terrorism and with a more general approach, turboprop aircraft for Close Air Support (CAS) missions from all around the world are reviewed. In this effort, a closer look is taken at the countries using turboprop aircraft in CAS missions while observing the fields these aircraft are used in, type of operations, specifications of the aircraft, cost and the maintenance factors. Thus, an idea about the convenience of using these aircraft in such operations can be obtained. A SWOT analysis of turboprop aircraft in CAS operations is performed. This study shows that turboprop aircraft are suitable to be used in counter-terrorism and COIN operations in low threat environment and is cost benefical compared to jets.

  6. Aircraft measurements of wave cloud

    Directory of Open Access Journals (Sweden)

    Z. Cui

    2012-05-01

    Full Text Available In this paper, aircraft measurements are presented of liquid phase (ice-free wave clouds made at temperatures greater than −5 °C that formed over Scotland, UK. The horizontal variations of the vertical velocity across wave clouds display a distinct pattern. The maximum updraughts occur at the upshear flanks of the clouds and the strong downdraughts at the downshear flanks. The cloud droplet concentrations were a couple of hundreds per cubic centimetres, and the drops generally had a mean diameter between 15–45 μm. A small proportion of the drops were drizzle. A new definition of a mountain-wave cloud is given, based on the measurements presented here and previous studies. The results in this paper provide a case for future numerical simulation of wave cloud and the interaction between wave and clouds.

  7. SMACK - SMOOTHING FOR AIRCRAFT KINEMATICS

    Science.gov (United States)

    Bach, R.

    1994-01-01

    The computer program SMACK (SMoothing for AirCraft Kinematics) is designed to provide flightpath reconstruction of aircraft forces and motions from measurements that are noisy or incomplete. Additionally, SMACK provides a check on instrument accuracy and data consistency. The program can be used to analyze data from flight-test experiments prior to their use in performance, stability and control, or aerodynamic modeling calculations. It can also be used in the analysis of aircraft accidents, where the actual forces and motions may have to be determined from a very limited data set. Application of a state-estimation method for flightpath reconstruction is possible because aircraft forces and motions are related by well-known equations of motion. The task of postflight state estimation is known as a nonlinear, fixed-interval smoothing problem. SMACK utilizes a backward-filter, forward-smoother algorithm to solve the problem. The equations of motion are used to produce estimates that are compared with their corresponding measurement time histories. The procedure is iterative, providing improved state estimates until a minimum squared-error measure is achieved. In the SMACK program, the state and measurement models together represent a finite-difference approximation for the six-degree-of-freedom dynamics of a rigid body. The models are used to generate time histories which are likely to be found in a flight-test measurement set. These include onboard variables such as Euler angles, angular rates, and linear accelerations as well as tracking variables such as slant range, bearing, and elevation. Any bias or scale-factor errors associated with the state or measurement models are appended to the state vector and treated as constant but unknown parameters. The SMACK documentation covers the derivation of the solution algorithm, describes the state and measurement models, and presents several application examples that should help the analyst recognize the potential

  8. Performance Evaluation Method for Dissimilar Aircraft Designs

    Science.gov (United States)

    Walker, H. J.

    1979-01-01

    A rationale is presented for using the square of the wingspan rather than the wing reference area as a basis for nondimensional comparisons of the aerodynamic and performance characteristics of aircraft that differ substantially in planform and loading. Working relationships are developed and illustrated through application to several categories of aircraft covering a range of Mach numbers from 0.60 to 2.00. For each application, direct comparisons of drag polars, lift-to-drag ratios, and maneuverability are shown for both nondimensional systems. The inaccuracies that may arise in the determination of aerodynamic efficiency based on reference area are noted. Span loading is introduced independently in comparing the combined effects of loading and aerodynamic efficiency on overall performance. Performance comparisons are made for the NACA research aircraft, lifting bodies, century-series fighter aircraft, F-111A aircraft with conventional and supercritical wings, and a group of supersonic aircraft including the B-58 and XB-70 bomber aircraft. An idealized configuration is included in each category to serve as a standard for comparing overall efficiency.

  9. Measurement and analysis of aircraft and vehicle LRCS in outfield test

    Science.gov (United States)

    Cao, Chang-Qing; Zeng, Xiao-dong; Fan, Zhao-jin; Feng, Zhe-jun; Lai, Zhi

    2015-04-01

    The measurement of aircraft and vehicle Laser Radar Cross Section (LRCS) is of crucial importance for the detection system evaluation and the characteristic research of the laser scattering. A brief introduction of the measuring theory of the laser scattering from the full-scale aircraft and vehicle targets is presented in this paper. By analyzing the measuring condition in outfield test, the laser systems and test steps are designed for full-scale aircraft and vehicle LRCS and verified by the experiment in laboratory. The processing data error 7% below is obtained of the laser radar cross section by using Gaussian compensation and elimination of sky background for original test data. The study of measurement and analysis proves that the proposed method is effective and correct to get laser radar cross section data in outfield test. The objectives of this study were: (1) to develop structural concepts for different LRCS fuselage configurations constructed of conventional materials; (2) to compare these findings with those of aircrafts or vehicles; (3) to assess the application of advanced materials for each configuration; (4) to conduct an analytical investigation of the aerodynamic loads, vertical drag and mission performance of different LRCS configurations; and (5) to compare these findings with those of the aircrafts or vehicles.

  10. Floor Response Evaluation for Auxiliary Building Subjected to Aircraft Impact Loading

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sang Shup; Hahm, Daegi; Choi, Inkil [Korea Atomic Energy Research institute, Daejeon (Korea, Republic of)

    2014-05-15

    These studies have been aimed to verify and ensure the safety of the targeted walls and structures especially in the viewpoint of the deterministic approach. However, a probabilistic safety assessment as well as deterministic approach for the damage of the internal component in the nuclear power plants (NPPs) subjected to aircraft crash is also needed. A probabilistic safety assessment for aircraft crash includes many uncertainties such as impact velocity, mass, impact location, shape, size, material etc. of aircraft. In this paper, an impact location was selected among the various parameters. This paper found the acceleration floor response spectra at specified locations (safety related components) on the target structure that assumed to be impact velocity 150m/s and maximum fuel for the specified aircraft model. In order to obtain the floor response in case of the crash with a various locations, the analyses for the auxiliary building subjected to aircraft impact were performed using Riera force history method and missile-target interaction method. The difference between responses in case of the building floor subjected to impact was occurred. Thus, in order to obtain the more accurate results, missile-target interaction method was used. This paper found the response at the selected point (node point No. 51). In order to probabilistic assessment for the safety related components, the assessment for a various parameters (velocity, mass, materials etc.) as well as impact locations should be needed.

  11. Development of assembly techniques for fire resistant aircraft interior panels

    Science.gov (United States)

    Lee, S. C. S.

    1978-01-01

    Ten NASA Type A fire resistant aircraft interior panels were fabricated and tested to develop assembly techniques. These techiques were used in the construction of a full scale lavatory test structure for flame propagation testing. The Type A panel is of sandwich construction consisting of Nomex honeycomb filled with quinone dioxime foam, and bismaleimide/glass face sheets bonded to the core with polyimide film adhesive. The materials selected and the assembly techniques developed for the lavatory test structure were designed for obtaining maximum fire containment with minimum smoke and toxic emission.

  12. Infrared Studies on the Jet Exhaust of a Turbojet Aircraft

    Directory of Open Access Journals (Sweden)

    A. K. Ray

    1971-10-01

    Full Text Available In an attempt to evaluate the effective Infrared radiant energy from a conical jet exhaust of a jet aircraft, infrared emission characteristics have been worked out with special reference to guidance and decoy purpose.Suitable infrared absorbing materials used for shielding the infrared emitting skin of the radiating part have also been discussed.attempts have also been made to evaluate the effective radiation on a detecting system after allowing for allowing for the solar radiant heat and also atmospheric absorption.

  13. Composite Material Aircraft Electromagnetic Properties and Design Guidelines

    Science.gov (United States)

    1981-01-01

    Handbook ); (3) ARRL Antena Bo, 3th Edition (1977); (4) AtanaBlake, John Wiley & Soils, 19966.;(5) A Handbook Series’on Electromagnatic Interfer- ence and...that will be useful to an 34C engineer working with composite structures. It is the purpose of this handbook to help satisfy that need. Figure 1-1...general antenna charac- teristics act forth in: (1) Antenna fn ineering Handbook , (Jauik); (2) Reference Deta for RadioEngineers, 4th Edithiuo, (TT-r

  14. Analysis of Aircraft Carrier Excess Material Offloaded to CARP Facilities

    Science.gov (United States)

    2011-06-01

    CAVCAL Unit Price Policy Adjustments.........................49 Table 8. CAVCAL UP $150 Threshold Transaction Cost Avoidance...51 Table 9. Model Outputs for EMV Thresholds Adjustments, Excluding DECOM........52 Table 10. SMART Offload EMV Threshold Transaction Cost Avoidance...54 Table 11. Summary of Combined Policy Effects on Records and Value of Inventory ...57 Table 12. Annualized Transaction Cost Avoidance

  15. Decontamination of Bioaerosols within Engineering Tolerances of Aircraft Materials

    Science.gov (United States)

    2012-09-04

    with a sampling rate of 12.5 L/min and a duration of 10 minutes. The collection solution used was 20 mL of phosphate buffered saline . The researchers...108 to 2 x 108 CFU/ml) in SDW or a Pantoea agglomerans suspension in 0.01 M phosphate-buffered saline (PBS), pH 7.4, were aerosolized at 46.4 lb/in2...following organisms are used to simulant different types of microorganisms: Bacillus subtilis var niger (also known as Bacillus globigii, or BG

  16. Aircraft emission research within ISTC project

    Energy Technology Data Exchange (ETDEWEB)

    Dedesh, V.; Leut, A.; Boris, S. [Scientific Research Center at the Gromov Flight, Research Institute (Russian Federation)

    2001-08-01

    This research is aimed at obtaining experimental data on contamination of the atmosphere by emissions from aircraft engines in cruise flight conditions, to establish and improve models of the physical and chemical processes which take place in the aircraft wake and in the general zone of air traffic corridors. An Su-24 'sounder' aircraft equipped with an air sampling and collection system has been established to obtain the necessary atmospheric samples in flight, and procedures have been developed for performing the research flights. Techniques have also been developed for chemical analysis of the samples. (authors)

  17. Moving towards a more electric aircraft

    OpenAIRE

    Rosero García, Javier Alveiro; Ortega Redondo, Juan Antonio; Aldabas Rubira, Emiliano; Romeral Martínez, José Luis

    2007-01-01

    Harry Rowe Mimno Award for the March 2007 AESS Magazine Paper: “Moving Towards A More Electric Aircraft” The latest advances in electric and electronic aircraft technologies from the point of view of an "all-electric" aircraft are presented herein. Specifically, we describe the concept of a "more electric aircraft" (MEA), which involves removing the need for on-engine hydraulic power generation and bleed air off-takes, and the increasing use of power electronics in the starter/generation s...

  18. Research related to variable sweep aircraft development

    Science.gov (United States)

    Polhamus, E. C.; Toll, T. A.

    1981-01-01

    Development in high speed, variable sweep aircraft research is reviewed. The 1946 Langley wind tunnel studies related to variable oblique and variable sweep wings and results from the X-5 and the XF1OF variable sweep aircraft are discussed. A joint program with the British, evaluation of the British "Swallow", development of the outboard pivot wing/aft tail configuration concept by Langley, and the applied research program that followed and which provided the technology for the current, variable sweep military aircraft is outlined. The relative state of variable sweep as a design option is also covered.

  19. Multidisciplinary Techniques and Novel Aircraft Control Systems

    Science.gov (United States)

    Padula, Sharon L.; Rogers, James L.; Raney, David L.

    2000-01-01

    The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shape-change devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.

  20. Hail damage to typical aircraft surfaces.

    Science.gov (United States)

    Hayduk, R. J.

    1972-01-01

    Severe structural damage can occur when aircraft collide with hailstones. Consequently, methods of predicting hail damage to airplane surfaces are needed by the aircraft designer. This paper describes an analytical method of predicting the dent depth and final deformed shape for simple structural components impacted by hailstones. The solution was accomplished by adapting the DEPROSS computer program to the problem of normal impact of hail on flat metallic sheets and spherical metallic caps. Experimental data and analytical predictions are presented for hail damage to typical aircraft surfaces along with a description of the hail gun and hail simulation technique used in the experimental study.

  1. 14 CFR 91.1109 - Aircraft maintenance: Inspection program.

    Science.gov (United States)

    2010-01-01

    ... currently recommended by the manufacturer of the aircraft, aircraft engines, propellers, appliances, and... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aircraft maintenance: Inspection program... Ownership Operations Program Management § 91.1109 Aircraft maintenance: Inspection program. Each...

  2. 77 FR 42455 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Science.gov (United States)

    2012-07-19

    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Piper Aircraft, Inc... directive (AD) for all Piper Aircraft, Inc. (type certificate previously held by The New Piper Aircraft Inc... receive about this proposed AD. Discussion Three forced landings of Piper Aircraft, Inc. Model...

  3. Numerical Aircraft Design Using 3-D Transonic Analysis with Optimization. Volume I. Executive Summary.

    Science.gov (United States)

    1981-08-01

    spanl]der designs with thick wings, and winglets for transport-category aircraft; and, (2) swept forward wings, variable camber wings with direct...Engines o Composite Materials o Active Controls The performance improvement as reflected in reduced fuel and gross weight brought about by each of the

  4. Impact of Advanced Propeller Technology on Aircraft/Mission Characteristics of Several General Aviation Aircraft

    Science.gov (United States)

    Keiter, I. D.

    1982-01-01

    Studies of several General Aviation aircraft indicated that the application of advanced technologies to General Aviation propellers can reduce fuel consumption in future aircraft by a significant amount. Propeller blade weight reductions achieved through the use of composites, propeller efficiency and noise improvements achieved through the use of advanced concepts and improved propeller analytical design methods result in aircraft with lower operating cost, acquisition cost and gross weight.

  5. Innovative Aircraft Design – Options for a New Medium Range Aircraft

    OpenAIRE

    Scholz, Dieter

    2015-01-01

    Task was to find an innovative aircraft design for a new medium range aircraft. The aircraft design methodology is based on equations (in contrast to numeric methods) and formal optimization with a genetic algorithm called differential evolution. Airbus has postponed an all-new A320 to 2025 or even 2030. This allows including also unconventional configurations into the search. Economic requirements are extreme: 25 % to 40 % reduction in fuel consumption, 35 % reduction in Cash Operating Costs...

  6. Conceptual design and optimization methodology for box wing aircraft

    OpenAIRE

    Jemitola, Paul Olugbeji

    2012-01-01

    A conceptual design optimization methodology was developed for a medium range box wing aircraft. A baseline conventional cantilever wing aircraft designed for the same mis- sion and payload was also optimized alongside a baseline box wing aircraft. An empirical formula for the mass estimation of the fore and aft wings of the box wing aircraft was derived by relating conventional cantilever wings to box wing aircraft wings. The results indicate that the fore and aft wings would ...

  7. Aircraft Noise and Quality of Life around Frankfurt Airport

    OpenAIRE

    Thomas Eikmann; Christin Peschel; Cara Kahl; Dirk Schreckenberg; Markus Meis

    2010-01-01

    In a survey of 2,312 residents living near Frankfurt Airport aircraft noise annoyance and disturbances as well as environmental (EQoL) and health-related quality of life (HQoL) were assessed and compared with data on exposure due to aircraft, road traffic, and railway noise. Results indicate higher noise annoyance than predicted from general exposure-response curves. Beside aircraft sound levels source-related attitudes were associated with reactions to aircraft noise. Furthermore, aircraft n...

  8. Investigation of aircraft vortex wake structure

    Science.gov (United States)

    Baranov, N. A.; Turchak, L. I.

    2014-11-01

    In this work we analyze the mechanisms of formation of the vortex wake structure of aircraft with different wing shape in the plan flying close to or away from the underlying surface cleaned or released mechanization wing.

  9. Titanium in fatigue critical military aircraft structure

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, F.

    1999-07-01

    This paper discusses the effect of fatigue requirements on titanium structure in military aircraft applications, specifically, fighter aircraft. The discussion covers how fatigue affects the design and analysis of detail parts, and how manufacturing processes affect the fatigue performance of titanium structure. Criteria for designing fighter aircraft have evolved from simple strength calculations to extremely complex computer generated analyses involving strength, durability, damage tolerance and fatigue. Fatigue life prediction is an important part of these analyses and dramatically affects the design and weight of fighter aircraft. Manufacturing processes affect fatigue performance both in a positive and negative manner. Designers must allow for the effect of these processes on titanium structure and consider the efficiency and economy of adding processes that increase fatigue life.

  10. Aircraft Test & Evaluation Facility (Hush House)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Test and Evaluation Facility (ATEF), or Hush House, is a noise-abated ground test sub-facility. The facility's controlled environment provides 24-hour...

  11. Emerging nondestructive inspection methods for aging aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, A; Dahlke, L; Gieske, J [and others

    1994-01-01

    This report identifies and describes emerging nondestructive inspection (NDI) methods that can potentially be used to inspect commercial transport and commuter aircraft for structural damage. The nine categories of emerging NDI techniques are: acoustic emission, x-ray computed tomography, backscatter radiation, reverse geometry x-ray, advanced electromagnetics, including magnetooptic imaging and advanced eddy current techniques, coherent optics, advanced ultrasonics, advanced visual, and infrared thermography. The physical principles, generalized performance characteristics, and typical applications associated with each method are described. In addition, aircraft inspection applications are discussed along with the associated technical considerations. Finally, the status of each technique is presented, with a discussion on when it may be available for use in actual aircraft maintenance programs. It should be noted that this is a companion document to DOT/FAA/CT-91/5, Current Nondestructive Inspection Methods for Aging Aircraft.

  12. Thermal Management System for Superconducting Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft powered by hydrogen power plants or gas turbines driving electric generators connected to distributed electric motors for propulsion have the potential to...

  13. Aircraft Nodal Data Acquisition System (ANDAS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of an Aircraft Nodal Data Acquisition System (ANDAS) is proposed. The proposed methodology employs the development of a very thin (135m) hybrid...

  14. Aircraft Nodal Data Acquisition System (ANDAS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of an Aircraft Nodal Data Acquisition System (ANDAS) based upon the short haul Zigbee networking standard is proposed. It employs a very thin (135 um)...

  15. Design of heavy lift cargo aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the bird of the skies of the future. The heavy lift cargo aircraft which is currently being developed by me has twice the payload capacity of an Antonov...

  16. Modular Electric Propulsion Test Bed Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A hybrid electric aircraft simulation system and test bed is proposed to provide a dedicated development environment for the rigorous study and advancement of hybrid...

  17. Nondestructive Evaluation of Aircraft and Spacecraft Wiring

    Science.gov (United States)

    White, John E.; Tucholski, Edward J.; Green, Robert E., Jr.

    2004-01-01

    Spacecraft, and especially aircraft, often fry well past their original design lives and, therefore, the need to develop nondestructive evaluation procedures for inspection of vital structures in these craft is extremely important. One of the more recent problems is the degradation of wiring and wiring insulation. The present paper describes several nondestructive characterization methods which afford the possibility to detect wiring and insulation degradation in-situ prior to major problems with the safety of aircraft and spacecraft.

  18. Aircraft Pitch Attitude Control using Backstepping

    OpenAIRE

    Härkegård, Ola; Glad, Torkel

    2000-01-01

    A nonlinear approach to the automatic pitch attitude control problem for a generic fighter aircraft is presented. A nonlinear model describing the longitudinal equations of motion in strict feedback form is derived. Backstepping is utilized for the construction of a globally stabilizing controller with a number of free design parameters. Two tuning schemes are proposed based on the desired locally linear controller properties. The controller is evaluated using the HIRM fighter aircraft model.

  19. An Optimization Model for Aircraft Service Logistics

    Institute of Scientific and Technical Information of China (English)

    Angus; Cheung; W; H; Ip; Angel; Lai; Eva; Cheung

    2002-01-01

    Scheduling is one of the most difficult issues in t he planning and operations of the aircraft services industry. In this paper, t he various scheduling problems in ground support operation of an aircraft mainte nance service company are addressed. The authors developed a set of vehicle rout ings to cover each schedule flights; the objectives pursued are the maximization of vehicle and manpower utilization and minimization of operation time. To obta in the goals, an integer-programming model with geneti...

  20. The Demand for Single Engine Piston Aircraft,

    Science.gov (United States)

    1987-08-01

    composites more quickly because of the absence of certi- ficatjcr: requirements. Less conventional configurations such as carar( wings and winglets are...smooth contours and surfaces. Composites offer much promise and are already in use in winos of a number of aircraft. Winglets reduce vortex drag by...Vore Aviation Corporation in Albuquerque, NM. It is a high-wing, composite , tricycle-gear aircraft designed primarily for the training and personal

  1. Integrated lift/drag controller for aircraft

    Science.gov (United States)

    Olcott, J. W.; Seckel, E.; Ellis, D. R. (Inventor)

    1974-01-01

    A system for altering the lift/drag characteristics of powered aircraft to provide a safe means of glide path control includes a control device integrated for coordination action with the aircraft throttle. Such lift/drag alteration devices as spoilers, dive brakes, and the like are actuated by manual operation of a single lever coupled with the throttle for integrating, blending or coordinating power control. Improper operation of the controller is inhibited by safety mechanisms.

  2. Aircraft Wake Vortex Deformation in Turbulent Atmosphere

    OpenAIRE

    Hennemann, Ingo; Holzaepfel, Frank

    2007-01-01

    Large-scale distortion of aircraft wake vortices appears to play a crucial role for aircraft safety during approach and landing. Vortex distortion is investigated based on large eddy simulations of wake vortex evolution in a turbulent atmosphere. A vortex identification method is developed that can be adapted to the vortex scales of interest. Based on the identified vortex center tracks, a statistics of vortex curvature radii is established. This statistics constitutes the basis for understan...

  3. Handling Qualities Evaluations of Unmanned Aircraft Systems

    Science.gov (United States)

    2015-05-04

    Control Loop – Manned Platform Ai rc ra ft Pilot Flight Computer Control Surface Deflection Aircraft Response Inertia Measurements Visual Cues Aural...dynamics, ergonomics in the control station, and the control surfaces and actuators in the air- craft. The software may contain displays, behaviors...compare with the latency of manned aircraft that exhibit imperceptible time delays, usually less than 5 millisec- onds , which is considered a minimum

  4. Noise of High Performance Aircraft at Afterburner

    Science.gov (United States)

    2016-02-10

    aircraft carrier, navy personnel work in close proximity to high performance jets at takeoffs and landings. The noise level emitted by these jets is...any major differences between the dominant noise components of these jets and those of a standard high temperature laboratory supersonic jet . It is...noise. For the F18E aircraft, we find that its noise, at high engine power settings, also includes new noise components in addition to the usual fine

  5. Estimating KC-137 Aircraft Ownership Costs in the Brazilian Air Force

    Science.gov (United States)

    1997-06-01

    stability on the international market . Utilization Rate -- since the mission profiles of the KC-137 aircraft are expected to remain the same for the near...the international market . Utilization Rate -- since the mission profiles of the KC-137 aircraft are expected to remain the same for the near future...ocontrole? 2.3 Suprimentos recebidos do Parque Custo rn6dio de todo o material que o Parque envia para a Base por ano (ou rn6s, etc.) Inclui todo tipo de

  6. Aeroelastic Tailoring of Transport Aircraft Wings: State-of-the-Art and Potential Enabling Technologies

    Science.gov (United States)

    Jutte, Christine; Stanford, Bret K.

    2014-01-01

    This paper provides a brief overview of the state-of-the-art for aeroelastic tailoring of subsonic transport aircraft and offers additional resources on related research efforts. Emphasis is placed on aircraft having straight or aft swept wings. The literature covers computational synthesis tools developed for aeroelastic tailoring and numerous design studies focused on discovering new methods for passive aeroelastic control. Several new structural and material technologies are presented as potential enablers of aeroelastic tailoring, including selectively reinforced materials, functionally graded materials, fiber tow steered composite laminates, and various nonconventional structural designs. In addition, smart materials and structures whose properties or configurations change in response to external stimuli are presented as potential active approaches to aeroelastic tailoring.

  7. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  8. Rheological behavior of composites based on carbon fibers recycled from aircraft waste

    OpenAIRE

    Marcaníková, Lucie; Hausnerová, Berenika; KITANO, Takeshi

    2009-01-01

    Rheological investigation of composite materials prepared from the recycled aircraft waste materials based on thermoset (epoxy/resin) matrix and long carbon fibers (CF) is presented with the aim of their utilization in consumer industry applications. The carbon fibers recovered via thermal process of pyrolysis were cut into about 150 pm length and melt mixed with thermoplastic matrices based on polypropylene (PP) and polyamide 6 (PA) and various modifiers - ethylene-ethyl acrylate-maleic anhy...

  9. Resin transfer molding of textile preforms for aircraft structural applications

    Science.gov (United States)

    Hasko, Gregory H.; Dexter, H. Benson; Weideman, Mark H.

    1992-01-01

    The NASA LaRC is conducting and supporting research to develop cost-effective fabrication methods that are applicable to primary composite aircraft structures. One of the most promising fabrication methods that has evolved is resin transfer molding (RTM) of dry textile material forms. RTM has been used for many years for secondary structures, but has received increased emphasis because it is an excellent method for applying resin to damage-tolerant textile preforms at low cost. Textile preforms based on processes such as weaving, braiding, knitting, stitching, and combinations of these have been shown to offer significant improvements in damage tolerance compared to laminated tape composites. The use of low-cost resins combined with textile preforms could provide a major breakthrough in achieving cost-effective composite aircraft structures. RTM uses resin in its lowest cost form, and storage and spoilage costs are minimal. Near net shape textile preforms are expected to be cost-effective because automated machines can be used to produce the preforms, post-cure operations such as machining and fastening are minimized, and material scrap rate may be reduced in comparison with traditional prepreg molding. The purpose of this paper is to discuss experimental and analytical techniques that are under development at NASA Langley to aid the engineer in developing RTM processes for airframe structural elements. Included are experimental techniques to characterize preform and resin behavior and analytical methods that were developed to predict resin flow and cure kinetics.

  10. Experimental study on mechanical properties of aircraft honeycomb sandwich structures

    Directory of Open Access Journals (Sweden)

    Talebi Mazraehshahi H.

    2010-06-01

    Full Text Available Mechanical behaviour of sandwich panels under different conditions have been exprimentally studied in this research to increase the knowledge of aircraft sandwich panel structures and facilitate design criteria for aircraft structures. Tests were concentrated on the honeycomb sandwich structures under different loads including flexural, insert shear, flat wise tension and compression loads. Furthermore, effect of core density and face material on mechanical behavior of different samples were investigated and compared with analytical and FEM method. Effects of skin thickness on strength of honycomb sandwhich panels under shear pull out and moments have also been considerd in this study. According to this investigation, insert strength and flexural test under different load conditions is strongly affected by face thickness, but compression and tearoff (falt wise tensile properties of a sandwich panel depends on core material. The study concludes that the correlation between experimental results and the analytical predictions will enable the designer to predict the mechanical behaviour and strength of a sandwich beam; however, applied formula may lead engineers to unreliable results for shear modulus.

  11. Study on utilization of advanced composites in commercial aircraft wing structures. Volume 1: Executive summary

    Science.gov (United States)

    Sakata, I. F.; Ostrom, R. B.; Cardinale, S. V.

    1978-01-01

    The effort required by commercial transport manufacturers to accomplish the transition from current construction materials and practices to extensive use of composites in aircraft wings was investigated. The engineering and manufacturing disciplines which normally participate in the design, development, and production of an aircraft were employed to ensure that all of the factors that would enter a decision to commit to production of a composite wing structure were addressed. A conceptual design of an advanced technology reduced energy aircraft provided the framework for identifying and investigating unique design aspects. A plan development effort defined the essential technology needs and formulated approaches for effecting the required wing development. The wing development program plans, resource needs, and recommendations are summarized.

  12. Modeling Programs Increase Aircraft Design Safety

    Science.gov (United States)

    2012-01-01

    Flutter may sound like a benign word when associated with a flag in a breeze, a butterfly, or seaweed in an ocean current. When used in the context of aerodynamics, however, it describes a highly dangerous, potentially deadly condition. Consider the case of the Lockheed L-188 Electra Turboprop, an airliner that first took to the skies in 1957. Two years later, an Electra plummeted to the ground en route from Houston to Dallas. Within another year, a second Electra crashed. In both cases, all crew and passengers died. Lockheed engineers were at a loss as to why the planes wings were tearing off in midair. For an answer, the company turned to NASA s Transonic Dynamics Tunnel (TDT) at Langley Research Center. At the time, the newly renovated wind tunnel offered engineers the capability of testing aeroelastic qualities in aircraft flying at transonic speeds near or just below the speed of sound. (Aeroelasticity is the interaction between aerodynamic forces and the structural dynamics of an aircraft or other structure.) Through round-the-clock testing in the TDT, NASA and industry researchers discovered the cause: flutter. Flutter occurs when aerodynamic forces acting on a wing cause it to vibrate. As the aircraft moves faster, certain conditions can cause that vibration to multiply and feed off itself, building to greater amplitudes until the flutter causes severe damage or even the destruction of the aircraft. Flutter can impact other structures as well. Famous film footage of the Tacoma Narrows Bridge in Washington in 1940 shows the main span of the bridge collapsing after strong winds generated powerful flutter forces. In the Electra s case, faulty engine mounts allowed a type of flutter known as whirl flutter, generated by the spinning propellers, to transfer to the wings, causing them to vibrate violently enough to tear off. Thanks to the NASA testing, Lockheed was able to correct the Electra s design flaws that led to the flutter conditions and return the

  13. Conceptual design of high speed supersonic aircraft: A brief review on SR-71 (Blackbird) aircraft

    Science.gov (United States)

    Xue, Hui; Khawaja, H.; Moatamedi, M.

    2014-12-01

    The paper presents the conceptual design of high-speed supersonic aircraft. The study focuses on SR-71 (Blackbird) aircraft. The input to the conceptual design is a mission profile. Mission profile is a flight profile of the aircraft defined by the customer. This paper gives the SR-71 aircraft mission profile specified by US air force. Mission profile helps in defining the attributes the aircraft such as wing profile, vertical tail configuration, propulsion system, etc. Wing profile and vertical tail configurations have direct impact on lift, drag, stability, performance and maneuverability of the aircraft. A propulsion system directly influences the performance of the aircraft. By combining the wing profile and the propulsion system, two important parameters, known as wing loading and thrust to weight ratio can be calculated. In this work, conceptual design procedure given by D. P. Raymer (AIAA Educational Series) is applied to calculate wing loading and thrust to weight ratio. The calculated values are compared against the actual values of the SR-71 aircraft. Results indicates that the values are in agreement with the trend of developments in aviation.

  14. B-52 Launch Aircraft in Flight

    Science.gov (United States)

    2001-01-01

    NASA's venerable B-52 mothership is seen here photographed from a KC-135 Tanker aircraft. The X-43 adapter is visible attached to the right wing. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and is also both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported

  15. Development and utilization of composite honeycomb and solid laminate reference standards for aircraft inspections.

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Dennis Patrick; Rackow, Kirk A.

    2004-06-01

    The FAA's Airworthiness Assurance NDI Validation Center, in conjunction with the Commercial Aircraft Composite Repair Committee, developed a set of composite reference standards to be used in NDT equipment calibration for accomplishment of damage assessment and post-repair inspection of all commercial aircraft composites. In this program, a series of NDI tests on a matrix of composite aircraft structures and prototype reference standards were completed in order to minimize the number of standards needed to carry out composite inspections on aircraft. Two tasks, related to composite laminates and non-metallic composite honeycomb configurations, were addressed. A suite of 64 honeycomb panels, representing the bounding conditions of honeycomb construction on aircraft, was inspected using a wide array of NDI techniques. An analysis of the resulting data determined the variables that play a key role in setting up NDT equipment. This has resulted in a set of minimum honeycomb NDI reference standards that include these key variables. A sequence of subsequent tests determined that this minimum honeycomb reference standard set is able to fully support inspections over the full range of honeycomb construction scenarios found on commercial aircraft. In the solid composite laminate arena, G11 Phenolic was identified as a good generic solid laminate reference standard material. Testing determined matches in key velocity and acoustic impedance properties, as well as, low attenuation relative to carbon laminates. Furthermore, comparisons of resonance testing response curves from the G11 Phenolic NDI reference standard was very similar to the resonance response curves measured on the existing carbon and fiberglass laminates. NDI data shows that this material should work for both pulse-echo (velocity-based) and resonance (acoustic impedance-based) inspections.

  16. Aircraft Combat Survivability Estimation and Synthetic Tradeoff Methods

    Institute of Scientific and Technical Information of China (English)

    LI Shu-lin; LI Shou-an; LI Wei-ji; LI Dong-xia; FENG Feng

    2005-01-01

    A new concept is proposed that susceptibility, vulnerability, reliability, maintainability and supportability should be essential factors of aircraft combat survivability. A weight coefficient method and a synthetic method are proposed to estimate aircraft combat survivability based on the essential factors. Considering that it takes cost to enhance aircraft combat survivability, a synthetic tradeoff model between aircraft combat survivability and life cycle cost is built. The aircraft combat survivability estimation methods and synthetic tradeoff with a life cycle cost model will be helpful for aircraft combat survivability design and enhancement.

  17. Improvements in Aircraft Gas Turbine Engines for the 90s

    Directory of Open Access Journals (Sweden)

    Arun Prasad

    1993-10-01

    Full Text Available The gas turbine propulsion system has been playing the most significant role in the evolution and development of present-day aircraft, and has become the limiting technology for developing most new aircraft. However, the jet engine still remains the preferred propulsion choice. Aircraft gas turbines in one form or the other, viz. turbojet, turbofan, turboprop or turboshaft, have been used in commercial passenger aircraft, high performance military aircraft and in rotary wing aircraft (helicopters. The emphasis in engine development programmes world over seems to be in reducing fuel consumption, increasing thrust and in reducing weight.

  18. Progress in advanced high temperature turbine materials, coatings, and technology

    Science.gov (United States)

    Freche, J. C.; Ault, G. M.

    1978-01-01

    Advanced materials, coatings, and cooling technology is assessed in terms of improved aircraft turbine engine performance. High cycle operating temperatures, lighter structural components, and adequate resistance to the various environmental factors associated with aircraft gas turbine engines are among the factors considered. Emphasis is placed on progress in development of high temperature materials for coating protection against oxidation, hot corrosion and erosion, and in turbine cooling technology. Specific topics discussed include metal matrix composites, superalloys, directionally solidified eutectics, and ceramics.

  19. Small Autonomous Aircraft Servo Health Monitoring

    Science.gov (United States)

    Quintero, Steven

    2008-01-01

    Small air vehicles offer challenging power, weight, and volume constraints when considering implementation of system health monitoring technologies. In order to develop a testbed for monitoring the health and integrity of control surface servos and linkages, the Autonomous Aircraft Servo Health Monitoring system has been designed for small Uninhabited Aerial Vehicle (UAV) platforms to detect problematic behavior from servos and the air craft structures they control, This system will serve to verify the structural integrity of an aircraft's servos and linkages and thereby, through early detection of a problematic situation, minimize the chances of an aircraft accident. Embry-Riddle Aeronautical University's rotary-winged UAV has an Airborne Power management unit that is responsible for regulating, distributing, and monitoring the power supplied to the UAV's avionics. The current sensing technology utilized by the Airborne Power Management system is also the basis for the Servo Health system. The Servo Health system measures the current draw of the servos while the servos are in Motion in order to quantify the servo health. During a preflight check, deviations from a known baseline behavior can be logged and their causes found upon closer inspection of the aircraft. The erratic behavior nay include binding as a result of dirt buildup or backlash caused by looseness in the mechanical linkages. Moreover, the Servo Health system will allow elusive problems to be identified and preventative measures taken to avoid unnecessary hazardous conditions in small autonomous aircraft.

  20. Control strategies for aircraft airframe noise reduction

    Institute of Scientific and Technical Information of China (English)

    Li Yong; Wang Xunnian; Zhang Dejiu

    2013-01-01

    With the development of low-noise aircraft engine,airframe noise now represents a major noise source during the commercial aircraft's approach to landing phase.Noise control efforts have therefore been extensively focused on the airframe noise problems in order to further reduce aircraft overall noise.In this review,various control methods explored in the last decades for noise reduction on airframe components including high-lift devices and landing gears are summarized.We introduce recent major achievements in airframe noise reduction with passive control methods such as fairings,deceleration plates,splitter plates,acoustic liners,slat cove cover and side-edge replacements,and then discuss the potential and control mechanism of some promising active flow control strategies for airframe noise reduction,such as plasma technique and air blowing/suction devices.Based on the knowledge gained throughout the extensively noise control testing,a few design concepts on the landing gear,high-lift devices and whole aircraft are provided for advanced aircraft low-noise design.Finally,discussions and suggestions are given for future research on airframe noise reduction.

  1. Dynamics and control of morphing aircraft

    Science.gov (United States)

    Seigler, Thomas Michael

    The following work is directed towards an evaluation of aircraft that undergo structural shape change for the purpose of optimized flight and maneuvering control authority. Dynamical equations are derived for a morphing aircraft based on two primary representations; a general non-rigid model and a multi-rigid-body. A simplified model is then proposed by considering the altering structural portions to be composed of a small number of mass particles. The equations are then extended to consider atmospheric flight representations where the longitudinal and lateral equations are derived. Two aspects of morphing control are considered. The first is a regulation problem in which it is desired to maintain stability in the presence of large changes in both aerodynamic and inertial properties. From a baseline aircraft model various wing planform designs were constructed using Datcom to determine the required aerodynamic contributions. Based on nonlinear numerical evaluations adequate stabilization control was demonstrated using a robust linear control design. In maneuvering, divergent characteristics were observed at high structural transition rates. The second aspect considered is the use of structural changes for improved flight performance. A variable span aircraft is then considered in which asymmetric wing extension is used to effect the rolling moment. An evaluation of the variable span aircraft is performed in the context of bank-to-turn guidance in which an input-output control law is implemented.

  2. Longitudinal dynamics of a perching aircraft concept

    Science.gov (United States)

    Wickenheiser, Adam; Garcia, Ephrahim; Waszak, Martin

    2005-05-01

    This paper introduces a morphing aircraft concept whose purpose is to demonstrate a new bio-inspired flight capability: perching. Perching is a maneuver that utilizes primarily aerodynamics -- as opposed to thrust generation -- to achieve a vertical or short landing. The flight vehicle that will accomplish this is described herein with particular emphasis on its addition levels of actuation beyond the traditional aircraft control surfaces. A computer model of the aircraft is developed in order to predict the changes in applied aerodynamic loads as it morphs and transitions through different flight regimes. The analysis of this model is outlined, including a lifting-line-based analytical technique and a trim and stability analysis. These analytical methods -- compared to panel or computational fluid dynamics (CFD) methods -- are considered desirable for the analysis of a large number of vehicle configurations and flight conditions. The longitudinal dynamics of this aircraft are studied, and several interesting results are presented. Of special interest are the changes in vehicle dynamics as the aircraft morphs from a cruise configuration to initiate the perching maneuver. Changes in trim conditions and stability are examined as functions of vehicle geometry. The time response to changes in vehicle configuration is also presented.

  3. Aircraft Crash Survival Design Guide. Volume 5. Aircraft Postcrash Survival

    Science.gov (United States)

    1989-12-01

    Expanded aluminum foil a Open pore sponge foam * Reticulated sponge foam * Rigid plastic foam * Closed pore sponge foam 82 Proximity 1 Proximity 2...of exposure. In oiler to predict performance in a fire, heat release data must be obtained over a range of heat flux levels. Most cellulosic materials

  4. Rapid Parameterization Schemes for Aircraft Shape Optimization

    Science.gov (United States)

    Li, Wu

    2012-01-01

    A rapid shape parameterization tool called PROTEUS is developed for aircraft shape optimization. This tool can be applied directly to any aircraft geometry that has been defined in PLOT3D format, with the restriction that each aircraft component must be defined by only one data block. PROTEUS has eight types of parameterization schemes: planform, wing surface, twist, body surface, body scaling, body camber line, shifting/scaling, and linear morphing. These parametric schemes can be applied to two types of components: wing-type surfaces (e.g., wing, canard, horizontal tail, vertical tail, and pylon) and body-type surfaces (e.g., fuselage, pod, and nacelle). These schemes permit the easy setup of commonly used shape modification methods, and each customized parametric scheme can be applied to the same type of component for any configuration. This paper explains the mathematics for these parametric schemes and uses two supersonic configurations to demonstrate the application of these schemes.

  5. Static aeroelastic analysis for generic configuration aircraft

    Science.gov (United States)

    Lee, IN; Miura, Hirokazu; Chargin, Mladen K.

    1987-01-01

    A static aeroelastic analysis capability that can calculate flexible air loads for generic configuration aircraft was developed. It was made possible by integrating a finite element structural analysis code (MSC/NASTRAN) and a panel code of aerodynamic analysis based on linear potential flow theory. The framework already built in MSC/NASTRAN was used and the aerodynamic influence coefficient matrix is computed externally and inserted in the NASTRAN by means of a DMAP program. It was shown that deformation and flexible airloads of an oblique wing aircraft can be calculated reliably by this code both in subsonic and supersonic speeds. Preliminary results indicating importance of flexibility in calculating air loads for this type of aircraft are presented.

  6. Aircraft System Design and Integration

    Directory of Open Access Journals (Sweden)

    D. P. Coldbeck

    2000-01-01

    Full Text Available In the 1980's the British aircraft industry changed its approach to the management of projects from a system where a project office would manage a project and rely on a series of specialist departments to support them to a more process oriented method, using systems engineering models, whose most outwardly visible signs were the introduction of multidisciplinary product teams. One of the problems with the old method was that the individual departments often had different priorities and projects would get uneven support. The change in the system was only made possible for complex designs by the electronic distribution of data giving instantaneous access to all involved in the project. In 1997 the Defence and Aerospace Foresight Panel emphasised the need for a system engineering approach if British industry was to remain competitive. The Royal Academy of Engineering recognised that the change in working practices also changed what was required of a chartered engineer and redefined their requirements in 1997 [1]. The result of this is that engineering degree courses are now judged against new criteria with more emphasis placed on the relevance to industry rather than on purely academic content. At the University of Glasgow it was realized that the students ought to be made aware of current working practices and that there ought to be a review to ensure that the degrees give students the skills required by industry. It was decided to produce a one week introduction course in systems engineering for Masters of Engineering (MEng students to be taught by both university lecturers and practitioners from a range of companies in the aerospace industry with the hope of expanding the course into a module. The reaction of the students was favourable in terms of the content but it seems ironic that the main criticism was that there was not enough discussion involving the students. This paper briefly describes the individual teaching modules and discusses the

  7. View of QF-106 aircraft cockpit

    Science.gov (United States)

    1997-01-01

    View of the cockpit and instrument panel of the QF-106 airplane used in the Eclipse project. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  8. A Turbo-Brayton Cryocooler for Aircraft Superconducting Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hybrid turbo-electric aircraft with gas turbines driving electric generators connected to electric propulsion motors have the potential to transform the aircraft...

  9. Aircraft detection based on probability model of structural elements

    Science.gov (United States)

    Chen, Long; Jiang, Zhiguo

    2014-11-01

    Detecting aircrafts is important in the field of remote sensing. In past decades, researchers used various approaches to detect aircrafts based on classifiers for overall aircrafts. However, with the development of high-resolution images, the internal structures of aircrafts should also be taken into consideration now. To address this issue, a novel aircrafts detection method for satellite images based on probabilistic topic model is presented. We model aircrafts as the connected structural elements rather than features. The proposed method contains two major steps: 1) Use Cascade-Adaboost classier to identify the structural elements of aircraft firstly. 2) Connect these structural elements to aircrafts, where the relationships between elements are estimated by hierarchical topic model. The model places strict spatial constraints on structural elements which can identify differences between similar features. The experimental results demonstrate the effectiveness of the approach.

  10. Distributed Data Mining for Aircraft Health Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft Flight Operations Quality Assurance (FOQA) programs are implemented by most of the aircraft operators. Vast amounts of FOQA data are distributed between...

  11. Cosmic Radiation - An Aircraft Manufacturer's View

    Energy Technology Data Exchange (ETDEWEB)

    Hume, C

    1999-07-01

    The relevance and context of cosmic radiation to an aircraft maker Airbus Industrie are outlined. Some future developments in aircraft and air traffic are described, along with their possible consequences for exposure. (author)

  12. Distributed Data Mining for Aircraft Health Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA, DoD, and commercial aircraft operators need to transform vast amounts of aircraft data accumulated in distributed databases into actionable knowledge. We...

  13. Fault Tolerance, Diagnostics, and Prognostics in Aircraft Flight

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract In modern fighter aircraft with statically unstable airframe designs, the flight control system is considered flight critical, i.e. the aircraft will...

  14. Practical Voice Recognition for the Aircraft Cockpit Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal responds to the urgent need for improved pilot interfaces in the modern aircraft cockpit. Recent advances in aircraft equipment bring tremendous...

  15. High performance forward swept wing aircraft

    Science.gov (United States)

    Koenig, David G. (Inventor); Aoyagi, Kiyoshi (Inventor); Dudley, Michael R. (Inventor); Schmidt, Susan B. (Inventor)

    1988-01-01

    A high performance aircraft capable of subsonic, transonic and supersonic speeds employs a forward swept wing planform and at least one first and second solution ejector located on the inboard section of the wing. A high degree of flow control on the inboard sections of the wing is achieved along with improved maneuverability and control of pitch, roll and yaw. Lift loss is delayed to higher angles of attack than in conventional aircraft. In one embodiment the ejectors may be advantageously positioned spanwise on the wing while the ductwork is kept to a minimum.

  16. A computer application for parametric aircraft design

    Science.gov (United States)

    Fraqueiro, Filipe R.; Albuquerque, Pedro F.; Gamboa, Pedro V.

    2016-11-01

    The present work describes the development and final result of a graphical user interface tailored for a mission-based parametric aircraft design optimization code which targets the preliminary design phase of unmanned aerial vehicles. This development was built from the XFLR5 open source platform and further benefits from two-dimensional aerodynamic data obtained from XFOIL. For a better understanding, the most important graphical windows are shown. In order to demonstrate the graphical user interface interaction with the aircraft designer, the results of a case study which maximizes payload are presented.

  17. Titanium alloys Russian aircraft and aerospace applications

    CERN Document Server

    Moiseyev, Valentin N

    2005-01-01

    This text offers previously elusive information on state-of-the-art Russian metallurgic technology of titanium alloys. It details their physical, mechanical, and technological properties, as well as treatments and applications in various branches of modern industry, particularly aircraft and aerospace construction. Titanium Alloys: Russian Aircraft and Aerospace Applications addresses all facets of titanium alloys in aerospace and aviation technology, including specific applications, fundamentals, composition, and properties of commercial alloys. It is useful for all students and researchers interested in the investigation and applications of titanium.

  18. Small unmanned aircraft ballistic impact speed

    DEFF Research Database (Denmark)

    La Cour-Harbo, Anders

    2018-01-01

    A study of how smaller unmanned aircraft will fall in case of failure. The aim is to determine the impact speed of a drone givens its general shape and aerodynamic behavior. This will include both CFD simulations and real world test of ballistic drops of smaller drones.......A study of how smaller unmanned aircraft will fall in case of failure. The aim is to determine the impact speed of a drone givens its general shape and aerodynamic behavior. This will include both CFD simulations and real world test of ballistic drops of smaller drones....

  19. High-Speed Propeller for Aircraft

    Science.gov (United States)

    Sagerser, D. A.; Gatzen, B. S.

    1986-01-01

    Engine efficiency increased. Propeller blades required to be quite thin and highly swept to minimize compressibility losses and propeller noise during high-speed cruise. Use of 8 or 10 blades with highpropeller-power loading allows overall propeller diameter to be kept relatively small. Area-ruled spinner and integrated nacelle shape reduce compressibility losses in propeller hub region. Finally, large modern turboshaft engine and gearbox provide power to advanced propeller. Fuel savings of 30 to 50 percent over present systems anticipated. Propfan system adaptable to number of applications, such as highspeed (subsonic) business and general-aviation aircraft, and military aircraft including V/STOL.

  20. A strategic planning methodology for aircraft redesign

    Science.gov (United States)

    Romli, Fairuz Izzuddin

    Due to a progressive market shift to a customer-driven environment, the influence of engineering changes on the product's market success is becoming more prominent. This situation affects many long lead-time product industries including aircraft manufacturing. Derivative development has been the key strategy for many aircraft manufacturers to survive the competitive market and this trend is expected to continue in the future. Within this environment of design adaptation and variation, the main market advantages are often gained by the fastest aircraft manufacturers to develop and produce their range of market offerings without any costly mistakes. This realization creates an emphasis on the efficiency of the redesign process, particularly on the handling of engineering changes. However, most activities involved in the redesign process are supported either inefficiently or not at all by the current design methods and tools, primarily because they have been mostly developed to improve original product development. In view of this, the main goal of this research is to propose an aircraft redesign methodology that will act as a decision-making aid for aircraft designers in the change implementation planning of derivative developments. The proposed method, known as Strategic Planning of Engineering Changes (SPEC), combines the key elements of the product redesign planning and change management processes. Its application is aimed at reducing the redesign risks of derivative aircraft development, improving the detection of possible change effects propagation, increasing the efficiency of the change implementation planning and also reducing the costs and the time delays due to the redesign process. To address these challenges, four research areas have been identified: baseline assessment, change propagation prediction, change impact analysis and change implementation planning. Based on the established requirements for the redesign planning process, several methods and

  1. Serial Escape System For Aircraft Crews

    Science.gov (United States)

    Wood, Kenneth E.

    1990-01-01

    Emergency escape system for aircraft and aerospace vehicles ejects up to seven crewmembers, one by one, within 120 s. Intended for emergencies in which disabled craft still in stable flight at no more than 220 kn (113 m/s) equivalent airspeed and sinking no faster than 110 ft/s (33.5 m/s) at altitudes up to 50,000 ft (15.2 km). Ejection rockets load themselves from magazine after each crewmember ejected. Jumpmaster queues other crewmembers and helps them position themselves on egress ramp. Rockets pull crewmembers clear of aircraft structure. Provides orderly, controlled exit and avoids ditching at sea or landing in rough terrain.

  2. Aircraft Scheduled Airframe Maintenance and Downtime Integrated Cost Model

    Directory of Open Access Journals (Sweden)

    Remzi Saltoğlu

    2016-01-01

    Full Text Available Aviation industry has grown rapidly since the first scheduled commercial aviation started one hundred years ago. There is a fast growth in the number of passengers, routes, and frequencies, with high revenues and low margins, which make this industry one of the most challenging businesses in the world. Every operator aims to undertake the minimum operating cost and gain profit as much as possible. One of the significant elements of operator’s operating cost is the maintenance cost. During maintenance scheduling, operator calculates the maintenance cost that it needs to budget. Previous works show that this calculation includes only costs that are directly related to the maintenance process such as cost of labor, material, and equipment. In some cases, overhead cost is also included. Some of previous works also discuss the existence of another cost throughout aircraft downtime, which is defined as cost of revenue loss. Nevertheless, there is not any standard model that shows how to define and calculate downtime cost. For that reason, the purpose of this paper is to introduce a new model and analysis technique that can be used to calculate aircraft downtime cost due to maintenance.

  3. Method Evaluating the Durability of Aircraft Piston Engines

    Directory of Open Access Journals (Sweden)

    Luca PIANCASTELLI

    2012-12-01

    Full Text Available A significant issue in aircraft engines is quantifying residual life to overhaul. The algorithm described in this paper calculates with a good level of reliability the residual life of a petrol piston engine. The method was tested on small, latest-generation, naturally-aspirated aircraft and racing piston engines, and has been effective in several experiments. This method is implemented directly on the electronic control system of the engine with very few lines of C-code. The method can also be used in many industrial engines. This innovative method assumes that only two main factors (power level and wear affect engine durability or time between overhauls. These two factors are considered as separate and combined with worst case criteria. The wear is assumed to follow a logarithmic law and a formula similar to the Miner’s law for material fatigue is used, making it possible to calculate the power-level curve with knowledge of only two points. The wear-curve is also related to elapsed engine cycles. The algorithm is very simple and can be implemented with just a few lines of software code accessing data collected from existing sensors. The system is currently used to evaluate actual residual life of racing engines.

  4. Conversion of the dual training aircraft (DC into single control advanced training aircraft (SC. Part I

    Directory of Open Access Journals (Sweden)

    Ioan ŞTEFĂNESCU

    2011-03-01

    Full Text Available Converting the DC school jet aircraft into SC advanced training aircraft - and use them forthe combat training of military pilots from the operational units, has become a necessity due to thebudget cuts for Air Force, with direct implications on reducing the number of hours of flight assignedto operating personnel for preparing and training.The purpose of adopting such a program is to reduce the number of flight hours allocated annuallyfor preparing and training in advanced stages of instruction, for every pilot, by more intensive use ofthis type of aircraft, which has the advantage of lower flight hour costs as compared to a supersoniccombat plane.

  5. Flight Control Design for a Tailless Aircraft Using Eigenstructure Assignment

    OpenAIRE

    Clara Nieto-Wire; Kenneth Sobel

    2011-01-01

    We apply eigenstructure assignment to the design of a flight control system for a wind tunnel model of a tailless aircraft. The aircraft, known as the innovative control effectors (ICEs) aircraft, has unconventional control surfaces plus pitch and yaw thrust vectoring. We linearize the aircraft in straight and level flight at an altitude of 15,000 feet and Mach number 0.4. Then, we separately design flight control systems for the longitudinal and lateral dynamics. We use a control allocation ...

  6. F-35 Joint Strike Fighter Aircraft (F-35)

    Science.gov (United States)

    2015-12-01

    Joint Strike Fighter Aircraft (F-35) Program will develop and field an affordable, highly common family of next- generation strike aircraft for the...the O&S account, with U.S. Services’ changes in aircraft life expectancy and bed down plans overshadowing real reductions in O&S costs. Business ...aircraft subprogram and engine subprogram (Navy). (Estimating) -44.4 -46.2 Revised estimate for Small Business Innovation Research in FY 2015 (Navy

  7. FOREWORD: Materials metrology Materials metrology

    Science.gov (United States)

    Bennett, Seton; Valdés, Joaquin

    2010-04-01

    It seems that so much of modern life is defined by the materials we use. From aircraft to architecture, from cars to communications, from microelectronics to medicine, the development of new materials and the innovative application of existing ones have underpinned the technological advances that have transformed the way we live, work and play. Recognizing the need for a sound technical basis for drafting codes of practice and specifications for advanced materials, the governments of countries of the Economic Summit (G7) and the European Commission signed a Memorandum of Understanding in 1982 to establish the Versailles Project on Advanced Materials and Standards (VAMAS). This project supports international trade by enabling scientific collaboration as a precursor to the drafting of standards. The VAMAS participants recognized the importance of agreeing a reliable, universally accepted basis for the traceability of the measurements on which standards depend for their preparation and implementation. Seeing the need to involve the wider metrology community, VAMAS approached the Comité International des Poids et Mesures (CIPM). Following discussions with NMI Directors and a workshop at the BIPM in February 2005, the CIPM decided to establish an ad hoc Working Group on the metrology applicable to the measurement of material properties. The Working Group presented its conclusions to the CIPM in October 2007 and published its final report in 2008, leading to the signature of a Memorandum of Understanding between VAMAS and the BIPM. This MoU recognizes the work that is already going on in VAMAS as well as in the Consultative Committees of the CIPM and establishes a framework for an ongoing dialogue on issues of materials metrology. The question of what is meant by traceability in the metrology of the properties of materials is particularly vexed when the measurement results depend on a specified procedure. In these cases, confidence in results requires not only traceable

  8. Analytical study of interior noise control by fuselage design techniques on high-speed, propeller-driven aircraft

    Science.gov (United States)

    Revell, J. D.; Balena, F. J.; Koval, L. R.

    1980-01-01

    The acoustical treatment mass penalties required to achieve an interior noise level of 80 dBA for high speed, fuel efficient propfan-powered aircraft are determined. The prediction method used is based on theory developed for the outer shell dynamics, and a modified approach for add-on noise control element performance. The present synthesis of these methods is supported by experimental data. Three different sized aircraft are studied, including a widebody, a narrowbody and a business sized aircraft. Noise control penalties are calculated for each aircraft for two kinds of noise control designs: add-on designs, where the outer wall structure cannot be changed, and advanced designs where the outer wall stiffness level and the materials usage can be altered. For the add-on designs, the mass penalties range from 1.7 to 2.4 percent of the takeoff gross weight (TOGW) of the various aircraft, similar to preliminary estimates. Results for advanced designs show significant reductions of the mass penalties. For the advanced aluminum designs the penalties are 1.5% of TOGW, and for an all composite aircraft the penalties range from 0.74 to 1.4% of TOGW.

  9. 76 FR 45011 - Control of Air Pollution From Aircraft and Aircraft Engines; Proposed Emission Standards and Test...

    Science.gov (United States)

    2011-07-27

    ... procedures. EPA actively participated in the United Nation's International Civil Aviation Organization (ICAO... Regulation of Aircraft Engine Emissions E. Brief History of ICAO Regulation of Aircraft Engine Emissions II... under consideration by the United Nation's International Civil Aviation Organization (ICAO)....

  10. Navy’s Advanced Aircraft Armament System Program Concept Objectives

    Science.gov (United States)

    1983-10-01

    growth. For the ground crew, the task complexity growth is even greater and the effects appear in downed aircraft and lower aircraft availabilty . To...aircraft or coaaercial usage . Many suppliers and high annual deaand rate - ; unliaitad opportunity coapetition. 12-15 Table 4 STANDARDIZATION

  11. Development and experimental characterization of a fuel cell powered aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Thomas H.; Moffitt, Blake A.; Mavris, Dimitri N.; Parekh, David E. [Georgia Institute of Technology, Atlanta, GA 30332-0405 (United States)

    2007-09-27

    This paper describes the characteristics and performance of a fuel cell powered unmanned aircraft. The aircraft is novel as it is the largest compressed hydrogen fuel cell powered airplane built to date and is currently the only fuel cell aircraft whose design and test results are in the public domain. The aircraft features a 500 W polymer electrolyte membrane fuel cell with full balance of plant and compressed hydrogen storage incorporated into a custom airframe. Details regarding the design requirements, implementation and control of the aircraft are presented for each major aircraft system. The performances of the aircraft and powerplant are analyzed using data from flights and laboratory tests. The efficiency and component power consumption of the fuel cell propulsion system are measured at a variety of flight conditions. The performance of the aircraft powerplant is compared to other 0.5-1 kW-scale fuel cell powerplants in the literature and means of performance improvement for this aircraft are proposed. This work represents one of the first studies of fuel cell powered aircraft to result in a demonstration aircraft. As such, the results of this study are of practical interest to fuel cell powerplant and aircraft designers. (author)

  12. Northwest to Accelerate Retirement of Dc10 Aircraft

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Northwest Airlines announced that it will accelerate the retirement of its remaining 12DC10-30 aircraft in service. The airline said that during the next seven months,it will replace DC10 aircraft with new Airbus A330s and Boeing 747-400aircraft being returned to service.Currently, seven routes are served with the DC10.

  13. ASDAR (aircraft to satellite data relay) flight test report

    Science.gov (United States)

    Domino, E. J.; Lovell, R. R.; Conroy, M. J.; Culp, D. H.

    1977-01-01

    The aircraft to Satellite Data Relay (ASDAR), an airborne data collection system that gathers meteorological data from existing aircraft instrumentation and relays it to ground user via a geo-synchronous meteorological satellite, is described and the results of the first test flight on a commercial Boeing 747 aircraft are presented. The flight test was successful and verified system performance in the anticipated environment.

  14. 14 CFR 45.31 - Marking of export aircraft.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Marking of export aircraft. 45.31 Section 45.31 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT IDENTIFICATION AND REGISTRATION MARKING Nationality and Registration Marks § 45.31 Marking of export aircraft....

  15. Licencing and Training Reform in the Australian Aircraft Maintenance Industry

    Science.gov (United States)

    Hampson, Ian; Fraser, Doug

    2016-01-01

    The training and licencing of aircraft maintenance engineers fulfils a crucial protective function since it is they who perform and supervise aircraft maintenance and certify that planes are safe afterwards. In Australia, prior to training reform, a trades-based system of aircraft maintenance engineer training existed in an orderly relation with…

  16. 75 FR 70074 - Consensus Standards, Light-Sport Aircraft

    Science.gov (United States)

    2010-11-16

    ... Federal Aviation Administration Consensus Standards, Light-Sport Aircraft AGENCY: Federal Aviation... provisions of the Sport Pilot and Light-Sport Aircraft rule issued July 16, 2004, and effective September 1, 2004. ASTM International Committee F37 on Light Sport Aircraft developed the revised standards...

  17. 76 FR 45647 - Consensus Standards, Light-Sport Aircraft

    Science.gov (United States)

    2011-07-29

    ... Federal Aviation Administration Consensus Standards, Light-Sport Aircraft AGENCY: Federal Aviation... to the provisions of the Sport Pilot and Light-Sport Aircraft rule issued July 16, 2004, and effective September 1, 2004. ASTM International Committee F37 on Light Sport Aircraft developed the...

  18. 14 CFR 135.145 - Aircraft proving and validation tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft proving and validation tests. 135... Aircraft and Equipment § 135.145 Aircraft proving and validation tests. (a) No certificate holder may... safely and in compliance with applicable regulatory standards. Validation tests are required for...

  19. Smart Sensor System for NDE or Corrosion in Aging Aircraft

    Science.gov (United States)

    Bar-Cohen, Y.; Marzwell, N.; Osegueda, R.; Ferregut, C.

    1998-01-01

    The extension of the operation life of military and civilian aircraft rather than replacing them with new ones is increasing the probability of aircraft component failure as a result of aging. Aircraft that already have endured a long srvice life of more than 40 years are now being considered for another 40 years of service.

  20. 14 CFR 21.128 - Tests: aircraft engines.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tests: aircraft engines. 21.128 Section 21.128 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... engines. (a) Each person manufacturing aircraft engines under a type certificate only shall subject...

  1. 78 FR 7642 - Airworthiness Directives; Piper Aircraft, Inc.

    Science.gov (United States)

    2013-02-04

    ...-020-AD; Amendment 39-17334; AD 2013-02-13] RIN 2120-AA64 Airworthiness Directives; Piper Aircraft, Inc... airworthiness directive (AD) for certain Piper Aircraft, Inc. (type certificate previously held by The New Piper... information identified in this AD, contact Piper Aircraft, Inc., 2926 Piper Drive, Vero Beach, Florida...

  2. 77 FR 31169 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Science.gov (United States)

    2012-05-25

    ...-002-AD; Amendment 39-17058; AD 2012-10-09] RIN 2120-AA64 Airworthiness Directives; Piper Aircraft, Inc... superseding an existing airworthiness directive (AD) for certain Piper Aircraft, Inc. (type certificate previously held by The New Piper Aircraft Inc.) Models PA-31T and PA-31T1 airplanes. That AD...

  3. 78 FR 26556 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Science.gov (United States)

    2013-05-07

    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Piper Aircraft, Inc...: This document withdraws a notice of proposed rulemaking (NPRM) that would have applied to all Piper Aircraft, Inc. (type certificate previously held by The New Piper Aircraft Inc.) Models PA-18 and...

  4. 78 FR 41277 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Science.gov (United States)

    2013-07-10

    ...-018-AD; Amendment 39-17489; AD 2013-13-01] RIN 2120-AA64 Airworthiness Directives; Piper Aircraft, Inc.... SUMMARY: We are adopting a new airworthiness directive (AD) for certain Piper Aircraft, Inc. Models PA-46... information identified in this AD, contact Piper Aircraft, Inc., 2926 Piper Drive, Vero Beach, FL...

  5. 78 FR 35110 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Science.gov (United States)

    2013-06-12

    ...-001-AD; Amendment 39-17457; AD 2013-10-04] RIN 2120-AA64 Airworthiness Directives; Piper Aircraft, Inc... superseding an existing airworthiness directive (AD) for all Piper Aircraft, Inc. Models PA-31, PA-31-325, and.... ADDRESSES: For service information identified in this AD, contact Piper Aircraft, Inc., 2926 Piper...

  6. Studying Impact Damage on Carbon-Fiber Reinforced Aircraft Composite Panels with Sonicir

    Science.gov (United States)

    Han, Xiaoyan; Zhao, Xinyue; Zhang, Ding; He, Qi; Song, Yuyang; Lubowicki, Anthony; Newaz, Golam.; Favro, Lawrence D.; Thomas, Robert L.

    2011-06-01

    Composites are becoming more important materials in commercial aircraft structures such as the fuselage and wings with the new B787 Dreamliner from Boeing which has the target to utilize 50% by weight of composite materials. Carbon-fiber reinforced composites are the material of choice in aircraft structures. This is due to their light weight and high strength (high strength-to-weight ratio), high specific stiffness, tailorability of properties, design flexibility etc. Especially, by reducing the aircraft's body weight by using such lighter structures, the cost of fuel can be greatly reduced with the high jet fuel price for commercial airlines. However, these composites are prone to impact damage and the damage may occur without any observable sign on the surface, yet resulting in delaminations and disbonds that may occur well within the layers. We are studying the impact problem with carbon-fiber reinforced composite panels and developing SonicIR for this application as a fast and wide-area NDE technology. In this paper, we present our results in studying composite structures including carbon-fiber reinforced composite materials, and preliminary quantitative studies on delamination type defect depth identification in the panels.

  7. Open Circuit Resonant (SansEC) Sensor for Composite Damage Detection and Diagnosis in Aircraft Lightning Environments

    Science.gov (United States)

    Wang, Chuantong; Dudley, Kenneth L.; Szatkowski, George N.

    2012-01-01

    Composite materials are increasingly used in modern aircraft for reducing weight, improving fuel efficiency, and enhancing the overall design, performance, and manufacturability of airborne vehicles. Materials such as fiberglass reinforced composites (FRC) and carbon-fiber-reinforced polymers (CFRP) are being used to great advantage in airframes, wings, engine nacelles, turbine blades, fairings, fuselage and empennage structures, control surfaces and coverings. However, the potential damage from the direct and indirect effects of lightning strikes is of increased concern to aircraft designers and operators. When a lightning strike occurs, the points of attachment and detachment on the aircraft surface must be found by visual inspection, and then assessed for damage by maintenance personnel to ensure continued safe flight operations. In this paper, a new method and system for aircraft in-situ damage detection and diagnosis are presented. The method and system are based on open circuit (SansEC) sensor technology developed at NASA Langley Research Center. SansEC (Sans Electric Connection) sensor technology is a new technical framework for designing, powering, and interrogating sensors to detect damage in composite materials. Damage in composite material is generally associated with a localized change in material permittivity and/or conductivity. These changes are sensed using SansEC. Unique electrical signatures are used for damage detection and diagnosis. NASA LaRC has both experimentally and theoretically demonstrated that SansEC sensors can be effectively used for in-situ composite damage detection.

  8. Emergency Landing Planning for Damaged Aircraft

    Science.gov (United States)

    Meuleau, Nicolas; Plaunt, Christian John; Smith, David E.

    2008-01-01

    Considerable progress has been made over the last 15 years on building adaptive control systems to assist pilots in flying damaged aircraft. Once a pilot has regained control of a damaged aircraft, the next problem is to determine the best site for an emergency landing. In general, the decision depends on many factors including the actual control envelope of the aircraft, distance to the site, weather en route, characteristics of the approach path, characteristics of the runway or landing site, and emergency facilities at the site. All of these influence the risk to the aircraft, to the passengers and crew, and to people and property on the ground. We describe an ongoing project to build and demonstrate an emergency landing planner that takes these various factors into consideration and proposes possible routes and landing sites to the pilot, ordering them according to estimated risk. We give an overview of the system architecture and input data, describe our preliminary modeling of risk, and describe how we search the space of landing sites and routes.

  9. Recognition of aircraft using HRR features

    NARCIS (Netherlands)

    Kossen, A.S.

    2008-01-01

    Automated target recognition (ATR) based on high resolution radar (HRR) features can be used to increase the confidence in aircraft class. Standard radar systems are not designed for performing classification and uses additional identification systems. It is shown that with the use of features the a

  10. Congestion Pricing for Aircraft Pushback Slot Allocation.

    Science.gov (United States)

    Liu, Lihua; Zhang, Yaping; Liu, Lan; Xing, Zhiwei

    2017-01-01

    In order to optimize aircraft pushback management during rush hour, aircraft pushback slot allocation based on congestion pricing is explored while considering monetary compensation based on the quality of the surface operations. First, the concept of the "external cost of surface congestion" is proposed, and a quantitative study on the external cost is performed. Then, an aircraft pushback slot allocation model for minimizing the total surface cost is established. An improved discrete differential evolution algorithm is also designed. Finally, a simulation is performed on Xinzheng International Airport using the proposed model. By comparing the pushback slot control strategy based on congestion pricing with other strategies, the advantages of the proposed model and algorithm are highlighted. In addition to reducing delays and optimizing the delay distribution, the model and algorithm are better suited for use for actual aircraft pushback management during rush hour. Further, it is also observed they do not result in significant increases in the surface cost. These results confirm the effectiveness and suitability of the proposed model and algorithm.

  11. Aircraft Infrared Principles, Signatures, Threats, and Countermeasures

    Science.gov (United States)

    2012-09-26

    aircraft stabilizes at the ambient air temperature plus aerodynamic heating. Aero heating increases as the square of Mach number. The formula below gives...pattern of transparent and opaque segments on the reticle impresses a modulation on the radiation by acting as a kind of shutter . A reticle can be

  12. 36 CFR 327.4 - Aircraft.

    Science.gov (United States)

    2010-07-01

    ... used in emergency rescue in accordance with the directions of the District Commander or aircraft forced... Aeronautical Agency, or the Federal Aviation Administration, including, but not limited to, regulations and... emergencies threatening human life or serious property loss, the air delivery or retrieval of any...

  13. Some Microphysical Processes Affecting Aircraft Icing.

    Science.gov (United States)

    1985-05-08

    1978) Messung , Darstellung, and Auswertung meteorologischer Vereisungs parameter, Berich te Fuiden Geophysicalischern Beratungdienst der Bundeswehr...de-icing of the Hot Rod. The aircraft experienced light to moderate rime icing until its slight descent at 09:03. It then continued to experience ...1978) Messung . Darstellung, and Auswertung meteorologischer Vereisungs parameter, Benich te Fuiden Geophysicalischern Beratungydienst der Bundeswehr

  14. Electromagnetic-Repulsion Systems For Deicing Aircraft

    Science.gov (United States)

    Smith, Samuel O.; Zieve, Peter

    1994-01-01

    Improved eddy-current electromagnetic-repulsion deicing systems developed for use on variety of exterior aircraft surfaces like leading edges of wings, engine inlets, propellers, and helicopter rotors. Fit to exterior surfaces, as retrofits or original equipment. Systems light in weight, consume little average power, and capable of protecting against severe icing conditions.

  15. Perspectives of civil aircraft avionics development

    Directory of Open Access Journals (Sweden)

    А. В. Наумов

    1999-05-01

    Full Text Available Considered are main directions for civil avionics development. General requirements for airborne equipment functions. Analysis of airborne avionics selection per architecture and economical effectiveness in made. Proposed is the necessity of new approach to integrated avionics complex design, first of all, on basis of mathematical method for aircraft equipment and technical characteristics definition

  16. Aircraft Environmental Systems Mechanic. Part 1.

    Science.gov (United States)

    Chanute AFB Technical Training Center, IL.

    This packet contains learning modules for a self-paced course in aircraft environmental systems mechanics that was developed for the Air Force. Each learning module consists of some or all of the following: objectives, instructions, equipment, procedures, information sheets, handouts, self-tests with answers, review section, tests, and response…

  17. Automation tools for flexible aircraft maintenance.

    Energy Technology Data Exchange (ETDEWEB)

    Prentice, William J.; Drotning, William D.; Watterberg, Peter A.; Loucks, Clifford S.; Kozlowski, David M.

    2003-11-01

    This report summarizes the accomplishments of the Laboratory Directed Research and Development (LDRD) project 26546 at Sandia, during the period FY01 through FY03. The project team visited four DoD depots that support extensive aircraft maintenance in order to understand critical needs for automation, and to identify maintenance processes for potential automation or integration opportunities. From the visits, the team identified technology needs and application issues, as well as non-technical drivers that influence the application of automation in depot maintenance of aircraft. Software tools for automation facility design analysis were developed, improved, extended, and integrated to encompass greater breadth for eventual application as a generalized design tool. The design tools for automated path planning and path generation have been enhanced to incorporate those complex robot systems with redundant joint configurations, which are likely candidate designs for a complex aircraft maintenance facility. A prototype force-controlled actively compliant end-effector was designed and developed based on a parallel kinematic mechanism design. This device was developed for demonstration of surface finishing, one of many in-contact operations performed during aircraft maintenance. This end-effector tool was positioned along the workpiece by a robot manipulator, programmed for operation by the automated planning tools integrated for this project. Together, the hardware and software tools demonstrate many of the technologies required for flexible automation in a maintenance facility.

  18. Incident response monitoring technologies for aircraft cabin

    NARCIS (Netherlands)

    Havermans, J.B.G.A.; Houtzager, M.M.G.; Jacobs, P.

    2015-01-01

    The Netherlands Organization for Applied Scientific Research (TNO) was granted by ASHRAE (1306-RP) to conduct scientfic review and feasibility analysis of technologies and methods for measuring aircraft power system contaminants in the cabin air during unanticipated adverse incidents. In particular,

  19. Using Synthetic Kerosene in Civil Jet Aircraft

    NARCIS (Netherlands)

    Snijders, T.A.; Melkert, J.A.

    2008-01-01

    TU Delft in the Netherlands is performing research into the effects of the use of synthetic kerosene in aircraft. The research program consists of both desk research and tests. In the desk research gas turbine simulations will be combined with payload range performance calculations to show engine ef

  20. Aircraft Survivability: Susceptibility Reduction, Summer 2006

    Science.gov (United States)

    2006-01-01

    Next Frontier (Dr. Joel D. Williamsen and Dr. Jeffery R. Calcaterra) u The Modeling & Simulation Information Analysis Center (Mr. Phil L. Abold) u...Aircraft Safe from MANPADS (Ms. Linda Lou Crosby ) u Fragment-Target Flash Experiments for the Validation of the Fire Protection Model (FPM) (Dr. R. Reed

  1. A Critique of Aircraft Airframe Cost Models.

    Science.gov (United States)

    1977-09-01

    rframes Aircraft Cost Analysis 2C *3Si PACT [’Cor.rinu* an r+vrmm »lam ti omc +mmmfy mr.J tffonUtf t>f Met.* riutnfcor) see reverse side...numbers, however, the ASD Cost Escalation Re- ft port 110-C would give a factor of 1.44.) 6 Historiaal and Forecasted Aeronautical Cost Indices

  2. Nonlinear dynamics of a vectored thrust aircraft

    DEFF Research Database (Denmark)

    Sørensen, C.B; Mosekilde, Erik

    1996-01-01

    With realistic relations for the aerodynamic coefficients, numerical simulations are applied to study the longitudional dynamics of a thrust vectored aircraft. As function of the thrust magnitude and the thrust vectoring angle the equilibrium state exhibits two saddle-node bifurcations and three ...

  3. Stratospheric aircraft: Impact on the stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, H.

    1992-02-01

    The steady-state distribution of natural stratospheric ozone is primarily maintained through production by ultraviolet photolysis of molecular oxygen, destruction by a catalytic cycle involving nitrogen oxides (NO{sub x}), and relocation by air motions within the stratosphere. Nitrogen oxides from the exhausts of a commercially viable fleet of supersonic transports would exceed the natural source of stratospheric nitrogen oxides if the t should be equipped with 1990 technology jet engines. This model-free comparison between a vital natural global ingredient and a proposed new industrial product shows that building a large fleet of passenger stratospheric aircraft poses a significant global problem. NASA and aircraft industries have recognized this problem and are studying the redesign of jet aircraft engines in order to reduce the nitrogen oxides emissions. In 1989 atmospheric models identified two other paths by which the ozone destroying effects of stratospheric aircraft might be reduced or eliminated: (1) Use relatively low supersonic Mach numbers and flight altitudes. For a given rate of nitrogen oxides injection into the stratosphere, the calculated reduction of total ozone is a strong function of altitude, and flight altitudes well below 20 kilometers give relatively low calculated ozone reductions. (2) Include heterogeneous chemistry in the two-dimensional model calculations. Necessary conditions for answering the question on the title above are to improve the quality of our understanding of the lower stratosphere and to broaden our knowledge of hetergeneous stratospheric chemistry. This article reviews recently proposed new mechanisms for heterogeneous reactions on the global stratospheric sulfate aerosols.

  4. Stratospheric aircraft: Impact on the stratosphere?

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, H.

    1992-02-01

    The steady-state distribution of natural stratospheric ozone is primarily maintained through production by ultraviolet photolysis of molecular oxygen, destruction by a catalytic cycle involving nitrogen oxides (NO{sub x}), and relocation by air motions within the stratosphere. Nitrogen oxides from the exhausts of a commercially viable fleet of supersonic transports would exceed the natural source of stratospheric nitrogen oxides if the t should be equipped with 1990 technology jet engines. This model-free comparison between a vital natural global ingredient and a proposed new industrial product shows that building a large fleet of passenger stratospheric aircraft poses a significant global problem. NASA and aircraft industries have recognized this problem and are studying the redesign of jet aircraft engines in order to reduce the nitrogen oxides emissions. In 1989 atmospheric models identified two other paths by which the ozone destroying effects of stratospheric aircraft might be reduced or eliminated: (1) Use relatively low supersonic Mach numbers and flight altitudes. For a given rate of nitrogen oxides injection into the stratosphere, the calculated reduction of total ozone is a strong function of altitude, and flight altitudes well below 20 kilometers give relatively low calculated ozone reductions. (2) Include heterogeneous chemistry in the two-dimensional model calculations. Necessary conditions for answering the question on the title above are to improve the quality of our understanding of the lower stratosphere and to broaden our knowledge of hetergeneous stratospheric chemistry. This article reviews recently proposed new mechanisms for heterogeneous reactions on the global stratospheric sulfate aerosols.

  5. Developing aircraft photonic networks for airplane systems

    DEFF Research Database (Denmark)

    White, Henry J.; Brownjohn, Nick; Baptista, João;

    2013-01-01

    Achieving affordable high speed fiber optic communication networks for airplane systems has proved to be challenging. In this paper we describe a summary of the EU Framework 7 project DAPHNE (Developing Aircraft Photonic Networks). DAPHNE aimed to exploit photonic technology from terrestrial comm...

  6. Direct effects of lightning on an aircraft during intentional penetrations of thunderstorms. [T-28 aircraft

    Science.gov (United States)

    Musil, D. J.; Prodan, J.

    1980-01-01

    An armored T-28 aircraft was struck by lightning on two different days while participating in the 1979 severe environmental storm and mesoscale experiment in Oklahoma. The T-28, which is specially armored and instrumented, was making intentional penetrations of thunderstorms and was struck twice on 30 May and once on 5 June. Various degrees of damage, mainly in the form of large burn spots and holes, resulted to the aircraft.

  7. Joint Technical Coordinating Group on Aircraft Survivability (JTCG/AS). Bibliography of Joint Aircraft Survivability Reports

    Science.gov (United States)

    2000-07-01

    Repair (EBDR) Study 74 Final Report Volume HI Engine Battle Damage Repair (EBDR) Study 75 Final Report VOLUME II Ablative and Thermal Barriers for... Thermal Barriers for Aircraft Dry Bays Issued: September 1995 Progress - Oct 1992 - June 1995 Report Classification: UNCLASSIFIED Sponsor: JTCG...Shipman, Mr. David O’Brian. Mr. Chris Parmley, P&W; Mr. Les Throndson, NAWCWPNS China Lake (Govt Coordinator) Ablative and Thermal Barriers for Aircraft

  8. Aircraft family design using enhanced collaborative optimization

    Science.gov (United States)

    Roth, Brian Douglas

    Significant progress has been made toward the development of multidisciplinary design optimization (MDO) methods that are well-suited to practical large-scale design problems. However, opportunities exist for further progress. This thesis describes the development of enhanced collaborative optimization (ECO), a new decomposition-based MDO method. To support the development effort, the thesis offers a detailed comparison of two existing MDO methods: collaborative optimization (CO) and analytical target cascading (ATC). This aids in clarifying their function and capabilities, and it provides inspiration for the development of ECO. The ECO method offers several significant contributions. First, it enhances communication between disciplinary design teams while retaining the low-order coupling between them. Second, it provides disciplinary design teams with more authority over the design process. Third, it resolves several troubling computational inefficiencies that are associated with CO. As a result, ECO provides significant computational savings (relative to CO) for the test cases and practical design problems described in this thesis. New aircraft development projects seldom focus on a single set of mission requirements. Rather, a family of aircraft is designed, with each family member tailored to a different set of requirements. This thesis illustrates the application of decomposition-based MDO methods to aircraft family design. This represents a new application area, since MDO methods have traditionally been applied to multidisciplinary problems. ECO offers aircraft family design the same benefits that it affords to multidisciplinary design problems. Namely, it simplifies analysis integration, it provides a means to manage problem complexity, and it enables concurrent design of all family members. In support of aircraft family design, this thesis introduces a new wing structural model with sufficient fidelity to capture the tradeoffs associated with component

  9. Structural Weight Optimization of Aircraft Wing Component Using FEM Approach.

    Directory of Open Access Journals (Sweden)

    Arockia Ruban M,

    2015-06-01

    Full Text Available One of the main challenges for the civil aviation industry is the reduction of its environmental impact by better fuel efficiency by virtue of Structural optimization. Over the past years, improvements in performance and fuel efficiency have been achieved by simplifying the design of the structural components and usage of composite materials to reduce the overall weight of the structure. This paper deals with the weight optimization of transport aircraft with low wing configuration. The Linear static and Normal Mode analysis were carried out using MSc Nastran & Msc Patran under different pressure conditions and the results were verified with the help of classical approach. The Stress and displacement results were found and verified and hence arrived to the conclusion about the optimization of the wing structure.

  10. Surface roughness measurement on a wing aircraft by speckle correlation.

    Science.gov (United States)

    Salazar, Félix; Barrientos, Alberto

    2013-09-05

    The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given.

  11. Aircraft Design Analysis, CFD And Manufacturing

    Directory of Open Access Journals (Sweden)

    Haifa El-Sadi

    2016-09-01

    Full Text Available Aircraft design, manufacturing and CFD analysis as part of aerodynamic course, the students achieve sizing from a conceptual sketch, select the airfoil geometry and the tail geometry, calculate thrust to weight ratio and wing loading, use initial sizing and calculate the aerodynamic forces. The students design their aircraft based on the geometrical dimensions resulted from the calculations and use the model to build a prototype, test it in wind tunnel and achieve CFD analysis to be compared with the experimental results. The theory of aerodynamic is taught and applied as a project based. In this paper, the design process, aircraft manufacturing and CFD analysis are presented to show the effect of project based on student’s learning of aerodynamic course. This project based learning has improved and accelerated students understanding of aerodynamic concepts and involved students in a constructive exploration. The analysis of the aircraft resulted in a study that revolved around the lift and drag generation of this particular aircraft. As to determine the lift and drag forces generated by this plane, a model was created in Solidworks a 3-D model-rendering program. After this model was created it was 3-D printed in a reduced scale, and subjected to wind tunnel testing. The results from the wind tunnel lab experiment were recorded. For accuracy, the same 3-D model was then simulated using CFD simulation software within Solidworks and compared with the results from the wind tunnel test. The values derived from both the simulation and the wind tunnel tests were then compared with the theoretical calculations for further proof of accuracy.

  12. Ply Orientation of Carbon Fiber Reinforced Aircraft Wing - A Parametric Study

    Directory of Open Access Journals (Sweden)

    Dr. Alice Mathai

    2014-05-01

    Full Text Available In the present day scenario, use of carbon fiber composites has been extended to a large number of aircraft components which includes structural and non-structural components. Carbon fiber reinforced polymer (CFRP is a composite material which consists of laminates having reinforcing fibers (carbon of significant strength embedded in a matrix material. Each lamina can have distinct fiber orientations which may vary from the adjoining lamina. The present study focuses on the effect of the ply orientation on the strength of the panels. The wing of a subsonic aircraft was modeled in the ANSYS software. The performance of wing under the application of loads was studied by varying the orientation of fiber layers. From the study, it was observed that the variation in stress occurs with variation in orientation of fiber layers of CFRP composites.

  13. Review of factors affecting aircraft wet runway performance

    Science.gov (United States)

    Yager, T. J.

    1983-01-01

    Problems associated with aircraft operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from investigations conducted at the Langley Aircraft Landing Loads and Traction Facility and from tests with instrumented ground vehicles and aircraft are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.

  14. Review of Aircraft Electric Power Systems and Architectures

    DEFF Research Database (Denmark)

    Zhao, Xin; Guerrero, Josep M.; Wu, Xiaohao

    2014-01-01

    In recent years, the electrical power capacity is increasing rapidly in more electric aircraft (MEA), since the conventional mechanical, hydraulic and pneumatic energy systems are partly replaced by electrical power system. As a consequence, capacity and complexity of aircraft electric power...... systems (EPS) will increase dramatically and more advanced aircraft EPSs need to be developed. This paper gives a brief description of the constant frequency (CF) EPS, variable frequency (VF) EPS and advanced high voltage (HV) EPS. Power electronics in the three EPS is overviewed. Keywords: Aircraft Power...... System, More Electric Aircraft, Constant Frequency, Variable Frequency, High Voltage....

  15. Numerical simulation of aircraft crash on nuclear containment structure

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, M.A., E-mail: iqbalfce@iitr.ernet.in [Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Rai, S.; Sadique, M.R.; Bhargava, P. [Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer The deformation was more localised at the center of cylindrical portion. Black-Right-Pointing-Pointer The peak deflection at the junction of dome and cylinder was found to be 67 mm. Black-Right-Pointing-Pointer The peak deflection at midpoint of the cylindrical portion was found to be 88.9 mm. Black-Right-Pointing-Pointer The strain rate was found to be an important parameter to effect the deformation. Black-Right-Pointing-Pointer The model without strain rate and 290 s{sup -1} strain rate predicted very high deformations. - Abstract: Numerical simulations were carried with ABAQUS/Explicit finite element code in order to predict the response of BWR Mark III type nuclear containment against Boeing 707-320 aircraft crash. The load of the aircraft was applied using and force history curve. The damaged plasticity model was used to predict the behavior of concrete while the Johnson-Cook elasto-viscoplastic material model was used to incorporate the behavior of steel reinforcement. The crash was considered to occur at two different locations i.e., the midpoint of the cylindrical portion and the junction of dome and cylinder. The midpoint of the cylindrical portion experienced more deformation. The strain rate in the material model was varied and found to have a significant effect on the response of containment. The results of the present investigation were compared with those of the studies available in literature and a close agreement with the previous results was found in terms of maximum target deformation.

  16. Fuels and Lubricants for Aircraft

    Science.gov (United States)

    1975-02-27

    Alcohol is formed as a result of fermatation of sugary substances. The latter are obtained by processing starch present in food raw material, or by...elementalcomposition are given in ’fable 1; 29. 2Approximate data; 3 At the boiling point. 31. 4 Without consumption from outside; 32. 5Boric anhydride being...where P is the thrust force;ý ’•lis the time of its action during the consumption of 1 kg of fuel. The unit impulse is equal to the thrust of the

  17. The FEM simulation of the thin walled aircraft engine corpus deformation during milling

    Science.gov (United States)

    Matras, A.; Plaza, M.

    2016-09-01

    This paper discusses the results of the experimental research performed with the support of finite element method. The deformation of the thin walled aircraft engine corpus was analyzed based on a geometric model. Then, the boundary of the outer side of the part was loaded by the components of a cutting force during milling. The material model of the part was also defined in the simulation software. The analysis allowed to optimize feed rate in order to decrease the deformation of the part.

  18. Study on utilization of advanced composites in commercial aircraft wing structures, volume 2

    Science.gov (United States)

    Sakata, I. F.; Ostrom, R. B.

    1978-01-01

    A plan is defined for a composite wing development effort which will assist commercial transport manufacturers in reaching a level of technology readiness where the utilization of composite wing structure is a cost competitive option for a new aircraft production plan. The recommended development effort consists of two programs: a joint government/industry material development program and a wing structure development program. Both programs are described in detail.

  19. Thermodynamic efficiency of present types of internal combustion engines for aircraft

    Science.gov (United States)

    Lucke, Charles E

    1917-01-01

    Report presents requirements of internal combustion engines suitable for aircraft. Topics include: (1) service requirements for aeronautic engines - power versus weight, reliability, and adaptability factors, (2) general characteristics of present aero engines, (3) aero engine processes and functions of parts versus power-weight ratio, reliability, and adaptability factors, and (4) general arrangement, form, proportions, and materials of aero parts - power-weight ratio, reliability, and adaptability.

  20. Aircraft Noise and Quality of Life around Frankfurt Airport

    Science.gov (United States)

    Schreckenberg, Dirk; Meis, Markus; Kahl, Cara; Peschel, Christin; Eikmann, Thomas

    2010-01-01

    In a survey of 2,312 residents living near Frankfurt Airport aircraft noise annoyance and disturbances as well as environmental (EQoL) and health-related quality of life (HQoL) were assessed and compared with data on exposure due to aircraft, road traffic, and railway noise. Results indicate higher noise annoyance than predicted from general exposure-response curves. Beside aircraft sound levels source-related attitudes were associated with reactions to aircraft noise. Furthermore, aircraft noise affected EQoL in general, although to a much smaller extent. HQoL was associated with aircraft noise annoyance, noise sensitivity and partly with aircraft noise exposure, in particular in the subgroup of multimorbid residents. The results suggest a recursive relationship between noise and health, yet this cannot be tested in cross-sectional studies. Longitudinal studies would be recommendable to get more insight in the causal paths underlying the noise-health relationship. PMID:20948931

  1. Control of Next Generation Aircraft and Wind Turbines

    Science.gov (United States)

    Frost, Susan

    2010-01-01

    The first part of this talk will describe some of the exciting new next generation aircraft that NASA is proposing for the future. These aircraft are being designed to reduce aircraft fuel consumption and environmental impact. Reducing the aircraft weight is one approach that will be used to achieve these goals. A new control framework will be presented that enables lighter, more flexible aircraft to maintain aircraft handling qualities, while preventing the aircraft from exceeding structural load limits. The second part of the talk will give an overview of utility-scale wind turbines and their control. Results of collaboration with Dr. Balas will be presented, including new theory to adaptively control the turbine in the presence of structural modes, with the focus on the application of this theory to a high-fidelity simulation of a wind turbine.

  2. Aircraft Noise and Quality of Life around Frankfurt Airport

    Directory of Open Access Journals (Sweden)

    Thomas Eikmann

    2010-08-01

    Full Text Available In a survey of 2,312 residents living near Frankfurt Airport aircraft noise annoyance and disturbances as well as environmental (EQoL and health-related quality of life (HQoL were assessed and compared with data on exposure due to aircraft, road traffic, and railway noise. Results indicate higher noise annoyance than predicted from general exposure-response curves. Beside aircraft sound levels source-related attitudes were associated with reactions to aircraft noise. Furthermore, aircraft noise affected EQoL in general, although to a much smaller extent. HQoL was associated with aircraft noise annoyance, noise sensitivity and partly with aircraft noise exposure, in particular in the subgroup of multimorbid residents. The results suggest a recursive relationship between noise and health, yet this cannot be tested in cross-sectional studies. Longitudinal studies would be recommendable to get more insight in the causal paths underlying the noise-health relationship.

  3. Structural analysis at aircraft conceptual design stage

    Science.gov (United States)

    Mansouri, Reza

    In the past 50 years, computers have helped by augmenting human efforts with tremendous pace. The aircraft industry is not an exception. Aircraft industry is more than ever dependent on computing because of a high level of complexity and the increasing need for excellence to survive a highly competitive marketplace. Designers choose computers to perform almost every analysis task. But while doing so, existing effective, accurate and easy to use classical analytical methods are often forgotten, which can be very useful especially in the early phases of the aircraft design where concept generation and evaluation demands physical visibility of design parameters to make decisions [39, 2004]. Structural analysis methods have been used by human beings since the very early civilization. Centuries before computers were invented; the pyramids were designed and constructed by Egyptians around 2000 B.C, the Parthenon was built by the Greeks, around 240 B.C, Dujiangyan was built by the Chinese. Persepolis, Hagia Sophia, Taj Mahal, Eiffel tower are only few more examples of historical buildings, bridges and monuments that were constructed before we had any advancement made in computer aided engineering. Aircraft industry is no exception either. In the first half of the 20th century, engineers used classical method and designed civil transport aircraft such as Ford Tri Motor (1926), Lockheed Vega (1927), Lockheed 9 Orion (1931), Douglas DC-3 (1935), Douglas DC-4/C-54 Skymaster (1938), Boeing 307 (1938) and Boeing 314 Clipper (1939) and managed to become airborne without difficulty. Evidencing, while advanced numerical methods such as the finite element analysis is one of the most effective structural analysis methods; classical structural analysis methods can also be as useful especially during the early phase of a fixed wing aircraft design where major decisions are made and concept generation and evaluation demands physical visibility of design parameters to make decisions

  4. Exploratory flight investigation of aircraft response to the wing vortex wake generated by the augmentor wing jet STOL research aircraft

    Science.gov (United States)

    Jacobsen, R. A.; Drinkwater, F. J., III

    1975-01-01

    A brief exploratory flight program was conducted at Ames Research Center to investigate the vortex wake hazard of a powered-lift STOL aircraft. The study was made by flying an instrumented Cessna 210 aircraft into the wake of the augmentor wing jet STOL research aircraft at separation distances from 1 to 4 n.mi. Characteristics of the wake were evaluated in terms of the magnitude of the upset of the probing aircraft. Results indicated that within 1 n.mi. separation the wake could cause rolling moments in excess of roll control power and yawing moments equivalent to rudder control power of the probe aircraft. Subjective evaluations by the pilots of the Cessna 210 aircraft, supported by response measurements, indicated that the upset caused by the wake of the STOL aircraft was comparable to that of a DC-9 in the landing configuration.

  5. Follow on Research for Multi-Utility Technology Test Bed Aircraft at NASA Dryden Flight Research Center (FY13 Progress Report)

    Science.gov (United States)

    Pak, Chan-Gi

    2013-01-01

    Modern aircraft employ a significant fraction of their weight in composite materials to reduce weight and improve performance. Aircraft aeroservoelastic models are typically characterized by significant levels of model parameter uncertainty due to the composite manufacturing process. Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of Multi Utility Technology Test-bed (MUTT) aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of MUTT aircraft. The ground vibration test-validated structural dynamic finite element model of the MUTT aircraft is created in this study. The structural dynamic finite element model of MUTT aircraft is improved using the in-house Multi-disciplinary Design, Analysis, and Optimization tool. In this study, two different weight configurations of MUTT aircraft have been improved simultaneously in a single model tuning procedure.

  6. Artificial Intelligence for Controlling Robotic Aircraft

    Science.gov (United States)

    Krishnakumar, Kalmanje

    2005-01-01

    A document consisting mostly of lecture slides presents overviews of artificial-intelligence-based control methods now under development for application to robotic aircraft [called Unmanned Aerial Vehicles (UAVs) in the paper] and spacecraft and to the next generation of flight controllers for piloted aircraft. Following brief introductory remarks, the paper presents background information on intelligent control, including basic characteristics defining intelligent systems and intelligent control and the concept of levels of intelligent control. Next, the paper addresses several concepts in intelligent flight control. The document ends with some concluding remarks, including statements to the effect that (1) intelligent control architectures can guarantee stability of inner control loops and (2) for UAVs, intelligent control provides a robust way to accommodate an outer-loop control architecture for planning and/or related purposes.

  7. Fundamentals of aircraft and rocket propulsion

    CERN Document Server

    El-Sayed, Ahmed F

    2016-01-01

    This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in th...

  8. Nonlinear feedback control of highly manoeuvrable aircraft

    Science.gov (United States)

    Garrard, William L.; Enns, Dale F.; Snell, S. A.

    1992-01-01

    This paper describes the application of nonlinear quadratic regulator (NLQR) theory to the design of control laws for a typical high-performance aircraft. The NLQR controller design is performed using truncated solutions of the Hamilton-Jacobi-Bellman equation of optimal control theory. The performance of the NLQR controller is compared with the performance of a conventional P + I gain scheduled controller designed by applying standard frequency response techniques to the equations of motion of the aircraft linearized at various angles of attack. Both techniques result in control laws which are very similar in structure to one another and which yield similar performance. The results of applying both control laws to a high-g vertical turn are illustrated by nonlinear simulation.

  9. Analysis of aircraft longitudinal handling qualities

    Science.gov (United States)

    Hess, R. A.

    1981-01-01

    The optimal control model (OCM) of the human pilot is applied to the study of aircraft handling qualities. Attention is focused primarily on longitudinal tasks. The modeling technique differs from previous applications of the OCM in that considerable effort is expended in simplifying the pilot/vehicle analysis. After briefly reviewing the OCM, a technique for modeling the pilot controlling higher order systems is introduced. Following this, a simple criterion for determining the susceptibility of an aircraft to pilot induced oscillations (PIO) is formulated. Finally, a model-based metric for pilot rating prediction is discussed. The resulting modeling procedure provides a relatively simple, yet unified approach to the study of a variety of handling qualities problems.

  10. Aircraft propeller induced structure-borne noise

    Science.gov (United States)

    Unruh, James F.

    1989-01-01

    A laboratory-based test apparatus employing components typical of aircraft construction was developed that would allow the study of structure-borne noise transmission due to propeller induced wake/vortex excitation of in-wake structural appendages. The test apparatus was employed to evaluate several aircraft installation effects (power plant placement, engine/nacelle mass loading, and wing/fuselage attachment methods) and several structural response modifications for structure-borne noise control (the use of wing blocking mass/fuel, wing damping treaments, and tuned mechanical dampers). Most important was the development of in-flight structure-borne noise transmission detection techniques using a combination of ground-based frequency response function testing and in-flight structural response measurement. Propeller wake/vortex excitation simulation techniques for improved ground-based testing were also developed to support the in-flight structure-borne noise transmission detection development.

  11. Advanced materials and protective coatings in aero-engines application

    OpenAIRE

    M. Hetmańczyk; L. Swadźba; B. Mendala

    2007-01-01

    Purpose: The following article demonstrates the characteristics of the materials applied as parts of aircraft engine turbines and the stationary gas turbines. The principal technologies for manufacturing the heat resistant coatings and the erosion and corrosion resistant coatings were characterized. Sample applications for the aforementioned coatings are presented: on turbine blades, compressor blades and on parts of combustion chambers of aircraft engines.Design/methodology/approach: The nic...

  12. Military Airlift: C-17 Aircraft Program

    Science.gov (United States)

    2007-11-02

    out such a mission led Congress to ask DOD to conduct a study of the entire long- For more information on MRS-05, see CRS Report RS20915 . 22 Jonathan...many should be retired. Rising maintenance costs have led some to argue that more C-5s should be retired sooner, and the savings be applied to...34lighter-than-air" aircraft . Also known as airships, blimps, dirigibles, or zeppelins , these potentially large, helium-filled balloons offer many

  13. Identifying tacit strategies in aircraft maneuvers

    Science.gov (United States)

    Lewis, Charles M.; Heidorn, P. B.

    1991-01-01

    Two machine-learning methods are presently used to characterize the avoidance strategies used by skilled pilots in simulated aircraft encounters, and a general framework for the characterization of the strategic components of skilled behavior via qualitative representation of situations and responses is presented. Descriptions of pilot maneuvers that were 'conceptually equivalent' were ascertained by a concept-learning algorithm in conjunction with a classifier system that employed a generic algorithm; satisficing and 'buggy' strategies were thereby revealed.

  14. Project ADIOS: Aircraft Deployable Ice Observation System

    Science.gov (United States)

    Gudmundsson, G. H.

    2013-12-01

    Regions of the Antarctic that are of scientific interest are often too heavily crevassed to enable a plane to land, or permit safe access from a field camp. We have developed an alternative strategy for instrumenting these regions: a sensor that can be dropped from an overflying aircraft. Existing aircraft deployable sensors are not suitable for long term operations in areas where snow accumulates, as they are quickly buried. We have overcome this problem by shaping the sensor like an aerodynamic mast with fins and a small parachute. After being released from the aircraft, the sensor accelerates to 42m/s and stabilizes during a 10s descent. On impact with the snow surface the sensor package buries itself to a depth of 1m then uses the large surface area of the fins to stop it burying further. This leaves a 1.5m mast protruding high above the snow surface to ensure a long operating life. The high impact kinetic energy and robust fin braking mechanism ensure that the design works in both soft and hard snow. Over the past two years we have developed and tested our design with a series of aircraft and wind tunnel tests. Last season we used this deployment strategy to successfully install a network of 31 single band GPS sensors in regions where crevassing has previously prevented science operations: Pine Island Glacier, West Antarctica, and Scar Inlet, Antarctic Peninsula. This season we intend to expand on this network by deploying a further 25 single and dual band GPS sensors on Thwaites Glacier, West Antarctica.

  15. Optimizing Aircraft Utilization for Retrograde Operations

    Science.gov (United States)

    2012-06-15

    project possible, particularly Jerome Goodin, Rick Turcotte , Maj Darren Loftin, and Karen Skoog. Thanks to the staff of the USAF EC, especially...airplanes ( Turcotte , 2011). Cyintech did a regression analysis based on data derived from the Aircraft Communications Addressing and Reporting System...logistics-forum/12-mlf-2008-volume-2- issue-4/72-answering-the-call.html Turcotte ,F.N. (2011). Analyst, HQ AMC Fuel Efficiency Office, Scott AFB

  16. Airvolt Aircraft Electric Propulsion Test Stand

    Science.gov (United States)

    Samuel, Aamod; Lin, Yohan

    2015-01-01

    Development of an electric propulsion test stand that collects high-fidelity data of motor, inverter, and battery system efficiencies; thermal dynamics; and acoustics independent of manufacturer reported values will improve understanding of electric propulsion systems to be used in future aircraft. A buildup approach to this development reveals new areas of research and best practices in testing, and attempts to establish a standard for testing these systems.

  17. Fuel consumption and exhaust emissions of aircrafts

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, R. [Institute of Flightmechanics, Braunschweig (Germany)

    1997-12-31

    The reduction of contamination of sensitive atmospheric layers by improved flight planning steps, is investigated. Calculated results have shown, that a further development of flight track planning allows considerable improvements on fuel consumption and exhaust emissions. Even if air traffic will further increase, optimistic investigations forecast a reduction of the environmental damage by aircraft exhausts, if the effects of improved flight track arrangement and engine innovations will be combined. (R.P.) 4 refs.

  18. The Sale of FX Aircraft to Taiwan,

    Science.gov (United States)

    1982-02-01

    September 3, 1981. Sterba , James P., "Peking Says Force Might Be Used to Reunite Taiwan and Mainland," New York Times, July 4, 1981. Szulc, Tad...will decide it can commit the forces necessary to launch an invasion of 13 Edwin K. Snyder, A. James Gregor, and Maria Hsia Chang, The...Jane’s All the World’s Aircraft 1980-1981, Jane’s Publishing Co., Ltd., 1980. Snyder, Edwin K., A. James Gregor, and Maria Hsia Chang

  19. Topology Optimization of an Aircraft Wing

    Science.gov (United States)

    2015-06-11

    constraint is met. Optimizations were performed on a general aviation experi- mental aircraft wing subject to pressure loading simulating maximum...compared to traditional means. Additionally, a fuel tank was integrated into the wing structure as a proof-of-concept for the potential benefits of AM...topology and sizing optimization of the wing integrated with the fuel tank , spars, and skin. This resulted in a total wing mass reduction of 10.8

  20. Computational analysis of aircraft pressure relief doors

    Science.gov (United States)

    Schott, Tyler

    Modern trends in commercial aircraft design have sought to improve fuel efficiency while reducing emissions by operating at higher pressures and temperatures than ever before. Consequently, greater demands are placed on the auxiliary bleed air systems used for a multitude of aircraft operations. The increased role of bleed air systems poses significant challenges for the pressure relief system to ensure the safe and reliable operation of the aircraft. The core compartment pressure relief door (PRD) is an essential component of the pressure relief system which functions to relieve internal pressure in the core casing of a high-bypass turbofan engine during a burst duct over-pressurization event. The successful modeling and analysis of a burst duct event are imperative to the design and development of PRD's to ensure that they will meet the increased demands placed on the pressure relief system. Leveraging high-performance computing coupled with advances in computational analysis, this thesis focuses on a comprehensive computational fluid dynamics (CFD) study to characterize turbulent flow dynamics and quantify the performance of a core compartment PRD across a range of operating conditions and geometric configurations. The CFD analysis was based on a compressible, steady-state, three-dimensional, Reynolds-averaged Navier-Stokes approach. Simulations were analyzed, and results show that variations in freestream conditions, plenum environment, and geometric configurations have a non-linear impact on the discharge, moment, thrust, and surface temperature characteristics. The CFD study revealed that the underlying physics for this behavior is explained by the interaction of vortices, jets, and shockwaves. This thesis research is innovative and provides a comprehensive and detailed analysis of existing and novel PRD geometries over a range of realistic operating conditions representative of a burst duct over-pressurization event. Further, the study provides aircraft

  1. Ride quality systems for commuter aircraft

    Science.gov (United States)

    Downing, D. R.; Hammond, T. A.; Amin, S. P.

    1983-01-01

    The state-of-the-art in Active Ride Augmentation, specifically in terms of its feasibility for commuter aircraft applications. A literature survey was done, and the principal results are presented here through discussion of different Ride Quality Augmentation System (RQAS) designs and advances in related technologies. Recommended follow-on research areas are discussed, and a preliminary RQAS configuration for detailed design and development is proposed.

  2. Digital adaptive control laws for VTOL aircraft

    Science.gov (United States)

    Hartmann, G. L.; Stein, G.

    1979-01-01

    Honeywell has designed a digital self-adaptive flight control system for flight test in the VALT Research Aircraft (a modified CH-47). The final design resulted from a comparison of two different adaptive concepts: one based on explicit parameter estimates from a real-time maximum likelihood estimation algorithm and the other based on an implicit model reference adaptive system. The two designs are compared on the basis of performance and complexity.

  3. Prediction of anthropometric accommodation in aircraft cockpits

    Science.gov (United States)

    Zehner, Gregory Franklin

    Designing aircraft cockpits to accommodate the wide range of body sizes existing in the U.S. population has always been a difficult problem for Crewstation Engineers. The approach taken in the design of military aircraft has been to restrict the range of body sizes allowed into flight training, and then to develop standards and specifications to ensure that the majority of the pilots are accommodated. Accommodation in this instance is defined as the ability to: (1) Adequately see, reach, and actuate controls; (2) Have external visual fields so that the pilot can see to land, clear for other aircraft, and perform a wide variety of missions (ground support/attack or air to air combat); and (3) Finally, if problems arise, the pilot has to be able to escape safely. Each of these areas is directly affected by the body size of the pilot. Unfortunately, accommodation problems persist and may get worse. Currently the USAF is considering relaxing body size entrance requirements so that smaller and larger people could become pilots. This will make existing accommodation problems much worse. This dissertation describes a methodology for correcting this problem and demonstrates the method by predicting pilot fit and performance in the USAF T-38A aircraft based on anthropometric data. The methods described can be applied to a variety of design applications where fitting the human operator into a system is a major concern. A systematic approach is described which includes: defining the user population, setting functional requirements that operators must be able to perform, testing the ability of the user population to perform the functional requirements, and developing predictive equations for selecting future users of the system. Also described is a process for the development of new anthropometric design criteria and cockpit design methods that assure body size accommodation is improved in the future.

  4. Commercial Aircraft Integrated Vehicle Health Management Study

    Science.gov (United States)

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Jones, Sharon Monica; Kurtoglu, Tolga; Leone, Karen M.; Sandifer, Carl E.; Thomas, Megan A.

    2010-01-01

    Statistical data and literature from academia, industry, and other government agencies were reviewed and analyzed to establish requirements for fixture work in detection, diagnosis, prognosis, and mitigation for IVHM related hardware and software. Around 15 to 20 percent of commercial aircraft accidents between 1988 and 2003 involved inalftfnctions or failures of some aircraft system or component. Engine and landing gear failures/malfunctions dominate both accidents and incidents. The IVI vl Project research technologies were found to map to the Joint Planning and Development Office's National Research and Development Plan (RDP) as well as the Safety Working Group's National Aviation Safety Strategic. Plan (NASSP). Future directions in Aviation Technology as related to IVHlvl were identified by reviewing papers from three conferences across a five year time span. A total of twenty-one trend groups in propulsion, aeronautics and aircraft categories were compiled. Current and ftiture directions of IVHM related technologies were gathered and classified according to eight categories: measurement and inspection, sensors, sensor management, detection, component and subsystem monitoring, diagnosis, prognosis, and mitigation.

  5. Emergency Control Aircraft System Using Thrust Modulation

    Science.gov (United States)

    Burken, John J. (Inventor); Burcham, Frank W., Jr. (Inventor)

    2000-01-01

    A digital longitudinal Aircraft Propulsion Control (APC system of a multiengine aircraft is provided by engine thrust modulation in response to comparing an input flightpath angle signal (gamma)c from a pilot thumbwheel. or an ILS system with a sensed flightpath angle y to produce an error signal (gamma)e that is then integrated (with reasonable limits) to generate a drift correction signal to be added to the error signal (gamma)e after first subtracting a lowpass filtered velocity signal Vel(sub f) for phugoid damping. The output error signal is multiplied by a constant to produce an aircraft thrust control signal ATC of suitable amplitude to drive a throttle servo for all engines. each of which includes its own full-authority digital engine control (FADEC) computer. An alternative APC system omits sensed flightpath angle feedback and instead controls the flightpath angle by feedback of the lowpass filtered velocity signal Vel(sub f) which also inherently provides phugoid damping. The feature of drift compensation is retained.

  6. Cosmic radiation exposure at aircraft crew workplaces

    Energy Technology Data Exchange (ETDEWEB)

    Latocha, M.; Beck, P.; Rollet, S. [ARC Seibersdorf Research, Seibersdorf (Austria); Latocha, M. [Institute of Nuclear Physics Polish Academy of Sciences, Krakow (Poland)

    2006-07-01

    E.U.R.A.D.O.S. working group W.G.5. on air crew dosimetry coordinated research of some 24 international institutes to exchange experimental data and results of calculations of the radiation exposure in aircraft altitudes due to cosmic radiation. The purpose was to provide a data-set for all European Union Member States for the assessment of individual doses, the validity of different approaches, and to provide an input to technical recommendations by the Article 31 group of experts and the European Commission. The results of this work have been recently published and are available for the international community. The radiation protection quantity of interest is effective dose, E (ISO), but the comparison of measurement results and the results of calculations, is done in terms of the operational quantity ambient dose equivalent, H{sup *}(10). This paper gives an overview of the E.U.R.A.D.O.S. Aircraft Crew In-Flight Database which was implemented under the responsibility of A.R.C. Seibersdorf research. It discusses calculation models for air crew dose assessment comparing them with measurements contained in this database. Further it presents current developments using updated information of galactic cosmic radiation proton spectra and new results of the recently finalized European research project D.O.S.M.A.X. on dosimetry of aircraft crew at solar maximum. (authors)

  7. 50 years of transonic aircraft design

    Science.gov (United States)

    Jameson, Antony; Ou, Kui

    2011-07-01

    This article traces the evolution of long range jet transport aircraft over the 50 years since Kuechemann founded the journal Progress in Aerospace Sciences. The article is particularly focused on transonic aerodynamics. During Kuechemann's life time a good qualitative understanding had been achieved of transonic flow and swept wing design, but transonic flow remained intractable to quantitative prediction. During the last 50 years this situation has been completely transformed by the introduction of sophisticated numerical algorithms and an astonishing increase in the available computational power, with the consequence that aerodynamic design is now carried out largely by computer simulation. Moreover developments in aerodynamic shape optimization based on control theory enable a competitive swept wing to be designed in just two simulations, as illustrated in the article. While the external appearance of long range jet aircraft has not changed much, advances in information technology have actually transformed the entire design and manufacturing process through parallel advances in computer aided design (CAD), computational structural mechanics (CSM) and multidisciplinary optimization (MDO). They have also transformed aircraft operations through the adoption of digital fly-by-wire and advanced navigational techniques.

  8. Advanced Aerostructural Optimization Techniques for Aircraft Design

    Directory of Open Access Journals (Sweden)

    Yingtao Zuo

    2015-01-01

    Full Text Available Traditional coupled aerostructural design optimization (ASDO of aircraft based on high-fidelity models is computationally expensive and inefficient. To improve the efficiency, the key is to predict aerostructural performance of the aircraft efficiently. The cruise shape of the aircraft is parameterized and optimized in this paper, and a methodology named reverse iteration of structural model (RISM is adopted to get the aerostructural performance of cruise shape efficiently. A new mathematical explanation of RISM is presented in this paper. The efficiency of RISM can be improved by four times compared with traditional static aeroelastic analysis. General purpose computing on graphical processing units (GPGPU is adopted to accelerate the RISM further, and GPU-accelerated RISM is constructed. The efficiency of GPU-accelerated RISM can be raised by about 239 times compared with that of the loosely coupled aeroelastic analysis. Test shows that the fidelity of GPU-accelerated RISM is high enough for optimization. Optimization framework based on Kriging model is constructed. The efficiency of the proposed optimization system can be improved greatly with the aid of GPU-accelerated RISM. An unmanned aerial vehicle (UAV is optimized using this framework and the range is improved by 4.67% after optimization, which shows effectiveness and efficiency of this framework.

  9. Aircraft noise and its nearfield propagation computations

    Institute of Scientific and Technical Information of China (English)

    Xin Zhang

    2012-01-01

    Noise generated by civil transport aircraft during take-off and approach-to-land phases of operation is an environmental problem.The aircraft noise problem is firstly reviewed in this article.The review is followed by a description and assessment of a number of sound propagation methods suitable for applications with a background mean flow field pertinent to aircraft noise.Of the three main areas of the noise problem,i.e.generation,propagation,and radiation,propagation provides a vital link between near-field noise generation and far-field radiation.Its accurate assessment ensures the overall validity of a prediction model.Of the various classes of propagation equations,linearised Euler equations are often casted in either time domain or frequency domain.The equations are often solved numerically by computational aeroacoustics techniques,bur are subject to the onset of Kelvin-Helmholtz (K-H) instability modes which may ruin the solutions. Other forms of linearised equations,e.g.acoustic perturbation equations have been proposed,with differing degrees of success.

  10. Full-Scale Structural and NDI Validation Tests of Bonded Composite Doublers for Commercial Aircraft Applications

    Energy Technology Data Exchange (ETDEWEB)

    Roach, D.; Walkington, P.

    1999-02-01

    Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is possible to bond a single Boron-Epoxy composite doubler to the damaged structure. Most of the concerns surrounding composite doubler technology pertain to long-term survivability, especially in the presence of non-optimum installations, and the validation of appropriate inspection procedures. This report focuses on a series of full-scale structural and nondestructive inspection (NDI) tests that were conducted to investigate the performance of Boron-Epoxy composite doublers. Full-scale tests were conducted on fuselage panels cut from retired aircraft. These full-scale tests studied stress reductions, crack mitigation, and load transfer capabilities of composite doublers using simulated flight conditions of cabin pressure and axial stress. Also, structures which modeled key aspects of aircraft structure repairs were subjected to extreme tension, shear and bending loads to examine the composite laminate's resistance to disbond and delamination flaws. Several of the structures were loaded to failure in order to determine doubler design margins. Nondestructive inspections were conducted throughout the test series in order to validate appropriate techniques on actual aircraft structure. The test results showed that a properly designed and installed composite doubler is able to enhance fatigue life, transfer load away from damaged structure, and avoid the introduction of new stress risers (i.e. eliminate global reduction in the fatigue life of the structure). Comparisons with test data obtained prior to the doubler installation revealed that stresses in the parent material can be reduced 30%--60% through the use of the composite doubler. Tests to failure demonstrated that the bondline is able to transfer plastic strains into the doubler and that

  11. Task Order Number 5TS5702D035P: Testing Alternative Aircraft and Runway/Taxiway Deicers - Phase 2

    Science.gov (United States)

    2004-06-01

    Polymer Matrix Composite Materials 55 10.3 Elastomeric Materials 56 10.4 AircraftWire Insulation "" 58 10.5... Polymer Matrix Composite Shear Stress Test Results 13 Table 8. Polymer Matrix Composite Glass Transition Temperature Test Results """"""’’’’’’’’’’ 14...Table 9. Polymer Matrix Composite Barcol Hardness Test Results 16 Table 10. Polymer Matrix

  12. V/STOL tilt rotor aircraft study. Volume 2: Preliminary design of research aircraft

    Science.gov (United States)

    1972-01-01

    A preliminary design study was conducted to establish a minimum sized, low cost V/STOL tilt-rotor research aircraft with the capability of performing proof-of-concept flight research investigations applicable to a wide range of useful military and commercial configurations. The analysis and design approach was based on state-of-the-art methods and maximum use of off-the-shelf hardware and systems to reduce development risk, procurement cost and schedules impact. The rotors to be used are of 26 foot diameter and are the same as currently under construction and test as part of NASA Tilt-Rotor Contract NAS2-6505. The aircraft has a design gross weight of 12,000 lbs. The proposed engines to be used are Lycoming T53-L-13B rated at 1550 shaft horsepower which are fully qualified. A flight test investigation is recommended which will determine the capabilities and limitations of the research aircraft.

  13. Robustness of mission plans for unmanned aircraft

    Science.gov (United States)

    Niendorf, Moritz

    This thesis studies the robustness of optimal mission plans for unmanned aircraft. Mission planning typically involves tactical planning and path planning. Tactical planning refers to task scheduling and in multi aircraft scenarios also includes establishing a communication topology. Path planning refers to computing a feasible and collision-free trajectory. For a prototypical mission planning problem, the traveling salesman problem on a weighted graph, the robustness of an optimal tour is analyzed with respect to changes to the edge costs. Specifically, the stability region of an optimal tour is obtained, i.e., the set of all edge cost perturbations for which that tour is optimal. The exact stability region of solutions to variants of the traveling salesman problems is obtained from a linear programming relaxation of an auxiliary problem. Edge cost tolerances and edge criticalities are derived from the stability region. For Euclidean traveling salesman problems, robustness with respect to perturbations to vertex locations is considered and safe radii and vertex criticalities are introduced. For weighted-sum multi-objective problems, stability regions with respect to changes in the objectives, weights, and simultaneous changes are given. Most critical weight perturbations are derived. Computing exact stability regions is intractable for large instances. Therefore, tractable approximations are desirable. The stability region of solutions to relaxations of the traveling salesman problem give under approximations and sets of tours give over approximations. The application of these results to the two-neighborhood and the minimum 1-tree relaxation are discussed. Bounds on edge cost tolerances and approximate criticalities are obtainable likewise. A minimum spanning tree is an optimal communication topology for minimizing the cumulative transmission power in multi aircraft missions. The stability region of a minimum spanning tree is given and tolerances, stability balls

  14. A Comprehensive Program for Measurement of Military Aircraft Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Mengdawn [ORNL

    2009-11-01

    Emissions of gases and particulate matter by military aircraft were characterized inplume by 'extractive' and 'optical remote-sensing (ORS)' technologies. Non-volatile particle size distribution, number and mass concentrations were measured with good precision and reproducibly. Time-integrated particulate filter samples were collected and analyzed for smoke number, elemental composition, carbon contents, and sulfate. Observed at EEP the geometric mean diameter (as measured by the mobility diameter) generally increased as the engine power setting increased, which is consistent with downstream observations. The modal diameters at the downstream locations are larger than that at EEP at the same engine power level. The results indicate that engine particles were processed by condensation, for example, leading to particle growth in-plume. Elemental analysis indicated little metals were present in the exhaust, while most of the exhaust materials in the particulate phase were carbon and sulfate (in the JP-8 fuel). CO, CO{sub 2}, NO, NO{sub 2}, SO{sub 2}, HCHO, ethylene, acetylene, propylene, and alkanes were measured. The last five species were most noticeable under engine idle condition. The levels of hydrocarbons emitted at high engine power level were generally below the detection limits. ORS techniques yielded real-time gaseous measurement, but the same techniques could not be extended directly to ultrafine particles found in all engine exhausts. The results validated sampling methodology and measurement techniques used for non-volatile particulate aircraft emissions, which also highlighted the needs for further research on sampling and measurement for volatile particulate matter and semi-volatile species in the engine exhaust especially at the low engine power setting.

  15. 19 CFR 122.23 - Certain aircraft arriving from areas south of the U.S.

    Science.gov (United States)

    2010-04-01

    ... SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Private Aircraft § 122.23 Certain aircraft... from Puerto Rico, must furnish a notice of intended arrival. Private aircraft must transmit an advance notice of arrival as set forth in § 122.22 of this part. Other than private aircraft, all aircraft...

  16. Aircraft Anomaly Detection Using Performance Models Trained on Fleet Data

    Science.gov (United States)

    Gorinevsky, Dimitry; Matthews, Bryan L.; Martin, Rodney

    2012-01-01

    This paper describes an application of data mining technology called Distributed Fleet Monitoring (DFM) to Flight Operational Quality Assurance (FOQA) data collected from a fleet of commercial aircraft. DFM transforms the data into aircraft performance models, flight-to-flight trends, and individual flight anomalies by fitting a multi-level regression model to the data. The model represents aircraft flight performance and takes into account fixed effects: flight-to-flight and vehicle-to-vehicle variability. The regression parameters include aerodynamic coefficients and other aircraft performance parameters that are usually identified by aircraft manufacturers in flight tests. Using DFM, the multi-terabyte FOQA data set with half-million flights was processed in a few hours. The anomalies found include wrong values of competed variables, (e.g., aircraft weight), sensor failures and baises, failures, biases, and trends in flight actuators. These anomalies were missed by the existing airline monitoring of FOQA data exceedances.

  17. Fault Diagnosis and Fault Handling for Autonomous Aircraft

    DEFF Research Database (Denmark)

    Hansen, Søren

    Unmanned Aerial vehicles (UAVs) or drones are used increasingly for missions where piloted aircraft are unsuitable. The unmanned aircraft has a number of advantages with respect to size, weight and manoeuvrability that makes it possible for them to solve tasks that an aircraft previously has been...... that the fault is discovered in time such that appropriate actions can be taken. That could either be the aircraft controlling computer taking the fault into account or a human operator that intervenes. Detection of faults that occur during flight is exactly the subject of this thesis. Safety towards faults...... to another type of aircraft with different parameters. Amongst the main findings of this research project is a method to handle faults on the UAV’s pitot tube, which measures the aircraft speed. A set of software redundancies based on GPS velocity information and engine thrust are used to detect abnormal...

  18. Examining the Relationship Between Passenger Airline Aircraft Maintenance Outsourcing and Aircraft Safety

    Science.gov (United States)

    Monaghan, Kari L.

    The problem addressed was the concern for aircraft safety rates as they relate to the rate of maintenance outsourcing. Data gathered from 14 passenger airlines: AirTran, Alaska, America West, American, Continental, Delta, Frontier, Hawaiian, JetBlue, Midwest, Northwest, Southwest, United, and USAir covered the years 1996 through 2008. A quantitative correlational design, utilizing Pearson's correlation coefficient, and the coefficient of determination were used in the present study to measure the correlation between variables. Elements of passenger airline aircraft maintenance outsourcing and aircraft accidents, incidents, and pilot deviations within domestic passenger airline operations were analyzed, examined, and evaluated. Rates of maintenance outsourcing were analyzed to determine the association with accident, incident, and pilot deviation rates. Maintenance outsourcing rates used in the evaluation were the yearly dollar expenditure of passenger airlines for aircraft maintenance outsourcing as they relate to the total airline aircraft maintenance expenditures. Aircraft accident, incident, and pilot deviation rates used in the evaluation were the yearly number of accidents, incidents, and pilot deviations per miles flown. The Pearson r-values were calculated to measure the linear relationship strength between the variables. There were no statistically significant correlation findings for accidents, r(174)=0.065, p=0.393, and incidents, r(174)=0.020, p=0.793. However, there was a statistically significant correlation for pilot deviation rates, r(174)=0.204, p=0.007 thus indicating a statistically significant correlation between maintenance outsourcing rates and pilot deviation rates. The calculated R square value of 0.042 represents the variance that can be accounted for in aircraft pilot deviation rates by examining the variance in aircraft maintenance outsourcing rates; accordingly, 95.8% of the variance is unexplained. Suggestions for future research include

  19. Aircraft conceptual design modelling incorporating reliability and maintainability predictions

    OpenAIRE

    Vaziry-Zanjany , Mohammad Ali (F)

    1996-01-01

    A computer assisted conceptual aircraft design program has been developed (CACAD). It has an optimisation capability, with extensive break-down in maintenance costs. CACAD's aim is to optimise the size, and configurations of turbofan-powered transport aircraft. A methodology was developed to enhance the reliability of current aircraft systems, and was applied to avionics systems. R&M models of thermal management were developed and linked with avionics failure rate and its ma...

  20. Adaptive output feedback control of aircraft flexible modes

    OpenAIRE

    Ponnusamy, Sangeeth Saagar; Bordeneuve-Guibé, Joël

    2012-01-01

    The application of adaptive output feedback augmentative control to the flexible aircraft problem is presented. Experimental validation of control scheme was carried out using a three disk torsional pendulum. In the reference model adaptive control scheme, the rigid aircraft reference model and neural network adaptation is used to control structural flexible modes and compensate for the effects unmodeled dynamics and parametric variations of a classical high order large passenger aircraft. Th...

  1. Using doppler radar images to estimate aircraft navigational heading error

    Science.gov (United States)

    Doerry, Armin W [Albuquerque, NM; Jordan, Jay D [Albuquerque, NM; Kim, Theodore J [Albuquerque, NM

    2012-07-03

    A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.

  2. A historical perspective of aircrew systems effects on aircraft design

    OpenAIRE

    Bauer, David O.

    1996-01-01

    Approved for public release; distribution in unlimited. The design of the aircrew workstation often has not been an orderly part of the overall aircraft design process but rather of much lower priority than the integration of the airframe and powerplant. However, the true test of the aircraft is how well the aircrew can use the aircraft for mission performance. NAVAIR has been seeking the establishment of an Aircrew Centered System Design discipline, to be addressed as an integral part of ...

  3. Numerical simulation and experimental validation of aircraft ground deicing model

    OpenAIRE

    2016-01-01

    Aircraft ground deicing plays an important role of guaranteeing the aircraft safety. In practice, most airports generally use as many deicing fluids as possible to remove the ice, which causes the waste of the deicing fluids and the pollution of the environment. Therefore, the model of aircraft ground deicing should be built to establish the foundation for the subsequent research, such as the optimization of the deicing fluid consumption. In this article, the heat balance of the deicing proce...

  4. Ergonomic analysis for a regional aircraft interior design.

    OpenAIRE

    Flavia Renata Dantas Alves Silva

    2007-01-01

    The purpose of this work is to develop a preliminary interior design of a regional aircraft considering ergonomic and cost aspects. The use of virtual humans provides a better interpretation of the aircraft interior environment, making possible to simulate movements and passenger comfort aspects. The importance of this study becomes evident through the necessity of the aircraft manufacturer of predicting human behavior during all the flight phases. This text also aims to present the difficult...

  5. Reliability and optimization, application to safety of aircraft structures

    OpenAIRE

    Chu, Liu

    2016-01-01

    Tremendous struggles of researchers in the field of aerodynamic design and aircraft production were made to improve wing airfoil by optimization techniques. The development of computational fluid dynamic (CFD) in computer simulation cuts the expense of aerodynamic experiment while provides convincing results to simulate complicated situation of aircraft. In our work, we chose a special and important part of aircraft, namely, the structure of wing.Reliability based optimization is one of the m...

  6. Influence of environmental factors on corrosion damage of aircraft structure

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Corrosion is one of the important structural integrity concerns of aging aircraft, and it is estimated that a significant portion of airframe maintenance budgets is directed towards corrosion-related problems for both military and commercial aircraft. In order to better understand how environmental factors influence the corrosion damage initiation and propagation on aircraft structure and to predict pre-corrosion test pieces of fatigue life and structural integrity of an effective approach, this paper uses ...

  7. Disruption Management for an Airline - Rescheduling of aircraft

    DEFF Research Database (Denmark)

    Larsen, Jesper; Løve, Michael; Sørensen, Kim Riis

    2002-01-01

    The Aircraft Recovery Problem (ARP) involves decisions concerning aircraft to flight assignments in situations where unforseen events have disrupted the existing flight schedule, e.g. bad weather causing flight delays. The aircraft recovery problem aims to recover these flight schedules through a...... is a product of the DESCARTES project, a project funded by the European Union between the Technical University of Denmark, British Airways and Carmen....

  8. Compliant load-bearing skins and structures for morphing aircraft applications

    Science.gov (United States)

    Olympio, Kingnide Raymond

    Aircraft morphing has the potential to significantly improve the performance of an aircraft over its flight envelope and expand its ight capability to allow it to perform dramatically different missions. The multiple projects carried on in the past three decades have considerably helped improve the designing of actuation systems and the utilization of smart materials for morphing aircraft structures. However, morphing aircraft and especially aircraft undergoing large shape change still face some significant technical issues. Among them, the skin covering the morphing structure must meet challenging requirements that no current conventional material fully satisfy. The design of such skin, which should be able to undergo large deformations and to carry air-loads, has received some attention in the last several years but no satisfactory solution has been found yet. In the current study, the design of compliant cellular structures and flexible skins for morphing aircraft structures is investigated for two different morphing deformations. The first morphing deformation considered corresponds to one-dimensional morphing which is representative of a wing or blade changing its chord or span. The second morphing deformation considered is shear-compression morphing which can be found in some morphing wing undergoing change in area, sweep and chord such as NextGen Aeronautics' morphing wing. Topologies of compliant cellular structures which can be used for these two types of structures are first calculated using a multi-objective approach. These topologies are calculated based on linear kinematics but the effect of geometric nonlinearities is also investigated. Then, ways to provide a smooth surface were investigated by considering a general honeycomb substructure with infill, bonded face-sheet or scales. This allowed justifying an overall skin concept made of a cellular substructure with a bonded face-sheet. Lastly, the design of an improved skin for NextGen Aeronautics

  9. Aircraft Structural Analysis, Design Optimization, and Manufacturing Tool Integration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative research is proposed in integrating fundamental aircraft design processes with an emphasis on composite structures. Efficient, lightweight composite...

  10. Enabling Use of Unmanned Aircraft Systems for Arctic Environmental Monitoring

    DEFF Research Database (Denmark)

    Storvold, Rune; la Cour-Harbo, Anders; Mulac, Brenda;

    , satellites and manned aircraft are the traditional platforms on which scientists gather data of the atmosphere, sea ice, glaciers, fauna and vegetation. However, significant data gaps still exist over much of the Arctic because there are few research stations, satellites are often hindered by cloud cover......, poor resolution, and the complicated surface of snow and ice. Measurements made from manned aircraft are also limited because of range and endurance, as well as the danger and costs presented by operating manned aircraft in harsh and remote environments like the Arctic. Unmanned aircraft systems (UAS...

  11. Using heuristics to solve the dedicated aircraft recovery problem

    DEFF Research Database (Denmark)

    Løve, Michael; Sørensen, Kim Riis; Larsen, Jesper;

    2001-01-01

    The Dedicated Aircraft Recovery Problem (DARP) involves decisions concerning aircraft to flight assignments in situations where unforeseen events have disrupted the existing flight schedule, e.g. bad weather causing flight delays. The dedicated aircraft recovery problem aims to recover these flight...... schedules through a series of reassignments of aircraft to flights, delaying of flights and cancellations of flights. This article describes an effective method to solve DARP. A heuristic is implemented, which is able to generate feasible revised flight schedules of good quality in less than 10 seconds when...

  12. Research on aircraft emissions. Need for future work

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, A. [German Aerospace Establishment, Cologne (Germany). Transport Research Div.

    1997-12-31

    Reflecting the present status of the research on aircraft emissions and their impacts upon the atmosphere, task-fields for a work programme for the research on aircraft emissions can be derived. Most important measures are to support the efforts to define adequate reduction measures, and (with highest priority) scenario-writing for the long-term development in aircraft emissions, to be able to include into the decision making process the aspect of in-time-reaction against unwanted future. Besides that, a steady monitoring of global aircraft emissions will be necessary. (author) 5 refs.

  13. Analysis of Virtual Sensors for Predicting Aircraft Fuel Consumption

    Data.gov (United States)

    National Aeronautics and Space Administration — Previous research described the use of machine learning algorithms to predict aircraft fuel consumption. This technique, known as Virtual Sensors, models fuel...

  14. Integrated Network of Optimizations for Aircraft Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft design is a complex process requiring interactions and exchange of information among multiple disciplines such as aerodynamics, strength, fatigue, controls,...

  15. Model Updating in Online Aircraft Prognosis Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Diagnostic and prognostic algorithms for many aircraft subsystems are steadily maturing. Unfortunately there is little experience integrating these technologies into...

  16. Escorting commercial aircraft to reduce the MANPAD threat

    Science.gov (United States)

    Hock, Nicholas; Richardson, M. A.; Butters, B.; Walmsley, R.; Ayling, R.; Taylor, B.

    2005-11-01

    This paper studies the Man-Portable Air Defence System (MANPADS) threat against large commercial aircraft using flight profile analysis, engagement modelling and simulation. Non-countermeasure equipped commercial aircraft are at risk during approach and departure due to the large areas around airports that would need to be secured to prevent the use of highly portable and concealable MANPADs. A software model (CounterSim) has been developed and was used to simulate an SA-7b and large commercial aircraft engagement. The results of this simulation have found that the threat was lessened when a escort fighter aircraft is flown in the 'Centreline Low' position, or 25 m rearward from the large aircraft and 15 m lower, similar to the Air-to-Air refuelling position. In the model a large aircraft on approach had a 50% chance of being hit or having a near miss (within 20m) whereas escorted by a countermeasure equipped F-16 in the 'Centerline Low' position, this was reduced to only 14%. Departure is a particularly vulnerable time for large aircraft due to slow climb rates and the inability to fly evasive manoeuvres. The 'Centreline Low' escorted departure greatly reduced the threat to 16% hit or near miss from 62% for an unescorted heavy aircraft. Overall the CounterSim modelling has showed that escorting a civilian aircraft on approach and departure can reduce the MANPAD threat by 3 to 4 times.

  17. Parametric Study on Important Variables of Aircraft Impact to Prestressed Concrete Containment Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sangshup; Hahm, Daegi; Choi, Inkil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    In this paper, to find the damage parameter, it is necessary to use many analysis cases and the time reduction. Thus, this paper uses a revised version of Riera's method. Using this method, the response has been found a Prestressed Concrete Containments Vessels (PCCVs) subject to impact loading, and the results of the velocity and mass of the important parameters have been analyzed. To find the response of the PCCVs subjected to aircraft impact load, it is made that a variable forcing functions depending on the velocity and fuel in the paper. The velocity variation affects more than fuel percentage, and we expect that the severe damage of the PCCVs with the same material properties is subject to aircraft impact load (more than 200m/s and 70%)

  18. Machining of Aircraft Titanium with Abrasive-Waterjets for Fatigue Critical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H. T.; Hovanski, Yuri; Dahl, Michael E.

    2012-02-01

    Laboratory tests were conducted to determine the fatigue performance of abrasive-waterjet- (AWJ-) machined aircraft titanium. Dog-bone specimens machined with AWJs were prepared and tested with and without sanding and dry-grit blasting with Al2O3 as secondary processes. The secondary processes were applied to remove the visual appearance of AWJ-generated striations and to clean up the garnet embedment. The fatigue performance of AWJ-machined specimens was compared with baseline specimens machined with CNC milling. Fatigue test results of the titanium specimens not only confirmed our previous findings in aluminum dog-bone specimens but in comparison also further enhanced the fatigue performance of the titanium. In addition, titanium is known to be difficult to cut, particularly for thick parts, however AWJs cut the material 34% faster han stainless steel. AWJ cutting and dry-grit blasting are shown to be a preferred ombination for processing aircraft titanium that is fatigue critical.

  19. Polymer, metal, and ceramic matrix composites for advanced aircraft engine applications

    Science.gov (United States)

    Mcdanels, D. L.; Serafini, T. T.; Dicarlo, J. A.

    1986-01-01

    Advanced aircraft engine research within NASA Lewis is being focused on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.

  20. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications.

    Science.gov (United States)

    Di Sante, Raffaella

    2015-07-30

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

  1. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodies commercial transport aircraft

    Science.gov (United States)

    Stone, R. H.

    1983-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 9 years of service. There are six Kevlar-49 panels on each aircraft: a left hand and right hand set of a wing body sandwich fairing; a solid laminate under wing fillet panel; and a 422 K (300 F) service aft engine fairing. The fairings have accumulated a total of 70,000 hours, with one ship set having over 24,000 hours service. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  2. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications

    Directory of Open Access Journals (Sweden)

    Raffaella Di Sante

    2015-07-01

    Full Text Available In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

  3. Residual Stress Analysis of Aircraft Part using Neutron Beam

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Eun Joo; Seong, Baek Seok; Sim, Cheul Muu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    A precise measurement of the residual stress magnitude and distribution is an important factor to evaluate the lifetime or safety of the materials, because the residual stress affects the material properties, such as the strength, fatigue, etc. In the case of a fighter jet, the lifetime and safety of the parts of the landing gear are more important than that of a passenger airplane because of its frequent take offs and landings. In particular in the case of training a fighter jet, a precise evaluation of life time for the parts of the landing gear is strongly required for economic reason. In this study, the residual stress of a part of the landing gear of the training fighter jet which is used to fix the landing gear to the aircraft body was investigated. The part was used for 2000 hours of flight, which corresponds to 10 years. During this period, the fighter jet normally takes off and lands more than 2000 times. These frequent take off and landing can generate residual stress and cause a crack in the part. By measuring the neutron diffraction peaks, we evaluated the residual stress of the landing gear part

  4. Investigation of the behaviour of a LILW superficial repository under aircraft impact

    Energy Technology Data Exchange (ETDEWEB)

    Lo Frano, Rosa, E-mail: rosa.lofrano@ing.unipi.it; Stefanini, Lorenzo

    2016-04-15

    Highlights: • Safety assessment of a LILW superficial repository. • Investigation of the consequences of an aircraft impact with fuel burning. • Experimental material properties. • Numerical simulation of aircraft impact with fuel burning accident by MSC.MARC{sup ©} code. • Demonstration that the overall integrity resulted is guaranteed. - Abstract: Safety and security are the two fundamental aspects to guarantee when designing a LILW superficial repository. Because of its safety concern, we have to prove, and build confidence in, the primary and secondary consequences of the crashing will be acceptable. These goals are obtained generally by means of safety assessment supported by calculations. This study is intended to investigate the performance of a superficial repository subjected to aircraft impact and fuel burning. To the purpose a superficial repository similar to that of El Cabril has been considered. Moreover to be confident the facility is safe and that the consequences of such a type of accident on the environment and humans are negligible, an appropriate safety assessment was carried out. The potential damage that aircraft impact could bring into the repository has been therefore analysed and discussed. To attain the intent load functions, calculated according to the Riera approach, and the maximum temperature reached by fuel during its combustion have been considered. FEM (thermo-mechanical) simulations have been done, by MSC{sup ©} Marc code, assuming damaging phenomena of concrete and material properties variation with the temperature. The obtained results showed that an empty superficial repository with a wall thickness, ranging from 0.7 to 1 m, is not sufficient to avoid penetration. Nevertheless even in presence of a reduced strength and of (cone) cracking and plugging, the overall integrity resulted guaranteed.

  5. Federal Aviation Administration (FAA airworthiness certification for ceramic matrix composite components in civil aircraft systems

    Directory of Open Access Journals (Sweden)

    Gonczy Stephen T.

    2015-01-01

    Full Text Available Ceramic matrix composites (CMCs are being designed and developed for engine and exhaust components in commercial aviation, because they offer higher temperature capabilities, weight savings, and improved durability compared to metals. The United States Federal Aviation Administration (FAA issues and enforces regulations and minimum standards covering the safe manufacture, operation, and maintenance of civil aircraft. As new materials, these ceramic composite components will have to meet the certification regulations of the FAA for “airworthiness”. The FAA certification process is defined in the Federal Aviation Regulations (Title 14 of the Code of Federal Regulations, FAA policy statements, orders, advisory circulars, technical standard orders, and FAA airworthiness directives. These regulations and documents provide the fundamental requirements and guidelines for design, testing, manufacture, quality assurance, registration, operation, inspection, maintenance, and repair of aircraft systems and parts. For metallic parts in aircraft, the FAA certification and compliance process is well-established for type and airworthiness certification, using ASTM and SAE standards, the MMPDS data handbook, and FAA advisory circulars. In a similar manner for polymer matrix composites (PMC, the PMC industry and the FAA have jointly developed and are refining parallel guidelines for polymer matrix composites (PMCs, using guidance in FAA circulars and the CMH-17 PMC handbook. These documents discuss design methods and codes, material testing, property data development, life/durability assessment, production processes, QA procedures, inspection methods, operational limits, and repairs for PMCs. For ceramic composites, the FAA and the CMC and aerospace community are working together (primarily through the CMH-17 CMC handbook to define and codify key design, production, and regulatory issues that have to be addressed in the certification of CMC components in

  6. YF-12 Lockalloy ventral fin program, volume 1. [design analysis, fabrication, and manufacturing of aircraft structures using aluminum and beryllium alloys for the lockheed YF-12 aircraft

    Science.gov (United States)

    Duba, R. J.; Haramis, A. C.; Marks, R. F.; Payne, L.; Sessing, R. C.

    1976-01-01

    Results are presented of the YF-12 Lockalloy Ventral Fin Program which was carried out by Lockheed Aircraft Corporation - Advanced Development Projects for the joint NASA/USAF YF-12 Project. The primary purpose of the program was to redesign and fabricate the ventral fin of the YF-12 research airplane (to reduce flutter) using Lockalloy, and alloy of beryllium and aluminum, as a major structural material. A secondary purpose, was to make a material characterization study (thermodynamic properties, corrosion; fatigue tests, mechanical properties) of Lockalloy to validate the design of the ventral fin and expand the existing data base on this material. All significant information pertinent to the design and fabrication of the ventral fin is covered. Emphasis throughout is given to Lockalloy fabrication and machining techniques and attendant personnel safety precautions. Costs are also examined. Photographs of tested alloy specimens are shown along with the test equipment used.

  7. Modeling aircraft noise induced sleep disturbance

    Science.gov (United States)

    McGuire, Sarah M.

    One of the primary impacts of aircraft noise on a community is its disruption of sleep. Aircraft noise increases the time to fall asleep, the number of awakenings, and decreases the amount of rapid eye movement and slow wave sleep. Understanding these changes in sleep may be important as they could increase the risk for developing next-day effects such as sleepiness and reduced performance and long-term health effects such as cardiovascular disease. There are models that have been developed to predict the effect of aircraft noise on sleep. However, most of these models only predict the percentage of the population that is awakened. Markov and nonlinear dynamic models have been developed to predict an individual's sleep structure during the night. However, both of these models have limitations. The Markov model only accounts for whether an aircraft event occurred not the noise level or other sound characteristics of the event that may affect the degree of disturbance. The nonlinear dynamic models were developed to describe normal sleep regulation and do not have a noise effects component. In addition, the nonlinear dynamic models have slow dynamics which make it difficult to predict short duration awakenings which occur both spontaneously and as a result of nighttime noise exposure. The purpose of this research was to examine these sleep structure models to determine how they could be altered to predict the effect of aircraft noise on sleep. Different approaches for adding a noise level dependence to the Markov Model was explored and the modified model was validated by comparing predictions to behavioral awakening data. In order to determine how to add faster dynamics to the nonlinear dynamic sleep models it was necessary to have a more detailed sleep stage classification than was available from visual scoring of sleep data. An automatic sleep stage classification algorithm was developed which extracts different features of polysomnography data including the

  8. Multi-Physics Computational Modeling Tool for Materials Damage Assessment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed here is to provide a multi-physics modeling tool for materials damage assessment for application to future aircraft design. The software...

  9. A NASA study of the impact of technology on future multimission aircraft

    Science.gov (United States)

    Samuels, Jeffrey J.

    1992-01-01

    A conceptual aircraft design study was recently completed which compared three supersonic multimission tactical aircraft. The aircraft were evaluated in two technology timeframes and were sized with consistent methods and technology assumptions so that the aircraft could be compared in operational utility or cost analysis trends. The three aircraft are a carrier-based Fighter/Attack aircraft, a land-based Multirole Fighter, and a Short Takeoff/Vertical Landing (STOVL) aircraft. This paper describes the design study ground rules used and the aircraft designed. The aircraft descriptions include weights, dimensions and layout, design mission and maneuver performance, and fallout mission performance. The effect of changing technology and mission requirements on the STOVL aircraft and the impact of aircraft navalization are discussed. Also discussed are the effects on the STOVL aircraft of both Thrust/Weight required in hover and design mission radius.

  10. 78 FR 26103 - Proposed Standard Operating Procedure (SOP) of the Aircraft Certification Service (AIR) Project...

    Science.gov (United States)

    2013-05-03

    ... Federal Aviation Administration Proposed Standard Operating Procedure (SOP) of the Aircraft Certification... comments on, the Aircraft Certification Service (AIR) standard operating procedure (SOP) describing the... comments on the SOP to: Federal Aviation Administration (FAA) Aircraft Certification Service,...

  11. An Investigation of Two-Propeller Tilt Wing V/STOL Aircraft Flight Characteristics

    Science.gov (United States)

    1992-01-01

    aerodynamic input files or using manual input data. The output provides static aircraft longitudinal parameters for determining performance...wing aircraft so configured, the NASA Ames computer code TWANG is used for simulation of aircraft longitudinal stability and performance characteristics

  12. 75 FR 51953 - Notification and Reporting of Aircraft Accidents or Incidents and Overdue Aircraft, and...

    Science.gov (United States)

    2010-08-24

    ... Organization (ICAO) amendment 13 to Annex 13, Aircraft Accident and Incident Investigation, defines unmanned... safety. If the NTSB implemented the ICAO standard, it would likely receive many reports that would not be... safety recommendations. In addition, the proposed ICAO standard would not address the concerns of...

  13. Unified Theory for Aircraft Handling Qualities and Adverse Aircraft-Pilot Coupling

    Science.gov (United States)

    Hess, R. A.

    1997-01-01

    A unified theory for aircraft handling qualities and adverse aircraft-pilot coupling or pilot-induced oscillations is introduced. The theory is based on a structural model of the human pilot. A methodology is presented for the prediction of (1) handling qualities levels; (2) pilot-induced oscillation rating levels; and (3) a frequency range in which pilot-induced oscillations are likely to occur. Although the dynamics of the force-feel system of the cockpit inceptor is included, the methodology will not account for effects attributable to control sensitivity and is limited to single-axis tasks and, at present, to linear vehicle models. The theory is derived from the feedback topology of the structural model and an examination of flight test results for 32 aircraft configurations simulated by the U.S. Air Force/CALSPAN NT-33A and Total In-Flight Simulator variable stability aircraft. An extension to nonlinear vehicle dynamics such as that encountered with actuator saturation is discussed.

  14. Forecasting for a Lagrangian aircraft campaign

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2004-01-01

    Full Text Available A forecast system has been developed in preparation for an upcoming aircraft measurement campaign, where the same air parcels polluted by emissions over North America shall be sampled repeatedly as they leave the continent, during transport over the Atlantic, and upon their arrival over Europe. This paper describes the model system in advance of the campaign, in order to make the flight planners familiar with the novel model output. The aim of a Lagrangian strategy is to infer changes in the chemical composition and aerosol distribution occurring en route by measured upwind/downwind differences. However, guiding aircraft repeatedly into the same polluted air parcels requires careful forecasting, for which no suitable model system exists to date. This paper describes a procedure using both Eulerian-type (i.e. concentration fields and Lagrangian-type (i.e. trajectories model output from the Lagrangian particle dispersion model FLEXPART to predict the best opportunities for a Lagrangian experiment. The best opportunities are defined as being highly polluted air parcels which receive little or no emission input after the first measurement, which experience relatively little mixing, and which are reachable by as many aircraft as possible. For validation the system was applied to the period of the NARE 97 campaign where approximately the same air masses were sampled on different flights. Measured upwind/downwind differences in carbon monoxide (CO and ozone (O3 decreased significantly as the threshold values used for accepting cases as Lagrangian were tightened. This proves that the model system can successfully identify Lagrangian opportunities.

  15. The ARCTAS aircraft mission: design and execution

    Directory of Open Access Journals (Sweden)

    D. J. Jacob

    2009-08-01

    Full Text Available The NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS mission was conducted in two 3-week deployments based in Alaska (April 2008 and western Canada (June–July 2008. The goal of ARCTAS was to better understand the factors driving current changes in Arctic atmospheric composition and climate, including (1 transport of mid-latitude pollution, (2 boreal forest fires, (3 aerosol radiative forcing, and (4 chemical processes. ARCTAS involved three aircraft: a DC-8 with detailed chemical payload, a P-3 with extensive aerosol payload, and a B-200 with aerosol remote sensing instrumentation. The aircraft augmented satellite observations of Arctic atmospheric composition, in particular from the NASA A-Train, by (1 validating the data, (2 improving constraints on retrievals, (3 making correlated observations, and (4 characterizing chemical and aerosol processes. The April flights (ARCTAS-A sampled pollution plumes from all three mid-latitude continents, fire plumes from Siberia and Southeast Asia, and halogen radical events. The June-July flights (ARCTAS-B focused on boreal forest fire influences and sampled fresh fire plumes from northern Saskatchewan as well as older fire plumes from Canada, Siberia, and California. The June–July deployment was preceded by one week of flights over California sponsored by the California Air Resources Board (ARCTAS-CARB. The ARCTAS-CARB goals were to (1 improve state emission inventories for greenhouse gases and aerosols, (2 provide observations to test and improve models of ozone and aerosol pollution. Extensive sampling across southern California and the Central Valley characterized emissions from urban centers, offshore shipping lanes, agricultural crops, feedlots, industrial sources, and wildfires.

  16. Forecasting for a Lagrangian aircraft campaign

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2004-05-01

    Full Text Available A forecast system has been developed in preparation for an upcoming aircraft measurement campaign, where the same air parcels polluted by emissions over North America shall be sampled repeatedly as they leave the continent, during transport over the Atlantic, and upon their arrival over Europe. This paper describes the model system in advance of the campaign, in order to make the flight planners familiar with the novel model output. The aim of a Lagrangian strategy is to infer changes in the chemical composition and aerosol distribution occurring en route by measured upwind/downwind differences. However, guiding aircraft repeatedly into the same polluted air parcels requires careful forecasting, for which no suitable model system exists to date. This paper describes a procedure using both Eulerian-type (i.e. concentration fields and Lagrangian-type (i.e. trajectories model output from the Lagrangian particle dispersion model FLEXPART to predict the best opportunities for a Lagrangian experiment. The best opportunities are defined as being highly polluted air parcels which receive little or no emission input after the first measurement, which experience relatively little mixing, and which are reachable by as many aircraft as possible. For validation the system was applied to the period of the NARE 97 campaign where approximately the same air masses were sampled on different flights. Measured upwind/downwind differences in carbon monoxide (CO and ozone (O3 decreased significantly as the threshold values used for accepting cases as Lagrangian were tightened. This proves that the model system can successfully identify Lagrangian opportunities.

  17. Aircraft Simulator Data Requirements Study. Volume II

    Science.gov (United States)

    1977-01-01

    23143 ( Wep ), "Data, Technical Aircraft; for the Design of Aviation Training Devices," was to be used as a guide for the preparation of the new standard. 2...made, displays, etc., utilizing the "hot mockup ." The really useful data can only result from flight tests and can be obtained at any time after tile... mockup " and the preliminary tactical tape used in the tests. It will represent the best system data that will generally be obtained. k The last data

  18. Radiant Energy Power Source for Jet Aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Doellner, O.L.

    1992-02-01

    This report beings with a historical overview on the origin and early beginnings of Radiant Energy Power Source for Jet Aircraft. The report reviews the work done in Phase I (Grant DE-FG01-82CE-15144) and then gives a discussion of Phase II (Grant DE-FG01-86CE-15301). Included is a reasonably detailed discussion of photovoltaic cells and the research and development needed in this area. The report closes with a historical perspective and summary related to situations historically encountered on projects of this nature. 15 refs.

  19. Robust control of an aircraft model

    Energy Technology Data Exchange (ETDEWEB)

    Werner, H. [Bochum Univ. (Germany). Fakultaet fuer Elektrotechnik

    1999-12-01

    A new multimodel approach to robust controller design is illustrated by a practical application: for a laboratory aircraft model, a robust controller is designed simultaneously for normal operating conditions and for propeller failure. Based on a linear model for each operating mode, an LMI formulation of the problem and convex programming are used to search for a state feedback controller which achieves the objective. This state feedback design is then realized simultaneously in both operating modes by a controller which is based on fast output sampling. Robust performance is demonstrated by experimental results. (orig.)

  20. Robust control of an aircraft model

    Energy Technology Data Exchange (ETDEWEB)

    Werner, H. (Bochum Univ. (Germany). Fakultaet fuer Elektrotechnik)

    1999-01-01

    A new multimodel approach to robust controller design is illustrated by a practical application: for a laboratory aircraft model, a robust controller is designed simultaneously for normal operating conditions and for propeller failure. Based on a linear model for each operating mode, an LMI formulation of the problem and convex programming are used to search for a state feedback controller which achieves the objective. This state feedback design is then realized simultaneously in both operating modes by a controller which is based on fast output sampling. Robust performance is demonstrated by experimental results. (orig.)

  1. Squeeze Film Damping for Aircraft Gas Turbines

    Directory of Open Access Journals (Sweden)

    R. W. Shende

    1988-10-01

    Full Text Available Modern aircraft gas turbine engines depend heavily on squeeze film damper supports at the bearings for abatement of vibrations caused by a number of probable excitation sources. This design ultimately results in light-weight construction together with higher efficiency and reliability of engines. Many investigations have been reported during past two decades concerning the functioning of the squeeze film damper, which is simple in construction yet complex in behaviour with its non-linearity and multiplicity of variables. These are reviewed in this article to throw light on the considerations involved in the design of rotor-bearing-casing systems incorporating squeeze film dampers.

  2. Extreme Loading of Aircraft Fan Blade

    CERN Document Server

    Datta, Dibakar

    2013-01-01

    The response of an aircraft fan blade manufactured by composites under the action of static and impact load has been studied in this report. The modeling and analysis of the geometry has been done using CASTEM 2007 version. For the quasi static analysis, the pressure has been incrementally applied until it satisfies the failure criteria. The deformed configuration, strain, Von-Mises stress, and the deflection of the blade have been studied. The response of the system e.g. deformation time history due to the impact of the projectile has been studied where the Newmark method for the dynamic problem has been implemented.

  3. Climatic impact of aircraft induced ozone changes

    Energy Technology Data Exchange (ETDEWEB)

    Sausen, R.; Feneberg, B.; Ponater, M. [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    The effect of aircraft induced ozone changes on the global climate is studied by means of the general circulation model ECHAM4. The zonal mean temperature signal is considered. In order to estimate the statistical significance of the climatic impact a multivariate statistical test hierarchy combined with the fingerprint method has been applied. Sensitivity experiments show a significant coherent temperature response pattern in the northern extra-tropics for mid-latitude summer conditions. It consists of a tropospheric warming of about 0.2 K with a corresponding stratospheric cooling of the same magnitude. (author) 16 refs.

  4. An Overview of Aircraft Integrated Control Technology

    Science.gov (United States)

    1994-09-01

    and stability augmentation, high hf’ system, steering and brak - ing 22 ’ . An F-15B research aircraft, modified with all-moving canard control...0.2 0.4 0.6 0.8 1.0 1.2 1.4 MACH NUMBER The IFPC system responds to pilot inputs with an automatic blend of aerodynamic control surfaces and thrust...decoupling airframe translation and rotation movements). In general, it was found that a blended combination of direct force and conventional control

  5. The Glass Ceiling for Remotely Piloted Aircraft

    Science.gov (United States)

    2013-08-01

    Views July–August 2013 Air & Space Power Journal | 101 The Glass Ceiling for Remotely Piloted Aircraft Lt Col Lawrence Spinetta, PhD, USAF Those...number. 1. REPORT DATE AUG 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE The Glass Ceiling for Remotely...promotion to flag rank. By design or effect, a bottleneck exists that guarantees a glass ceiling (i.e., a barrier to advancement) for RPA officers. This

  6. Predicted electrothermal deicing of aircraft blades

    Science.gov (United States)

    Keith, T. G., Jr.; Masiulaniec, K. C.; Dewitt, K. J.; Chao, D. F.

    1984-01-01

    A finite difference method is presented for the transient two-dimensional simulation of an electrothermal de-icer pad of an aircraft wing or blade. The irregular geometry of the composite ice laden blade is handled by use of a body fitted coordinate transformation. By this approach the various blade layers are mapped into a set of stacked rectangular strips in which the numerical solution takes place. Several heat conduction examples are presented in order to demonstrate the accuracy of the numerical procedure. Ice melting time predictions are made and compared to earlier predictions where possible. Finally, a new graphical presentation of thermal results is shown.

  7. Sensor Technology and Futuristic Of Fighter Aircraft

    Directory of Open Access Journals (Sweden)

    Emmanuel Rugambage Ndayishimiye

    2016-08-01

    Full Text Available The Next Generation fighter Aircraft seeks a fighter with higher abilities in areas such as reach, persistence, survivability, net-centricity, situation awareness, human system integration and weapons effects. The future system will have to counter foe armed with next generation advanced electronic attack, sophisticated integrated air defense systems, directed energy weapons, passive detection, integrated self-protection and cyber-attack capabilities. It must be capable to operate in the anti-access area-denial (A2/AD environment that will exist in the next coming years.

  8. Mission Analysis and Aircraft Sizing of a Hybrid-Electric Regional Aircraft

    Science.gov (United States)

    Antcliff, Kevin R.; Guynn, Mark D.; Marien, Ty V.; Wells, Douglas P.; Schneider, Steven J.; Tong, Michael T.

    2016-01-01

    The purpose of this study was to explore advanced airframe and propulsion technologies for a small regional transport aircraft concept (approximately 50 passengers), with the goal of creating a conceptual design that delivers significant cost and performance advantages over current aircraft in that class. In turn, this could encourage airlines to open up new markets, reestablish service at smaller airports, and increase mobility and connectivity for all passengers. To meet these study goals, hybrid-electric propulsion was analyzed as the primary enabling technology. The advanced regional aircraft is analyzed with four levels of electrification, 0 percent electric with 100 percent conventional, 25 percent electric with 75 percent conventional, 50 percent electric with 50 percent conventional, and 75 percent electric with 25 percent conventional for comparison purposes. Engine models were developed to represent projected future turboprop engine performance with advanced technology and estimates of the engine weights and flowpath dimensions were developed. A low-order multi-disciplinary optimization (MDO) environment was created that could capture the unique features of parallel hybrid-electric aircraft. It is determined that at the size and range of the advanced turboprop: The battery specific energy must be 750 watt-hours per kilogram or greater for the total energy to be less than for a conventional aircraft. A hybrid vehicle would likely not be economically feasible with a battery specific energy of 500 or 750 watt-hours per kilogram based on the higher gross weight, operating empty weight, and energy costs compared to a conventional turboprop. The battery specific energy would need to reach 1000 watt-hours per kilogram by 2030 to make the electrification of its propulsion an economically feasible option. A shorter range and/or an altered propulsion-airframe integration could provide more favorable results.

  9. Coast Guard Aircraft: Transfer of Fixed-Wing C-27J Aircraft Is Complex and Further Fleet Purchases Should Coincide with Study Results

    Science.gov (United States)

    2015-03-01

    propellers to be serviced by the original manufacturer and these items are now properly stored. In October 2014, we observed the aircraft at L-3...COAST GUARD AIRCRAFT Transfer of Fixed- Wing C-27J Aircraft Is Complex and Further Fleet Purchases Should Coincide...00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Coast Guard Aircraft : Transfer of Fixed-Wing C-27J Aircraft Is Complex and Further Fleet Purchases

  10. Development of a Novel, Reactive Extrusion Process for Continuous Production of Long, Pure Carbon Nanotubes for Application in Lightweight Composite Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — According to the NASA A2-01 topic description titled Materials and Structures for Future Aircraft, "advanced materials and structures technologies are needed in all...

  11. Carrier Analysis Lab (CAL) – Aircraft/Weapons/Ship Compatibility Lab

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The Carrier Analysis Lab (CAL) - Aircraft/Weapons/Ship Compatibility Lab located at the Naval Air Warfare Center Aircraft Division, Lakehurst, NJ provides...

  12. Integrating the Unmanned Aircraft System into the National Airspace System

    Science.gov (United States)

    2011-06-18

    and the ground control system. The ground control system is comprised of several integrated components to include: avionics , fuel, navigation...accessed January 15, 2011). U.S. Army Unmanned Aircraft Systems Roadmap 2010-2035: Eyes of the Army. Fort Rucker, Ala .: U.S. Army Unmanned Aircraft

  13. Inertial Force Coupling to Nonlinear Aeroelasticity of Flexible Wing Aircraft

    Science.gov (United States)

    Nguyen, Nhan T.; Ting, Eric

    2016-01-01

    This paper investigates the inertial force effect on nonlinear aeroelasticity of flexible wing aircraft. The geometric are nonlinearity due to rotational and tension stiffening. The effect of large bending deflection will also be investigated. Flutter analysis will be conducted for a truss-braced wing aircraft concept with tension stiffening and inertial force coupling.

  14. Ray analysis of a class of hybrid cylindrical aircraft wings

    OpenAIRE

    Jha, RM; Bokhari, SA; Sudhakan, V; Mahapatra, PR

    1988-01-01

    A new approach to the modelling of aircraft wings, based on the combination of hybrid quadric (parabolic and circular) cylinders, has been presented for electromagnetic applications. Closed-form expressions have been obtained for ray parameters required in the high-frequency mutual coupling computation of antenna pairs located arbitrarily on an aircraft wing.

  15. Aircraft-skin Infrared Radiation Characteristics Modeling and Analysis

    Institute of Scientific and Technical Information of China (English)

    Lu Jianwei; Wang Qiang

    2009-01-01

    One of the most important problems of stealth technology is to evaluate the infrared radiation (IR) level received by IR sensors from fighters to be detected. This article presents a synthetic method for calculating the IR emitted from aircraft-skin. By reckoning the aerodynamic heating and hot engine casing to be the main heat sources of the exposed aircraft-skin, a numerical model of skin temperature distribution is established through computational fluid dynamics (CFD) technique. Based on it, an infrared signature model for solving the complex geometry and structure of a fighter is proposed with the reverse Monte Carlo (RMC) method. Finally, by way of determining the IR intensity from aircraft-skin, the aircraft components that emit the most IR can be identified; and the cooling effects of the main aircraft components on IR intensity are investigated. It is found that reduction by 10 K in the skin temperature of head, vertical stabilizers and wings could lead to decline of more than 8% of the IR intensity on the aircraft-skin in front view while at the broadside of the aircraft, the drops in IR intensity could attain under 8%. The results provide useful reference in designing stealthy aircraft.

  16. Aircraft bi-level life cycle cost estimation

    NARCIS (Netherlands)

    Zhao, X.; Verhagen, W.J.C.; Curan, R.

    2015-01-01

    n an integrated aircraft design and analysis practice, Life Cycle Cost (LCC) is essential for decision making. The LCC of an aircraft is ordinarily partially estimated by emphasizing a specific cost type. However, an overview of the LCC including design and development cost, production cost, operati

  17. The longitudinal controls fixed static stability of tailless aircraft

    OpenAIRE

    de Castro, Helena V.

    2000-01-01

    This paper describes the development of a simple theory of the longitudinal controls fixed static stability of tailless aeroplanes. The classical theory, as developed for the conventional aircraft, is modified to accommodate the particular features of the tailless aeroplanes. The theory was then applied to a particular blended-wing-body tailless civil transport aircraft, BWB-98. Cranfield University

  18. Investigation of Cross Flow Fan Propulsion for Lightweight VTOL Aircraft

    Science.gov (United States)

    2000-12-01

    the aircraft longitudinal axis due to the total length of the unit. A total fan span of 20.6 inches is required to produce 690 lbf of thrust when...which are mounted parallel to the aircraft longitudinal axis and rest perpendicular, would be actuated as required to provide yaw control and aft

  19. New opportunities for aircraft noise policy in the Netherlands

    NARCIS (Netherlands)

    Kroesen, M.

    2010-01-01

    This papers aims (1) to provide a review of the (non-acoustic) social-psychological determinants of aircraft noise annoyance, (2) evaluate Schiphol’s noise policy from a social-psychological perspective and (3) review a governance model that can effectively address non-acoustic factors in aircraft n

  20. Aircraft noise exposure from Schiphol airport: A relation with complainants

    NARCIS (Netherlands)

    Jong, R.G. de; Wiechen, C.M.A.G. van; Franssen, E.A.M.; Lebret, E.

    2002-01-01

    The possible relation between aircraft noise exposure and the prevalence of complainants around Schiphol airport was studied. The home address of people who complain about aircraft noise at the Environment Advisory Committee Schiphol was combined with annual average noise levels, using a Geographic