WorldWideScience

Sample records for aircraft industry

  1. Aviation industry-research in aircraft finance

    OpenAIRE

    Ehrenthal, Joachim C.F.

    2010-01-01

    Aircraft values are key to aircraft financing decisions: Aircraft values act as a source of security for providers of debt capital and lessors failing to re-place aircraft, and as a source of upside potential to equity investors. Yet, aircraft values cannot be precisely and continuously monitored. This is because neither actual primary nor secondary aircraft transaction prices are disclosed. Various types of third party valuation estimates exist, but relying solely on third party appraisa...

  2. Locating industrial VOC sources with aircraft observations.

    Science.gov (United States)

    Toscano, P; Gioli, B; Dugheri, S; Salvini, A; Matese, A; Bonacchi, A; Zaldei, A; Cupelli, V; Miglietta, F

    2011-05-01

    Observation and characterization of environmental pollution, focussing on Volatile Organic Compounds (VOCs), in a high-risk industrial area, are particularly important in order to provide indications on a safe level of exposure, indicate eventual priorities and advise on policy interventions. The aim of this study is to use the Solid Phase Micro Extraction (SPME) method to measure VOCs, directly coupled with atmospheric measurements taken on a small aircraft environmental platform, to evaluate and locate the presence of VOC emission sources in the Marghera industrial area. Lab analysis of collected SPME fibres and subsequent analysis of mass spectrum and chromatograms in Scan Mode allowed the detection of a wide range of VOCs. The combination of this information during the monitoring campaign allowed a model (Gaussian Plume) to be implemented that estimates the localization of emission sources on the ground.

  3. Discussion on the dispersion & agglomeration of aircraft industry

    Institute of Scientific and Technical Information of China (English)

    Bo Chu

    2009-01-01

    The aircraft industry is crucial to the economy and security of a nation. In this paper, the spatial characteristics and patterns of the aircraft industry are analyzed on different spatial scales. It is found that there is a 'Matthew effect' in the global aircraft industry and the spatial evolution of the industry is consistent with the industrialization process of the whole country. It is also revealed that the spatial evolution of the country is driven by both the centripetal forces including capital, talents, technology and agglomeration economies and the centrifugal forces including the comparative advantage, cost &risk sharing, emerging markets, development policy for less-developed regions and the military imperative. These forces have both market-stabilizing and market-disrupting effects on the spatial evolution of the aircraft industry. The study suggests that lessons drawn from the experiences in the United States and France are expected to be conducive to the rise of China's aircraft industry in the future.

  4. Development of aircraft industry in India

    Directory of Open Access Journals (Sweden)

    M. S. Chaturvedi

    1952-09-01

    Full Text Available It is axiomatic that India requires to self sufficient in the design, development and production of aircraft both for civil and military use, and not, as she is at present, remains entirely dependent on foreign sources. This requirement is keenly felt in the field of defence, since it is appreciated .that the growth of the Armed Forces of a country, in fact their very existence in peace and war, is in modern times directly related to the industrial potential of that country to produce weapons of war. If the two are not properly balanced the Armed Forces would be quite ineffective in fulfilling their role of defending their country in time of emergency.

  5. Discussion on the dispersion & agglomeration of aircraft industry

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The aircraft industry is crucial to the economy and security of a nation. In this paper,the spatial characteristics and patterns of the aircraft industry are analyzed on different spatial scales. It is found that there is a 'Matthew effect' in the global aircraft industry and the spatial evolution of the industry is consistent with the industrialization process of the whole country. It is also revealed that the spatial evolution of the country is driven by both the centripetal forces including capital,talen...

  6. Developing countries and the aircraft industry: match or mismatch?

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Bruijn, de Erik J.

    2001-01-01

    For many industrially developing countries, technology transfer is seen as a road towards technological and economic development. Indonesian experiences with the aircraft industry suggest that the transfer of technology in this sector is extremely difficult, and even if technology is actually transf

  7. Electrochemical Machining – Special Equipment and Applications in Aircraft Industry

    Directory of Open Access Journals (Sweden)

    Ruszaj Adam

    2016-06-01

    Full Text Available Electrochemical machining is an unique method of shaping in which, for optimal parameters tool has no wear, surface layer properties after machining are similar to the core material and surface quality and accuracy increase together with material removal rate increase. Such advantages of electrochemical machining, besides of some ecological problems, create industry interest in the range of manufacturing elements made of materials with special properties (i.e. turbine blades of flow aircrafts engines. In the paper the nowadays possibilities and recent practical application of electrochemical machining in aircraft have been presented.

  8. 76 FR 19903 - Special Conditions: Diamond Aircraft Industry Model DA-40NG; Diesel Cycle Engine

    Science.gov (United States)

    2011-04-11

    ... Conditions: Diamond Aircraft Industry Model DA-40NG; Diesel Cycle Engine AGENCY: Federal Aviation... conditions are issued for the Diamond Aircraft Industry (DAI) GmbH model DA-40NG the Austro Engine GmbH model E4 aircraft diesel engine (ADE) using turbine (jet) fuel. This airplane will have a novel or...

  9. 76 FR 63167 - Airworthiness Directives; Diamond Aircraft Industries GmbH Airplanes With Supplemental Type...

    Science.gov (United States)

    2011-10-12

    ... Industries GmbH Airplanes With Supplemental Type Certificate (STC) SA03674AT AGENCY: Federal Aviation...): 2011-21-10 Diamond Aircraft Industries GmbH Airplanes Equipped With Supplemental Type Certificate (STC... airworthiness directive (AD) for Diamond Aircraft Industries GmbH Model (Diamond) DA 40 airplanes equipped...

  10. Technology transfer and catch-up; Lessons from the commercial aircraft industry

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Bruijn, de Erik J.; Heerkens, Hans

    2007-01-01

    This paper analyses the technology development and technology transfer strategies in the aircraft manufacturing industry for four industrially developing countries. It is concluded from four case studies that technology catch-up is extremely difficult due to aircraft technology characteristics. Base

  11. 76 FR 55293 - Special Conditions: Diamond Aircraft Industries, Model DA-40NG; Electronic Engine Control (EEC...

    Science.gov (United States)

    2011-09-07

    ... TRANSPORTATION Federal Aviation Administration 14 CFR Part 23 Special Conditions: Diamond Aircraft Industries, Model DA-40NG; Electronic Engine Control (EEC) System AGENCY: Federal Aviation Administration (FAA), DOT... Diamond Aircraft Industries (DAI), model DA-40NG airplane. This airplane will have a novel or...

  12. Licencing and Training Reform in the Australian Aircraft Maintenance Industry

    Science.gov (United States)

    Hampson, Ian; Fraser, Doug

    2016-01-01

    The training and licencing of aircraft maintenance engineers fulfils a crucial protective function since it is they who perform and supervise aircraft maintenance and certify that planes are safe afterwards. In Australia, prior to training reform, a trades-based system of aircraft maintenance engineer training existed in an orderly relation with…

  13. "Supplier Network and Aircraft Production in Japan, 1939-1945: A Case of Mitsubishi Heavy Industries, Ltd."(in Japanese)

    OpenAIRE

    Tetsuji Okazaki

    2007-01-01

    During the Second World War, aircraft production in Japan, which had been negligible before that, increased sharply. The rapid expansion of the aircraft industry involved numerous small and medium-sized machinery factories, which were organized to be parts suppliers by aircraft assemblers. Focusing on the case of Mitsubishi Heavy Industries, Ltd., a major aircraft assembler, this paper explores the expansion of the supplier network and its implication on aircraft production.

  14. Economics of technological change - A joint model for the aircraft and airline industries

    Science.gov (United States)

    Kneafsey, J. T.; Taneja, N. K.

    1981-01-01

    The principal focus of this econometric model is on the process of technological change in the U.S. aircraft manufacturing and airline industries. The problem of predicting the rate of introduction of current technology aircraft into an airline's fleet during the period of research, development, and construction for new technology aircraft arises in planning aeronautical research investments. The approach in this model is a statistical one. It attempts to identify major factors that influence transport aircraft manufacturers and airlines, and to correlate them with the patterns of delivery of new aircraft to the domestic trunk carriers. The functional form of the model has been derived from several earlier econometric models on the economics of innovation, acquisition, and technological change.

  15. Designing aircraft in Italy; internship at Piaggio Aero Industries

    NARCIS (Netherlands)

    Coosemans, J.

    2013-01-01

    From October 2012 to January 2013, I went to the south of Italy to do my internship at Piaggio, the company famous for manufacturing the P.180 Avanti business aircraft. The office where I was located was in Pozzuoli, a town just outside the city of Naples, in the shadow of Mount Vesuvius.

  16. Aircraft

    Science.gov (United States)

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  17. 75 FR 52250 - Airworthiness Directives; Aircraft Industries a.s. (Type Certificate G24EU Previously Held by...

    Science.gov (United States)

    2010-08-25

    ... adding the following new AD: 2010-18-05 Aircraft Industries a.s. (Type Certificate G24EU Previously Held...-042-AD; Amendment 39-16418; AD 2010-18-05] RIN 2120-AA64 Airworthiness Directives; Aircraft Industries a.s. (Type Certificate G24EU Previously Held by LETECK Z VODY a.s. and LET Aeronautical Works)...

  18. 75 FR 39795 - Airworthiness Directives; Aircraft Industries a.s. (Type Certificate G60EU Previously Held by...

    Science.gov (United States)

    2010-07-13

    ... new AD: 2010-14-15 Aircraft Industries a.s. (Type Certificate G60EU Previously Held by LETECK Z VODY a...-031-AD; Amendment 39-16360; AD 2010-14-15] RIN 2120-AA64 Airworthiness Directives; Aircraft Industries a.s. (Type Certificate G60EU Previously Held by LETECK Z VODY a.s. and LET Aeronautical Works)...

  19. 76 FR 35912 - Business Jet Aircraft Industry: Structure and Factors Affecting Competitiveness; Institution of...

    Science.gov (United States)

    2011-06-20

    ...Following receipt of a request on May 23, 2011 from the United States House of Representatives Committee on Ways and Means (Committee) under section 332(g) of the Tariff Act of 1930 (19 U.S.C. 1332(g)), the United States International Trade Commission (Commission) instituted investigation No. 332-526, Business Jet Aircraft Industry: Structure and Factors Affecting...

  20. 76 FR 37684 - Airworthiness Directives; Diamond Aircraft Industries GmbH Model (Diamond) DA 40 Airplanes...

    Science.gov (United States)

    2011-06-28

    ... Procedures (44 FR 11034, February 26, 1979), (3) Will not affect intrastate aviation in Alaska, and (4) Will... Industries GmbH Model (Diamond) DA 40 Airplanes Equipped With Certain Cabin Air Conditioning Systems AGENCY... inspections of the Diamond Model DA 40 airplanes equipped with a VCS installed per Premier Aircraft...

  1. Numerical continuation and bifurcation analysis in aircraft design: an industrial perspective.

    Science.gov (United States)

    Sharma, Sanjiv; Coetzee, Etienne B; Lowenberg, Mark H; Neild, Simon A; Krauskopf, Bernd

    2015-09-28

    Bifurcation analysis is a powerful method for studying the steady-state nonlinear dynamics of systems. Software tools exist for the numerical continuation of steady-state solutions as parameters of the system are varied. These tools make it possible to generate 'maps of solutions' in an efficient way that provide valuable insight into the overall dynamic behaviour of a system and potentially to influence the design process. While this approach has been employed in the military aircraft control community to understand the effectiveness of controllers, the use of bifurcation analysis in the wider aircraft industry is yet limited. This paper reports progress on how bifurcation analysis can play a role as part of the design process for passenger aircraft.

  2. Production-teaching-research of a Commercial Aircraft Corporation in the Chinese Industry Chain

    Institute of Scientific and Technical Information of China (English)

    CHEN Lin; WANG Shuang-yuan; WEI Lin-wan

    2012-01-01

    For the future development of a commercial aircraft corporation, this paper focused on the research and technological innovation model in an industrial chain and explored how to promote the sustainable development of technological innovation on the basis of the Chinese aviation industry. It puts forward several ways to reinforce cooperation, such as strengthening policies and regulations, government's support for research cooperations, accelerating construction of the production-teaching-research oriented public technology platform and service system, and firming the industry awareness of universities and research institutes, and so on.

  3. High technology in developing countries: Analysis of technology strategy, technology transfer, and success factors in the aircraft industry

    OpenAIRE

    Steenhuis, Harm-Jan; Bruijn, de, NG Dick

    2004-01-01

    Economical development is highly related to technological development. It is therefore not surprising that many of the industrially developing nations follow explicit strategies to increase their technological competence level. Industrially developing countries may even pursue a strategy of developing high technology competencies. This paper analysis the strategies of some developing countries in a particular high technology industry: the aircraft manufacturing industry. The focus is on Brazi...

  4. 75 FR 52292 - Airworthiness Directives; Diamond Aircraft Industries GmbH Models DA 40 and DA 40F Airplanes

    Science.gov (United States)

    2010-08-25

    ... ``significant rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979); and 3... Industries GmbH Models DA 40 and DA 40F Airplanes AGENCY: Federal Aviation Administration (FAA), Department... new airworthiness directive (AD) for all Diamond Aircraft Industries GmbH Models DA 40 and DA...

  5. 75 FR 75868 - Airworthiness Directives; Diamond Aircraft Industries GmbH Models DA 40 and DA 40F Airplanes

    Science.gov (United States)

    2010-12-07

    ... Register on August 25, 2010 (75 FR 52292). That NPRM proposed to require a retrofit of the rear passenger... 12866, (2) Is not a ``significant rule'' under DOT Regulatory Policies and Procedures (44 FR 11034... Aircraft Industries GmbH Models DA 40 and DA 40F Airplanes AGENCY: Federal Aviation Administration,...

  6. 76 FR 72087 - Special Conditions: Diamond Aircraft Industries, Model DA-40NG; Electronic Engine Control (EEC...

    Science.gov (United States)

    2011-11-22

    .... A47CE to include the new model DA- 40NG with the Austro Engine GmbH model E4 Aircraft Diesel Engine (ADE... the effects of the aircraft supplied power and data failures on the engine control system, and the... Engine GmbH model E4 aircraft diesel engine. 1. Electronic Engine Control a. For electronic...

  7. Aircraft Noise

    Science.gov (United States)

    Michel, Ulf; Dobrzynski, Werner; Splettstoesser, Wolf; Delfs, Jan; Isermann, Ullrich; Obermeier, Frank

    Aircraft industry is exposed to increasing public pressure aiming at a continuing reduction of aircraft noise levels. This is necessary to both compensate for the detrimental effect on noise of the expected increase in air traffic and improve the quality of living in residential areas around airports.

  8. 潍坊海王创建医药物流航母%Weifang Haiwang,an Aircraft Carrier in the Pharmaceutical Logistics Industry

    Institute of Scientific and Technical Information of China (English)

    姜冬

    2005-01-01

    In the just starting pharmaceutical logistics industry in China,Weifang Haiwang Pharmaceutical Co., Ltd., like an aircraft carrier, with annual sales revenues of 2.61 billion yuan, has become the leader in China.

  9. Pulsed-Magnetic Processing and Its Application in the Aircraft Industry in Russia

    Institute of Scientific and Technical Information of China (English)

    V.A.Glushchenkov

    2007-01-01

      Pulse-magnetic technology occupies one of technological fields in up-to-day aircraft manufacturing.This method of processing belongs to high-speed dynamical methods of processing,which are characterized by parameters providing high quality of finished products and save on material and labour costs.……

  10. U.S. aerospace industry opinion of the effect of computer-aided prediction-design technology on future wind-tunnel test requirements for aircraft development programs

    Science.gov (United States)

    Treon, S. L.

    1979-01-01

    A survey of the U.S. aerospace industry in late 1977 suggests that there will be an increasing use of computer-aided prediction-design technology (CPD Tech) in the aircraft development process but that, overall, only a modest reduction in wind-tunnel test requirements from the current level is expected in the period through 1995. Opinions were received from key spokesmen in 23 of the 26 solicited major companies or corporate divisions involved in the design and manufacture of nonrotary wing aircraft. Development programs for nine types of aircraft related to test phases and wind-tunnel size and speed range were considered.

  11. Industrial 2-kW TEA CO2 laser for paint stripping of aircraft

    Science.gov (United States)

    Schweizer, Gerhard; Werner, L.

    1995-03-01

    Paint stripping of aircraft with pulsed laser radiation has several advantages compared to traditional methods of depainting: selective removal of individual layers possible, suitable for sensitive surfaces, workpiece ready for immediate repainting, and considerable reduction of contaminated waste. For paint stripping of large aircraft pulsed lasers with average power of at least 2 kW are required. Amongst the various types of pulsed lasers technical and economical considerations clearly favor TEA CO2 lasers for this application. The first commercially available TEA CO2 laser with an average power in excess of 2 kW, especially designed for depainting, has been developed by Urenco. The key data of this laser are: pulse energy up to 9 J, repetition rate up to 330 Hz, and beam quality: `flat top'.

  12. Integrated Aircraft Fleeting, Routing, and Crew Pairing Models and Algorithms for the Airline Industry

    OpenAIRE

    Shao, Shengzhi

    2013-01-01

    The air transportation market has been growing steadily for the past three decades since the airline deregulation in 1978. With competition also becoming more intense, airline companies have been trying to enhance their market shares and profit margins by composing favorable flight schedules and by efficiently allocating their resources of aircraft and crews so as to reduce operational costs. In practice, this is achieved based on demand forecasts and resource availabilities through a structu...

  13. Legislation of China Civil Aircraft Industry and WTO Rules%WTO规则与我国民用飞机产业发展立法

    Institute of Scientific and Technical Information of China (English)

    庄浩刚; 李乾贵

    2012-01-01

    WTO Rules have huge impact and positive significance for the development of China' s civil aircraft industry. Facing the opportunities and challenges of joining the WTO, the civil aircraft industry must take appropriate , while avoiding disadvantages. China' s legal system is not perfect and the current civil aviation roles and regulations do not meet the requirements of the WTO rules. The concept of the law has not been fully established. China' s civil aircraft industry should reduce the risks of entering WTO. The key point is the relationship between government administrative behavior and the legal system of civil aircraft industry. In order to protect and promote the development of civil aircraft industry, China' s civil aircraft industry needs to establish a sound system of rules and regulations to make China act in accordance with WTO rules and international convention. At the same time, the legislation experience of the typical national civil aircraft industry development can provide useful inspiration and help China to accelerate its sustainable development of civil aircraft industry.%WTO规则对中国民用航空产业特别是我国民用飞机产业的发展有着巨大的影响和积极意义。从目前来看,中国的法律体系尚不完善,现行的民航法规和规章,要么在一些方面规定阙如。要么不符合WTO规则的要求,法治观念还没有完全树立起来。在这种法制环境下,中国民机产业必须规避入世风险。其核心问题是处理好政府的行政管理行为与民机产业法制之间的关系。对此,中国民机产业要建立健全法律法规制度,才能使我国作为WTO成员按照WTO规则和国际惯例保障和促进民机产业的发展。同时,通过典型国家民机产业发展立法的经验借鉴,也能为我国民机产业发展立法提供有益的启示,从而加速我国民机产业的可持续发展。

  14. A Survey of the Aircraft Maintenance Industry to Solicit Perceptions Regarding the Effectiveness of Recent Graduates of F.A.A. Approved Maintenance Schools.

    Science.gov (United States)

    O'Brian, Benjamin H.

    A study examined the perceptions of employers in the aircraft maintenance industry regarding the effectiveness of recent graduates of Federal Aeronautics Administration (FAA)-approved maintenance schools. Of the 100 employers who were contacted, 68 returned usable surveys. Based on responses, it was concluded that the views of employers in the…

  15. Linking Technology Capabilities to Marketing Requirements: Case of Indonesian Aircraft Industry

    Directory of Open Access Journals (Sweden)

    Yulianto Suharto

    2014-08-01

    Full Text Available Abstract. The relationship between strategic technology planning and the overall business strategy has been one of the growing fields that attract much interest both from academics and industrials point of view. The increasingly important role that technology plays in today’s business success is well established.Strategic technology planning activities--within a corporate level--are often implemented by applying integrated planning instrument, which allow firms to consider both technology-oriented and product-oriented aspects. This paper is an attempt to explore the role of strategic planning in the high tech industry using a specific case of aerospace industry in Indonesia.  In order to compete effectively inthe open global marketplace, the company must learn to integrate technology managementwith strategic planning. In other words, all top managers have to linktheir technology capabilities to marketing requirements.Keywords:  technology planning; business strategy; technology capability; marketing requirement; strategic mix 

  16. DESCRIPTION OF THE MANAGEMENT TASK OF PROVIDING QUALIFIED HUMAN RESOURCES TO RUSSIAN AIRCRAFT INDUSTRIAL ENTERPRISES BY THE UNIVERSITIES

    Directory of Open Access Journals (Sweden)

    Chernov Vasily Mikhaylovich

    2013-05-01

    Full Text Available The paper describes the organizational and economic mechanism for providing the qualified human resources to the enterprises of Russian Aviation Industrial Complex by the universities. The author focuses on forming a system of general assumptions, choosing the management object, the subject area, the operating parties, and the subject of control; forming the objectives of the operating parties; choosing the management purposes, a set of management actions, the external impacts on the management object except for the management actions; identifying inadmissible conditions of the control object and inadmissible administrative impacts on the control object. In terms of content the management task of providing qualified human resources to Russian aircraft industrial enterprises is to identify and justify the need to improve the human resource capacity of an entity so as to ensure maximum achievement of the set management objectives in the presence of external influences that do not result in an unacceptable state of the management object and do not exceed the allowable area of ​​management.

  17. 76 FR 14346 - Airworthiness Directives; Diamond Aircraft Industries GmbH Model DA 42 Airplanes

    Science.gov (United States)

    2011-03-16

    ... 12866; 2. Is not a ``significant rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034... Industries GmbH Model DA 42 Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... been reportedly found on DA 42 Main Landing Gear (MLG) Damper-to-Trailing Arm joints during...

  18. 76 FR 31457 - Airworthiness Directives; Diamond Aircraft Industries GmbH Model DA 42 Airplanes

    Science.gov (United States)

    2011-06-01

    ... (76 FR 14346). That NPRM proposed to correct an unsafe condition for the specified products. The MCAI... Regulatory Policies and Procedures (44 FR 11034, February 26, 1979); and (3) Will not have a significant... Industries GmbH Model DA 42 Airplanes AGENCY: Federal Aviation Administration (FAA), Department...

  19. Linking Technology Capabilities to Marketing Requirements: Case of Indonesian Aircraft Industry

    OpenAIRE

    Yulianto Suharto

    2014-01-01

    Abstract. The relationship between strategic technology planning and the overall business strategy has been one of the growing fields that attract much interest both from academics and industrials point of view. The increasingly important role that technology plays in today’s business success is well established.Strategic technology planning activities--within a corporate level--are often implemented by applying integrated planning instrument, which allow firms to consider both technology-ori...

  20. Practical Ranges of Loudness Levels of Various Types of Environmental Noise, Including Traffic Noise, Aircraft Noise, and Industrial Noise

    Directory of Open Access Journals (Sweden)

    Sabine A. Janssen

    2011-05-01

    Full Text Available In environmental noise control one commonly employs the A-weighted sound level as an approximate measure of the effect of noise on people. A measure that is more closely related to direct human perception of noise is the loudness level. At constant A-weighted sound level, the loudness level of a noise signal varies considerably with the shape of the frequency spectrum of the noise signal. In particular the bandwidth of the spectrum has a large effect on the loudness level, due to the effect of critical bands in the human hearing system. The low-frequency content of the spectrum also has an effect on the loudness level. In this note the relation between loudness level and A-weighted sound level is analyzed for various environmental noise spectra, including spectra of traffic noise, aircraft noise, and industrial noise. From loudness levels calculated for these environmental noise spectra, diagrams are constructed that show the relation between loudness level, A‑weighted sound level, and shape of the spectrum. The diagrams show that the upper limits of the loudness level for broadband environmental noise spectra are about 20 to 40 phon higher than the lower limits for narrowband spectra, which correspond to the loudness levels of pure tones. The diagrams are useful for assessing limitations and potential improvements of environmental noise control methods and policy based on A-weighted sound levels.

  1. Practical ranges of loudness levels of various types of environmental noise, including traffic noise, aircraft noise, and industrial noise.

    Science.gov (United States)

    Salomons, Erik M; Janssen, Sabine A

    2011-06-01

    In environmental noise control one commonly employs the A-weighted sound level as an approximate measure of the effect of noise on people. A measure that is more closely related to direct human perception of noise is the loudness level. At constant A-weighted sound level, the loudness level of a noise signal varies considerably with the shape of the frequency spectrum of the noise signal. In particular the bandwidth of the spectrum has a large effect on the loudness level, due to the effect of critical bands in the human hearing system. The low-frequency content of the spectrum also has an effect on the loudness level. In this note the relation between loudness level and A-weighted sound level is analyzed for various environmental noise spectra, including spectra of traffic noise, aircraft noise, and industrial noise. From loudness levels calculated for these environmental noise spectra, diagrams are constructed that show the relation between loudness level, A-weighted sound level, and shape of the spectrum. The diagrams show that the upper limits of the loudness level for broadband environmental noise spectra are about 20 to 40 phon higher than the lower limits for narrowband spectra, which correspond to the loudness levels of pure tones. The diagrams are useful for assessing limitations and potential improvements of environmental noise control methods and policy based on A-weighted sound levels. PMID:21776205

  2. Influence of Implementation of Composite Materials in Civil Aircraft Industry on reduction of Environmental Pollution and Greenhouse Effect

    International Nuclear Information System (INIS)

    Computer-based Life Cycle Analysis (LCA) models were carried out to compare lightweight composites with the traditional aluminium over their useful lifetime. The analysis included raw materials, production, useful life in operation and disposal at the end of the material's useful life. The carbon fibre epoxy resin composite could in some cases reduce the weight of a component by up to 40 % compared to aluminium. As the fuel consumption of an aircraft is strongly influenced by its total weight, the emissions can be significantly reduced by increasing the proportion of composites used in the aircraft structure. Higher emissions, compared to aluminium, produced during composites production meet their 'break even' point after certain number of time units when used in aircraft structures, and continue to save emissions over their long-term operation. The study highlighted the environmental benefits of using lightweight structures in aircraft design, and also showed that utilisation of composites in products without energy saving may lead to increased emissions in the environment.

  3. High technology in developing countries: Analysis of technology strategy, technology transfer, and success factors in the aircraft industry

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Bruijn, de Erik J.

    2004-01-01

    Economical development is highly related to technological development. It is therefore not surprising that many of the industrially developing nations follow explicit strategies to increase their technological competence level. Industrially developing countries may even pursue a strategy of developi

  4. Research on Mass Data Processing Oriented to Aircraft Manufacturing Industry%面向航空制造业的海量数据处理研究

    Institute of Scientific and Technical Information of China (English)

    吴恒; 王东勃

    2013-01-01

    为了向航空制造业的海量数据处理提供一种新颖的模式,以Hadoop开源软件平台为架构,介绍了HDFS分布式存储系统和Map-Reduce编程模式,分析了航空制造业海量数据处理需求,提出了一种应用于航空制造业的海量数据处理模型,即将数据格式划分为若干个主要字段,按照该数据格式在分片中对数据进行深度优先挖掘,将提取出的数据以键值对的形式并按照一定的存储格式存储于HDFS中,利用Map-Reduce并行算法对存储的数据进行排序和分区处理.最后提出了基于K-NN的并行化数据挖掘算法,且分析了海量数据处理模型的扩展性、实时性和快速处理等性能.%In order to provide a new model of mass data processing for aircraft manufacturing industry,it proposes a model of mass data processing for aircraft manufacturing industry based on Hadoop software platform,introduces the HDFS and the Map-Reduce programming model,analyzes the demand of mass data processing for aircraft manufacturing industry,introduces a kind of data processing model.This system can divide the data format into several major fields,mine the data from sharding deeply and firstly according to the data format,store the extracted data in HDFS in the format of key-value and the defined storage format,sort and partition the storage data in the method of Map-Reduce.Lastly,it illustrates a parallel data mining algorithm based K-NN,and analyzes the expansibility,instantaneity and quick processing of this kind of mass data processing model.

  5. Impact of the european emission trading scheme for the air transportation industry on the valuation of aircraft purchase rights

    International Nuclear Information System (INIS)

    The European Commission issued a legislative proposal in December 2006, suggesting a cap on CO2 emissions for all planes arriving or departing from EU airports, while allowing airlines to buy and sell pollution credits on the EU carbon market (Emission Trading Scheme, or ETS). In 2008 the new scheme got the final approval. Real options appear to be ab appropriate methodology to capture the extra value brought by the new legislation on new airplane purchase rights: The airline will surely have the purchase right to the new plane if the operation of the plane generates unused pollution credits that the airline can sell at a minimum price in the carbon market. This paper tries to determine if the impact of ETS in the valuation of aircraft purchase rights is significant enough in monetary terms to include the new legislation in a complex real-option model already proposed by the authors recently. The research concludes that even the impact of ETS justifies its inclusion in the model, the quality of the available sets of historical data still raises some questions. Particularly, the assumption of market efficiency for the Carbon Pool over the recent years needs to be treated with caution. (Author) 9 refs

  6. High repetition ration solid state switched CO2 TEA laser employed in industrial ultrasonic testing of aircraft parts

    Science.gov (United States)

    von Bergmann, Hubertus; Morkel, Francois; Stehmann, Timo

    2015-02-01

    Laser Ultrasonic Testing (UT) is an important technique for the non-destructive inspection of composite parts in the aerospace industry. In laser UT a high power, short pulse probe laser is scanned across the material surface, generating ultrasound waves which can be detected by a second low power laser system and are used to draw a defect map of the part. We report on the design and testing of a transversely excited atmospheric pressure (TEA) CO2 laser system specifically optimised for laser UT. The laser is excited by a novel solid-state switched pulsing system and utilises either spark or corona preionisation. It provides short output pulses of less than 100 ns at repetition rates of up to 1 kHz, optimised for efficient ultrasonic wave generation. The system has been designed for highly reliable operation under industrial conditions and a long term test with total pulse counts in excess of 5 billion laser pulses is reported.

  7. Amphibious Aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — A brief self composed research article on Amphibious Aircrafts discussing their use, origin and modern day applications along with their advantages and...

  8. Marketingový plán pro letoun L410 NG společnosti Aircraft Industries, a.s.

    OpenAIRE

    Juráková, Hana

    2014-01-01

    Tato diplomová práce se zabývá sestavením marketingového plánu pro letoun L 410 NG, vyráběný firmou Aircraft Industries a.s. První část práce zahrnuje obecné teoretické poznatky, zaměřující se na proces sestavení plánu pomocí rozboru vnějšího okolí SLEPTE, Porterova modelu pěti konkurenčních sil, analýzy SWOT a marketingového mixu 5P. Ve druhé analytické části je tato základní teorie aplikována na uvedenou firmu. V závěrečné části práce jsou na základě zjištěných fakt a výsledků analýz navrhn...

  9. Aircraft Design

    Science.gov (United States)

    Bowers, Albion H. (Inventor); Uden, Edward (Inventor)

    2016-01-01

    The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.

  10. Atmospheric pressure plasma jet deposition of Si-based coupling films as surface preparation for structural adhesive bonding in the aircraft industry

    OpenAIRE

    Bringmann, Philipp

    2016-01-01

    Damages of metallic aircraft structures that occur during manufacturing, assembly and in service require local repair. Especially with current service-life extensions of ageing aircraft fleets, the importance of such repair methods is increasing. Typically, the repair of smaller damages on aluminium fuselage or wing skins is done by riveting a patch onto the flawed structure. However, the use of rivets reduces the strength of the structure and promotes fatigue. Joining the patch by adhesive b...

  11. Industry

    International Nuclear Information System (INIS)

    This chapter of the environmental control report deals with the environmental impact of the industry in Austria. It gives a review of the structure and types of the industry, the legal framework and environmental policy of industrial relevance. The environmental situation of the industry in Austria is analyzed in detail, concerning air pollution (SO2, NOx, CO2, CO, CH4, N2O, NH3, Pb, Cd, Hg, dioxin, furans), waste water, waste management and deposit, energy and water consumption. The state of the art in respect of the IPPC-directives (European Integrated Pollution Prevention and Control Bureau) concerning the best available techniques of the different industry sectors is outlined. The application of European laws and regulations in the Austrian industry is described. (a.n.)

  12. Aircraft cybernetics

    Science.gov (United States)

    1977-01-01

    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  13. Industrialization

    International Nuclear Information System (INIS)

    This chapter discusses the role-plays by nuclear technology to enhance productivity in industry. Some of the techniques, Non-Destructive Testing (NDT) - x, gamma, electron and neutron radiography, nuclear gauges, materials characterization are discussed thoroughly

  14. Industry

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  15. APPLICATION FOR AIRCRAFT TRACKING

    OpenAIRE

    Ostroumov, Ivan; Kuz’menko, Natalia

    2011-01-01

    Abstract. In the article the important problems of software development for aircraft tracking have beendiscussed. Position reports of ACARS have been used for aircraft tracking around the world.An algorithm of aircraft coordinates decoding and visualization of aircraft position on the map has beenrepresented.Keywords: ACARS, aircraft, internet, position, software, tracking.

  16. Composite components on commercial aircraft

    Science.gov (United States)

    Dexter, H. B.

    1980-01-01

    The paper considers the use of composite components in commercial aircraft. NASA has been active in sponsoring flight service programs with advanced composites for the last 10 years, with 2.5 million total composite component hours accumulated since 1970 on commercial transports and helicopters with no significant degradation in residual strength of composite components. Design, inspection, and maintenance procedures have been developed; a major NASA/US industry technology program has been developed to reduce fuel consumption of commercial transport aircraft through the use of advanced composites.

  17. 基于突破式创新局限性的民用飞机制造产业创新窘境分析%Analysis of the Dilemma of Civil Aircraft Manufacturing Industry Innovation Based on Radical Innovation Limitations

    Institute of Scientific and Technical Information of China (English)

    刘花清; 黄莹灿; 杨蕾; 冯亚秋

    2015-01-01

    From the research of the radical innovation mode and its development and application situation, this article finds out the limitations of radical innovation through the comparison of different innovation modes in various aspects, combined with the analysis of the status quo of civil aircraft manufacturing industry innovation, and discusses the six innovation dilemmas of radical innovation in civil aircraft manufacturing industry. In view of this background, the authors hope that analysis of the dilemmas of radical innovation in civil aircraft manufacturing industry can promote the development of China's civil aircraft manufacturing industry.%本文从突破式创新模式的探究及其发展和应用情况出发,通过不同创新模式在各方面的比较,发现突破式创新存在的局限性,结合民用飞机制造业的创新现状分析,重点探讨了突破式创新在民用飞机制造产业的六大创新窘境。鉴于此背景之下,希望通过分析当前民用飞机制造产业突破式创新中存在的窘境,促进中国民用飞机制造产业的发展。

  18. An Optimization Model for Aircraft Service Logistics

    Institute of Scientific and Technical Information of China (English)

    Angus; Cheung; W; H; Ip; Angel; Lai; Eva; Cheung

    2002-01-01

    Scheduling is one of the most difficult issues in t he planning and operations of the aircraft services industry. In this paper, t he various scheduling problems in ground support operation of an aircraft mainte nance service company are addressed. The authors developed a set of vehicle rout ings to cover each schedule flights; the objectives pursued are the maximization of vehicle and manpower utilization and minimization of operation time. To obta in the goals, an integer-programming model with geneti...

  19. Aircraft Wake Vortex Evolution and Prediction

    OpenAIRE

    Holzäpfel, Frank

    2005-01-01

    Aircraft trailing vortices constitute both a kaleidoscope of instructive fluid dynamics phenomena and a challenge for the sustained development of safety and capacity of the air-transportation industry. The current manuscript gives an overview on the wake vortex issue which commences at its historical roots and concludes with the current status of knowledge regarding the nature and characteristics, and the modeling of aircraft wakes. The incentive of today's wake vortex research still re...

  20. Computer Aided Visual Inspection of Aircraft Surfaces

    OpenAIRE

    Rafia Mumtaz; Mustafa Mumtaz; Atif Bin Mansoor; Hassan Masood

    2012-01-01

    Non Destructive Inspections (NDI) plays a vital role in aircraft industry as it determines the structural integrity of aircraft surface and material characterization. The existing NDI methods are time consuming, we propose a new NDI approach using Digital Image Processing that has the potential to substantially decrease the inspection time. Automatic Marking of cracks have been achieved through application of Thresholding, Gabor Filter and Non Subsampled Contourlet transform. For a novel meth...

  1. 76 FR 12627 - Airworthiness Directives; Diamond Aircraft Industries GmbH Models DA 42, DA 42 NG, and DA 42 M-NG...

    Science.gov (United States)

    2011-03-08

    ... the MCAI, on November 23, 2010, we issued AD 2010-25-01, Amendment 39-16534 (75 FR 75868, December 7... Order 12866; 2. Is not a ``significant rule'' under the DOT Regulatory Policies and Procedures (44 FR... Industries GmbH Models DA 42, DA 42 NG, and DA 42 M-NG Airplanes AGENCY: Federal Aviation Administration...

  2. Propulsion controlled aircraft computer

    Science.gov (United States)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  3. Smart aircraft fastener evaluation (SAFE) system: a condition-based corrosion detection system for aging aircraft

    Science.gov (United States)

    Schoess, Jeffrey N.; Seifert, Greg; Paul, Clare A.

    1996-05-01

    The smart aircraft fastener evaluation (SAFE) system is an advanced structural health monitoring effort to detect and characterize corrosion in hidden and inaccessible locations of aircraft structures. Hidden corrosion is the number one logistics problem for the U.S. Air Force, with an estimated maintenance cost of $700M per year in 1990 dollars. The SAFE system incorporates a solid-state electrochemical microsensor and smart sensor electronics in the body of a Hi-Lok aircraft fastener to process and autonomously report corrosion status to aircraft maintenance personnel. The long-term payoff for using SAFE technology will be in predictive maintenance for aging aircraft and rotorcraft systems, fugitive emissions applications such as control valves, chemical pipeline vessels, and industrial boilers. Predictive maintenance capability, service, and repair will replace the current practice of scheduled maintenance to substantially reduce operational costs. A summary of the SAFE concept, laboratory test results, and future field test plans is presented.

  4. Smart fastener technology for aging aircraft

    Science.gov (United States)

    Schoess, Jeffrey N.; Paul, Clare A.

    1995-04-01

    Hidden and inaccessible corrosion in aircraft structures is the number 1 logistics problem for the Air Force, with an estimated maintenance cost of greater than one billion dollars per year. The smart aircraft fastener evaluation (SAFE) system is being developed to detect and characterize corrosion factors in hidden locations of aircraft structures. The SAFE concept is a novel `in-situ' measurement approach that measures and autonomously records several environmental factors (i.e., pH, temperature, chloride) associated with corrosion. The SAFE system integrated an electrochemical-based microsensor array directly into the aircraft structure to measure the evidence of active corrosion as an in-situ measurement without reducing aircraft structural integrity. The long term-payoff for the SAFE system will be in predictive maintenance for fixed and rotary wing aircraft structures, industrial tanks, and fugitive emissions applications such as control valves, chemical pipeline vessels, and industrial boilers. Predictive maintenance capability, service and repair will replace the current practice of scheduled maintenance to substantially reduce operational costs.

  5. Survival analysis of aging aircraft

    Science.gov (United States)

    Benavides, Samuel

    This study pushes systems engineering of aging aircraft beyond the boundaries of empirical and deterministic modeling by making a sharp break with the traditional laboratory-derived corrosion prediction algorithms that have shrouded real-world failures of aircraft structure. At the heart of this problem is the aeronautical industry's inability to be forthcoming in an accurate model that predicts corrosion failures in aircraft in spite of advances in corrosion algorithms or improvements in simulation and modeling. The struggle to develop accurate corrosion probabilistic models stems from a multitude of real-world interacting variables that synergistically influence corrosion in convoluted and complex ways. This dissertation, in essence, offers a statistical framework for the analysis of structural airframe corrosion failure by utilizing real-world data while considering the effects of interacting corrosion variables. This study injects realism into corrosion failures of aging aircraft systems by accomplishing four major goals related to the conceptual and methodological framework of corrosion modeling. First, this work connects corrosion modeling from the traditional, laboratory derived algorithms to corrosion failures in actual operating aircraft. This work augments physics-based modeling by examining the many confounding and interacting variables, such as environmental, geographical and operational, that impact failure of airframe structure. Examined through the lens of censored failure data from aircraft flying in a maritime environment, this study enhances the understanding between the triad of the theoretical, laboratory and real-world corrosion. Secondly, this study explores the importation and successful application of an advanced biomedical statistical tool---survival analysis---to model censored corrosion failure data. This well-grounded statistical methodology is inverted from a methodology that analyzes survival to one that examines failures. Third, this

  6. 76 FR 72128 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines

    Science.gov (United States)

    2011-11-22

    ... Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines AGENCY: Federal Aviation... engines installed on, but not limited to, Diamond Aircraft Industries Model DA 42 airplanes. The existing... prevent engine in- flight shutdown, possibly resulting in reduced control of the aircraft. DATES: We...

  7. Designing A Conventional Aircraft

    OpenAIRE

    Sonei, Arash

    2014-01-01

    This paper is explaining the important design phases of dimensioning an unmanned conventional aircraft from scratch and will also design one according to a few chosen requirements. The design phases discussed will be all from wing dimensioning to stability and spin recovery, aircraft performance requirements and how to select a motor which overcomes these. As well as the optimal rate of climb for improved efficiency is discussed. In the end an aircraft which manages the set requirements and i...

  8. Lightning effects on aircraft

    Science.gov (United States)

    1977-01-01

    Direct and indirect effects of lightning on aircraft were examined in relation to aircraft design. Specific trends in design leading to more frequent lightning strikes were individually investigated. These trends included the increasing use of miniaturized, solid state components in aircraft electronics and electric power systems. A second trend studied was the increasing use of reinforced plastics and other nonconducting materials in place of aluminum skins, a practice that reduces the electromagnetic shielding furnished by a conductive skin.

  9. Improving Aircraft Design Robustness with Scenario Methods

    Directory of Open Access Journals (Sweden)

    A. Strohmayer

    2001-01-01

    Full Text Available Compared to other industries, the aerospace sector is characterized by long product cycles in a very complex environment. The aircraft manufacturer has to base his product strategy on a long-term view of risks and opportunities in the transport industry but he cannot predict the development of relevant factors in this market environment with any certainty. In this situation, scenario methods offer a pragmatic way to limit the uncertainties and to work them up methodically, in order to derive recommendations for cost-intensive strategic decisions like for example the go-ahead for a new aircraft concept. By including scenario methods in the aircraft design cycle, the ‘design robustness’ can be improved, i.e. the design is not optimised for a prognosticated operating environment, but can cope with various possible future developments. The paper will explain the three fundamental aspects in applying scenario planning to the aircraft design process: requirement definition, design evaluation and technology identification. For each aspect, methods will be shown, which connect the rather qualitative results of a scenario process with aircraft design, which typically demands a qualitative input.

  10. Cable Tensiometer for Aircraft

    Science.gov (United States)

    Nunnelee, Mark (Inventor)

    2008-01-01

    The invention is a cable tensiometer that can be used on aircraft for real-time, in-flight cable tension measurements. The invention can be used on any aircraft cables with high precision. The invention is extremely light-weight, hangs on the cable being tested and uses a dual bending beam design with a high mill-volt output to determine tension.

  11. Titanium alloys Russian aircraft and aerospace applications

    CERN Document Server

    Moiseyev, Valentin N

    2005-01-01

    This text offers previously elusive information on state-of-the-art Russian metallurgic technology of titanium alloys. It details their physical, mechanical, and technological properties, as well as treatments and applications in various branches of modern industry, particularly aircraft and aerospace construction. Titanium Alloys: Russian Aircraft and Aerospace Applications addresses all facets of titanium alloys in aerospace and aviation technology, including specific applications, fundamentals, composition, and properties of commercial alloys. It is useful for all students and researchers interested in the investigation and applications of titanium.

  12. Aircraft operations management manual

    Science.gov (United States)

    1992-01-01

    The NASA aircraft operations program is a multifaceted, highly diverse entity that directly supports the agency mission in aeronautical research and development, space science and applications, space flight, astronaut readiness training, and related activities through research and development, program support, and mission management aircraft operations flights. Users of the program are interagency, inter-government, international, and the business community. This manual provides guidelines to establish policy for the management of NASA aircraft resources, aircraft operations, and related matters. This policy is an integral part of and must be followed when establishing field installation policy and procedures covering the management of NASA aircraft operations. Each operating location will develop appropriate local procedures that conform with the requirements of this handbook. This manual should be used in conjunction with other governing instructions, handbooks, and manuals.

  13. Manual on industrial radiography

    International Nuclear Information System (INIS)

    This manual is intended as a source of educational material to personnel seeking certification as industrial radiographers, and as a guide and reference text for educational organizations that are providng courses in industrial radiography. It covers the basic principles of x-ray and gamma radiation, radiation safety, films and film processing, welding, casting and forging, aircraft structures and components, radiographic techniques, and records

  14. Ditching Numerical Simulations: Recent Steps in Industrial Applications

    OpenAIRE

    Benítez Montañés, Luis; Climent Máñez, Héctor; Siemann, Martin; Kohlgrueber, Dieter

    2012-01-01

    Ditching is an aircraft emergency condition that ends with planned impact of the aircraft on water. The high forward velocity in fixed-wing aircraft ditching affects the aircraft dynamics and its structural response due to complex hydrodynamic effects. Therefore, analysis of ditching impact is particularly relevant to satisfy the airworthiness regulations for modern aircraft. Numerical methods for simulating ditching take advantage of the computational capacity allowing industry to deal w...

  15. SOLAR AIRCRAFT DESIGN

    OpenAIRE

    RAHMATI, Sadegh; GHASED, Amir

    2015-01-01

    Abstract. Generally domain Aircraft uses conventional fuel. These fuel having limited life, high cost and pollutant. Also nowadays price of petrol and other fuels are going to be higher, because of scarcity of those fuels. So there is great demand of use of non-exhaustible unlimited source of energy like solar energy. Solar aircraft is one of the ways to utilize solar energy. Solar aircraft uses solar panel to collect the solar radiation for immediate use but it also store the remaining part ...

  16. Aircraft Fire Protection Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Navy Aircraft Protection Laboratory provides complete test support for all Navy air vehicle fire protection systems. The facility allows for the simulation of a...

  17. Solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  18. Depreciation of aircraft

    Science.gov (United States)

    Warner, Edward P

    1922-01-01

    There is a widespread, and quite erroneous, impression to the effect that aircraft are essentially fragile and deteriorate with great rapidity when in service, so that the depreciation charges to be allowed on commercial or private operation are necessarily high.

  19. Aircraft electromagnetic compatibility

    Science.gov (United States)

    Clarke, Clifton A.; Larsen, William E.

    1987-01-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  20. Stratospheric aircraft: Impact on the stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, H.

    1992-02-01

    The steady-state distribution of natural stratospheric ozone is primarily maintained through production by ultraviolet photolysis of molecular oxygen, destruction by a catalytic cycle involving nitrogen oxides (NO{sub x}), and relocation by air motions within the stratosphere. Nitrogen oxides from the exhausts of a commercially viable fleet of supersonic transports would exceed the natural source of stratospheric nitrogen oxides if the t should be equipped with 1990 technology jet engines. This model-free comparison between a vital natural global ingredient and a proposed new industrial product shows that building a large fleet of passenger stratospheric aircraft poses a significant global problem. NASA and aircraft industries have recognized this problem and are studying the redesign of jet aircraft engines in order to reduce the nitrogen oxides emissions. In 1989 atmospheric models identified two other paths by which the ozone destroying effects of stratospheric aircraft might be reduced or eliminated: (1) Use relatively low supersonic Mach numbers and flight altitudes. For a given rate of nitrogen oxides injection into the stratosphere, the calculated reduction of total ozone is a strong function of altitude, and flight altitudes well below 20 kilometers give relatively low calculated ozone reductions. (2) Include heterogeneous chemistry in the two-dimensional model calculations. Necessary conditions for answering the question on the title above are to improve the quality of our understanding of the lower stratosphere and to broaden our knowledge of hetergeneous stratospheric chemistry. This article reviews recently proposed new mechanisms for heterogeneous reactions on the global stratospheric sulfate aerosols.

  1. Stratospheric aircraft: Impact on the stratosphere?

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, H.

    1992-02-01

    The steady-state distribution of natural stratospheric ozone is primarily maintained through production by ultraviolet photolysis of molecular oxygen, destruction by a catalytic cycle involving nitrogen oxides (NO{sub x}), and relocation by air motions within the stratosphere. Nitrogen oxides from the exhausts of a commercially viable fleet of supersonic transports would exceed the natural source of stratospheric nitrogen oxides if the t should be equipped with 1990 technology jet engines. This model-free comparison between a vital natural global ingredient and a proposed new industrial product shows that building a large fleet of passenger stratospheric aircraft poses a significant global problem. NASA and aircraft industries have recognized this problem and are studying the redesign of jet aircraft engines in order to reduce the nitrogen oxides emissions. In 1989 atmospheric models identified two other paths by which the ozone destroying effects of stratospheric aircraft might be reduced or eliminated: (1) Use relatively low supersonic Mach numbers and flight altitudes. For a given rate of nitrogen oxides injection into the stratosphere, the calculated reduction of total ozone is a strong function of altitude, and flight altitudes well below 20 kilometers give relatively low calculated ozone reductions. (2) Include heterogeneous chemistry in the two-dimensional model calculations. Necessary conditions for answering the question on the title above are to improve the quality of our understanding of the lower stratosphere and to broaden our knowledge of hetergeneous stratospheric chemistry. This article reviews recently proposed new mechanisms for heterogeneous reactions on the global stratospheric sulfate aerosols.

  2. A Grounded Theory Study of Aircraft Maintenance Technician Decision-Making

    Science.gov (United States)

    Norcross, Robert

    related to decision-making. Recommendations included an in-depth systematic review of the Aircraft Maintenance Manuals, development of a Federal Aviation Administration approved standardized Aircraft Maintenance Technician decision-making flow diagram, and implementation of risk based decision-making training. The benefit of this study is to save the airline industry revenue by preventing poor decision-making practices that result in inefficient maintenance actions and aircraft incidents and accidents.

  3. Aircraft Data Acquisition

    Directory of Open Access Journals (Sweden)

    Elena BALMUS

    2016-03-01

    Full Text Available The introduction of digital systems instead of analog ones has created a major separation in the aviation technology. Although the digital equipment made possible that the increasingly faster controllers take over, we should say that the real world remains essentially analogue [4]. Fly-by-wire designers attempting to control and measure the real feedback of an aircraft were forced to find a way to connect the analogue environment to their digital equipment. In order to manage the implications of this division in aviation, data optimization and comparison has been quite an important task. The interest in using data acquisition boards is being driven by the technology and design standards in the new generation of aircraft and the ongoing efforts of reducing weight and, in some cases addressing the safety risks. This paper presents a sum of technical report data from post processing and diversification of data acquisition from Arinc 429 interface on a research aircraft platform. Arinc 429 is by far the most common data bus in use on civil transport aircraft, regional jets and executive business jets today. Since its introduction on the Boeing 757/767 and Airbus aircraft in the early 1980s hardly any aircraft has been produced without the use of this data bus. It was used widely by the air transport indu

  4. Composite Bonded Joints’ Lifetime for Aircraft under Random Fatigue Loads

    Directory of Open Access Journals (Sweden)

    Wei Guo Shen

    2014-04-01

    Full Text Available In this present study, a lifetime prediction model of composite bonded joint in aircraft is developed based on variation of its elastic modulus under Random Fatigue Loads (RFL of aircraft and its approach is deduced by Miner linear damage accumulated theory. Considering some assumptions, this prediction model is conservative for aircraft engineering industry. Finally, simulation approach and analysis is developed and done for verification of deduction models. As a precondition, some assumptions are defined for simulation and verification. From simulating results, we can give a conclusion that models are properly accuracy for further study and engineering application.

  5. IDENTIFICATION OF AIRCRAFT HAZARDS

    International Nuclear Information System (INIS)

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7)

  6. Aircraft Operations Classification System

    Science.gov (United States)

    Harlow, Charles; Zhu, Weihong

    2001-01-01

    Accurate data is important in the aviation planning process. In this project we consider systems for measuring aircraft activity at airports. This would include determining the type of aircraft such as jet, helicopter, single engine, and multiengine propeller. Some of the issues involved in deploying technologies for monitoring aircraft operations are cost, reliability, and accuracy. In addition, the system must be field portable and acceptable at airports. A comparison of technologies was conducted and it was decided that an aircraft monitoring system should be based upon acoustic technology. A multimedia relational database was established for the study. The information contained in the database consists of airport information, runway information, acoustic records, photographic records, a description of the event (takeoff, landing), aircraft type, and environmental information. We extracted features from the time signal and the frequency content of the signal. A multi-layer feed-forward neural network was chosen as the classifier. Training and testing results were obtained. We were able to obtain classification results of over 90 percent for training and testing for takeoff events.

  7. Identification of Aircraft Hazards

    International Nuclear Information System (INIS)

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7)

  8. IDENTIFICATION OF AIRCRAFT HAZARDS

    Energy Technology Data Exchange (ETDEWEB)

    K.L. Ashley

    2005-03-23

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7).

  9. Identification of Aircraft Hazards

    Energy Technology Data Exchange (ETDEWEB)

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  10. The analysis of factors influencing the competitiveness of selected industry in foreign markets

    OpenAIRE

    Mezihoráková, Jana

    2011-01-01

    The aim of the thesis was an analysis of factors influencing the competitiveness of selected industry in foreign markets. For this purpose, the aircraft manufacturing industry was chosen. Firstly I analysed current trends in the aircraft manufacturing, external factors influencing the industry and competitive forces of industry. Based on the lessons learned factors having the greatest influence on the international competitiveness of the aircraft manufacturing industry were identified. These ...

  11. Advanced Aircraft Material

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Prince

    2013-06-01

    Full Text Available There has been long debate on “advanced aircraft material” from past decades & researchers too came out with lots of new advanced material like composites and different aluminum alloys. Now days a new advancement that is in great talk is third generation Aluminum-lithium alloy. Newest Aluminum-lithium alloys are found out to have low density, higher elastic modulus, greater stiffness, greater cryogenic toughness, high resistance to fatigue cracking and improved corrosion resistance properties over the earlier used aircraft material as mentioned in Table 3 [1-5]. Comparison had been made with nowadays used composite material and is found out to be more superior then that

  12. Tactical aircraft optical cable plant program plan

    Science.gov (United States)

    Weaver, Thomas L.; Murdock, John K.; Ide, James R.

    1995-05-01

    A program was created with joint industry and government funding to apply fiber optic technologies to tactical aircraft. The technology offers many potential benefits, including increased electromagnetic interference immunity and the possibility of reduced weight, increased reliability, and enlarged capability from redesigning architectures to use the large bandwidth of fiber optics. Those benefits will only be realized if fiber optics meets the unique requirements of aircraft networks. The application of fiber optics to tactical aircraft presents challenges to physical components which can only be met by a methodical attention to what is required, what are the conditions of use, and how will the components be produced in the broad context of a fiber optics using economy. For this purpose, the FLASH program has outlined a plan, and developed a team to evaluate requirements, delineate environmental and use conditions, and design practical, low cost components for tactical aircraft fiber optic cable plants including cables, connectors, splices, backplanes, manufacturing and installation methods, and test and maintenance methods.

  13. Computer Aided Visual Inspection of Aircraft Surfaces

    Directory of Open Access Journals (Sweden)

    Rafia Mumtaz

    2012-02-01

    Full Text Available Non Destructive Inspections (NDI plays a vital role in aircraft industry as it determines the structural integrity of aircraft surface and material characterization. The existing NDI methods are time consuming, we propose a new NDI approach using Digital Image Processing that has the potential to substantially decrease the inspection time. Automatic Marking of cracks have been achieved through application of Thresholding, Gabor Filter and Non Subsampled Contourlet transform. For a novel method of NDI, the aircraft imagery is analyzed by three methods i.e Neural Networks, Contourlet Transform (CT and Discrete Cosine Transform (DCT. With the help of Contourlet Transform the two dimensional (2-D spectrum is divided into fine slices, using iterated directional filterbanks. Next, directional energy components for each block of the decomposed subband outputs are computed. These energy values are used to distinguish between the crack and scratch images using the Dot Product classifier. In next approach, the aircraft imagery is decomposed into high and low frequency components using DCT and the first order moment is determined to form feature vectors.A correlation based approach is then used for distinction between crack and scratch surfaces. A comparative examination between the two techniques on a database of crack and scratch images revealed that texture analysis using the combined transform based approach gave the best results by giving an accuracy of 96.6% for the identification of crack surfaces and 98.3% for scratch surfaces.

  14. A strategic planning methodology for aircraft redesign

    Science.gov (United States)

    Romli, Fairuz Izzuddin

    Due to a progressive market shift to a customer-driven environment, the influence of engineering changes on the product's market success is becoming more prominent. This situation affects many long lead-time product industries including aircraft manufacturing. Derivative development has been the key strategy for many aircraft manufacturers to survive the competitive market and this trend is expected to continue in the future. Within this environment of design adaptation and variation, the main market advantages are often gained by the fastest aircraft manufacturers to develop and produce their range of market offerings without any costly mistakes. This realization creates an emphasis on the efficiency of the redesign process, particularly on the handling of engineering changes. However, most activities involved in the redesign process are supported either inefficiently or not at all by the current design methods and tools, primarily because they have been mostly developed to improve original product development. In view of this, the main goal of this research is to propose an aircraft redesign methodology that will act as a decision-making aid for aircraft designers in the change implementation planning of derivative developments. The proposed method, known as Strategic Planning of Engineering Changes (SPEC), combines the key elements of the product redesign planning and change management processes. Its application is aimed at reducing the redesign risks of derivative aircraft development, improving the detection of possible change effects propagation, increasing the efficiency of the change implementation planning and also reducing the costs and the time delays due to the redesign process. To address these challenges, four research areas have been identified: baseline assessment, change propagation prediction, change impact analysis and change implementation planning. Based on the established requirements for the redesign planning process, several methods and

  15. Auralization of novel aircraft configurations

    OpenAIRE

    Arntzen, M.; Bertsch, E.L.; Simons, D.G.

    2015-01-01

    A joint initiative of NLR, DLR, and TU Delft has been initiated to streamline the process of generating audible impressions of novel aircraft configurations. The integrated approach adds to the value of the individual tools and allows predicting the sound of future aircraft before they actually fly. Hence, an existing process for the aircraft design and system noise prediction at DLR has been upgraded to generate the required input data for an aircraft auralization framework developed by NLR ...

  16. Long Range Aircraft Trajectory Prediction

    OpenAIRE

    Magister, Tone

    2009-01-01

    The subject of the paper is the improvement of the aircraft future trajectory prediction accuracy for long-range airborne separation assurance. The strategic planning of safe aircraft flights and effective conflict avoidance tactics demand timely and accurate conflict detection based upon future four–dimensional airborne traffic situation prediction which is as accurate as each aircraft flight trajectory prediction. The improved kinematics model of aircraft relative flight considering flight ...

  17. Structural analysis at aircraft conceptual design stage

    Science.gov (United States)

    Mansouri, Reza

    In the past 50 years, computers have helped by augmenting human efforts with tremendous pace. The aircraft industry is not an exception. Aircraft industry is more than ever dependent on computing because of a high level of complexity and the increasing need for excellence to survive a highly competitive marketplace. Designers choose computers to perform almost every analysis task. But while doing so, existing effective, accurate and easy to use classical analytical methods are often forgotten, which can be very useful especially in the early phases of the aircraft design where concept generation and evaluation demands physical visibility of design parameters to make decisions [39, 2004]. Structural analysis methods have been used by human beings since the very early civilization. Centuries before computers were invented; the pyramids were designed and constructed by Egyptians around 2000 B.C, the Parthenon was built by the Greeks, around 240 B.C, Dujiangyan was built by the Chinese. Persepolis, Hagia Sophia, Taj Mahal, Eiffel tower are only few more examples of historical buildings, bridges and monuments that were constructed before we had any advancement made in computer aided engineering. Aircraft industry is no exception either. In the first half of the 20th century, engineers used classical method and designed civil transport aircraft such as Ford Tri Motor (1926), Lockheed Vega (1927), Lockheed 9 Orion (1931), Douglas DC-3 (1935), Douglas DC-4/C-54 Skymaster (1938), Boeing 307 (1938) and Boeing 314 Clipper (1939) and managed to become airborne without difficulty. Evidencing, while advanced numerical methods such as the finite element analysis is one of the most effective structural analysis methods; classical structural analysis methods can also be as useful especially during the early phase of a fixed wing aircraft design where major decisions are made and concept generation and evaluation demands physical visibility of design parameters to make decisions

  18. Aircraft landing gear extension and retraction control system diagnostics, prognostics and health management

    OpenAIRE

    Yang, Yang

    2012-01-01

    This thesis contains the Group Design Project (GDP) work and Individual Research Project (IRP) work. The target of this GDP was to design a long range flying wing passenger aircraft to meet the increasing global aircraft demand. The name of this flying wing aircraft is FW-11. This is a project cooperated between Aviation Industry Corporation of China (AVIC) and Cranfield University. The writer was involved in the conceptual design stage of this project. The author was in cha...

  19. Aircraft noise prediction

    Science.gov (United States)

    Filippone, Antonio

    2014-07-01

    This contribution addresses the state-of-the-art in the field of aircraft noise prediction, simulation and minimisation. The point of view taken in this context is that of comprehensive models that couple the various aircraft systems with the acoustic sources, the propagation and the flight trajectories. After an exhaustive review of the present predictive technologies in the relevant fields (airframe, propulsion, propagation, aircraft operations, trajectory optimisation), the paper addresses items for further research and development. Examples are shown for several airplanes, including the Airbus A319-100 (CFM engines), the Bombardier Dash8-Q400 (PW150 engines, Dowty R408 propellers) and the Boeing B737-800 (CFM engines). Predictions are done with the flight mechanics code FLIGHT. The transfer function between flight mechanics and the noise prediction is discussed in some details, along with the numerical procedures for validation and verification. Some code-to-code comparisons are shown. It is contended that the field of aircraft noise prediction has not yet reached a sufficient level of maturity. In particular, some parametric effects cannot be investigated, issues of accuracy are not currently addressed, and validation standards are still lacking.

  20. Robots for Aircraft Maintenance

    Science.gov (United States)

    1993-01-01

    Marshall Space Flight Center charged USBI (now Pratt & Whitney) with the task of developing an advanced stripping system based on hydroblasting to strip paint and thermal protection material from Space Shuttle solid rocket boosters. A robot, mounted on a transportable platform, controls the waterjet angle, water pressure and flow rate. This technology, now known as ARMS, has found commercial applications in the removal of coatings from jet engine components. The system is significantly faster than manual procedures and uses only minimal labor. Because the amount of "substrate" lost is minimal, the life of the component is extended. The need for toxic chemicals is reduced, as is waste disposal and human protection equipment. Users of the ARMS work cell include Delta Air Lines and the Air Force, which later contracted with USBI for development of a Large Aircraft Paint Stripping system (LARPS). LARPS' advantages are similar to ARMS, and it has enormous potential in military and civil aircraft maintenance. The technology may also be adapted to aircraft painting, aircraft inspection techniques and paint stripping of large objects like ships and railcars.

  1. Braking performance of aircraft tires

    Science.gov (United States)

    Agrawal, Satish K.

    This paper brings under one cover the subject of aircraft braking performance and a variety of related phenomena that lead to aircraft hydroplaning, overruns, and loss of directional control. Complex processes involving tire deformation, tire slipping, and fluid pressures in the tire-runway contact area develop the friction forces for retarding the aircraft; this paper describes the physics of these processes. The paper reviews the past and present research efforts and concludes that the most effective way to combat the hazards associated with aircraft landings and takeoffs on contaminated runways is by measuring and displaying in realtime the braking performance parameters in the aircraft cockpit.

  2. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Science.gov (United States)

    2010-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States (HTSUS) by meeting the following requirements: (1) The aircraft, aircraft engines,...

  3. Aircraft System Design and Integration

    Directory of Open Access Journals (Sweden)

    D. P. Coldbeck

    2000-01-01

    Full Text Available In the 1980's the British aircraft industry changed its approach to the management of projects from a system where a project office would manage a project and rely on a series of specialist departments to support them to a more process oriented method, using systems engineering models, whose most outwardly visible signs were the introduction of multidisciplinary product teams. One of the problems with the old method was that the individual departments often had different priorities and projects would get uneven support. The change in the system was only made possible for complex designs by the electronic distribution of data giving instantaneous access to all involved in the project. In 1997 the Defence and Aerospace Foresight Panel emphasised the need for a system engineering approach if British industry was to remain competitive. The Royal Academy of Engineering recognised that the change in working practices also changed what was required of a chartered engineer and redefined their requirements in 1997 [1]. The result of this is that engineering degree courses are now judged against new criteria with more emphasis placed on the relevance to industry rather than on purely academic content. At the University of Glasgow it was realized that the students ought to be made aware of current working practices and that there ought to be a review to ensure that the degrees give students the skills required by industry. It was decided to produce a one week introduction course in systems engineering for Masters of Engineering (MEng students to be taught by both university lecturers and practitioners from a range of companies in the aerospace industry with the hope of expanding the course into a module. The reaction of the students was favourable in terms of the content but it seems ironic that the main criticism was that there was not enough discussion involving the students. This paper briefly describes the individual teaching modules and discusses the

  4. Successive leadership changes in the regional jet industry

    OpenAIRE

    Vertesy, D.

    2014-01-01

    This study examines leadership dynamics in the regional jet manufacturing industry from the 1980s onwards. With the help of leading products (aircraft or aircraft family), British Aerospace (BAe), Fokker, Bombardier and Embraer consecutively took the leadership in terms of new deliveries. In order to understand the co-evolution of demand for aircraft, technology and industrial structure, the paper applies a framework for innovation system dynamics that investigates in detail the preconditions...

  5. Successive leadership changes in the regional jet industry

    OpenAIRE

    Vertesy D.

    2014-01-01

    This study examines leadership dynamics in the regional jet manufacturing industry from the 1980s onwards. With the help of leading products aircraft or aircraft family, British Aerospace BAe, Fokker, Bombardier and Embraer consecutively took the leadership in terms of new deliveries. In order to understand the co-evolution of demand for aircraft, technology and industrial structure, the paper applies a framework for innovation system dynamics that investigates in detail the preconditions for...

  6. Aircraft Electric/Hybrid-Electric Power and Propulsion Workshop Perspective of the V/STOL Aircraft Systems Tech Committee

    Science.gov (United States)

    Hange, Craig E.

    2016-01-01

    This presentation will be given at the AIAA Electric Hybrid-Electric Power Propulsion Workshop on July 29, 2016. The workshop is being held so the AIAA can determine how it can support the introduction of electric aircraft into the aerospace industry. This presentation will address the needs of the community within the industry that advocates the use of powered-lift as important new technologies for future aircraft and air transportation systems. As the current chairman of the VSTOL Aircraft Systems Technical Committee, I will be presenting generalized descriptions of the past research in developing powered-lift and generalized observations on how electric and hybrid-electric propulsion may provide advances in the powered-lift field.

  7. Mission management aircraft operations manual

    Science.gov (United States)

    1992-01-01

    This manual prescribes the NASA mission management aircraft program and provides policies and criteria for the safe and economical operation, maintenance, and inspection of NASA mission management aircraft. The operation of NASA mission management aircraft is based on the concept that safety has the highest priority. Operations involving unwarranted risks will not be tolerated. NASA mission management aircraft will be designated by the Associate Administrator for Management Systems and Facilities. NASA mission management aircraft are public aircraft as defined by the Federal Aviation Act of 1958. Maintenance standards, as a minimum, will meet those required for retention of Federal Aviation Administration (FAA) airworthiness certification. Federal Aviation Regulation Part 91, Subparts A and B, will apply except when requirements of this manual are more restrictive.

  8. MIIT Convened Work Meeting for Upstream and Downstream Cooperation Mechanism of Aluminum Material For Civilian Aircraft

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    On September 15,2015,the Department of Raw Material Industry and the Department of Equipment Industry of the Ministry of Industry and Information Technology(MIIT)jointly organized and convened the first work meeting for upstream and downstream cooperation mechanism of aluminum material for civilian aircraft in Shanghai.Entrusted by Vice

  9. 19 CFR 122.64 - Other aircraft.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Other aircraft. 122.64 Section 122.64 Customs... AIR COMMERCE REGULATIONS Clearance of Aircraft and Permission To Depart § 122.64 Other aircraft. Clearance or permission to depart shall be requested by the aircraft commander or agent for aircraft...

  10. Guidance Systems of Fighter Aircraft

    Directory of Open Access Journals (Sweden)

    K.N. Rajanikanth

    2005-07-01

    Full Text Available Mission performance of a fighter aircraft is crucial for survival and strike capabilities in todays' aerial warfare scenario. The guidance functions of such an aircraft play a vital role inmeeting the requirements and accomplishing the mission success. This paper presents the requirements of precision guidance for various missions of a fighter aircraft. The concept ofguidance system as a pilot-in-loop system is pivotal in understanding and designing such a system. Methodologies of designing such a system are described.

  11. Recent Progress in Aircraft Noise Research

    Science.gov (United States)

    Envia, Edmane; Thomas, Russell

    2007-01-01

    An overview of the acoustics research at NASA under the Subsonic Fixed Wing project is given. The presentation describes the rationale behind the noise reduction goals of the project in the context of the next generation air transportation system, and the emphasis placed on achieving these goals through a combination of the in-house and collaborative efforts with industry, universities and other government agencies. The presentation also describes the in-house research plan which is focused on the development of advanced noise and flow diagnostic techniques, next generation noise prediction tools, and novel noise reduction techniques that are applicable across a wide range of aircraft.

  12. Assessment of NASA's Aircraft Noise Prediction Capability

    Science.gov (United States)

    Dahl, Milo D. (Editor)

    2012-01-01

    A goal of NASA s Fundamental Aeronautics Program is the improvement of aircraft noise prediction. This document provides an assessment, conducted from 2006 to 2009, on the current state of the art for aircraft noise prediction by carefully analyzing the results from prediction tools and from the experimental databases to determine errors and uncertainties and compare results to validate the predictions. The error analysis is included for both the predictions and the experimental data and helps identify where improvements are required. This study is restricted to prediction methods and databases developed or sponsored by NASA, although in many cases they represent the current state of the art for industry. The present document begins with an introduction giving a general background for and a discussion on the process of this assessment followed by eight chapters covering topics at both the system and the component levels. The topic areas, each with multiple contributors, are aircraft system noise, engine system noise, airframe noise, fan noise, liner physics, duct acoustics, jet noise, and propulsion airframe aeroacoustics.

  13. Commercial Aircraft Integrated Vehicle Health Management Study

    Science.gov (United States)

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Jones, Sharon Monica; Kurtoglu, Tolga; Leone, Karen M.; Sandifer, Carl E.; Thomas, Megan A.

    2010-01-01

    Statistical data and literature from academia, industry, and other government agencies were reviewed and analyzed to establish requirements for fixture work in detection, diagnosis, prognosis, and mitigation for IVHM related hardware and software. Around 15 to 20 percent of commercial aircraft accidents between 1988 and 2003 involved inalftfnctions or failures of some aircraft system or component. Engine and landing gear failures/malfunctions dominate both accidents and incidents. The IVI vl Project research technologies were found to map to the Joint Planning and Development Office's National Research and Development Plan (RDP) as well as the Safety Working Group's National Aviation Safety Strategic. Plan (NASSP). Future directions in Aviation Technology as related to IVHlvl were identified by reviewing papers from three conferences across a five year time span. A total of twenty-one trend groups in propulsion, aeronautics and aircraft categories were compiled. Current and ftiture directions of IVHM related technologies were gathered and classified according to eight categories: measurement and inspection, sensors, sensor management, detection, component and subsystem monitoring, diagnosis, prognosis, and mitigation.

  14. Chemistry in aircraft plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kraabol, A.G.; Stordal, F.; Knudsen, S. [Norwegian Inst. for Air Research, Kjeller (Norway); Konopka, P. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    An expanding plume model with chemistry has been used to study the chemical conversion of NO{sub x} to reservoir species in aircraft plumes. The heterogeneous conversion of N{sub 2}O{sub 5} to HNO{sub 3}(s) has been investigated when the emissions take place during night-time. The plume from an B747 has been simulated. During a ten-hour calculation the most important reservoir species was HNO{sub 3} for emissions at noon. The heterogeneous reactions had little impact on the chemical loss of NO{sub x} to reservoir species for emissions at night. (author) 4 refs.

  15. Hydrogen aircraft technology

    Science.gov (United States)

    Brewer, G. D.

    1991-01-01

    A comprehensive evaluation is conducted of the technology development status, economics, commercial feasibility, and infrastructural requirements of LH2-fueled aircraft, with additional consideration of hydrogen production, liquefaction, and cryostorage methods. Attention is given to the effects of LH2 fuel cryotank accommodation on the configurations of prospective commercial transports and military airlifters, SSTs, and HSTs, as well as to the use of the plentiful heatsink capacity of LH2 for innovative propulsion cycles' performance maximization. State-of-the-art materials and structural design principles for integral cryotank implementation are noted, as are airport requirements and safety and environmental considerations.

  16. Structural integrity in aircraft.

    Science.gov (United States)

    Hardrath, H. F.

    1973-01-01

    The paper reviews briefly the current design philosophies for achieving long, efficient, and reliable service in aircraft structures. The strengths and weaknesses of these design philosophies and their demonstrated records of success are discussed. The state of the art has not been developed to the point where designing can be done without major test inspection and maintenance programs. A broad program of research is proposed through which a viable computerized design scheme will be provided during the next decade. The program will organize and correlate existing knowledge on fatigue and fracture behavior, identify gaps in this knowledge, and guide specific research to upgrade design capabilities.

  17. Radial cylinder aircraft engines

    OpenAIRE

    Šimíček, Petr

    2015-01-01

    Práce je zaměřena na konstrukční řešení letadlových hvězdicových motorů. Úvod je pojednáním o historii letadlových hvězdicových motorů a jejich vývoji v historickém kontextu. Druhá část je zaměřena na konstrukci letadlových hvězdicových motorů, následně jsou uvedena některá zajímavá konstrukční řešení a porovnání s motorem jiného druhu konstrukce. The bachelor's thesis is focused on design of aircraft radial engines. Home is a treatise on the history of aircraft radial engines and their de...

  18. Aircraft landing using GPS

    Science.gov (United States)

    Lawrence, David Gary

    The advent of the Global Positioning System (GPS) is revolutionizing the field of navigation. Commercial aviation has been particularly influenced by this worldwide navigation system. From ground vehicle guidance to aircraft landing applications, GPS has the potential to impact many areas of aviation. GPS is already being used for non-precision approach guidance; current research focuses on its application to more critical regimes of flight. To this end, the following contributions were made: (1) Development of algorithms and a flexible software architecture capable of providing real-time position solutions accurate to the centimeter level with high integrity. This architecture was used to demonstrate 110 automatic landings of a Boeing 737. (2) Assessment of the navigation performance provided by two GPS-based landing systems developed at Stanford, the Integrity Beacon Landing System, and the Wide Area Augmentation System. (3) Preliminary evaluation of proposed enhancements to traditional techniques for GPS positioning, specifically, dual antenna positioning and pseudolite augmentation. (4) Introduction of a new concept for positioning using airport pseudolites. The results of this research are promising, showing that GPS-based systems can potentially meet even the stringent requirements of a Category III (zero visibility) landing system. Although technical and logistical hurdles still exist, it is likely that GPS will soon provide aircraft guidance in all phases of flight, including automatic landing, roll-out, and taxi.

  19. MISSILES AND AIRCRAFT (PART1

    Directory of Open Access Journals (Sweden)

    C.M. Meyer

    2012-02-01

    Full Text Available Many sources maintain that the role played by air power in the 1973 Yom Kippur War was important. Other interpretations state that control of air space over the battlefield areas, (either by aircraft or anti-aircraft defences, was vital.

  20. Application of trajectory optimization principles to minimize aircraft operating costs

    Science.gov (United States)

    Sorensen, J. A.; Morello, S. A.; Erzberger, H.

    1979-01-01

    This paper summarizes various applications of trajectory optimization principles that have been or are being devised by both government and industrial researchers to minimize aircraft direct operating costs (DOC). These costs (time and fuel) are computed for aircraft constrained to fly over a fixed range. Optimization theory is briefly outlined, and specific algorithms which have resulted from application of this theory are described. Typical results which demonstrate use of these algorithms and the potential savings which they can produce are given. Finally, need for further trajectory optimization research is presented.

  1. Forward Looking Radar Imaging by Truncated Singular Value Decomposition and Its Application for Adverse Weather Aircraft Landing

    OpenAIRE

    Yulin Huang; Yuebo Zha; Yue Wang; Jianyu Yang

    2015-01-01

    The forward looking radar imaging task is a practical and challenging problem for adverse weather aircraft landing industry. Deconvolution method can realize the forward looking imaging but it often leads to the noise amplification in the radar image. In this paper, a forward looking radar imaging based on deconvolution method is presented for adverse weather aircraft landing. We first present the theoretical background of forward looking radar imaging task and its application for aircraft la...

  2. SUPPLY CHAIN FEATURES OF THE AEROSPACE INDUSTRY PARTICULAR CASE AIRBUS AND BOEING

    OpenAIRE

    Daniela MOCENCO

    2015-01-01

    Aerospace sector is one of the most globalized industries in terms of market structure and production system. Through aircraft development programs aviation industry has introduced new solutions to develop its products. The role of the partners involved in the development programs for the new generation aircraft is becoming increasingly important. Supply chain management has become a key factor for major manufacturers in the industry. The new strategies introduced by the aircraft manufacturer...

  3. Aircraft radar antennas

    Science.gov (United States)

    Schrank, Helmut E.

    1987-04-01

    Many changes have taken place in airborne radar antennas since their beginnings over forty years ago. A brief historical review of the advances in technology is presented, from mechanically scanned reflectors to modern multiple function phased arrays. However, emphasis is not on history but on the state-of-the-art technology and trends for future airborne radar systems. The status of rotating surveillance antennas is illustrated by the AN/APY-1 Airborne Warning and Control System (AWACS) slotted waveguide array, which achieved a significant breakthrough in sidelobe suppression. Gimballed flat plate arrays in nose radomes are typified by the AN/APG-66 (F-16) antenna. Multifunction phased arrays are presented by the Electronically Agile Radar (EAR) antenna, which has achieved significant advances in performance versatility and reliability. Trends toward active aperture, adaptive, and digital beamforming arrays are briefly discussed. Antennas for future aircraft radar systems must provide multiple functions in less aperture space, and must perform more reliably.

  4. Commercial aircraft composite technology

    CERN Document Server

    Breuer, Ulf Paul

    2016-01-01

    This book is based on lectures held at the faculty of mechanical engineering at the Technical University of Kaiserslautern. The focus is on the central theme of societies overall aircraft requirements to specific material requirements and highlights the most important advantages and challenges of carbon fiber reinforced plastics (CFRP) compared to conventional materials. As it is fundamental to decide on the right material at the right place early on the main activities and milestones of the development and certification process and the systematic of defining clear requirements are discussed. The process of material qualification - verifying material requirements is explained in detail. All state-of-the-art composite manufacturing technologies are described, including changes and complemented by examples, and their improvement potential for future applications is discussed. Tangible case studies of high lift and wing structures emphasize the specific advantages and challenges of composite technology. Finally,...

  5. NASA Glenn's Contributions to Aircraft Engine Noise Research

    Science.gov (United States)

    Huff, Dennis L.

    2014-01-01

    This presentation reviews engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASAs long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  6. Can we accelerate the improvement of energy efficiency in aircraft systems?

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joosung J. [College of Engineering, Yonsei University, Seoul 120-749 (Korea)

    2010-01-15

    An aircraft is composed of systems that convert fuel energy to mechanical energy in order to perform work - the movement of people and cargo. Today, the fast-growing demand for air travel has outpaced the rate of improvement in the energy efficiency of aircraft systems. The increase in the total energy consumption and environmental impact of aviation necessitates a strategy to induce further technological and operational innovations to mitigate the increase in aircraft energy use and environmental effects. However, the uncertainty associated with the climate effects of jet engine emissions hinders further improvement to the energy efficiency of aircraft systems. Also the unique characteristics (e.g., trade-off between emissions species) of aircraft systems make it difficult to focus on abatement efforts. Based on a short review of how aircraft technology and operations relate to energy use and the future outlook for aircraft performance, energy use, and environmental impact, the key technology and policy issues related to improving the energy efficiency of aircraft systems are presented. Then, the drivers of technological change in aircraft systems are examined. Government regulation effects and industry characteristics as they relate to improvement of energy use are also presented. Based on these discussions, this paper provides insights on how to accelerate the induction of energy efficient, environmentally friendly innovations. (author)

  7. 76 FR 45011 - Control of Air Pollution From Aircraft and Aircraft Engines; Proposed Emission Standards and Test...

    Science.gov (United States)

    2011-07-27

    ... from Aircraft and Aircraft Engines; Emission Standards and Test Procedures;'' Final Rule, 62 FR 25356... From Aircraft and Aircraft Engines; Proposed Emission Standards and Test Procedures; Proposed Rule #0... and Aircraft Engines; Proposed Emission Standards and Test Procedures AGENCY: Environmental...

  8. 36 CFR 331.14 - Aircraft.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Aircraft. 331.14 Section 331..., KENTUCKY AND INDIANA § 331.14 Aircraft. (a) The operation of aircraft on WCA lands and waters is prohibited... prohibited. (c) The provisions of this section shall not be applicable to aircraft engaged on...

  9. 48 CFR 246.408-71 - Aircraft.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Aircraft. 246.408-71... Aircraft. (a) The Federal Aviation Administration (FAA) has certain responsibilities and prerogatives in connection with some commercial aircraft and of aircraft equipment and accessories (Pub. L. 85-726 (72...

  10. 36 CFR 327.4 - Aircraft.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Aircraft. 327.4 Section 327.4... Aircraft. (a) This section pertains to all aircraft including, but not limited to, airplanes, seaplanes, helicopters, ultra-light aircraft, motorized hang gliders, hot air balloons, any non-powered flight devices...

  11. 14 CFR 141.39 - Aircraft.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft. 141.39 Section 141.39 Aeronautics... CERTIFICATED AGENCIES PILOT SCHOOLS Personnel, Aircraft, and Facilities Requirements § 141.39 Aircraft. (a... certificate or provisional pilot school certificate must show that each aircraft used by the school for...

  12. 40 CFR 87.6 - Aircraft safety.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Aircraft safety. 87.6 Section 87.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.6 Aircraft safety. The provisions...

  13. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Science.gov (United States)

    2010-01-01

    ..., airframes, aircraft engines, propellers, appliances, or component parts for return to service after..., REBUILDING, AND ALTERATION § 43.7 Persons authorized to approve aircraft, airframes, aircraft engines... Administrator, may approve an aircraft, airframe, aircraft engine, propeller, appliance, or component part...

  14. 78 FR 54385 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Science.gov (United States)

    2013-09-04

    ... Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration... directive (AD) for various aircraft equipped with Rotax Aircraft Engines 912 A Series Engine. This AD...; phone: +43 7246 601 0; fax: +43 7246 601 9130; Internet: http://www.rotax-aircraft-engines.com . You...

  15. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Science.gov (United States)

    2010-01-01

    ... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on... provisions of §§ 21.183(c), 21.184(b), or 21.185(c); and (2) New aircraft engines or propellers...

  16. Western Pacific Typhoon Aircraft Fixes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Western Pacific typhoon aircraft reconnaissance data from the years 1946 - 1965 and 1978, excluding 1952, were transcribed from original documents, or copy of...

  17. Aircraft recognition and tracking device

    Science.gov (United States)

    Filis, Dimitrios P.; Renios, Christos I.

    2011-11-01

    The technology of aircraft recognition and tracking has various applications in all areas of air navigation, be they civil or military, spanning from air traffic control and regulation at civilian airports to anti-aircraft weapon handling and guidance for military purposes.1, 18 The system presented in this thesis is an alternative implementation of identifying and tracking flying objects, which benefits from the optical spectrum by using an optical camera built into a servo motor (pan-tilt unit). More specifically, through the purpose-developed software, when a target (aircraft) enters the field of view of the camera18, it is both detected and identified.5, 22 Then the servo motor, being provided with data on target position and velocity, tracks the aircraft while it is in constant communication with the camera (Fig. 1). All the features are so designed as to operate under real time conditions.

  18. VTOL to Transonic Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The cyclogyro, an aircraft propulsion concept with the potential for VTOL to the lower bounds of transonic flight, is conceptually simple but structurally and...

  19. Electromagnetic Interference In New Aircraft

    Science.gov (United States)

    Larsen, William E.

    1991-01-01

    Report reviews plans to develop tests and standards to ensure that digital avionics systems in new civil aircraft immune to electromagnetic interference (EMI). Updated standards reflect more severe environment and vulnerabilities of modern avionics.

  20. Alloy design for aircraft engines

    Science.gov (United States)

    Pollock, Tresa M.

    2016-08-01

    Metallic materials are fundamental to advanced aircraft engines. While perceived as mature, emerging computational, experimental and processing innovations are expanding the scope for discovery and implementation of new metallic materials for future generations of advanced propulsion systems.

  1. Technical change in US industry: A cross-industry analysis

    Science.gov (United States)

    Nelson, R. R. (Editor)

    1981-01-01

    The nature of the public policies which have influenced the pace and pattern of technical progress in a number of American industries is studied with the view of assessing the broad effects of these policies. The industries studied are agriculture, pharmaceuticals, semiconductors, computers, civil aircraft, automobiles and residential construction. The policies considered include research and development funding as well as government procurement, education, information dissemination, patent protection, licensing, regulations, and anti-trust policies.

  2. Challenges in Aircraft Noise Prediction

    OpenAIRE

    Filippone A

    2014-01-01

    This contribution addresses the problem of aircraft noise prediction using theoretical methods. The problem is set in context with the needs at several levels to produce noise characterisation from commercial aircraft powered by gas turbine engines. We describe very briefly the computational model (whilst referring the reader to the appropriate literature), and provide examples of noise predictions and comparisons with measured data, where possible. We focus on the issue of stochastic analysi...

  3. Neural networks for aircraft control

    Science.gov (United States)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  4. Optimization in fractional aircraft ownership

    Science.gov (United States)

    Septiani, R. D.; Pasaribu, H. M.; Soewono, E.; Fayalita, R. A.

    2012-05-01

    Fractional Aircraft Ownership is a new concept in flight ownership management system where each individual or corporation may own a fraction of an aircraft. In this system, the owners have privilege to schedule their flight according to their needs. Fractional management companies (FMC) manages all aspects of aircraft operations, including utilization of FMC's aircraft in combination of outsourced aircrafts. This gives the owners the right to enjoy the benefits of private aviations. However, FMC may have complicated business requirements that neither commercial airlines nor charter airlines faces. Here, optimization models are constructed to minimize the number of aircrafts in order to maximize the profit and to minimize the daily operating cost. In this paper, three kinds of demand scenarios are made to represent different flight operations from different types of fractional owners. The problems are formulated as an optimization of profit and a daily operational cost to find the optimum flight assignments satisfying the weekly and daily demand respectively from the owners. Numerical results are obtained by Genetic Algorithm method.

  5. The ARCTAS aircraft mission: design and execution

    Directory of Open Access Journals (Sweden)

    D. J. Jacob

    2009-08-01

    Full Text Available The NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS mission was conducted in two 3-week deployments based in Alaska (April 2008 and western Canada (June–July 2008. The goal of ARCTAS was to better understand the factors driving current changes in Arctic atmospheric composition and climate, including (1 transport of mid-latitude pollution, (2 boreal forest fires, (3 aerosol radiative forcing, and (4 chemical processes. ARCTAS involved three aircraft: a DC-8 with detailed chemical payload, a P-3 with extensive aerosol payload, and a B-200 with aerosol remote sensing instrumentation. The aircraft augmented satellite observations of Arctic atmospheric composition, in particular from the NASA A-Train, by (1 validating the data, (2 improving constraints on retrievals, (3 making correlated observations, and (4 characterizing chemical and aerosol processes. The April flights (ARCTAS-A sampled pollution plumes from all three mid-latitude continents, fire plumes from Siberia and Southeast Asia, and halogen radical events. The June-July flights (ARCTAS-B focused on boreal forest fire influences and sampled fresh fire plumes from northern Saskatchewan as well as older fire plumes from Canada, Siberia, and California. The June–July deployment was preceded by one week of flights over California sponsored by the California Air Resources Board (ARCTAS-CARB. The ARCTAS-CARB goals were to (1 improve state emission inventories for greenhouse gases and aerosols, (2 provide observations to test and improve models of ozone and aerosol pollution. Extensive sampling across southern California and the Central Valley characterized emissions from urban centers, offshore shipping lanes, agricultural crops, feedlots, industrial sources, and wildfires.

  6. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Anderson, M.R.; Miake-Lye, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)

    1997-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  7. Parabolic aircraft solidification experiments

    Science.gov (United States)

    Workman, Gary L. (Principal Investigator); Smith, Guy A.; OBrien, Susan

    1996-01-01

    A number of solidification experiments have been utilized throughout the Materials Processing in Space Program to provide an experimental environment which minimizes variables in solidification experiments. Two techniques of interest are directional solidification and isothermal casting. Because of the wide-spread use of these experimental techniques in space-based research, several MSAD experiments have been manifested for space flight. In addition to the microstructural analysis for interpretation of the experimental results from previous work with parabolic flights, it has become apparent that a better understanding of the phenomena occurring during solidification can be better understood if direct visualization of the solidification interface were possible. Our university has performed in several experimental studies such as this in recent years. The most recent was in visualizing the effect of convective flow phenomena on the KC-135 and prior to that were several successive contracts to perform directional solidification and isothermal casting experiments on the KC-135. Included in this work was the modification and utilization of the Convective Flow Analyzer (CFA), the Aircraft Isothermal Casting Furnace (ICF), and the Three-Zone Directional Solidification Furnace. These studies have contributed heavily to the mission of the Microgravity Science and Applications' Materials Science Program.

  8. Development of an FPGA based Matrix Converter for More Electric Aircraft Applications

    OpenAIRE

    Neacsu, Mihaita-Gabriel

    2015-01-01

    The major challenge in the aerospace industry represents the design of technologies and electrically powered systems to improve the performances of tomorrow`s aircraft. In the last 30 years significant researches are made to increase the overall reliability, availability, efficiency, maintainability and operational costs for the next generation of aircrafts. The general requirements of these power circuits are: the system must be fault tolerant with ability to continue operating properly (pos...

  9. Determination and Applications of Environmental Costs at Different Sized Airports – Aircraft Noise and Engine Emissions.

    OpenAIRE

    Lu, Cherie; Morrell, Peter

    2006-01-01

    With the increasing trend of charging for externalities and the aim of encouraging the sustainable development of the air transport industry, there is a need to evaluate the social costs of these undesirable side effects, mainly aircraft noise and engine emissions, for different airports. The aircraft noise and engine emissions social costs are calculated in monetary terms for five different sized airports, ranging from hub airports to small regional airports. The number of residences within ...

  10. The Factors affecting pollution and noise social costs of the current Aircraft fleet: an econometric analysis

    OpenAIRE

    Grampella, M; Martini, G.; Scotti, D.; Zambon, G.

    2014-01-01

    In the last years, environmental issues have become increasingly relevant in the air transport industry. This exerts an influence on airline fleet choice as demonstrated by the fact that some carriers have begun to purchase more environmentally friendly aircrafts or to include environmental objectives into performance evaluation. This paper aims at analyzing the worldwide fleet by comparing the about 1400 existing (at year 2010) combinations of aircraft/engine models in terms of (1) noise...

  11. Inefficiency of sanitation measures aboard commercial aircraft: environmental pollution and disease.

    Science.gov (United States)

    Kikuchi, R

    1977-07-01

    Recent investigations at Tokyo International Airport have proven that environmental pollution resulting from the inefficient disposal of human excretion aboard aircraft is an important problem from the standpoint of quarantine. It is, therefore, recommended that the worldwide aviation industry take immediate measures to improve conditions and eliminate this problem, which has thus far been ignored by aircraft designers, airport administration, and CAB personnel. PMID:329830

  12. Modern low-pollutive industrial gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, A.

    1987-01-01

    As illustrated by aviation gas turbines, industrial gas-turbine engineering saw a rapid development towards light-weight compact units with enhanced efficiency. The Sulzer gas turbine type 10 is a most up-to-date machine which has not been derived simply from the aircraft engine but will also fully meet the requirements for stationary industrial operation.

  13. Structural Weight Optimization of Aircraft Wing Component Using FEM Approach.

    OpenAIRE

    Arockia Ruban M,; Kaveti Aruna

    2015-01-01

    One of the main challenges for the civil aviation industry is the reduction of its environmental impact by better fuel efficiency by virtue of Structural optimization. Over the past years, improvements in performance and fuel efficiency have been achieved by simplifying the design of the structural components and usage of composite materials to reduce the overall weight of the structure. This paper deals with the weight optimization of transport aircraft with low wing configuratio...

  14. Analysis of Decision Postponement Strategies for Aircraft Assignment under Uncertainty

    OpenAIRE

    Suwandechochai, Rawee

    2002-01-01

    The ability to effectively match supply and demand can lead to significant revenue benefits in the airline industry. Airline supply management deals with assigning the right resources (i.e., aircraft and crew) to the right routes in the flight network. Due to certain crew regulations, operating characteristics, and constraints of the airline companies, these supply management decisions need to be made well in advance of departures, at a time when demand is highly uncertain. However, demand fo...

  15. Aircraft Cabin Environmental Quality Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Gundel, Lara; Kirchstetter, Thomas; Spears, Michael; Sullivan, Douglas

    2010-05-06

    The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Results from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.

  16. Seat Capacity Selection for an Advanced Short-Haul Aircraft Design

    Science.gov (United States)

    Marien, Ty V.

    2016-01-01

    A study was performed to determine the target seat capacity for a proposed advanced short-haul aircraft concept projected to enter the fleet by 2030. This analysis projected the potential demand in the U.S. for a short-haul aircraft using a transportation theory approach, rather than selecting a target seat capacity based on recent industry trends or current market demand. A transportation systems model was used to create a point-to-point network of short-haul trips and then predict the number of annual origin-destination trips on this network. Aircraft of varying seat capacities were used to meet the demand on this network, assuming a single aircraft type for the entire short-haul fleet. For each aircraft size, the ticket revenue and operational costs were used to calculate a total market profitability metric for all feasible flights. The different aircraft sizes were compared, based on this market profitability metric and also the total number of annual round trips and markets served. Sensitivity studies were also performed to determine the effect of changing the aircraft cruise speed and maximum trip length. Using this analysis, the advanced short-haul aircraft design team was able to select a target seat capacity for their design.

  17. Successive leadership changes in the regional jet industry

    NARCIS (Netherlands)

    Vertesy, D.

    2014-01-01

    This study examines leadership dynamics in the regional jet manufacturing industry from the 1980s onwards. With the help of leading products (aircraft or aircraft family), British Aerospace (BAe), Fokker, Bombardier and Embraer consecutively took the leadership in terms of new deliveries. In order t

  18. Analysis of aircraft maintenance models

    Directory of Open Access Journals (Sweden)

    Vlada S. Sokolović

    2011-10-01

    Full Text Available This paper addressed several organizational models of aircraft maintenance. All models presented so far have been in use in Air Forces, so that the advantages and disadvantages of different models are known. First it shows the current model of aircraft maintenance as well as its basic characteristics. Then the paper discusses two organizational models of aircraft maintenance with their advantages and disadvantages. The advantages and disadvantages of different models are analyzed based on the criteria of operational capabilities of military units. In addition to operational capabilities, the paper presents some other criteria which should be taken into account in the evaluation and selection of an optimal model of aircraft maintenance. Performing a qualitative analysis of some models may not be sufficient for evaluating the optimum choice for models of maintenance referring to the selected set of criteria from the scope of operational capabilities. In order to choose the optimum model, it is necessary to conduct a detailed economic and technical analysis of individual tactical model maintenance. A high-quality aircraft maintenance organization requires the highest state and army authorities to be involved. It is necessary to set clear objectives for all the elements of modern air force technical support programs based on the given evaluation criteria.

  19. MATE. Multi Aircraft Training Environment

    DEFF Research Database (Denmark)

    Hauland, G.; Bove, T.; Andersen, Henning Boje;

    2002-01-01

    in the MATE prototype was compared with the effects of traditional training that included the use of realaircraft. The experimental group (EXP) trained the pre-start checklist and the engine start checklist for the Saab 340 commuter aircraft in a MATE prototype. The control group (CTR) trained the same...... procedures using the aircraft (a/c) for training the prestart and a desktop computer tool (power plant trainer) for training engine starts. Performance on the pre-start checklist was compared in a formal checkout that took place in the a/c. Performance on the engine start procedure was compared......A medium fidelity and low cost training device for pilots, called the Multi Aircraft Training Environment (MATE), is developed to replace other low fidelity stand-alone training devices and integrate them into a flexible environment, primarily aimed attraining pilots in checklist procedures...

  20. Vision assisted aircraft lateral navigation

    Science.gov (United States)

    Mohideen, Mohamed Ibrahim; Ramegowda, Dinesh; Seiler, Peter

    2013-05-01

    Surface operation is currently one of the least technologically equipped phases of aircraft operation. The increased air traffic congestion necessitates more aircraft operations in degraded weather and at night. The traditional surface procedures worked well in most cases as airport surfaces have not been congested and airport layouts were less complex. Despite the best efforts of FAA and other safety agencies, runway incursions continue to occur frequently due to incorrect surface operation. Several studies conducted by FAA suggest that pilot induced error contributes significantly to runway incursions. Further, the report attributes pilot's lack of situational awareness - local (e.g., minimizing lateral deviation), global (e.g., traffic in the vicinity) and route (e.g., distance to next turn) - to the problem. An Enhanced Vision System (EVS) is one concept that is being considered to resolve these issues. These systems use on-board sensors to provide situational awareness under poor visibility conditions. In this paper, we propose the use of an Image processing based system to estimate the aircraft position and orientation relative to taxiway markings to use as lateral guidance aid. We estimate aircraft yaw angle and lateral offset from slope of the taxiway centerline and horizontal position of vanishing line. Unlike automotive applications, several cues such as aircraft maneuvers along assigned route with minimal deviations, clear ground markings, even taxiway surface, limited aircraft speed are available and enable us to implement significant algorithm optimizations. We present experimental results to show high precision navigation accuracy with sensitivity analysis with respect to camera mount, optics, and image processing error.

  1. Future aircraft networks and schedules

    Science.gov (United States)

    Shu, Yan

    2011-07-01

    Because of the importance of air transportation scheduling, the emergence of small aircraft and the vision of future fuel-efficient aircraft, this thesis has focused on the study of aircraft scheduling and network design involving multiple types of aircraft and flight services. It develops models and solution algorithms for the schedule design problem and analyzes the computational results. First, based on the current development of small aircraft and on-demand flight services, this thesis expands a business model for integrating on-demand flight services with the traditional scheduled flight services. This thesis proposes a three-step approach to the design of aircraft schedules and networks from scratch under the model. In the first step, both a frequency assignment model for scheduled flights that incorporates a passenger path choice model and a frequency assignment model for on-demand flights that incorporates a passenger mode choice model are created. In the second step, a rough fleet assignment model that determines a set of flight legs, each of which is assigned an aircraft type and a rough departure time is constructed. In the third step, a timetable model that determines an exact departure time for each flight leg is developed. Based on the models proposed in the three steps, this thesis creates schedule design instances that involve almost all the major airports and markets in the United States. The instances of the frequency assignment model created in this thesis are large-scale non-convex mixed-integer programming problems, and this dissertation develops an overall network structure and proposes iterative algorithms for solving these instances. The instances of both the rough fleet assignment model and the timetable model created in this thesis are large-scale mixed-integer programming problems, and this dissertation develops subproblem schemes for solving these instances. Based on these solution algorithms, this dissertation also presents

  2. Introduction to unmanned aircraft systems

    CERN Document Server

    Marshall, Douglas M; Hottman, Stephen B; Shappee, Eric; Most, Michael Thomas

    2011-01-01

    Introduction to Unmanned Aircraft Systems is the editors' response to their unsuccessful search for suitable university-level textbooks on this subject. A collection of contributions from top experts, this book applies the depth of their expertise to identify and survey the fundamentals of unmanned aircraft system (UAS) operations. Written from a nonengineering civilian operational perspective, the book starts by detailing the history of UASs and then explores current technology and what is expected for the future. Covering all facets of UAS elements and operation-including an examination of s

  3. Comparison of Requirements for Composite Structures for Aircraft and Space Applications

    Science.gov (United States)

    Raju, Ivatury S.; Elliot, Kenny B.; Hampton, Roy W.; Knight, Norman F., Jr.; Aggarwal, Pravin; Engelstad, Stephen P.; Chang, James B.

    2010-01-01

    In this report, the aircraft and space vehicle requirements for composite structures are compared. It is a valuable exercise to study composite structural design approaches used in the airframe industry and to adopt methodology that is applicable for space vehicles. The missions, environments, analysis methods, analysis validation approaches, testing programs, build quantities, inspection, and maintenance procedures used by the airframe industry, in general, are not transferable to spaceflight hardware. Therefore, while the application of composite design approaches from aircraft and other industries is appealing, many aspects cannot be directly utilized. Nevertheless, experiences and research for composite aircraft structures may be of use in unexpected arenas as space exploration technology develops, and so continued technology exchanges are encouraged.

  4. Versatile Electric Propulsion Aircraft Testbed Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An all-electric aircraft testbed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered aircraft....

  5. 75 FR 28504 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Science.gov (United States)

    2010-05-21

    ... Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines AGENCY: Federal... 912 A series engine installed in various aircraft does not have an engine type certificate; instead, the engine is part of the aircraft type design. You may obtain further information by examining...

  6. 77 FR 1626 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Science.gov (United States)

    2012-01-11

    ... Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration (FAA), DOT... various aircraft equipped with Rotax Aircraft Engines 912 A series engine. This AD results from mandatory... Rotax Aircraft Engines BRP has issued Alert Service Bulletin ASB- 912-059 and ASB-914-042...

  7. 76 FR 31465 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Science.gov (United States)

    2011-06-01

    ... Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration...://www.rotax-aircraft-engines.com . You may review copies of the referenced service information at the... by examining the MCAI in the AD docket. Relevant Service Information Rotax Aircraft Engines...

  8. Residents' Annoyance Responses to Aircraft Noise Events

    OpenAIRE

    United States, National Aeronautics and Space Administration

    1983-01-01

    In a study conducted in the vicinity of Salt Lake City International Airport, community residents reported their annoyance with individual aircraft flyovers during rating sessions conducted in their homes. Annoyance ratings were obtained at different times of the day. Aircraft noise levels were measured, and other characteristics of the aircraft were noted by trained observers. Metrics commonly used for assessing aircraft noise were compared, but none performed significantly better than A-...

  9. The NASA Aircraft Energy Efficiency program

    Science.gov (United States)

    Klineberg, J. M.

    1979-01-01

    A review is provided of the goals, objectives, and recent progress in each of six aircraft energy efficiency programs aimed at improved propulsive, aerodynamic and structural efficiency for future transport aircraft. Attention is given to engine component improvement, an energy efficient turbofan engine, advanced turboprops, revolutionary gains in aerodynamic efficiency for aircraft of the late 1990s, laminar flow control, and composite primary aircraft structures.

  10. Policy and the evaluation of aircraft noise

    NARCIS (Netherlands)

    Kroesen, M.; Molin, E.J.E.; Van Wee, G.P.

    2010-01-01

    In this paper, we hypothesize and test the ideas that (1) people’s subjectivity in relation to aircraft noise is shaped by the policy discourse, (2) this results in a limited number of frames towards aircraft noise, (3) the frames inform people how to think and feel about aircraft noise and (4) the

  11. 19 CFR 122.37 - Precleared aircraft.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Precleared aircraft. 122.37 Section 122.37 Customs... AIR COMMERCE REGULATIONS Landing Requirements § 122.37 Precleared aircraft. (a) Application. This section applies when aircraft carrying crew, passengers and baggage, or merchandise which has...

  12. 14 CFR 252.13 - Small aircraft.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Small aircraft. 252.13 Section 252.13 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.13 Small aircraft. Air carriers shall prohibit smoking on...

  13. 43 CFR 423.41 - Aircraft.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Aircraft. 423.41 Section 423.41 Public... Aircraft. (a) You must comply with any applicable Federal, State, and local laws, and with any additional... this part 423, with respect to aircraft landings, takeoffs, and operation on or in the proximity...

  14. 14 CFR 21.127 - Tests: aircraft.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tests: aircraft. 21.127 Section 21.127 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate Only § 21.127 Tests: aircraft. (a)...

  15. 50 CFR 27.34 - Aircraft.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Aircraft. 27.34 Section 27.34 Wildlife and... WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Disturbing Violations: With Vehicles § 27.34 Aircraft. The unauthorized operation of aircraft, including sail planes, and hang gliders, at altitudes resulting...

  16. 36 CFR 13.1004 - Aircraft use.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Aircraft use. 13.1004 Section... § 13.1004 Aircraft use. In extraordinary cases where no reasonable alternative exists, local rural residents who permanently reside in the following exempted community(ies) may use aircraft for access...

  17. 48 CFR 908.7102 - Aircraft.

    Science.gov (United States)

    2010-10-01

    ... REQUIRED SOURCES OF SUPPLIES AND SERVICES Acquisition of Special Items 908.7102 Aircraft. Acquisition of aircraft shall be in accordance with DOE-PMR 41 CFR 109-38.5205. ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Aircraft. 908.7102...

  18. 47 CFR 32.2113 - Aircraft.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aircraft. 32.2113 Section 32.2113... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2113 Aircraft. This account shall include the original cost of aircraft and any associated equipment and furnishings...

  19. 14 CFR 91.117 - Aircraft speed.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aircraft speed. 91.117 Section 91.117... speed. (a) Unless otherwise authorized by the Administrator, no person may operate an aircraft below 10... than the maximum speed prescribed in this section, the aircraft may be operated at that minimum speed....

  20. Fiber optic hardware for transport aircraft

    Science.gov (United States)

    White, John A.

    1994-10-01

    Aircraft manufacturers are developing fiber optic technology to exploit the benefits in system performance and manufacturing cost reduction. The fiber optic systems have high bandwidths and exceptional Electromagnetic Interference immunity that exceeds all new aircraft design requirements. Additionally, aircraft manufacturers have shown production readiness of fiber optic systems and design feasibility.

  1. HUMAN FACTOR IMPACT IN MILITARY AIRCRAFT MAINTENANCE

    OpenAIRE

    MARINKOVIC SRBOLJUB J.; DRENOVAC ALEKSANDAR Z.

    2015-01-01

    Aircraft maintenance, as a specific field of military materiel maintenance, is characterized by high reliability standards, based on regulations and technical standards. A system approach to maintenance represents the key element of maintenance quality, while aircraft maintenance staff has a crucial influence on the final outcome of aircraft maintenance.

  2. Human Response to Aircraft Noise

    NARCIS (Netherlands)

    Kroesen, M.

    2011-01-01

    How can it be that one person is extremely annoyed by the sounds of aircrafts, while his neighbour claims not to be bothered at all? The present thesis attempts to explain this observation by applying a range of quantitative methods to field data gathered among residents living near large airports.

  3. Aircraft Simulators and Pilot Training.

    Science.gov (United States)

    Caro, Paul W.

    Flight simulators are built as realistically as possible, presumably to enhance their training value. Yet, their training value is determined by the way they are used. Traditionally, simulators have been less important for training than have aircraft, but they are currently emerging as primary pilot training vehicles. This new emphasis is an…

  4. Aircraft Lightning Electromagnetic Environment Measurement

    Science.gov (United States)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.

    2011-01-01

    This paper outlines a NASA project plan for demonstrating a prototype lightning strike measurement system that is suitable for installation onto research aircraft that already operate in thunderstorms. This work builds upon past data from the NASA F106, FAA CV-580, and Transall C-180 flight projects, SAE ARP5412, and the European ILDAS Program. The primary focus is to capture airframe current waveforms during attachment, but may also consider pre and post-attachment current, electric field, and radiated field phenomena. New sensor technologies are being developed for this system, including a fiber-optic Faraday polarization sensor that measures lightning current waveforms from DC to over several Megahertz, and has dynamic range covering hundreds-of-volts to tens-of-thousands-of-volts. A study of the electromagnetic emission spectrum of lightning (including radio wave, microwave, optical, X-Rays and Gamma-Rays), and a compilation of aircraft transfer-function data (including composite aircraft) are included, to aid in the development of other new lightning environment sensors, their placement on-board research aircraft, and triggering of the onboard instrumentation system. The instrumentation system will leverage recent advances in high-speed, high dynamic range, deep memory data acquisition equipment, and fiber-optic interconnect.

  5. Laser Powered Aircraft Takes Flight

    Science.gov (United States)

    2003-01-01

    A team of NASA researchers from Marshall Space Flight Center (MSFC) and Dryden Flight Research center have proven that beamed light can be used to power an aircraft, a first-in-the-world accomplishment to the best of their knowledge. Using an experimental custom built radio-controlled model aircraft, the team has demonstrated a system that beams enough light energy from the ground to power the propeller of an aircraft and sustain it in flight. Special photovoltaic arrays on the plane, similar to solar cells, receive the light energy and convert it to electric current to drive the propeller motor. In a series of indoor flights this week at MSFC, a lightweight custom built laser beam was aimed at the airplane `s solar panels. The laser tracks the plane, maintaining power on its cells until the end of the flight when the laser is turned off and the airplane glides to a landing. The laser source demonstration represents the capability to beam more power to a plane so that it can reach higher altitudes and have a greater flight range without having to carry fuel or batteries, enabling an indefinite flight time. The demonstration was a collaborative effort between the Dryden Center at Edward's, California, where the aircraft was designed and built, and MSFC, where integration and testing of the laser and photovoltaic cells was done. Laser power beaming is a promising technology for consideration in new aircraft design and operation, and supports NASA's goals in the development of revolutionary aerospace technologies. Photographed with their invention are (from left to right): David Bushman and Tony Frackowiak, both of Dryden; and MSFC's Robert Burdine.

  6. An economic model of the manufacturers' aircraft production and airline earnings potential, volume 3

    Science.gov (United States)

    Kneafsey, J. T.; Hill, R. M.

    1978-01-01

    A behavioral explanation of the process of technological change in the U. S. aircraft manufacturing and airline industries is presented. The model indicates the principal factors which influence the aircraft (airframe) manufacturers in researching, developing, constructing and promoting new aircraft technology; and the financial requirements which determine the delivery of new aircraft to the domestic trunk airlines. Following specification and calibration of the model, the types and numbers of new aircraft were estimated historically for each airline's fleet. Examples of possible applications of the model to forecasting an individual airline's future fleet also are provided. The functional form of the model is a composite which was derived from several preceding econometric models developed on the foundations of the economics of innovation, acquisition, and technological change and represents an important contribution to the improved understanding of the economic and financial requirements for aircraft selection and production. The model's primary application will be to forecast the future types and numbers of new aircraft required for each domestic airline's fleet.

  7. Direct carbon dioxide emissions from civil aircraft

    Science.gov (United States)

    Grote, Matt; Williams, Ian; Preston, John

    2014-10-01

    Global airlines consume over 5 million barrels of oil per day, and the resulting carbon dioxide (CO2) emitted by aircraft engines is of concern. This article provides a contemporary review of the literature associated with the measures available to the civil aviation industry for mitigating CO2 emissions from aircraft. The measures are addressed under two categories - policy and legal-related measures, and technological and operational measures. Results of the review are used to develop several insights into the challenges faced. The analysis shows that forecasts for strong growth in air-traffic will result in civil aviation becoming an increasingly significant contributor to anthropogenic CO2 emissions. Some mitigation-measures can be left to market-forces as the key-driver for implementation because they directly reduce airlines' fuel consumption, and their impact on reducing fuel-costs will be welcomed by the industry. Other mitigation-measures cannot be left to market-forces. Speed of implementation and stringency of these measures will not be satisfactorily resolved unattended, and the current global regulatory-framework does not provide the necessary strength of stewardship. A global regulator with ‘teeth' needs to be established, but investing such a body with the appropriate level of authority requires securing an international agreement which history would suggest is going to be very difficult. If all mitigation-measures are successfully implemented, it is still likely that traffic growth-rates will continue to out-pace emissions reduction-rates. Therefore, to achieve an overall reduction in CO2 emissions, behaviour change will be necessary to reduce demand for air-travel. However, reducing demand will be strongly resisted by all stakeholders in the industry; and the ticket price-increases necessary to induce the required reduction in traffic growth-rates place a monetary-value on CO2 emissions of approximately 7-100 times greater than other common

  8. Factors influencing aircraft ground handling performance

    Science.gov (United States)

    Yager, T. J.

    1983-01-01

    Problems associated with aircraft ground handling operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from tests with instrumented ground vehicles and aircraft, and aircraft wet runway accident investigation are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.

  9. NASA Electric Aircraft Test Bed (NEAT) Development Plan - Design, Fabrication, Installation

    Science.gov (United States)

    Dyson, Rodger W.

    2016-01-01

    As large airline companies compete to reduce emissions, fuel, noise, and maintenance costs, it is expected that more of their aircraft systems will shift from using turbofan propulsion, pneumatic bleed power, and hydraulic actuation, to instead using electrical motor propulsion, generator power, and electrical actuation. This requires new flight-weight and flight-efficient powertrain components, fault tolerant power management, and electromagnetic interference mitigation technologies. Moreover, initial studies indicate some combination of ambient and cryogenic thermal management and relatively high bus voltages when compared to state of practice will be required to achieve a net system benefit. Developing all these powertrain technologies within a realistic aircraft architectural geometry and under realistic operational conditions requires a unique electric aircraft testbed. This report will summarize existing testbed capabilities located in the U.S. and details the development of a unique complementary testbed that industry and government can utilize to further mature electric aircraft technologies.

  10. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    Science.gov (United States)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  11. Visualizing interior and exterior jet aircraft noise

    Science.gov (United States)

    Moondra, Manmohan S.

    In today's competitive aerospace industry, the quest for quiet has drawn significant attention to both the interior and exterior design of an airplane. Understanding the noise generation mechanisms of a jet aircraft is a crucial first step toward developing the most cost-effective noise and vibrations abatement methods. In this investigation, the Helmholtz Equation Least Squares (HELS) based nearfield acoustic holography will be used to understand noise transmission caused by jet engine and turbulence into the fuselage of a jet aircraft cruising at 30,000 ft. Modern propulsive jet engines produce exterior noise sources with a high amplitude noise field and complicated characteristics, which makes them very difficult to characterize. In particular, there are turbulent eddies that are moving through the jet at high speeds along the jet boundary. These turbulent eddies in the shear layer produce a directional and frequency dependent noise. The original HELS approach assumes a spherical source at the origin and computes the acoustic field based on spherical emission from this source. This assumption of one source at the origin is not sufficient to characterize a complex source like a jet. As such, a modified HELS approach is introduced that will help improve the source characterization as it is not dependent on a single source at the origin but a number of virtual sources throughout the space. Custom microphones are created to take acoustic pressure measurements around the jet engine. These measured acoustic pressures are then taken as input to the modified HELS algorithm to visualize the noise pattern of a subsonic jet engine.

  12. Quality-Oriented Classification of Aircraft Material Based on SVM

    Directory of Open Access Journals (Sweden)

    Hongxia Cai

    2014-01-01

    Full Text Available The existing material classification is proposed to improve the inventory management. However, different materials have the different quality-related attributes, especially in the aircraft industry. In order to reduce the cost without sacrificing the quality, we propose a quality-oriented material classification system considering the material quality character, Quality cost, and Quality influence. Analytic Hierarchy Process helps to make feature selection and classification decision. We use the improved Kraljic Portfolio Matrix to establish the three-dimensional classification model. The aircraft materials can be divided into eight types, including general type, key type, risk type, and leveraged type. Aiming to improve the classification accuracy of various materials, the algorithm of Support Vector Machine is introduced. Finally, we compare the SVM and BP neural network in the application. The results prove that the SVM algorithm is more efficient and accurate and the quality-oriented material classification is valuable.

  13. Titanium Alloys and Processing for High Speed Aircraft

    Science.gov (United States)

    Brewer, William D.; Bird, R. Keith; Wallace, Terryl A.

    1996-01-01

    Commercially available titanium alloys as well as emerging titanium alloys with limited or no production experience are being considered for a variety of applications to high speed commercial aircraft structures. A number of government and industry programs are underway to improve the performance of promising alloys by chemistry and/or processing modifications and to identify appropriate alloys and processes for specific aircraft structural applications. This paper discusses some of the results on the effects of heat treatment, service temperatures from - 54 C to +177 C, and selected processing on the mechanical properties of several candidate beta and alpha-beta titanium alloys. Included are beta alloys Timetal 21S, LCB, Beta C, Beta CEZ, and Ti-10-2-3 and alpha-beta alloys Ti-62222, Ti-6242S, Timetal 550, Ti-62S, SP-700, and Corona-X. The emphasis is on properties of rolled sheet product form and on the superplastic properties and processing of the materials.

  14. Structural health monitoring and impact detection for primary aircraft structures

    Science.gov (United States)

    Kosters, Eric; van Els, Thomas J.

    2010-04-01

    The increasing use of thermoplastic carbon fiber-reinforced plastic (CFRP) materials in the aerospace industry for primary aircraft structures, such as wing leading-edge surfaces and fuselage sections, has led to rapid growth in the field of structural health monitoring (SHM). Impact, vibration, and load can all cause failure, such as delamination and matrix cracking, in composite materials. Moreover, the internal material damage can occur without being visible to the human eye, making inspection of and clear insight into structural integrity difficult using currently available evaluation methods. Here, we describe the detection of impact and its localization in materials and structures by high-speed interrogation of multiple-fiber Bragg grating (FBG) sensors mounted on a composite aircraft component.

  15. 75 FR 7996 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Models TAE 125-01 and TAE 125-02...

    Science.gov (United States)

    2010-02-23

    ... Aircraft Engines GmbH (TAE) Models TAE 125-01 and TAE 125-02-99 Reciprocating Engines Installed in, But Not... reported on Diamond Aircraft Industries DA 42 airplanes equipped with TAE 125 engines. The investigations... to further cases of engine in-flight shutdown, possibly resulting in reduced control of the...

  16. 75 FR 53846 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Models TAE 125-01 and TAE 125-02...

    Science.gov (United States)

    2010-09-02

    ... TAE 125-02-99 reciprocating engines, installed in, but not limited to, Diamond Aircraft Industries..., Acting Manager, Engine and Propeller Directorate, Aircraft Certification Service. BILLING CODE 4910-13-P ...-47-AD; Amendment 39-16314; AD 2010-11-09] RIN 2120-AA64 Airworthiness Directives; Thielert...

  17. 75 FR 32253 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Models TAE 125-01 and TAE 125-02...

    Science.gov (United States)

    2010-06-08

    ... Diamond Aircraft Industries DA 42 airplanes equipped with TAE 125 engines. The investigations showed that... cases of engine in-flight shutdown, possibly resulting in reduced control of the aircraft. Since the.... The MCAI states that: Engine in-flight shutdown incidents have been reported on Diamond...

  18. Tailor-made blanks for the aircraft industry

    OpenAIRE

    Zad Poor, A.A.

    2010-01-01

    Tailor-Made Blanks (TMBs) are hybrid assemblies made of sheet metals with different materials and/or thicknesses that are joined together prior to forming. Alternatively, a monolithic sheet can be machined to create required thickness variations (machined TMBs). The possibility of having several thicknesses and/or materials in one single structure facilitates optimal material distribution and helps us make ground and air vehicles lighter, more cost-effective, fuel-efficient, and environment-f...

  19. 78 FR 25363 - Airworthiness Directives; Diamond Aircraft Industries Airplanes

    Science.gov (United States)

    2013-05-01

    ...'' under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979), (3) Will not affect... 40NG-011 to replace the charged air elbow hose between the turbocharger and intercooler with an... instructions to inspect the charged air tubing from the turbocharger to the intercooler and replacement...

  20. Tailor-made blanks for the aircraft industry

    NARCIS (Netherlands)

    Zad Poor, A.A.

    2010-01-01

    Tailor-Made Blanks (TMBs) are hybrid assemblies made of sheet metals with different materials and/or thicknesses that are joined together prior to forming. Alternatively, a monolithic sheet can be machined to create required thickness variations (machined TMBs). The possibility of having several thi

  1. Development of Textile Reinforced Composites for Aircraft Structures

    Science.gov (United States)

    Dexter, H. Benson

    1998-01-01

    NASA has been a leader in development of composite materials for aircraft applications during the past 25 years. In the early 1980's NASA and others conducted research to improve damage tolerance of composite structures through the use of toughened resins but these resins were not cost-effective. The aircraft industry wanted affordable, robust structures that could withstand the rigors of flight service with minimal damage. The cost and damage tolerance barriers of conventional laminated composites led NASA to focus on new concepts in composites which would incorporate the automated manufacturing methods of the textiles industry and which would incorporate through-the-thickness reinforcements. The NASA Advanced Composites Technology (ACT) Program provided the resources to extensively investigate the application of textile processes to next generation aircraft wing and fuselage structures. This paper discusses advanced textile material forms that have been developed, innovative machine concepts and key technology advancements required for future application of textile reinforced composites in commercial transport aircraft. Multiaxial warp knitting, triaxial braiding and through-the-thickness stitching are the three textile processes that have surfaced as the most promising for further development. Textile reinforced composite structural elements that have been developed in the NASA ACT Program are discussed. Included are braided fuselage frames and window-belt reinforcements, woven/stitched lower fuselage side panels, stitched multiaxial warp knit wing skins, and braided wing stiffeners. In addition, low-cost processing concepts such as resin transfer molding (RTM), resin film infusion (RFI), and vacuum-assisted resin transfer molding (VARTM) are discussed. Process modeling concepts to predict resin flow and cure in textile preforms are also discussed.

  2. Numeric Design and Performance Analysis of Solid Oxide Fuel Cell -- Gas Turbine Hybrids on Aircraft

    Science.gov (United States)

    Hovakimyan, Gevorg

    The aircraft industry benefits greatly from small improvements in aircraft component design. One possible area of improvement is in the Auxiliary Power Unit (APU). Modern aircraft APUs are gas turbines located in the tail section of the aircraft that generate additional power when needed. Unfortunately the efficiency of modern aircraft APUs is low. Solid Oxide Fuel Cell/Gas Turbine (SOFC/GT) hybrids are one possible alternative for replacing modern gas turbine APUs. This thesis investigates the feasibility of replacing conventional gas turbine APUs with SOFC/GT APUs on aircraft. An SOFC/GT design algorithm was created in order to determine the specifications of an SOFC/GT APU. The design algorithm is comprised of several integrated modules which together model the characteristics of each component of the SOFC/GT system. Given certain overall inputs, through numerical analysis, the algorithm produces an SOFC/GT APU, optimized for specific power and efficiency, capable of performing to the required specifications. The SOFC/GT design is then input into a previously developed quasi-dynamic SOFC/GT model to determine its load following capabilities over an aircraft flight cycle. Finally an aircraft range study is conducted to determine the feasibility of the SOFC/GT APU as a replacement for the conventional gas turbine APU. The design results show that SOFC/GT APUs have lower specific power than GT systems, but have much higher efficiencies. Moreover, the dynamic simulation results show that SOFC/GT APUs are capable of following modern flight loads. Finally, the range study determined that SOFC/GT APUs are more attractive over conventional APUs for longer range aircraft.

  3. Aircraft noise and birth weight

    Energy Technology Data Exchange (ETDEWEB)

    Knipschild, P.; Meijer, H.; Salle, H.

    1981-05-01

    Data from six infant welfare centres in the vicinity of Amsterdam airport were analysed. Birth weights of 902 infants were related to aircraft noise levels to which the mother was exposed in pregnancy. The analysis was restricted to deliveries in hospital, single births and mothers aged 20-34 years. In high noise areas the mean birth weight was 69 g lower than in low noise areas. Of the infants in high noise areas 24% had a birth weight less than 3000 g, compared with 18% in low noise areas. In the analysis the effect of sex of the infant, birth order and to some extent socio-economic status were taken into account. An effect of smoking seemed unlikely. The results, together with existing knowledge, give some suggestion that aircraft noise can decrease birth weight.

  4. Perception of aircraft Deviation Cues

    Science.gov (United States)

    Martin, Lynne; Azuma, Ronald; Fox, Jason; Verma, Savita; Lozito, Sandra

    2005-01-01

    To begin to address the need for new displays, required by a future airspace concept to support new roles that will be assigned to flight crews, a study of potentially informative display cues was undertaken. Two cues were tested on a simple plan display - aircraft trajectory and flight corridor. Of particular interest was the speed and accuracy with which participants could detect an aircraft deviating outside its flight corridor. Presence of the trajectory cue significantly reduced participant reaction time to a deviation while the flight corridor cue did not. Although non-significant, the flight corridor cue seemed to have a relationship with the accuracy of participants judgments rather than their speed. As this is the second of a series of studies, these issues will be addressed further in future studies.

  5. Aircraft systems design methodology and dispatch reliability prediction

    OpenAIRE

    Bineid, Mansour

    2005-01-01

    Aircraft despatch reliability was the main subject of this research in the wider content of aircraft reliability. The factors effecting dispatch reliability, aircraft delay, causes of aircraft delays, and aircraft delay costs and magnitudes were examined. Delay cost elements and aircraft delay scenarios were also studied. It concluded that aircraft dispatch reliability is affected by technical and non-technical factors, and that the former are under the designer's control. It showed that ...

  6. Challenges of aircraft design integration

    OpenAIRE

    Kafyeke, F.; Abdo, M.; Pepin, F; Piperni, P.; Laurendeau, E.

    2007-01-01

    The design of a modern airplane brings together many disciplines: structures, aerodynamics, controls, systems, propulsion with complex interdependencies and many variables. Recent aircraft programs, such as Bombardier's Continental Jet program use participants located around the world and selected for their cost, quality and delivery capability. These participants share the risk on the program and must therefore be fully implicated in the design. A big challenge is to provide information on c...

  7. PREDICTION OF AIRCRAFT NOISE LEVELS

    Science.gov (United States)

    Clark, B. J.

    1994-01-01

    Methods developed at the NASA Lewis Research Center for predicting the noise contributions from various aircraft noise sources have been incorporated into a computer program for predicting aircraft noise levels either in flight or in ground test. The noise sources accounted for include fan inlet and exhaust, jet, flap (for powered lift), core (combustor), turbine, and airframe. Noise propagation corrections are available in the program for atmospheric attenuation, ground reflections, extra ground attenuation, and shielding. The capacity to solve the geometrical relationships between an aircraft in flight and an observer on the ground has been included in the program to make it useful in evaluating noise estimates and footprints for various proposed engine installations. The program contains two main routines for employing the noise prediction routines. The first main routine consists of a procedure to calculate at various observer stations the time history of the noise from an aircraft flying at a specified set of speeds, orientations, and space coordinates. The various components of the noise are computed by the program. For each individual source, the noise levels are free field with no corrections for propagation losses other than spherical divergence. The total spectra may then be corrected for the usual effects of atmospheric attenuation, extra ground attenuation, ground reflection, and aircraft shielding. Next, the corresponding values of overall sound pressure level, perceived noise level, and tone-weighted perceived noise level are calculated. From the time history at each point, true effective perceived noise levels are calculated. Thus, values of effective perceived noise levels, maximum perceived noise levels, and tone-weighted perceived noise levels are found for a grid of specified points on the ground. The second main routine is designed to give the usual format of one-third octave sound pressure level values at a fixed radius for a number of user

  8. AIRTV: Broadband Direct to Aircraft

    Science.gov (United States)

    Sorbello, R.; Stone, R.; Bennett, S. B.; Bertenyi, E.

    2002-01-01

    Airlines have been continuously upgrading their wide-body, long-haul aircraft with IFE (in-flight entertainment) systems that can support from 12 to 24 channels of video entertainment as well as provide the infrastructure to enable in-seat delivery of email and internet services. This is a direct consequence of increased passenger demands for improved in-flight services along with the expectations that broadband delivery systems capable of providing live entertainment (news, sports, financial information, etc.) and high speed data delivery will soon be available. The recent events of Sept. 11 have slowed the airline's upgrade of their IFE systems, but have also highlighted the compelling need for broadband aeronautical delivery systems to include operational and safety information. Despite the impact of these events, it is estimated that by 2005 more than 3000 long haul aircraft (servicing approximately 1 billion passengers annually) will be fully equipped with modern IFE systems. Current aircraft data delivery systems, which use either Inmarsat or NATS, are lacking in bandwidth and consequently are unsuitable to satisfy passenger demands for broadband email/internet services or the airlines' burgeoning data requirements. Present live video delivery services are limited to regional coverage and are not readily expandable to global or multiregional service. Faced with a compelling market demand for high data transport to aircraft, AirTV has been developing a broadband delivery system that will meet both passengers' and airlines' needs. AirTV is a global content delivery system designed to provide a range of video programming and data services to commercial airlines. When AirTV is operational in 2004, it will provide a broadband connection directly to the aircraft, delivering live video entertainment, internet/email service and essential operational and safety data. The system has been designed to provide seamless global service to all airline routes except for those

  9. Integrated Design of a Long-Haul Commercial Aircraft Optimized for Formation Flying

    NARCIS (Netherlands)

    Dijkers, H.P.A.; Van Nunen, R.; Bos, D.A.; Gutleb, T.L.M.; Herinckx, L.E.; Radfar, H.; Van Rompuy, E.; Sayin, S.E.; De Wit, J.; Beelaerts van Blokland, W.W.A.

    2011-01-01

    The airline industry is under continuous pressure to reduce emissions and costs. This paper investigates the feasibility for commercial airlines to use formation flight to reduce emissions and fuel burn. To fly in formation, an aircraft needs to benefit from the wake vortices of the preceding aircra

  10. An Integrated Knowledge Based Engineering Mechatronics Modeling Approach to Support the Design of Unstable and Unmanned Aircraft

    OpenAIRE

    Tian, F.N.

    2015-01-01

    The commercial transport aircraft industry is currently developing new “more electric aircraft” (MEA) designs in which various conventional mechanical, hydraulic and pneumatic power systems are replaced with electrically-based power systems. Their objective is to improve the overall flight performance by reducing the aircraft weight and by a lower overall energy requirement for the systems. The vision for the future is to ultimately replace all systems with electrical systems and even to repl...

  11. 78 FR 65554 - Exhaust Emission Standards for New Aircraft Turbine Engines and Identification Plate for Aircraft...

    Science.gov (United States)

    2013-11-01

    ... Aircraft Turbine Engines and Identification Plate for Aircraft Engines Correction In rule document 2013... for Subsonic Engines'', in the third column, in the last row, the entry ``rO > 26.7'' is corrected...

  12. Development and validation of bonded composite doubler repairs for commercial aircraft.

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Dennis Patrick; Rackow, Kirk A.

    2007-07-01

    A typical aircraft can experience over 2,000 fatigue cycles (cabin pressurizations) and even greater flight hours in a single year. An unavoidable by-product of aircraft use is that crack, impact, and corrosion flaws develop throughout the aircraft's skin and substructure elements. Economic barriers to the purchase of new aircraft have placed even greater demands on efficient and safe repair methods. The use of bonded composite doublers offers the airframe manufacturers and aircraft maintenance facilities a cost effective method to safely extend the lives of their aircraft. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is now possible to bond a single Boron-Epoxy composite doubler to the damaged structure. The FAA's Airworthiness Assurance Center at Sandia National Labs (AANC), Boeing, and Federal Express completed a pilot program to validate and introduce composite doubler repair technology to the U.S. commercial aircraft industry. This project focused on repair of DC-10 fuselage structure and its primary goal was to demonstrate routine use of this repair technology using niche applications that streamline the design-to-installation process. As composite doubler repairs gradually appear in the commercial aircraft arena, successful flight operation data is being accumulated. These commercial aircraft repairs are not only demonstrating the engineering and economic advantages of composite doubler technology but they are also establishing the ability of commercial maintenance depots to safely adopt this repair technique. This report presents the array of engineering activities that were completed in order to make this technology available for widespread commercial aircraft use. Focused laboratory testing was conducted to compliment the field data and to address specific issues regarding damage tolerance and flaw growth in composite doubler repairs. Fatigue and strength tests were performed on a simulated wing

  13. 14 CFR 91.111 - Operating near other aircraft.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Operating near other aircraft. 91.111... § 91.111 Operating near other aircraft. (a) No person may operate an aircraft so close to another aircraft as to create a collision hazard. (b) No person may operate an aircraft in formation flight...

  14. Choice of Aircraft Size - Explanations and Implications

    OpenAIRE

    Givoni, Moshe; Rietveld, Piet

    2006-01-01

    To keep load factors high while offering high frequency service, airlines tend to reduce the size of the aircraft they use. At many of the world’s largest airports there are fewer than 100 passengers per air transport movement, although congestion and delays are growing. Furthermore, demand for air transport is predicted to continue growing but aircraft size is not. This paper aims to investigate and explain this phenomenon, the choice of relatively small aircraft. It seems that this choice i...

  15. Neural Networks Based Aircraft Fault Tolerant Control

    OpenAIRE

    Zhong, Lunlong; Mora-Camino, Félix

    2012-01-01

    The purpose of this communication is to deal with the case in which an aerodynamic actuator failure occurs to an aircraft while it has to perform guidance maneuvers. The problem considered deals with the reallocation of redundant actuators to perform the required maneuvers and maintain the structural integrity of the aircraft. A Nonlinear Inverse Control technique is used to generate online nominal moment along the three axis of the aircraft. Then, taking into account all material and structu...

  16. AIRTV: Broadband Direct to Aircraft

    Science.gov (United States)

    Sorbello, R.; Stone, R.; Bennett, S. B.; Bertenyi, E.

    2002-01-01

    Airlines have been continuously upgrading their wide-body, long-haul aircraft with IFE (in-flight entertainment) systems that can support from 12 to 24 channels of video entertainment as well as provide the infrastructure to enable in-seat delivery of email and internet services. This is a direct consequence of increased passenger demands for improved in-flight services along with the expectations that broadband delivery systems capable of providing live entertainment (news, sports, financial information, etc.) and high speed data delivery will soon be available. The recent events of Sept. 11 have slowed the airline's upgrade of their IFE systems, but have also highlighted the compelling need for broadband aeronautical delivery systems to include operational and safety information. Despite the impact of these events, it is estimated that by 2005 more than 3000 long haul aircraft (servicing approximately 1 billion passengers annually) will be fully equipped with modern IFE systems. Current aircraft data delivery systems, which use either Inmarsat or NATS, are lacking in bandwidth and consequently are unsuitable to satisfy passenger demands for broadband email/internet services or the airlines' burgeoning data requirements. Present live video delivery services are limited to regional coverage and are not readily expandable to global or multiregional service. Faced with a compelling market demand for high data transport to aircraft, AirTV has been developing a broadband delivery system that will meet both passengers' and airlines' needs. AirTV is a global content delivery system designed to provide a range of video programming and data services to commercial airlines. When AirTV is operational in 2004, it will provide a broadband connection directly to the aircraft, delivering live video entertainment, internet/email service and essential operational and safety data. The system has been designed to provide seamless global service to all airline routes except for those

  17. Impact of aircraft systems within aircraft operation: A MEA trajectory optimisation study

    OpenAIRE

    Seresinhe, R.

    2014-01-01

    Air transport has been a key component of the socio-economic globalisation. The ever increasing demand for air travel and air transport is a testament to the success of the aircraft. But this growing demand presents many challenges. One of which is the environmental impact due to aviation. The scope of the environmental impact of aircraft can be discussed from many viewpoints. This research focuses on the environmental impact due to aircraft operation. Aircraft operation causes...

  18. Policy and the evaluation of aircraft noise

    OpenAIRE

    Kroesen, M.; Molin, E.J.E.; Van Wee, G.P.

    2010-01-01

    In this paper, we hypothesize and test the ideas that (1) people’s subjectivity in relation to aircraft noise is shaped by the policy discourse, (2) this results in a limited number of frames towards aircraft noise, (3) the frames inform people how to think and feel about aircraft noise and (4) the distribution of the frames in the population is dependent on structural variables related to the individual. To reveal subjects’ frames of aircraft noise a latent class model is estimated based on ...

  19. Research on Emerging and Descending Aircraft Noise

    Directory of Open Access Journals (Sweden)

    Monika Bartkevičiūtė

    2013-12-01

    Full Text Available Along with an increase in the aircraft engine power and growth in air traffic, noise level at airports and their surrounding environs significantly increases. Aircraft noise is high level noise spreading within large radius and intensively irritating the human body. Air transport is one of the main sources of noise having a particularly strong negative impact on the environment. The article deals with activities and noises taking place in the largest nationwide Vilnius International Airport.The level of noise and its dispersion was evaluated conducting research on the noise generated by emerging and descending aircrafts in National Vilnius Airport. Investigation was carried out at 2 measuring points located in a residential area. There are different types of aircrafts causing different sound levels. It has been estimated the largest exceedances that occur when an aircraft is approaching. In this case, the noisiest types of aircrafts are B733, B738 and AT72. The sound level varies from 70 to 85 dBA. The quietest aircrafts are RJ1H and F70. When taking off, the equivalent of the maximum sound level value of these aircrafts does not exceed the authorized limits. The paper describes the causes of noise in aircrafts, the sources of origin and the impact of noise on humans and the environment.Article in Lithuanian

  20. Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL) provides a variety of research, design engineering and prototype fabrication services...

  1. Challenges for the aircraft structural integrity program

    Science.gov (United States)

    Lincoln, John W.

    1994-01-01

    Thirty-six years ago the United States Air Force established the USAF Aircraft Structural Integrity Program (ASIP) because flight safety had been degraded by fatigue failures of operational aircraft. This initial program evolved, but has been stable since the issuance of MIL-STD-1530A in 1975. Today, the program faces new challenges because of a need to maintain aircraft longer in an environment of reduced funding levels. Also, there is increased pressure to reduce cost of the acquisition of new aircraft. It is the purpose of this paper to discuss the challenges for the ASIP and identify the changes in the program that will meet these challenges in the future.

  2. Radiation survey of aircraft and heavy machinery scrap.

    Science.gov (United States)

    Idriss, Hajo; Salih, Isam; Gumaa, Elsadig; Yassin, Abbas; Yousif, E H; Abdel Hamid, Saad Eldeen M; Sam, A K

    2012-12-01

    This study was conducted primarily to survey aircraft and heavy machinery at 30 locations within Khartoum State using handheld radiation survey meters to detect and identify any radiation sources that might be present and to estimate radiation dose levels. The survey has resulted in detection of 16 sealed sources of (90)Sr and one of (226)Ra in aircraft scrap. Of course, (90)Sr sources are used in military aircraft as temperature sensors while (226)Ra is used for indicating fuel levels. These sources were found intact without spreading radioactivity contamination; however, none was detected in heavy machine scrap. The levels of radiation dose measured at 0.1m from the source fall within the range of 25.1-40.2 μSv/h with an average value of 33.52 ± 4.06 μSv/h. These orphan sources have been separated from the scrap, tested for possible leakage, conditioned and stored in waste management facility. The result of this study has revealed without doubt that the scrap constitute a serious source of public exposure and highlights the importance of legislation making radiation monitoring of scrap in the country mandatory before it is sold to metal industry for reprocessing.

  3. Aircraft optical cable plant: the physical layer for fly-by-light control networks

    Science.gov (United States)

    Weaver, Thomas L.

    1996-10-01

    A program was completed with joint industry and government funding to apply fiber optic technologies to aircraft. The technology offers many potential benefits. Among them are increased electromagnetic interference immunity and the possibility of reduced weight, increased reliability, and enlarged capability by redesigning architectures to use the large bandwidth of fiber optics. Those benefits can be realized if fiber optics meets the unique requirements of aircraft networks. Many independent efforts have been made in the development of the systems, known as cable plants, to link opto-electronic components. The FLASH program built on that work. Over the last two years, FLASH expanded on the cable plant efforts by building components based on a cohesive aircraft plant system concept. The concept was rooted in not just optical performance, but also cost, manufacturing, installation, maintenance, and support. To do that, the FLASH team evaluated requirements, delineated environmental and use conditions, designed, built, and tested components, such as cables, connectors, splices and backplanes for transport aircraft, tactical aircraft, and helicopters. In addition, the FLASH team developed installation and test methods, and support equipment for aircraft optical cable plants. The results of that design, development, and test effort are reported here.

  4. Gamma radiography applied to aircraft maintenance

    International Nuclear Information System (INIS)

    Gamma-radiography as used in aircraft maintenance was introduced in the 1960's and is almost entirely focussed on the jet engine. It is used to identify cracking, corrosion, distortion, distress, assembly, alignment and wear. The general arrangement of an axial flow engine will permit the placement of a radiographic source in the central shaft. The radiations emitted may be directed at an appropriate angle to the part examined to produce a radiographic image. The techniques presented here are used to monitor the condition of specific rotating and non-rotating components in the gas flow path of high by-pass jet engines. Conventional gamma radiography equipment is used. The source is almost always Iridium-192, of between 800-3000 GBq. It has effective energies of 400-600 kV and a half-life of about 75 days. Exposure control and positioning apparatus is the same as for other industrial radiography with rigid guide tubes to locate the source centrally within the engine. The use of this inspection technique is realised as lower maintenance expenses than would otherwise be possible for the equivalent level of reliability. 19 refs., 12 figs

  5. 75 FR 50865 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Science.gov (United States)

    2010-08-18

    ... Equipped With Rotax Aircraft Engines 912 A Series Engines AGENCY: Federal Aviation Administration (FAA... 912 A series engine installed in various aircraft does not have an engine type certificate; instead, the engine is part of the aircraft type design. Comments We gave the public the opportunity...

  6. 75 FR 70098 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Science.gov (United States)

    2010-11-17

    ... Equipped With Rotax Aircraft Engines 912 A Series Engines AGENCY: Federal Aviation Administration (FAA... Aircraft Engines 912 A series engine with a crankcase assembly S/N up to and including S/N 27811, certificated in any category: ] Type certificate holder Aircraft model Engine model Aeromot-Industria...

  7. 75 FR 32315 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Science.gov (United States)

    2010-06-08

    ... Equipped With Rotax Aircraft Engines 912 A Series Engines AGENCY: Federal Aviation Administration (FAA... certificated in the United States. However, the Model 912 A series engine installed in various aircraft does not have an engine type certificate; instead, the engine is part of the aircraft type design. You...

  8. 76 FR 40219 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Science.gov (United States)

    2011-07-08

    ... Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration (FAA), DOT... Rotax Aircraft Engines Mandatory Service Bulletin SB-912-058 SB-914-041, dated April 15, 2011, listed in... 601 0; fax: +43 7246 601 9130; Internet: http://www.rotax-aircraft-engines.com . You may review...

  9. Program to compute the positions of the aircraft and of the aircraft sensor footprints

    Science.gov (United States)

    Paris, J. F. (Principal Investigator)

    1982-01-01

    The positions of the ground track of the aircraft and of the aircraft sensor footprints, in particular the metric camera and the radar scatterometer on the C-130 aircraft, are estimated by a program called ACTRK. The program uses the altitude, speed, and attitude informaton contained in the radar scatterometer data files to calculate the positions. The ACTRK program is documented.

  10. COMPARATIVE ANALYSIS OF TRANSPORT AIRCRAFT, BACKROUND FOR SHORT/ MEDIUM COURIER TRANSPORT AIRCRAFT PROCUREMENT

    Directory of Open Access Journals (Sweden)

    Matei POPA

    2010-03-01

    Full Text Available In accordance with Air Force requirements, the comparative analysis of short/medium transport aircraft comes to sustain procurement decision of short/medium transport aircraft. This paper presents, in short, the principles and the results of the comparative analysis for short/medium military transport aircraft.

  11. Technology for aircraft energy efficiency

    Science.gov (United States)

    Klineberg, J. M.

    1977-01-01

    Six technology programs for reducing fuel use in U.S. commercial aviation are discussed. The six NASA programs are divided into three groups: Propulsion - engine component improvement, energy efficient engine, advanced turboprops; Aerodynamics - energy efficient transport, laminar flow control; and Structures - composite primary structures. Schedules, phases, and applications of these programs are considered, and it is suggested that program results will be applied to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s.

  12. Aircraft empennage structural detail design

    Science.gov (United States)

    Meholic, Greg; Brown, Rhonda; Hall, Melissa; Harvey, Robert; Singer, Michael; Tella, Gustavo

    1993-01-01

    This project involved the detailed design of the aft fuselage and empennage structure, vertical stabilizer, rudder, horizontal stabilizer, and elevator for the Triton primary flight trainer. The main design goals under consideration were to illustrate the integration of the control systems devices used in the tail surfaces and their necessary structural supports as well as the elevator trim, navigational lighting system, electrical systems, tail-located ground tie, and fuselage/cabin interface structure. Accommodations for maintenance, lubrication, adjustment, and repairability were devised. Weight, fabrication, and (sub)assembly goals were addressed. All designs were in accordance with the FAR Part 23 stipulations for a normal category aircraft.

  13. Aircraft type influence on contrail properties

    Directory of Open Access Journals (Sweden)

    P. Jeßberger

    2013-05-01

    Full Text Available The investigation of the impact of aircraft parameters on contrail properties helps to better understand the climate impact from aviation. Yet, in observations, it is a challenge to separate aircraft and meteorological influences on contrail formation. During the CONCERT campaign in November 2008, contrails from 3 Airbus passenger aircraft of type A319-111, A340-311 and A380-841 were probed at cruise under similar meteorological conditions with in-situ instruments on board the DLR research aircraft Falcon. Within the 2 min old contrails detected near ice saturation, we find similar effective diameters Deff (5.2–5.9 μm, but differences in particle number densities nice (162–235 cm−3 and in vertical contrail extensions (120–290 m, resulting in large differences in contrail optical depths τ (0.25–0.94. Hence larger aircraft produce optically thicker contrails. Based on the observations, we apply the EULAG-LCM model with explicit ice microphysics and in addition the Contrail and Cirrus Prediction model CoCiP to calculate the aircraft type impact on young contrails under identical meteorological conditions. The observed increase in τ for heavier aircraft is confirmed by the models, yet for generally smaller τ. An aircraft dependence of climate relevant contrail properties persists during contrail lifetime, adding importance to aircraft dependent model initialization. We finally derive an analytical relationship between contrail, aircraft and meteorological parameters. Near ice saturation, contrail width × τ scales linearly with fuel flow rate as confirmed by observations. For higher saturation ratios approximations from theory suggest a non-linear increase in the form (RHI–12/3. Summarized our combined results could help to more accurately assess the climate impact from aviation using an aircraft dependent contrail parameterization.

  14. 77 FR 58301 - Technical Amendment; Airworthiness Standards: Aircraft Engines; Correction

    Science.gov (United States)

    2012-09-20

    ... Technical Amendment entitled, ``Airworthiness Standards: Aircraft Engine'' (77 FR 39623). In that technical... Administration 14 CFR Part 33 RIN 2120-AF57 Technical Amendment; Airworthiness Standards: Aircraft Engines... technical amendment, the FAA clarified aircraft engine vibration test requirements in the...

  15. 77 FR 39623 - Airworthiness Standards: Aircraft Engines; Technical Amendment

    Science.gov (United States)

    2012-07-05

    ... Federal Aviation Administration 14 CFR Part 33 Airworthiness Standards: Aircraft Engines; Technical.... SUMMARY: This amendment clarifies aircraft engine vibration test requirements in the airworthiness... 33--AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES 0 1. The authority citation for part 33 continues...

  16. LCC-OPS: Life Cycle Cost Application in Aircraft Operations

    NARCIS (Netherlands)

    Suwondo, E.

    2007-01-01

    Observation of current practices in aircraft operations and maintenance shows limited consideration of cost savings applied by aircraft modifications, maintenance program optimisation and aircraft selection. This is due to hidden (maintenance dependent) costs and difficulties in quantifying the util

  17. Multispectral imaging of aircraft exhaust

    Science.gov (United States)

    Berkson, Emily E.; Messinger, David W.

    2016-05-01

    Aircraft pollutants emitted during the landing-takeoff (LTO) cycle have significant effects on the local air quality surrounding airports. There are currently no inexpensive, portable, and unobtrusive sensors to quantify the amount of pollutants emitted from aircraft engines throughout the LTO cycle or to monitor the spatial-temporal extent of the exhaust plume. We seek to thoroughly characterize the unburned hydrocarbon (UHC) emissions from jet engine plumes and to design a portable imaging system to remotely quantify the emitted UHCs and temporally track the distribution of the plume. This paper shows results from the radiometric modeling of a jet engine exhaust plume and describes a prototype long-wave infrared imaging system capable of meeting the above requirements. The plume was modeled with vegetation and sky backgrounds, and filters were selected to maximize the detectivity of the plume. Initial calculations yield a look-up chart, which relates the minimum amount of emitted UHCs required to detect the presence of a plume to the noise-equivalent radiance of a system. Future work will aim to deploy the prototype imaging system at the Greater Rochester International Airport to assess the applicability of the system on a national scale. This project will help monitor the local pollution surrounding airports and allow better-informed decision-making regarding emission caps and pollution bylaws.

  18. Noise control mechanisms of inside aircraft

    Science.gov (United States)

    Zverev, A. Ya.

    2016-07-01

    World trends in the development of methods and approaches to noise reduction in aircraft cabins are reviewed. The paper discusses the mechanisms of passive and active noise and vibration control, application of "smart" and innovative materials, new approaches to creating all fuselage-design elements, and other promising directions of noise control inside aircraft.

  19. Study on Impedance Characteristics of Aircraft Cables

    Directory of Open Access Journals (Sweden)

    Weilin Li

    2016-01-01

    Full Text Available Voltage decrease and power loss in distribution lines of aircraft electric power system are harmful to the normal operation of electrical equipment and may even threaten the safety of aircraft. This study investigates how the gap distance (the distance between aircraft cables and aircraft skin and voltage frequency (variable frequency power supply will be adopted for next generation aircraft will affect the impedance of aircraft cables. To be more precise, the forming mechanism of cable resistance and inductance is illustrated in detail and their changing trends with frequency and gap distance are analyzed with the help of electromagnetic theoretical analysis. An aircraft cable simulation model is built with Maxwell 2D and the simulation results are consistent with the conclusions drawn from the theoretical analysis. The changing trends of the four core parameters of interest are analyzed: resistance, inductance, reactance, and impedance. The research results can be used as reference for the applications in Variable Speed Variable Frequency (VSVF aircraft electric power system.

  20. Wireless Network Simulation in Aircraft Cabins

    Science.gov (United States)

    Beggs, John H.; Youssef, Mennatoallah; Vahala, Linda

    2004-01-01

    An electromagnetic propagation prediction tool was used to predict electromagnetic field strength inside airplane cabins. A commercial software package, Wireless Insite, was used to predict power levels inside aircraft cabins and the data was compared with previously collected experimental data. It was concluded that the software could qualitatively predict electromagnetic propagation inside the aircraft cabin environment.

  1. Cycle Counting Methods of the Aircraft Engine

    Science.gov (United States)

    Fedorchenko, Dmitrii G.; Novikov, Dmitrii K.

    2016-01-01

    The concept of condition-based gas turbine-powered aircraft operation is realized all over the world, which implementation requires knowledge of the end-of-life information related to components of aircraft engines in service. This research proposes an algorithm for estimating the equivalent cyclical running hours. This article provides analysis…

  2. Laminar flow control for transport aircraft applications

    Science.gov (United States)

    Wagner, R. D.

    1986-01-01

    The incorporation of laminar flow control into transport aircraft is discussed. Design concepts for the wing surface panel of laminar flow control transport aircraft are described. The development of small amounts of laminar flow on small commercial transports with natural or hybrid flow control is examined. Techniques for eliminating the insect contamination problem in the leading-edge region are proposed.

  3. 19 CFR 122.42 - Aircraft entry.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Aircraft entry. 122.42 Section 122.42 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Entry and Entry Documents; Electronic Manifest Requirements...

  4. 14 CFR 135.125 - Aircraft security.

    Science.gov (United States)

    2010-01-01

    ....125 Aircraft security. Certificate holders conducting operators conducting operations under this part must comply with the applicable security requirements in 49 CFR chapter XII. ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft security. 135.125 Section...

  5. 14 CFR 121.538 - Aircraft security.

    Science.gov (United States)

    2010-01-01

    ..., FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.538 Aircraft security. Certificate holders conducting operations under this part must comply with the applicable security requirements in 49 CFR chapter... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft security. 121.538 Section...

  6. Energy management strategy for solar-powered high-altitude long-endurance aircraft

    International Nuclear Information System (INIS)

    Highlights: ► A new Energy Management Strategy (EMS) for high-altitude solar-powered aircraft is purposed. ► The simulations show that the aircraft can always keep the altitude above 16 km with the proposed EMS. ► The proposed EMS is capable to alleviate the power consumed for aircraft during night. ► The main technologies to improve the flight performance of aircraft are analyzed. - Abstract: Development of solar-powered High-Altitude Long-Endurance (HALE) aircraft has a great impact on both military and civil aviation industries since its features in high-altitude and energy source can be considered inexhaustible. Owing to the development constraints of rechargeable batteries, the solar-powered HALE aircraft must take amount of rechargeable batteries to fulfill the energy requirement in night, which greatly limits the operation altitude of aircraft. In order to solve this problem, a new Energy Management Strategy (EMS) is proposed based on the idea that the solar energy can be partly stored in gravitational potential in daytime. The flight path of HALE aircraft is divided into three stages. During the stage 1, the solar energy is stored in both lithium–sulfur battery and gravitational potential. The gravitational potential is released in stage 2 by gravitational gliding and the required power in stage 3 is supplied by lithium–sulfur battery. Correspondingly, the EMS is designed for each stage. The simulation results show that the aircraft can always keep the altitude above 16 km with the proposed EMS, and the power consumed during night can be also alleviated. Comparing with the current EMS, about 23.5% energy is remained in batteries with the proposed EMS during one day–night cycle. The sensitivities of the improvement of crucial technologies to the performance of aircraft are also analyzed. The results show that the enhancement of control and structural system, lithium–sulfur battery, and solar cell are ranked in descending order for the

  7. Further Evolution of Composite Doubler Aircraft Repairs Through a Focus on Niche Applications

    Energy Technology Data Exchange (ETDEWEB)

    ROACH,DENNIS P.

    2000-07-15

    The number of commercial airframes exceeding twenty years of service continues to grow. A typical aircraft can experience over 2,000 fatigue cycles (cabin pressurizations) and even greater flight hours in a single year. An unavoidable by-product of aircraft use is that crack and corrosion flaws develop throughout the aircraft's skin and substructure elements. Economic barriers to the purchase of new aircraft have created an aging aircraft fleet and placed even greater demands on efficient and safe repair methods. The use of bonded composite doublers offers the airframe manufacturers and aircraft maintenance facilities a cost effective method to safety extend the lives of their aircraft. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is now possible to bond a single Boron-Epoxy composite doubler to the damaged structure. The FAA's Airworthiness Assurance Center at Sandia National Labs (AANC) is conducting a program with Boeing and Federal Express to validate and introduce composite doubler repair technology to the US commercial aircraft industry. This project focuses on repair of DC-10 structure and builds on the foundation of the successful L-1011 door corner repair that was completed by the AANC, Lockheed-Martin, and Delta Air Lines. The L-1011 composite doubler repair was installed in 1997 and has not developed any flaws in over three years of service, As a follow-on effort, this DC-1O repair program investigated design, analysis, performance (durability, flaw containment, reliability), installation, and nondestructive inspection issues. Current activities are demonstrating regular use of composite doubler repairs on commercial aircraft. The primary goal of this program is to move the technology into niche applications and to streamline the design-to-installation process. Using the data accumulated to date, the team has designed, analyzed, and developed inspection techniques for an array of composite doubler

  8. THE FORMING OF MAGNESIUM ALLOY FORGINGS FOR AIRCRAFT AND AUTOMOTIVE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Anna Dziubińska

    2016-09-01

    Full Text Available The paper presents the theoretical and technological aspects of forming magnesium alloy parts for aircraft and automotive applications. The main applications of magnesium alloys in the aircraft and automotive industries are discussed. In addition, the forging technology for magnesium alloys is generally described, with a particular emphasis on wrought alloys. A brief outline of the state of the art in the forging of magnesium alloys is given based on a survey of the specialist literature and the results of previous research by the authors.

  9. A Turbo-Brayton Cryocooler for Aircraft Superconducting Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hybrid turboelectric aircraft with gas turbines driving electric generators connected to electric propulsion motors have the potential to transform the aircraft...

  10. An Instrument to Measure Aircraft Sulfate Particle Emissions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft particle emissions contribute a modest, but growing, portion of the overall particle emissions budget. Characterizing aircraft particle emissions is...

  11. Aircraft Stand Allocation with Associated Resource Scheduling

    DEFF Research Database (Denmark)

    Justesen, Tor Fog; Larsen, Jesper; Lusby, Richard Martin;

    An aircraft turn-round refers to the set of processes taking place from when an aircraft parks at its arrival stand until the time it departs from its departure stand. When handling a turn-round, the different processes involved (arrival, disembarkation of passengers, cleaning, etc.) require...... different ground handling resources (taxiways, aircraft stands, gates, etc) at different times. Each resource can be claimed by at most one turn-round at a time. The aircraft stand allocation problem with associated resource scheduling is the problem of allocating the required ground handling resources...... to handle a given set of aircraft turn-rounds. We develop a set packing-based model formulation of the problem which is both flexible in the sense that it can encapsulate any type of resource required during the handling of a turn-round and strong in the sense that conflicts that occur when two or more turn...

  12. Concept to Reality: Contributions of the Langley Research Center to US Civil Aircraft of the 1990s

    Science.gov (United States)

    Chambers, Joseph R.

    2003-01-01

    This document is intended to be a companion to NASA SP-2000-4519, 'Partners in Freedom: Contributions of the Langley Research Center to U.S. Military Aircraft of the 1990s'. Material included in the combined set of volumes provides informative and significant examples of the impact of Langley's research on U.S. civil and military aircraft of the 1990s. This volume, 'Concept to Reality: Contributions of the NASA Langley Research Center to U.S. Civil Aircraft of the 1990s', highlights significant Langley contributions to safety, cruise performance, takeoff and landing capabilities, structural integrity, crashworthiness, flight deck technologies, pilot-vehicle interfaces, flight characteristics, stall and spin behavior, computational design methods, and other challenging technical areas for civil aviation. The contents of this volume include descriptions of some of the more important applications of Langley research to current civil fixed-wing aircraft (rotary-wing aircraft are not included), including commercial airliners, business aircraft, and small personal-owner aircraft. In addition to discussions of specific aircraft applications, the document also covers contributions of Langley research to the operation of civil aircraft, which includes operating problems. This document is organized according to disciplinary technologies, for example, aerodynamics, structures, materials, and flight systems. Within each discussion, examples are cited where industry applied Langley technologies to specific aircraft that were in operational service during the 1990s and the early years of the new millennium. This document is intended to serve as a key reference for national policy makers, internal NASA policy makers, Congressional committees, the media, and the general public. Therefore, it has been written for a broad general audience and does not presume any significant technical expertise. An extensive bibliography is provided for technical specialists and others who desire a

  13. Aircraft Scheduled Airframe Maintenance and Downtime Integrated Cost Model

    Directory of Open Access Journals (Sweden)

    Remzi Saltoğlu

    2016-01-01

    Full Text Available Aviation industry has grown rapidly since the first scheduled commercial aviation started one hundred years ago. There is a fast growth in the number of passengers, routes, and frequencies, with high revenues and low margins, which make this industry one of the most challenging businesses in the world. Every operator aims to undertake the minimum operating cost and gain profit as much as possible. One of the significant elements of operator’s operating cost is the maintenance cost. During maintenance scheduling, operator calculates the maintenance cost that it needs to budget. Previous works show that this calculation includes only costs that are directly related to the maintenance process such as cost of labor, material, and equipment. In some cases, overhead cost is also included. Some of previous works also discuss the existence of another cost throughout aircraft downtime, which is defined as cost of revenue loss. Nevertheless, there is not any standard model that shows how to define and calculate downtime cost. For that reason, the purpose of this paper is to introduce a new model and analysis technique that can be used to calculate aircraft downtime cost due to maintenance.

  14. A process for the quantification of aircraft noise and emissions interdependencies

    Science.gov (United States)

    de Luis, Jorge

    The main purpose of this dissertation is to develop a process to improve actual policy-making procedures in terms of aviation environmental effects. This research work expands current practices with physics based publicly available models. The current method uses solely information provided by industry members, and this information is usually proprietary, and not physically intuitive. The process herein proposed provides information regarding the interdependencies between the environmental effects of aircraft. These interdependencies are also tied to the actual physical parameters of the aircraft and the engine, making it more intuitive for decision-makers to understand the impacts to the vehicle due to different policy scenarios. These scenarios involve the use of fleet analysis tools in which the existing aircraft are used to predict the environmental effects of imposing new stringency levels. The aircraft used are reduced to a series of coefficients that represent their performance, in terms of flight characteristics, fuel burn, noise, and emissions. These coefficients are then utilized to model flight operations and calculate what the environmental impacts of those aircraft are. If a particular aircraft does not meet the stringency to be analyzed, a technology response is applied to it, in order to meet that stringency. Depending on the level of reduction needed, this technology response can have an effect on the fuel burn characteristic of the aircraft. Another important point of the current stringency analysis process is that it does not take into account both noise and emissions concurrently, but instead, it considers them separately, one at a time. This assumes that the interdependencies between the two do not exists, which is not realistic. The latest stringency process delineated in 2004 imposed a 2% fuel burn penalty for any required improvements on NOx, no matter the type of aircraft or engine, assuming that no company had the ability to produce a

  15. Industry Employment

    Science.gov (United States)

    Occupational Outlook Quarterly, 2012

    2012-01-01

    This article illustrates projected employment change by industry and industry sector over 2010-20 decade. Workers are grouped into an industry according to the type of good produced or service provided by the establishment for which they work. Industry employment projections are shown in terms of numeric change (growth or decline in the total…

  16. Aircraft wing structure detail design

    Science.gov (United States)

    Sager, Garrett L.; Roberts, Ron; Mallon, Bob; Alameri, Mohamed; Steinbach, Bill

    1993-01-01

    The provisions of this project call for the design of the structure of the wing and carry-through structure for the Viper primary trainer, which is to be certified as a utility category trainer under FAR part 23. The specific items to be designed in this statement of work were Front Spar, Rear Spar, Aileron Structure, Wing Skin, and Fuselage Carry-through Structure. In the design of these parts, provisions for the fuel system, electrical system, and control routing were required. Also, the total weight of the entire wing planform could not exceed 216 lbs. Since this aircraft is to be used as a primary trainer, and the SOW requires a useful life of 107 cycles, it was decided that all of the principle stresses in the structural members would be kept below 10 ksi. The only drawback to this approach is a weight penalty.

  17. Aircraft measurements of wave cloud

    Directory of Open Access Journals (Sweden)

    Z. Cui

    2012-05-01

    Full Text Available In this paper, aircraft measurements are presented of liquid phase (ice-free wave clouds made at temperatures greater than −5 °C that formed over Scotland, UK. The horizontal variations of the vertical velocity across wave clouds display a distinct pattern. The maximum updraughts occur at the upshear flanks of the clouds and the strong downdraughts at the downshear flanks. The cloud droplet concentrations were a couple of hundreds per cubic centimetres, and the drops generally had a mean diameter between 15–45 μm. A small proportion of the drops were drizzle. A new definition of a mountain-wave cloud is given, based on the measurements presented here and previous studies. The results in this paper provide a case for future numerical simulation of wave cloud and the interaction between wave and clouds.

  18. Turboprop aircraft against terrorism: a SWOT analysis of turboprop aircraft in CAS operations

    Science.gov (United States)

    Yavuz, Murat; Akkas, Ali; Aslan, Yavuz

    2012-06-01

    Today, the threat perception is changing. Not only for countries but also for defence organisations like NATO, new threat perception is pointing terrorism. Many countries' air forces become responsible of fighting against terorism or Counter-Insurgency (COIN) Operations. Different from conventional warfare, alternative weapon or weapon systems are required for such operatioins. In counter-terrorism operations modern fighter jets are used as well as helicopters, subsonic jets, Unmanned Aircraft Systems (UAS), turboprop aircraft, baloons and similar platforms. Succes and efficiency of the use of these platforms can be determined by evaluating the conditions, the threats and the area together. Obviously, each platform has advantages and disadvantages for different cases. In this research, examples of turboprop aircraft usage against terrorism and with a more general approach, turboprop aircraft for Close Air Support (CAS) missions from all around the world are reviewed. In this effort, a closer look is taken at the countries using turboprop aircraft in CAS missions while observing the fields these aircraft are used in, type of operations, specifications of the aircraft, cost and the maintenance factors. Thus, an idea about the convenience of using these aircraft in such operations can be obtained. A SWOT analysis of turboprop aircraft in CAS operations is performed. This study shows that turboprop aircraft are suitable to be used in counter-terrorism and COIN operations in low threat environment and is cost benefical compared to jets.

  19. Modeling the Effects of Aircraft Emissions on Atmospheric Photochemistry Using Layered Plume Dynamics

    Science.gov (United States)

    Cameron, M. A.; Jacobson, M. Z.; Naiman, A. D.; Lele, S. K.

    2012-12-01

    Aviation is an expanding industry, experiencing continued growth and playing an increasingly noticed role in upper tropospheric/lower stratospheric composition. Nitrogen oxides and other gas-phase emissions from aircraft react to affect ozone photochemistry. This research investigates the effects of treating aircraft gas-phase chemistry within an expanding layered plume versus at the grid scale. SMVGEAR II, a sparse-matrix, vectorized Gear-type solver for ordinary differential equations, is used to solve chemical equations at both the grid scale and subgrid scale. A Subgrid Plume Model (SPM) is used to advance the expanding plume, accounting for wind shear and diffusion. Simulations suggest that using a layered plume approach results in noticeably different final NOx concentrations, demonstrating the importance of these plume dynamics in predicting the effects of aircraft on ozone concentrations. Results showing the effects of a layered plume, single plume, and no plume on ozone after several hours will be presented.

  20. Aircraft impact on a spherical shell

    International Nuclear Information System (INIS)

    For nuclear power plants located in the immediate vicinity of cities and airports safeguarding against an accidental aircraft strike is important. Because of the complexity of such an aircraft crash the building is ordinarily designed for loading by an idealized dynamical load F(t), which follows from measurements (aircraft striking a rigid wall). The extent to which the elastic displacements of a structure influence the impact load F(t) is investigatd in this paper. The aircraft is idealized by a linear mass-spring-dashpot combination which can easily be treated in computations and which can suffer elastic as well as plastic deformations. This 'aircraft' normally strikes a spherical shell at the apex. The time-dependent reactions of the shell as a function of the unknown impact load F(t) are expanded in terms of the normal modes, which are Legendre functions. The continuity condition at the impact point leads to an integral equation for F(t) which may be solved by Laplace transformation. F(t) is computed for hemispheres with several ratios of thickness to radius, several edge conditions and several 'aircraft' parameters. In all cases F(t) differs very little from that function obtained for the case of the aircraft striking a rigid wall. (Auth.)

  1. Propulsion Selection for 85kft Remotely Piloted Atmospheric Science Aircraft

    Science.gov (United States)

    Bents, David J.; Mockler, Ted; Maldonado, Jaime; Hahn, Andrew; Cyrus, John; Schmitz, Paul; Harp, Jim; King, Joseph

    1996-01-01

    This paper describes how a 3 stage turbocharged gasoline engine was selected to power NASA's atmospheric science unmanned aircraft now under development. The airplane, whose purpose is to fly sampling instruments through targeted regions of the upper atmosphere at the exact location and time (season, time of day) where the most interesting chemistry is taking place, must have a round trip range exceeding 1000 km, carry a payload of about 500 lb to altitudes exceeding 80 kft over the site, and be able to remain above that altitude for at least 30 minutes before returning to base. This is a subsonic aircraft (the aerodynamic heating and shock associated with supersonic flight could easily destroy the chemical species that are being sampled) and it must be constructed so it will operate out of small airfields at primitive remote sites worldwide, under varying climate and weather conditions. Finally it must be low cost, since less than $50 M is available for its development. These requirements put severe constraints on the aircraft design (for example, wing loading in the vicinity of 10 psf) and have in turn limited the propulsion choices to already-existing hardware, or limited adaptations of existing hardware. The only candidate that could emerge under these circumstances was a propeller driven aircraft powered by spark ignited (SI) gasoline engines, whose intake pressurization is accomplished by multiple stages of turbo-charging and intercooling. Fortunately the turbocharged SI powerplant, owing to its rich automotive heritage and earlier intensive aero powerplant development during WWII, enjoys in addition to its potentially low development costs some subtle physical advantages (arising from its near-stochiometric combustion) that may make it smaller and lighter than either a turbine engine or a diesel for these altitudes. Just as fortunately, the NASA/industry team developing this aircraft includes the same people who built multi-stage turbocharged SI powerplants

  2. Industrial Chain: Industrial Vertical Definition

    Institute of Scientific and Technical Information of China (English)

    YifeiDu; GuojunJiang; ShimingLi

    2004-01-01

    Like value chain and supply chain, “industrial chain” becomes the focus of attention. The implication of “industrial chain” has gained a large range of extension. It not only expresses the industrial “chain” structure and relationship of “back and forward”in order or “up and down” in direction, but also it represents a cluster of large scale of firms in an area or colony. It is a network, or a community. Consequently, we conclude that “industrial chain” is a synthesis of industrial chain, industrial cluster, or industrial network.In this article, firstly we will distinguish industry chain from industry. An industry is the collection of firms that have the same attribute, so an industry can be defined by firm collection of certain attribute. We indicate that industrial chain is a kind of vertical and orderly industrial link. It is defined according to a series of specific product or service created. Secondly we analyze the vertical orderly defiinition process from the aspects of social division of labor and requirement division, self-organization system, and value analysis.Non-symmetry and depending on system or community of large scale of industrial units lead to entire industry to “orderly” structure. On the other hand, the draught of diversity and complexity of requirement simultaneously lead to entire industry to be more “orderly”. Along with processes of self-organization, industrial will appi'oach the state of more orderly and steady, and constantly make industrial chain upgrade. Each firm or unit, who will gain the value, has to establish channels of value, which we called “industrial value chain”. Lastly,we discuss the consequence of vertical and orderly definition, which is exhibited by a certain relationship body. The typical forms of industrial chain include industrial cluster, strategy alliance and vertical integration etc.

  3. Improved portable lighting for visual aircraft inspection

    Energy Technology Data Exchange (ETDEWEB)

    Shagam, R.N. [Sandia National Lab., Albuquerque, NM (United States); Lerner, J.; Shie, R. [Physical Optics Corp., Torrance, CA (United States)

    1995-04-01

    The most common tool used by aircraft inspectors is the personal flashlight. While it is compact and very portable, it is generally typified by poor beam quality which can interfere with the ability for an inspector to detect small defects and anomalies, such as cracks and corrosion sites, which may be indicators of major structural problems. A Light Shaping Diffuser{trademark} (LSD) installed in a stock flashlight as a replacement to the lens can improve the uniformity of an average flashlight and improve the quality of the inspection. Field trials at aircraft maintenance facilities have demonstrated general acceptance of the LSD by aircraft inspection and maintenance personnel.

  4. Improved portable lighting for visual aircraft inspection

    Science.gov (United States)

    Shagam, Richard N.; Lerner, Jeremy M.; Shie, Rick

    1995-07-01

    The most common tool used by aircraft inspectors is the personal flashlight. While it is compact and very portable, it is generally typified by poor beam quality which can interfere with the ability for an inspector to detect small defects and anomalies, such as cracks and corrosion sites, which may be indicators of major structural problems. A Light Shaping Diffuser TM (LSD) installed in a stock flashlight as a replacement to the lens can improve the uniformity of an average flashlight and improve the quality of the inspection. Field trials at aircraft maintenance facilities have demonstrated general acceptance of the LSD by aircraft inspection and maintenance personnel.

  5. Aircraft Loss-of-Control Accident Analysis

    Science.gov (United States)

    Belcastro, Christine M.; Foster, John V.

    2010-01-01

    Loss of control remains one of the largest contributors to fatal aircraft accidents worldwide. Aircraft loss-of-control accidents are complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents. To gain a better understanding into aircraft loss-of-control events and possible intervention strategies, this paper presents a detailed analysis of loss-of-control accident data (predominantly from Part 121), including worst case combinations of causal and contributing factors and their sequencing. Future potential risks are also considered.

  6. Aircraft Energy Efficiency (ACEE) status report

    Science.gov (United States)

    Nored, D. L.; Dugan, J. F., Jr.; Saunders, N. T.; Ziemianski, J. A.

    1979-01-01

    Fuel efficiency in aeronautics, for fuel conservation in general as well as for its effect on commercial aircraft operating economics is considered. Projects of the Aircraft Energy Efficiency Program related to propulsion are emphasized. These include: (1) engine component improvement, directed at performance improvement and engine diagnostics for prolonged service life; (2) energy efficient engine, directed at proving the technology base for the next generation of turbofan engines; and (3) advanced turboprop, directed at advancing the technology of turboprop powered aircraft to a point suitable for commercial airline service. Progress in these technology areas is reported.

  7. Processing infrared images of aircraft lapjoints

    Science.gov (United States)

    Syed, Hazari; Winfree, William P.; Cramer, K. E.

    1992-01-01

    Techniques for processing IR images of aging aircraft lapjoint data are discussed. Attention is given to a technique for detecting disbonds in aircraft lapjoints which clearly delineates the disbonded region from the bonded regions. The technique is weak on unpainted aircraft skin surfaces, but can be overridden by using a self-adhering contact sheet. Neural network analysis on raw temperature data has been shown to be an effective tool for visualization of images. Numerical simulation results show the above processing technique to be an effective tool in delineating the disbonds.

  8. PREDICTIVE ASSESSMENT OF AN AIRCRAFT STRUCTURE BEHAVIOUR FOR PASSENGER AND CREW SECURITY

    Directory of Open Access Journals (Sweden)

    Daniela BARAN

    2009-12-01

    Full Text Available In the aerospace industry one of the most important requirements in the aircraft design andoperation is the high level of fiability under various atmosphere and environmental conditions. Thedesign and validation of such a system is a great challenge. It must meet several requirements suchas: high resistence, low weight and a small occupied volume. The stresses that occur during theaircraft operation are extremely complex, being the result of the interaction of differentsystems.Consequently, in order to obtain an optimal design of the whole system, the design, testingand operating processes require a combination of laborious analysis and experimental data. As upto 90% of the structure failures are du to the fatigue, high performance methods of fatigue analysisare needed to estimate the aircraft ressources. These methods must enable a precise determinationof the static and dynamic strains inder to correctly estimate the aircraft ressource. The projectproposes an approach of some aspects of the aircraft/ aircraft subassemblies simulation and testingand develop o calculation methodology of experimental data and high performance numericmethods integration in order to establish the ressource.

  9. Modeling and Simulation of Power Distribution System in More Electric Aircraft

    Directory of Open Access Journals (Sweden)

    Zhangang Yang

    2015-01-01

    Full Text Available The More Electric Aircraft concept is a fast-developing trend in modern aircraft industry. With this new concept, the performance of the aircraft can be further optimized and meanwhile the operating and maintenance cost will be decreased effectively. In order to optimize the power system integrity and have the ability to investigate the performance of the overall system in any possible situations, one accurate simulation model of the aircraft power system will be very helpful and necessary. This paper mainly introduces a method to build a simulation model for the power distribution system, which is based on detailed component models. The power distribution system model consists of power generation unit, transformer rectifier unit, DC-DC converter unit, and DC-AC inverter unit. In order to optimize the performance of the power distribution system and improve the quality of the distributed power, a feedback control network is designed based on the characteristics of the power distribution system. The simulation result indicates that this new simulation model is well designed and it works accurately. Moreover, steady state performance and transient state performance of the model can fulfill the requirements of aircraft power distribution system in the realistic application.

  10. 32 CFR 855.15 - Detaining an aircraft.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Detaining an aircraft. 855.15 Section 855.15 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.15 Detaining an...

  11. 42 CFR 71.44 - Disinsection of aircraft.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Disinsection of aircraft. 71.44 Section 71.44... Disinsection of aircraft. (a) The Director may require disinsection of an aircraft if it has left a foreign area that is infected with insect-borne communicable disease and the aircraft is suspected of...

  12. 9 CFR 91.41 - Cleaning and disinfecting of aircraft.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Cleaning and disinfecting of aircraft... INSPECTION AND HANDLING OF LIVESTOCK FOR EXPORTATION Cleaning and Disinfecting of Aircraft § 91.41 Cleaning and disinfecting of aircraft. Prior to loading of animals, the stowage area of aircraft to be used...

  13. 8 CFR 1280.21 - Seizure of aircraft.

    Science.gov (United States)

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Seizure of aircraft. 1280.21 Section 1280... REGULATIONS IMPOSITION AND COLLECTION OF FINES § 1280.21 Seizure of aircraft. Seizure of an aircraft under the authority of section 239 of the Act and § 1280.2 will not be made if such aircraft is damaged to an...

  14. 14 CFR 375.11 - Other foreign civil aircraft.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Other foreign civil aircraft. 375.11... PROCEEDINGS) SPECIAL REGULATIONS NAVIGATION OF FOREIGN CIVIL AIRCRAFT WITHIN THE UNITED STATES Authorization § 375.11 Other foreign civil aircraft. A foreign civil aircraft other than those referred to in §...

  15. 14 CFR 47.51 - Triennial aircraft registration report.

    Science.gov (United States)

    2010-01-01

    ... in the United States; or (iii) A corporation (other than a corporation which is a citizen of the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Triennial aircraft registration report. 47... AIRCRAFT AIRCRAFT REGISTRATION Certificates of Aircraft Registration § 47.51 Triennial...

  16. Impact of Advanced Propeller Technology on Aircraft/Mission Characteristics of Several General Aviation Aircraft

    Science.gov (United States)

    Keiter, I. D.

    1982-01-01

    Studies of several General Aviation aircraft indicated that the application of advanced technologies to General Aviation propellers can reduce fuel consumption in future aircraft by a significant amount. Propeller blade weight reductions achieved through the use of composites, propeller efficiency and noise improvements achieved through the use of advanced concepts and improved propeller analytical design methods result in aircraft with lower operating cost, acquisition cost and gross weight.

  17. Directional monitoring terminal for aircraft noise

    Science.gov (United States)

    Genescà, M.

    2016-07-01

    This paper presents a concept of an aircraft noise monitoring terminal (NMT) that reduces background noise and the influence of ground reflection, in comparison with a single microphone. Also, it automatically identifies aircraft sound events based on the direction of arrival of the sound rather than on the sound pressure level (or radar data). And moreover, it provides an indicator of the quality of the sound pressure level measurement, i.e. if it is possibly disturbed by extraneous sources. The performance of this NMT is experimentally tested under real conditions in a measurement site close to Zurich airport. The results show that the NMT unambiguously identifies the noise events generated by the target aircraft, correctly detects those aircraft noise events that may be disturbed by the presence of other sources, and offers a substantial reduction in background and ground reflected sound.

  18. Modular Electric Propulsion Test Bed Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An all electric aircraft test bed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered...

  19. Smart structure application for the Challenger aircraft

    Science.gov (United States)

    Grenier, L.; Blaha, Franz A.

    1994-09-01

    The Challenger aircraft fleet of the Canadian Forces will fly demanding missions, requiring the implementation of a fatigue management program based on the monitoring of in-flight aircraft load conditions. Conventional sensing techniques experience problems arising from severe electromagnetic interference (EMI). This paper describes the development of an EMI- insensitive smart-structure sensing concept for loads monitoring. Fiber-optic strain sensors, incorporated at critical structural locations, are used to monitor the fatigue life of the aircraft wing, fuselage, and empennage. A fiber-optic accelerometer is also incorporated in the system. A long-term plan is presented for the development of an advanced smart-structure concept which can support the continuous monitoring of fatigue-prone components, and provide the aircraft with near real-time damage location and assessment.

  20. Modular Electric Propulsion Test Bed Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A hybrid electric aircraft simulation system and test bed is proposed to provide a dedicated development environment for the rigorous study and advancement of...

  1. The drive for Aircraft Energy Efficiency

    Science.gov (United States)

    James, R. L., Jr.; Maddalon, D. V.

    1984-01-01

    NASA's Aircraft Energy Efficiency (ACEE) program, which began in 1976, has mounted a development effort in four major transport aircraft technology fields: laminar flow systems, advanced aerodynamics, flight controls, and composite structures. ACEE has explored two basic methods for achieving drag-reducing boundary layer laminarization: the use of suction through the wing structure (via slots or perforations) to remove boundary layer turbulence, and the encouragement of natural laminar flow maintenance through refined design practices. Wind tunnel tests have been conducted for wide bodied aircraft equipped with high aspect ratio supercritical wings and winglets. Maneuver load control and pitch-active stability augmentation control systems reduce fuel consumption by reducing the drag associated with high aircraft stability margins. Composite structures yield lighter airframes that in turn call for smaller wing and empennage areas, reducing induced drag for a given payload. In combination, all four areas of development are expected to yield a fuel consumption reduction of 40 percent.

  2. Engineering students win NASA aircraft design competition

    OpenAIRE

    Crumbley, Liz

    2004-01-01

    Centuria," a single-engine jet aircraft designed by undergraduate engineering students from Virginia Tech and their counterparts at Loughborough University in the U.K., has won the Best Overall Award in NASA's 2004 Revolutionary Vehicles and Concepts Competition.

  3. Aircraft Nodal Data Acquisition System (ANDAS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of an Aircraft Nodal Data Acquisition System (ANDAS) is proposed. The proposed methodology employs the development of a very thin (135m) hybrid...

  4. Aircraft Nodal Data Acquisition System (ANDAS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of an Aircraft Nodal Data Acquisition System (ANDAS) based upon the short haul Zigbee networking standard is proposed. It employs a very thin (135 um)...

  5. Investigation of aircraft vortex wake structure

    Science.gov (United States)

    Baranov, N. A.; Turchak, L. I.

    2014-11-01

    In this work we analyze the mechanisms of formation of the vortex wake structure of aircraft with different wing shape in the plan flying close to or away from the underlying surface cleaned or released mechanization wing.

  6. Titanium in fatigue critical military aircraft structure

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, F.

    1999-07-01

    This paper discusses the effect of fatigue requirements on titanium structure in military aircraft applications, specifically, fighter aircraft. The discussion covers how fatigue affects the design and analysis of detail parts, and how manufacturing processes affect the fatigue performance of titanium structure. Criteria for designing fighter aircraft have evolved from simple strength calculations to extremely complex computer generated analyses involving strength, durability, damage tolerance and fatigue. Fatigue life prediction is an important part of these analyses and dramatically affects the design and weight of fighter aircraft. Manufacturing processes affect fatigue performance both in a positive and negative manner. Designers must allow for the effect of these processes on titanium structure and consider the efficiency and economy of adding processes that increase fatigue life.

  7. Thermal Management System for Superconducting Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft powered by hydrogen power plants or gas turbines driving electric generators connected to distributed electric motors for propulsion have the potential to...

  8. Tips for Travel and Aircraft Flight

    Science.gov (United States)

    ... Knowledge and support Tips for Travel and Aircraft Flight Category: FAQ's Tags: Risks Archives Breast Cancer Survivors ... limb carefully) and apply pressure as needed. DURING FLIGHT Keep your seat belt loosely fastened so that ...

  9. Design of heavy lift cargo aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the bird of the skies of the future. The heavy lift cargo aircraft which is currently being developed by me has twice the payload capacity of an Antonov...

  10. Emerging nondestructive inspection methods for aging aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, A; Dahlke, L; Gieske, J [and others

    1994-01-01

    This report identifies and describes emerging nondestructive inspection (NDI) methods that can potentially be used to inspect commercial transport and commuter aircraft for structural damage. The nine categories of emerging NDI techniques are: acoustic emission, x-ray computed tomography, backscatter radiation, reverse geometry x-ray, advanced electromagnetics, including magnetooptic imaging and advanced eddy current techniques, coherent optics, advanced ultrasonics, advanced visual, and infrared thermography. The physical principles, generalized performance characteristics, and typical applications associated with each method are described. In addition, aircraft inspection applications are discussed along with the associated technical considerations. Finally, the status of each technique is presented, with a discussion on when it may be available for use in actual aircraft maintenance programs. It should be noted that this is a companion document to DOT/FAA/CT-91/5, Current Nondestructive Inspection Methods for Aging Aircraft.

  11. Industrial Engineering

    DEFF Research Database (Denmark)

    Karlsson, Christer

    2015-01-01

    Industrial engineering is a discipline that is concerned with increasing the effectiveness of (primarily) manufacturing and (occasionally).......Industrial engineering is a discipline that is concerned with increasing the effectiveness of (primarily) manufacturing and (occasionally)....

  12. 77 FR 36341 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Science.gov (United States)

    2012-06-18

    ... and Aircraft Engines; Emission Standards and Test Procedures;'' Final Rule, 70 FR 2521, November 17... From Aircraft and Aircraft Engines; Emission Standards and Test Procedures; Final Rule #0;#0;Federal...: Final rule. SUMMARY: EPA is adopting several new aircraft engine emission standards for oxides...

  13. Aircraft Noise and Quality of Life around Frankfurt Airport

    OpenAIRE

    Thomas Eikmann; Christin Peschel; Cara Kahl; Dirk Schreckenberg; Markus Meis

    2010-01-01

    In a survey of 2,312 residents living near Frankfurt Airport aircraft noise annoyance and disturbances as well as environmental (EQoL) and health-related quality of life (HQoL) were assessed and compared with data on exposure due to aircraft, road traffic, and railway noise. Results indicate higher noise annoyance than predicted from general exposure-response curves. Beside aircraft sound levels source-related attitudes were associated with reactions to aircraft noise. Furthermore, aircraft n...

  14. Maintenance program developmentandImport /Export of Aircraft in USA

    OpenAIRE

    Takele, Teklu

    2009-01-01

    AbstractThis thesis discuss how United Parcel Service (UPS) develop its aircraft maintenanceprogram after import of McDonnell Douglas MD-11aircraft and the process of exporting newMD-11 aircraft from manufacturer in USA to European operator as passenger aircraft. It alsodiscusses the process of importing the same types of aircraft as freight carrier. The aircraftundergo, through different modifications at Singapore Technologies Aerospace (STA)conversion from passenger to freight carrier, a pr...

  15. Aircraft Noise: Annoyance, House Prices and Valuation

    OpenAIRE

    Brooker, Peter

    2006-01-01

    “Nobody wants to buy your house. It’s the aircraft noise. You’ll have to reduce the price a lot.” Aircraft noise around airports causes annoyance, and tends to reduce the price of affected properties. Can annoyance be ‘costed’ by examining house price reductions? Are there other ways of valuing annoyance in monetary terms? This short paper summarises key research results and poses some questions.

  16. Research on Emerging and Descending Aircraft Noise

    OpenAIRE

    Monika Bartkevičiūtė; Raimondas Grubliauskas

    2013-01-01

    Along with an increase in the aircraft engine power and growth in air traffic, noise level at airports and their surrounding environs significantly increases. Aircraft noise is high level noise spreading within large radius and intensively irritating the human body. Air transport is one of the main sources of noise having a particularly strong negative impact on the environment. The article deals with activities and noises taking place in the largest nationwide Vilnius International Airport.T...

  17. Incidence of Fungal attack on Aircraft Fuselage

    Directory of Open Access Journals (Sweden)

    H. M. Dayal

    1968-10-01

    Full Text Available Incidence of fungal attack on the fuselage of a few Vampire aircraft has been observed. The fungus isolated from the infected regions has been tentatively indentified as TorulaSp. Laboratory experiments have revealed that within four weeks this fungus causes about 44 percent loss in the tensile strength of the brich plywood used in the manufacture of the fuselage of the aircraft.

  18. Review of Aircraft Engine Fan Noise Reduction

    Science.gov (United States)

    VanZante, Dale

    2008-01-01

    Aircraft turbofan engines incorporate multiple technologies to enhance performance and durability while reducing noise emissions. Both careful aerodynamic design of the fan and proper installation of the fan into the system are requirements for achieving the performance and acoustic objectives. The design and installation characteristics of high performance aircraft engine fans will be discussed along with some lessons learned that may be applicable to spaceflight fan applications.

  19. Anti-aircraft Missiles and Gun Control

    OpenAIRE

    BLOCK, Walter

    2016-01-01

    Abstract. Gun control is a highly debatable topic both in the popular and scholarly media. But what about anti-aircraft missiles? Should they be banned? On the one hand, there are fewer of them around, so their challenge is more tractable. On the other hand, they can do far more damage than handguns. The present paper is an attempt to wrestle with this challenge.Keywords. Gun control, Second amendment, Libertarianism, Anti-aircraft missiles.JEL. K15.

  20. Industry News

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ China Foundry Association's exhibition received 'Golden Finger' award in China's exhibition industry On January 12, 2008, the 8th International Foundry, Forging,and Industry Furnace Exhibition, sponsored by China Foundry Association, won the 'Golden Finger' award in China exposition industry for metal processing, foundry metallurgy and forging products.

  1. Fotografische industrie

    NARCIS (Netherlands)

    Booij H

    1992-01-01

    This document on photographic industry has been published within the SPIN project. In this project information has been collected on industrial plants or industrial processes to afford support to governmental policy on emission reduction. This document contains information on the processes, emissi

  2. A CFD/CSD interaction methodology for aircraft wings

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, M.K.; Kapania, R.K. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States); Reichenbach, E. [Boeing Co., St. Louis, MO (United States); Guruswamy, G.P. [NASA, Moffett Field, CA (United States). Ames Research Center

    1998-01-01

    With advanced subsonic transports and military aircraft operating in the transonic regime, it is becoming important to determine the effects of the coupling between aerodynamic loads and elastic forces. Since aeroelastic effects can significantly impact the design of these aircraft, there is a strong need in the aerospace industry to predict these interactions computationally. Such an analysis in the transonic regime requires high fidelity computational fluid dynamics (CFD) analysis tools, due to the nonlinear behavior of the aerodynamics in the transonic regime and also high fidelity computational structural dynamics (CSD) analysis tools. Also, there is a need to be able to use a wide variety of CFD and CSD methods to predict aeroelastic effects. Since source codes are not always available, it is necessary to couple the CFD and CSD codes without alteration of the source codes. In this study, an aeroelastic coupling procedure is developed to determine the static aeroelastic response of aircraft wings using any CFD and CSD code with little code integration. The aeroelastic coupling procedure is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas CFD code) and NASTRAN. In addition, the Aeroelastic Research Wing (ARW-2) is used for demonstration of the aeroelastic coupling procedure by using ENSAERO (NASA Ames Research Center CFD code) and a finite element wing-box code. The results obtained from the present study are compared with those available from an experimental study conducted at NASA Langley Research Center and a study conducted at NASA Ames Research Center using ENSAERO and modal superposition. The results compare well with experimental data.

  3. High altitude aircraft flight tests

    Science.gov (United States)

    Helmken, Henry; Emmons, Peter; Homeyer, David

    1996-03-01

    In order to make low earth orbit L-band propagation measurements and test new voice communication concepts, a payload was proposed and accepted for flight aboard the COMET (now METEOR) spacecraft. This Low Earth Orbiting EXperiment payload (LEOEX) was designed and developed by Motorola Inc. and sponsored by the Space Communications Technology Center (SCTC), a NASA Center for the Commercial Development of Space (CCDS) located at Florida Atlantic University. In order to verify the LEOEX payload for satellite operation and obtain some preliminary propagation data, a series of 9 high altitude aircraft (SR-71 and ER-2) flight tests were conducted. These flights took place during a period of 7 months, from October 1993 to April 1994. This paper will summarize the operation of the LEOEX payload and the particular configuration used for these flights. The series of flyby tests were very successful and demonstrated how bi-directional, Time Division Multiple Access (TDMA) voice communication will work in space-to-ground L-band channels. The flight tests also acquired propagation data which will be representative of L-band Low Earth Orbiting (LEO) communication systems. In addition to verifying the LEOEX system operation, it also uncovered and ultimately aided the resolution of several key technical issues associated with the payload.

  4. Beamforming for aircraft noise measurements

    Science.gov (United States)

    Dougherty, Robert P.

    2003-10-01

    Phased array beamforming for aircraft noise source location has a long history, including early work on jet noise, wind tunnel measurements, and flyover testing. In the last 10 years, advancements in sparse 2-D and 3-D arrays, wind tunnel test techniques, and computer power have made phased array measurements almost common. Large aerospace companies and national research institutes have an advantage in access to major facilities and hundreds of measurement microphones, but universities and even consulting companies can perform tests with electret microphones and PC data acquisition systems. The type of testing remains a blend of science and art. A complex noise source is approximated by a mathematical model, and the microphones are deployed to evaluate the parameters of the model. For example, the simplest, but often the best, approach is to assume a distribution of mutually incoherent monopoles. This leads to an imaging process analogous to photography. Other models include coherent distributions of multipoles or duct modes. It is sometimes important to simulate the results that would have been obtained from single microphone measurements of part of the airplane in an ideal environment, had such measurements been feasible.

  5. Intelligent control of agile aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Mohler, R.R.; Zakrzewski, R.R. [Dept. of Electrical and Computer Engineering, Corvallis, OR (United States)

    1994-12-31

    A brief overview of adaptive and computer-aided flight control is presented as background for the evolution of recent research on nonlinear intelligent control. Here, several nonlinear control algorithms are investigated but emphasis is given to nearly time-optimal, neural-net generated feedback control which is trained on ideal minimum-time, open-loop trajectories. The minimum-time policies are computed by a new version of the switching-line-variational method (gradient algorithm). Critical control constraints and a benchmark for performance as well as a basis for training are obtained for the system design. This further demonstrates the need for an integrated controls and aircraft system design for full utilization of nonlinear control capability. Complex nonlinear simulations show the effectiveness of the derived nonlinear feedback controller for the high-angle-of-attack research vehicle (HARV) with stabilator and thrust-vector control. For example, angle of attack is controlled from near zero to sixty degrees in about two seconds with appropriate trim conditions at both ends. Such control greatly enhances maneuverability and general flight envelope admissibility.

  6. Industrial electrification

    International Nuclear Information System (INIS)

    The technical and economic scope for industrial process electrification in Canada is assessed in the light of increasing costs of combustion fuels relative to electricity. It is concluded that electricity is capable of providing an increasing share of industrial energy, eventually aproaching 100 percent. The relatively low cost of electricity in Canada offers industry the opportunity of a head start in process electrification with consequent advantages in world markets both for industrial products and for electrical process equipment and technology. A method is described to promote the necessary innovation by providing access to technology and financing. The potential growth of electricity demand due to industrial electrification is estimated

  7. Overcapacity in regional aircraft production

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Bruijn, de Erik J.; Heerkens, Hans

    2005-01-01

    Capacity decisions are among the most important operations decisions for companies. One of the potential outcomes of bad decisions is a resulting overcapacity. Although some textbooks treat overcapacity as an issue for individual companies, there are indications that it may be an industry wide issue

  8. Industrial Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Industrial waste is waste from industrial production and manufacturing. Industry covers many industrial sectors and within each sector large variations are found in terms of which raw materials are used, which production technology is used and which products are produced. Available data on unit...... generation rates and material composition as well as determining factors are discussed in this chapter. Characterizing industrial waste is faced with the problem that often only a part of the waste is handled in the municipal waste system, where information is easily accessible. In addition part...... of the industrial waste may in periods, depending on market opportunities and prices, be traded as secondary rawmaterials. Production-specificwaste from primary production, for example steel slag, is not included in the current presentation. In some countries industries must be approved or licensed and as part...

  9. A CFD/CSD Interaction Methodology for Aircraft Wings

    Science.gov (United States)

    Bhardwaj, Manoj K.

    1997-01-01

    With advanced subsonic transports and military aircraft operating in the transonic regime, it is becoming important to determine the effects of the coupling between aerodynamic loads and elastic forces. Since aeroelastic effects can contribute significantly to the design of these aircraft, there is a strong need in the aerospace industry to predict these aero-structure interactions computationally. To perform static aeroelastic analysis in the transonic regime, high fidelity computational fluid dynamics (CFD) analysis tools must be used in conjunction with high fidelity computational structural fluid dynamics (CSD) analysis tools due to the nonlinear behavior of the aerodynamics in the transonic regime. There is also a need to be able to use a wide variety of CFD and CSD tools to predict these aeroelastic effects in the transonic regime. Because source codes are not always available, it is necessary to couple the CFD and CSD codes without alteration of the source codes. In this study, an aeroelastic coupling procedure is developed which will perform static aeroelastic analysis using any CFD and CSD code with little code integration. The aeroelastic coupling procedure is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas CFD code) and NASTRAN. In addition, the Aeroelastic Research Wing (ARW-2) is used for demonstration of the aeroelastic coupling procedure by using ENSAERO (NASA Ames Research Center CFD code) and a finite element wing-box code (developed as part of this research).

  10. Scaling Trajectories in Civil Aircraft (1913-1997)

    CERN Document Server

    Frenken, Koen

    2010-01-01

    Using entropy statistics we analyse scaling patterns in terms of changes in the ratios among product characteristics of 143 designs in civil aircraft. Two allegedly dominant designs, the piston propeller DC3 and the turbofan Boeing 707, are shown to have triggered a scaling trajectory at the level of the respective firms. Along these trajectories different variables have been scaled at different moments in time: this points to the versatility of a dominant design which allows a firm to react to a variety of user needs. Scaling at the level of the industry took off only after subsequently reengineered models were introduced, like the piston propeller Douglas DC4 and the turbofan Boeing 767. The two scaling trajectories in civil aircraft corresponding to the piston propeller and the turbofan paradigm can be compared with a single, less pronounced scaling trajectory in helicopter technology for which we have data during the period 1940-1996. Management and policy implications can be specified in terms of the pha...

  11. Method Evaluating the Durability of Aircraft Piston Engines

    Directory of Open Access Journals (Sweden)

    Luca PIANCASTELLI

    2012-12-01

    Full Text Available A significant issue in aircraft engines is quantifying residual life to overhaul. The algorithm described in this paper calculates with a good level of reliability the residual life of a petrol piston engine. The method was tested on small, latest-generation, naturally-aspirated aircraft and racing piston engines, and has been effective in several experiments. This method is implemented directly on the electronic control system of the engine with very few lines of C-code. The method can also be used in many industrial engines. This innovative method assumes that only two main factors (power level and wear affect engine durability or time between overhauls. These two factors are considered as separate and combined with worst case criteria. The wear is assumed to follow a logarithmic law and a formula similar to the Miner’s law for material fatigue is used, making it possible to calculate the power-level curve with knowledge of only two points. The wear-curve is also related to elapsed engine cycles. The algorithm is very simple and can be implemented with just a few lines of software code accessing data collected from existing sensors. The system is currently used to evaluate actual residual life of racing engines.

  12. NON-DESTRUCTIVE TESTS OF LOCK TONGUES USED IN ATR-72 AIRCRAFT LANDING GEAR BASED ON MAGNETIC METHOD

    Directory of Open Access Journals (Sweden)

    Mirosław Malec

    2013-12-01

    Full Text Available The purpose of this work is to highlight the opportunities of using and analyzing process progression of Non-destructive Testing in aeronautical industries and technologies. This paper concentrates on magnetic-fluorescent method, which is used to showcase the practical test of lock tongue installed in ATR-72 aircraft landing gear.

  13. NON-DESTRUCTIVE TESTS OF LOCK TONGUES USED IN ATR-72 AIRCRAFT LANDING GEAR BASED ON MAGNETIC METHOD

    OpenAIRE

    Mirosław Malec; Tomasz Cieplak; Sławomir Walczuk

    2013-01-01

    The purpose of this work is to highlight the opportunities of using and analyzing process progression of Non-destructive Testing in aeronautical industries and technologies. This paper concentrates on magnetic-fluorescent method, which is used to showcase the practical test of lock tongue installed in ATR-72 aircraft landing gear.

  14. An Integrated Knowledge Based Engineering Mechatronics Modeling Approach to Support the Design of Unstable and Unmanned Aircraft

    NARCIS (Netherlands)

    Tian, F.N.

    2015-01-01

    The commercial transport aircraft industry is currently developing new “more electric aircraft” (MEA) designs in which various conventional mechanical, hydraulic and pneumatic power systems are replaced with electrically-based power systems. Their objective is to improve the overall flight performan

  15. The present-day and future impact of NOx emissions from subsonic aircraft on the atmosphere in relation to the impact of NOx surface sources

    OpenAIRE

    Valks, P. J. M.; Velders, G.J.M.

    1999-01-01

    The effect of present-day and future NOx emissions from aircraft on the NOx and ozone concentrations in the atmosphere and the corresponding radiative forcing were studied using a three-dimensional chemistry transport model (CTM) and a radiative model. The effects of the aircraft emissions were compared with the effects of the three most important anthropogenic NOx surface sources: road traffic, electricity generation and industrial combustion. From the model results, NOx ...

  16. Common factors in the withdrawal of European aircraft manufacturers from the regional aircraft market

    NARCIS (Netherlands)

    Heerkens, Hans; Bruijn, de Erik J.; Steenhuis, Harm-Jan

    2010-01-01

    We investigate whether there were common causes for the withdrawal from the regional aircraft market of three established manufacturers (BAE Systems, Fokker and Saab), while competitors thrived. We focus on the markets for 50- and 100-seat aircraft. One cause concerning the 50-seat market was the in

  17. Conceptual design of high speed supersonic aircraft: A brief review on SR-71 (Blackbird) aircraft

    Science.gov (United States)

    Xue, Hui; Khawaja, H.; Moatamedi, M.

    2014-12-01

    The paper presents the conceptual design of high-speed supersonic aircraft. The study focuses on SR-71 (Blackbird) aircraft. The input to the conceptual design is a mission profile. Mission profile is a flight profile of the aircraft defined by the customer. This paper gives the SR-71 aircraft mission profile specified by US air force. Mission profile helps in defining the attributes the aircraft such as wing profile, vertical tail configuration, propulsion system, etc. Wing profile and vertical tail configurations have direct impact on lift, drag, stability, performance and maneuverability of the aircraft. A propulsion system directly influences the performance of the aircraft. By combining the wing profile and the propulsion system, two important parameters, known as wing loading and thrust to weight ratio can be calculated. In this work, conceptual design procedure given by D. P. Raymer (AIAA Educational Series) is applied to calculate wing loading and thrust to weight ratio. The calculated values are compared against the actual values of the SR-71 aircraft. Results indicates that the values are in agreement with the trend of developments in aviation.

  18. Study on utilization of advanced composites in commercial aircraft wing structures, volume 2

    Science.gov (United States)

    Sakata, I. F.; Ostrom, R. B.

    1978-01-01

    A plan is defined for a composite wing development effort which will assist commercial transport manufacturers in reaching a level of technology readiness where the utilization of composite wing structure is a cost competitive option for a new aircraft production plan. The recommended development effort consists of two programs: a joint government/industry material development program and a wing structure development program. Both programs are described in detail.

  19. Rheological behavior of composites based on carbon fibers recycled from aircraft waste

    OpenAIRE

    Marcaníková, Lucie; Hausnerová, Berenika; Kitano, Takeshi

    2009-01-01

    Rheological investigation of composite materials prepared from the recycled aircraft waste materials based on thermoset (epoxy/resin) matrix and long carbon fibers (CF) is presented with the aim of their utilization in consumer industry applications. The carbon fibers recovered via thermal process of pyrolysis were cut into about 150 pm length and melt mixed with thermoplastic matrices based on polypropylene (PP) and polyamide 6 (PA) and various modifiers - ethylene-ethyl acrylate-maleic anhy...

  20. Revision Of The Aircraft Engines Preliminary Design Platform Of First Level

    OpenAIRE

    BENETHUILLERE, Quentin

    2014-01-01

    In the highly competitive aerospace industry, engine manufacturers must react very quickly and precisely to any demand emerging from aircraft manufacturers if they want to be positioned on the offer. This is especially true when answering to Requests For Information (RFI) based on preliminary design investigations of first level. In order to reduce the time needed to perform these costly operations while improving the performances achieved, Snecma wishes to develop tools for dimensioning the ...

  1. Structural Weight Optimization of Aircraft Wing Component Using FEM Approach.

    Directory of Open Access Journals (Sweden)

    Arockia Ruban M,

    2015-06-01

    Full Text Available One of the main challenges for the civil aviation industry is the reduction of its environmental impact by better fuel efficiency by virtue of Structural optimization. Over the past years, improvements in performance and fuel efficiency have been achieved by simplifying the design of the structural components and usage of composite materials to reduce the overall weight of the structure. This paper deals with the weight optimization of transport aircraft with low wing configuration. The Linear static and Normal Mode analysis were carried out using MSc Nastran & Msc Patran under different pressure conditions and the results were verified with the help of classical approach. The Stress and displacement results were found and verified and hence arrived to the conclusion about the optimization of the wing structure.

  2. Aircraft optical cable plant program plan: the approach for the physical layer for fly-by-light control networks

    Science.gov (United States)

    Weaver, Thomas L.; Murdock, John K.

    1995-05-01

    A program was created with joint industry and government funding to apply fiber optic technologies to aircraft. The technology offers many potential benefits. Among them are increased electromagnetic interference immunity and the possibility of reduced weight, increased reliability, and enlarged capability by redesigning architectures to use the large bandwidth of fiber optics. Those benefits will only be realized if fiber optics meets the unique requirements of aircraft networks. Over the past two decades, considerable effort has been expended on applying photonic technologies to aircraft. Great successes have occurred in optoelectronic components development. In the development of these systems to link those components, known as the cable plant, progress has also been made, but only recently has it been organized in a coordinated, systems-oriented fashion. The FLASH program will expand on the nascent cable plant systems efforts by building upon recent work in individual components, and integrating that work into a cohesive aircraft cable plant. Therefore, the FLASH program will develop the low cost, reliable cables, connectors, splices, backplanes, manufacturing and installation methods, test methods, support equipment, and training systems needed to form a true optical cable plant for transport aircraft, tactical aircraft, and helicopters.

  3. Landing Gear Integration in Aircraft Conceptual Design. Revision

    Science.gov (United States)

    Chai, Sonny T.; Mason, William H.

    1997-01-01

    The design of the landing gear is one of the more fundamental aspects of aircraft design. The design and integration process encompasses numerous engineering disciplines, e.g., structure, weights, runway design, and economics, and has become extremely sophisticated in the last few decades. Although the design process is well-documented, no attempt has been made until now in the development of a design methodology that can be used within an automated environment. As a result, the process remains to be a key responsibility for the configuration designer and is largely experience-based and graphically-oriented. However, as industry and government try to incorporate multidisciplinary design optimization (MDO) methods in the conceptual design phase, the need for a more systematic procedure has become apparent. The development of an MDO-capable design methodology as described in this work is focused on providing the conceptual designer with tools to help automate the disciplinary analyses, i.e., geometry, kinematics, flotation, and weight. Documented design procedures and analyses were examined to determine their applicability, and to ensure compliance with current practices and regulations. Using the latest information as obtained from industry during initial industry survey, the analyses were in terms modified and expanded to accommodate the design criteria associated with the advanced large subsonic transports. Algorithms were then developed based on the updated analysis procedures to be incorporated into existing MDO codes.

  4. Small Autonomous Aircraft Servo Health Monitoring

    Science.gov (United States)

    Quintero, Steven

    2008-01-01

    Small air vehicles offer challenging power, weight, and volume constraints when considering implementation of system health monitoring technologies. In order to develop a testbed for monitoring the health and integrity of control surface servos and linkages, the Autonomous Aircraft Servo Health Monitoring system has been designed for small Uninhabited Aerial Vehicle (UAV) platforms to detect problematic behavior from servos and the air craft structures they control, This system will serve to verify the structural integrity of an aircraft's servos and linkages and thereby, through early detection of a problematic situation, minimize the chances of an aircraft accident. Embry-Riddle Aeronautical University's rotary-winged UAV has an Airborne Power management unit that is responsible for regulating, distributing, and monitoring the power supplied to the UAV's avionics. The current sensing technology utilized by the Airborne Power Management system is also the basis for the Servo Health system. The Servo Health system measures the current draw of the servos while the servos are in Motion in order to quantify the servo health. During a preflight check, deviations from a known baseline behavior can be logged and their causes found upon closer inspection of the aircraft. The erratic behavior nay include binding as a result of dirt buildup or backlash caused by looseness in the mechanical linkages. Moreover, the Servo Health system will allow elusive problems to be identified and preventative measures taken to avoid unnecessary hazardous conditions in small autonomous aircraft.

  5. Design of a spanloader cargo aircraft

    Science.gov (United States)

    1989-01-01

    With a growing demand for fast international freight service, the slow-moving cargo ships currently in use will soon find a substantial portion of their clients looking elsewhere. One candidate for filling this expected gap in the freight market is a span-loading aircraft (or 'flying wing') capable of long-range operation with extremely large payloads. This report summarizes the design features of an aircraft capable of fulfilling a long-haul, high-capacity cargo mission. The spanloader seeks to gain advantage over conventional aircraft by eliminating the aircraft fuselage and thus reducing empty weight. The primary disadvantage of this configuration is that the cargo-containing wing tends to be thick, thus posing a challenge to the airfoil designer. It also suffers from stability and control problems not encountered by conventional aircraft. The result is an interesting, challenging exercise in unconventional design. The report that follows is a student written synopsis of an effort judged to be the best of eight designs developed during the year 1988-1989.

  6. Control strategies for aircraft airframe noise reduction

    Institute of Scientific and Technical Information of China (English)

    Li Yong; Wang Xunnian; Zhang Dejiu

    2013-01-01

    With the development of low-noise aircraft engine,airframe noise now represents a major noise source during the commercial aircraft's approach to landing phase.Noise control efforts have therefore been extensively focused on the airframe noise problems in order to further reduce aircraft overall noise.In this review,various control methods explored in the last decades for noise reduction on airframe components including high-lift devices and landing gears are summarized.We introduce recent major achievements in airframe noise reduction with passive control methods such as fairings,deceleration plates,splitter plates,acoustic liners,slat cove cover and side-edge replacements,and then discuss the potential and control mechanism of some promising active flow control strategies for airframe noise reduction,such as plasma technique and air blowing/suction devices.Based on the knowledge gained throughout the extensively noise control testing,a few design concepts on the landing gear,high-lift devices and whole aircraft are provided for advanced aircraft low-noise design.Finally,discussions and suggestions are given for future research on airframe noise reduction.

  7. Aircraft Combat Survivability Estimation and Synthetic Tradeoff Methods

    Institute of Scientific and Technical Information of China (English)

    LI Shu-lin; LI Shou-an; LI Wei-ji; LI Dong-xia; FENG Feng

    2005-01-01

    A new concept is proposed that susceptibility, vulnerability, reliability, maintainability and supportability should be essential factors of aircraft combat survivability. A weight coefficient method and a synthetic method are proposed to estimate aircraft combat survivability based on the essential factors. Considering that it takes cost to enhance aircraft combat survivability, a synthetic tradeoff model between aircraft combat survivability and life cycle cost is built. The aircraft combat survivability estimation methods and synthetic tradeoff with a life cycle cost model will be helpful for aircraft combat survivability design and enhancement.

  8. Improvements in Aircraft Gas Turbine Engines for the 90s

    Directory of Open Access Journals (Sweden)

    Arun Prasad

    1993-10-01

    Full Text Available The gas turbine propulsion system has been playing the most significant role in the evolution and development of present-day aircraft, and has become the limiting technology for developing most new aircraft. However, the jet engine still remains the preferred propulsion choice. Aircraft gas turbines in one form or the other, viz. turbojet, turbofan, turboprop or turboshaft, have been used in commercial passenger aircraft, high performance military aircraft and in rotary wing aircraft (helicopters. The emphasis in engine development programmes world over seems to be in reducing fuel consumption, increasing thrust and in reducing weight.

  9. SUPPLY CHAIN FEATURES OF THE AEROSPACE INDUSTRY PARTICULAR CASE AIRBUS AND BOEING

    Directory of Open Access Journals (Sweden)

    Daniela MOCENCO

    2015-10-01

    Full Text Available Aerospace sector is one of the most globalized industries in terms of market structure and production system. Through aircraft development programs aviation industry has introduced new solutions to develop its products. The role of the partners involved in the development programs for the new generation aircraft is becoming increasingly important. Supply chain management has become a key factor for major manufacturers in the industry. The new strategies introduced by the aircraft manufacturers have increased the complexity of the supply process, design and production from the aviation industry. This paper highlights a series of factors regarding the aircraft programs supply chain management. In the first part are described the problems encountered by the manufacturers and airlines during the development of the most recent aircraft launched A350XWB and B787 Dreamliner; the second part focuses on the organizational structure of the supply chain, suppliers role within supply chain and also there are described the effects of the new strategies adopted by Airbus and Boeing in the aircraft development; the last part focuses on the risks and challenges that aviation industry is facing.

  10. Aircraft induced contrail cirrus over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Mannstein, H.; Schumann, U. [Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Inst. fuer Physik der Atmosphaere, Oberpfaffenhofen (Germany)

    2005-08-01

    Condensation trails (contrails) and aircraft induced cirrus are nowadays a common feature at the mid latitude skies. Previously the impact of aircraft induced cirrus changes has been roughly estimated from observed decadal trends in cirrus cover but the direct attribution of observed cirrus changes to changes in aviation activity remains uncertain. In this paper the amount of additional cirrus induced from spreading contrails in humid air is estimated from the direct correlation between observed cirrus cover derived with suitable methods from METEOSAT data and aviation flight density reported by EUROCONTROL at high spatial and temporal resolution from June 22 to July 27, 1998 and September 27 to October 21, 2000. The results indicate that the aircraft induced cirrus cover over Europe is about ten times larger than that of linear contrails in the same region. Radiative forcing from the additional cirrus may be more than 10 times higher than that of linear contrails and aviation induced CO{sub 2} increases. (orig.)

  11. Static aeroelastic analysis for generic configuration aircraft

    Science.gov (United States)

    Lee, IN; Miura, Hirokazu; Chargin, Mladen K.

    1987-01-01

    A static aeroelastic analysis capability that can calculate flexible air loads for generic configuration aircraft was developed. It was made possible by integrating a finite element structural analysis code (MSC/NASTRAN) and a panel code of aerodynamic analysis based on linear potential flow theory. The framework already built in MSC/NASTRAN was used and the aerodynamic influence coefficient matrix is computed externally and inserted in the NASTRAN by means of a DMAP program. It was shown that deformation and flexible airloads of an oblique wing aircraft can be calculated reliably by this code both in subsonic and supersonic speeds. Preliminary results indicating importance of flexibility in calculating air loads for this type of aircraft are presented.

  12. Industrial Robots.

    Science.gov (United States)

    Reed, Dean; Harden, Thomas K.

    Robots are mechanical devices that can be programmed to perform some task of manipulation or locomotion under automatic control. This paper discusses: (1) early developments of the robotics industry in the United States; (2) the present structure of the industry; (3) noneconomic factors related to the use of robots; (4) labor considerations…

  13. Industry honoured

    CERN Multimedia

    2008-01-01

    CERN has organised a day to thank industry for its exceptional contributions to the LHC project. Lucio Rossi addresses CERN’s industrial partners in the Main Auditorium.The LHC inauguration provided an opportunity for CERN to thank all those who have contributed to transforming this technological dream into reality. Industry has been a major player in this adventure. Over the last decade it has lent its support to CERN’s teams and participating institutes in developing, building and assembling the machine, its experiments and the computing infrastructure. CERN involved its industrial partners in the LHC inauguration by organising a special industry prize-giving day on 20 October. Over 70 firms accepted the invitation. The firms not only made fundamental contributions to the project, but some have also supported LHC events in 2008 and the inauguration ceremony through generous donations, which have been coordinated by Carmen Dell’Erba, who is responsible for secu...

  14. ANASE: measuring aircraft noise annoyance very unreliably.

    OpenAIRE

    Brooker, Peter

    2008-01-01

    Does anyone who lives under a flight-path like aircraft noise? It is a political hot potato as well as a peace-destroyer. Tens of thousands of people will hear the noise from any third runway at Heathrow. So, when a study commissioned by the government claimed that people are becoming less tolerant of aircraft noise, it made highly unpleasant reading for supporters of a third runway. But the Department for Transport rejected the report as unreliable. Peter Brooker senses the vibrations.

  15. Aerodynamics/ACEE: Aircraft energy efficiency

    Science.gov (United States)

    1981-01-01

    An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.

  16. Advanced materials for aircraft engine applications.

    Science.gov (United States)

    Backman, D G; Williams, J C

    1992-02-28

    A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time.

  17. Ageing aircraft research in the Netherlands

    Science.gov (United States)

    Dejonge, J. B.; Bartelds, G.

    1992-01-01

    The problems of aging aircraft are worldwide. Hence, international cooperative actions to overcome or prevent problems should be taken. The Federal Aviation Administration (FAA) and the Netherlands Civil Aviation Department (RLD) signed a Memorandum of Cooperation in the area of structural integrity, with specific reference to research on problems in the area of aging aircraft. Here, an overview is given of aging research that is going on in the Netherlands. The work described is done largely at the National Aerospace Laboratory; much of the research is part of the forementioned cooperative agreement.

  18. Conversion of the dual training aircraft (DC into single control advanced training aircraft (SC. Part I

    Directory of Open Access Journals (Sweden)

    Ioan ŞTEFĂNESCU

    2011-03-01

    Full Text Available Converting the DC school jet aircraft into SC advanced training aircraft - and use them forthe combat training of military pilots from the operational units, has become a necessity due to thebudget cuts for Air Force, with direct implications on reducing the number of hours of flight assignedto operating personnel for preparing and training.The purpose of adopting such a program is to reduce the number of flight hours allocated annuallyfor preparing and training in advanced stages of instruction, for every pilot, by more intensive use ofthis type of aircraft, which has the advantage of lower flight hour costs as compared to a supersoniccombat plane.

  19. The contribution of aircraft emissions to the atmospheric sulfur budget

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, E. [Stockholm Univ. (Sweden). Dept. of Meteorology; Feichter, J. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Sausen, R.; Hein, R. [Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1998-01-01

    An atmospheric general circulation model including the atmospheric sulfur cycle has been used to investigate the impact of aircraft sulfur emissions on the global sulfur budget of the atmosphere. The relative contribution from aircraft sulfur to the atmospheric sulfate burden is larger than the ratio between aircraft emissions and surface emissions due to the calculated long turn-over time of aircraft sulfate (about 12 days). However, in terms of the sulfate mass balance, aircraft emissions are small, contributing about 1% of the total sulfate mass north of 40 deg C where the aircraft emissions are largest. Despite this small contribution to sulfate mass, the aircraft emissions could potentially significantly enhance the background number concentration of aerosol particles. Based on the model calculations the increased stratospheric background aerosol mass observed during the last decades can not be explained by increased aircraft sulfur emissions 50 refs, 9 figs, 4 tabs

  20. Distributed Data Mining for Aircraft Health Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA, DoD, and commercial aircraft operators need to transform vast amounts of aircraft data accumulated in distributed databases into actionable knowledge. We...

  1. A Turbo-Brayton Cryocooler for Aircraft Superconducting Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hybrid turbo-electric aircraft with gas turbines driving electric generators connected to electric propulsion motors have the potential to transform the aircraft...

  2. Distributed Data Mining for Aircraft Health Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft Flight Operations Quality Assurance (FOQA) programs are implemented by most of the aircraft operators. Vast amounts of FOQA data are distributed between...

  3. Aircraft detection based on probability model of structural elements

    Science.gov (United States)

    Chen, Long; Jiang, Zhiguo

    2014-11-01

    Detecting aircrafts is important in the field of remote sensing. In past decades, researchers used various approaches to detect aircrafts based on classifiers for overall aircrafts. However, with the development of high-resolution images, the internal structures of aircrafts should also be taken into consideration now. To address this issue, a novel aircrafts detection method for satellite images based on probabilistic topic model is presented. We model aircrafts as the connected structural elements rather than features. The proposed method contains two major steps: 1) Use Cascade-Adaboost classier to identify the structural elements of aircraft firstly. 2) Connect these structural elements to aircrafts, where the relationships between elements are estimated by hierarchical topic model. The model places strict spatial constraints on structural elements which can identify differences between similar features. The experimental results demonstrate the effectiveness of the approach.

  4. Practical Voice Recognition for the Aircraft Cockpit Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal responds to the urgent need for improved pilot interfaces in the modern aircraft cockpit. Recent advances in aircraft equipment bring tremendous...

  5. Fault Tolerance, Diagnostics, and Prognostics in Aircraft Flight

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract In modern fighter aircraft with statically unstable airframe designs, the flight control system is considered flight critical, i.e. the aircraft will...

  6. Maintenance-free lead acid battery for inertial navigation systems aircraft

    Science.gov (United States)

    Johnson, William R.; Vutetakis, David G.

    1995-05-01

    Historically, Aircraft Inertial Navigation System (INS) Batteries have utilized vented nickel-cadmium batteries for emergency DC power. The United States Navy and Air Force developed separate systems during their respective INS developments. The Navy contracted with Litton Industries to produce the LTN-72 and Air Force contracted with Delco to produce the Carousel IV INS for the large cargo and specialty aircraft applications. Over the years, a total of eight different battery national stock numbers (NSNs) have entered the stock system along with 75 battery spare part NSNs. The Standard Hardware Acquisition and Reliability Program is working with the Aircraft Battery Group at Naval Surface Warfare Center Crane Division, Naval Air Systems Command (AIR 536), Wright Laboratory, Battelle Memorial Institute, and Concorde Battery Corporation to produce a standard INS battery. This paper discusses the approach taken to determine whether the battery should be replaced and to select the replacement chemistry. The paper also discusses the battery requirements, aircraft that the battery is compatible with, and status of Navy flight evaluation. Projected savings in avoided maintenance in Navy and Air Force INS Systems is projected to be $14.7 million per year with a manpower reduction of 153 maintenance personnel. The new INS battery is compatible with commercially sold INS systems which represents 66 percent of the systems sold.

  7. Emission analysis of large number of various passenger electronic devices in aircraft

    Science.gov (United States)

    Schüür, Jens; Oppermann, Lukas; Enders, Achim; Nunes, Rafael R.; Oertel, Carl-Henrik

    2016-09-01

    The ever increasing use of PEDs (passenger or portable electronic devices) has put pressure on the aircraft industry as well as operators and administrations to reevaluate established restrictions in PED-use on airplanes in the last years. Any electronic device could cause electromagnetic interference to the electronics of the airplane, especially interference at receiving antennas of sensitive wireless navigation and communication (NAV/COM) systems. This paper presents a measurement campaign in an Airbus A320. 69 test passengers were asked to actively use a combination of about 150 electronic devices including many attached cables, preferentially with a high data load on their buses, to provoke maximal emissions. These emissions were analysed within the cabin as well as at the inputs of aircraft receiving antennas outside of the fuselage. The emissions of the electronic devices as well as the background noise are time-variant, so just comparing only one reference and one transmission measurement is not sufficient. Repeated measurements of both cases lead to a more reliable first analysis. Additional measurements of the absolute received power at the antennas of the airplane allow a good estimation of the real interference potential to aircraft NAV/COM systems. Although there were many measured emissions within the cabin, there were no disturbance signals detectable at the aircraft antennas.

  8. CAD SIMULATION & FEM ANALYSIS OF AIRCRAFT LANDING GEAR MECHANISM

    OpenAIRE

    Nilesh W. Nirwan; Dilip G. Gangwani,

    2015-01-01

    Aircraft landing gear supports the entire weight of an aircraft during landing and ground operations. They are attached to primary structural members of the aircraft. The type of gear depends on the aircraft design and its intended use. Most landing gear has wheels to facilitate operation to and from hard surfaces, such as airport runways. Other gear feature skids for this purpose, such as those found on helicopters, balloon gondolas, and in the tail area of some tail dragger airc...

  9. A measurement method to discriminate aircraft fly-over noise

    OpenAIRE

    Genesca Francitorra, Meritxell; Romeu Garbí, Jordi; Pàmies Gómez, Teresa

    2010-01-01

    Currently aircraft noise monitoring systems use a mesh of single microphones distributed around an airport to continuously sample the noise level. This fact requires a manual process of aircraft noise event detection and classification in order to distinguish aircraft events from the rest of noise events in the recording. In the present paper a 3-meter-long 12-microphone linear array is used to automatically obtain a background noise free aircraft noise recording. The beamforming process sepa...

  10. Light shaping diffusers{trademark} improve aircraft inspection

    Energy Technology Data Exchange (ETDEWEB)

    Shagam, R.N. [Sandia National Labs., Albuquerque, NM (United States); Shie, R.; Lerner, J. [Physical Optics Corp., Torrance, CA (United States)

    1994-11-01

    Physical Optical Corporation has introduced a Light Shaping Diffuser{trademark} (LSD) for the specialized illumination requirements of aircraft inspection. Attached to a handheld, battery-powered flashlight, this light-weight, holographic diffuser element provides bright, even illumination as aircraft inspectors perform the important task of visually examining aircraft for possible structural defects. Field trials conducted by the Aging Aircraft Program at Sandia National Laboratories confirm that the LSD-equipped flashlights are preferred by visual inspectors over stock flashlights.

  11. 8 CFR 280.21 - Seizure of aircraft.

    Science.gov (United States)

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Seizure of aircraft. 280.21 Section 280.21... OF FINES § 280.21 Seizure of aircraft. Seizure of an aircraft under the authority of section 239 of the Act and § 280.2 will not be made if such aircraft is damaged to an extent that its value is...

  12. 49 CFR 172.448 - CARGO AIRCRAFT ONLY label.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false CARGO AIRCRAFT ONLY label. 172.448 Section 172.448... SECURITY PLANS Labeling § 172.448 CARGO AIRCRAFT ONLY label. (a) Except for size and color, the CARGO AIRCRAFT ONLY label must be as follows: ER14JA09.001 (b) The CARGO AIRCRAFT ONLY label must be black on...

  13. Flight Control Design for a Tailless Aircraft Using Eigenstructure Assignment

    OpenAIRE

    Clara Nieto-Wire; Kenneth Sobel

    2011-01-01

    We apply eigenstructure assignment to the design of a flight control system for a wind tunnel model of a tailless aircraft. The aircraft, known as the innovative control effectors (ICEs) aircraft, has unconventional control surfaces plus pitch and yaw thrust vectoring. We linearize the aircraft in straight and level flight at an altitude of 15,000 feet and Mach number 0.4. Then, we separately design flight control systems for the longitudinal and lateral dynamics. We use a control allocation ...

  14. Corrosion Sensor Development for Condition-Based Maintenance of Aircraft

    OpenAIRE

    Gino Rinaldi; Trisha Huber; Heather McIntosh; Les Lebrun; Heping Ding; John Weber

    2012-01-01

    Aircraft routinely operate in atmospheric environments that, over time, will impact their structural integrity. Material protection and selection schemes notwithstanding, recurrent exposure to chlorides, pollution, temperature gradients, and moisture provide the necessary electrochemical conditions for the development and profusion of corrosion in aircraft structures. For aircraft operators, this becomes an important safety matter as corrosion found in a given aircraft must be assumed to be p...

  15. 75 FR 9327 - Aircraft Noise Certification Documents for International Operations

    Science.gov (United States)

    2010-03-02

    ... Administration 14 CFR Part 91 RIN 2120-AJ31 Aircraft Noise Certification Documents for International Operations... operating rules to require U.S. operators flying outside the United States to carry aircraft noise..., Subpart III, Section 44715, Controlling aircraft noise and sonic boom. Under that section, the FAA...

  16. 10 CFR 70.14 - Foreign military aircraft.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Foreign military aircraft. 70.14 Section 70.14 Energy....14 Foreign military aircraft. The regulations in this part do not apply to persons who carry special nuclear material (other than plutonium) in aircraft of the armed forces of foreign nations subject to 49...

  17. 47 CFR 90.423 - Operation on board aircraft.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Operation on board aircraft. 90.423 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Operating Requirements § 90.423 Operation on board aircraft. (a) Except... after September 14, 1973, under this part may be operated aboard aircraft for air-to-mobile,...

  18. 19 CFR 122.86 - Substitution of aircraft.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Substitution of aircraft. 122.86 Section 122.86... Substitution of aircraft. (a) Application. The residue cargo procedure applies when an airline must substitute aircraft to reach a destination due to weather conditions or operational factors which prevent an...

  19. 75 FR 70074 - Consensus Standards, Light-Sport Aircraft

    Science.gov (United States)

    2010-11-16

    ... Federal Aviation Administration Consensus Standards, Light-Sport Aircraft AGENCY: Federal Aviation... provisions of the Sport Pilot and Light-Sport Aircraft rule issued July 16, 2004, and effective September 1, 2004. ASTM International Committee F37 on Light Sport Aircraft developed the revised standards...

  20. 76 FR 45647 - Consensus Standards, Light-Sport Aircraft

    Science.gov (United States)

    2011-07-29

    ... revision process. Background: Under the provisions of the Sport Pilot and Light-Sport Aircraft rule, 69 FR... Federal Aviation Administration Consensus Standards, Light-Sport Aircraft AGENCY: Federal Aviation... to the provisions of the Sport Pilot and Light-Sport Aircraft rule issued July 16, 2004,...

  1. 14 CFR 45.31 - Marking of export aircraft.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Marking of export aircraft. 45.31 Section 45.31 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT IDENTIFICATION AND REGISTRATION MARKING Nationality and Registration Marks § 45.31 Marking of export aircraft....

  2. 14 CFR 135.145 - Aircraft proving and validation tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft proving and validation tests. 135... Aircraft and Equipment § 135.145 Aircraft proving and validation tests. (a) No certificate holder may... safely and in compliance with applicable regulatory standards. Validation tests are required for...

  3. 14 CFR 21.128 - Tests: aircraft engines.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tests: aircraft engines. 21.128 Section 21.128 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... engines. (a) Each person manufacturing aircraft engines under a type certificate only shall subject...

  4. 14 CFR 91.325 - Primary category aircraft: Operating limitations.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Primary category aircraft: Operating... Flight Operations § 91.325 Primary category aircraft: Operating limitations. (a) No person may operate a primary category aircraft carrying persons or property for compensation or hire. (b) No person may...

  5. Disruption Management for an Airline - Rescheduling of aircraft

    DEFF Research Database (Denmark)

    Larsen, Jesper; Løve, Michael; Sørensen, Kim Riis;

    2002-01-01

    The Aircraft Recovery Problem (ARP) involves decisions concerning aircraft to flight assignments in situations where unforseen events have disrupted the existing flight schedule, e.g. bad weather causing flight delays. The aircraft recovery problem aims to recover these flight schedules through a...

  6. Using heuristics to solve the dedicated aircraft recovery problem

    DEFF Research Database (Denmark)

    Løve, Michael; Sørensen, Kim Riis; Larsen, Jesper;

    2001-01-01

    The Dedicated Aircraft Recovery Problem (DARP) involves decisions concerning aircraft to flight assignments in situations where unforeseen events have disrupted the existing flight schedule, e.g. bad weather causing flight delays. The dedicated aircraft recovery problem aims to recover these flig...

  7. Northwest to Accelerate Retirement of Dc10 Aircraft

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Northwest Airlines announced that it will accelerate the retirement of its remaining 12DC10-30 aircraft in service. The airline said that during the next seven months,it will replace DC10 aircraft with new Airbus A330s and Boeing 747-400aircraft being returned to service.Currently, seven routes are served with the DC10.

  8. Smart Sensor System for NDE or Corrosion in Aging Aircraft

    Science.gov (United States)

    Bar-Cohen, Y.; Marzwell, N.; Osegueda, R.; Ferregut, C.

    1998-01-01

    The extension of the operation life of military and civilian aircraft rather than replacing them with new ones is increasing the probability of aircraft component failure as a result of aging. Aircraft that already have endured a long srvice life of more than 40 years are now being considered for another 40 years of service.

  9. Disruption Management in the Airline Industry - Concepts, Models and Methods

    DEFF Research Database (Denmark)

    Clausen, Jens; Larsen, Allan; Larsen, Jesper

    2005-01-01

    The airline industry is notably one of the success stories with respect to the use of optimization based methods and tools in planning. Both in planning of the assignment of available aircraft to flights and in crew scheduling, these methods play a major role. Plans are usually made several months...

  10. Air Force Achieves Fuel Efficiency through Industry Best Practices

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-12-01

    The U.S. Air Force’s Air Mobility Command (AMC) is changing the way it does business. It is saving energy and money through an aircraft fleet fuel-efficiency program inspired by private industry best practices and ideas resulting from the empowered fuel savings culture.

  11. Recognition of aircraft using HRR features

    NARCIS (Netherlands)

    Kossen, A.S.

    2008-01-01

    Automated target recognition (ATR) based on high resolution radar (HRR) features can be used to increase the confidence in aircraft class. Standard radar systems are not designed for performing classification and uses additional identification systems. It is shown that with the use of features the a

  12. 78 FR 67309 - Earth Stations Aboard Aircraft

    Science.gov (United States)

    2013-11-12

    ...), and (d) published at 78 FR 14920 on March 8, 2013, are effective on November 12, 2013. FOR FURTHER...-161, published at 78 FR 14920, March 8, 2013. The OMB Control Number is 3060-1187. The Commission... COMMISSION 47 CFR Part 25 Earth Stations Aboard Aircraft AGENCY: Federal Communications Commission....

  13. Perspectives of civil aircraft avionics development

    OpenAIRE

    Наумов, А. В.

    1999-01-01

    Considered are main directions for civil avionics development. General requirements for airborne equipment functions. Analysis of airborne avionics selection per architecture and economical effectiveness in made. Proposed is the necessity of new approach to integrated avionics complex design, first of all, on basis of mathematical method for aircraft equipment and technical characteristics definition

  14. Automation tools for flexible aircraft maintenance.

    Energy Technology Data Exchange (ETDEWEB)

    Prentice, William J.; Drotning, William D.; Watterberg, Peter A.; Loucks, Clifford S.; Kozlowski, David M.

    2003-11-01

    This report summarizes the accomplishments of the Laboratory Directed Research and Development (LDRD) project 26546 at Sandia, during the period FY01 through FY03. The project team visited four DoD depots that support extensive aircraft maintenance in order to understand critical needs for automation, and to identify maintenance processes for potential automation or integration opportunities. From the visits, the team identified technology needs and application issues, as well as non-technical drivers that influence the application of automation in depot maintenance of aircraft. Software tools for automation facility design analysis were developed, improved, extended, and integrated to encompass greater breadth for eventual application as a generalized design tool. The design tools for automated path planning and path generation have been enhanced to incorporate those complex robot systems with redundant joint configurations, which are likely candidate designs for a complex aircraft maintenance facility. A prototype force-controlled actively compliant end-effector was designed and developed based on a parallel kinematic mechanism design. This device was developed for demonstration of surface finishing, one of many in-contact operations performed during aircraft maintenance. This end-effector tool was positioned along the workpiece by a robot manipulator, programmed for operation by the automated planning tools integrated for this project. Together, the hardware and software tools demonstrate many of the technologies required for flexible automation in a maintenance facility.

  15. Weed detection using unmanned aircraft vehicles

    Directory of Open Access Journals (Sweden)

    Pflanz, Michael

    2014-03-01

    Full Text Available In contrast to agricultural remote sensing technologies, which are based on images from satellites or manned aircrafts, photogrammetry at low altitude from unmanned aircraft vehicles lead to higher spatial resolution, real-time processing and lower costs. Moreover multicopter aircrafts are suitable vehicles to perform precise path or stationary flights. In terms of vegetation photogrammetry this minimises motion blur and provide better image overlapping for stitching and mapping procedures. Through improved image analyses and through the recent increase in the availability of powerful batteries, microcontrollers and multispectral cameras, it can be expected in future that spatial mapping of weeds from low altitudes will be promoted. A small unmanned aircraft vehicle with a modified RGB camera was tested taking images from agricultural fields. A microcopter with six rotors was applied. The hexacopter in particular is GPS controlled and operates within predefined areas at given altitudes (from 5 to 10 m. Different scenarios of photogrammetrically weed detection have been carried out regarding to variable altitude, image resolution, weed and crop growth stages. First experiences with microcopter showed a high potential for site-specific weed control. Images analyses with regards to recognition of weed patches can be used to adapt herbicide applications to varying weed occurrence across a field.

  16. 14 CFR 34.6 - Aircraft safety.

    Science.gov (United States)

    2010-01-01

    ...) Consistent with 40 CFR 87.6, if the FAA Administrator determines that any emission control regulation in this... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Aircraft safety. 34.6 Section 34.6... safety. (a) The provisions of this part will be revised if at any time the Administrator determines...

  17. Towards Intelligent Control for Next Generation Aircraft

    Science.gov (United States)

    Acosta, Diana Michelle; KrishnaKumar, Kalmanje Srinvas; Frost, Susan Alane

    2008-01-01

    NASA Aeronautics Subsonic Fixed Wing Project is focused on mitigating the environmental and operation impacts expected as aviation operations triple by 2025. The approach is to extend technological capabilities and explore novel civil transport configurations that reduce noise, emissions, fuel consumption and field length. Two Next Generation (NextGen) aircraft have been identified to meet the Subsonic Fixed Wing Project goals - these are the Hybrid Wing-Body (HWB) and Cruise Efficient Short Take-Off and Landing (CESTOL) aircraft. The technologies and concepts developed for these aircraft complicate the vehicle s design and operation. In this paper, flight control challenges for NextGen aircraft are described. The objective of this paper is to examine the potential of state-of-the-art control architectures and algorithms to meet the challenges and needed performance metrics for NextGen flight control. A broad range of conventional and intelligent control approaches are considered, including dynamic inversion control, integrated flight-propulsion control, control allocation, adaptive dynamic inversion control, data-based predictive control and reinforcement learning control.

  18. Developing aircraft photonic networks for airplane systems

    DEFF Research Database (Denmark)

    White, Henry J.; Brownjohn, Nick; Baptista, João;

    2013-01-01

    Achieving affordable high speed fiber optic communication networks for airplane systems has proved to be challenging. In this paper we describe a summary of the EU Framework 7 project DAPHNE (Developing Aircraft Photonic Networks). DAPHNE aimed to exploit photonic technology from terrestrial comm...

  19. Emergency Landing Planning for Damaged Aircraft

    Science.gov (United States)

    Meuleau, Nicolas; Plaunt, Christian John; Smith, David E.

    2008-01-01

    Considerable progress has been made over the last 15 years on building adaptive control systems to assist pilots in flying damaged aircraft. Once a pilot has regained control of a damaged aircraft, the next problem is to determine the best site for an emergency landing. In general, the decision depends on many factors including the actual control envelope of the aircraft, distance to the site, weather en route, characteristics of the approach path, characteristics of the runway or landing site, and emergency facilities at the site. All of these influence the risk to the aircraft, to the passengers and crew, and to people and property on the ground. We describe an ongoing project to build and demonstrate an emergency landing planner that takes these various factors into consideration and proposes possible routes and landing sites to the pilot, ordering them according to estimated risk. We give an overview of the system architecture and input data, describe our preliminary modeling of risk, and describe how we search the space of landing sites and routes.

  20. Ultrawideband Electromagnetic Interference to Aircraft Radios

    Science.gov (United States)

    Ely, Jay J.; Fuller, Gerald L.; Shaver, Timothy W.

    2002-01-01

    A very recent FCC Final Rule now permits marketing and operation of new products that incorporate Ultrawideband (UWB) technology into handheld devices. Wireless product developers are working to rapidly bring this versatile, powerful and expectedly inexpensive technology into numerous consumer wireless devices. Past studies addressing the potential for passenger-carried portable electronic devices (PEDs) to interfere with aircraft electronic systems suggest that UWB transmitters may pose a significant threat to aircraft communication and navigation radio receivers. NASA, United Airlines and Eagles Wings Incorporated have performed preliminary testing that clearly shows the potential for handheld UWB transmitters to cause cockpit failure indications for the air traffic control radio beacon system (ATCRBS), blanking of aircraft on the traffic alert and collision avoidance system (TCAS) displays, and cause erratic motion and failure of instrument landing system (ILS) localizer and glideslope pointers on the pilot horizontal situation and attitude director displays. This paper provides details of the preliminary testing and recommends further assessment of aircraft systems for susceptibility to UWB electromagnetic interference.

  1. Using Synthetic Kerosene in Civil Jet Aircraft

    NARCIS (Netherlands)

    Snijders, T.A.; Melkert, J.A.

    2008-01-01

    TU Delft in the Netherlands is performing research into the effects of the use of synthetic kerosene in aircraft. The research program consists of both desk research and tests. In the desk research gas turbine simulations will be combined with payload range performance calculations to show engine ef

  2. Incident response monitoring technologies for aircraft cabin

    NARCIS (Netherlands)

    Havermans, J.B.G.A.; Houtzager, M.M.G.; Jacobs, P.

    2015-01-01

    The Netherlands Organization for Applied Scientific Research (TNO) was granted by ASHRAE (1306-RP) to conduct scientfic review and feasibility analysis of technologies and methods for measuring aircraft power system contaminants in the cabin air during unanticipated adverse incidents. In particular,

  3. Industrial practices

    International Nuclear Information System (INIS)

    This document reports the industrial practices carried out by the author viewing the requirements fulfilled for obtention the academic degree in chemical engineering of the San Andres University - Bolivia

  4. Industrial pioneers

    NARCIS (Netherlands)

    Wassink, J.

    2014-01-01

    With their knowledge of metallurgy, mechanics and thermodynamics, mechanical engineers had to give shape to the industrial revolution in the Netherlands 150 years ago. This revolution only slowly gathered momentum, however, especially in comparison with England.

  5. Aircraft family design using enhanced collaborative optimization

    Science.gov (United States)

    Roth, Brian Douglas

    Significant progress has been made toward the development of multidisciplinary design optimization (MDO) methods that are well-suited to practical large-scale design problems. However, opportunities exist for further progress. This thesis describes the development of enhanced collaborative optimization (ECO), a new decomposition-based MDO method. To support the development effort, the thesis offers a detailed comparison of two existing MDO methods: collaborative optimization (CO) and analytical target cascading (ATC). This aids in clarifying their function and capabilities, and it provides inspiration for the development of ECO. The ECO method offers several significant contributions. First, it enhances communication between disciplinary design teams while retaining the low-order coupling between them. Second, it provides disciplinary design teams with more authority over the design process. Third, it resolves several troubling computational inefficiencies that are associated with CO. As a result, ECO provides significant computational savings (relative to CO) for the test cases and practical design problems described in this thesis. New aircraft development projects seldom focus on a single set of mission requirements. Rather, a family of aircraft is designed, with each family member tailored to a different set of requirements. This thesis illustrates the application of decomposition-based MDO methods to aircraft family design. This represents a new application area, since MDO methods have traditionally been applied to multidisciplinary problems. ECO offers aircraft family design the same benefits that it affords to multidisciplinary design problems. Namely, it simplifies analysis integration, it provides a means to manage problem complexity, and it enables concurrent design of all family members. In support of aircraft family design, this thesis introduces a new wing structural model with sufficient fidelity to capture the tradeoffs associated with component

  6. Industrial Noise

    OpenAIRE

    Mehran zolfaghari

    1996-01-01

    Various risk factors in industrial environments can affect hearing status and healthy in today’s modern society. Noise control and hearing conservation program is very crucial in preventing workers exposed to high levels of noise in the work places. In the current article we are going to discuss issues such as industrial noise control, noise characteristics and standards and techniques for noise control. Then the methods for individual hearing conservation and medical care will be described i...

  7. Aircraft engine performance and integration in a flying wing aircraft conceptual design

    OpenAIRE

    Miao, Zhisong.

    2012-01-01

    The increasing demand of more economical and environmentally friendly aero engines leads to the proposal of a new concept – geared turbofan. In this thesis, the characteristics of this kind of engine and relevant considerations of integration on a flying wing aircraft were studied. The studies can be divided into four levels: GTF-11 engine modelling and performance simulation; aircraft performance calculation; nacelle design and aerodynamic performance evaluation; preliminar...

  8. Industrial Design in Aerospace/Role of Aesthetics

    Science.gov (United States)

    Bushnell, Dennis M.

    2006-01-01

    Industrial design creates and develops concepts and specifications that seek to simultaneously and synergistically optimize function, production, value and appearance. The inclusion of appearance, or esthetics, as a major design metric represents both an augmentation of conventional engineering design and an intersection with artistic endeavor(s). Report surveys past and current industrial design practices and examples across aerospace including aircraft and spacecraft, both exterior and interior.

  9. Potential applications of advanced aircraft in developing countries. [Brazil and Indonesia

    Science.gov (United States)

    Maddalon, D. V.

    1979-01-01

    Air transportation concepts for movement of cargo in developing countries are reviewed using aicraft which may appear in the future. For certain industrial applications, including mining and forestry, the relative costs of doing the job using different types of aircraft are compared with surface transportation systems. Two developing countries, Brazil and Indonesia, were taken as examples to determine what impact they might have on the aircraft markets of the future. Economic and demographic data on developing countries in general, and Brazil and Indonesia in particular, are reviewed. The concept of an industrial city in a remote area developed around an airport is discussed. It is noted that developing areas generally lack extensive surface transportation systems and that an air transportation system can be implemented in a relatively short time. A developing nation interested in rapid expansion may thus find the role of air cargo far more important than has been true in developed nations. Technological developments which may dramatically increase the performance of agricultural aircraft are also reviewed.

  10. Aircraft Design Analysis, CFD And Manufacturing

    Directory of Open Access Journals (Sweden)

    Haifa El-Sadi

    2016-09-01

    Full Text Available Aircraft design, manufacturing and CFD analysis as part of aerodynamic course, the students achieve sizing from a conceptual sketch, select the airfoil geometry and the tail geometry, calculate thrust to weight ratio and wing loading, use initial sizing and calculate the aerodynamic forces. The students design their aircraft based on the geometrical dimensions resulted from the calculations and use the model to build a prototype, test it in wind tunnel and achieve CFD analysis to be compared with the experimental results. The theory of aerodynamic is taught and applied as a project based. In this paper, the design process, aircraft manufacturing and CFD analysis are presented to show the effect of project based on student’s learning of aerodynamic course. This project based learning has improved and accelerated students understanding of aerodynamic concepts and involved students in a constructive exploration. The analysis of the aircraft resulted in a study that revolved around the lift and drag generation of this particular aircraft. As to determine the lift and drag forces generated by this plane, a model was created in Solidworks a 3-D model-rendering program. After this model was created it was 3-D printed in a reduced scale, and subjected to wind tunnel testing. The results from the wind tunnel lab experiment were recorded. For accuracy, the same 3-D model was then simulated using CFD simulation software within Solidworks and compared with the results from the wind tunnel test. The values derived from both the simulation and the wind tunnel tests were then compared with the theoretical calculations for further proof of accuracy.

  11. NASA-UVa light aerospace alloy and structures technology program supplement: Aluminum-based materials for high speed aircraft

    Science.gov (United States)

    Starke, E. A., Jr. (Editor)

    1995-01-01

    This report on the NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from July 1, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) Ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) Powder metallurgy 2XXX alloys, (3) Rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) Discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  12. Forward Looking Radar Imaging by Truncated Singular Value Decomposition and Its Application for Adverse Weather Aircraft Landing

    Directory of Open Access Journals (Sweden)

    Yulin Huang

    2015-06-01

    Full Text Available The forward looking radar imaging task is a practical and challenging problem for adverse weather aircraft landing industry. Deconvolution method can realize the forward looking imaging but it often leads to the noise amplification in the radar image. In this paper, a forward looking radar imaging based on deconvolution method is presented for adverse weather aircraft landing. We first present the theoretical background of forward looking radar imaging task and its application for aircraft landing. Then, we convert the forward looking radar imaging task into a corresponding deconvolution problem, which is solved in the framework of algebraic theory using truncated singular decomposition method. The key issue regarding the selecting of the truncated parameter is addressed using generalized cross validation approach. Simulation and experimental results demonstrate that the proposed method is effective in achieving angular resolution enhancement with suppressing the noise amplification in forward looking radar imaging.

  13. Forward Looking Radar Imaging by Truncated Singular Value Decomposition and Its Application for Adverse Weather Aircraft Landing.

    Science.gov (United States)

    Huang, Yulin; Zha, Yuebo; Wang, Yue; Yang, Jianyu

    2015-01-01

    The forward looking radar imaging task is a practical and challenging problem for adverse weather aircraft landing industry. Deconvolution method can realize the forward looking imaging but it often leads to the noise amplification in the radar image. In this paper, a forward looking radar imaging based on deconvolution method is presented for adverse weather aircraft landing. We first present the theoretical background of forward looking radar imaging task and its application for aircraft landing. Then, we convert the forward looking radar imaging task into a corresponding deconvolution problem, which is solved in the framework of algebraic theory using truncated singular decomposition method. The key issue regarding the selecting of the truncated parameter is addressed using generalized cross validation approach. Simulation and experimental results demonstrate that the proposed method is effective in achieving angular resolution enhancement with suppressing the noise amplification in forward looking radar imaging. PMID:26094627

  14. Evaluating and operationalizing unmanned aircraft for wildland fire use

    Science.gov (United States)

    Watts, A.

    2015-12-01

    Many potential uses of unmanned aircraft systems (UAS) related to wildland fire research and operations have been demonstrated, but the vast majority of these have been proof-of-concept or one-time flights. Scientists, practitioners, and firefighting agencies look forward to the widespread adoption of this powerful technology and its regular use. Similarly, the UAS industry awaits opportunities for commercialization. Our collaboration brings together UAS industry, research and management agencies, and universities in the USA and Canada to investigate the perceived effectiveness of UAS for wildland fire use, and the factors affecting their commercial-scale employment. Our current and future activities include market research, training and technology transfer, and deployment of UAS over fires to promote development of sensors as well as their safe integration into fire operations. We will present initial results, and as a part of our presentation we also invite participation of the AGU community for planned future project phases. We anticipate that the outcomes of our work will be useful to potential users who are unfamiliar with UAS, and to researchers and practitioners with experience or an interest in their use in fire and related natural-resource disciplines.

  15. Review of factors affecting aircraft wet runway performance

    Science.gov (United States)

    Yager, T. J.

    1983-01-01

    Problems associated with aircraft operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from investigations conducted at the Langley Aircraft Landing Loads and Traction Facility and from tests with instrumented ground vehicles and aircraft are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.

  16. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    Science.gov (United States)

    Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2016-01-01

    The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  17. Review of Aircraft Electric Power Systems and Architectures

    DEFF Research Database (Denmark)

    Zhao, Xin; Guerrero, Josep M.; Wu, Xiaohao

    2014-01-01

    In recent years, the electrical power capacity is increasing rapidly in more electric aircraft (MEA), since the conventional mechanical, hydraulic and pneumatic energy systems are partly replaced by electrical power system. As a consequence, capacity and complexity of aircraft electric power...... systems (EPS) will increase dramatically and more advanced aircraft EPSs need to be developed. This paper gives a brief description of the constant frequency (CF) EPS, variable frequency (VF) EPS and advanced high voltage (HV) EPS. Power electronics in the three EPS is overviewed. Keywords: Aircraft Power...... System, More Electric Aircraft, Constant Frequency, Variable Frequency, High Voltage....

  18. An integrated systems engineering approach to aircraft design

    Science.gov (United States)

    Price, M.; Raghunathan, S.; Curran, R.

    2006-06-01

    The challenge in Aerospace Engineering, in the next two decades as set by Vision 2020, is to meet the targets of reduction of nitric oxide emission by 80%, carbon monoxide and carbon dioxide both by 50%, reduce noise by 50% and of course with reduced cost and improved safety. All this must be achieved with expected increase in capacity and demand. Such a challenge has to be in a background where the understanding of physics of flight has changed very little over the years and where industrial growth is driven primarily by cost rather than new technology. The way forward to meet the challenges is to introduce innovative technologies and develop an integrated, effective and efficient process for the life cycle design of aircraft, known as systems engineering (SE). SE is a holistic approach to a product that comprises several components. Customer specifications, conceptual design, risk analysis, functional analysis and architecture, physical architecture, design analysis and synthesis, and trade studies and optimisation, manufacturing, testing validation and verification, delivery, life cycle cost and management. Further, it involves interaction between traditional disciplines such as Aerodynamics, Structures and Flight Mechanics with people- and process-oriented disciplines such as Management, Manufacturing, and Technology Transfer. SE has become the state-of-the-art methodology for organising and managing aerospace production. However, like many well founded methodologies, it is more difficult to embody the core principles into formalised models and tools. The key contribution of the paper will be to review this formalisation and to present the very latest knowledge and technology that facilitates SE theory. Typically, research into SE provides a deeper understanding of the core principles and interactions, and helps one to appreciate the required technical architecture for fully exploiting it as a process, rather than a series of events. There are major issues as

  19. Impact of the european emission trading scheme for the air transportation industry on the valuation of aircraft purchase rights; Impacto de la ley de comercio europeo de emisiones de CO{sub 2} para el sector del transporte aereo en la valoracion de los derechos de compra de aviones

    Energy Technology Data Exchange (ETDEWEB)

    Tarradellas-Espuny, J.; Salamero-Salas, A.; Martinez-Costa, C.

    2009-07-01

    The European Commission issued a legislative proposal in December 2006, suggesting a cap on CO{sub 2} emissions for all planes arriving or departing from EU airports, while allowing airlines to buy and sell pollution credits on the EU carbon market (Emission Trading Scheme, or ETS). In 2008 the new scheme got the final approval. Real options appear to be ab appropriate methodology to capture the extra value brought by the new legislation on new airplane purchase rights: The airline will surely have the purchase right to the new plane if the operation of the plane generates unused pollution credits that the airline can sell at a minimum price in the carbon market. This paper tries to determine if the impact of ETS in the valuation of aircraft purchase rights is significant enough in monetary terms to include the new legislation in a complex real-option model already proposed by the authors recently. The research concludes that even the impact of ETS justifies its inclusion in the model, the quality of the available sets of historical data still raises some questions. Particularly, the assumption of market efficiency for the Carbon Pool over the recent years needs to be treated with caution. (Author) 9 refs.

  20. Avionics Systems, Integration, and Technologies of the Light Transport Aircraft (Review Paper

    Directory of Open Access Journals (Sweden)

    C.M. Ananda

    2011-07-01

    Full Text Available Avionics of the present day comprises advanced technology and software-intensive systems. Earlier generation avionics constituted federated architecture and used line replaceable units (LRUs having individual resources for each application with redundant hardware and software. However with the advancement of technology, methods,and mechanisms, the industry moved quite rapidly towards the integrated architecture called integrated modular avionics (IMA. Over the last decade there has been tremendous growth in these technologies which has resulted in reduced weight, volume, and developmental efforts. Usage of complex systems with advanced technologies and their certification for use in civil aircraft are the key issues to be addressed even today. Avionics of general aviation aircraft consists of typical systems like communication, navigation, display, radar, engine indication and data acquisition and recoding systems. These can be realised in federated as well as integrated architectures. TheLRUs requirements for avionics sub-system depends on the certification standards like FAR 23 or FAR 25. The whole cycle of architecture definition, integration, testing and means of compliance of the complete suite is the major activity in any new aircraft development programme. Development of ground-based test facilities and proper maintenance of the entire system on aircraft are other important activities in such programmes. These issues are presented in this paper for a typical light transport aircraft (LTA. The new technologies with their relevance, merits/de-merits, awareness of the global systems being adopted, etc., which are being attempted as indigenousdesign and development, are also presented.Defence Science Journal, 2011, 61(4, pp.289-298, DOI:http://dx.doi.org/10.14429/dsj.61.1090

  1. Look-ahead strategies for controlling batch operations in industry : basic insights in rule construction

    NARCIS (Netherlands)

    van der Zee, D.J.; Sullivan, W.A.; Ahmad, M.M.; Fichtner, D.; Sauer, W.; Weigert, G.; Zerna, T.

    2002-01-01

    Batching jobs in a manufacturing system is a very common policy in most industries. Main reasons for batching are avoidance of set ups and/or facilitation of material handling. Examples of batch-wise production systems are ovens found in aircraft industry and in semiconductor manufacturing. Starting

  2. Insecticide Exposures on Commercial Aircraft: A Literature Review and Screening Level Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Maddalena, Randy I.; McKone, Thomas E.

    2008-10-01

    on a thin-film polymer-coated glass design, was developed specifically for deployment in the airliner ventilation system for long-term unattended monitoring of insecticide loading in the aircraft. Because access was not available for either treated aircraft or treatment records during the course of this study, the development and calibration of the passive samplers was halted prior to completion. Continued development of a field ready passive sampler for insecticides in aircraft would require collaboration with the airline industry to finalize the method for deployment and calibration conditions for the sampler. The Task 3 screening level modeling assessment used a dynamic two-box mass balance model that includes treated surfaces and air to explore the time-concentration history of insecticides in the cabin. The model was parameterized using information gathered during the literature review and run for several different insecticide use scenarios. Chemical degradation or sequestration in the surface compartment and mass transfer from the surface to the air limit the rate at which insecticides are removed from the system. This rate limiting process can result in an accumulation of insecticide in the airliner cabin following repeated applications. The extent of accumulation is a function of the overall persistence of the chemical in the system and the amount of chemical applied during each treatment.

  3. Reinterpreting aircraft measurements in anisotropic scaling turbulence

    Directory of Open Access Journals (Sweden)

    S. J. Hovde

    2009-07-01

    Full Text Available Due to both systematic and turbulent induced vertical fluctuations, the interpretation of atmospheric aircraft measurements requires a theory of turbulence. Until now virtually all the relevant theories have been isotropic or "quasi isotropic" in the sense that their exponents are the same in all directions. However almost all the available data on the vertical structure shows that it is scaling but with exponents different from the horizontal: the turbulence is scaling but anisotropic. In this paper, we show how such turbulence can lead to spurious breaks in the scaling and to the spurious appearance of the vertical scaling exponent at large horizontal lags.

    We demonstrate this using 16 legs of Gulfstream 4 aircraft near the top of the troposphere following isobars each between 500 and 3200 km in length. First we show that over wide ranges of scale, the horizontal spectra of the aircraft altitude are nearly k-5/3. In addition, we show that the altitude and pressure fluctuations along these fractal trajectories have a high degree of coherence with the measured wind (especially with its longitudinal component. There is also a strong phase relation between the altitude, pressure and wind fluctuations; for scales less than ≈40 km (on average the wind fluctuations lead the pressure and altitude, whereas for larger scales, the pressure fluctuations leads the wind. At the same transition scale, there is a break in the wind spectrum which we argue is caused by the aircraft starting to accurately follow isobars at the larger scales. In comparison, the temperature and humidity have low coherencies and phases and there are no apparent scale breaks, reinforcing the hypothesis that it is the aircraft trajectory that is causally linked to the scale breaks in the wind measurements.

    Using spectra and structure functions for the wind, we then estimate their exponents (β, H at small (5/3, 1/3 and large scales (2

  4. Modeling and control for a blended wing body aircraft a case study

    CERN Document Server

    Schirrer, Alexander

    2015-01-01

    This book demonstrates the potential of the blended wing body (BWB) concept for significant improvement in both fuel efficiency and noise reduction and addresses the considerable challenges raised for control engineers because of characteristics like open-loop instability, large flexible structure, and slow control surfaces. This text describes state-of-the-art and novel modeling and control design approaches for the BWB aircraft under consideration. The expert contributors demonstrate how exceptional robust control performance can be achieved despite such stringent design constraints as guaranteed handling qualities, reduced vibration, and the minimization of the aircraft’s structural loads during maneuvers and caused by turbulence. As a result, this innovative approach allows the building of even lighter aircraft structures, and thus results in considerable efficiency improvements per passenger kilometer. The treatment of this large, complex, parameter-dependent industrial control problem highlights relev...

  5. Control of Next Generation Aircraft and Wind Turbines

    Science.gov (United States)

    Frost, Susan

    2010-01-01

    The first part of this talk will describe some of the exciting new next generation aircraft that NASA is proposing for the future. These aircraft are being designed to reduce aircraft fuel consumption and environmental impact. Reducing the aircraft weight is one approach that will be used to achieve these goals. A new control framework will be presented that enables lighter, more flexible aircraft to maintain aircraft handling qualities, while preventing the aircraft from exceeding structural load limits. The second part of the talk will give an overview of utility-scale wind turbines and their control. Results of collaboration with Dr. Balas will be presented, including new theory to adaptively control the turbine in the presence of structural modes, with the focus on the application of this theory to a high-fidelity simulation of a wind turbine.

  6. Aircraft Noise and Quality of Life around Frankfurt Airport

    Directory of Open Access Journals (Sweden)

    Thomas Eikmann

    2010-08-01

    Full Text Available In a survey of 2,312 residents living near Frankfurt Airport aircraft noise annoyance and disturbances as well as environmental (EQoL and health-related quality of life (HQoL were assessed and compared with data on exposure due to aircraft, road traffic, and railway noise. Results indicate higher noise annoyance than predicted from general exposure-response curves. Beside aircraft sound levels source-related attitudes were associated with reactions to aircraft noise. Furthermore, aircraft noise affected EQoL in general, although to a much smaller extent. HQoL was associated with aircraft noise annoyance, noise sensitivity and partly with aircraft noise exposure, in particular in the subgroup of multimorbid residents. The results suggest a recursive relationship between noise and health, yet this cannot be tested in cross-sectional studies. Longitudinal studies would be recommendable to get more insight in the causal paths underlying the noise-health relationship.

  7. Industrial diamond

    Science.gov (United States)

    Olson, D.W.

    2013-01-01

    Estimated 2012 world production of natural and synthetic industrial diamond was about 4.45 billion carats. During 2012, natural industrial diamonds were produced in at least 20 countries, and synthetic industrial diamond was produced in at least 12 countries. About 99 percent of the combined natural and synthetic global output was produced in Belarus, China, Ireland, Japan, Russia, South Africa and the United States. During 2012, China was the world’s leading producer of synthetic industrial diamond followed by the United States and Russia. In 2012, the two U.S. synthetic producers, one in Pennsylvania and the other in Ohio, had an estimated output of 103 million carats, valued at about $70.6 million. This was an estimated 43.7 million carats of synthetic diamond bort, grit, and dust and powder with a value of $14.5 million combined with an estimated 59.7 million carats of synthetic diamond stone with a value of $56.1 million. Also in 2012, nine U.S. firms manufactured polycrystalline diamond (PCD) from synthetic diamond grit and powder. The United States government does not collect or maintain data for either domestic PCD producers or domestic chemical vapor deposition (CVD) diamond producers for quantity or value of annual production. Current trade and consumption quantity data are not available for PCD or for CVD diamond. For these reasons, PCD and CVD diamond are not included in the industrial diamond quantitative data reported here.

  8. D-558-2 Aircraft on lakebed

    Science.gov (United States)

    1955-01-01

    Viewed in this 1955 photograph is the NACA High Speed Flight Station D-558-2 #2 (144) Skyrocket, an all-rocket powered vehicle. The Skyrocket is parked on Rogers Dry Lakebed at Edwards Air Force Base. This aircraft, NACA 144/Navy 37974, was the first to reach Mach 2 (see project description). The Douglas D-558-2 'Skyrockets' were among the early transonic research airplanes like the X-1, X-4, X-5, and X-92A. Three of the single-seat, swept-wing aircraft flew from 1948 to 1956 in a joint program involving the National Advisory Committee for Aeronautics (NACA), with its flight research done at the NACA's Muroc Flight Test Unit in Calif., redesignated in 1949 the High-Speed Flight Research Station (HSFRS); the Navy-Marine Corps; and the Douglas Aircraft Co. The HSFRS became the High-Speed Flight Station in 1954 and is now known as the NASA Dryden Flight Research Center. The Skyrocket made aviation history when it became the first airplane to fly twice the speed of sound. The 2 in the aircraft's designation referred to the fact that the Skyrocket was the phase-two version of what had originally been conceived as a three-phase program, with the phase-one aircraft having straight wings. The third phase, which never came to fruition, would have involved constructing a mock-up of a combat-type aircraft embodying the results from the testing of the phase one and two aircraft. Douglas pilot John F. Martin made the first flight at Muroc Army Airfield (later renamed Edwards Air Force Base) in Calif. on February 4, 1948. The goals of the program were to investigate the characteristics of swept-wing aircraft at transonic and supersonic speeds with particular attention to pitch-up (uncommanded rotation of the nose of the airplane upwards)--a problem prevalent in high-speed service aircraft of that era, particularly at low speeds during take-off and landing and in tight turns. The three aircraft gathered a great deal of data about pitch-up and the coupling of lateral (yaw) and

  9. Reinterpreting aircraft measurements in anisotropic scaling turbulence

    Directory of Open Access Journals (Sweden)

    S. Lovejoy

    2009-02-01

    Full Text Available Due to unavoidable vertical fluctuations, the interpretation of atmospheric aircraft measurements requires a theory of turbulence. Until now virtually all the relevant theories have been isotropic. However almost all the available data on the vertical structure shows that it is scaling but with exponents different from the horizontal: the turbulence is anisotropic not isotropic. In this paper, we show how this can lead to spurious breaks in the scaling and to the spurious appearance of the vertical scaling exponent at large horizontal lags.

    We demonstrate this using 16 legs of Gulfstream 4 tropospheric data following isobars each between 500 and 3200 km in length. First we show that the horizontal spectra of the aircraft altitude are nearly k−5/3 (although smoothed by aircraft intertia at scales <3 km. In addition, we show that the altitude and pressure fluctuations along these fractal trajectories have a high degree of coherence with the measured wind (especially with its longitudinal component. There is also a strong phase relation between the altitude, pressure and wind fluctuations with all of these effects occurring over the entire range of scales so that the trajectories influence the wind measurements over large ranges of scale. In comparison, the temperature and humidity have no apparent scale breaks and the corresponding coherencies and phases are low reinforcing the hypothesis that it is the aircraft trajectory that is causally linked to the scale breaks in the wind measurements.

    Using spectra and structure functions we then estimate the small and large scale exponents finding that they are close to the Kolmogorov values (5/3, 1/3 and the vertical values (2.4, 0.73 respectively (for the spectral and real space scaling exponents (β, H the latter are close to those estimated by drop sondes (2.4, 0.75 in the vertical direction. In addition, for each leg we estimate the energy flux, the sphero

  10. The present-day and future impact of NOx emissions from subsonic aircraft on the atmosphere in relation to the impact of NOx surface sources

    Directory of Open Access Journals (Sweden)

    G. J. M. Velders

    Full Text Available The effect of present-day and future NOx emissions from aircraft on the NOx and ozone concentrations in the atmosphere and the corresponding radiative forcing were studied using a three-dimensional chemistry transport model (CTM and a radiative model. The effects of the aircraft emissions were compared with the effects of the three most important anthropogenic NOx surface sources: road traffic, electricity generation and industrial combustion. From the model results, NOx emissions from aircraft are seen to cause an increase in the NOx and ozone concentrations in the upper troposphere and lower stratosphere, and a positive radiative forcing. For the reference year 1990, the aircraft emissions result in an increase in the NOx concentration at 250 hPa of about 20 ppt in January and 50 ppt in July over the eastern USA, the North Atlantic Flight Corridor and Western Europe, corresponding to a relative increase of about 50%. The maximum increase in the ozone concentrations due to the aircraft emissions is about 3-4 ppb in July over the northern mid-latitudes, corresponding to a relative increase of about 3-4%. The aircraft-induced ozone changes cause a global average radiative forcing of 0.025 W/m2 in July. According to the ANCAT projection for the year 2015, the aircraft NOx emissions in that year will be 90% higher than in the year 1990. As a consequence of this, the calculated NOx perturbation by aircraft emissions increases by about 90% between 1990 and 2015, and the ozone perturbation by about 50-70%. The global average radiative forcing due to the aircraft-induced ozone changes increases by about 50% between 1990 and 2015. In the year 2015, the effects of the aircraft emissions on the ozone burden and radiative forcing are clearly larger than the individual effects of the NOx surface sources. Taking chemical conversion in the aircraft plume into account in the CTM explicitly, by means of modified aircraft NOx emissions, a significant reduction

  11. Fiabilidad industrial

    OpenAIRE

    Griful Ponsati, Eulàlia

    2001-01-01

    El presente libro ha sido escrito y editado para los estudios de segundo ciclo de Ingeniería de Organización Industrial que se imparten en la ETSEIT de la UPC. La materia de fiabilidad que se imparte en este texto es una introducción a las técnicas estadísticas para resolver cuestiones de fiabilidad industrial. Se estudian distintos modelos probabilísticos del tiempo de vida y se presentan distintas formas de recabar información y de estimar, en cada caso, la fiabilidad de los componentes y s...

  12. Exploratory flight investigation of aircraft response to the wing vortex wake generated by the augmentor wing jet STOL research aircraft

    Science.gov (United States)

    Jacobsen, R. A.; Drinkwater, F. J., III

    1975-01-01

    A brief exploratory flight program was conducted at Ames Research Center to investigate the vortex wake hazard of a powered-lift STOL aircraft. The study was made by flying an instrumented Cessna 210 aircraft into the wake of the augmentor wing jet STOL research aircraft at separation distances from 1 to 4 n.mi. Characteristics of the wake were evaluated in terms of the magnitude of the upset of the probing aircraft. Results indicated that within 1 n.mi. separation the wake could cause rolling moments in excess of roll control power and yawing moments equivalent to rudder control power of the probe aircraft. Subjective evaluations by the pilots of the Cessna 210 aircraft, supported by response measurements, indicated that the upset caused by the wake of the STOL aircraft was comparable to that of a DC-9 in the landing configuration.

  13. Improving safety of aircraft engines: a consortium approach

    Science.gov (United States)

    Brasche, Lisa J. H.

    1996-11-01

    With over seven million departures per year, air transportation has become not a luxury, but a standard mode of transportation for the United States. A critical aspect of modern air transport is the jet engine, a complex engineered component that has enabled the rapid travel to which we have all become accustomed. One of the enabling technologies for safe air travel is nondestructive evaluation, or NDE, which includes various inspection techniques used to assess the health or integrity of a structure, component, or material. The Engine Titanium Consortium (ETC) was established in 1993 to respond to recommendations made by the Federal Aviation Administration (FAA) Titanium Rotating Components Review Team (TRCRT) for improvements in inspection of engine titanium. Several recent accomplishments of the ETC are detailed in this paper. The objective of the Engine Titanium Consortium is to provide the FAAand the manufacturers with reliable and costeffective new methods and/or improvements in mature methods for detecting cracks, inclusions, and imperfections in titanium. The consortium consists of a team of researchers from academia and industry-namely, Iowa State University, Allied Signal Propulsion Engines, General Electric Aircraft Engines, and Pratt & Whitney Engines-who work together to develop program priorities, organize a program plan, conduct the research, and implement the solutions. The true advantage of the consortium approach is that it brings together the research talents of academia and the engineering talents of industry to tackle a technology-base problem. In bringing industrial competitors together, the consortium ensures that the research results, which have safety implications and result from FAA funds, are shared and become part of the public domain.

  14. Artificial Intelligence for Controlling Robotic Aircraft

    Science.gov (United States)

    Krishnakumar, Kalmanje

    2005-01-01

    A document consisting mostly of lecture slides presents overviews of artificial-intelligence-based control methods now under development for application to robotic aircraft [called Unmanned Aerial Vehicles (UAVs) in the paper] and spacecraft and to the next generation of flight controllers for piloted aircraft. Following brief introductory remarks, the paper presents background information on intelligent control, including basic characteristics defining intelligent systems and intelligent control and the concept of levels of intelligent control. Next, the paper addresses several concepts in intelligent flight control. The document ends with some concluding remarks, including statements to the effect that (1) intelligent control architectures can guarantee stability of inner control loops and (2) for UAVs, intelligent control provides a robust way to accommodate an outer-loop control architecture for planning and/or related purposes.

  15. Fundamentals of aircraft and rocket propulsion

    CERN Document Server

    El-Sayed, Ahmed F

    2016-01-01

    This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in th...

  16. Industrial radiography

    International Nuclear Information System (INIS)

    This publication is meant to be a manual for industrial radiography. As such the manual concentrates on the practical aspects, presenting existing radiographic system and techniques of operation to satisfy specified quality requirements. The manual also reviews the safety aspect of performing radiographic work. (author) systems

  17. Industrial Microorganisms.

    Science.gov (United States)

    Phaff, Herman J.

    1981-01-01

    Describes industrially important yeasts, molds, bacteria, and actinomycetes. Discussed in detail are microbial products, such as primary metabolites, secondary metabolites, enzymes, and capsular polysaccharides. Traces the historical background of human cell culture, mentioning recombinant DNA research and hybridization of normal mammalian cells…

  18. Shifting Industries

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Coastal city Beihai aspires to revive its economy by developing its electronic information industry Against a clear sky,the blue sea hums along a shining beach,with villas in the distance.This beautiful scene is in Beihai,in south China’s Guangxi Zhuang Autonomous Region.

  19. Identifying tacit strategies in aircraft maneuvers

    Science.gov (United States)

    Lewis, Charles M.; Heidorn, P. B.

    1991-01-01

    Two machine-learning methods are presently used to characterize the avoidance strategies used by skilled pilots in simulated aircraft encounters, and a general framework for the characterization of the strategic components of skilled behavior via qualitative representation of situations and responses is presented. Descriptions of pilot maneuvers that were 'conceptually equivalent' were ascertained by a concept-learning algorithm in conjunction with a classifier system that employed a generic algorithm; satisficing and 'buggy' strategies were thereby revealed.

  20. Trajectory management for aircraft noise mitigation

    OpenAIRE

    Prats Menéndez, Xavier; Quevedo Casín, Joseba Jokin; Puig Cayuela, Vicenç

    2009-01-01

    Comunicació convidada This paper gives an overview of aircraft trajectory management aimed at producing noise abatementprocedures. Area Navigation (RNAV) concepts play an important role in the design of flexible and, therefore, noise friendly depart or approach procedures. In addition, the lowest dispersion of RNAV tracks help to contain noise footprints in a smaller area if compared with footprints that are produced when conventional procedures are flown. However, RNAV turns still produce...

  1. Review Article: Influenza Transmission on Aircraft

    Science.gov (United States)

    Adlhoch, Cornelia

    2016-01-01

    Background: Air travel is associated with the spread of influenza through infected passengers and potentially through in-flight transmission. Contact tracing after exposure to influenza is not performed systematically. We performed a systematic literature review to evaluate the evidence for influenza transmission aboard aircraft. Methods: Using PubMed and EMBASE databases, we identified and critically appraised identified records to assess the evidence of such transmission to passengers seated in close proximity to the index cases. We also developed a bias assessment tool to evaluate the quality of evidence provided in the retrieved studies. Results: We identified 14 peer-reviewed publications describing contact tracing of passengers after possible exposure to influenza virus aboard an aircraft. Contact tracing during the initial phase of the influenza A(H1N1)pdm09 pandemic was described in 11 publications. The studies describe the follow-up of 2,165 (51%) of 4,252 traceable passengers. Altogether, 163 secondary cases were identified resulting in an overall secondary attack rate among traced passengers of 7.5%. Of these secondary cases, 68 (42%) were seated within two rows of the index case. Conclusion: We found an overall moderate quality of evidence for transmission of influenza virus aboard an aircraft. The major limiting factor was the comparability of the studies. A majority of secondary cases was identified at a greater distance than two rows from the index case. A standardized approach for initiating, conducting, and reporting contact tracing could help to increase the evidence base for better assessing influenza transmission aboard aircraft. PMID:27253070

  2. Project ADIOS: Aircraft Deployable Ice Observation System

    Science.gov (United States)

    Gudmundsson, G. H.

    2013-12-01

    Regions of the Antarctic that are of scientific interest are often too heavily crevassed to enable a plane to land, or permit safe access from a field camp. We have developed an alternative strategy for instrumenting these regions: a sensor that can be dropped from an overflying aircraft. Existing aircraft deployable sensors are not suitable for long term operations in areas where snow accumulates, as they are quickly buried. We have overcome this problem by shaping the sensor like an aerodynamic mast with fins and a small parachute. After being released from the aircraft, the sensor accelerates to 42m/s and stabilizes during a 10s descent. On impact with the snow surface the sensor package buries itself to a depth of 1m then uses the large surface area of the fins to stop it burying further. This leaves a 1.5m mast protruding high above the snow surface to ensure a long operating life. The high impact kinetic energy and robust fin braking mechanism ensure that the design works in both soft and hard snow. Over the past two years we have developed and tested our design with a series of aircraft and wind tunnel tests. Last season we used this deployment strategy to successfully install a network of 31 single band GPS sensors in regions where crevassing has previously prevented science operations: Pine Island Glacier, West Antarctica, and Scar Inlet, Antarctic Peninsula. This season we intend to expand on this network by deploying a further 25 single and dual band GPS sensors on Thwaites Glacier, West Antarctica.

  3. Study of hydrogen as an aircraft fuel

    OpenAIRE

    Ciaravino, John S.

    2003-01-01

    Approved for public release; distribution is unlimited The conversion to hydrogen as a naval aviation fuel would allow for independence on fuel cost and supply, as hydrogen is globally accessible. The biggest obstacle to using hydrogen is its very low density, a property that even combined with hydrogen's high heat of combustion still results in very large fuel tanks. Liquid hydrogen (LH2) with its higher density would still require a larger volume than kerosene for the aircraft to achieve...

  4. Fuel consumption and exhaust emissions of aircrafts

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, R. [Institute of Flightmechanics, Braunschweig (Germany)

    1997-12-31

    The reduction of contamination of sensitive atmospheric layers by improved flight planning steps, is investigated. Calculated results have shown, that a further development of flight track planning allows considerable improvements on fuel consumption and exhaust emissions. Even if air traffic will further increase, optimistic investigations forecast a reduction of the environmental damage by aircraft exhausts, if the effects of improved flight track arrangement and engine innovations will be combined. (R.P.) 4 refs.

  5. Speed stress and the aircraft pilot

    Directory of Open Access Journals (Sweden)

    W.T.V. Adiseshiah

    1958-07-01

    Full Text Available When the human component in a man-machine system of pushed beyond the limits of human capacity in grasping information presented to senses or in executing a series of actions correctly, a condition of "speed stress" may be said to occur. Conditions encountered by aircraft at high speeds, make a consideration of the forms of speed stress, and of the measures to alleviate them, extremely important.

  6. Route optimization model for strike aircraft

    OpenAIRE

    Lee, Steve H. K.

    1995-01-01

    A model is designed and implemented to construct a 'flyable,' least- risk route for strike aircraft from takeoff to target, through enemy radars, in a defined area of operations. A network is fust constructed by discretizing the airspace into a three-dimensional grid of nodes and then connecting adjacent nodes with arcs. A shortest-path model in this network is then constructed with arc lengths that are a function of the probability of detection by radars monitoring t...

  7. Digital adaptive control laws for VTOL aircraft

    Science.gov (United States)

    Hartmann, G. L.; Stein, G.

    1979-01-01

    Honeywell has designed a digital self-adaptive flight control system for flight test in the VALT Research Aircraft (a modified CH-47). The final design resulted from a comparison of two different adaptive concepts: one based on explicit parameter estimates from a real-time maximum likelihood estimation algorithm and the other based on an implicit model reference adaptive system. The two designs are compared on the basis of performance and complexity.

  8. Structural ballistic armour for transport aircraft

    OpenAIRE

    Horsfall, I; Austin, S J; Bishop, W.

    2000-01-01

    This paper describes the structural response of a current ceramic-faced composite armour system and a proposed structural armour system for aircraft use. The proposed structural ballistic armour system is shown to be capable of providing significant structural integrity even after ballistic impact whilst providing ballistic protection equivalent to an existing applique system. The addition of a carbon fibre reinforced plastic front panel to the existing ceramic faced composite armour system i...

  9. Active Noise Control in Propeller Aircraft

    OpenAIRE

    Johansson, Sven; Claesson, Ingvar

    2001-01-01

    A noisy environment dominated by low frequency noise can often be improved through the use of active noise control. This situation arises naturally in propeller aircraft where the propellers induce periodic low frequency noise inside the cabin. The cabin noise is typically rather high, and the passenger flight comfort could be improved considerably if this level were significantly reduced. This paper addresses same design aspects for multiple-reference active noise control systems based on th...

  10. Aircraft noise and its nearfield propagation computations

    Science.gov (United States)

    Zhang, Xin

    2012-08-01

    Noise generated by civil transport aircraft during take-off and approach-to-land phases of operation is an environmental problem. The aircraft noise problem is firstly reviewed in this article. The review is followed by a description and assessment of a number of sound propagation methods suitable for applications with a background mean flow field pertinent to aircraft noise. Of the three main areas of the noise problem, i.e. generation, propagation, and radiation, propagation provides a vital link between near-field noise generation and far-field radiation. Its accurate assessment ensures the overall validity of a prediction model. Of the various classes of propagation equations, linearised Euler equations are often casted in either time domain or frequency domain. The equations are often solved numerically by computational aeroacoustics techniques, bur are subject to the onset of Kelvin-Helmholtz (K-H) instability modes which may ruin the solutions. Other forms of linearised equations, e.g. acoustic perturbation equations have been proposed, with differing degrees of success.

  11. Advanced Aerostructural Optimization Techniques for Aircraft Design

    Directory of Open Access Journals (Sweden)

    Yingtao Zuo

    2015-01-01

    Full Text Available Traditional coupled aerostructural design optimization (ASDO of aircraft based on high-fidelity models is computationally expensive and inefficient. To improve the efficiency, the key is to predict aerostructural performance of the aircraft efficiently. The cruise shape of the aircraft is parameterized and optimized in this paper, and a methodology named reverse iteration of structural model (RISM is adopted to get the aerostructural performance of cruise shape efficiently. A new mathematical explanation of RISM is presented in this paper. The efficiency of RISM can be improved by four times compared with traditional static aeroelastic analysis. General purpose computing on graphical processing units (GPGPU is adopted to accelerate the RISM further, and GPU-accelerated RISM is constructed. The efficiency of GPU-accelerated RISM can be raised by about 239 times compared with that of the loosely coupled aeroelastic analysis. Test shows that the fidelity of GPU-accelerated RISM is high enough for optimization. Optimization framework based on Kriging model is constructed. The efficiency of the proposed optimization system can be improved greatly with the aid of GPU-accelerated RISM. An unmanned aerial vehicle (UAV is optimized using this framework and the range is improved by 4.67% after optimization, which shows effectiveness and efficiency of this framework.

  12. Aircraft noise and its nearfield propagation computations

    Institute of Scientific and Technical Information of China (English)

    Xin Zhang

    2012-01-01

    Noise generated by civil transport aircraft during take-off and approach-to-land phases of operation is an environmental problem.The aircraft noise problem is firstly reviewed in this article.The review is followed by a description and assessment of a number of sound propagation methods suitable for applications with a background mean flow field pertinent to aircraft noise.Of the three main areas of the noise problem,i.e.generation,propagation,and radiation,propagation provides a vital link between near-field noise generation and far-field radiation.Its accurate assessment ensures the overall validity of a prediction model.Of the various classes of propagation equations,linearised Euler equations are often casted in either time domain or frequency domain.The equations are often solved numerically by computational aeroacoustics techniques,bur are subject to the onset of Kelvin-Helmholtz (K-H) instability modes which may ruin the solutions. Other forms of linearised equations,e.g.acoustic perturbation equations have been proposed,with differing degrees of success.

  13. V/STOL tilt rotor aircraft study. Volume 2: Preliminary design of research aircraft

    Science.gov (United States)

    1972-01-01

    A preliminary design study was conducted to establish a minimum sized, low cost V/STOL tilt-rotor research aircraft with the capability of performing proof-of-concept flight research investigations applicable to a wide range of useful military and commercial configurations. The analysis and design approach was based on state-of-the-art methods and maximum use of off-the-shelf hardware and systems to reduce development risk, procurement cost and schedules impact. The rotors to be used are of 26 foot diameter and are the same as currently under construction and test as part of NASA Tilt-Rotor Contract NAS2-6505. The aircraft has a design gross weight of 12,000 lbs. The proposed engines to be used are Lycoming T53-L-13B rated at 1550 shaft horsepower which are fully qualified. A flight test investigation is recommended which will determine the capabilities and limitations of the research aircraft.

  14. Industrial Networks

    DEFF Research Database (Denmark)

    Karlsson, Christer

    2015-01-01

    Companies organize in a way that involves many activities that are external to the traditional organizational boundaries. This presents challenges to operations management and managing operations involves many issues and actions dealing with external networks. Taking a network perspective changes...... the focus of operations management from managing the own organization to continuously developing and managing a network of external and internal resources forming a production system. This perspective may be called managing an “extraprise” rather than an “enterprise.” It should be noted that “an industrial...... network” should not be seen as an organizational form but as a perspective that can be used to enrich one's understanding of organizations. The industrial network perspective has three basic building blocks: actors, resources, and activities. The three building blocks and their relations constitute...

  15. Industrial vision

    DEFF Research Database (Denmark)

    Knudsen, Ole

    1998-01-01

    This dissertation is concerned with the introduction of vision-based application s in the ship building industry. The industrial research project is divided into a natural seq uence of developments, from basic theoretical projective image generation via CAD and subpixel analysis to a description...... is present ed, and the variability of the parameters is examined and described. The concept of using CAD together with vision information is based on the fact that all items processed at OSS have an associated complete 3D CAD model that is accessible at all production states. This concept gives numerous...... possibilities for using vision in applications which otherwise would be very difficult to automate. The requirement for low tolerances in production is, despite the huge dimensions of the items involved, extreme. This fact makes great demands on the ability to do robust sub pixel estimation. A new method based...

  16. Examining the Relationship Between Passenger Airline Aircraft Maintenance Outsourcing and Aircraft Safety

    Science.gov (United States)

    Monaghan, Kari L.

    The problem addressed was the concern for aircraft safety rates as they relate to the rate of maintenance outsourcing. Data gathered from 14 passenger airlines: AirTran, Alaska, America West, American, Continental, Delta, Frontier, Hawaiian, JetBlue, Midwest, Northwest, Southwest, United, and USAir covered the years 1996 through 2008. A quantitative correlational design, utilizing Pearson's correlation coefficient, and the coefficient of determination were used in the present study to measure the correlation between variables. Elements of passenger airline aircraft maintenance outsourcing and aircraft accidents, incidents, and pilot deviations within domestic passenger airline operations were analyzed, examined, and evaluated. Rates of maintenance outsourcing were analyzed to determine the association with accident, incident, and pilot deviation rates. Maintenance outsourcing rates used in the evaluation were the yearly dollar expenditure of passenger airlines for aircraft maintenance outsourcing as they relate to the total airline aircraft maintenance expenditures. Aircraft accident, incident, and pilot deviation rates used in the evaluation were the yearly number of accidents, incidents, and pilot deviations per miles flown. The Pearson r-values were calculated to measure the linear relationship strength between the variables. There were no statistically significant correlation findings for accidents, r(174)=0.065, p=0.393, and incidents, r(174)=0.020, p=0.793. However, there was a statistically significant correlation for pilot deviation rates, r(174)=0.204, p=0.007 thus indicating a statistically significant correlation between maintenance outsourcing rates and pilot deviation rates. The calculated R square value of 0.042 represents the variance that can be accounted for in aircraft pilot deviation rates by examining the variance in aircraft maintenance outsourcing rates; accordingly, 95.8% of the variance is unexplained. Suggestions for future research include

  17. Nitrogen oxides at the UTLS: Combining observations from research aircraft and in-service aircraft

    Science.gov (United States)

    Ziereis, Helmut; Stratmann, Greta; Schlager, Hans; Gottschaldt, Klaus-Dirk; Rauthe-Schöch, Armin; Zahn, Andreas; Hoor, Peter; van, Peter

    2016-04-01

    Nitrogen oxides have a decisive influence on the chemistry of the upper troposphere and lower stratosphere. They are key constituents of several reaction chains influencing the production of ozone. They also play an essential role in the cycling of hydroxyl radicals and therefore influence the lifetime of methane. Due to their short lifetime and their variety of sources there is still a high uncertainty about the abundance of nitrogen oxides in the UTLS. Dedicated aircraft campaigns aim to study specific atmospheric questions like lightning, long range transport or aircraft emissions. Usually, within a short time period comprehensive measurements are performed within a more or less restricted region. Therefore, especially trace constituents like nitrogen oxides with short lifetime and a variety of different sources are not represented adequately. On the other hand, routine measurements from in-service aircraft allow observations over longer time periods and larger regions. However, it is nearly impossible to influence the scheduling of in-service aircraft and thereby time and space of the observations. Therefore, the combination of dedicated aircraft campaigns and routine observations might supplement each other. For this study we combine nitrogen oxides data sets obtained with the IAGOS-CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) flying laboratory and with the German research aircraft HALO (High altitude and long range research aircraft). Data have been acquired within the IAGOS-CARIBIC project on a monthly base using a Lufthansa Airbus A340-600 since December 2004. About four flights are performed each month covering predominantly northern mid-latitudes. Additional flights have been conducted to destinations in South America and South Africa. Since 2012 HALO has been operational. Nitrogen oxides measurements have been performed during six missions covering mid latitudes, tropical as well as Polar

  18. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    Science.gov (United States)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  19. Aircraft Anomaly Detection Using Performance Models Trained on Fleet Data

    Science.gov (United States)

    Gorinevsky, Dimitry; Matthews, Bryan L.; Martin, Rodney

    2012-01-01

    This paper describes an application of data mining technology called Distributed Fleet Monitoring (DFM) to Flight Operational Quality Assurance (FOQA) data collected from a fleet of commercial aircraft. DFM transforms the data into aircraft performance models, flight-to-flight trends, and individual flight anomalies by fitting a multi-level regression model to the data. The model represents aircraft flight performance and takes into account fixed effects: flight-to-flight and vehicle-to-vehicle variability. The regression parameters include aerodynamic coefficients and other aircraft performance parameters that are usually identified by aircraft manufacturers in flight tests. Using DFM, the multi-terabyte FOQA data set with half-million flights was processed in a few hours. The anomalies found include wrong values of competed variables, (e.g., aircraft weight), sensor failures and baises, failures, biases, and trends in flight actuators. These anomalies were missed by the existing airline monitoring of FOQA data exceedances.

  20. Industrial Holography Combined With Image Processing

    Science.gov (United States)

    Schorner, J.; Rottenkolber, H.; Roid, W.; Hinsch, K.

    1988-01-01

    Holographic test methods have gained to become a valuable tool for the engineer in research and development. But also in the field of non-destructive quality control holographic test equipment is now accepted for tests within the production line. The producer of aircraft tyres e. g. are using holographic tests to prove the guarantee of their tyres. Together with image processing the whole test cycle is automatisized. The defects within the tyre are found automatically and are listed on an outprint. The power engine industry is using holographic vibration tests for the optimization of their constructions. In the plastics industry tanks, wheels, seats and fans are tested holographically to find the optimum of shape. The automotive industry makes holography a tool for noise reduction. Instant holography and image processing techniques for quantitative analysis have led to an economic application of holographic test methods. New developments of holographic units in combination with image processing are presented.

  1. The present-day and future impact of NOx emissions from subsonic aircraft on the atmosphere in relation to the impact of NOx surface sources

    OpenAIRE

    Velders, G.J.M.; Valks, P. J. M.

    1999-01-01

    International audience; The effect of present-day and future NOx emissions from aircraft on the NOx and ozone concentrations in the atmosphere and the corresponding radiative forcing were studied using a three-dimensional chemistry transport model (CTM) and a radiative model. The effects of the aircraft emissions were compared with the effects of the three most important anthropogenic NOx surface sources: road traffic, electricity generation and industrial combustion. From the model results, ...

  2. 78 FR 52848 - Occupational Safety and Health Standards for Aircraft Cabin Crewmembers

    Science.gov (United States)

    2013-08-27

    ... conditions of aircraft cabin crew while they are onboard aircraft in operation. DATES: This action becomes... the working conditions of aircraft cabin crewmembers while they are onboard aircraft in operation... enforcement onboard the aircraft. The FAA agrees with the proposed recommendation. Specific procedures...

  3. Using doppler radar images to estimate aircraft navigational heading error

    Science.gov (United States)

    Doerry, Armin W.; Jordan, Jay D.; Kim, Theodore J.

    2012-07-03

    A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.

  4. UNOLS now oversees research aircraft facilities for ocean science

    OpenAIRE

    Bane, John M.; Bluth, Robert; Flagg, Charles; Jonsson, Haflidi; Melville, W. Kendall; Prince, Mike; Riemer, Daniel

    2004-01-01

    In recognition of the increasing importance and value of aircraft as observational platforms in oceanographic research, the University National Oceanographic Laboratory System (UNOLS) has established the Scientific Committee for Oceanographic Aircraft Research (SCOAR).SCOAR aims to establish procedures for research aircraft that follow the present UNOLS practices for research vessel use, with the goal of making it understandable, and easy, and thus desirable, for...

  5. Influence of environmental factors on corrosion damage of aircraft structure

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Corrosion is one of the important structural integrity concerns of aging aircraft, and it is estimated that a significant portion of airframe maintenance budgets is directed towards corrosion-related problems for both military and commercial aircraft. In order to better understand how environmental factors influence the corrosion damage initiation and propagation on aircraft structure and to predict pre-corrosion test pieces of fatigue life and structural integrity of an effective approach, this paper uses ...

  6. Dedicated Solutions for Structural Health Monitoring of Aircraft Components

    OpenAIRE

    Pitropakis, Ioannis

    2015-01-01

    Aircraft structures, like any other mechanical structure, are subjected to various external factors that influence their lifetime. Mechanicalnbsp;and the environment are only some of the factors that can degrade the structure of aircraft components. Monitoring of these degradations by regular inspections or automated data recording is vital for the structural health of the critical components of an aircraft. This research proposes a number of dedicated solutions for structural health monitori...

  7. Aircraft Engine Exhaust Nozzle System for Jet Noise Reduction

    Science.gov (United States)

    Thomas, Russell H. (Inventor); Czech, Michael J. (Inventor); Elkoby, Ronen (Inventor)

    2014-01-01

    The aircraft exhaust engine nozzle system includes a fan nozzle to receive a fan flow from a fan disposed adjacent to an engine disposed above an airframe surface of the aircraft, a core nozzle disposed within the fan nozzle and receiving an engine core flow, and a pylon structure connected to the core nozzle and structurally attached with the airframe surface to secure the engine to the aircraft.

  8. Review of Aircraft Electric Power Systems and Architectures

    OpenAIRE

    Zhao, Xin; Guerrero, Josep M.; Wu, Xiaohao

    2014-01-01

    In recent years, the electrical power capacity is increasing rapidly in more electric aircraft (MEA), since the conventional mechanical, hydraulic and pneumatic energy systems are partly replaced by electrical power system. As a consequence, capacity and complexity of aircraft electric power systems (EPS) will increase dramatically and more advanced aircraft EPSs need to be developed. This paper gives a brief description of the constant frequency (CF) EPS, variable frequency (VF) EPS and adva...

  9. Investigation of cross flow fan propulsion for lightweight VTOL aircraft.

    OpenAIRE

    Gossett, Dean H.

    2000-01-01

    As world population increases, road and airport congestion will become increasingly prevalent. A small, cheap vTOL aircraft which can be flown from a driveway to the workplace parking lot would reduce traffic congestion and travel time. A lightweight, single seat commuter type VTOL aircraft is envisioned as the solution to this problem. To achieve a goal of minimum weight, the aircraft aerodynamic design should be optimized for forward flight. Vertical thrust augmentation from a propulsion un...

  10. Structural resource of the aircraft IAR-99 SOIM

    OpenAIRE

    Radu BISCA; Dorin LOZICI-BRINZEI

    2012-01-01

    Aircraft structure fatigue monitoring has been developed over decades presently reaching the stage where it became mandatory for all combat aircraft to be equipped with an airborne fatigue monitoring system. These systems usually collect operational data for calculating the safe fatigue life or inspection interval for the aircraft structure. This paper presents an analysis of the current state of fatigue monitoring systems on the IAR-99 SOIM based on the experience of international fatigue mo...

  11. Aircraft fault tolerant control based on active set method

    OpenAIRE

    Zhong, Lunlong; Mora-Camino, Félix

    2013-01-01

    This communication considers the case in which an aerodynamic actuator failure occurs to an aircraft while it has to perform a guidance manoeuver. The problem considered deals with the reassignment of the remaining actuators to continue to perform the maneuver while maintaining the structural integrity of the aircraft. A nonlinear inverse control technique is used to generate online nominal moments along the three main axes of the aircraft. Then, taking into account all material and structura...

  12. X-ray inspection of composite materials for aircraft structures using detectors of Medipix type

    Science.gov (United States)

    Jandejsek, I.; Jakubek, J.; Jakubek, M.; Prucha, P.; Krejci, F.; Soukup, P.; Turecek, D.; Vavrik, D.; Zemlicka, J.

    2014-05-01

    This work presents an overview of promising X-ray imaging techniques employed for non-destructive defectoscopy inspections of composite materials intended for the Aircraft industry. The major emphasis is placed on non-tomographic imaging techniques which do not require demanding spatial and time measurement conditions. Imaging methods for defects visualisation, delamination detection and porosity measurement of various composite materials such as carbon fibre reinforced polymers and honeycomb sendwiches are proposed. We make use of the new large area WidePix X-ray imaging camera assembled from up to 100 edgeless Medipix type detectors which is highly suitable for this type of measurements.

  13. SUSTAINABLE GROWTH OF THE COMMERCIAL AVIATION INDUSTRY IN MALAYSIA USING A SYSTEM DYNAMICS APPROACH

    OpenAIRE

    Tan, B. S.; Yap, E. H.

    2015-01-01

    The environmental impact of the commercial aviation industry for an emerging economy like Malaysia is under-studied. The focus on the subject has thus far concentrated either on non geographical performance of the aviation industry or technical performance of aircrafts and that leaves the sustainability of the commercial aviation industry for an economy, or more specifically, an emerging economy least understood. Hence, this paper aims to investigate the sustainability of the growth of the...

  14. Advanced Acoustic Blankets for Improved Aircraft Interior Noise Reduction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this project advanced acoustic blankets for improved low frequency interior noise control in aircraft will be developed and demonstrated. The improved...

  15. Research on aircraft emissions. Need for future work

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, A. [German Aerospace Establishment, Cologne (Germany). Transport Research Div.

    1997-12-31

    Reflecting the present status of the research on aircraft emissions and their impacts upon the atmosphere, task-fields for a work programme for the research on aircraft emissions can be derived. Most important measures are to support the efforts to define adequate reduction measures, and (with highest priority) scenario-writing for the long-term development in aircraft emissions, to be able to include into the decision making process the aspect of in-time-reaction against unwanted future. Besides that, a steady monitoring of global aircraft emissions will be necessary. (author) 5 refs.

  16. Escorting commercial aircraft to reduce the MANPAD threat

    Science.gov (United States)

    Hock, Nicholas; Richardson, M. A.; Butters, B.; Walmsley, R.; Ayling, R.; Taylor, B.

    2005-11-01

    This paper studies the Man-Portable Air Defence System (MANPADS) threat against large commercial aircraft using flight profile analysis, engagement modelling and simulation. Non-countermeasure equipped commercial aircraft are at risk during approach and departure due to the large areas around airports that would need to be secured to prevent the use of highly portable and concealable MANPADs. A software model (CounterSim) has been developed and was used to simulate an SA-7b and large commercial aircraft engagement. The results of this simulation have found that the threat was lessened when a escort fighter aircraft is flown in the 'Centreline Low' position, or 25 m rearward from the large aircraft and 15 m lower, similar to the Air-to-Air refuelling position. In the model a large aircraft on approach had a 50% chance of being hit or having a near miss (within 20m) whereas escorted by a countermeasure equipped F-16 in the 'Centerline Low' position, this was reduced to only 14%. Departure is a particularly vulnerable time for large aircraft due to slow climb rates and the inability to fly evasive manoeuvres. The 'Centreline Low' escorted departure greatly reduced the threat to 16% hit or near miss from 62% for an unescorted heavy aircraft. Overall the CounterSim modelling has showed that escorting a civilian aircraft on approach and departure can reduce the MANPAD threat by 3 to 4 times.

  17. An Overview of NASA's Subsonic Research Aircraft Testbed (SCRAT)

    Science.gov (United States)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John C.

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft's mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft's flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT's research systems and capabilities.

  18. Integrated Network of Optimizations for Aircraft Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft design is a complex process requiring interactions and exchange of information among multiple disciplines such as aerodynamics, strength, fatigue,...

  19. Model Updating in Online Aircraft Prognosis Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Diagnostic and prognostic algorithms for many aircraft subsystems are steadily maturing. Unfortunately there is little experience integrating these technologies...

  20. Analysis of Virtual Sensors for Predicting Aircraft Fuel Consumption

    Data.gov (United States)

    National Aeronautics and Space Administration — Previous research described the use of machine learning algorithms to predict aircraft fuel consumption. This technique, known as Virtual Sensors, models fuel...

  1. Aircraft Structural Analysis, Design Optimization, and Manufacturing Tool Integration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative research is proposed in integrating fundamental aircraft design processes with an emphasis on composite structures. Efficient, lightweight composite...

  2. A new principle and device for large aircraft components gaining accurate support by ball joint

    Institute of Scientific and Technical Information of China (English)

    Bao-gui QIU; Jun-xia JIANG; Ying-lin KE

    2011-01-01

    How to obtain an accurate support for large components by ball joint is a key process in aircraft digital assembly. A novel principle and device is developed to solve the problem. Firstly, the working principle of the device is introduced. When three or four displacement sensors installed in the localizer are touched by the ball-head, the spatial relation is calculated between the large aircraft component's ball-head and the localizer's ball-socket. The localizer is driven to achieve a new position by compensation. Relatively, a support revising algorithm is proposed. The localizer's ball-socket approaches the ball-head based on the displacement sensors. According to the points selected from its spherical surface, the coordinates of ball-head spherical center are computed by geometry. Finally, as a typical application, the device is used to conduct a test-fuselage's ball-head into a localizer's ball-socket. Positional deviations of the spherical centers between the ball-head and the ball-socket in the x, y, and z directions are all controlled within ±0.05 mm under various working conditions. The results of the experiments show that the device has the characteristics of high precision, excellent stability, strong operability, and great potential to be applied widely in the modern aircraft industry.

  3. A Review of Current and Prospective Factors for Classification of Civil Unmanned Aircraft Systems

    Science.gov (United States)

    Hayhurst, Kelly J.; Maddalon, Jeffrey M.; Morris, A. Terry; Neogi, Natasha; Verstynen, Harry A.

    2014-01-01

    While progress is being made on integrating unmanned aircraft systems (UAS) into our national airspace on a broad scale, much work remains to establish appropriate certification standards and operational procedures, particularly with respect to routine commercial operations. This paper summarizes research to examine the extent to which today's civil aircraft taxonomy applies to UAS, and, if needed, how that taxonomy could be amended to better cover different UAS designs and operations. Factors that shape the current taxonomy, as defined in the Federal Aviation Regulations, were assessed for applicability to UAS, potential incompatibilities were identified, and additional factors were proposed that might be useful for an updated aircraft taxonomy intended to cover UAS. The results suggest the possibility of constructing new groups in the taxonomy for UAS under a restricted category that share common airworthiness standards. Establishing distinct groups for UAS and associated standards that enable low risk operations for compensation or hire could be a timely step toward full integration. Such a step would allow the civil aviation industry and regulators to gain valuable experience with UAS while carefully controlling access and potential harm to the aviation system as a whole.

  4. A personal sampler for aircraft engine cold start particles: laboratory development and testing.

    Science.gov (United States)

    Armendariz, Alfredo; Leith, David

    2003-01-01

    Industrial hygienists in the U.S. Air Force are concerned about exposure of their personnel to jet fuel. One potential source of exposure for flightline ground crews is the plume emitted during the start of aircraft engines in extremely cold weather. The purpose of this study was to investigate a personal sampler, a small tube-and-wire electrostatic precipitator (ESP), for assessing exposure to aircraft engine cold start particles. Tests were performed in the laboratory to characterize the sampler's collection efficiency and to determine the magnitude of adsorption and evaporation artifacts. A low-temperature chamber was developed for the artifact experiments so tests could be performed at temperatures similar to actual field conditions. The ESP collected particles from 0.5 to 20 micro m diameter with greater than 98% efficiency at particle concentrations up to 100 mg/m(3). Adsorption artifacts were less than 5 micro g/m(3) when sampling a high concentration vapor stream. Evaporation artifacts were significantly lower for the ESP than for PVC membrane filters across a range of sampling times and incoming vapor concentrations. These tests indicate that the ESP provides more accurate exposure assessment results than traditional filter-based particle samplers when sampling cold start particles produced by an aircraft engine.

  5. A contrarotative aircraft lifting concept for a future Titan mission

    Science.gov (United States)

    Duquesnay, P.; Coustenis, A.; Lebreton, J.-P.; Tavel, J.

    2008-09-01

    Titan has a thick and cold atmosphere (surface pressure 1.5 bar and surface temperature 94 K) and the surface gravity is about 1/7 of Earth's. Surface wind velocities are low. These unique characteristics make Titan's atmosphere an ideal place for an helicopter type of aircraft with vertical lift capability. Here we present a conceptual idea of a Titan helicopter designed as a student project. Two cases have been considered: a 100-kg helicopter and a 2-kg one. The concept is based on a contra-rotating double rotor. The device would be powered by a combination of rechargeable batteries and a low-power radioisotope source. The double rotor and the body of the helicopter would be protected by a mesh structure. It would carry a science payload at its base that would allow surface sampling and analysis each time it would land. During landing, it would also recharge its batteries to allow flying to the next stop. The concept has been inspired by studying modelaircraft- making devices. Various concepts developed for industrial and military applications have also been a source of inspiration. The following web sites were consulted: • www.onera.fr/conferences/drones • www.aurora.aero • www.sikorsky.com/sik/index.asp • www.microdrones.com The poster will present a preliminary design of the device. Its capability to contribute to the exploration of Titan's surface will be illustrated.

  6. Costs of mitigating CO2 emissions from passenger aircraft

    Science.gov (United States)

    Schäfer, Andreas W.; Evans, Antony D.; Reynolds, Tom G.; Dray, Lynnette

    2016-04-01

    In response to strong growth in air transportation CO2 emissions, governments and industry began to explore and implement mitigation measures and targets in the early 2000s. However, in the absence of rigorous analyses assessing the costs for mitigating CO2 emissions, these policies could be economically wasteful. Here we identify the cost-effectiveness of CO2 emission reductions from narrow-body aircraft, the workhorse of passenger air transportation. We find that in the US, a combination of fuel burn reduction strategies could reduce the 2012 level of life cycle CO2 emissions per passenger kilometre by around 2% per year to mid-century. These intensity reductions would occur at zero marginal costs for oil prices between US$50-100 per barrel. Even larger reductions are possible, but could impose extra costs and require the adoption of biomass-based synthetic fuels. The extent to which these intensity reductions will translate into absolute emissions reductions will depend on fleet growth.

  7. Characterization of a radiation detector for aircraft measurements

    Energy Technology Data Exchange (ETDEWEB)

    Holanda M, L. de; Federico, C. A.; Caldas, L. V. E., E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares, Av. Lineu Prestes 2242, Cidade Universitaria, CEP 05508-000, Sao Paulo (Brazil)

    2014-08-15

    Air crews, as pilots and flight attendants, are subjected to cosmic ray doses which can be higher than the average doses on workers from the nuclear industry. The diversity of particles of high energies present in the radiation field on board of air crafts turns the determination of the incident dose difficult, and requires special care regarding dosimetric systems to be used in this kind of radiation field. The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA) in conjunction with the Institute of Energetic and Nuclear Research (Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP) are working on this subject since 2008. A prototype of a radiation detector for aircraft measurements was previously built and tested in flight and laboratory conditions. The detector is able of measuring a quantity known as absorbed dose (using passive dosimeters), which will subsequently be correlated to the ambient dose equivalent and the effective dose received by air crews. In this context, a theoretical approach through Monte Carlo simulations with the computational codes MCNP5 and MCNPX was used to model and characterize the detector response at such experimental conditions. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between the absorbed doses measured and simulated, and its relationship with the ambient dose equivalent and the effective dose for this detector. (author)

  8. Modeling aircraft noise induced sleep disturbance

    Science.gov (United States)

    McGuire, Sarah M.

    One of the primary impacts of aircraft noise on a community is its disruption of sleep. Aircraft noise increases the time to fall asleep, the number of awakenings, and decreases the amount of rapid eye movement and slow wave sleep. Understanding these changes in sleep may be important as they could increase the risk for developing next-day effects such as sleepiness and reduced performance and long-term health effects such as cardiovascular disease. There are models that have been developed to predict the effect of aircraft noise on sleep. However, most of these models only predict the percentage of the population that is awakened. Markov and nonlinear dynamic models have been developed to predict an individual's sleep structure during the night. However, both of these models have limitations. The Markov model only accounts for whether an aircraft event occurred not the noise level or other sound characteristics of the event that may affect the degree of disturbance. The nonlinear dynamic models were developed to describe normal sleep regulation and do not have a noise effects component. In addition, the nonlinear dynamic models have slow dynamics which make it difficult to predict short duration awakenings which occur both spontaneously and as a result of nighttime noise exposure. The purpose of this research was to examine these sleep structure models to determine how they could be altered to predict the effect of aircraft noise on sleep. Different approaches for adding a noise level dependence to the Markov Model was explored and the modified model was validated by comparing predictions to behavioral awakening data. In order to determine how to add faster dynamics to the nonlinear dynamic sleep models it was necessary to have a more detailed sleep stage classification than was available from visual scoring of sleep data. An automatic sleep stage classification algorithm was developed which extracts different features of polysomnography data including the

  9. Forecasting for a Lagrangian aircraft campaign

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2004-01-01

    Full Text Available A forecast system has been developed in preparation for an upcoming aircraft measurement campaign, where the same air parcels polluted by emissions over North America shall be sampled repeatedly as they leave the continent, during transport over the Atlantic, and upon their arrival over Europe. This paper describes the model system in advance of the campaign, in order to make the flight planners familiar with the novel model output. The aim of a Lagrangian strategy is to infer changes in the chemical composition and aerosol distribution occurring en route by measured upwind/downwind differences. However, guiding aircraft repeatedly into the same polluted air parcels requires careful forecasting, for which no suitable model system exists to date. This paper describes a procedure using both Eulerian-type (i.e. concentration fields and Lagrangian-type (i.e. trajectories model output from the Lagrangian particle dispersion model FLEXPART to predict the best opportunities for a Lagrangian experiment. The best opportunities are defined as being highly polluted air parcels which receive little or no emission input after the first measurement, which experience relatively little mixing, and which are reachable by as many aircraft as possible. For validation the system was applied to the period of the NARE 97 campaign where approximately the same air masses were sampled on different flights. Measured upwind/downwind differences in carbon monoxide (CO and ozone (O3 decreased significantly as the threshold values used for accepting cases as Lagrangian were tightened. This proves that the model system can successfully identify Lagrangian opportunities.

  10. Development of a detailed aircraft tyre finite element model for safety assessment

    International Nuclear Information System (INIS)

    Highlights: • A full-scaled LS-Dyna finite element aircraft tyre model has been developed. • Rubber and fabric material properties have been characterized and correlated. • The FE tyre model has been validated by comparing static simulations with tests. • Dynamic simulations have been analyzed to achieve landing safety assessment. - Abstract: This paper describes the development of a detailed finite element (FE) model of an aircraft test tyre in order to investigate its performance and assess its safety criteria. It is noticed that rubber and fabric composite materials are the major components of this tyre model and their characterization requires tests and correlation. The characterization of such materials is of great importance in the model development process. Due to its complicated mechanical behaviour that exceeds the linear elastic theory, rubber is generally considered as hyperelastic material in FE analysis. It can be defined by a stored energy function with various coefficients that need to be determined by a series of experimental test data. The key issue is to define an appropriate energy function that can provide good fit with the experimental test data. Initially, a full-scaled LS-Dyna FE model has been development to replicate the actual geometry of the target test tyre. The material properties of each individual component have been characterized and correlated with industrial uniaxial tension test data. The inflation and static load simulations have been analyzed basing on the characterized tyre model, indicating its reliability. The dynamic simulations that aim to duplicate tyre load upon aircraft landing scenarios have also been analyzed. Following the comments and guidelines from aircraft industrial data, the dynamic simulations have covered the tyre loading scenarios from normal (soft) landing, hard landing to crash landing under different aircraft landing weights and vertical speeds. The tyre deflection rate and the contact load have

  11. Air-sampling inlet contamination by aircraft emissions on the NASA CV-990 aircraft

    Science.gov (United States)

    Condon, E. P.; Vedder, J. F.

    1984-01-01

    Results of an experimental investigation of the contamination of air sampling inlets by aircraft emissions from the NASA CV-990 research aircraft are presented. This four-engine jet aircraft is a NASA facility used for many different atmospheric and meteorological experiments, as well as for developing spacecraft instrumentation for remote measurements. Our investigations were performed to provide information on which to base the selection of sampling locations for a series of multi-instrument missions for measuring tropospheric trace gases. The major source of contamination is the exhaust from the jet engines, which generate many of the same gases that are of interest in atmospheric chemistry, as well as other gases that may interfere with sampling measurements. The engine exhaust contains these gases in mixing ratios many orders of magnitude greater than those that occur in the clean atmosphere which the missions seek to quantify. Pressurized samples of air were collected simultaneously from a scoop located forward of the engines to represent clean air and from other multiport scoops at various aft positions on the aircraft. The air samples were analyzed in the laboratory by gas chromatography for carbon monoxide, an abundant combustion by-product. Data are presented for various scoop locations under various flight conditions.

  12. Radiant Energy Power Source for Jet Aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Doellner, O.L.

    1992-02-01

    This report beings with a historical overview on the origin and early beginnings of Radiant Energy Power Source for Jet Aircraft. The report reviews the work done in Phase I (Grant DE-FG01-82CE-15144) and then gives a discussion of Phase II (Grant DE-FG01-86CE-15301). Included is a reasonably detailed discussion of photovoltaic cells and the research and development needed in this area. The report closes with a historical perspective and summary related to situations historically encountered on projects of this nature. 15 refs.

  13. Climatic impact of aircraft induced ozone changes

    Energy Technology Data Exchange (ETDEWEB)

    Sausen, R.; Feneberg, B.; Ponater, M. [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    The effect of aircraft induced ozone changes on the global climate is studied by means of the general circulation model ECHAM4. The zonal mean temperature signal is considered. In order to estimate the statistical significance of the climatic impact a multivariate statistical test hierarchy combined with the fingerprint method has been applied. Sensitivity experiments show a significant coherent temperature response pattern in the northern extra-tropics for mid-latitude summer conditions. It consists of a tropospheric warming of about 0.2 K with a corresponding stratospheric cooling of the same magnitude. (author) 16 refs.

  14. Sensor Technology and Futuristic Of Fighter Aircraft

    Directory of Open Access Journals (Sweden)

    Emmanuel Rugambage Ndayishimiye

    2016-08-01

    Full Text Available The Next Generation fighter Aircraft seeks a fighter with higher abilities in areas such as reach, persistence, survivability, net-centricity, situation awareness, human system integration and weapons effects. The future system will have to counter foe armed with next generation advanced electronic attack, sophisticated integrated air defense systems, directed energy weapons, passive detection, integrated self-protection and cyber-attack capabilities. It must be capable to operate in the anti-access area-denial (A2/AD environment that will exist in the next coming years.

  15. Squeeze Film Damping for Aircraft Gas Turbines

    Directory of Open Access Journals (Sweden)

    R. W. Shende

    1988-10-01

    Full Text Available Modern aircraft gas turbine engines depend heavily on squeeze film damper supports at the bearings for abatement of vibrations caused by a number of probable excitation sources. This design ultimately results in light-weight construction together with higher efficiency and reliability of engines. Many investigations have been reported during past two decades concerning the functioning of the squeeze film damper, which is simple in construction yet complex in behaviour with its non-linearity and multiplicity of variables. These are reviewed in this article to throw light on the considerations involved in the design of rotor-bearing-casing systems incorporating squeeze film dampers.

  16. Extreme Loading of Aircraft Fan Blade

    CERN Document Server

    Datta, Dibakar

    2013-01-01

    The response of an aircraft fan blade manufactured by composites under the action of static and impact load has been studied in this report. The modeling and analysis of the geometry has been done using CASTEM 2007 version. For the quasi static analysis, the pressure has been incrementally applied until it satisfies the failure criteria. The deformed configuration, strain, Von-Mises stress, and the deflection of the blade have been studied. The response of the system e.g. deformation time history due to the impact of the projectile has been studied where the Newmark method for the dynamic problem has been implemented.

  17. Swarms of UAVs and fighter aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Trahan, M.W.; Wagner, J.S.; Stantz, K.M.; Gray, P.C.; Robinett, R.

    1998-11-01

    This paper describes a method of modeling swarms of UAVs and/or fighter aircraft using particle simulation concepts. Recent investigations into the use of genetic algorithms to design neural networks for the control of autonomous vehicles (i.e., robots) led to the examination of methods of simulating large collections of robots. This paper describes the successful implementation of a model of swarm dynamics using particle simulation concepts. Several examples of the complex behaviors achieved in a target/interceptor scenario are presented.

  18. Nonlinear dynamics of a vectored thrust aircraft

    DEFF Research Database (Denmark)

    Sørensen, C.B; Mosekilde, Erik

    1996-01-01

    With realistic relations for the aerodynamic coefficients, numerical simulations are applied to study the longitudional dynamics of a thrust vectored aircraft. As function of the thrust magnitude and the thrust vectoring angle the equilibrium state exhibits two saddle-node bifurcations and three...... Hopf bifurcations. Even when the equilibrium state is stable, weakly damped oscillations occur with a period of 1 min. If, in an attempt to compensate for these oscillations, the thrust deflection is periodically adjusted, a complicated structure of overlapping torus, saddle-node and period......-doubling bifurcations arises. This structure is investigated by combining brute force bifurcation diagrams with one- and two-dimensional continuation analyses....

  19. Aircraft gas turbine materials and processes.

    Science.gov (United States)

    Kear, B H; Thompson, E R

    1980-05-23

    Materials and processing innovations that have been incorporated into the manufacture of critical components for high-performance aircraft gas turbine engines are described. The materials of interest are the nickel- and cobalt-base superalloys for turbine and burner sections of the engine, and titanium alloys and composites for compressor and fan sections of the engine. Advanced processing methods considered include directional solidification, hot isostatic pressing, superplastic foring, directional recrystallization, and diffusion brazing. Future trends in gas turbine technology are discussed in terms of materials availability, substitution, and further advances in air-cooled hardware.

  20. The IAGOS Information System: From the aircraft measurements to the users.

    Science.gov (United States)

    Boulanger, Damien; Thouret, Valérie; Cammas, Jean-Pierre; Petzold, Andreas; Volz-Thomas, Andreas; Gerbig, Christoph; Brenninkmeijer, Carl A. M.

    2013-04-01

    IAGOS (In-service Aircraft for a Global Observing System, http://www.iagos.org) aims at the provision of long-term, frequent, regular, accurate, and spatially resolved in-situ observations of atmospheric chemical composition throughout the troposphere and in the UTLS. It builds on almost 20 years of scientific and technological expertise gained in the research projects MOZAIC (Measurement of Ozone and Water Vapour on Airbus In-service Aircraft) and CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container). The European consortium includes research centres, universities, national weather services, airline operators and aviation industry. IAGOS consists of two complementary building blocks proving a unique global observation system: IAGOS-CORE deploys newly developed instrumentation for regular in-situ measurements of atmospheric chemical species both reactive and greenhouse gases (O3, CO, NOx, NOy, H2O, CO2, CH4), aerosols and cloud particles. In IAGOS-CARIBIC a cargo container is deployed monthly as a flying laboratory aboard one aircraft. Involved airlines ensure global operation of the network. Today, 5 aircraft are flying with the MOZAIC (3) or IAGOS-CORE (2) instrumentation namely 3 aircraft from Lufthansa, 1 from Air Namibia, and 1 from China Airlines Taiwan. A main improvement and new aspect of the IAGOS-CORE instrumentation compared to MOZAIC is to deliver the raw data in near real time (i.e. as soon as the aircraft lands data are transmitted). After a first and quick validation of the O3 and CO measurements, preliminary data are made available in the central database for both the MACC project (Monitoring Atmospheric Composition and Climate) and scientific research groups. In addition to recorded measurements, the database also contains added-value products such as meteorological information (tropopause height, air mass backtrajectories) and lagrangian model outputs (FLEXPART). Data access is handled by open

  1. Federal Aviation Administration (FAA airworthiness certification for ceramic matrix composite components in civil aircraft systems

    Directory of Open Access Journals (Sweden)

    Gonczy Stephen T.

    2015-01-01

    Full Text Available Ceramic matrix composites (CMCs are being designed and developed for engine and exhaust components in commercial aviation, because they offer higher temperature capabilities, weight savings, and improved durability compared to metals. The United States Federal Aviation Administration (FAA issues and enforces regulations and minimum standards covering the safe manufacture, operation, and maintenance of civil aircraft. As new materials, these ceramic composite components will have to meet the certification regulations of the FAA for “airworthiness”. The FAA certification process is defined in the Federal Aviation Regulations (Title 14 of the Code of Federal Regulations, FAA policy statements, orders, advisory circulars, technical standard orders, and FAA airworthiness directives. These regulations and documents provide the fundamental requirements and guidelines for design, testing, manufacture, quality assurance, registration, operation, inspection, maintenance, and repair of aircraft systems and parts. For metallic parts in aircraft, the FAA certification and compliance process is well-established for type and airworthiness certification, using ASTM and SAE standards, the MMPDS data handbook, and FAA advisory circulars. In a similar manner for polymer matrix composites (PMC, the PMC industry and the FAA have jointly developed and are refining parallel guidelines for polymer matrix composites (PMCs, using guidance in FAA circulars and the CMH-17 PMC handbook. These documents discuss design methods and codes, material testing, property data development, life/durability assessment, production processes, QA procedures, inspection methods, operational limits, and repairs for PMCs. For ceramic composites, the FAA and the CMC and aerospace community are working together (primarily through the CMH-17 CMC handbook to define and codify key design, production, and regulatory issues that have to be addressed in the certification of CMC components in

  2. Damage criticality and inspection concerns of composite-metallic aircraft structures under blunt impact

    Science.gov (United States)

    Zou, D.; Haack, C.; Bishop, P.; Bezabeh, A.

    2015-04-01

    Composite aircraft structures such as fuselage and wings are subject to impact from many sources. Ground service equipment (GSE) vehicles are regarded as realistic sources of blunt impact damage, where the protective soft rubber is used. With the use of composite materials, blunt impact damage is of special interest, since potential significant structural damage may be barely visible or invisible on the structure's outer surface. Such impact can result in local or non-local damage, in terms of internal delamination in skin, interfacial delamination between stiffeners and skin, and fracture of internal reinforced component such as stringers and frames. The consequences of these events result in aircraft damage, delays, and financial cost to the industry. Therefore, it is necessary to understand the criticality of damage under this impact and provide reliable recommendations for safety and inspection technologies. This investigation concerns a composite-metallic 4-hat-stiffened and 5-frame panel, designed to represent a fuselage structure panel generic to the new generation of composite aircraft. The test fixtures were developed based on the correlation between finite element analyses of the panel model and the barrel model. Three static tests at certain amount of impact energy were performed, in order to improve the understanding of the influence of the variation in shear ties, and the added rotational stiffness. The results of this research demonstrated low velocity high mass impacts on composite aircraft fuselages beyond 82.1 kN of impact load, which may cause extensive internal structural damage without clear visual detectability on the external skin surface.

  3. Development and validation of nondestructive inspection techniques for composite doubler repairs on commercial aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Roach, D.; Walkington, P.

    1998-05-01

    Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is possible to bond a single boron-epoxy composite doubler to the damaged structure. In order for the use of composite doublers to achieve widespread use in the civil aviation industry, it is imperative that methods be developed which can quickly and reliably assess the integrity of the doubler. In this study, a specific composite application was chosen on an L-1011 aircraft in order to focus the tasks on application and operation issues. Primary among inspection requirements for these doublers is the identification of disbonds, between the composite laminate and aluminum parent material, and delaminations in the composite laminate. Surveillance of cracks or corrosion in the parent aluminum material beneath the doubler is also a concern. No single nondestructive inspection (NDI) method can inspect for every flaw type, therefore it is important to be aware of available NDI techniques and to properly address their capabilities and limitations. A series of NDI tests were conducted on laboratory test structures and on full-scale aircraft fuselage sections. Specific challenges, unique to bonded composite doubler applications, were highlighted. An array of conventional and advanced NDI techniques were evaluated. Flaw detection sensitivity studies were conducted on applicable eddy current, ultrasonic, X-ray and thermography based devices. The application of these NDI techniques to composite doublers and the results from test specimens, which were loaded to provide a changing flaw profile, are presented in this report. It was found that a team of these techniques can identify flaws in composite doubler installations well before they reach critical size.

  4. Mission Analysis and Aircraft Sizing of a Hybrid-Electric Regional Aircraft

    Science.gov (United States)

    Antcliff, Kevin R.; Guynn, Mark D.; Marien, Ty V.; Wells, Douglas P.; Schneider, Steven J.; Tong, Michael T.

    2016-01-01

    The purpose of this study was to explore advanced airframe and propulsion technologies for a small regional transport aircraft concept (approximately 50 passengers), with the goal of creating a conceptual design that delivers significant cost and performance advantages over current aircraft in that class. In turn, this could encourage airlines to open up new markets, reestablish service at smaller airports, and increase mobility and connectivity for all passengers. To meet these study goals, hybrid-electric propulsion was analyzed as the primary enabling technology. The advanced regional aircraft is analyzed with four levels of electrification, 0 percent electric with 100 percent conventional, 25 percent electric with 75 percent conventional, 50 percent electric with 50 percent conventional, and 75 percent electric with 25 percent conventional for comparison purposes. Engine models were developed to represent projected future turboprop engine performance with advanced technology and estimates of the engine weights and flowpath dimensions were developed. A low-order multi-disciplinary optimization (MDO) environment was created that could capture the unique features of parallel hybrid-electric aircraft. It is determined that at the size and range of the advanced turboprop: The battery specific energy must be 750 watt-hours per kilogram or greater for the total energy to be less than for a conventional aircraft. A hybrid vehicle would likely not be economically feasible with a battery specific energy of 500 or 750 watt-hours per kilogram based on the higher gross weight, operating empty weight, and energy costs compared to a conventional turboprop. The battery specific energy would need to reach 1000 watt-hours per kilogram by 2030 to make the electrification of its propulsion an economically feasible option. A shorter range and/or an altered propulsion-airframe integration could provide more favorable results.

  5. 77 FR 20012 - Federal Acquisition Regulation; Information Collection; Corporate Aircraft Costs

    Science.gov (United States)

    2012-04-03

    ... Regulation; Information Collection; Corporate Aircraft Costs AGENCY: Department of Defense (DOD), General... collection requirement concerning corporate aircraft costs. Public comments are particularly invited on..., Corporate Aircraft Costs, by any of the following methods: Regulations.gov :...

  6. A NASA study of the impact of technology on future multimission aircraft

    Science.gov (United States)

    Samuels, Jeffrey J.

    1992-01-01

    A conceptual aircraft design study was recently completed which compared three supersonic multimission tactical aircraft. The aircraft were evaluated in two technology timeframes and were sized with consistent methods and technology assumptions so that the aircraft could be compared in operational utility or cost analysis trends. The three aircraft are a carrier-based Fighter/Attack aircraft, a land-based Multirole Fighter, and a Short Takeoff/Vertical Landing (STOVL) aircraft. This paper describes the design study ground rules used and the aircraft designed. The aircraft descriptions include weights, dimensions and layout, design mission and maneuver performance, and fallout mission performance. The effect of changing technology and mission requirements on the STOVL aircraft and the impact of aircraft navalization are discussed. Also discussed are the effects on the STOVL aircraft of both Thrust/Weight required in hover and design mission radius.

  7. A Generic Nonlinear Aerodynamic Model for Aircraft

    Science.gov (United States)

    Grauer, Jared A.; Morelli, Eugene A.

    2014-01-01

    A generic model of the aerodynamic coefficients was developed using wind tunnel databases for eight different aircraft and multivariate orthogonal functions. For each database and each coefficient, models were determined using polynomials expanded about the state and control variables, and an othgonalization procedure. A predicted squared-error criterion was used to automatically select the model terms. Modeling terms picked in at least half of the analyses, which totalled 45 terms, were retained to form the generic nonlinear aerodynamic (GNA) model. Least squares was then used to estimate the model parameters and associated uncertainty that best fit the GNA model to each database. Nonlinear flight simulations were used to demonstrate that the GNA model produces accurate trim solutions, local behavior (modal frequencies and damping ratios), and global dynamic behavior (91% accurate state histories and 80% accurate aerodynamic coefficient histories) under large-amplitude excitation. This compact aerodynamics model can be used to decrease on-board memory storage requirements, quickly change conceptual aircraft models, provide smooth analytical functions for control and optimization applications, and facilitate real-time parametric system identification.

  8. Signal processing of aircraft flyover noise

    Science.gov (United States)

    Kelly, J. J.

    1993-01-01

    A detailed analysis of signal processing concerns for measuring aircraft flyover noise is presented. Development of a de-Dopplerization scheme for both corrected time history and spectral data is discussed along with an analysis of motion effects on measured spectra. A computer code was written to implement the de-Dopplerization scheme. Input to the code is the aircraft position data and the pressure time histories. To facilitate ensemble averaging, a level uniform flyover is considered in the study, but the code can accept more general flight profiles. The effects of spectral smearing and its removal are discussed. Using test data acquired from an XV-15 tilt-rotor flyover, comparisons are made between the measured and corrected spectra. Frequency shifts are accurately accounted for by the de-Dopplerization procedure. It is shown that by correcting for spherical spreading and Doppler amplitude, along with frequency, can give some idea about noise source directivity. The analysis indicated that smearing increases with frequency and is more severe on approach than recession.

  9. Overview of Aircraft Noise Prediction Tools Assessment

    Science.gov (United States)

    Dahl, Milo D.

    2007-01-01

    The acoustic assessment task for both the Subsonic Fixed Wing and the Supersonic projects under NASA s Fundamental Aeronautics Program was designed to assess the current state-of-the-art in noise prediction capability and to establish baselines for gauging future progress. The documentation of our current capabilities included quantifying the differences between predictions of noise from computer codes and measurements of noise from experimental tests. Quantifying the accuracy of both the computed and experimental results further enhanced the credibility of the assessment. This presentation gives sample results from codes representative of NASA s capabilities in aircraft noise prediction at the system level and at the component level. These include semi-empirical, statistical, analytical, and numerical codes. An example of system level results is shown for an aircraft. Component level results are shown for airframe flaps and landing gear, for jet noise from a variety of nozzles, and for broadband fan noise. Additional results are shown for modeling of the acoustic behavior of duct acoustic lining and the attenuation of sound in lined ducts with flow.

  10. Damage Propagation Modeling for Aircraft Engine Prognostics

    Science.gov (United States)

    Saxena, Abhinav; Goebel, Kai; Simon, Don; Eklund, Neil

    2008-01-01

    This paper describes how damage propagation can be modeled within the modules of aircraft gas turbine engines. To that end, response surfaces of all sensors are generated via a thermo-dynamical simulation model for the engine as a function of variations of flow and efficiency of the modules of interest. An exponential rate of change for flow and efficiency loss was imposed for each data set, starting at a randomly chosen initial deterioration set point. The rate of change of the flow and efficiency denotes an otherwise unspecified fault with increasingly worsening effect. The rates of change of the faults were constrained to an upper threshold but were otherwise chosen randomly. Damage propagation was allowed to continue until a failure criterion was reached. A health index was defined as the minimum of several superimposed operational margins at any given time instant and the failure criterion is reached when health index reaches zero. Output of the model was the time series (cycles) of sensed measurements typically available from aircraft gas turbine engines. The data generated were used as challenge data for the Prognostics and Health Management (PHM) data competition at PHM 08.

  11. MULTI-CONTROLLER STRUCTURE OF SUPERMANEUVERABLE AIRCRAFT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper proposes a method of using multi-controllers to control supermaneuverable aircraft. A nonlinear dynamic-inversion controller is used for supermaneuver. A gain-scheduled controller is used for routine maneuver. A switch algorithm is designed to switch the controllers. The flight envelopes of the controllers are different but have a common area in which the controllers are switched from one to the other. In the common area, some special boundaries are selected to decide switch conditions. The controllers all use vector-thrust for lower velocity maneuver control. Unlike the variation-structure theory to use a single boundary, this paper uses two boundaries for switching between the two controllers. One boundary is used for switching from dynamic-inversion to gain-scheduling, while the other is used for switching from gain-scheduling to dynamic-inversion. This can effectively avoid the system vibration caused by switching repeatedly at a single boundary. The method is very easy for engineering. It can reduce the risk of design of the supermaneuverable aircraft.

  12. Radiation exposure monitoring in civil aircraft

    Science.gov (United States)

    Schrewe, Ulrich J.

    1999-02-01

    Based on the 1990 Recommendation of the ICRP (ICRP Publication 60, Pergamon Press, Oxford, 1991) a European Directive [Official J. Eur. Communities 19 (1996) L159, 1-114] commits the European Union (EU) member states to revise their national radiation protection laws by the year 2000 such that the exposure of aircrews to the increased cosmic radiation prevailing at aviation flight altitudes will be treated as occupational risks. A consequence will be that employers must assess the aircrew exposure. The ACREM (Air Crew Radiation Exposure Monitoring) research project intends to investigate practically methods for aircraft dose equivalent determination. The in-flight measurements were carried out on cargo aircraft. Field calibrations were performed using Tissue-Equivalent Proportional Counters (TEPC) as the reference instrument. Various monitors were used to investigate the spatial doserate distribution. The measured data were collated according to the different altitudes and geomagnetic latitudes. The results obtained from various in-flight measurements are reported and a concept for a future routine dose assessment for aircrew is proposed.

  13. Monitoring Aircraft Motion at Airports by LIDAR

    Science.gov (United States)

    Toth, C.; Jozkow, G.; Koppanyi, Z.; Young, S.; Grejner-Brzezinska, D.

    2016-06-01

    Improving sensor performance, combined with better affordability, provides better object space observability, resulting in new applications. Remote sensing systems are primarily concerned with acquiring data of the static components of our environment, such as the topographic surface of the earth, transportation infrastructure, city models, etc. Observing the dynamic component of the object space is still rather rare in the geospatial application field; vehicle extraction and traffic flow monitoring are a few examples of using remote sensing to detect and model moving objects. Deploying a network of inexpensive LiDAR sensors along taxiways and runways can provide both geometrically and temporally rich geospatial data that aircraft body can be extracted from the point cloud, and then, based on consecutive point clouds motion parameters can be estimated. Acquiring accurate aircraft trajectory data is essential to improve aviation safety at airports. This paper reports about the initial experiences obtained by using a network of four Velodyne VLP- 16 sensors to acquire data along a runway segment.

  14. Human Factors of Remotely Piloted Aircraft

    Science.gov (United States)

    Hobbs, Alan Neville

    2014-01-01

    The civilian use of remotely piloted, or unmanned aircraft is expected to increase rapidly in the years ahead. Despite being referred to as unmanned some of the major challenges confronting this emerging sector relate to human factors. As unmanned aircraft systems (UAS) are introduced into civil airspace, a failure to adequately consider human factors could result in preventable accidents that may not only result in loss of life, but may also undermine public confidence in remotely piloted operations. Key issues include pilot situational awareness, collision avoidance in the absence of an out-the-window view, the effects of time delays in communication and control systems, control handovers, the challenges of very long duration flights, and the design of the control station. Problems have included poor physical layout of controls, non-intuitive automation interfaces, an over-reliance on text displays, and complicated sequences of menu selection to perform routine tasks. Some of the interface problems may have been prevented had an existing regulation or cockpit design principle been applied. In other cases, the design problems may indicate a lack of suitable guidance material.

  15. An Immunized Aircraft Maneuver Selection System

    Science.gov (United States)

    Karr, Charles L.

    2003-01-01

    The objective of this project, as stated in the original proposal, was to develop an immunized aircraft maneuver selection (IAMS) system. The IAMS system was to be composed of computational and informational building blocks that resemble structures in natural immune systems. The ultimate goal of the project was to develop a software package that could be flight tested on aircraft models. This report describes the work performed in the first year of what was to have been a two year project. This report also describes efforts that would have been made in the final year to have completed the project, had it been continued for the final year. After introductory material is provided in Section 2, the end-of-year-one status of the effort is discussed in Section 3. The remainder of the report provides an accounting of first year efforts. Section 4 provides background information on natural immune systems while Section 5 describes a generic ar&itecture developed for use in the IAMS. Section 6 describes the application of the architecture to a system identification problem. Finally, Section 7 describes steps necessary for completing the project.

  16. ANALYSES ON SYSTEMATIC CONFRONTATION OF FIGHTER AIRCRAFT

    Institute of Scientific and Technical Information of China (English)

    HuaiJinpeng; WuZhe; HuangJun

    2002-01-01

    Analyses of the systematic confrontation between two military forcfes are the highest hierarchy on opera-tional effectiveness study of weapon systema.The physi-cal model for tactical many-on-many engagements of an aerial warfare with heterogeneous figher aircraft is estab-lished.On the basis of Lanchester multivariate equations of square law,a mathematical model corresponding to the established physical model is given.A superiorityh parame-ter is then derived directly from the mathematical model.With view to the high -tech condition of modern war-fare,the concept of superiority parameter which more well and truly reflects the essential of an air-to-air en-gagement is further formulated.The attrition coeffi-cients,which are key to the differential equations,are de-termined by using tactics of random target assignment and air-to-air capability index of the fighter aircraft.Hereby,taking the mathematical model and superiority parameter as cores,calculations amd analyses of complicate systemic problems such as evaluation of battle superiority,prog-mostication of combat process and optimization of colloca-tions have been accomplished.Results indicate that a clas-sical combat theory with its certain recent development has received newer applications in the military operation research for complicated confrontation analysis issues.

  17. Investigation of damping liquids for aircraft instruments

    Science.gov (United States)

    Keulegan, G H

    1929-01-01

    This report covers the results of an investigation carried on at the Bureau of Standards under a research authorization from, and with the financial assistance of, the National Advisory Committee for Aeronautics. The choice of a damping liquid for aircraft instruments is difficult owing to the range of temperature at which aircraft operate. Temperature changes affect the viscosity tremendously. The investigation was undertaken with the object of finding liquids of various viscosities otherwise suitable which had a minimum change in viscosity with temperature. The new data relate largely to solutions. The effect of temperature on the kinematic viscosity of the following liquids and solutions was determined in the temperature interval -18 degrees to +30 degrees C. (1) solutions of animal and vegetable oils in xylene. These were poppy-seed oil, two samples of neat's-foot oils, castor oil, and linseed oil. (2) solutions of mineral oil in xylene. These were Squibb's petrolatum of naphthene base and transformer oil. (3) glycerine solutions in ethyl alcohol and in mixture of 50-50 ethyl alcohol and water. (4) mixtures of normal butyl alcohol with methyl alcohol. (5) individual liquids, kerosene, mineral spirits, xylene, recoil oil. The apparatus consisted of four capillary-tube viscometers, which were immersed in a liquid bath in order to secure temperature control. The method of calibration and the related experimental data are presented.

  18. Damage tolerance analysis of aircraft reinforced panels

    Directory of Open Access Journals (Sweden)

    A. Pirondi

    2011-04-01

    Full Text Available This work is aimed at reproducing numerically a campaign of experimental tests performed for the development of reinforced panels, typically found in aircraft fuselage. The bonded reinforcements can significantly reduce the rate of fatigue crack growth and increase the residual strength of the skin. The reinforcements are of two types: stringers and doublers. The former provides stiffening to the panel while the latter controls the crack growth between the stringers. The purpose of the study is to validate a numerical method of analysis that can predict the damage tolerance of these reinforced panels. Therefore, using a fracture mechanics approach, several models (different by the geometry and the types of reinforcement constraints were simulated with the finite element solver ABAQUS. The bonding between skin and stiffener was taken either rigid or flexible due to the presence of adhesive. The possible rupture of the reinforcements was also considered. The stress intensity factor trend obtained numerically as a function of crack growth was used to determine the fatigue crack growth rate, obtaining a good approximation of the experimental crack propagation rate in the skin. Therefore, different solutions for improving the damage tolerance of aircraft reinforced panels can be virtually tested in this way before performing experiments.

  19. Trust Control of VTOL Aircraft Part Deux

    Science.gov (United States)

    Dugan, Daniel C.

    2014-01-01

    Thrust control of Vertical Takeoff and Landing (VTOL) aircraft has always been a debatable issue. In most cases, it comes down to the fundamental question of throttle versus collective. Some aircraft used throttle(s), with a fore and aft longitudinal motion, some had collectives, some have used Thrust Levers where the protocol is still "Up is Up and Down is Down," and some have incorporated both throttles and collectives when designers did not want to deal with the Human Factors issues. There have even been combinations of throttles that incorporated an arc that have been met with varying degrees of success. A previous review was made of nineteen designs without attempting to judge the merits of the controller. Included in this paper are twelve designs entered in competition for the 1961 Tri-Service VTOL transport. Entries were from a Bell/Lockheed tiltduct, a North American tiltwing, a Vanguard liftfan, and even a Sikorsky tiltwing. Additional designs were submitted from Boeing Wichita (direct lift), Ling-Temco-Vought with its XC-142 tiltwing, Boeing Vertol's tiltwing, Mcdonnell's compound and tiltwing, and the Douglas turboduct and turboprop designs. A private party submitted a re-design of the Breguet 941 as a VTOL transport. It is important to document these 53 year-old designs to preserve a part of this country's aviation heritage.

  20. A CFD/CSD interaction methodology for aircraft wings

    Science.gov (United States)

    Bhardwaj, Manoj Kumar

    With advanced subsonic transports and military aircraft operating in the transonic regime, it is becoming important to determine the effects of the coupling between aerodynamic loads and elastic forces. Since aeroelastic effects can contribute significantly to the design of these aircraft, there is a strong need in the aerospace industry to predict these aero-structure interactions computationally. To perform static aeroelastic analysis in the transonic regime, high fidelity computational fluid dynamics (CFD) analysis tools must be used in conjunction with high fidelity computational structural dynamics (CSD) analysis tools due to the nonlinear behavior of the aerodynamics in the transonic regime. There is also a need to be able to use a wide variety of CFD and CSD tools to predict these aeroelastic effects in the transonic regime. Because source codes are not always available, it is necessary to couple the CFD and CSD codes without alteration of the source codes. In this study, an aeroelastic coupling procedure is developed which will perform static aeroelastic analysis using any CFD and CSD code with little code integration. The aeroelastic coupling procedure is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas CFD code) and NASTRAN. In addition, the Aeroelastic Research Wing (ARW-2) is used for demonstration of the aeroelastic coupling procedure by using ENSAERO (NASA Ames Research Center CFD code) and a finite element wing-box code (developed as a part of this research). The results obtained from the present study are compared with those available from an experimental study conducted at NASA Langley Research Center and a study conducted at NASA Ames Research Center using ENSAERO and modal superposition. The results compare well with experimental data. Parallel computing power is used to investigate parallel static aeroelastic analysis because obtaining an aeroelastic solution using CFD/CSD methods is computationally intensive. A