WorldWideScience

Sample records for aircraft engine research

  1. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    Science.gov (United States)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  2. NASA Glenn's Contributions to Aircraft Engine Noise Research

    Science.gov (United States)

    Huff, Dennis L.

    2014-01-01

    This presentation reviews engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASAs long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  3. Aircraft Engine Noise Research and Testing at the NASA Glenn Research Center

    Science.gov (United States)

    Elliott, Dave

    2015-01-01

    The presentation will begin with a brief introduction to the NASA Glenn Research Center as well as an overview of how aircraft engine noise research fits within the organization. Some of the NASA programs and projects with noise content will be covered along with the associated goals of aircraft noise reduction. Topics covered within the noise research being presented will include noise prediction versus experimental results, along with engine fan, jet, and core noise. Details of the acoustic research conducted at NASA Glenn will include the test facilities available, recent test hardware, and data acquisition and analysis methods. Lastly some of the actual noise reduction methods investigated along with their results will be shown.

  4. Radial cylinder aircraft engines

    OpenAIRE

    Šimíček, Petr

    2015-01-01

    Práce je zaměřena na konstrukční řešení letadlových hvězdicových motorů. Úvod je pojednáním o historii letadlových hvězdicových motorů a jejich vývoji v historickém kontextu. Druhá část je zaměřena na konstrukci letadlových hvězdicových motorů, následně jsou uvedena některá zajímavá konstrukční řešení a porovnání s motorem jiného druhu konstrukce. The bachelor's thesis is focused on design of aircraft radial engines. Home is a treatise on the history of aircraft radial engines and their de...

  5. Cycle Counting Methods of the Aircraft Engine

    Science.gov (United States)

    Fedorchenko, Dmitrii G.; Novikov, Dmitrii K.

    2016-01-01

    The concept of condition-based gas turbine-powered aircraft operation is realized all over the world, which implementation requires knowledge of the end-of-life information related to components of aircraft engines in service. This research proposes an algorithm for estimating the equivalent cyclical running hours. This article provides analysis…

  6. Alloy design for aircraft engines

    Science.gov (United States)

    Pollock, Tresa M.

    2016-08-01

    Metallic materials are fundamental to advanced aircraft engines. While perceived as mature, emerging computational, experimental and processing innovations are expanding the scope for discovery and implementation of new metallic materials for future generations of advanced propulsion systems.

  7. 78 FR 54385 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Science.gov (United States)

    2013-09-04

    ... Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration... directive (AD) for various aircraft equipped with Rotax Aircraft Engines 912 A Series Engine. This AD...; phone: +43 7246 601 0; fax: +43 7246 601 9130; Internet: http://www.rotax-aircraft-engines.com . You...

  8. Calibration of 3-D wind measurements on a single-engine research aircraft

    OpenAIRE

    Mallaun, C; Giez, A.; Baumann, R

    2015-01-01

    An innovative calibration method for the wind speed measurement using a boom-mounted Rosemount model 858 AJ air velocity probe is introduced. The method is demonstrated for a sensor system installed on a medium-size research aircraft which is used for measurements in the atmospheric boundary layer. The method encounters a series of coordinated flight manoeuvres to directly estimate the aerodynamic influences on the probe and to calculate the measurement uncertainties. The in...

  9. Application research of centrifugal investment cast TiAl component used for advanced aircraft engine

    Institute of Scientific and Technical Information of China (English)

    李俊涛; 李世琼; 张继; 马万青; 邹敦叙; 仲增墉

    2002-01-01

    A more complex structural component with small size and very thin walls and blades used for advanced aircraft engine was fabricated well by induction skull melting and centrifugal investment casting with a proper ceramic mold. The tensile elongation and ultimate strength of the hot isostatically pressed (HIPped) Ti-46.5Al-2.5V-1Cr (mole fraction, %) casting alloy sare up to 2.5% and 645 Mpa at room temperature, and 31% and 593 Mpa a t 800 ℃. The fracture roughness at room temperature is up to 28 Mpa*m1/2 . The endurance tensile strength at 800 ℃ for 150 h, is higher than 200 Mpa. The high cycle rotary bending fatigue strengths for 1×107 cycles at room temperature and 800 ℃ a re 412 Mpa and 270 Mpa, respectively.

  10. 75 FR 28504 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Science.gov (United States)

    2010-05-21

    ... Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines AGENCY: Federal... 912 A series engine installed in various aircraft does not have an engine type certificate; instead, the engine is part of the aircraft type design. You may obtain further information by examining...

  11. 77 FR 1626 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Science.gov (United States)

    2012-01-11

    ... Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration (FAA), DOT... various aircraft equipped with Rotax Aircraft Engines 912 A series engine. This AD results from mandatory... Rotax Aircraft Engines BRP has issued Alert Service Bulletin ASB- 912-059 and ASB-914-042...

  12. Advances in Engineering Research : Volume 4, Environmental impacts of the future technologies of commercial aircraft

    OpenAIRE

    Khardi, Salah; KURNIAWAN, J

    2013-01-01

    Assessment of pollutant emissions (CO, HC and NOx) and fuel consumption of aircraft LTO cycles at Soekarno Hatta InternationalAirport is carried out for the first time. We stressed, by aircraft type, the large aircraft which represent the greatest contribution of pollutant emissions in and around this airport.Analysis is performed to precise theirmagnitude in relationship with fuel consumption. Distribution of aircraft pollutants for different operational modes (taxiing and takeoffs) is provi...

  13. 76 FR 31465 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Science.gov (United States)

    2011-06-01

    ... Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration...://www.rotax-aircraft-engines.com . You may review copies of the referenced service information at the... by examining the MCAI in the AD docket. Relevant Service Information Rotax Aircraft Engines...

  14. Aircraft Engine Crankshaft Optimisation

    Directory of Open Access Journals (Sweden)

    Vopařil Jan

    2014-10-01

    Full Text Available This article presents part of the crankshaft development of a two-stroke compression-ignition engine with contra-running pistons where, for invariably specified diameters and pin lengths, the optimal crankshaft shape is searched for. The process of creating several options which are then subjected to critical evaluation followed by the selection mechanism for the final best possible design is described.

  15. 75 FR 50865 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Science.gov (United States)

    2010-08-18

    ... Equipped With Rotax Aircraft Engines 912 A Series Engines AGENCY: Federal Aviation Administration (FAA... 912 A series engine installed in various aircraft does not have an engine type certificate; instead, the engine is part of the aircraft type design. Comments We gave the public the opportunity...

  16. 75 FR 70098 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Science.gov (United States)

    2010-11-17

    ... Equipped With Rotax Aircraft Engines 912 A Series Engines AGENCY: Federal Aviation Administration (FAA... Aircraft Engines 912 A series engine with a crankcase assembly S/N up to and including S/N 27811, certificated in any category: ] Type certificate holder Aircraft model Engine model Aeromot-Industria...

  17. 75 FR 32315 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Science.gov (United States)

    2010-06-08

    ... Equipped With Rotax Aircraft Engines 912 A Series Engines AGENCY: Federal Aviation Administration (FAA... certificated in the United States. However, the Model 912 A series engine installed in various aircraft does not have an engine type certificate; instead, the engine is part of the aircraft type design. You...

  18. Calibration of 3-D wind measurements on a single-engine research aircraft

    Science.gov (United States)

    Mallaun, C.; Giez, A.; Baumann, R.

    2015-08-01

    An innovative calibration method for the wind speed measurement using a boom-mounted Rosemount model 858 AJ air velocity probe is introduced. The method is demonstrated for a sensor system installed on a medium-size research aircraft which is used for measurements in the atmospheric boundary layer. The method encounters a series of coordinated flight manoeuvres to directly estimate the aerodynamic influences on the probe and to calculate the measurement uncertainties. The introduction of a differential Global Positioning System (DGPS) combined with a high-accuracy inertial reference system (IRS) has brought major advances to airborne measurement techniques. The exact determination of geometrical height allows the use of the pressure signal as an independent parameter. Furthermore, the exact height information and the stepwise calibration process lead to maximum accuracy. The results show a measurement uncertainty for the aerodynamic influence of the dynamic and static pressures of 0.1 hPa. The applied parametrisation does not require any height dependencies or time shifts. After extensive flight tests a correction for the flow angles (attack and sideslip angles) was found, which is necessary for a successful wind calculation. A new method is demonstrated to correct for the aerodynamic influence on the sideslip angle. For the three-dimensional (3-D) wind vector (with 100 Hz resolution) a novel error propagation scheme is tested, which determines the measurement uncertainties to be 0.3 m s-1 for the horizontal and 0.2 m s-1 for the vertical wind components.

  19. Calibration of 3-D wind measurements on a single engine research aircraft

    Science.gov (United States)

    Mallaun, C.; Giez, A.; Baumann, R.

    2015-02-01

    An innovative calibration method for the wind speed measurement using a boom mounted Rosemount model 858 AJ air velocity probe is introduced. The method is demonstrated for a sensor system installed on a medium size research aircraft which is used for measurements in the atmospheric boundary layer. The method encounters a series of coordinated flight manoeuvres to directly estimate the aerodynamic influences on the probe and to calculate the measurement uncertainties. The introduction of a differential Global Positioning System (DGPS) combined with a high accuracy Inertial Reference System (IRS) has brought major advances to airborne measurement techniques. The exact determination of geometrical height allows the use of the pressure signal as an independent parameter. Furthermore, the exact height information and the stepwise calibration process lead to maximum accuracy. The results show a measurement uncertainty for the aerodynamic influence of the dynamic and static pressures of 0.1 hPa. The applied parametrisation does not require any height dependencies or time shifts. After extensive flight tests a correction for the flow angles (attack and sideslip angles) was found, which is necessary for a successful wind calculation. A new method is demonstrated to correct for the aerodynamic influence on the sideslip angle. For the 3-D wind vector (with 100 Hz resolution) a novel error propagation scheme is tested, which determines the measurement uncertainties to be 0.3 m s-1 for the horizontal and 0.2 m s-1 for the vertical wind components.

  20. 76 FR 40219 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Science.gov (United States)

    2011-07-08

    ... Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration (FAA), DOT... Rotax Aircraft Engines Mandatory Service Bulletin SB-912-058 SB-914-041, dated April 15, 2011, listed in... 601 0; fax: +43 7246 601 9130; Internet: http://www.rotax-aircraft-engines.com . You may review...

  1. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Science.gov (United States)

    2010-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States (HTSUS) by meeting the following requirements: (1) The aircraft, aircraft engines,...

  2. Engineering students win NASA aircraft design competition

    OpenAIRE

    Crumbley, Liz

    2004-01-01

    Centuria," a single-engine jet aircraft designed by undergraduate engineering students from Virginia Tech and their counterparts at Loughborough University in the U.K., has won the Best Overall Award in NASA's 2004 Revolutionary Vehicles and Concepts Competition.

  3. 77 FR 58301 - Technical Amendment; Airworthiness Standards: Aircraft Engines; Correction

    Science.gov (United States)

    2012-09-20

    ... Technical Amendment entitled, ``Airworthiness Standards: Aircraft Engine'' (77 FR 39623). In that technical... Administration 14 CFR Part 33 RIN 2120-AF57 Technical Amendment; Airworthiness Standards: Aircraft Engines... technical amendment, the FAA clarified aircraft engine vibration test requirements in the...

  4. 77 FR 39623 - Airworthiness Standards: Aircraft Engines; Technical Amendment

    Science.gov (United States)

    2012-07-05

    ... Federal Aviation Administration 14 CFR Part 33 Airworthiness Standards: Aircraft Engines; Technical.... SUMMARY: This amendment clarifies aircraft engine vibration test requirements in the airworthiness... 33--AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES 0 1. The authority citation for part 33 continues...

  5. Research on Emerging and Descending Aircraft Noise

    Directory of Open Access Journals (Sweden)

    Monika Bartkevičiūtė

    2013-12-01

    Full Text Available Along with an increase in the aircraft engine power and growth in air traffic, noise level at airports and their surrounding environs significantly increases. Aircraft noise is high level noise spreading within large radius and intensively irritating the human body. Air transport is one of the main sources of noise having a particularly strong negative impact on the environment. The article deals with activities and noises taking place in the largest nationwide Vilnius International Airport.The level of noise and its dispersion was evaluated conducting research on the noise generated by emerging and descending aircrafts in National Vilnius Airport. Investigation was carried out at 2 measuring points located in a residential area. There are different types of aircrafts causing different sound levels. It has been estimated the largest exceedances that occur when an aircraft is approaching. In this case, the noisiest types of aircrafts are B733, B738 and AT72. The sound level varies from 70 to 85 dBA. The quietest aircrafts are RJ1H and F70. When taking off, the equivalent of the maximum sound level value of these aircrafts does not exceed the authorized limits. The paper describes the causes of noise in aircrafts, the sources of origin and the impact of noise on humans and the environment.Article in Lithuanian

  6. 76 FR 45011 - Control of Air Pollution From Aircraft and Aircraft Engines; Proposed Emission Standards and Test...

    Science.gov (United States)

    2011-07-27

    ... from Aircraft and Aircraft Engines; Emission Standards and Test Procedures;'' Final Rule, 62 FR 25356... From Aircraft and Aircraft Engines; Proposed Emission Standards and Test Procedures; Proposed Rule #0... and Aircraft Engines; Proposed Emission Standards and Test Procedures AGENCY: Environmental...

  7. Start Up Research Effort in Fluid Mechanics. Advanced Methods for Acoustic and Thrust Benefits for Aircraft Engine Nozzle

    Science.gov (United States)

    White, Samuel G.; Gilinsky, Mikhail M.

    1997-01-01

    In accordance with the project plan for the report period in the proposal titled above, HU and FML teams investigated two sets of concepts for reduction of noise and improvement in efficiency for jet exhaust nozzles of aircraft engines and screws for mixers, fans, propellers and boats. The main achievements in the report period are: (a) Publication of the paper in the AIAA Journal, which described our concepts and some results. (b) The Award in the Civil Research and Development Foundation (CRDF) competition. This 2 year grant for Hampton University (HU) and Central AeroHydrodynamic Institute (TSAGI, Moscow, Russia) supports the research implementation under the current NASA FAR grant. (c) Selection for funding by NASA HQ review panel of the Partnership Awards Concept Paper. This two year grant also will support our current FAR grant. (d) Publication of a Mobius Strip concept in NASA Technical Briefs, June, 1996, and a great interest of many industrial companies in this invention. Successful experimental results with the Mobius shaped screw for mixers, which save more than 30% of the electric power by comparison with the standard screws. Creation of the scientific-popular video-film which can be used for commercial and educational purposes. (e) Organization work, joint meetings and discussions of the NASA LARC JNL Team and HU professors and administration for the solution of actual problems and effective work of the Fluid Mechanics Laboratory at Hampton University. In this report the main designs are enumerated. It also contains for both concept sets: (1) the statement of the problem for each design, some results, publications, inventions, patents, our vision for continuation of this research, and (2) present and expected problems in the future.

  8. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Science.gov (United States)

    2010-01-01

    ..., airframes, aircraft engines, propellers, appliances, or component parts for return to service after..., REBUILDING, AND ALTERATION § 43.7 Persons authorized to approve aircraft, airframes, aircraft engines... Administrator, may approve an aircraft, airframe, aircraft engine, propeller, appliance, or component part...

  9. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Science.gov (United States)

    2010-01-01

    ... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on... provisions of §§ 21.183(c), 21.184(b), or 21.185(c); and (2) New aircraft engines or propellers...

  10. Advanced materials for aircraft engine applications.

    Science.gov (United States)

    Backman, D G; Williams, J C

    1992-02-28

    A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time.

  11. Review of Aircraft Engine Fan Noise Reduction

    Science.gov (United States)

    VanZante, Dale

    2008-01-01

    Aircraft turbofan engines incorporate multiple technologies to enhance performance and durability while reducing noise emissions. Both careful aerodynamic design of the fan and proper installation of the fan into the system are requirements for achieving the performance and acoustic objectives. The design and installation characteristics of high performance aircraft engine fans will be discussed along with some lessons learned that may be applicable to spaceflight fan applications.

  12. 78 FR 65554 - Exhaust Emission Standards for New Aircraft Turbine Engines and Identification Plate for Aircraft...

    Science.gov (United States)

    2013-11-01

    ... Aircraft Turbine Engines and Identification Plate for Aircraft Engines Correction In rule document 2013... for Subsonic Engines'', in the third column, in the last row, the entry ``rO > 26.7'' is corrected...

  13. Aircraft stress sequence development: A complex engineering process made simple

    Science.gov (United States)

    Schrader, K. H.; Butts, D. G.; Sparks, W. A.

    1994-01-01

    Development of stress sequences for critical aircraft structure requires flight measured usage data, known aircraft loads, and established relationships between aircraft flight loads and structural stresses. Resulting cycle-by-cycle stress sequences can be directly usable for crack growth analysis and coupon spectra tests. Often, an expert in loads and spectra development manipulates the usage data into a typical sequence of representative flight conditions for which loads and stresses are calculated. For a fighter/trainer type aircraft, this effort is repeated many times for each of the fatigue critical locations (FCL) resulting in expenditure of numerous engineering hours. The Aircraft Stress Sequence Computer Program (ACSTRSEQ), developed by Southwest Research Institute under contract to San Antonio Air Logistics Center, presents a unique approach for making complex technical computations in a simple, easy to use method. The program is written in Microsoft Visual Basic for the Microsoft Windows environment.

  14. Advanced control for airbreathing engines, volume 2: General Electric aircraft engines

    Science.gov (United States)

    Bansal, Indar

    1993-01-01

    The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 2 of these reports describes the studies performed by GE Aircraft Engines.

  15. Recent Progress in Engine Noise Reduction for Commercial Aircraft Applications

    Science.gov (United States)

    Huff, Dennis L.

    2003-01-01

    Considerable progress has been made over the past ten years developing technologies for reducing aircraft noise. Engine noise continues to be a dominate source, particularly for aircraft departing from airports. Research efforts have concentrated on developing noise prediction methods, experimental validation, and developing noise reduction concepts that have been verified through model scale and static engine tests. Most of the work has concentrated on fan and jet components for commercial turbofan engines. In this seminar, an overview of the engine noise reduction work that was sponsored by NASA s Advanced Subsonic Technology Noise Reduction Program will be given, along with background information on turbofan noise sources and certification procedures. Concepts like "chevron" nozzles for jet noise reduction and swept stators for fan noise reduction will be highlighted. A preliminary assessment on how the new technologies will impact future engines will be given.

  16. 14 CFR 21.128 - Tests: aircraft engines.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tests: aircraft engines. 21.128 Section 21.128 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... engines. (a) Each person manufacturing aircraft engines under a type certificate only shall subject...

  17. An Overview of NASA's Subsonic Research Aircraft Testbed (SCRAT)

    Science.gov (United States)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John C.

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft's mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft's flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT's research systems and capabilities.

  18. Severity estimation and shop visit prediction of civil aircraft engines

    OpenAIRE

    Hanumanthan, Hariharan

    2009-01-01

    To sustain in the vibrant field of civil aviation, the aircraft and engine manufacturers are in the pursuit of delivering efficient systems with the best economics. In umpteen scenarios of growing interest, engine maintenance cost due to scheduled maintenance is of importance. The current research is focused on estimation of the maintenance factors, such as severity and shop visit rate to study the operational scenarios and concurrent technologies. The severity, defined as r...

  19. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    Science.gov (United States)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  20. Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft

    Science.gov (United States)

    Tong, Michael T.; Jones, Scott M.; Haller, William J.; Handschuh, Robert F.

    2009-01-01

    Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA s current Fundamental Aeronautics Research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today s aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA s aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.

  1. Aircraft Engine Exhaust Nozzle System for Jet Noise Reduction

    Science.gov (United States)

    Thomas, Russell H. (Inventor); Czech, Michael J. (Inventor); Elkoby, Ronen (Inventor)

    2014-01-01

    The aircraft exhaust engine nozzle system includes a fan nozzle to receive a fan flow from a fan disposed adjacent to an engine disposed above an airframe surface of the aircraft, a core nozzle disposed within the fan nozzle and receiving an engine core flow, and a pylon structure connected to the core nozzle and structurally attached with the airframe surface to secure the engine to the aircraft.

  2. Emission of ions and charged soot particles by aircraft engines

    Directory of Open Access Journals (Sweden)

    A. Sorokin

    2002-11-01

    Full Text Available In this article, a model which examines the formation and evolution of chemiions in an aircraft engine is proposed. This model which includes chemiionisation, electron thermo-emission, electron attachment to soot particles and to neutral molecules, electron-ion and ion-ion recombination, ion-soot interaction, allows the determination of the ion concentration at the exit of the combustor and at the nozzle exit of the engine. It also allows the determination of the charge of the soot particles. A comparison of the model results with the available ground-based experimental data obtained on the ATTAS research aircraft engines during the SULFUR experiments (Schumann, 2002 shows an excellent agreement.

  3. Improvements in Aircraft Gas Turbine Engines for the 90s

    Directory of Open Access Journals (Sweden)

    Arun Prasad

    1993-10-01

    Full Text Available The gas turbine propulsion system has been playing the most significant role in the evolution and development of present-day aircraft, and has become the limiting technology for developing most new aircraft. However, the jet engine still remains the preferred propulsion choice. Aircraft gas turbines in one form or the other, viz. turbojet, turbofan, turboprop or turboshaft, have been used in commercial passenger aircraft, high performance military aircraft and in rotary wing aircraft (helicopters. The emphasis in engine development programmes world over seems to be in reducing fuel consumption, increasing thrust and in reducing weight.

  4. 78 FR 16357 - Research, Engineering and Development Advisory Committee

    Science.gov (United States)

    2013-03-14

    ... Federal Aviation Administration Research, Engineering and Development Advisory Committee AGENCY: Federal... Research, Engineering and Development (R,E&D) Advisory Committee. Name: Research, Engineering & Development... in the areas of air traffic services, airports, aircraft safety, human factors and environment...

  5. 76 FR 72128 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines

    Science.gov (United States)

    2011-11-22

    ... Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines AGENCY: Federal Aviation... engines installed on, but not limited to, Diamond Aircraft Industries Model DA 42 airplanes. The existing... prevent engine in- flight shutdown, possibly resulting in reduced control of the aircraft. DATES: We...

  6. 78 FR 1728 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Science.gov (United States)

    2013-01-09

    .... SUMMARY: We are adopting a new airworthiness directive (AD) for all Thielert Aircraft Engines GmbH (TAE... the following new AD: 2012-26-12 Thielert Aircraft Engines GmbH: Amendment 39-17307; Docket No. FAA... Thielert Aircraft Engines (TAE) TAE 125- 02-99 and TAE 125-02-114 reciprocating engines. (d) Reason This...

  7. 76 FR 68636 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines

    Science.gov (United States)

    2011-11-07

    ... Thielert Aircraft Engines GmbH (TAE) Models TAE 125-01 and TAE 125- 02-99 reciprocating engines. That AD... Register approved the incorporation by reference of Thielert Aircraft Engines GmbH Service Bulletin (SB) No..., 2010), and adding the following new AD: 2011-23-01 Thielert Aircraft Engines GmbH: Amendment...

  8. Damage Propagation Modeling for Aircraft Engine Prognostics

    Science.gov (United States)

    Saxena, Abhinav; Goebel, Kai; Simon, Don; Eklund, Neil

    2008-01-01

    This paper describes how damage propagation can be modeled within the modules of aircraft gas turbine engines. To that end, response surfaces of all sensors are generated via a thermo-dynamical simulation model for the engine as a function of variations of flow and efficiency of the modules of interest. An exponential rate of change for flow and efficiency loss was imposed for each data set, starting at a randomly chosen initial deterioration set point. The rate of change of the flow and efficiency denotes an otherwise unspecified fault with increasingly worsening effect. The rates of change of the faults were constrained to an upper threshold but were otherwise chosen randomly. Damage propagation was allowed to continue until a failure criterion was reached. A health index was defined as the minimum of several superimposed operational margins at any given time instant and the failure criterion is reached when health index reaches zero. Output of the model was the time series (cycles) of sensed measurements typically available from aircraft gas turbine engines. The data generated were used as challenge data for the Prognostics and Health Management (PHM) data competition at PHM 08.

  9. Analysis of Navy aircraft engine and engine component warranties

    OpenAIRE

    Andrews, Melissa S.; Hickey, Suzanne Christine.

    1993-01-01

    Approved for public release; distribution is unlimited. Since the enactment of Title 10, Section 2403 of the United States Code in 1985, written warranty clauses have been mandated for the procurement of all major weapon systems. This thesis discusses the aircraft engine warranty program established by the Naval Air Systems Command in response to that warranty legislation. Warranty procedures and issues are examined during procurement, contract negotiations, and in the daily operations of ...

  10. 77 FR 36341 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Science.gov (United States)

    2012-06-18

    ... and Aircraft Engines; Emission Standards and Test Procedures;'' Final Rule, 70 FR 2521, November 17... From Aircraft and Aircraft Engines; Emission Standards and Test Procedures; Final Rule #0;#0;Federal...: Final rule. SUMMARY: EPA is adopting several new aircraft engine emission standards for oxides...

  11. 77 FR 13488 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines

    Science.gov (United States)

    2012-03-07

    ... (75 FR 32253, June 8, 2010), and adding the following new AD: 2010-11-09R1 Thielert Aircraft Engines... IBR on July 13, 2010 (75 FR 32253, June 8, 2010). (i) Thielert Aircraft Engines (TAE) GmbH, TAE SB No... TAE 125-02-99 reciprocating engines installed on, but not limited to, Diamond Aircraft...

  12. 78 FR 1733 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Science.gov (United States)

    2013-01-09

    ... (76 FR 17757, March 31, 2011), and adding the following new AD: 2012-26-13 Thielert Aircraft Engines.... SUMMARY: We are superseding an existing airworthiness directive (AD) for all Thielert Aircraft Engines Gmb... service information identified in this AD, contact Thielert ] Aircraft Engines GmbH, Platanenstrasse 14...

  13. 78 FR 47228 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Science.gov (United States)

    2013-08-05

    ... Thielert Aircraft Engines GmbH TAE 125-01 reciprocating engines. This proposed AD was prompted by a report... service information identified in this proposed AD, contact Thielert Aircraft Engines GmbH... loss of control of, and damage to, the airplane. Relevant Service Information Thielert Aircraft...

  14. 78 FR 70216 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Science.gov (United States)

    2013-11-25

    .... SUMMARY: We are adopting a new airworthiness directive (AD) for all Thielert Aircraft Engines GmbH TAE 125... airworthiness directive (AD): 2013-24-06 Thielert Aircraft Engines GmbH: Amendment 39-17680; Docket No. FAA-2013..., 2013. (b) Affected ADs None. (c) Applicability This AD applies to all Thielert Aircraft Engines...

  15. 76 FR 82110 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Science.gov (United States)

    2011-12-30

    ...-16236 (75 FR 12439, March 16, 2010). (c) Applicability This AD applies to Thielert Aircraft Engines GmbH.... SUMMARY: We are revising an existing airworthiness directive (AD) for Thielert Aircraft Engines GmbH... prevent engine in-flight shutdown, possibly resulting in reduced control of the aircraft. DATES: This...

  16. 77 FR 4217 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Science.gov (United States)

    2012-01-27

    .... SUMMARY: We are adopting a new airworthiness directive (AD) for all Thielert Aircraft Engines GmbH (TAE... address this unsafe condition, Thielert Aircraft Engines GmbH has developed a new friction disk. We issued...): 2012-02-05 Thielert Aircraft Engines GmbH: Amendment 39-16928; Docket No. FAA-2011-0956;...

  17. Aircraft Engine Life-Consumption Monitoring for Real-Time Reliability Determination Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The object of this research is to develop an in-service life-monitor system for the prediction of the remaining component and system life of aircraft engines. The...

  18. 77 FR 22187 - Technical Amendment; Airworthiness Standards-Aircraft Engines

    Science.gov (United States)

    2012-04-13

    .... SUMMARY: This amendment corrects a number of errors in the airworthiness standards for aircraft engine...: AIRCRAFT ENGINES 0 1. The authority citation for part 33 continues to read as follows: Authority: 49 U.S.C... Federal Aviation Administration 14 CFR Part 33 Technical Amendment; Airworthiness...

  19. Method Evaluating the Durability of Aircraft Piston Engines

    OpenAIRE

    Luca PIANCASTELLI; Leonardo FRIZZIERO; Eugenio MORGANTI; Eugenio PEZZUTI

    2012-01-01

    A significant issue in aircraft engines is quantifying residual life to overhaul. The algorithm described in this paper calculates with a good level of reliability the residual life of a petrol piston engine. The method was tested on small, latest-generation, naturally-aspirated aircraft and racing piston engines, and has been effective in several experiments. This method is implemented directly on the electronic control system of the engine with very few lines of C-code. The method can also ...

  20. Research on Emerging and Descending Aircraft Noise

    OpenAIRE

    Monika Bartkevičiūtė; Raimondas Grubliauskas

    2013-01-01

    Along with an increase in the aircraft engine power and growth in air traffic, noise level at airports and their surrounding environs significantly increases. Aircraft noise is high level noise spreading within large radius and intensively irritating the human body. Air transport is one of the main sources of noise having a particularly strong negative impact on the environment. The article deals with activities and noises taking place in the largest nationwide Vilnius International Airport.T...

  1. Small Engine Technology (SET) Task 24 Business and Regional Aircraft System Studies

    Science.gov (United States)

    Lieber, Lysbeth

    2003-01-01

    This final report has been prepared by Honeywell Engines & Systems, Phoenix, Arizona, a unit of Honeywell International Inc., documenting work performed during the period June 1999 through December 1999 for the National Aeronautics and Space Administration (NASA) Glenn Research Center, Cleveland, Ohio, under the Small Engine Technology (SET) Program, Contract No. NAS3-27483, Task Order 24, Business and Regional Aircraft System Studies. The work performed under SET Task 24 consisted of evaluating the noise reduction benefits compared to the baseline noise levels of representative 1992 technology aircraft, obtained by applying different combinations of noise reduction technologies to five business and regional aircraft configurations. This report focuses on the selection of the aircraft configurations and noise reduction technologies, the prediction of noise levels for those aircraft, and the comparison of the noise levels with those of the baseline aircraft.

  2. V/STOL tilt rotor aircraft study. Volume 2: Preliminary design of research aircraft

    Science.gov (United States)

    1972-01-01

    A preliminary design study was conducted to establish a minimum sized, low cost V/STOL tilt-rotor research aircraft with the capability of performing proof-of-concept flight research investigations applicable to a wide range of useful military and commercial configurations. The analysis and design approach was based on state-of-the-art methods and maximum use of off-the-shelf hardware and systems to reduce development risk, procurement cost and schedules impact. The rotors to be used are of 26 foot diameter and are the same as currently under construction and test as part of NASA Tilt-Rotor Contract NAS2-6505. The aircraft has a design gross weight of 12,000 lbs. The proposed engines to be used are Lycoming T53-L-13B rated at 1550 shaft horsepower which are fully qualified. A flight test investigation is recommended which will determine the capabilities and limitations of the research aircraft.

  3. Aircraft engine performance and integration in a flying wing aircraft conceptual design

    OpenAIRE

    Miao, Zhisong.

    2012-01-01

    The increasing demand of more economical and environmentally friendly aero engines leads to the proposal of a new concept – geared turbofan. In this thesis, the characteristics of this kind of engine and relevant considerations of integration on a flying wing aircraft were studied. The studies can be divided into four levels: GTF-11 engine modelling and performance simulation; aircraft performance calculation; nacelle design and aerodynamic performance evaluation; preliminar...

  4. Emission of ions and charged soot particles by aircraft engines

    Directory of Open Access Journals (Sweden)

    A. Sorokin

    2003-01-01

    Full Text Available In this article, a model which examines the formation and evolution of chemiions in an aircraft engine is proposed. This model which includes chemiionisation, electron thermo-emission, electron attachment to soot particles and to neutral molecules, electron-ion and ion-ion recombination, ion-soot interaction, allows the determination of the ion concentration at the exit of the combustor and at the nozzle exit of the engine. It also allows the determination of the charge of the soot particles. For the engine considered, the upper limit for the ion emission index EIi is of the order of (2-5 x1016 ions/kg-fuel if ion-soot interactions are ignored and the introduction of ion-soot interactions lead about to a 50% reduction. The results also show that most of the soot particles are either positively or negatively charged, the remaining neutral particles representing approximately 20% of the total particles. A comparison of the model results with the available ground-based experimental data obtained on the ATTAS research aircraft engines during the SULFUR experiments (Schumann, 2002 shows an excellent agreement.

  5. Improving safety of aircraft engines: a consortium approach

    Science.gov (United States)

    Brasche, Lisa J. H.

    1996-11-01

    With over seven million departures per year, air transportation has become not a luxury, but a standard mode of transportation for the United States. A critical aspect of modern air transport is the jet engine, a complex engineered component that has enabled the rapid travel to which we have all become accustomed. One of the enabling technologies for safe air travel is nondestructive evaluation, or NDE, which includes various inspection techniques used to assess the health or integrity of a structure, component, or material. The Engine Titanium Consortium (ETC) was established in 1993 to respond to recommendations made by the Federal Aviation Administration (FAA) Titanium Rotating Components Review Team (TRCRT) for improvements in inspection of engine titanium. Several recent accomplishments of the ETC are detailed in this paper. The objective of the Engine Titanium Consortium is to provide the FAAand the manufacturers with reliable and costeffective new methods and/or improvements in mature methods for detecting cracks, inclusions, and imperfections in titanium. The consortium consists of a team of researchers from academia and industry-namely, Iowa State University, Allied Signal Propulsion Engines, General Electric Aircraft Engines, and Pratt & Whitney Engines-who work together to develop program priorities, organize a program plan, conduct the research, and implement the solutions. The true advantage of the consortium approach is that it brings together the research talents of academia and the engineering talents of industry to tackle a technology-base problem. In bringing industrial competitors together, the consortium ensures that the research results, which have safety implications and result from FAA funds, are shared and become part of the public domain.

  6. TRENDS IN THE DEVELOPMENT OF DETONATION ENGINES FOR HIGH-SPEED AEROSPACE AIRCRAFTS AND THE PROBLEM OF TRIPLE CONFIGURATIONS OF SHOCK WAVES. Part I. Research of detonation engines

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2016-01-01

    Full Text Available We consider current problems of improving propulsion systems of highly supersonic air-space vehicles. In the first part, we review historic developments and list the landmark scientific papers. Classification of detonation engines is presented with detailed consideration of rotation detonation engines and continuous detonation engines. Experimental results on detonation, which are of particular importance for the design of detonation engines, are discussed. The second part of the paper provides an overview of the development in detonation theory, mathematical modelling, and numerical simulation. We focus on the interference of shock waves with formation of triple points, regular and irregular reflection of shock waves, existence of multiple solutions and the resulting appearance of hysteresis. The relevance and importance of triple shock wave configurations for the development of new types of air intakes and detonation jet engines is demonstrated.

  7. Noise Control and Noise Evaluation in Aircraft Engines

    OpenAIRE

    石井, 達哉; Ishii, Tatsuya

    2002-01-01

    Aircraft engine noise emitted for example by the jet exhaust, fan, compressor, turbine and combustor is the predominant factor in total aircraft noise during take-off and landing. As a result of enormous efforts to alleviate engine noise, noise levels have been improved by more than 20 dB compared to the first generation of airliners. However, the growing volume of air transport means that further noise reduction is still required. With this background, we decided to concentrate on two techni...

  8. Calculation of odour emissions from aircraft engines at Copenhagen Airport.

    Science.gov (United States)

    Winther, Morten; Kousgaard, Uffe; Oxbøl, Arne

    2006-07-31

    In a new approach the odour emissions from aircraft engines at Copenhagen Airport are calculated using actual fuel flow and emission measurements (one main engine and one APU: Auxiliary Power Unit), odour panel results, engine specific data and aircraft operational data for seven busy days. The calculation principle assumes a linear relation between odour and HC emissions. Using a digitalisation of the aircraft movements in the airport area, the results are depicted on grid maps, clearly reflecting aircraft operational statistics as single flights or total activity during a whole day. The results clearly reflect the short-term temporal fluctuations of the emissions of odour (and exhaust gases). Aircraft operating at low engine thrust (taxiing, queuing and landing) have a total odour emission share of almost 98%, whereas the shares for the take off/climb out phases (2%) and APU usage (0.5%) are only marginal. In most hours of the day, the largest odour emissions occur, when the total amount of fuel burned during idle is high. However, significantly higher HC emissions for one specific engine cause considerable amounts of odour emissions during limited time periods. The experimentally derived odour emission factor of 57 OU/mg HC is within the range of 23 and 110 OU/mg HC used in other airport odour studies. The distribution of odour emission results between aircraft operational phases also correspond very well with the results for these other studies. The present study uses measurement data for a representative engine. However, the uncertainties become large when the experimental data is used to estimate the odour emissions for all aircraft engines. More experimental data is needed to increase inventory accuracy, and in terms of completeness it is recommended to make odour emission estimates also for engine start and the fuelling of aircraft at Copenhagen Airport in the future. PMID:16194561

  9. Calculation of odour emissions from aircraft engines at Copenhagen Airport

    Energy Technology Data Exchange (ETDEWEB)

    Winther, Morten; Kousgaard, Uffe [National Environmental Research Institute, Frederiksborgvej 399, 4000 Roskilde (Denmark); Oxboel, Arne [FORCE Technology, Park Alle 345, 2605 Broendby (Denmark)

    2006-07-31

    In a new approach the odour emissions from aircraft engines at Copenhagen Airport are calculated using actual fuel flow and emission measurements (one main engine and one APU: Auxiliary Power Unit), odour panel results, engine specific data and aircraft operational data for seven busy days. The calculation principle assumes a linear relation between odour and HC emissions. Using a digitalisation of the aircraft movements in the airport area, the results are depicted on grid maps, clearly reflecting aircraft operational statistics as single flights or total activity during a whole day. The results clearly reflect the short-term temporal fluctuations of the emissions of odour (and exhaust gases). Aircraft operating at low engine thrust (taxiing, queuing and landing) have a total odour emission share of almost 98%, whereas the shares for the take off/climb out phases (2%) and APU usage (0.5%) are only marginal. In most hours of the day, the largest odour emissions occur, when the total amount of fuel burned during idle is high. However, significantly higher HC emissions for one specific engine cause considerable amounts of odour emissions during limited time periods. The experimentally derived odour emission factor of 57 OU/mg HC is within the range of 23 and 110 OU/mg HC used in other airport odour studies. The distribution of odour emission results between aircraft operational phases also correspond very well with the results for these other studies. The present study uses measurement data for a representative engine. However, the uncertainties become large when the experimental data is used to estimate the odour emissions for all aircraft engines. More experimental data is needed to increase inventory accuracy, and in terms of completeness it is recommended to make odour emission estimates also for engine start and the fuelling of aircraft at Copenhagen Airport in the future. (author)

  10. Calculation of odour emissions from aircraft engines at Copenhagen Airport.

    Science.gov (United States)

    Winther, Morten; Kousgaard, Uffe; Oxbøl, Arne

    2006-07-31

    In a new approach the odour emissions from aircraft engines at Copenhagen Airport are calculated using actual fuel flow and emission measurements (one main engine and one APU: Auxiliary Power Unit), odour panel results, engine specific data and aircraft operational data for seven busy days. The calculation principle assumes a linear relation between odour and HC emissions. Using a digitalisation of the aircraft movements in the airport area, the results are depicted on grid maps, clearly reflecting aircraft operational statistics as single flights or total activity during a whole day. The results clearly reflect the short-term temporal fluctuations of the emissions of odour (and exhaust gases). Aircraft operating at low engine thrust (taxiing, queuing and landing) have a total odour emission share of almost 98%, whereas the shares for the take off/climb out phases (2%) and APU usage (0.5%) are only marginal. In most hours of the day, the largest odour emissions occur, when the total amount of fuel burned during idle is high. However, significantly higher HC emissions for one specific engine cause considerable amounts of odour emissions during limited time periods. The experimentally derived odour emission factor of 57 OU/mg HC is within the range of 23 and 110 OU/mg HC used in other airport odour studies. The distribution of odour emission results between aircraft operational phases also correspond very well with the results for these other studies. The present study uses measurement data for a representative engine. However, the uncertainties become large when the experimental data is used to estimate the odour emissions for all aircraft engines. More experimental data is needed to increase inventory accuracy, and in terms of completeness it is recommended to make odour emission estimates also for engine start and the fuelling of aircraft at Copenhagen Airport in the future.

  11. 78 FR 63015 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Science.gov (United States)

    2013-10-23

    ... Aircraft Gas Turbine Engines and Identification Plate for Aircraft Engines AGENCY: Federal Aviation... aircraft engines which, in the EPA Administrator's judgment, causes or contributes to air pollution that... aircraft engine emission standards for oxides of nitrogen (NO X ), compliance flexibilities, and...

  12. 78 FR 63017 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Science.gov (United States)

    2013-10-23

    ... Aircraft Gas Turbine Engines and Identification Plate for Aircraft Engines AGENCY: Federal Aviation... emission of any air pollutant from classes of aircraft engines which, in the EPA Administrator's judgment... standards. On July 27, 2011, the EPA proposed new aircraft engine emission standards for oxides of...

  13. Thermal barrier coatings for aircraft engines: History and directions

    Science.gov (United States)

    Miller, Robert A.

    1995-01-01

    Thin thermal barrier coatings for protecting aircraft turbine section airfoils are examined in this paper. The discussion focuses on those advances that led first to their use for component life extension, and more recently as an integral part of airfoil design. Development has been driven by laboratory rig and furnace testing corroborated by engine testing and engine field experience. The technology has also been supported by performance modeling to demonstrate benefits and life modeling for mission analysis. Factors which have led to the selection of the current state-of-the-art plasma sprayed and physical vapor deposited zirconia-yttria/MCrAlX TBC's are emphasized, as are observations fundamentally related to the their behavior. Current directions in research into thermal barrier coatings and recent progress at NASA are also noted.

  14. 76 FR 72087 - Special Conditions: Diamond Aircraft Industries, Model DA-40NG; Electronic Engine Control (EEC...

    Science.gov (United States)

    2011-11-22

    .... A47CE to include the new model DA- 40NG with the Austro Engine GmbH model E4 Aircraft Diesel Engine (ADE... the effects of the aircraft supplied power and data failures on the engine control system, and the... Engine GmbH model E4 aircraft diesel engine. 1. Electronic Engine Control a. For electronic...

  15. Ageing aircraft research in the Netherlands

    Science.gov (United States)

    Dejonge, J. B.; Bartelds, G.

    1992-01-01

    The problems of aging aircraft are worldwide. Hence, international cooperative actions to overcome or prevent problems should be taken. The Federal Aviation Administration (FAA) and the Netherlands Civil Aviation Department (RLD) signed a Memorandum of Cooperation in the area of structural integrity, with specific reference to research on problems in the area of aging aircraft. Here, an overview is given of aging research that is going on in the Netherlands. The work described is done largely at the National Aerospace Laboratory; much of the research is part of the forementioned cooperative agreement.

  16. 78 FR 37958 - Special Conditions: Cessna Aircraft Company, Model J182T; Electronic Engine Control System...

    Science.gov (United States)

    2013-06-25

    ... aircraft supplied power and data failures on the engine control system, and the resulting effects on engine... case, an electronic engine control with aircraft interfaces. Additionally, Special Conditions for High...: Aircraft Engines''; Part 35 (``Airworthiness Standards: Propellers''; Sec. 25.903(d)(l) (``Engines'';...

  17. Control Design for a Generic Commercial Aircraft Engine

    Science.gov (United States)

    Csank, Jeffrey; May, Ryan D.

    2010-01-01

    This paper describes the control algorithms and control design process for a generic commercial aircraft engine simulation of a 40,000 lb thrust class, two spool, high bypass ratio turbofan engine. The aircraft engine is a complex nonlinear system designed to operate over an extreme range of environmental conditions, at temperatures from approximately -60 to 120+ F, and at altitudes from below sea level to 40,000 ft, posing multiple control design constraints. The objective of this paper is to provide the reader an overview of the control design process, design considerations, and justifications as to why the particular architecture and limits have been chosen. The controller architecture contains a gain-scheduled Proportional Integral controller along with logic to protect the aircraft engine from exceeding any limits. Simulation results illustrate that the closed loop system meets the Federal Aviation Administration s thrust response requirements

  18. Rankine-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  19. Rankline-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  20. State Detection Method to the Aircraft Engine Based on the Time Domain Parameters Analysis Technology

    OpenAIRE

    Dongfang Luo

    2012-01-01

    The state detection method to the aircraft engine is very important to assure the aircraft’s safety flight, which has developed a new technology to realize the fault diagnosis to the aircraft engine. The collection of aircraft engine vibration signal can be used to complete the aircraft engine state detection and the fault diagnosis. In this study, the pretreated aircraft engine’s vibration signal was analyzed based on the time domain method, through the simulation, we can identify the aircra...

  1. An integrated systems engineering approach to aircraft design

    Science.gov (United States)

    Price, M.; Raghunathan, S.; Curran, R.

    2006-06-01

    The challenge in Aerospace Engineering, in the next two decades as set by Vision 2020, is to meet the targets of reduction of nitric oxide emission by 80%, carbon monoxide and carbon dioxide both by 50%, reduce noise by 50% and of course with reduced cost and improved safety. All this must be achieved with expected increase in capacity and demand. Such a challenge has to be in a background where the understanding of physics of flight has changed very little over the years and where industrial growth is driven primarily by cost rather than new technology. The way forward to meet the challenges is to introduce innovative technologies and develop an integrated, effective and efficient process for the life cycle design of aircraft, known as systems engineering (SE). SE is a holistic approach to a product that comprises several components. Customer specifications, conceptual design, risk analysis, functional analysis and architecture, physical architecture, design analysis and synthesis, and trade studies and optimisation, manufacturing, testing validation and verification, delivery, life cycle cost and management. Further, it involves interaction between traditional disciplines such as Aerodynamics, Structures and Flight Mechanics with people- and process-oriented disciplines such as Management, Manufacturing, and Technology Transfer. SE has become the state-of-the-art methodology for organising and managing aerospace production. However, like many well founded methodologies, it is more difficult to embody the core principles into formalised models and tools. The key contribution of the paper will be to review this formalisation and to present the very latest knowledge and technology that facilitates SE theory. Typically, research into SE provides a deeper understanding of the core principles and interactions, and helps one to appreciate the required technical architecture for fully exploiting it as a process, rather than a series of events. There are major issues as

  2. 77 FR 65823 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Science.gov (United States)

    2012-10-31

    ... AGENCY 40 CFR Parts 87 RIN 2060-AO70 Control of Air Pollution From Aircraft and Aircraft Engines... Turbofan or Turbojet Engines with Rated Output Above 26.7 kN'' should read as set forth below: Table 3 to Sec. 87.23--Tier 6 NOX Standards for New Subsonic Turbofan or Turbojet Engines With Rated Output...

  3. 78 FR 28719 - Special Conditions: Cessna Aircraft Company, Model J182T; Diesel Cycle Engine Installation

    Science.gov (United States)

    2013-05-16

    ... Administration 14 CFR Part 23 Special Conditions: Cessna Aircraft Company, Model J182T; Diesel Cycle Engine... an aircraft diesel engine (ADE). The applicable airworthiness regulations do not contain adequate or... failure modes of a diesel cycle engine. A historical record review of diesel engine use in aircraft...

  4. 77 FR 76842 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Science.gov (United States)

    2012-12-31

    ... Aircraft Gas Turbine Engines and Identification Plate for Aircraft Engines AGENCY: Federal Aviation... Environmental Protection Agency (EPA) proposed new aircraft engine emission standards for oxides of nitrogen (NO... turbojet engines with rated thrusts greater than 26.7 kilonewtons (kN) (76 FR 45012, July 27, 2011)....

  5. Blade containment evaluation of civil aircraft engines

    Institute of Scientific and Technical Information of China (English)

    Yang Bin

    2013-01-01

    The potential hazard resulting from uncontained turbine engine rotor blade failure has always been the long-term concern of each aero engine manufacturer,and to fully contain the failed blades under critical operating conditions is also one of the most important considerations to meet the rotor integrity requirements.Usually,there are many factors involving the engine containment capability which need to be reviewed during the engine design phases,such as case thickness,rotor support structure,blade weight and shape,etc.However,the premier method to demonstrate the engine containment capability is the fan blade-off test and margin of safety (MS) analysis.Based on a concrete engine model,this paper aims to explain the key points of aero engine containment requirements in FAR Part 33,and introduces the implementation of MS analysis and fan blade-off test in the engine airworthiness certification.Through the introduction,it would be greatly helpful to the industrial community to evaluate the engine containment capability and prepare the final test demonstration in engine certification procedure.

  6. Aircraft

    Science.gov (United States)

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  7. 75 FR 39803 - Airworthiness Directives; Thielert Aircraft Engines GmbH Model TAE 125-01 Reciprocating Engines

    Science.gov (United States)

    2010-07-13

    ... Aircraft Engines GmbH: Amendment 39-16366. Docket No. FAA-2010-0308; Directorate Identifier 2010-NE-17-AD...) None. Applicability (c) This AD applies to Thielert Aircraft Engines GmbH model TAE 125-01...) Use the Measures section of Thielert Aircraft Engines GmbH Service Bulletin No. TM TAE...

  8. In-Service Aircraft Engine System Life Monitor Using Advanced Life-Estimating Technique Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to develop an accurate in-service aircraft engine life monitor system for the prediction of remaining component and system life for aircraft engines....

  9. Rotor Systems of Aircraft Jet Engines

    Directory of Open Access Journals (Sweden)

    Ján Kamenický

    2000-01-01

    engine's both coaxial rotors, their supports (including their hydrodynamic dampers, and its casing as well. Besides the short description of the engine design peculiarities and of its calculating model, there is also a short description of the used method of calculations, with focus on its peculiarities as well. Finally, some results of calculations and conclusions that follow from them are presented.

  10. Diagnostic Methods for an Aircraft Engine Performance

    Directory of Open Access Journals (Sweden)

    Ε. L. Ntantis

    2015-11-01

    Full Text Available The main gas path components, namely compressor and turbine, are inherently reliable but the operation of the aero engines under hostile environments, results into engine breakdowns and performance deterioration. Performance deterioration increases the operating cost, due to the reduction in thrust output and higher fuel consumption, and also increases the engine maintenance cost. In times when economic considerations dominate airline operators’ strategies, carrying out unnecessary rectification, can be very costly and time consuming. In an attempt to minimize such unexpected circumstances, having detailed knowledge prior to any inspection will allow the gas turbine user to take some of the maintenance action when it is necessary. Advanced engine-fault diagnostics tools offer the possibility of identifying degradation at the module level, determining the trends of these degradations during the usage of the engine, and planning the maintenance action ahead.

  11. Energy efficient engine: Propulsion system-aircraft integration evaluation

    Science.gov (United States)

    Owens, R. E.

    1979-01-01

    Flight performance and operating economics of future commercial transports utilizing the energy efficient engine were assessed as well as the probability of meeting NASA's goals for TSFC, DOC, noise, and emissions. Results of the initial propulsion systems aircraft integration evaluation presented include estimates of engine performance, predictions of fuel burns, operating costs of the flight propulsion system installed in seven selected advanced study commercial transports, estimates of noise and emissions, considerations of thrust growth, and the achievement-probability analysis.

  12. Optimal Discrete Event Supervisory Control of Aircraft Gas Turbine Engines

    Science.gov (United States)

    Litt, Jonathan (Technical Monitor); Ray, Asok

    2004-01-01

    This report presents an application of the recently developed theory of optimal Discrete Event Supervisory (DES) control that is based on a signed real measure of regular languages. The DES control techniques are validated on an aircraft gas turbine engine simulation test bed. The test bed is implemented on a networked computer system in which two computers operate in the client-server mode. Several DES controllers have been tested for engine performance and reliability.

  13. Energy efficient engine flight propulsion system: Aircraft/engine integration evaluation

    Science.gov (United States)

    Patt, R. F.

    1980-01-01

    Results of aircraft/engine integration studies conducted on an advanced flight propulsion system are reported. Economic evaluations of the preliminary design are included and indicate that program goals will be met. Installed sfc, DOC, noise, and emissions were evaluated. Aircraft installation considerations and growth were reviewed.

  14. 78 FR 50317 - Special Conditions: Cessna Aircraft Company, Model J182T; Diesel Cycle Engine Installation

    Science.gov (United States)

    2013-08-19

    ... installation of an aircraft diesel engine (ADE). The applicable airworthiness regulations do not contain... engine use in aircraft and part 23 identified these concerns. The review identified specific regulatory... indications for a diesel engine powered airplane. The general concerns associated with the aircraft...

  15. 76 FR 19903 - Special Conditions: Diamond Aircraft Industry Model DA-40NG; Diesel Cycle Engine

    Science.gov (United States)

    2011-04-11

    ... Conditions: Diamond Aircraft Industry Model DA-40NG; Diesel Cycle Engine AGENCY: Federal Aviation... conditions are issued for the Diamond Aircraft Industry (DAI) GmbH model DA-40NG the Austro Engine GmbH model E4 aircraft diesel engine (ADE) using turbine (jet) fuel. This airplane will have a novel or...

  16. Aviation industry-research in aircraft finance

    OpenAIRE

    Ehrenthal, Joachim C.F.

    2010-01-01

    Aircraft values are key to aircraft financing decisions: Aircraft values act as a source of security for providers of debt capital and lessors failing to re-place aircraft, and as a source of upside potential to equity investors. Yet, aircraft values cannot be precisely and continuously monitored. This is because neither actual primary nor secondary aircraft transaction prices are disclosed. Various types of third party valuation estimates exist, but relying solely on third party appraisa...

  17. Preliminary analysis of the J-52 aircraft engine Component Improvement Program

    OpenAIRE

    Butler, Randall Scott

    1992-01-01

    Approved for public release; distribution is unlimited Increasing budgetary constraints have required program managers within the Naval Air Systems Command to justify their programs as never before. This thesis presents a preliminary analysis of the J-52 aircraft engine Component Improvement Program (CIP). The objectives of the research were to scrutinize the association of the CIP with promised improvements and benefits pertaining to the J-52 engine and to determine the obstacles that e...

  18. Prediction of UHPFRC panels thickness subjected to aircraft engine impact

    Directory of Open Access Journals (Sweden)

    Duc-Kien Thai

    2016-06-01

    Full Text Available In the practical design of nuclear building structures subjected to an aircraft crash, the structures are required to prevent scabbing and perforation. NEI 07-13 provided the formulas to predict the minimum reinforced concrete (RC wall thickness to prevent the local damage caused by aircraft engine impact. However, these formulas may not be suitable for predicting the thickness of the ultra-high performance fiber reinforced concrete (UHPFRC wall. In this study, the local damage of a UHPFRC wall caused by the impact of aircraft engine missile is investigated using a finite element program LS-DYNA. The structural components of the UHPFRC panel, aircraft engine model, and their contacts are fully modeled. The analysis results are verified with the test results. A parametric study with varying panel thickness, fiber type and content, and impact velocity is performed to investigate the local damage of the UHPFRC panel. Based on a comparison with the given formulas, the modified equations of Chang and Degen are proposed to predict the minimum wall thickness to prevent scabbing and perforation in the case in which the UHPFRC structure is used.

  19. An Indispensable Ingredient: Flight Research and Aircraft Design

    Science.gov (United States)

    Gorn, Michael H.

    2003-01-01

    Flight research-the art of flying actual vehicles in the atmosphere in order to collect data about their behavior-has played a historic and decisive role in the design of aircraft. Naturally, wind tunnel experiments, computational fluid dynamics, and mathematical analyses all informed the judgments of the individuals who conceived of new aircraft. But flight research has offered moments of realization found in no other method. Engineer Dale Reed and research pilot Milt Thompson experienced one such epiphany on March 1, 1963, at the National Aeronautics and Space Administration s Dryden Flight Research Center in Edwards, California. On that date, Thompson sat in the cockpit of a small, simple, gumdrop-shaped aircraft known as the M2-F1, lashed by a long towline to a late-model Pontiac Catalina. As the Pontiac raced across Rogers Dry Lake, it eventually gained enough speed to make the M2-F1 airborne. Thompson braced himself for the world s first flight in a vehicle of its kind, called a lifting body because of its high lift-to-drag ratio. Reed later recounted what he saw:

  20. Method Evaluating the Durability of Aircraft Piston Engines

    Directory of Open Access Journals (Sweden)

    Luca PIANCASTELLI

    2012-12-01

    Full Text Available A significant issue in aircraft engines is quantifying residual life to overhaul. The algorithm described in this paper calculates with a good level of reliability the residual life of a petrol piston engine. The method was tested on small, latest-generation, naturally-aspirated aircraft and racing piston engines, and has been effective in several experiments. This method is implemented directly on the electronic control system of the engine with very few lines of C-code. The method can also be used in many industrial engines. This innovative method assumes that only two main factors (power level and wear affect engine durability or time between overhauls. These two factors are considered as separate and combined with worst case criteria. The wear is assumed to follow a logarithmic law and a formula similar to the Miner’s law for material fatigue is used, making it possible to calculate the power-level curve with knowledge of only two points. The wear-curve is also related to elapsed engine cycles. The algorithm is very simple and can be implemented with just a few lines of software code accessing data collected from existing sensors. The system is currently used to evaluate actual residual life of racing engines.

  1. Recent Progress in Aircraft Noise Research

    Science.gov (United States)

    Envia, Edmane; Thomas, Russell

    2007-01-01

    An overview of the acoustics research at NASA under the Subsonic Fixed Wing project is given. The presentation describes the rationale behind the noise reduction goals of the project in the context of the next generation air transportation system, and the emphasis placed on achieving these goals through a combination of the in-house and collaborative efforts with industry, universities and other government agencies. The presentation also describes the in-house research plan which is focused on the development of advanced noise and flow diagnostic techniques, next generation noise prediction tools, and novel noise reduction techniques that are applicable across a wide range of aircraft.

  2. Characterization of lubrication oil emissions from aircraft engines.

    Science.gov (United States)

    Yu, Zhenhong; Liscinsky, David S; Winstead, Edward L; True, Bruce S; Timko, Michael T; Bhargava, Anuj; Herndon, Scott C; Miake-Lye, Richard C; Anderson, Bruce E

    2010-12-15

    In this first ever study, particulate matter (PM) emitted from the lubrication system overboard breather vent for two different models of aircraft engines has been systematically characterized. Lubrication oil was confirmed as the predominant component of the emitted particulate matter based upon the characteristic mass spectrum of the pure oil. Total particulate mass and size distributions of the emitted oil are also investigated by several high-sensitivity aerosol characterization instruments. The emission index (EI) of lubrication oil at engine idle is in the range of 2-12 mg kg(-1) and increases with engine power. The chemical composition of the oil droplets is essentially independent of engine thrust, suggesting that engine oil does not undergo thermally driven chemical transformations during the ∼4 h test window. Volumetric mean diameter is around 250-350 nm for all engine power conditions with a slight power dependence.

  3. Exergetic analysis of an aircraft turbojet engine with an afterburner

    Directory of Open Access Journals (Sweden)

    Ehyaei M.A.

    2013-01-01

    Full Text Available An exergy analysis is reported of a J85-GE-21 turbojet engine and its components for two altitudes: sea level and 11,000 meters. The turbojet engine with afterburning operates on the Brayton cycle and includes six main parts: diffuser, compressor, combustion chamber, turbine, afterburner and nozzle. Aircraft data are utilized in the analysis with simulation data. The highest component exergy efficiency at sea level is observed to be for the compressor, at 96.7%, followed by the nozzle and turbine with exergy efficiencies of 93.7 and 92.3%, respectively. At both considered heights, reducing of engine intake air speed leads to a reduction in the exergy efficiencies of all engine components and overall engine. The exergy efficiency of the turbojet engine is found to decrease by 0.45% for every 1°C increase in inlet air temperature.

  4. A grade-life fuzzy inference fusion prognostic model for aircraft engine bearings

    Science.gov (United States)

    Miao, Xuewen; Niu, Yongguo; Yang, Yun; Yin, Shuyue; Hong, Jie

    2012-04-01

    Prognostics and Health Management (PHM) technologies for potential application on aircraft have been maturing rapidly recently since it can ensure safety, equipment reliability, and reduction of costs. The service life prediction of aircraft engine is vital part of PHM technology. Research on practical and verifiable prediction methods for service life of bearing plays a critical role in improving the reliability and safety of aircraft engines. In the paper, the concept of Grade-Life (GL) is introduced to describe the service life of the bearing. A grade-life prognostic model of aircraft engine bearing, which is based on the fuzzy logic inference, is proposed. Firstly, the mathematical model is discussed, which is used to predict the physics-based GL (PGL). Then, the diagnostic estimation model based on SVM is given in details, which is exploited to predict the empirical GL (EPL). Thirdly, a fuzzy logic inference method is adopted to fuse two GL predicted results. Finally, the grade-life prognostic model is verified by the run-to-failure data acquired from accelerated life test of an aircraft bearing. The results accredit that this model provides for a more practical and reliable prediction for service life of bearings.

  5. A structural design for a hypersonic research aircraft

    Science.gov (United States)

    Jackson, L. R.; Taylor, A. H.

    1976-01-01

    A research aircraft is being studied that has potential for large-scale demonstration of advanced propulsive, structural, and aerodynamic technologies for hypersonic application. Versatility is achieved through a large removable payload bay with removable thermal protection, by removable wings, and by the configuration, which considers engine-airframe integration. Design criteria have been applied to an effective heat-sink structure of Lockalloy (Be-38Al), wherein thermal stress alleviation is a prime consideration in the design. Structural analyses are being performed with the SPAR computer program. Results indicate that no critical problems exist and the resulting structural weight is within initial estimates.

  6. UNOLS now oversees research aircraft facilities for ocean science

    OpenAIRE

    Bane, John M.; Bluth, Robert; Flagg, Charles; Jonsson, Haflidi; Melville, W. Kendall; Prince, Mike; Riemer, Daniel

    2004-01-01

    In recognition of the increasing importance and value of aircraft as observational platforms in oceanographic research, the University National Oceanographic Laboratory System (UNOLS) has established the Scientific Committee for Oceanographic Aircraft Research (SCOAR).SCOAR aims to establish procedures for research aircraft that follow the present UNOLS practices for research vessel use, with the goal of making it understandable, and easy, and thus desirable, for...

  7. European Commission research on aircraft impacts in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Amanatidis, G.T.; Angeletti, G. [European Commission (CEC), Brussels (Belgium)

    1997-12-31

    Aircraft engines release in the troposphere and lower stratosphere a number of chemical compounds (NO{sub x}, CO{sub 2}, CO, H{sub 2}O, hydrocarbons, sulphur, soot, etc.) which could potentially affect the ozone layer and the climate through chemical, dynamical and radiative changes. The global amount of gases and particles emitted by current subsonic and projected supersonic aircraft fleets can be estimated, but significant uncertainties remain about the fate of these emissions in the atmosphere. The European efforts concerning these potential atmospheric impacts of aircraft emissions are conducted by the Environment and Climate Research Programme of the European Commission (EC) as well as by national programmes of the Member States of the European Union (EU). The European research activities in this field, are described, divided for practical reasons in two periods. The first includes activities supported under the 3. Framework Programme for R and D activities which covered the period from 1992 up to 1996, while the second period has started in early 1996 and is supported under the 4. Framework Programme. (R.P.) 6 refs.

  8. C-MAPSS Aircraft Engine Simulator Data

    Data.gov (United States)

    National Aeronautics and Space Administration — SPECIAL NOTE: C-MAPSS and C-MAPSS40K ARE CURRENTLY UNAVAILABLE FOR DOWNLOAD. Glenn Research Center management is reviewing the availability requirements for these...

  9. SYSTEMS ENGINEERING RESEARCH

    Institute of Scientific and Technical Information of China (English)

    Abd-El-Kader SAHRAOUI; Dennis M. BUEDE; Andrew P. SAGE

    2008-01-01

    In this paper, we propose selected research topics that are believed central to progress and growth in the application of systems engineering (SE). As a professional activity, and as an intellectual activity, systems engineering has strong links to such associated disciplines as decision analysis, operation research, project management, quality management, and systems design. When focussing on systems engineering research, we should distinguish between subjects that are of systems engineering essence and others that more closely correspond to those that are more relevant for related disciplines.

  10. Computation of Engine Noise Propagation and Scattering Off an Aircraft

    Science.gov (United States)

    Xu, J.; Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2003-01-01

    The paper presents a comparison of experimental noise data measured in flight on a two-engine business jet aircraft with Kulite microphones placed on the suction surface of the wing with computational results. Both a time-domain discontinuous Galerkin spectral method and a frequency-domain spectral element method are used to simulate the radiation of the dominant spinning mode from the engine and its reflection and scattering by the fuselage and the wing. Both methods are implemented in computer codes that use the distributed memory model to make use of large parallel architectures. The results show that trends of the noise field are well predicted by both methods.

  11. Teaching engineering design research

    DEFF Research Database (Denmark)

    Blessing, Lucienne; Andreasen, Mogens Myrup

    2005-01-01

    to improve design for centuries, it was not until well in the second half of the 20th century that engineering design became a research topic (see pahl and Beitz (1996), Heymann (2004) for historical overviews). Engineering research, such as research into thermodynamics, mechanics and materials, has a much......The importance og engineering design as an industrial activity, and the increasingly complex and dynamic context in which it takes place, has led to the wish to improve the effectiveness and efficiency of engineering design in practice as well as in education. Although attempts have been made...... by PhD students. This has created the demand for a clear, efficient way of learning the crafmanship of doing design research, a demand which is in strong contrast to the state of design research in general. This article reflects the authors' efforts in running a summer school om engineering design...

  12. Aircraft Engine Life-Consumption Monitoring for Real-Time Reliability Determination Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A real-time life-use consumption monitor is proposed for aircraft engine systems. The life monitor will process power data available on the aircraft to calculate...

  13. Characterization of emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    Science.gov (United States)

    The fine particulate matter emissions from aircraft operations at large airports located in areas of the U. S. designated as non-attainment for the National Ambient Air Quality Standard for PM-2.5 are of major environmental concern. PM emissions data for commercial aircraft engin...

  14. Self Diagnostic Accelerometer Ground Testing on a C-17 Aircraft Engine

    Science.gov (United States)

    Tokars, Roger P.; Lekki, John D.

    2013-01-01

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.

  15. Aircraft Engine Noise Scattering - A Discontinuous Spectral Element Approach

    Science.gov (United States)

    Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2002-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far-field. The effects of nonuniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. Our approach is based on the discretization of the inviscid flow equations through a collocation form of the Discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Largescale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic con.guration, with and without a wing.

  16. Aircraft Engine Gas Path Diagnostic Methods: Public Benchmarking Results

    Science.gov (United States)

    Simon, Donald L.; Borguet, Sebastien; Leonard, Olivier; Zhang, Xiaodong (Frank)

    2013-01-01

    Recent technology reviews have identified the need for objective assessments of aircraft engine health management (EHM) technologies. To help address this issue, a gas path diagnostic benchmark problem has been created and made publicly available. This software tool, referred to as the Propulsion Diagnostic Method Evaluation Strategy (ProDiMES), has been constructed based on feedback provided by the aircraft EHM community. It provides a standard benchmark problem enabling users to develop, evaluate and compare diagnostic methods. This paper will present an overview of ProDiMES along with a description of four gas path diagnostic methods developed and applied to the problem. These methods, which include analytical and empirical diagnostic techniques, will be described and associated blind-test-case metric results will be presented and compared. Lessons learned along with recommendations for improving the public benchmarking processes will also be presented and discussed.

  17. A study of external fuel vaporization. [for aircraft gas turbine engines

    Science.gov (United States)

    Szetela, E. J.; Chiappetta, L.; Baker, C. E.

    1981-01-01

    Candidate external vaporizer designs for an aircraft gas turbine engine are evaluated with respect to fuel thermal stability, integration of the vaporizer system into the aircraft engine, engine and vaporizer dynamic response, startup and altitude restart, engine performance, control requirements, safety, and maintenance. The selected concept is shown to offer potential gains in engine performance in terms of reduced specific fuel consumption and improved engine thrust/weight ratio. The thrust/weight improvement can be traded against vaporization system weight.

  18. Uncertainty quantification in computational fluid dynamics and aircraft engines

    CERN Document Server

    Montomoli, Francesco; D'Ammaro, Antonio; Massini, Michela; Salvadori, Simone

    2015-01-01

    This book introduces novel design techniques developed to increase the safety of aircraft engines. The authors demonstrate how the application of uncertainty methods can overcome problems in the accurate prediction of engine lift, caused by manufacturing error. This in turn ameliorates the difficulty of achieving required safety margins imposed by limits in current design and manufacturing methods. This text shows that even state-of-the-art computational fluid dynamics (CFD) are not able to predict the same performance measured in experiments; CFD methods assume idealised geometries but ideal geometries do not exist, cannot be manufactured and their performance differs from real-world ones. By applying geometrical variations of a few microns, the agreement with experiments improves dramatically, but unfortunately the manufacturing errors in engines or in experiments are unknown. In order to overcome this limitation, uncertainty quantification considers the probability density functions of manufacturing errors...

  19. Near-field commercial aircraft contribution to nitrogen oxides by engine, aircraft type, and airline by individual plume sampling.

    Science.gov (United States)

    Carslaw, David C; Ropkins, Karl; Laxen, Duncan; Moorcroft, Stephen; Marner, Ben; Williams, Martin L

    2008-03-15

    Nitrogen oxides (NOx) concentrations were measured in individual plumes from aircraft departing on the northern runway at Heathrow Airport in west London. Over a period of four weeks 5618 individual plumes were sampled by a chemiluminescence monitor located 180 m from the runway. Results were processed and matched with detailed aircraft movement and aircraft engine data using chromatographic techniques. Peak concentrations associated with 29 commonly used engines were calculated and found to have a good relationship with N0x emissions taken from the International Civil Aviation Organization (ICAO) databank. However, it is found that engines with higher reported NOx emissions result in proportionately lower NOx concentrations than engines with lower emissions. We show that it is likely that aircraft operational factors such as takeoff weight and aircraftthrust setting have a measurable and important effect on concentrations of N0x. For example, NOx concentrations can differ by up to 41% for aircraft using the same airframe and engine type, while those due to the same engine type in different airframes can differ by 28%. These differences are as great as, if not greater than, the reported differences in NOx emissions between different engine manufacturers for engines used on the same airframe.

  20. Research on aircraft emissions. Need for future work

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, A. [German Aerospace Establishment, Cologne (Germany). Transport Research Div.

    1997-12-31

    Reflecting the present status of the research on aircraft emissions and their impacts upon the atmosphere, task-fields for a work programme for the research on aircraft emissions can be derived. Most important measures are to support the efforts to define adequate reduction measures, and (with highest priority) scenario-writing for the long-term development in aircraft emissions, to be able to include into the decision making process the aspect of in-time-reaction against unwanted future. Besides that, a steady monitoring of global aircraft emissions will be necessary. (author) 5 refs.

  1. Activation analysis of particulates emitted from aircraft jet engines

    International Nuclear Information System (INIS)

    Particulate matter in emission gas from aircraft jet engines was subjected to instrumental neutron activation analysis and the compositions of trace elements, such as Na, Al, Cl, Sc, V, Cr, Mn, Fe, Co, Cu, Zn, Br, Sb and Th were determined. For comparison, airborne dust samples collected in and around the airport and a soot sample collected in a jet nozzle were also analyzed. The analytical results obtained involve some ambiguous points mainly resulting from the imperfect sampling method. The analytical sensitivity was insufficient because of the too small amount of collected samples. These should be improved in future studies. (auth.)

  2. Extractive sampling and optical remote sensing of F100 aircraft engine emissions.

    Science.gov (United States)

    Cowen, Kenneth; Goodwin, Bradley; Joseph, Darrell; Tefend, Matthew; Satola, Jan; Kagann, Robert; Hashmonay, Ram; Spicer, Chester; Holdren, Michael; Mayfield, Howard

    2009-05-01

    The Strategic Environmental Research and Development Program (SERDP) has initiated several programs to develop and evaluate techniques to characterize emissions from military aircraft to meet increasingly stringent regulatory requirements. This paper describes the results of a recent field study using extractive and optical remote sensing (ORS) techniques to measure emissions from six F-15 fighter aircraft. Testing was performed between November 14 and 16, 2006 on the trim-pad facility at Tyndall Air Force Base in Panama City, FL. Measurements were made on eight different F100 engines, and the engines were tested on-wing of in-use aircraft. A total of 39 test runs were performed at engine power levels that ranged from idle to military power. The approach adopted for these tests involved extractive sampling with collocated ORS measurements at a distance of approximately 20-25 nozzle diameters downstream of the engine exit plane. The emission indices calculated for carbon dioxide, carbon monoxide, nitric oxide, and several volatile organic compounds showed very good agreement when comparing the extractive and ORS sampling methods.

  3. 77 FR 44429 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Science.gov (United States)

    2012-07-30

    ... this AD: Aeromot AMT 300 Turbo Super Ximango and Stemme S10 VT have a Rotax 914 engine installed, not a...'' under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979), (3) Will not...

  4. Predicting Noise From Aircraft Turbine-Engine Combustors

    Science.gov (United States)

    Gliebe, P.; Mani, R.; Salamah, S.; Coffin, R.; Mehta, Jayesh

    2005-01-01

    COMBUSTOR and CNOISE are computer codes that predict far-field noise that originates in the combustors of modern aircraft turbine engines -- especially modern, low-gaseous-emission engines, the combustors of which sometimes generate several decibels more noise than do the combustors of older turbine engines. COMBUSTOR implements an empirical model of combustor noise derived from correlations between engine-noise data and operational and geometric parameters, and was developed from databases of measurements of acoustic emissions of engines. CNOISE implements an analytical and computational model of the propagation of combustor temperature fluctuations (hot spots) through downstream turbine stages. Such hot spots are known to give rise to far-field noise. CNOISE is expected to be helpful in determining why low-emission combustors are sometimes noisier than older ones, to provide guidance for refining the empirical correlation model embodied in the COMBUSTOR code, and to provide insight on how to vary downstream turbinestage geometry to reduce the contribution of hot spots to far-field noise.

  5. Engine jet entrainment in the near field of an aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, F.; Jacquin, L.; Laverdant, A. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    1997-12-31

    A simplified approach has been applied to analyse the mixing and entrainment processes of the engine exhaust through their interaction with the vortex wake of an aircraft. These investigations are focused on the near filed, extending from exit nozzle to the beginning of the vortex phase (i.e. to about twenty seconds after the wake is generated). This study is performed using an integral model and a numerical simulation for a two-engine large civil aircraft. The properties of the wing-tip vortices on the calculation of the dilution ratio (defined as a tracer concentration) have been shown. The mixing process is also affected by the buoyancy effect, but only after the jet regime, when the trapping in the vortex core has occurred. Qualitative comparison with contrail photography shows similar features. Finally the distortion and stretching of the plume streamlines inside the vortices can be observed, and the role of the descent of the vortices on the maximum tracer concentration has been discussed. (author) 19 refs.

  6. Conceptual study of advanced VTOL transport aircraft engine; Kosoku VTOL kiyo engine no gainen kento

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y.; Endo, M.; Matsuda, Y.; Sugiyama, N.; Watanabe, M.; Sugahara, N.; Yamamoto, K. [National Aerospace Laboratory, Tokyo (Japan)

    1996-04-01

    This report proposes the concept of an ultra-low noise engine for advanced high subsonic VTOL transport aircraft, and discusses its technological feasibility. As one of the applications of the previously reported `separated core turbofan engine,` the conceptual engine is composed of 3 core engines, 2 cruise fan engines for high subsonic cruising and 6 lift fan engines producing thrust of 98kN (10000kgf)/engine. The core turbojet engine bleeds a large amount of air at the outlet of a compressor to supply driving high-pressure air for fans to other engines. The lift fan engine is composed of a lift fan, driving combustor, turbine and speed reduction gear, and is featured by not only high operation stability and thin fan engine like a separated core engine but also ultra-low noise operation. The cruise fan engine adopts the same configuration as the lift fan engine. Since this engine configuration has no technological problems difficult to be overcome, its high technological feasibility is expected. 6 refs., 7 figs., 5 tabs.

  7. Inlet, engine, airframe controls integration development for supercruising aircraft

    Science.gov (United States)

    Houchard, J. H.; Carlin, C. M.; Tjonneland, E.

    1983-01-01

    In connection with a consideration of advanced military aircraft systems, attention is given to research for improving the technology of the design of supersonic cruise aircraft. Syberg et al. (1981) have shown that an analytic design method is now available to accurately predict the flow characteristics of axisymmetric supersonic inlets, including off-design angle of attack operation. On the basis of information regarding the inlet flow characteristics, the control system designer can begin the inlet design and development, before wind tunnel testing has begun. The present investigation is concerned with details and status of inlet control technology. A detailed representation of a supersonic propulsion system is developed. This development demonstrates the feasibility of the selected hybrid computational concept.

  8. The Pilatus Unmanned Aircraft System for Lower Atmospheric Research

    Energy Technology Data Exchange (ETDEWEB)

    de Boer, Gijs; Palo, Scott; Agrow, Brian; LoDolce, Gabriel; Mack, James; Gao, Ru-Shan; Telg, Hagen; Trussell, Cameron; Fromm, Joshua; Long, Charles N.; Bland, Geoff I.; Maslanik, James; Schmid, Beat; Hock, Terry

    2016-04-28

    This paper presents the University of Colorado Pilatus unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 meters and a maximum take off weight of 25 kg and is pow-ered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the orientation offset between it and the upward looking radiation sensor. Using measurements from both of these sensors, a cor-rection is applied to the raw measurements to correct for aircraft attitude and sensor tilt relative to he sun. The data acquisition system was designed from the ground up in order to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors generally agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as would be expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be expected due to uneven heating of the sensor

  9. The Pilatus unmanned aircraft system for lower atmospheric research

    Science.gov (United States)

    de Boer, Gijs; Palo, Scott; Argrow, Brian; LoDolce, Gabriel; Mack, James; Gao, Ru-Shan; Telg, Hagen; Trussel, Cameron; Fromm, Joshua; Long, Charles N.; Bland, Geoff; Maslanik, James; Schmid, Beat; Hock, Terry

    2016-04-01

    This paper presents details of the University of Colorado (CU) "Pilatus" unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might

  10. The pilatus unmanned aircraft system for lower atmospheric research

    Directory of Open Access Journals (Sweden)

    G. de Boer

    2015-11-01

    Full Text Available This paper presents details of the University of Colorado (CU Pilatus unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take off weight of 25 kg and is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU and characterize the attitude of the aircraft and it's orientation to the upward looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured

  11. Design of a Total Pressure Distortion Generator for Aircraft Engine Testing

    OpenAIRE

    Cramer, Kevin Brendan

    2002-01-01

    Design of Total Pressure Distortion Generator for Aircraft Engine Testing by Kevin B. Cramer Committee Co-Chair: W.F. Oâ Brien Committee Co-Chair: P.S. King Mechanical Engineering (ABSTRACT) A new method and mechanism for generating non-uniform, or distorted, aircraft engine inlet flow is being developed in order to account for dynamic changes during the creation and propagation of the distortion. Total pressure distortions occur in gas turbine engines when the i...

  12. Safety assessment of a metal cask under aircraft engine crash

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hoon [Dept. of Mechanical and Automotive Engineering, Keimyung University, Daegu (Korea, Republic of); Choi, Woo Seok; Seo, Ki Seog [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-04-15

    The structural integrity of a dual-purpose metal cask currently under development by the Korea Radioactive Waste Agency (KORAD) was evaluated, through numerical simulations and a model test, under high-speed missile impact reflecting targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from literature. In the impact scenario, a missile flying horizontally hits the top side of the cask, which is free standing on a concrete pad, with a velocity of 150 m/s. A simplified missile simulating a commercial aircraft engine was designed from an impact load-time function available in literature. In the analyses, the dynamic behavior of the metal cask and the integrity of the containment boundary were assessed. The simulation results were compared with the test results for a 1:3 scale model. Although the dynamic behavior of the cask in the model test did not match exactly with the prediction from the numerical simulation, other structural responses, such as the acceleration and strain history during the impact, showed very good agreement. Moreover, the containment function of the cask survived the missile impact as expected from the numerical simulation. Thus, the procedure and methodology adopted in the structural numerical analyses were successfully validated.

  13. Empirical Research In Engineering Design

    DEFF Research Database (Denmark)

    Ahmed, Saeema

    2007-01-01

    Increasingly engineering design research involves the use of empirical studies that are conducted within an industrial environment [Ahmed, 2001; Court 1995; Hales 1987]. Research into the use of information by designers or understanding how engineers build up experience are examples of research...... of research issues. This paper describes case studies of empirical research carried out within industry in engineering design focusing upon information, knowledge and experience in engineering design. The paper describes the research methods employed, their suitability for the particular research aims...

  14. Real-time measurements of jet aircraft engine exhaust.

    Science.gov (United States)

    Rogers, Fred; Arnott, Pat; Zielinska, Barbara; Sagebiel, John; Kelly, Kerry E; Wagner, David; Lighty, JoAnn S; Sarofim, Adel F

    2005-05-01

    Particulate-phase exhaust properties from two different types of ground-based jet aircraft engines--high-thrust and turboshaft--were studied with real-time instruments on a portable pallet and additional time-integrated sampling devices. The real-time instruments successfully characterized rapidly changing particulate mass, light absorption, and polycyclic aromatic hydrocarbon (PAH) content. The integrated measurements included particulate-size distributions, PAH, and carbon concentrations for an entire test run (i.e., "run-integrated" measurements). In all cases, the particle-size distributions showed single modes peaking at 20-40nm diameter. Measurements of exhaust from high-thrust F404 engines showed relatively low-light absorption compared with exhaust from a turboshaft engine. Particulate-phase PAH measurements generally varied in phase with both net particulate mass and with light-absorbing particulate concentrations. Unexplained response behavior sometimes occurred with the real-time PAH analyzer, although on average the real-time and integrated PAH methods agreed within the same order of magnitude found in earlier investigations.

  15. Prototype-Technology Evaluator and Research Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Area-I team has developed and flight tested the unmanned Prototype-Technology Evaluation and Research Aircraft or PTERA ("ptera" being Greek for wing, or...

  16. Materials Engineering Research Facility (MERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s Materials Engineering Research Facility (MERF) enables engineers to develop manufacturing processes for producing advanced battery materials in sufficient...

  17. The rotor systems research aircraft - A flying wind tunnel

    Science.gov (United States)

    Linden, A. W.; Hellyar, M. W.

    1974-01-01

    The Sikorsky Aircraft division of United Aircraft Corporation is constructing two uniquely designed Rotor Systems Research Aircraft (RSRA). These aircraft will be used through the 1980's to comparatively test many different types of rotors - articulated, hingeless, teetering, and gimballed, as well as advanced rotor concepts, such as reverse velocity and variable diameter rotors. The RSRA combines a new airframe with existing Sikorsky H-3 (S-61) dynamic components. A force measurement system is incorporated to permit accurate evaluation of significant rotor characteristics. Both rotor and fixed-wing control systems are provided, appropriately integrated for operation in the pure helicopter mode, compound helicopter mode, and fixed-wing mode. The RSRA is the first rotary wing aircraft designed with a crew escape system, including a pyrotechnic system to sever the main rotor blades.

  18. 75 FR 36034 - Advance Notice of Proposed Rulemaking on Lead Emissions From Piston-Engine Aircraft Using Leaded...

    Science.gov (United States)

    2010-06-24

    ...-Engine Aircraft Using Leaded Aviation Gasoline; Extension of Comment Period AGENCY: Environmental... Rulemaking on Lead Emissions From Piston-Engine Aircraft Using Leaded Aviation Gasoline (hereinafter referred...-engine aircraft, or if insufficient information exists, to commence a study. In addition to...

  19. 75 FR 7947 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Model TAE 125-01 Reciprocating...

    Science.gov (United States)

    2010-02-23

    ... aircraft equipped with a TAE 125-01 engine. This was found to be mainly the result of a blockage of the... specified products. The MCAI states: An in-flight engine shutdown incident was reported on an aircraft... the following new AD: 2010-04-06 Thielert Aircraft Engines GmbH: Amendment 39-16199. Docket No....

  20. 75 FR 17084 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Model TAE 125-01 Reciprocating...

    Science.gov (United States)

    2010-04-05

    ... Federal holidays. Fax: (202) 493-2251. Contact Thielert Aircraft Engines GmbH, Platanenstrasse 14 D-09350.... 39.13 by adding the following new AD: Thielert Aircraft Engines GmbH: Docket No. FAA-2010-0308... Airworthiness Directives (ADs) (b) None. Applicability (c) This AD applies to Thielert Aircraft Engines...

  1. Role of structural noise in aircraft pressure cockpit from vibration action of new-generation engines

    Science.gov (United States)

    Baklanov, V. S.

    2016-07-01

    The evolution of new-generation aircraft engines is transitioning from a bypass ratio of 4-6 to an increased ratio of 8-12. This is leading to substantial broadening of the vibration spectrum of engines with a shift to the low-frequency range due to decreased rotation speed of the fan rotor, in turn requiring new solutions to decrease structural noise from engine vibrations to ensure comfort in the cockpits and cabins of aircraft.

  2. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review

    Science.gov (United States)

    Masiol, Mauro; Harrison, Roy M.

    2014-10-01

    Civil aviation is fast-growing (about +5% every year), mainly driven by the developing economies and globalisation. Its impact on the environment is heavily debated, particularly in relation to climate forcing attributed to emissions at cruising altitudes and the noise and the deterioration of air quality at ground-level due to airport operations. This latter environmental issue is of particular interest to the scientific community and policymakers, especially in relation to the breach of limit and target values for many air pollutants, mainly nitrogen oxides and particulate matter, near the busiest airports and the resulting consequences for public health. Despite the increased attention given to aircraft emissions at ground-level and air pollution in the vicinity of airports, many research gaps remain. Sources relevant to air quality include not only engine exhaust and non-exhaust emissions from aircraft, but also emissions from the units providing power to the aircraft on the ground, the traffic due to the airport ground service, maintenance work, heating facilities, fugitive vapours from refuelling operations, kitchens and restaurants for passengers and operators, intermodal transportation systems, and road traffic for transporting people and goods in and out to the airport. Many of these sources have received inadequate attention, despite their high potential for impact on air quality. This review aims to summarise the state-of-the-art research on aircraft and airport emissions and attempts to synthesise the results of studies that have addressed this issue. It also aims to describe the key characteristics of pollution, the impacts upon global and local air quality and to address the future potential of research by highlighting research needs.

  3. Local damage to Ultra High Performance Concrete structures caused by an impact of aircraft engine missiles

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, Werner [Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institute, Eckerstrasse 4, D-79104 Freiburg (Germany); Noeldgen, Markus, E-mail: mnoeldgen@schuessler-plan.d [Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institute, Eckerstrasse 4, D-79104 Freiburg (Germany); Schuessler-Plan Engineering Ltd., St.-Franziskus-Str. 148, D-40470 Duesseldorf (Germany); Strassburger, Elmar; Thoma, Klaus [Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institute, Eckerstrasse 4, D-79104 Freiburg (Germany); Fehling, Ekkehard [University of Kassel, Chair of Structural Concrete, Kurt-Wolters Str. 3, D-34109 Kassel (Germany)

    2010-10-15

    Research highlights: {yields} Experimental series on UHPC panels subjected to aircraft engine impact. {yields} Improved ballistic limit of fiber reinforced UHPC in comparison to conventional R/C. {yields} Detailed investigation of failure mechanisms of fiber reinforced UHPC panel. - Abstract: The impact of an aircraft engine missile causes high stresses, deformations and a severe local damage to conventional reinforced concrete. As a consequence the design of R/C protective structural elements results in components with rather large dimensions. Fiber reinforced Ultra High Performance Concrete (UHPC) is a concrete based material which combines ultra high strength, high packing density and an improved ductility with a significantly increased energy dissipation capacity due to the addition of fiber reinforcement. With those attributes the material is potentially suitable for improved protective structural elements with a reduced need for material resources. The presented paper reports on an experimental series of scaled aircraft engine impact tests with reinforced UHPC panels. The investigations are focused on the material behavior and the damage intensity in comparison to conventional concrete. The fundamental work of is taken as reference for the evaluation of the results. The impactor model of a Phantom F4 GE-J79 engine developed and validated by Sugano et al. is used as defined in the original work. In order to achieve best comparability, the experimental configuration and method are adapted for the UHPC experiments. With 'penetration', 'scabbing' and 'perforation' all relevant damage modes defined in are investigated so that a full set of results are provided for a representative UHPC structural configuration.

  4. Automation of reverse engineering process in aircraft modeling and related optimization problems

    Science.gov (United States)

    Li, W.; Swetits, J.

    1994-01-01

    During the year of 1994, the engineering problems in aircraft modeling were studied. The initial concern was to obtain a surface model with desirable geometric characteristics. Much of the effort during the first half of the year was to find an efficient way of solving a computationally difficult optimization model. Since the smoothing technique in the proposal 'Surface Modeling and Optimization Studies of Aerodynamic Configurations' requires solutions of a sequence of large-scale quadratic programming problems, it is important to design algorithms that can solve each quadratic program in a few interactions. This research led to three papers by Dr. W. Li, which were submitted to SIAM Journal on Optimization and Mathematical Programming. Two of these papers have been accepted for publication. Even though significant progress has been made during this phase of research and computation times was reduced from 30 min. to 2 min. for a sample problem, it was not good enough for on-line processing of digitized data points. After discussion with Dr. Robert E. Smith Jr., it was decided not to enforce shape constraints in order in order to simplify the model. As a consequence, P. Dierckx's nonparametric spline fitting approach was adopted, where one has only one control parameter for the fitting process - the error tolerance. At the same time the surface modeling software developed by Imageware was tested. Research indicated a substantially improved fitting of digitalized data points can be achieved if a proper parameterization of the spline surface is chosen. A winning strategy is to incorporate Dierckx's surface fitting with a natural parameterization for aircraft parts. The report consists of 4 chapters. Chapter 1 provides an overview of reverse engineering related to aircraft modeling and some preliminary findings of the effort in the second half of the year. Chapters 2-4 are the research results by Dr. W. Li on penalty functions and conjugate gradient methods for

  5. Concurrent engineering research center

    Science.gov (United States)

    Callahan, John R.

    1995-01-01

    The projects undertaken by The Concurrent Engineering Research Center (CERC) at West Virginia University are reported and summarized. CERC's participation in the Department of Defense's Defense Advanced Research Project relating to technology needed to improve the product development process is described, particularly in the area of advanced weapon systems. The efforts committed to improving collaboration among the diverse and distributed health care providers are reported, along with the research activities for NASA in Independent Software Verification and Validation. CERC also takes part in the electronic respirator certification initiated by The National Institute for Occupational Safety and Health, as well as in the efforts to find a solution to the problem of producing environment-friendly end-products for product developers worldwide. The 3M Fiber Metal Matrix Composite Model Factory Program is discussed. CERC technologies, facilities,and personnel-related issues are described, along with its library and technical services and recent publications.

  6. 民用飞机控制律设计系统工程过程研究%Research on System Engineering Process of Civil Aircraft Control Law Design

    Institute of Scientific and Technical Information of China (English)

    谢陵

    2015-01-01

    Model based design method has great advantage in configuration control ,life cycle management and others , compare with document based design .Control law is the key part of civil aircraft flight control system ,but the control law design has some diffident with the system design .Combine the civil aircraft control law and system engineering process , discussing the system engineering process practice including requirements definition ,requirements analysis ,architecture design ,development and implement ,configuration management ,validation ,verification .%基于模型的设计方法与基于文档的设计方法相比,在构型控制、全寿命周期管理等方面具有很大优势。控制律设计为民用飞机飞控系统的核心组成部分。将民机飞控系统控制律与系统工程过程结合,包括需求定义、需求分析、架构设计、开发实施、构型管理、确认、验证以及交付等系统工程实际应用,可有效组织开发工作,提高效率。

  7. Preliminary study of advanced turboprop and turboshaft engines for light aircraft. [cost effectiveness

    Science.gov (United States)

    Knip, G.; Plencner, R. M.; Eisenberg, J. D.

    1980-01-01

    The effects of engine configuration, advanced component technology, compressor pressure ratio and turbine rotor-inlet temperature on such figures of merit as vehicle gross weight, mission fuel, aircraft acquisition cost, operating, cost and life cycle cost are determined for three fixed- and two rotary-wing aircraft. Compared with a current production turboprop, an advanced technology (1988) engine results in a 23 percent decrease in specific fuel consumption. Depending on the figure of merit and the mission, turbine engine cost reductions required to achieve aircraft cost parity with a current spark ignition reciprocating (SIR) engine vary from 0 to 60 percent and from 6 to 74 percent with a hypothetical advanced SIR engine. Compared with a hypothetical turboshaft using currently available technology (1978), an advanced technology (1988) engine installed in a light twin-engine helicopter results in a 16 percent reduction in mission fuel and about 11 percent in most of the other figures of merit.

  8. 76 FR 55293 - Special Conditions: Diamond Aircraft Industries, Model DA-40NG; Electronic Engine Control (EEC...

    Science.gov (United States)

    2011-09-07

    ... TRANSPORTATION Federal Aviation Administration 14 CFR Part 23 Special Conditions: Diamond Aircraft Industries, Model DA-40NG; Electronic Engine Control (EEC) System AGENCY: Federal Aviation Administration (FAA), DOT... Diamond Aircraft Industries (DAI), model DA-40NG airplane. This airplane will have a novel or...

  9. Exploratory flight investigation of aircraft response to the wing vortex wake generated by the augmentor wing jet STOL research aircraft

    Science.gov (United States)

    Jacobsen, R. A.; Drinkwater, F. J., III

    1975-01-01

    A brief exploratory flight program was conducted at Ames Research Center to investigate the vortex wake hazard of a powered-lift STOL aircraft. The study was made by flying an instrumented Cessna 210 aircraft into the wake of the augmentor wing jet STOL research aircraft at separation distances from 1 to 4 n.mi. Characteristics of the wake were evaluated in terms of the magnitude of the upset of the probing aircraft. Results indicated that within 1 n.mi. separation the wake could cause rolling moments in excess of roll control power and yawing moments equivalent to rudder control power of the probe aircraft. Subjective evaluations by the pilots of the Cessna 210 aircraft, supported by response measurements, indicated that the upset caused by the wake of the STOL aircraft was comparable to that of a DC-9 in the landing configuration.

  10. Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper describes how damage propagation can be modeled within the modules of aircraft gas turbine engines. To that end, response surfaces of all sensors are...

  11. Performance Evaluation of Particle Sampling Probes for Emission Measurements of Aircraft Jet Engines

    Science.gov (United States)

    Lee, Poshin; Chen, Da-Ren; Sanders, Terry (Technical Monitor)

    2001-01-01

    Considerable attention has been recently received on the impact of aircraft-produced aerosols upon the global climate. Sampling particles directly from jet engines has been performed by different research groups in the U.S. and Europe. However, a large variation has been observed among published data on the conversion efficiency and emission indexes of jet engines. The variation results surely from the differences in test engine types, engine operation conditions, and environmental conditions. The other factor that could result in the observed variation is the performance of sampling probes used. Unfortunately, it is often neglected in the jet engine community. Particle losses during the sampling, transport, and dilution processes are often not discussed/considered in literatures. To address this issue, we evaluated the performance of one sampling probe by challenging it with monodisperse particles. A significant performance difference was observed on the sampling probe evaluated under different temperature conditions. Thermophoretic effect, nonisokinetic sampling and turbulence loss contribute to the loss of particles in sampling probes. The results of this study show that particle loss can be dramatic if the sampling probe is not well designed. Further, the result allows ones to recover the actual size distributions emitted from jet engines.

  12. A One Dimensional, Time Dependent Inlet/Engine Numerical Simulation for Aircraft Propulsion Systems

    Science.gov (United States)

    Garrard, Doug; Davis, Milt, Jr.; Cole, Gary

    1999-01-01

    The NASA Lewis Research Center (LeRC) and the Arnold Engineering Development Center (AEDC) have developed a closely coupled computer simulation system that provides a one dimensional, high frequency inlet/engine numerical simulation for aircraft propulsion systems. The simulation system, operating under the LeRC-developed Application Portable Parallel Library (APPL), closely coupled a supersonic inlet with a gas turbine engine. The supersonic inlet was modeled using the Large Perturbation Inlet (LAPIN) computer code, and the gas turbine engine was modeled using the Aerodynamic Turbine Engine Code (ATEC). Both LAPIN and ATEC provide a one dimensional, compressible, time dependent flow solution by solving the one dimensional Euler equations for the conservation of mass, momentum, and energy. Source terms are used to model features such as bleed flows, turbomachinery component characteristics, and inlet subsonic spillage while unstarted. High frequency events, such as compressor surge and inlet unstart, can be simulated with a high degree of fidelity. The simulation system was exercised using a supersonic inlet with sixty percent of the supersonic area contraction occurring internally, and a GE J85-13 turbojet engine.

  13. Advancement of proprotor technology. Task 1: Design study summary. [aerodynamic concept of minimum size tilt proprotor research aircraft

    Science.gov (United States)

    1969-01-01

    A tilt-proprotor proof-of-concept aircraft design study has been conducted. The results are presented. The ojective of the contract is to advance the state of proprotor technology through design studies and full-scale wind-tunnel tests. The specific objective is to conduct preliminary design studies to define a minimum-size tilt-proprotor research aircraft that can perform proof-of-concept flight research. The aircraft that results from these studies is a twin-engine, high-wing aircraft with 25-foot, three-bladed tilt proprotors mounted on pylons at the wingtips. Each pylon houses a Pratt and Whitney PT6C-40 engine with a takeoff rating of 1150 horsepower. Empty weight is estimated at 6876 pounds. The normal gross weight is 9500 pounds, and the maximum gross weight is 12,400 pounds.

  14. Nitrogen oxides at the UTLS: Combining observations from research aircraft and in-service aircraft

    Science.gov (United States)

    Ziereis, Helmut; Stratmann, Greta; Schlager, Hans; Gottschaldt, Klaus-Dirk; Rauthe-Schöch, Armin; Zahn, Andreas; Hoor, Peter; van, Peter

    2016-04-01

    Nitrogen oxides have a decisive influence on the chemistry of the upper troposphere and lower stratosphere. They are key constituents of several reaction chains influencing the production of ozone. They also play an essential role in the cycling of hydroxyl radicals and therefore influence the lifetime of methane. Due to their short lifetime and their variety of sources there is still a high uncertainty about the abundance of nitrogen oxides in the UTLS. Dedicated aircraft campaigns aim to study specific atmospheric questions like lightning, long range transport or aircraft emissions. Usually, within a short time period comprehensive measurements are performed within a more or less restricted region. Therefore, especially trace constituents like nitrogen oxides with short lifetime and a variety of different sources are not represented adequately. On the other hand, routine measurements from in-service aircraft allow observations over longer time periods and larger regions. However, it is nearly impossible to influence the scheduling of in-service aircraft and thereby time and space of the observations. Therefore, the combination of dedicated aircraft campaigns and routine observations might supplement each other. For this study we combine nitrogen oxides data sets obtained with the IAGOS-CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) flying laboratory and with the German research aircraft HALO (High altitude and long range research aircraft). Data have been acquired within the IAGOS-CARIBIC project on a monthly base using a Lufthansa Airbus A340-600 since December 2004. About four flights are performed each month covering predominantly northern mid-latitudes. Additional flights have been conducted to destinations in South America and South Africa. Since 2012 HALO has been operational. Nitrogen oxides measurements have been performed during six missions covering mid latitudes, tropical as well as Polar

  15. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions Experiment (APEX) 1 to 3

    Science.gov (United States)

    The f1me particulate matter (PM) emissions from nine commercial aircraft engine models were determined by plume sampling during the three field campaigns of the Aircraft Particle Emissions Experiment (APEX). Ground-based measurements were made primarily at 30 m behind the engine ...

  16. Determination and Applications of Environmental Costs at Different Sized Airports – Aircraft Noise and Engine Emissions.

    OpenAIRE

    Lu, Cherie; Morrell, Peter

    2006-01-01

    With the increasing trend of charging for externalities and the aim of encouraging the sustainable development of the air transport industry, there is a need to evaluate the social costs of these undesirable side effects, mainly aircraft noise and engine emissions, for different airports. The aircraft noise and engine emissions social costs are calculated in monetary terms for five different sized airports, ranging from hub airports to small regional airports. The number of residences within ...

  17. Jet aircraft engine exhaust emissions database development: Year 1990 and 2015 scenarios

    Science.gov (United States)

    Landau, Z. Harry; Metwally, Munir; Vanalstyne, Richard; Ward, Clay A.

    1994-01-01

    Studies relating to environmental emissions associated with the High Speed Civil Transport (HSCT) military jet and charter jet aircraft were conducted by McDonnell Douglas Aerospace Transport Aircraft. The report includes engine emission results for baseline 1990 charter and military scenario and the projected jet engine emissions results for a 2015 scenario for a Mach 1.6 HSCT charter and military fleet. Discussions of the methodology used in formulating these databases are provided.

  18. Initiation of Damage to the Hot Part of Aircraft Turbine Engines

    Directory of Open Access Journals (Sweden)

    Szczepankowski Andrzej

    2016-08-01

    Full Text Available In the paper, the initiation causes of damage to flame tubes of a basic combustion chamber and turbine units, which are the most common in the operation process of aircraft turbine engines (ATE, were presented. They were illustrated with the use of numerous examples of progressing degradation of the surface condition of parts and components of various types of aircraft engines which was found during endoscopic controls.

  19. Design of materials for noise reduction in aircraft engines

    Energy Technology Data Exchange (ETDEWEB)

    Paun, F.; Gasser, St. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), Dept. of Metallic Materials and Processing, 92 - Chatillon (France); Leylekian, L. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), Dept. of Composite Systems and Materials, 92 - Chatillon (France)

    2003-01-01

    We would like to present in this paper, research that ONERA teams are making in the field of acoustic absorption materials at high temperatures. Some significant results are shown as well as some important findings for future investigation. Research performed in understanding the acoustic and mechanical behaviour of different classes of porous materials and developed processing methods will be described. Our interest was to demonstrate the feasibility of reducing noise produced by aeronautical turbo engines by means of appropriate passive acoustic treatments applied directly to the exhausters. (authors)

  20. Reduction of JT8D powered aircraft noise by engine refanning

    Science.gov (United States)

    Stitt, L. E.; Medeiros, A. A.

    1974-01-01

    The purpose of the Refan Program is to establish the technical feasibility of substantially reducing the noise levels of existing JT8D powered aircraft. This would be accomplished by retrofitting the existing fleet with quieter refan engines and new acoustically treated nacelles. No major technical problems exist that preclude the development and installation of refanned engines on aircraft currently powered by the JT8D engine. The refan concept is technically feasible and provides calculated noise reductions of from 7 to 8 EPNdB for the B727-200 aircraft and from 10 to 12 EPNdB for the DC-9-32 aircraft at the FAR Part 36 measuring stations. Corresponding reductions in the 90 EPNdB footprint area are estimated to vary from about 70 percent for the DC-9 to about 80 percent for the B727.

  1. REVERSE ENGINEERING IN MODELING OF AIRCRAFT PROPELLER BLADE - FIRST STEP TO PRODUCT OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    Muhammad Yasir Anwar

    2014-12-01

    Full Text Available ABSTRACT: Propeller aircrafts have had many ups and downs throughout their use in the aviation history. Due to the current economic recession and price hikes in fuels, propeller aircrafts may yet again be a choice for aerial transport and has thus re-emerged as an active area for research. On modern propeller aircrafts old aluminum propellers are being replaced with fiber reinforced composite propellers. However, owing to their reliability, strength, and integrity, aluminum propellers are still used in military aircrafts. One of the challenges that engineers of these aircraft-type have had to deal with is the non-availability of engineering drawings of these propellers. It is practically impossible to carry out any study, research or modification on such propellers in the absence of correct CAD data. This article proposes a methodology wherein a CAD model of a C-130 aircraft propeller blade can be constructed using reverse engineering techniques. Such a model would help in future aerodynamic as well as structural analyses which includes investigation on structural integrity and the fluid dynamics characteristics of propeller blades. Different steps involved in this process are discussed; starting from laser scanning to obtain the cloud of points data and subsequently generating a CAD model in a commercial CAD software. The model is then imported into an analysis software where quality surface meshes are generated using tetrahedral elements. The purpose is to prepare a meshed model for future computational analysis including CFD (Computational Fluid Dynamics and FE (Finite Element analysis. ABSTRAK: Pesawat bebaling mempunyai tempoh pasang surutnya sepanjang penggunaanya dalam sejarah penerbangan. Kini disebabkan oleh kemelesetan ekonomi dan kenaikan harga minyak, pesawat bebaling mungkin akan merupakan pengangkutan udara pilihan dan seterusnya muncul semula sebagai ruangan aktif penyelidikan. Pada pesawat bebaling moden, bebaling aluminium yang

  2. MPT Prediction of Aircraft-Engine Fan Noise

    Science.gov (United States)

    Connell, Stuart D.

    2004-01-01

    A collection of computer programs has been developed that implements a procedure for predicting multiple-pure-tone (MPT) noise generated by fan blades of an aircraft engine (e.g., a turbofan engine). MPT noise arises when the fan is operating with supersonic relative tip Mach No. Under this flow condition, there is a strong upstream running shock. The strength and position of this shock are very sensitive to blade geometry variations. For a fan where all the blades are identical, the primary tone observed upstream of the fan will be the blade passing frequency. If there are small variations in geometry between blades, then tones below the blade passing frequency arise MPTs. Stagger angle differences as small as 0.1 can give rise to significant MPT. It is also noted that MPT noise is more pronounced when the fan is operating in an unstarted mode. Computational results using a three-dimensional flow solver to compute the complete annulus flow with non-uniform fans indicate that MPT noise can be estimated in a relatively simple way. Hence, once the effect of a typical geometry variation of one blade in an otherwise uniform blade row is known, the effect of all the blades being different can be quickly computed via superposition. Two computer programs that were developed as part of this work are used in conjunction with a user s computational fluid dynamics (CFD) code to predict MPT spectra for a fan with a specified set of geometric variations: (1) The first program ROTBLD reads the users CFD solution files for a single blade passage via an API (Application Program Interface). There are options to replicate and perturb the geometry with typical variations stagger, camber, thickness, and pitch. The multi-passage CFD solution files are then written in the user s file format using the API. (2) The second program SUPERPOSE requires two input files: the first is the circumferential upstream pressure distribution extracted from the CFD solution on the multi-passage mesh

  3. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 2

    Science.gov (United States)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit a design of a multicylinder engine for eventual flight applications.

  4. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 3

    Science.gov (United States)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications.

  5. Thermodynamic efficiency of present types of internal combustion engines for aircraft

    Science.gov (United States)

    Lucke, Charles E

    1917-01-01

    Report presents requirements of internal combustion engines suitable for aircraft. Topics include: (1) service requirements for aeronautic engines - power versus weight, reliability, and adaptability factors, (2) general characteristics of present aero engines, (3) aero engine processes and functions of parts versus power-weight ratio, reliability, and adaptability factors, and (4) general arrangement, form, proportions, and materials of aero parts - power-weight ratio, reliability, and adaptability.

  6. Commercial aircraft engine emissions characterization of in-use aircraft at Hartsfield-Jackson Atlanta International Airport.

    Science.gov (United States)

    Herndon, Scott C; Jayne, John T; Lobo, Prem; Onasch, Timothy B; Fleming, Gregg; Hagen, Donald E; Whitefield, Philip D; Miake-Lye, Richard C

    2008-03-15

    The emissions from in-use commercial aircraft engines have been analyzed for selected gas-phase species and particulate characteristics using continuous extractive sampling 1-2 min downwind from operational taxi- and runways at Hartsfield-Jackson Atlanta International Airport. Using the aircraft tail numbers, 376 plumes were associated with specific engine models. In general, for takeoff plumes, the measured NOx emission index is lower (approximately 18%) than that predicted by engine certification data corrected for ambient conditions. These results are an in-service observation of the practice of "reduced thrust takeoff". The CO emission index observed in ground idle plumes was greater (up to 100%) than predicted by engine certification data for the 7% thrust condition. Significant differences are observed in the emissions of black carbon and particle number among different engine models/technologies. The presence of a mode at approximately 65 nm (mobility diameter) associated with takeoff plumes and a smaller mode at approximately 25 nm associated with idle plumes has been observed. An anticorrelation between particle mass loading and particle number concentration is observed.

  7. REVERSE ENGINEERING IN MODELING OF AIRCRAFT PROPELLER BLADE - FIRST STEP TO PRODUCT OPTIMIZATION

    OpenAIRE

    Muhammad Yasir Anwar; Shahid Ikramullah; Farrukh Mazhar

    2014-01-01

    ABSTRACT: Propeller aircrafts have had many ups and downs throughout their use in the aviation history. Due to the current economic recession and price hikes in fuels, propeller aircrafts may yet again be a choice for aerial transport and has thus re-emerged as an active area for research. On modern propeller aircrafts old aluminum propellers are being replaced with fiber reinforced composite propellers. However, owing to their reliability, strength, and integrity, aluminum propellers are sti...

  8. Empirically Driven Software Engineering Research

    Science.gov (United States)

    Rombach, Dieter

    Software engineering is a design discipline. As such, its engineering methods are based on cognitive instead of physical laws, and their effectiveness depends highly on context. Empirical methods can be used to observe the effects of software engineering methods in vivo and in vitro, to identify improvement potentials, and to validate new research results. This paper summarizes both the current body of knowledge and further challenges wrt. empirical methods in software engineering as well as empirically derived evidence regarding software typical engineering methods. Finally, future challenges wrt. education, research, and technology transfer will be outlined.

  9. A hybrid PCA-CART-MARS-based prognostic approach of the remaining useful life for aircraft engines.

    Science.gov (United States)

    Sánchez Lasheras, Fernando; García Nieto, Paulino José; de Cos Juez, Francisco Javier; Mayo Bayón, Ricardo; González Suárez, Victor Manuel

    2015-03-23

    Prognostics is an engineering discipline that predicts the future health of a system. In this research work, a data-driven approach for prognostics is proposed. Indeed, the present paper describes a data-driven hybrid model for the successful prediction of the remaining useful life of aircraft engines. The approach combines the multivariate adaptive regression splines (MARS) technique with the principal component analysis (PCA), dendrograms and classification and regression trees (CARTs). Elements extracted from sensor signals are used to train this hybrid model, representing different levels of health for aircraft engines. In this way, this hybrid algorithm is used to predict the trends of these elements. Based on this fitting, one can determine the future health state of a system and estimate its remaining useful life (RUL) with accuracy. To evaluate the proposed approach, a test was carried out using aircraft engine signals collected from physical sensors (temperature, pressure, speed, fuel flow, etc.). Simulation results show that the PCA-CART-MARS-based approach can forecast faults long before they occur and can predict the RUL. The proposed hybrid model presents as its main advantage the fact that it does not require information about the previous operation states of the input variables of the engine. The performance of this model was compared with those obtained by other benchmark models (multivariate linear regression and artificial neural networks) also applied in recent years for the modeling of remaining useful life. Therefore, the PCA-CART-MARS-based approach is very promising in the field of prognostics of the RUL for aircraft engines.

  10. A Hybrid PCA-CART-MARS-Based Prognostic Approach of the Remaining Useful Life for Aircraft Engines

    Directory of Open Access Journals (Sweden)

    Fernando Sánchez Lasheras

    2015-03-01

    Full Text Available Prognostics is an engineering discipline that predicts the future health of a system. In this research work, a data-driven approach for prognostics is proposed. Indeed, the present paper describes a data-driven hybrid model for the successful prediction of the remaining useful life of aircraft engines. The approach combines the multivariate adaptive regression splines (MARS technique with the principal component analysis (PCA, dendrograms and classification and regression trees (CARTs. Elements extracted from sensor signals are used to train this hybrid model, representing different levels of health for aircraft engines. In this way, this hybrid algorithm is used to predict the trends of these elements. Based on this fitting, one can determine the future health state of a system and estimate its remaining useful life (RUL with accuracy. To evaluate the proposed approach, a test was carried out using aircraft engine signals collected from physical sensors (temperature, pressure, speed, fuel flow, etc.. Simulation results show that the PCA-CART-MARS-based approach can forecast faults long before they occur and can predict the RUL. The proposed hybrid model presents as its main advantage the fact that it does not require information about the previous operation states of the input variables of the engine. The performance of this model was compared with those obtained by other benchmark models (multivariate linear regression and artificial neural networks also applied in recent years for the modeling of remaining useful life. Therefore, the PCA-CART-MARS-based approach is very promising in the field of prognostics of the RUL for aircraft engines.

  11. Evaluation of Methods for the Determination of Black Carbon Emissions from an Aircraft Gas Turbine Engine

    Science.gov (United States)

    The emissions from aircraft gas turbine engines consist of nanometer size black carbon (BC) particles plus gas-phase sulfur and organic compounds which undergo gas-to-particle conversion downstream of the engine as the plume cools and dilutes. In this study, four BC measurement ...

  12. Approximate Nonlinear Modeling of Aircraft Engine Surge Margin Based on Equilibrium Manifold Expansion

    Institute of Scientific and Technical Information of China (English)

    LIU Xiaofeng; ZHAO Lei

    2012-01-01

    Stable operation of aircraft engine compressions is constrained by rotating surge.In this paper,an approximate nonlinear surge margin model of aircraft engine compression system by using equilibrium manifold is presented.Firstly,this paper gives an overview of the current state of modeling aerodynamic flow instabilities in engine compressors.Secondly,the expansion form of equilibrium manifold is introduced,and the choosing scheduling variable method is discussed.Then,this paper also gives the identification procedure of modeling the approximate nonlinear model.Finally,the modeling and simulations with high pressure (HP) compressor surge margin of the aircraft engine show that this real-time model has the same accuracy with the thermodynamic model,but has simpler structure and shorter computation time.

  13. Armstrong Flight Research Center Research Technology and Engineering Report 2015

    Science.gov (United States)

    Voracek, David F.

    2016-01-01

    I am honored to endorse the 2015 Neil A. Armstrong Flight Research Center’s Research, Technology, and Engineering Report. The talented researchers, engineers, and scientists at Armstrong are continuing a long, rich legacy of creating innovative approaches to solving some of the difficult problems and challenges facing NASA and the aerospace community.Projects at NASA Armstrong advance technologies that will improve aerodynamic efficiency, increase fuel economy, reduce emissions and aircraft noise, and enable the integration of unmanned aircraft into the national airspace. The work represented in this report highlights the Center’s agility to develop technologies supporting each of NASA’s core missions and, more importantly, technologies that are preparing us for the future of aviation and space exploration.We are excited about our role in NASA’s mission to develop transformative aviation capabilities and open new markets for industry. One of our key strengths is the ability to rapidly move emerging techniques and technologies into flight evaluation so that we can quickly identify their strengths, shortcomings, and potential applications.This report presents a brief summary of the technology work of the Center. It also contains contact information for the associated technologists responsible for the work. Don’t hesitate to contact them for more information or for collaboration ideas.

  14. Fault diagnosis and isolation of the componentand sensor for aircraft engine

    Institute of Scientific and Technical Information of China (English)

    QIU Xiao-jie; HUANG Jin-quan; LU Feng; LIU Nan

    2012-01-01

    Aircraft engine component and sensor fault detection and isolation approach was proposed,which included fault type detection module and component-sensor simultaneous fault isolation module.The approach can not only distinguish among sensor fault,component fault and component-sensor simultaneous fault,but also isolate and locate sensor fault and the type of engine component fault when the engine component fault and the sensor faults occur simultaneously.The double-threshold mechanism has been proposed,in which the fault diagnostic threshold changed with the sensor type and the engine condition,and it greatly improved the accuracy and robustness of sensor fault diagnosis system.Simulation results show that the approach proposed can diagnose and isolate the sensor and engine component fault with improved accuracy.It effectively improves the fault diagnosis ability of aircraft engine.

  15. Non-intrusive measurement of emission indices. A new approach to the evaluation of infrared spectra emitted by aircraft engine exhaust gases

    Energy Technology Data Exchange (ETDEWEB)

    Lindermeir, E.; Haschberger, P.; Tank, V. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Optoelektronik

    1997-12-31

    A non-intrusive method is used to determine the emission indices of a research aircraft`s engine in-flight. The principle is based on the Fourier Transform Infrared Spectrometer MIROR which was specifically designed and built for operation aboard aircrafts. This device measures the spectrum of the infrared radiation emitted by the hot exhaust gas under cruise conditions. From these spectra mixing ratios and emission indices can be derived. An extension to previously applied evaluation schemes is proposed: Whereas formerly the plume was assumed a homogeneous layer of gas, temperature and concentration profiles are now introduced to the evaluation procedure. (author) 5 refs.

  16. Numerical Analysis of Dynamic Properties of Nonlinear Rotor Systems of Aircraft Jet Engines

    OpenAIRE

    Ján Kamenický; Eduard Malenovský; Jaroslav Zapomel

    2000-01-01

    The paper deals with a manner of modelling and results of the calculation of dynamic properties and vibrations of the double spool aircraft turbofan engine AI-25, used in aeroplanes L-39 (Albatross). The calculations take into account the flexibilities of the engine's both coaxial rotors, their supports (including their hydrodynamic dampers), and its casing as well. Besides the short description of the engine design peculiarities and of its calculating model, there is also a short description...

  17. The ahead project: Advanced hybrid engines for aircraft development

    NARCIS (Netherlands)

    Rao, A.G.; Yin, F.

    2013-01-01

    Aviation is an ever-increasing market and more passengers and cargo are carried each year. The world is becoming ever more connected. However, this does come at a price: aviation has a marked in!uence on the environment. If aviation is to thrive in the future, breakthroughs in aircraft design and pr

  18. Effective density measurements of fresh particulate matter emitted by an aircraft engine

    Science.gov (United States)

    Abegglen, Manuel; Durdina, Lukas; Mensah, Amewu; Brem, Benjamin; Corbin, Joel; Rindlisbacher, Theo; Wang, Jing; Lohmann, Ulrike; Sierau, Berko

    2014-05-01

    Introduction Carbonaceous particulate matter (commonly referred to as soot), once emitted into the atmosphere affects the global radiation budget by absorbing and scattering solar radiation. Furthermore, it can alter the formation, lifetime and distribution of clouds by acting as cloud condensation nuclei (CCN) or ice nuclei (IN). The ability of soot particles to act as CCN and IN depends on their size, morphology and chemical composition. Soot particles are known to consist of spherical, primary particles that tend to arrange in chain-like structures. The structure of soot particles typically changes in the atmosphere when the particles are coated with secondary material, thus changing their radiative and cloud microphysical properties. Bond et al. (Journal of Geophysical Research, 2013: Bounding the Role of Black Carbon in the Climate System.) estimated the total industrial-era (1750 to 2005) climate forcing of black carbon to be 1.1 W/m2 ranging from the uncertainty bonds of 0.17 W/m2 to 2.1 W/m2. Facing the large uncertainty range, there is a need for a better characterization of soot particles abundant in the atmosphere. We provide experimental data on physical properties such as size, mass, density and morphology of freshly produced soot particles from a regularly used aircraft engine and from four laboratory generated soot types. This was done using a Differential Mobility Analyzer (DMA) and a Centrifugal Particle Mass Analyzer (CPMA), a relatively new instrument that records mass distributions of aerosol particles. Experimental Aircraft engine exhaust particles were collected and analysed during the Aviation Particle Regulatory Instrumentation Demonstration Experiments (A-PRIDE) campaigns in a test facility at the Zurich airport in November 2012 and August 2013. The engines were operated at different relative thrust levels spanning 7 % to 100 %. The sample was led into a heated line in order to prevent condensation of water and evolution of secondary

  19. Recent Developments in U.S. Engine Noise Reduction Research

    Science.gov (United States)

    Bridges, James; Envia, Edmane; Huff, Dennis

    2001-01-01

    Aircraft engine noise research in the United States has made considerable progress over the past 10 years for both subsonic and supersonic flight applications. The Advanced Subsonic Technology (AST) Noise Reduction Program started in 1994 and will be completed in 2001 without major changes to program plans and funding levels. As a result, significant progress has been made toward the goal of reducing engine source noise by 6 EPNdB (Effective Perceived Noise level in decibels). This paper will summarize some of the significant accomplishments from the subsonic engine noise research performed over the past 10 years. The review is by no means comprehensive and only represents a sample of major accomplishments.

  20. Research on uncertainty in measurement assisted alignment in aircraft assembly

    Institute of Scientific and Technical Information of China (English)

    Chen Zhehan; Du Fuzhou; Tang Xiaoqing

    2013-01-01

    Operations in assembling and joining large size aircraft components are changed to novel digital and flexible ways by digital measurement assisted alignment. Positions and orientations (P&O) of aligned components are critical characters which assure geometrical positions and rela-tionships of those components. Therefore, evaluating the P&O of a component is considered nec-essary and critical for ensuring accuracy in aircraft assembly. Uncertainty of position and orientation (U-P&O), as a part of the evaluating result of P&O, needs to be given for ensuring the integrity and credibility of the result; furthermore, U-P&O is necessary for error tracing and quality evaluating of measurement assisted aircraft assembly. However, current research mainly focuses on the process integration of measurement with assembly, and usually ignores the uncer-tainty of measured result and its influence on quality evaluation. This paper focuses on the expres-sion, analysis, and application of U-P&O in measurement assisted alignment. The geometrical and algebraical connotations of U-P&O are presented. Then, an analytical algorithm for evaluating the multi-dimensional U-P&O is given, and the effect factors and characteristics of U-P&O are dis-cussed. Finally, U-P&O is used to evaluate alignment in aircraft assembly for quality evaluating and improving. Cases are introduced with the methodology.

  1. Methodology to estimate particulate matter emissions from certified commercial aircraft engines.

    Science.gov (United States)

    Wayson, Roger L; Fleming, Gregg G; Lovinelli, Ralph

    2009-01-01

    Today, about one-fourth of U.S. commercial service airports, including 41 of the busiest 50, are either in nonattainment or maintenance areas per the National Ambient Air Quality Standards. U.S. aviation activity is forecasted to triple by 2025, while at the same time, the U.S. Environmental Protection Agency (EPA) is evaluating stricter particulate matter (PM) standards on the basis of documented human health and welfare impacts. Stricter federal standards are expected to impede capacity and limit aviation growth if regulatory mandated emission reductions occur as for other non-aviation sources (i.e., automobiles, power plants, etc.). In addition, strong interest exists as to the role aviation emissions play in air quality and climate change issues. These reasons underpin the need to quantify and understand PM emissions from certified commercial aircraft engines, which has led to the need for a methodology to predict these emissions. Standardized sampling techniques to measure volatile and nonvolatile PM emissions from aircraft engines do not exist. As such, a first-order approximation (FOA) was derived to fill this need based on available information. FOA1.0 only allowed prediction of nonvolatile PM. FOA2.0 was a change to include volatile PM emissions on the basis of the ratio of nonvolatile to volatile emissions. Recent collaborative efforts by industry (manufacturers and airlines), research establishments, and regulators have begun to provide further insight into the estimation of the PM emissions. The resultant PM measurement datasets are being analyzed to refine sampling techniques and progress towards standardized PM measurements. These preliminary measurement datasets also support the continued refinement of the FOA methodology. FOA3.0 disaggregated the prediction techniques to allow for independent prediction of nonvolatile and volatile emissions on a more theoretical basis. The Committee for Aviation Environmental Protection of the International Civil

  2. The STOL performance of a two-engine, USB powered-lift aircraft with cross-shafted fans

    Science.gov (United States)

    Stevens, V. C.; Wilson, S. B., III; Zola, C. A.

    1985-01-01

    The short takeoff and landing capabilities that characterize the performance of powered-lift aircraft are dependent on engine thrust and are, therefore, severely affected by loss of an engine. This paper shows that the effects of engine loss on the short takeoff and landing performance of powered-lift aircraft can be effectively mitigated by cross-shafting the engine fans in a twin-engine configuration. Engine-out takeoff and landing performances are compared for three powered-lift aircraft configurations: one with four engines, one with two engines, and one with two engines in which the fans are cross-shafted. The results show that the engine-out takeoff and landing performance of the cross-shafted two-engine configuration is significantly better than that of the two-engine configuration without cross-shafting.

  3. Sistema de encendido para motores de aviación - Ignition system for aircraft engines

    Directory of Open Access Journals (Sweden)

    Santos López, Pascual

    2011-12-01

    Full Text Available On May 7, 1934 José López Salmeron and Gaspar Serrano Esteve recorded their patent "ignition system for aircraft engines, automobiles and the like". A patent which was in a double ignition system Magneto-Delco, a condition that made ​​it perfect for aircraft engines, as it met the safety requirement to be a redundant ignition system, as if a failed ignition system was always the possibility that the other system functioned alternative. It analyzes the historical context of Spain in the early twentieth century and a brief history Spanish automotive

  4. 76 FR 64285 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Models TAE 125-02-99 and TAE 125...

    Science.gov (United States)

    2011-10-18

    .... Fax: (202) 493-2251. Contact Thielert Aircraft Engines GmbH, Platanenstrasse 14 D-09350, Lichtenstein... following new AD: Thielert Aircraft Engines GmbH: Docket No. FAA-2009-0948; Directorate Identifier 2009-NE... Thielert Aircraft Engines GmbH (TAE) models TAE 125-01 and TAE 125-02-99 reciprocating engines installed...

  5. 77 FR 53154 - Airworthiness Directives; Thielert Aircraft Engines GmbH Models TAE 125-02-99 and TAE 125-02-114...

    Science.gov (United States)

    2012-08-31

    ... Directives; Thielert Aircraft Engines GmbH Models TAE 125-02-99 and TAE 125-02-114 Reciprocating Engines... identified in this proposed AD, contact Thielert Aircraft Engines GmbH, Platanenstrasse 14 D-09350... Aircraft Engines has issued Service Bulletin TM TAE 125- 1015 P1, Initial Issue, dated April 27, 2012....

  6. 75 FR 66342 - Airworthiness Directives; Thielert Aircraft Engines GmbH Models TAE 125-02-99 and TAE 125-02-114...

    Science.gov (United States)

    2010-10-28

    ... Directives; Thielert Aircraft Engines GmbH Models TAE 125-02-99 and TAE 125-02-114 Reciprocating Engines...-2251. Contact Thielert Aircraft Engines GmbH, Platanenstrasse 14 D-09350, Lichtenstein, Germany... Aircraft Engines GmbH has issued Service Bulletin No. TM TAE 125-1010 P1, Revision 2, dated May 26,...

  7. Experimental Research of Engine Foundations

    Directory of Open Access Journals (Sweden)

    Violeta-Elena Chiţan

    2004-01-01

    Full Text Available This paper tries a compact presentation of experimental research of engine-foundations. The dynamic phenomena are so complex, that the vibrations cannot be estimated in the design stage. The design engineer of an engine foundation must foresee through a dynamic analysis of the vibrations, those measures that lead to the avoidance or limiting of the bad effects caused by the vibrations.

  8. The ahead project: Advanced hybrid engines for aircraft development

    OpenAIRE

    Rao, A G; Yin, F.

    2013-01-01

    Aviation is an ever-increasing market and more passengers and cargo are carried each year. The world is becoming ever more connected. However, this does come at a price: aviation has a marked in!uence on the environment. If aviation is to thrive in the future, breakthroughs in aircraft design and propulsion systems are needed. The AHEAD project is an attempt at achieving such a breakthrough.

  9. Integration of On-Line and Off-Line Diagnostic Algorithms for Aircraft Engine Health Management

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2007-01-01

    This paper investigates the integration of on-line and off-line diagnostic algorithms for aircraft gas turbine engines. The on-line diagnostic algorithm is designed for in-flight fault detection. It continuously monitors engine outputs for anomalous signatures induced by faults. The off-line diagnostic algorithm is designed to track engine health degradation over the lifetime of an engine. It estimates engine health degradation periodically over the course of the engine s life. The estimate generated by the off-line algorithm is used to update the on-line algorithm. Through this integration, the on-line algorithm becomes aware of engine health degradation, and its effectiveness to detect faults can be maintained while the engine continues to degrade. The benefit of this integration is investigated in a simulation environment using a nonlinear engine model.

  10. Research advances in industrial engineering

    CERN Document Server

    2015-01-01

    This book provides discussions and the exchange of information on principles, strategies, models, techniques, methodologies and applications of industrial engineering. It communicates the latest developments and research activity on industrial engineering and is useful for all those interested in the technological challenges in the field.

  11. A plume capture technique for the remote characterization of aircraft engine emissions.

    Science.gov (United States)

    Johnson, G R; Mazaheri, M; Ristovski, Z D; Morawska, L

    2008-07-01

    A technique for capturing and analyzing plumes from unmodified aircraft or other combustion sources under real world conditions is described and applied to the task of characterizing plumes from commercial aircraft during the taxiing phase of the Landing/Take-Off (LTO) cycle. The method utilizes a Plume Capture and Analysis System (PCAS) mounted in a four-wheel drive vehicle which is positioned in the airfield 60 to 180 m downwind of aircraft operations. The approach offers low test turnaround times with the ability to complete careful measurements of particle and gaseous emission factors and sequentially scanned particle size distributions without distortion due to plume concentration fluctuations. These measurements can be performed for individual aircraft movements at five minute intervals. A Plume Capture Device (PCD) collected samples of the naturally diluted plume in a 200 L conductive membrane conforming to a defined shape. Samples from over 60 aircraft movements were collected and analyzed in situ for particulate and gaseous concentrations and for particle size distribution using a Scanning Particle Mobility Sizer (SMPS). Emission factors are derived for particle number, NO(x), and PM2.5 for a widely used commercial aircraft type, Boeing 737 airframes with predominantly CFM56 class engines, during taxiing. The practical advantages of the PCAS include the capacity to perform well targeted and controlled emission factor and size distribution measurements using instrumentation with varying response times within an airport facility, in close proximity to aircraft during their normal operations.

  12. Aircraft Design Considerations to Meet One Engine Inoperative (OEI) Safety Requirements

    Science.gov (United States)

    Scott, Mark W.

    2012-01-01

    Commercial airlines are obligated to operate such that an aircraft can suffer an engine failure at any point in its mission and terminate the flight without an accident. Only minimal aircraft damage is allowable, such as brake replacement due to very heavy application, or an engine inspection and/or possible removal due to use of an emergency rating. Such performance criteria are often referred to as zero exposure, referring to zero accident exposure to an engine failure. The critical mission segment for meeting one engine inoperative (OEI) criteria is takeoff. For a given weight, wind, and ambient condition, fixed wing aircraft require a balanced field length. This is the longer of the distance to take off if an engine fails at a predetermined critical point in the takeoff profile, or the distance to reject the takeoff and brake to a stop. Rotorcraft have requirements for horizontal takeoff procedures that are equivalent to a balanced field length requirements for fixed wing aircraft. Rotorcraft also perform vertical procedures where no runway or heliport distance is available. These were developed primarily for elevated heliports as found on oil rigs or rooftops. They are also used for ground level operations as might be found at heliports at the end of piers or other confined areas.

  13. Design for aircraft engine multi-objective controllers with switching characteristics

    Institute of Scientific and Technical Information of China (English)

    Liu Xiaofeng; Shi Jing; Qi Yiwen; Yuan Ye

    2014-01-01

    The aircraft engine multi-loop control system is described and the switching control theory is introduced to solve the regulating and protecting control problems in this paper. The aircraft engine multi-loop control system is firstly described and the control problems are formu-lated. Secondly, the theory of the smooth switching control is devoted and a new extended scheme for the smooth switching of a switched control system is introduced. Then, for the key technologies of aero-engines switching control, a design algorithm is presented which can determine which candidate controller should be put in feedback with the plant to achieve a desired performance and the procedure to design the aircraft engine multi-loop control system is detailed. The switching performance objectives and the switching scheme are given and a family of PID controllers and compensators is designed. The simulation shows that using the switching control design method can not only improve the dynamic performance of the aircraft engine control system and reduce the switching times, but also guarantee the stability in some peculiar occasions.

  14. Design for aircraft engine multi-objective controllers with switching characteristics

    Directory of Open Access Journals (Sweden)

    Liu Xiaofeng

    2014-10-01

    Full Text Available The aircraft engine multi-loop control system is described and the switching control theory is introduced to solve the regulating and protecting control problems in this paper. The aircraft engine multi-loop control system is firstly described and the control problems are formulated. Secondly, the theory of the smooth switching control is devoted and a new extended scheme for the smooth switching of a switched control system is introduced. Then, for the key technologies of aero-engines switching control, a design algorithm is presented which can determine which candidate controller should be put in feedback with the plant to achieve a desired performance and the procedure to design the aircraft engine multi-loop control system is detailed. The switching performance objectives and the switching scheme are given and a family of PID controllers and compensators is designed. The simulation shows that using the switching control design method can not only improve the dynamic performance of the aircraft engine control system and reduce the switching times, but also guarantee the stability in some peculiar occasions.

  15. Design and test of aircraft engine isolators for reduced interior noise

    Science.gov (United States)

    Unruh, J. F.; Scheidt, D. C.

    1982-01-01

    Improved engine vibration isolation was proposed to be the most weight and cost efficient retrofit structure-borne noise control measure for single engine general aviation aircraft. A study was carried out the objectives: (1) to develop an engine isolator design specification for reduced interior noise transmission, (2) select/design candidate isolators to meet a 15 dB noise reduction design goal, and (3) carry out a proof of concept evaluation test. Analytical model of the engine, vibration isolators and engine mount structure were coupled to an empirical model of the fuselage for noise transmission evaluation. The model was used to develop engine isolator dynamic properties design specification for reduced noise transmission. Candidate isolators ere chosen from available product literature and retrofit to a test aircraft. A laboratory based test procedure was then developed to simulate engine induced noise transmission in the aircraft for a proof of concept evaluation test. Three candidate isolator configurations were evaluated for reduced structure-borne noise transmission relative to the original equipment isolators.

  16. Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL) provides a variety of research, design engineering and prototype fabrication services...

  17. Engineering Multiphysics Research

    Directory of Open Access Journals (Sweden)

    Tom Eppes

    2011-05-01

    Full Text Available This paper describes an engineering undergraduate course that covers the methods and techniques of multiphysics modeling. Students become active participants in analysis and discovery by being challenged to solve a sequence of problems related to high priority technology areas. Projects range from power systems and thermal control of habitats to autonomous flight systems and harsh environment electronics. Working in a cooperative learning environment, teams encounter a series of assignments that build on existing skills while gradually expanding their knowledge and expertise in disciplines outside of their own. This project-based approach employs a scaffolding structure with assignments organized in progressively challenging modules supported by mentoring. Each project begins with a problem definition which requires consideration of factors and influences beyond a single discipline. Solution development then moves to setting material properties, boundary constraints and including the necessary physics engines. For many students, this is the first in depth exposure to problems with specialized terminologies, driving equations and limiting conditions. Lastly, solving and post processing are addressed exploring steady state, time-variant, frequency response, optimization and sensitivity methods. The paper discusses the teaching and learning strategies, course structure, outcome assessment and project examples.

  18. Weibull-Based Design Methodology for Rotating Aircraft Engine Structures

    Science.gov (United States)

    Zaretsky, Erwin; Hendricks, Robert C.; Soditus, Sherry

    2002-01-01

    The NASA Energy Efficient Engine (E(sup 3)-Engine) is used as the basis of a Weibull-based life and reliability analysis. Each component's life and thus the engine's life is defined by high-cycle fatigue (HCF) or low-cycle fatigue (LCF). Knowing the cumulative life distribution of each of the components making up the engine as represented by a Weibull slope is a prerequisite to predicting the life and reliability of the entire engine. As the engine Weibull slope increases, the predicted lives decrease. The predicted engine lives L(sub 5) (95 % probability of survival) of approximately 17,000 and 32,000 hr do correlate with current engine maintenance practices without and with refurbishment. respectively. The individual high pressure turbine (HPT) blade lives necessary to obtain a blade system life L(sub 0.1) (99.9 % probability of survival) of 9000 hr for Weibull slopes of 3, 6 and 9, are 47,391 and 20,652 and 15,658 hr, respectively. For a design life of the HPT disks having probable points of failure equal to or greater than 36,000 hr at a probability of survival of 99.9 %, the predicted disk system life L(sub 0.1) can vary from 9,408 to 24,911 hr.

  19. Supercharging system behavior for high altitude operation of an aircraft 2-stroke Diesel engine

    International Nuclear Information System (INIS)

    Highlights: • Different supercharging architectures have been compared for an aircraft 2T engine. • The supercharging architectures are compared to minimize the fuel consumption. • The architecture with the highest conversion efficiency was determined. - Abstract: Different studies on both 2- and 4-stroke engines have shown how the choice of different supercharging architectures can influence engine performance. Among them, architectures coupling one turbocharger with a mechanical compressor or two turbochargers are found to be the most performing in terms of engine output power and efficiency. However, defining the best supercharging architecture for aircraft 2-stroke engines is a quite complex task because the supercharging system as well as the ambient conditions influence the engine performance/efficiency. This is due to the close interaction between supercharging, trapping, scavenging and combustion processes. The aim of the present work is the comparison between different architectures (single turbocharger, double turbocharger, single turbocharger combined with a mechanical compressor, single turbocharger with an electrically-assisted turbocharger, with intercooler or aftercooler) designed to supercharge an aircraft 2-stroke Diesel engine for general aviation and unmanned aerial vehicles characterized by a very high altitude operation and long fuel distance. A 1D model of the engine purposely designed has been used to compare the performance of the different supercharging systems in terms of power, fuel consumption, and their effect on trapping and scavenging efficiency at different altitudes. The analysis shows that the engine target power is reached by a 2 turbochargers architecture; in this way, in fact, the cylinder filling, and consequently the engine performance, are maximized. Moreover, it is shown that the performance of a 2 turbochargers architecture performance can be further improved connecting electrically and not mechanically the low

  20. Measurement of nitrogen species NO{sub y} at the exhaust of an aircraft engine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Ristori, A. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), Palaiseau (France); Baudoin, C. [Societe Nationale d`Etude et de Construction de Moteurs d`Aviation (SNECMA), Villaroche (France)

    1997-12-31

    A research programme named AEROTRACE was supported by the EC (CEC contract AERA-CT94-0003) in order to investigate trace species measurements at the exhaust of aero-engines. Within this project, NO{sub y}, NO, HNO{sub 3} and HONO were measured at the exhaust of aircraft engine combustors. Major species (NO{sub y},NO) were measured by using a chemiluminescence instrument. Minor species (HNO{sub 3},HONO) were measured by using filter packs. Two combustors were tested under various running conditions; the first one at ONERA (Task 2) and the second one at DRA (Task 5). Results show that EI{sub NOy} < 50 g/kg, EI{sub HNO3} < 0.2 g/kg and EI{sub HONO} < 0.55 g/kg. Regarding ratios, (HNO{sub 3})/(NO{sub y}) < 0.5%, (HONO)/(NO{sub y}) < 8%, (HONO)/(NO{sub 2}) {approx} 19.2%, and (HNO{sub 3})/(NO{sub 2}) {approx} 0.8% was found. (author) 9 refs.

  1. Aircraft Engine Sensor/Actuator/Component Fault Diagnosis Using a Bank of Kalman Filters

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L. (Technical Monitor)

    2003-01-01

    In this report, a fault detection and isolation (FDI) system which utilizes a bank of Kalman filters is developed for aircraft engine sensor and actuator FDI in conjunction with the detection of component faults. This FDI approach uses multiple Kalman filters, each of which is designed based on a specific hypothesis for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, from which a specific fault is isolated. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The performance of the FDI system is evaluated against a nonlinear engine simulation for various engine faults at cruise operating conditions. In order to mimic the real engine environment, the nonlinear simulation is executed not only at the nominal, or healthy, condition but also at aged conditions. When the FDI system designed at the healthy condition is applied to an aged engine, the effectiveness of the FDI system is impacted by the mismatch in the engine health condition. Depending on its severity, this mismatch can cause the FDI system to generate incorrect diagnostic results, such as false alarms and missed detections. To partially recover the nominal performance, two approaches, which incorporate information regarding the engine s aging condition in the FDI system, will be discussed and evaluated. The results indicate that the proposed FDI system is promising for reliable diagnostics of aircraft engines.

  2. Study of unconventional aircraft engines designed for low energy consumption

    Science.gov (United States)

    Neitzel, R. E.; Hirschkron, R.; Johnston, R. P.

    1976-01-01

    A study of unconventional engine cycle concepts, which may offer significantly lower energy consumption than conventional subsonic transport turbofans, is described herein. A number of unconventional engine concepts were identified and parametrically studied to determine their relative fuel-saving potential. Based on results from these studies, regenerative, geared, and variable-boost turbofans, and combinations thereof, were selected along with advanced turboprop cycles for further evaluation and refinement. Preliminary aerodynamic and mechanical designs of these unconventional engine configurations were conducted and mission performance was compared to a conventional, direct-drive turofan reference engine. Consideration is given to the unconventional concepts, and their state of readiness for application. Areas of needed technology advancement are identified.

  3. Pratt and Whitney Aircraft JT8D turbofan engine. performance improvement to offset rising fuel costs

    Energy Technology Data Exchange (ETDEWEB)

    Fahle, R.K.

    1980-01-01

    A Pratt and Whitney Aircraft Group program begun in 1978 has led to the development of retrofit kit packages and major engine modifications that will provide thrust-specific fuel consumption (TSFC) reductions of 2.1% for the JT8D-1 and -7 engines, 3.0% for the JT8D-9 engine, and 5.5% for the JT8D-15, -17, and -17R engines under cruise conditions, and comparable fuel savings under other conditions. The modifications being made will affect the fan, compressor, and turbine sections of the engines to improve component efficiency. The retrofit kits will be used on existing in-service engines; other modifications will be introduced in service during 1981 and 1982. Fuel savings per engine per year could range from 27,000 to 91,000 gal, and fleet savings could amount to several hundred million gallons per year.

  4. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    Directory of Open Access Journals (Sweden)

    T. F. Lyon

    Full Text Available Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  5. 75 FR 71371 - Airworthiness Directives; Thielert Aircraft Engines GmbH Models TAE 125-01, TAE 125-02-99, and...

    Science.gov (United States)

    2010-11-23

    ... through Friday, except Federal holidays. Fax: (202) 493-2251. Contact Thielert Aircraft Engines GmbH... following new airworthiness directive (AD): Thielert Aircraft Engines GmbH: Docket No. FAA-2010-0820.... Affected ADs (b) None. Applicability (c) This AD applies to Thielert Aircraft Engines GmbH models TAE...

  6. 76 FR 9963 - Airworthiness Directives; Thielert Aircraft Engines GmbH Models TAE 125-02-99 and TAE 125-02-114...

    Science.gov (United States)

    2011-02-23

    ... 2. The FAA amends Sec. 39.13 by adding the following new AD: 2011-05-06 Thielert Aircraft Engines.... Applicability (c) This AD applies to Thielert Aircraft Engines GmbH models TAE 125-02-99 and TAE 125-02-114.... (4) Guidance on replacing the timing chain can be found in Thielert Aircraft Engines GmbH...

  7. 75 FR 12439 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Models TAE 125-02-99 and TAE 125...

    Science.gov (United States)

    2010-03-16

    ... experience, Thielert Aircraft Engines GmbH has introduced a new rail pressure control valve part number (P/N... to prevent engine in-flight shutdown, possibly resulting in reduced control of the aircraft. DATES... experience, Thielert Aircraft Engines GmbH has introduced a new rail pressure control valve P/N...

  8. 77 FR 57041 - Airworthiness Directives; Thielert Aircraft Engines GmbH Models TAE 125-01, TAE 125-02-99, and...

    Science.gov (United States)

    2012-09-17

    ...-07-09, amendment 39-16646 (76 FR 17757, March 31, 2011), for Thielert Aircraft Engines GmbH models... supersede an existing airworthiness directive (AD) that applies to all Thielert Aircraft Engines (TAE) GmbH... Aircraft Engines GmbH: Docket No. FAA-2010-0820; Directorate Identifier 2010-NE-31-AD. (a) Comments...

  9. 76 FR 64289 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) TAE 125-02-99 and TAE 125-02-114...

    Science.gov (United States)

    2011-10-18

    ... aeroplane. To address this unsafe condition, Thielert Aircraft Engines GmbH has developed a new friction... aeroplane. To address this unsafe condition, Thielert Aircraft Engines GmbH has developed a new friction... airworthiness directive (AD): Thielert Aircraft Engines GmbH: Docket No. FAA-2011-0956; Directorate...

  10. 76 FR 17757 - Airworthiness Directives; Thielert Aircraft Engines GmbH Models TAE 125-01, TAE 125-02-99, and...

    Science.gov (United States)

    2011-03-31

    ... DA 42 aircraft only--the initiation of a FADEC self test during flight that causes an engine in... amends Sec. 39.13 by adding the following new AD: 2011-07-09 Thielert Aircraft Engines GmbH: Amendment 39... applies to Thielert Aircraft Engines GmbH models TAE 125-01, TAE 125-02-99, and TAE...

  11. 75 FR 52240 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Models TAE 125-01 and TAE 125-02...

    Science.gov (United States)

    2010-08-25

    ... by reference of Thielert Aircraft Engines GmbH Service Bulletin (SB) No. TM TAE 125-0021, dated June... Aircraft Engines GmbH: Amendment 39-16415.; Docket No. FAA-2010-0683; Directorate Identifier 2010-NE-25-AD...) None. Applicability (c) This AD applies to Thielert Aircraft Engines GmbH (TAE): (1) TAE...

  12. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    Science.gov (United States)

    This paper addresses the need for detailed chemical information on the fine particulate matter (PM2.5) generated by commercial aviation engines. The exhaust plumes of nine engine models were sampled during the three test campaigns of the Aircraft Particle Emissions eXperiment (AP...

  13. Research of fan trim balance for on-wing aircraft engines based on a rectangular coordinate system%基于直角坐标的在翼航空发动机风扇三圆配平方法研究

    Institute of Scientific and Technical Information of China (English)

    夏存江

    2015-01-01

    简要介绍了航空发动机三圆配平的基本方法,并在直角坐标系下推导了刚性转动系统的三圆配平法的基本原理,为解决涡扇发动机在翼风扇配平问题提供了理论支持。给出了直角坐标系下利用三圆配平方法计算风扇不平衡量的过程及结果,分析了三圆配平法适用对象及在涡扇发动机风扇配平中的实际应用。本研究成果能有效解决在翼涡扇发动机不具备现成配平条件,或具备现成配平条件但给出配平方案效果不佳时的风扇配平问题。%The basic process of three shot plot for fan trim balance was introduced. Based on a rectangular coordinate system,the fundamental principle of the method was overall demonstrated, which provided theo⁃retical support to trim balance the fan of on-wing aircraft engines. Meanwhile the process and result were given to calculate the unbalanced weight by three shot plot on a rectangular coordinate system. The applica⁃ble object of three shot plot and its application on fan trim balance on turbo-fan engines were analyzed. The research can effectively resolve the fan unbalance issues for on-wing aircraft engines when there is no ready-made trim balance method or the result is unsatisfactory.

  14. Optimal Tuner Selection for Kalman-Filter-Based Aircraft Engine Performance Estimation

    Science.gov (United States)

    Simon, Donald L.; Garg, Sanjay

    2011-01-01

    An emerging approach in the field of aircraft engine controls and system health management is the inclusion of real-time, onboard models for the inflight estimation of engine performance variations. This technology, typically based on Kalman-filter concepts, enables the estimation of unmeasured engine performance parameters that can be directly utilized by controls, prognostics, and health-management applications. A challenge that complicates this practice is the fact that an aircraft engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. Through Kalman-filter-based estimation techniques, the level of engine performance degradation can be estimated, given that there are at least as many sensors as health parameters to be estimated. However, in an aircraft engine, the number of sensors available is typically less than the number of health parameters, presenting an under-determined estimation problem. A common approach to address this shortcoming is to estimate a subset of the health parameters, referred to as model tuning parameters. The problem/objective is to optimally select the model tuning parameters to minimize Kalman-filterbased estimation error. A tuner selection technique has been developed that specifically addresses the under-determined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine that seeks to minimize the theoretical mean-squared estimation error of the Kalman filter. This approach can significantly reduce the error in onboard aircraft engine parameter estimation

  15. Accurate Measurements of Aircraft Engine Soot Emissions Using a CAPS PMssa Monitor

    Science.gov (United States)

    Onasch, Timothy; Thompson, Kevin; Renbaum-Wolff, Lindsay; Smallwood, Greg; Make-Lye, Richard; Freedman, Andrew

    2016-04-01

    We present results of aircraft engine soot emissions measurements during the VARIAnT2 campaign using CAPS PMssa monitors. VARIAnT2, an aircraft engine non-volatile particulate matter (nvPM) emissions field campaign, was focused on understanding the variability in nvPM mass measurements using different measurement techniques and accounting for possible nvPM sampling system losses. The CAPS PMssa monitor accurately measures both the optical extinction and scattering (and thus single scattering albedo and absorption) of an extracted sample using the same sample volume for both measurements with a time resolution of 1 second and sensitivity of better than 1 Mm-1. Absorption is obtained by subtracting the scattering signal from the total extinction. Given that the single scattering albedo of the particulates emitted from the aircraft engine measured at both 630 and 660 nm was on the order of 0.1, any inaccuracy in the scattering measurement has little impact on the accuracy of the ddetermined absorption coefficient. The absorption is converted into nvPM mass using a documented Mass Absorption Coefficient (MAC). Results of soot emission indices (mass soot emitted per mass of fuel consumed) for a turbojet engine as a function of engine power will be presented and compared to results obtained using an EC/OC monitor.

  16. Integration of Engine, Plume, and CFD Analyses in Conceptual Design of Low-Boom Supersonic Aircraft

    Science.gov (United States)

    Li, Wu; Campbell, Richard; Geiselhart, Karl; Shields, Elwood; Nayani, Sudheer; Shenoy, Rajiv

    2009-01-01

    This paper documents an integration of engine, plume, and computational fluid dynamics (CFD) analyses in the conceptual design of low-boom supersonic aircraft, using a variable fidelity approach. In particular, the Numerical Propulsion Simulation System (NPSS) is used for propulsion system cycle analysis and nacelle outer mold line definition, and a low-fidelity plume model is developed for plume shape prediction based on NPSS engine data and nacelle geometry. This model provides a capability for the conceptual design of low-boom supersonic aircraft that accounts for plume effects. Then a newly developed process for automated CFD analysis is presented for CFD-based plume and boom analyses of the conceptual geometry. Five test cases are used to demonstrate the integrated engine, plume, and CFD analysis process based on a variable fidelity approach, as well as the feasibility of the automated CFD plume and boom analysis capability.

  17. TRENDS IN THE DEVELOPMENT OF DETONATION ENGINES FOR HIGH-SPEED AEROSPACE AIRCRAFTS AND THE PROBLEM OF TRIPLE CONFIGURATIONS OF SHOCK WAVES. Part II - Research of counterpropagating shock waves and triple shock wave configurations

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2016-03-01

    Full Text Available The paper deals with current issues of the interference theory development of gas-dynamic discontinuities as applied to a problem of propulsion refinement for the air-spacecrafts, designed for hypersonic flight speeds. In the first part of the review we have presented the history of detonation study and different concepts of detonation engines, as well as air intakes designed for hypersonic flight speeds. The second part provides an overview of works on the interference theory development for gas-dynamic discontinuities. We report about classification of the gas-dynamic discontinuities, shock wave propagation, shock-wave structures and triple configurations of shock waves. We have shown that many of these processes are accompanied by a hysteresis phenomenon, there are areas of ambiguity; therefore, in the design of engines and air intakes optimal shock-wave structures should be provided and their sustainability should be ensured. Much attention has recently been given to the use of the air intakes in the shock-wave structures with the rereflection of shock waves and the interference of shock waves in the opposite directions. This review provides increased focus on it, contains references to landmark works, the last calculated and experimental results. Unfortunately, foreign surveys missed many landmark works of the Soviet and Russian researchers, as they were not published in English. At the same time, it was the Soviet school of gas dynamics that has formulated the interference theory of gas-dynamic discontinuities in its present form. To fill this gap is one of this review scopes. The review may be recommended for professionals, engineers and scientists working in the field of aerospace engineering.

  18. Chemical engineering research

    International Nuclear Information System (INIS)

    Results of research are reported on hydrodynamics and mass transfer in three-phase fluidized beds. In hydrogen permeation-oxidation studies it was found that at 300 to 5000C, and 10-6 oxygen pressure, stainless steel oxidizes 40 to 50 percent of the permeating deuterium. Methods of preparing less than 10-μ sorbent particles were studied using erbium oxide. Adiabatic graphite oxidation studies demonstrated that burning rates are mass transfer controlled, and that the product gas temperature can be controlled by adjusting the recycle gas rate. Apparatus was assembled for evaluation of a perfusion-impactor to remove solid or liquid particles from gas streams. In studies of continuous chromatography the separation of Blue Dextran and CoCl2 on Spandex G-10 resin was demonstrated

  19. Constructing an Efficient Self-Tuning Aircraft Engine Model for Control and Health Management Applications

    Science.gov (United States)

    Armstrong, Jeffrey B.; Simon, Donald L.

    2012-01-01

    Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear

  20. Dynamic Response Analysis of Storage Cask Lid Structure Subjected to Lateral Impact Load of Aircraft Engine Crash

    Energy Technology Data Exchange (ETDEWEB)

    Almomania, Belal; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of); Lee, Sanghoon [Keimyung Univ., Daegu (Korea, Republic of)

    2015-10-15

    Several numerical methods and tests have been carried out to measure the capability of storage cask to withstand extreme impact loads. Testing methods are often constrained by cost, and difficulty in preparation for several impact conditions with different applied loads, and areas of impact. Instead, analytic method is an acceptable process that can easily apply different impact conditions for the evaluation of cask integrity. The aircraft engine impact is considered as one of the most critical impact accidents on the storage cask that significantly affects onto the lid closure system and may cause a considerable release of radioactive materials. This paper presents a method for evaluating the dynamic responses of one upper metal cask lid closure without impact limiters subjected to lateral impact of an aircraft engine with respect to variation of the impact velocity. An assessment method to predict damage response due to the lateral engine impact onto metal storage cask has been studied by using computer code LS-DYNA. The dynamic behavior of the lid movements was successfully calculated by utilizing a simplified finite element cask model, which showed a good agreement with the previous research. The simulation analyses results showed that no significant plastic deformation for bolts, lid, and the cask body. In this study, the lid opening and sliding displacements are considered as the major factors in initiating the leakage path. This analysis may be useful for evaluating the instantaneous leakage rates in a connection with the sliding and opening displacements between the lid and the flange to ensure that the radiological consequences caused by an aircraft engine crash accident during the storage phase are within the permissible level.

  1. Active Combustion Control for Aircraft Gas-Turbine Engines-Experimental Results for an Advanced, Low-Emissions Combustor Prototype

    Science.gov (United States)

    DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie

    2012-01-01

    Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to

  2. Effect of propeller slipstream on the drag and performance of the engine cooling system for a general aviation twin-engine aircraft

    Science.gov (United States)

    Katz, J.; Corsiglia, V. R.; Barlow, P. R.

    1980-01-01

    The pressure recovery of incoming cooling air and the drag associated with engine cooling of a typical general aviation twin-engine aircraft was investigated experimentally. The semispan model was mounted vertically in the 40- by 80-Foot Wind Tunnel at Ames Research Center. The propeller was driven by an electric motor to provide thrust with low vibration levels for the cold-flow configuration. It was found that the propeller slipstream reduces the frontal air spillage around the blunt nacelle shape. Consequently, this slipstream effect promotes flow reattachment at the rear section of the engine nacelle and improves inlet pressure recovery. These effects are most pronounced at high angles of attack, that is, climb condition. For the cruise condition those improvements were more moderate.

  3. Solar Radiation Measurements Onboard the Research Aircraft HALO

    Science.gov (United States)

    Lohse, I.; Bohn, B.; Werner, F.; Ehrlich, A.; Wendisch, M.

    2014-12-01

    Airborne measurements of the separated upward and downward components of solar spectral actinic flux densities for the determination of photolysis frequencies and of upward nadir spectral radiance were performed with the HALO Solar Radiation (HALO-SR) instrument package onboard the High Altitude and Long Range Research Aircraft (HALO). The instrumentation of HALO-SR is characterized and first measurement data from the Next-generation Aircraft Remote-Sensing for Validation Studies (NARVAL) campaigns in 2013 and 2014 are presented. The measured data are analyzed in the context of the retrieved microphysical and optical properties of clouds which were observed underneath the aircraft. Detailed angular sensitivities of the two optical actinic flux receivers were determined in the laboratory. The effects of deviations from the ideal response are investigated using radiative transfer calculations of atmospheric radiance distributions under various atmospheric conditions and different ground albedos. Corresponding correction factors are derived. Example photolysis frequencies are presented, which were sampled in the free troposphere and lower stratosphere over the Atlantic Ocean during the 2013/14 HALO NARVAL campaigns. Dependencies of photolysis frequencies on cloud cover, flight altitude and wavelength range of the photolysis process are investigated. Calculated actinic flux densities in the presence of clouds benefit from the measured spectral radiances. Retrieved cloud optical thicknesses and effective droplet radii are used as model input for the radiative transfer calculations. By comparison with the concurrent measurements of actinic flux densities the retrieval approach is validated. Acknowledgements: Funding by the Deutsche Forschungsgemeinschaft within the priority program HALO (BO 1580/4-1, WE 1900/21-1) is gratefully acknowledged.

  4. Concurrent Engineering Research and Application

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Research and application of Concurrent Engineering have produced good results. A Chinese style concurrent engineering architecture and reference mode has been produced. A series of break thoughts in BPR (Business Process Reengineering) have been made with organization of the IPT (Integrated Product Development Team) and engineering support technologies. Several prototype tools were developed, including product development process modeling and management, QFD-based schema design and decision making, PDM-based concurrent design, STEP-based CAD/CAPP/CAM integration, design for assembly, design for manufacturing, computer aided fixture design, and machining process simulation. Finally, the research results were used in the development of two complex components in an aerospace application, and satisfactory results were obtained.

  5. Engineering research, development and technology

    International Nuclear Information System (INIS)

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report

  6. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    Science.gov (United States)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  7. Subsonic Ultra Green Aircraft Research: Phase 2. Volume 2; Hybrid Electric Design Exploration

    Science.gov (United States)

    Bradley, Marty K.; Droney, Christopher K.

    2015-01-01

    This report summarizes the hybrid electric concept design, analysis, and modeling work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech.Performance and sizing tasks were conducted for hybrid electric versions of a conventional tube-and-wing aircraft and a hybrid wing body. The high wing Truss Braced Wing (TBW) SUGAR Volt was updated based on results from the TBW work (documented separately) and new engine performance models. Energy cost and acoustic analyses were conducted and technology roadmaps were updated for hybrid electric and battery technology. NOx emissions were calculated for landing and takeoff (LTO) and cruise. NPSS models were developed for hybrid electric components and tested using an integrated analysis of superconducting and non-superconducting hybrid electric engines. The hybrid electric SUGAR Volt was shown to produce significant emissions and fuel burn reductions beyond those achieved by the conventionally powered SUGAR High and was able to meet the NASA goals for fuel burn. Total energy utilization was not decreased but reduced energy cost can be achieved for some scenarios. The team was not able to identify a technology development path to meet NASA's noise goals

  8. Video-based cargo fire verification system with fuzzy inference engine for commercial aircraft

    Science.gov (United States)

    Sadok, Mokhtar; Zakrzewski, Radek; Zeliff, Bob

    2005-02-01

    Conventional smoke detection systems currently installed onboard aircraft are often subject to high rates of false alarms. Under current procedures, whenever an alarm is issued the pilot is obliged to release fire extinguishers and to divert to the nearest airport. Aircraft diversions are costly and dangerous in some situations. A reliable detection system that minimizes false-alarm rate and allows continuous monitoring of cargo compartments is highly desirable. A video-based system has been recently developed by Goodrich Corporation to address this problem. The Cargo Fire Verification System (CFVS) is a multi camera system designed to provide live stream video to the cockpit crew and to perform hotspot, fire, and smoke detection in aircraft cargo bays. In addition to video frames, the CFVS uses other sensor readings to discriminate between genuine events such as fire or smoke and nuisance alarms such as fog or dust. A Mamdani-type fuzzy inference engine is developed to provide approximate reasoning for decision making. In one implementation, Gaussian membership functions for frame intensity-based features, relative humidity, and temperature are constructed using experimental data to form the system inference engine. The CFVS performed better than conventional aircraft smoke detectors in all standardized tests.

  9. Effect of multiple engine placement on aeroelastic trim and stability of flying wing aircraft

    Science.gov (United States)

    Mardanpour, Pezhman; Richards, Phillip W.; Nabipour, Omid; Hodges, Dewey H.

    2014-01-01

    Effects of multiple engine placement on flutter characteristics of a backswept flying wing resembling the HORTEN IV are investigated using the code NATASHA (Nonlinear Aeroelastic Trim And Stability of HALE Aircraft). Four identical engines with defined mass, inertia, and angular momentum are placed in different locations along the span with different offsets from the elastic axis while fixing the location of the aircraft c.g. The aircraft experiences body freedom flutter along with non-oscillatory instabilities that originate from flight dynamics. Multiple engine placement increases flutter speed particularly when the engines are placed in the outboard portion of the wing (60-70% span), forward of the elastic axis, while the lift to drag ratio is affected negligibly. The behavior of the sub- and supercritical eigenvalues is studied for two cases of engine placement. NATASHA captures a hump body-freedom flutter with low frequency for the clean wing case, which disappears as the engines are placed on the wings. In neither case is there any apparent coalescence between the unstable modes. NATASHA captures other non-oscillatory unstable roots with very small amplitude, apparently originating with flight dynamics. For the clean-wing case, in the absence of aerodynamic and gravitational forces, the regions of minimum kinetic energy density for the first and third bending modes are located around 60% span. For the second mode, this kinetic energy density has local minima around the 20% and 80% span. The regions of minimum kinetic energy of these modes are in agreement with calculations that show a noticeable increase in flutter speed if engines are placed forward of the elastic axis at these regions.

  10. HAI: A new TDLAS hygrometer for the HALO research aircraft

    Science.gov (United States)

    Klostermann, Tim; Afchine, Armin; Barthel, Jochen; Höh, Matthias; Wagner, Steven; Witzel, Oliver; Saathoff, Harald; Schiller, Cornelius; Ebert, Volker

    2010-05-01

    Water vapor is the most important greenhouse gas in the Earth's atmosphere and a key component for several physical and chemical processes. Therefore it is a key parameter to be measured during most research campaigns. The Hygrometer for Atmospheric Investigations (HAI) is especially designed for operations on the research aircraft HALO (High Altitude and LOng range research aircraft). HAI permits both, the in-situ measurement of water vapor with an open-path cell and the measurement of total water with an extractive close-path absorption cell. We are using TDLAS (Tunable Diode Laser Absorption Spectroscopy) in two water absorption bands with different line strength to increase the dynamical range. With this concept it is possible to measure from the middle troposphere up to the stratosphere. The open-path cell outside of the fuselage consists of a robust, aerodynamically designed aluminum structure with a single integrated White-cell for both laser beams. Although the mirror separation is only 15cm the cell allows an open absorption path of 4.8m. The detection of higher H2O concentrations is realized with a fiber coupled 1.4µm DFB diode laser. Inside the UTLS layer were small concentrations in the low ppm range are common, we employ up to 20 times stronger fundamental ro-vibration lines of the water molecule near 2.6µm. To supply this, the fiber coupled 2.6µm laser setup was developed and is a part of the HAI. Both detection wavelengths are introduced in the same open path cell via glass fibers which provide water measurements with a minimum of parasitic absorption. We will present the spectrometer design for high-quality airborne water measurements. Furthermore, first laboratory measurements will be shown.

  11. Structural Analysis and Optimization of a Composite Fan Blade for Future Aircraft Engine

    Science.gov (United States)

    Coroneos, Rula M.

    2012-01-01

    This report addresses the structural analysis and optimization of a composite fan blade sized for a large aircraft engine. An existing baseline solid metallic fan blade was used as a starting point to develop a hybrid honeycomb sandwich construction with a polymer matrix composite face sheet and honeycomb aluminum core replacing the original baseline solid metallic fan model made of titanium. The focus of this work is to design the sandwich composite blade with the optimum number of plies for the face sheet that will withstand the combined pressure and centrifugal loads while the constraints are satisfied and the baseline aerodynamic and geometric parameters are maintained. To satisfy the requirements, a sandwich construction for the blade is proposed with composite face sheets and a weak core made of honeycomb aluminum material. For aerodynamic considerations, the thickness of the core is optimized whereas the overall blade thickness is held fixed so as to not alter the original airfoil geometry. Weight is taken as the objective function to be minimized by varying the core thickness of the blade within specified upper and lower bounds. Constraints are imposed on radial displacement limitations and ply failure strength. From the optimum design, the minimum number of plies, which will not fail, is back-calculated. The ply lay-up of the blade is adjusted from the calculated number of plies and final structural analysis is performed. Analyses were carried out by utilizing the OpenMDAO Framework, developed at NASA Glenn Research Center combining optimization with structural assessment.

  12. Structural Analysis and Optimization of a Composite Fan Blade for Future Aircraft Engine

    Science.gov (United States)

    Coroneos, Rula M.; Gorla, Rama Subba Reddy

    2012-09-01

    This paper addresses the structural analysis and optimization of a composite sandwich ply lay-up of a NASA baseline solid metallic fan blade comparable to a future Boeing 737 MAX aircraft engine. Sandwich construction with a polymer matrix composite face sheet and honeycomb aluminum core replaces the original baseline solid metallic fan model made of Titanium. The focus of this work is to design the sandwich composite blade with the optimum number of plies for the face sheet that will withstand the combined pressure and centrifugal loads while the constraints are satisfied and the baseline aerodynamic and geometric parameters are maintained. To satisfy the requirements a sandwich construction for the blade is proposed with composite face sheets and a weak core made of honeycomb aluminum material. For aerodynamic considerations, the thickness of the core is optimized where as the overall blade thickness is held fixed in order not to alter the original airfoil geometry. Weight reduction is taken as the objective function by varying the core thickness of the blade within specified upper and lower bounds. Constraints are imposed on radial displacement limitations and ply failure strength. From the optimum design, the minimum number of plies, which will not fail, is back-calculated. The ply lay-up of the blade is adjusted from the calculated number of plies and final structural analysis is performed. Analyses were carried out by utilizing the OpenMDAO Framework, developed at NASA Glenn Research Center combining optimization with structural assessment.

  13. Revision Of The Aircraft Engines Preliminary Design Platform Of First Level

    OpenAIRE

    BENETHUILLERE, Quentin

    2014-01-01

    In the highly competitive aerospace industry, engine manufacturers must react very quickly and precisely to any demand emerging from aircraft manufacturers if they want to be positioned on the offer. This is especially true when answering to Requests For Information (RFI) based on preliminary design investigations of first level. In order to reduce the time needed to perform these costly operations while improving the performances achieved, Snecma wishes to develop tools for dimensioning the ...

  14. Aircraft Turbofan Engine Health Estimation Using Constrained Kalman Filtering

    Science.gov (United States)

    Simon, Dan; Simon, Donald L.

    2003-01-01

    Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This paper develops an analytic method of incorporating state variable inequality constraints in the Kalman filter. The resultant filter is a combination of a standard Kalman filter and a quadratic programming problem. The incorporation of state variable constraints increases the computational effort of the filter but significantly improves its estimation accuracy. The improvement is proven theoretically and shown via simulation results obtained from application to a turbofan engine model. This model contains 16 state variables, 12 measurements, and 8 component health parameters. It is shown that the new algorithms provide improved performance in this example over unconstrained Kalman filtering.

  15. Combustion noise from gas turbine aircraft engines measurement of far-field levels

    Science.gov (United States)

    Krejsa, Eugene A.

    1987-01-01

    Combustion noise can be a significant contributor to total aircraft noise. Measurement of combustion noise is made difficult by the fact that both jet noise and combustion noise exhibit broadband spectra and peak in the same frequency range. Since in-flight reduction of jet noise is greater than that of combustion noise, the latter can be a major contributor to the in-flight noise of an aircraft but will be less evident, and more difficult to measure, under static conditions. Several methods for measuring the far-field combustion noise of aircraft engines are discussed in this paper. These methods make it possible to measure combustion noise levels even in situations where other noise sources, such as jet noise, dominate. Measured far-field combustion noise levels for several turbofan engines are presented. These levels were obtained using a method referred to as three-signal coherence, requiring that fluctuating pressures be measured at two locations within the engine core in addition to the far-field noise measurement. Cross-spectra are used to separate the far-field combustion noise from far-field noise due to other sources. Spectra and directivities are presented. Comparisons with existing combustion noise predictions are made.

  16. A personal sampler for aircraft engine cold start particles: laboratory development and testing.

    Science.gov (United States)

    Armendariz, Alfredo; Leith, David

    2003-01-01

    Industrial hygienists in the U.S. Air Force are concerned about exposure of their personnel to jet fuel. One potential source of exposure for flightline ground crews is the plume emitted during the start of aircraft engines in extremely cold weather. The purpose of this study was to investigate a personal sampler, a small tube-and-wire electrostatic precipitator (ESP), for assessing exposure to aircraft engine cold start particles. Tests were performed in the laboratory to characterize the sampler's collection efficiency and to determine the magnitude of adsorption and evaporation artifacts. A low-temperature chamber was developed for the artifact experiments so tests could be performed at temperatures similar to actual field conditions. The ESP collected particles from 0.5 to 20 micro m diameter with greater than 98% efficiency at particle concentrations up to 100 mg/m(3). Adsorption artifacts were less than 5 micro g/m(3) when sampling a high concentration vapor stream. Evaporation artifacts were significantly lower for the ESP than for PVC membrane filters across a range of sampling times and incoming vapor concentrations. These tests indicate that the ESP provides more accurate exposure assessment results than traditional filter-based particle samplers when sampling cold start particles produced by an aircraft engine.

  17. FY2012 Engineering Research & Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Monya

    2014-07-22

    This report documents engineering research, development, and technology advancements performed by LLNL during fiscal year 2012 in the following areas: computational engineering, engineering information systems, micro/nano-devices and structures, and measurement technologies.

  18. FY2012 Engineering Research & Technology Report

    International Nuclear Information System (INIS)

    This report documents engineering research, development, and technology advancements performed by LLNL during fiscal year 2012 in the following areas: computational engineering, engineering information systems, micro/nano-devices and structures, and measurement technologies.

  19. 75 FR 7996 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Models TAE 125-01 and TAE 125-02...

    Science.gov (United States)

    2010-02-23

    ... Aircraft Engines GmbH (TAE) Models TAE 125-01 and TAE 125-02-99 Reciprocating Engines Installed in, But Not... reported on Diamond Aircraft Industries DA 42 airplanes equipped with TAE 125 engines. The investigations... to further cases of engine in-flight shutdown, possibly resulting in reduced control of the...

  20. Automatic Deformation Detection for Aircraft Engine Disk Inspection

    Directory of Open Access Journals (Sweden)

    Dirk Padfield

    2007-08-01

    Full Text Available Computer vision algorithms are seeing increased use in industrial inspection applications. Here, we present an “Aid to Visual” system that can detect post deformations of less than 0.005 inches in jet engine high pressure turbine disks. We create a gold-standard reference post from the posts of sample turbine disks and then use registration, edge detection, and curve-similarity algorithms to identify unacceptable post deformations. We address the challenges associated with adapting academic algorithms for use in functioning inspection systems. We present novel solutions to deal with practical issues such as accuracy, speed, robustness, and ease of use. We also present a novel, highly-efficient sub-pixel contour matching algorithm and demonstrate the effectiveness of using sub-pixel distance calculation. We demonstrate overall error rates less than 1% on over 2400 images of posts. We have integrated our algorithms into the commercial LabVIEW software running on the Aid To Visual workstation. Our algorithms will enable plant-factory inspectors to identify minute post deformations that were previously difficult to detect.

  1. Hybrid Kalman Filter: A New Approach for Aircraft Engine In-Flight Diagnostics

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2006-01-01

    In this paper, a uniquely structured Kalman filter is developed for its application to in-flight diagnostics of aircraft gas turbine engines. The Kalman filter is a hybrid of a nonlinear on-board engine model (OBEM) and piecewise linear models. The utilization of the nonlinear OBEM allows the reference health baseline of the in-flight diagnostic system to be updated to the degraded health condition of the engines through a relatively simple process. Through this health baseline update, the effectiveness of the in-flight diagnostic algorithm can be maintained as the health of the engine degrades over time. Another significant aspect of the hybrid Kalman filter methodology is its capability to take advantage of conventional linear and nonlinear Kalman filter approaches. Based on the hybrid Kalman filter, an in-flight fault detection system is developed, and its diagnostic capability is evaluated in a simulation environment. Through the evaluation, the suitability of the hybrid Kalman filter technique for aircraft engine in-flight diagnostics is demonstrated.

  2. SR-71 Research Engineer Marta Bohn-Meyer

    Science.gov (United States)

    1992-01-01

    This 1992 photo shows SR-71 flight engineer Marta Bohn-Meyer in front of one of NASA's SR-71 aircraft on the ramp at the Ames-Dryden Flight Research Facility (later, Dryden Flight Research Center), Edwards, California. An aerospace engineer who has been at Dryden since 1979, Bohn-Meyer is the first female crew member ever assigned to fly in the SR-71. Data from the SR-71 program carried out by NASA will be used to aid designers of future supersonic aircraft and propulsion systems. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes

  3. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 1

    Science.gov (United States)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. The test engine delivered 78kW indicated power from 1007cc displacement, operating at 3500 RPM on Schnuerle loop scavenged two-stroke cycle. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude, in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications; including injection system requirement, turbocharging, heat rejection, breathing, scavenging, and structural requirements. The multicylinder engine concept is configured to operate with an augmented turbocharger, but with no primary scavenge blower. The test program is oriented to provide a balanced turbocharger compressor to turbine power balance without an auxiliary scavenging system. Engine cylinder heat rejection to the ambient air has been significantly reduced and the minimum overall turbocharger efficiency required is within the range of commercially available turbochargers. Analytical studies and finite element modeling is made of insulated configurations of the engines - including both ceramic and metallic versions. A second generation test engine is designed based on current test results.

  4. Current and Future Research in Active Control of Lightweight, Flexible Structures Using the X-56 Aircraft

    Science.gov (United States)

    Ryan, John J.; Bosworth, John T.; Burken, John J.; Suh, Peter M.

    2014-01-01

    The X-56 Multi-Utility Technology Testbed aircraft system is a versatile experimental research flight platform. The system was primarily designed to investigate active control of lightweight flexible structures, but is reconfigurable and capable of hosting a wide breadth of research. Current research includes flight experimentation of a Lockheed Martin designed active control flutter suppression system. Future research plans continue experimentation with alternative control systems, explore the use of novel sensor systems, and experiments with the use of novel control effectors. This paper describes the aircraft system, current research efforts designed around the system, and future planned research efforts that will be hosted on the aircraft system.

  5. Implementation of an Integrated On-Board Aircraft Engine Diagnostic Architecture

    Science.gov (United States)

    Armstrong, Jeffrey B.; Simon, Donald L.

    2012-01-01

    An on-board diagnostic architecture for aircraft turbofan engine performance trending, parameter estimation, and gas-path fault detection and isolation has been developed and evaluated in a simulation environment. The architecture incorporates two independent models: a realtime self-tuning performance model providing parameter estimates and a performance baseline model for diagnostic purposes reflecting long-term engine degradation trends. This architecture was evaluated using flight profiles generated from a nonlinear model with realistic fleet engine health degradation distributions and sensor noise. The architecture was found to produce acceptable estimates of engine health and unmeasured parameters, and the integrated diagnostic algorithms were able to perform correct fault isolation in approximately 70 percent of the tested cases

  6. Turboelectric Distributed Propulsion Engine Cycle Analysis for Hybrid-Wing-Body Aircraft

    Science.gov (United States)

    Felder, James L.; Kim, Hyun Dae; Brown, Gerald V.

    2009-01-01

    Meeting NASA's N+3 goals requires a fundamental shift in approach to aircraft and engine design. Material and design improvements allow higher pressure and higher temperature core engines which improve the thermal efficiency. Propulsive efficiency, the other half of the overall efficiency equation, however, is largely determined by the fan pressure ratio (FPR). Lower FPR increases propulsive efficiency, but also dramatically reduces fan shaft speed through the combination of larger diameter fans and reduced fan tip speed limits. The result is that below an FPR of 1.5 the maximum fan shaft speed makes direct drive turbines problematic. However, it is the low pressure ratio fans that allow the improvement in propulsive efficiency which, along with improvements in thermal efficiency in the core, contributes strongly to meeting the N+3 goals for fuel burn reduction. The lower fan exhaust velocities resulting from lower FPRs are also key to meeting the aircraft noise goals. Adding a gear box to the standard turbofan engine allows acceptable turbine speeds to be maintained. However, development of a 50,000+ hp gearbox required by fans in a large twin engine transport aircraft presents an extreme technical challenge, therefore another approach is needed. This paper presents a propulsion system which transmits power from the turbine to the fan electrically rather than mechanically. Recent and anticipated advances in high temperature superconducting generators, motors, and power lines offer the possibility that such devices can be used to transmit turbine power in aircraft without an excessive weight penalty. Moving to such a power transmission system does more than provide better matching between fan and turbine shaft speeds. The relative ease with which electrical power can be distributed throughout the aircraft opens up numerous other possibilities for new aircraft and propulsion configurations and modes of operation. This paper discusses a number of these new

  7. On the effect of emissions from aircraft engines on the state of the atmosphere

    Directory of Open Access Journals (Sweden)

    U. Schumann

    Full Text Available Emissions from aircraft engines include carbon dioxide, water vapour, nitrogen oxides, sulphur components and various other gases and particles. Such emissions from high-flying global civil subsonic air traffic may cause anthropogenic climate changes by an increase of ozone and cloudiness in the upper troposphere, and by an enhanced greenhouse effect. The absolute emissions by air traffic are small (a few percent of the total compared to surface emissions. However, the greenhouse effect of emitted water and of nitrogen oxides at cruise altitude is potentially large compared to that of the same emissions near the earth's surface because of relatively large residence times at flight altitudes, low background concentrations, low temperature, and large radiative efficiency. Model computations indicate that emission of nitrogen oxides has doubled the background concentration in the upper troposphere between 40°N and 60°N. Models also indicate that this causes an increase of ozone by about 5-20%. Regionally, the observed annual mean change in cloudiness is 0.4%. It is estimated that the resultant greenhouse effect of changes in ozone and thin cirrus cloud cover causes a climatic surface temperature change of 0.01-0.1 K. These temperature changes are small compared to the natural variability. Recent research indicates that the emissions at cruise altitude may increase the amount of stratospheric aerosols and polar stratospheric clouds and thereby have an impact on the atmospheric environment. Air traffic is increasing about 5-6% per year, fuel consumption by about 3%, hence the effects of the related emissions are expected to grow. This paper surveys the state of knowledge and describes several results from recent and ongoing research.

  8. Impact of future fuel properties on aircraft engines and fuel systems

    Science.gov (United States)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    From current projections of the availability of high-quality petroleum crude oils, it is becoming increasingly apparent that the specifications for hydrocarbon jet fuels may have to be modified. The problems that are most likely to be encountered as a result of these modifications relate to engine performance, component durability and maintenance, and aircraft fuel-system performance. The effect on engine performance will be associated with changes in specific fuel consumption, ignition at relight limits, at exhaust emissions. Durability and maintenance will be affected by increases in combustor liner temperatures, carbon deposition, gum formation in fuel nozzles, and erosion and corrosion of turbine blades and vanes. Aircraft fuel-system performance will be affected by increased deposits in fuel-system heat exchangers and changes in the pumpability and flowability of the fuel. The severity of the potential problems is described in terms of the fuel characteristics most likely to change in the future. Recent data that evaluate the ability of current-technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.

  9. Chemistry Characterization of Jet Aircraft Engine Particulate by XPS: Results from APEX III

    Science.gov (United States)

    Vander Wal, Randy L.; Bryg, Victoria M.

    2014-01-01

    This paper reports XPS analysis of jet exhaust particulate from a B737, Lear, ERJ, and A300 aircraft during the APEX III NASA led field campaign. Carbon hybridization and bonding chemistry are identified by high-resolution scans about the C1s core-shell region. Significant organic content as gauged by the sp3/sp2 ratio is found across engines and platforms. Polar oxygen functional groups include carboxylic, carbonyl and phenol with combined content of 20 percent or more. By lower resolution survey scans various elements including transition metals are identified along with lighter elements such as S, N, and O in the form of oxides. Burning additives within lubricants are probable sources of Na, Ba, Ca, Zn, P and possibly Sn. Elements present and their percentages varied significantly across all engines, not revealing any trend or identifiable cause for the differences, though the origin is likely the same for the same element when observed. This finding suggests that their presence can be used as a tracer for identifying soots from aircraft engines as well as diagnostic for monitoring engine performance and wear.

  10. Chemistry characterization of jet aircraft engine particulate matter by XPS: Results from APEX III

    Science.gov (United States)

    Vander Wal, Randy L.; Bryg, Victoria M.; Huang, Chung-Hsuan

    2016-09-01

    This paper reports X-ray photoelectron spectroscopy (XPS) analysis of jet exhaust particulate matter (PM) from a B737, Lear, ERJ and A300 aircraft during the APEX III NASA led field campaign. Carbon hybridization and bonding chemistry are identified by high-resolution scans about the C1s core-shell region. Significant organic content as gauged by the sp3/sp2 ratio is found across engines and powers. Polar oxygen functional groups include carboxylic, carbonyl and phenol with combined content of 20% or more. By survey scans various elements including transition metals are identified along with lighter elements such as S, N and O in the form of oxides. Additives within lubricants are probable sources of Na, Ba, Ca, Zn, P and possibly Sn. Elements present and their percentages varied significantly across all engines, not revealing any trend or identifiable cause for the differences, though the origin is likely the same for the same element when observed. This finding suggests that their collective presence could serve as an environmental tracer for identifying PM originating from aircraft engines and serving as a diagnostic for engine performance and wear.

  11. Exergy as a useful tool for the performance assessment of aircraft gas turbine engines: A key review

    Science.gov (United States)

    Şöhret, Yasin; Ekici, Selcuk; Altuntaş, Önder; Hepbasli, Arif; Karakoç, T. Hikmet

    2016-05-01

    It is known that aircraft gas turbine engines operate according to thermodynamic principles. Exergy is considered a very useful tool for assessing machines working on the basis of thermodynamics. In the current study, exergy-based assessment methodologies are initially explained in detail. A literature overview is then presented. According to the literature overview, turbofans may be described as the most investigated type of aircraft gas turbine engines. The combustion chamber is found to be the most irreversible component, and the gas turbine component needs less exergetic improvement compared to all other components of an aircraft gas turbine engine. Finally, the need for analyses of exergy, exergo-economic, exergo-environmental and exergo-sustainability for aircraft gas turbine engines is emphasized. A lack of agreement on exergy analysis paradigms and assumptions is noted by the authors. Exergy analyses of aircraft gas turbine engines, fed with conventional fuel as well as alternative fuel using advanced exergy analysis methodology to understand the interaction among components, are suggested to those interested in thermal engineering, aerospace engineering and environmental sciences.

  12. Subsonic Ultra Green Aircraft Research. Phase II - Volume I; Truss Braced Wing Design Exploration

    Science.gov (United States)

    Bradley, Marty K.; Droney, Christopher K.; Allen, Timothy J.

    2015-01-01

    This report summarizes the Truss Braced Wing (TBW) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, Georgia Tech, Virginia Tech, NextGen Aeronautics, and Microcraft. A multi-disciplinary optimization (MDO) environment defined the geometry that was further refined for the updated SUGAR High TBW configuration. Airfoil shapes were tested in the NASA TCT facility, and an aeroelastic model was tested in the NASA TDT facility. Flutter suppression was successfully demonstrated using control laws derived from test system ID data and analysis models. Aeroelastic impacts for the TBW design are manageable and smaller than assumed in Phase I. Flutter analysis of TBW designs need to include pre-load and large displacement non-linear effects to obtain a reasonable match to test data. With the updated performance and sizing, fuel burn and energy use is reduced by 54% compared to the SUGAR Free current technology Baseline (Goal 60%). Use of the unducted fan version of the engine reduces fuel burn and energy by 56% compared to the Baseline. Technology development roadmaps were updated, and an airport compatibility analysis established feasibility of a folding wing aircraft at existing airports.

  13. Re-Educating Jet-Engine-Researchers to Stay Relevant

    Science.gov (United States)

    Gal-Or, Benjamin

    2016-06-01

    To stay relevantly supported, jet-engine researchers, designers and operators should follow changing uses of small and large jet engines, especially those anticipated to be used by/in the next generation, JET-ENGINE-STEERED ("JES") fleets of jet drones but fewer, JES-Stealth-Fighter/Strike Aircraft. In addition, some diminishing returns from isolated, non-integrating, jet-engine component studies, vs. relevant, supersonic, shock waves control in fluidic-JES-side-effects on compressor stall dynamics within Integrated Propulsion Flight Control ("IPFC"), and/or mechanical JES, constitute key relevant methods that currently move to China, India, South Korea and Japan. The central roles of the jet engine as primary or backup flight controller also constitute key relevant issues, especially under post stall conditions involving induced engine-stress while participating in crash prevention or minimal path-time maneuvers to target. And when proper instructors are absent, self-study of the JES-STVS REVOLUTION is an updating must, where STVS stands for wing-engine-airframe-integrated, embedded stealthy-jet-engine-inlets, restructured engines inside Stealth, Tailless, canard-less, Thrust Vectoring IFPC Systems. Anti-terror and Airliners Super-Flight-Safety are anticipated to overcome US legislation red-tape that obstructs JES-add-on-emergency-kits-use.

  14. Aircraft Engine Noise Scattering by Fuselage and Wings: A Computational Approach

    Science.gov (United States)

    Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2003-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far-field. The effects of nonuniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. The approach is based on the discretization of the inviscid flow equations through a collocation form of the Discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Large-scale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic configuration, with and without a wing.

  15. Chemistry in plumes of high-flying aircraft with H2 combustion engines: a modelling study

    Directory of Open Access Journals (Sweden)

    G. Weibring

    Full Text Available Recent discussions on high-speed civil transport (HSCT systems have renewed the interest in the chemistry of supersonic-aircraft plumes. The engines of these aircraft emit large concentrations of radicals like O, H, OH, and NO. In order to study the effect of these species on the composition of the atmosphere, the detailed chemistry of an expanding and cooling plume is examined for different expansion models.

    For a representative flight at 26 km the computed trace gas concentrations do not differ significantly for different models of the expansion behaviour. However, it is shown that the distributions predicted by all these models differ significantly from those adopted in conventional meso-scale and global models in which the plume chemistry is not treated in detail. This applies in particular to the reservoir species HONO and H2O2.

  16. Impact Analyses and Tests of Metal Cask Considering Aircraft Engine Crash - 12308

    International Nuclear Information System (INIS)

    The structural integrity of a dual purpose metal cask currently under development by the Korea Radioactive Waste Management Cooperation (KRMC) is evaluated through analyses and tests under a high-speed missile impact considering the targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from the literature. The missile impact velocity was set at 150 m/s, and two impact orientations were considered. A simplified missile simulating a commercial aircraft engine is designed from an impact load history curve provided in the literature. In the analyses, the focus is on the evaluation of the containment boundary integrity of the metal cask. The analyses results are compared with the results of tests using a 1/3 scale model. The results show very good agreements, and the procedure and methodology adopted in the structural analyses are validated. While the integrity of the cask is maintained in one evaluation where the missile impacts the top side of the free standing cask, the containment boundary is breached in another case in which the missile impacts the center of the cask lid in a perpendicular orientation. A safety assessment using a numerical simulation of an aircraft engine crash into spent nuclear fuel storage systems is performed. A commercially available explicit finite element code is utilized for the dynamic simulation, and the strain rate effect is included in the modeling of the materials used in the target system and missile. The simulation results show very good agreement with the test results. It is noted that this is the first test considering an aircraft crash in Korea. (authors)

  17. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  18. Aircraft Engine Sensor Fault Diagnostics Based on Estimation of Engine's Health Degradation

    Institute of Scientific and Technical Information of China (English)

    Xue Wei; Guo Yingqing

    2009-01-01

    bank, the real faults that have occurred can be detected and isolated. The on-line fault detection algorithm has the ability of maintaining the effectiveness over the engine's lifetime and is verified by simulation using a nonlinear engine model.

  19. CFD Study of NOx Emissions in a Model Commercial Aircraft Engine Combustor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Man; FU Zhenbo; LIN Yuzhen; LI Jibao

    2012-01-01

    Air worthiness requirements of the aircraft engine emission bring new challenges to the combustor research and design.With the motivation to design high performance and clean combustor,computational fluid dynamics (CFD) is utilized as the powerful design approach.In this paper,Reynolds averaged Navier-Stokes (RANS) equations of reactive two-phase flow in an experimental low emission combustor is performed.The numerical approach uses an implicit compressible gas solver together with a Lagrangian liquid-phase tracking method and the extended coherent flamelet model for turbulence-combustion interaction.The NOx formation is modeled by the concept of post-processing,which resolves the NOx transport equation with the assumption of frozen temperature distribution.Both turbulence-combustion interaction model and NOx formation model are firstly evaluated by the comparison of experimental data published in open literature of a lean direct injection (LDI) combustor.The test rig studied in this paper is called low emission stirred swirl (LESS) combustor,which is a two-stage model combustor,fueled with liquid kerosene (RP-3) and designed by Beihang University (BUAA).The main stage of LESS combustor employs the principle of lean prevaporized and premixed (LPP) concept to reduce pollutant,and the pilot stage depends on a diffusion flame for flame stabilization.Detailed numerical results including species distribution,turbulence performance and burning performance are qualitatively and quantitatively evaluated.Numerical prediction of NOx emission shows a good agreement with test data at both idle condition and full power condition of LESS combustor.Preliminary results of the flame structure are shown in this paper.The flame stabilization mechanism and NOx reduction effort are also discussed with in-depth analysis.

  20. An Integrated Approach for Aircraft Engine Performance Estimation and Fault Diagnostics

    Science.gov (United States)

    imon, Donald L.; Armstrong, Jeffrey B.

    2012-01-01

    A Kalman filter-based approach for integrated on-line aircraft engine performance estimation and gas path fault diagnostics is presented. This technique is specifically designed for underdetermined estimation problems where there are more unknown system parameters representing deterioration and faults than available sensor measurements. A previously developed methodology is applied to optimally design a Kalman filter to estimate a vector of tuning parameters, appropriately sized to enable estimation. The estimated tuning parameters can then be transformed into a larger vector of health parameters representing system performance deterioration and fault effects. The results of this study show that basing fault isolation decisions solely on the estimated health parameter vector does not provide ideal results. Furthermore, expanding the number of the health parameters to address additional gas path faults causes a decrease in the estimation accuracy of those health parameters representative of turbomachinery performance deterioration. However, improved fault isolation performance is demonstrated through direct analysis of the estimated tuning parameters produced by the Kalman filter. This was found to provide equivalent or superior accuracy compared to the conventional fault isolation approach based on the analysis of sensed engine outputs, while simplifying online implementation requirements. Results from the application of these techniques to an aircraft engine simulation are presented and discussed.

  1. Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation

    Science.gov (United States)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A linear point design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. This paper derives theoretical Kalman filter estimation error bias and variance values at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the conventional approach of tuner selection. Experimental simulation results are found to be in agreement with theoretical predictions. The new methodology is shown to yield a significant improvement in on-line engine performance estimation accuracy

  2. High-Temperature, Lightweight, Self-Healing Ceramic Composites for Aircraft Engine Applications

    Science.gov (United States)

    Raj, Sai V.; Bhatt, Ramkrishna

    2013-01-01

    The use of reliable, high-temperature, lightweight materials in the manufacture of aircraft engines is expected to result in lower fossil and biofuel consumption, thereby leading to cost savings and lower carbon emissions due to air travel. Although nickel-based superalloy blades and vanes have been successfully used in aircraft engines for several decades, there has been an increased effort to develop high-temperature, lightweight, creep-resistant substitute materials under various NASA programs over the last two decades. As a result, there has been a great deal of interest in developing SiC/SiC ceramic matrix composites (CMCs) due to their higher damage tolerance compared to monolithic ceramics. Current-generation SiC/SiC ceramic matrix composites rely almost entirely on the SiC fibers to carry the load, owing to the premature cracking of the matrix during loading. Thus, the high-temperature usefulness of these CMCs falls well below their theoretical capabilities. The objective of this work is to develop a new class of high-temperature, lightweight, self-healing, SiC fiber-reinforced, engineered matrix ceramic composites.

  3. Direction of improvement of the radial-face seals of rotor supports of the aircraft engines

    Directory of Open Access Journals (Sweden)

    Petr Bondarchuk

    2014-10-01

    Full Text Available Today the radial-face contacts seals are the most wide-spread type of sealers of the aircraft engine rotor supports. In the paper the main shortcomings of the radial-face contact seals are specified the removal of which will result in increase in the operating range in terms of the pressure and temperature of the sealing air, reduction of leakages and extension of life-time. On the basis of the literature, patents and catalogues of the manufacturing companies the modern trends of improvement of the sealing structure are considered. The innovative technical solution for the radial-face contact seal with oil lubrication has been developed allowing increasing its efficiency. In order to increase the sealing reliability the hydrodynamic grooves of unique form made with the use of a laser are used. High sealing efficiency is ensured due to the simultaneous application of principles of hydrostatic and hydrodynamic lubrication. The method of calculation of seal properties has been suggested. The results of testing the new type of sealing for the engine rotor support as part of a moving-base simulator and aircraft gas-turbine engine have been presented.

  4. 75 FR 32253 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Models TAE 125-01 and TAE 125-02...

    Science.gov (United States)

    2010-06-08

    ... Diamond Aircraft Industries DA 42 airplanes equipped with TAE 125 engines. The investigations showed that... cases of engine in-flight shutdown, possibly resulting in reduced control of the aircraft. Since the.... The MCAI states that: Engine in-flight shutdown incidents have been reported on Diamond...

  5. Biosystems and Food Engineering Research Review 21

    OpenAIRE

    Cummins, Enda; Curran, Thomas P.

    2016-01-01

    The Twenty First Annual Research Review describes the ongoing research programme in the School of Biosystems and Food Engineering at University College Dublin from over 83 researchers (11 academic staff, 1 technician, 4 postdoctoral researchers and 67 postgraduates). The research programme covers three focal areas: Food and Process Engineering; Bioresource Systems; and Bioenvironmental Engineering. Each area is divided into sub-areas as outlined in the Table of Contents which also includes th...

  6. Research on Data Distribution Service for Aircraft Collaborative Design System

    Directory of Open Access Journals (Sweden)

    Huaxing Bian

    2014-01-01

    Full Text Available Aircraft designing is a complex, multi-disciplinary process, while the applications are separated from each other due to their particular design and analysis tools. The separated applications are unable to meet the collaborative designing requirements. One of the fundamental problems in Aircraft Collaborative Design System is that how to make each subsystem collaborate. The known solutions, using Existing middlewares to unify data formats, are not reliable due to the tightly coupled architecture, poor portability and reusability, large update latency, etc. To solve this problem, the paper propose that apply DDS into Aircraft Collaborative Design System, and give the solution that how to use open source projects OpenDDS in Aircraft Collaborative Design System.

  7. Evaluation of an Aircraft Concept With Over-Wing, Hydrogen-Fueled Engines for Reduced Noise and Emissions

    Science.gov (United States)

    Guynn, Mark D.; Olson, Erik D.

    2002-01-01

    This report describes the analytical modeling and evaluation of an unconventional commercial transport aircraft concept designed to address aircraft noise and emission issues. A strut-braced wing configuration with overwing, ultra-high bypass ratio, hydrogen fueled turbofan engines is considered. Estimated noise and emission characteristics are compared to a conventional configuration designed for the same mission and significant benefits are identified. The design challenges and technology issues which would have to be addressed to make the concept a viable alternative to current aircraft designs are discussed. This concept is one of the "Quiet Green Transport" aircraft concepts studied as part of NASA's Revolutionary Aerospace Systems Concepts (RASC) Program. The RASC Program seeks to develop revolutionary concepts that address strategic objectives of the NASA Enterprises, such as reducing aircraft noise and emissions, and to identify enabling advanced technology requirements for the concepts.

  8. Feminist Methodologies and Engineering Education Research

    Science.gov (United States)

    Beddoes, Kacey

    2013-01-01

    This paper introduces feminist methodologies in the context of engineering education research. It builds upon other recent methodology articles in engineering education journals and presents feminist research methodologies as a concrete engineering education setting in which to explore the connections between epistemology, methodology and theory.…

  9. Academic search engines: librarian's friend, researcher's delight

    OpenAIRE

    Chakravarty, Rupak; Randhawa, Sukhwinder

    2006-01-01

    Search engines are about excitement, optimism, hope and enrichment. Search engines are also about despair and disappointment. A researcher while using search engines for resource discovery might have experienced one or the other sentiments. One may say that user satisfaction depends much upon the search strategies deployed by the user. But at the same time its also depends upon the quality of search engine used for information retrieval. Today, there are many search engines used for resource ...

  10. High fidelity simulation of non-synchronous vibration for aircraft engine fan/compressor

    Science.gov (United States)

    Im, Hong-Sik

    The objectives of this research are to develop a high fidelity simulation methodology for turbomachinery aeromechanical problems and to investigate the mechanism of non-synchronous vibration (NSV) of an aircraft engine axial compressor. A fully conservative rotor/stator sliding technique is developed to accurately capture the unsteadiness and interaction between adjacent blade rows. Phase lag boundary conditions (BC) based on the time shift (direct store) method and the Fourier series phase lag BC are implemented to take into account the effect of phase difference for a sector of annulus simulation. To resolve the nonlinear interaction between flow and vibrating blade structure, a fully coupled fluid-structure interaction (FSI) procedure that solves the structural modal equations and time accurate Navier-Stokes equations simultaneously is adopted. An advanced mesh deformation method that generates the blade tip block mesh moving with the blade displacement is developed to ensure the mesh quality. An efficient and low diffusion E-CUSP (LDE) scheme as a Riemann solver designed to minimize numerical dissipation is used with an improved hybrid RANS/LES turbulence strategy, delayed detached eddy simulation (DDES). High order accuracy (3rd and 5th order) weighted essentially non-oscillatory (WENO) schemes for inviscid flux and a conservative 2nd and 4th order viscous flux differencing are employed. Extensive validations are conducted to demonstrate high accuracy and robustness of the high fidelity FSI simulation methodology. The validated cases include: (1) DDES of NACA 0012 airfoil at high angle of attack with massive separation. The DDES accurately predicts the drag whereas the URANS model significantly over predicts the drag. (2) The AGARD Wing 445.6 flutter boundary is accurately predicted including the point at supersonic incoming flow. (3) NASA Rotor 67 validation for steady state speed line and radial profiles at peak efficiency point and near stall point. The

  11. Weight Assessment for Fuselage Shielding on Aircraft With Open-Rotor Engines and Composite Blade Loss

    Science.gov (United States)

    Carney, Kelly; Pereira, Michael; Kohlman, Lee; Goldberg, Robert; Envia, Edmane; Lawrence, Charles; Roberts, Gary; Emmerling, William

    2013-01-01

    The Federal Aviation Administration (FAA) has been engaged in discussions with airframe and engine manufacturers concerning regulations that would apply to new technology fuel efficient "openrotor" engines. Existing regulations for the engines and airframe did not envision features of these engines that include eliminating the fan blade containment systems and including two rows of counter-rotating blades. Damage to the airframe from a failed blade could potentially be catastrophic. Therefore the feasibility of using aircraft fuselage shielding was investigated. In order to establish the feasibility of this shielding, a study was conducted to provide an estimate for the fuselage shielding weight required to provide protection from an open-rotor blade loss. This estimate was generated using a two-step procedure. First, a trajectory analysis was performed to determine the blade orientation and velocity at the point of impact with the fuselage. The trajectory analysis also showed that a blade dispersion angle of 3deg bounded the probable dispersion pattern and so was used for the weight estimate. Next, a finite element impact analysis was performed to determine the required shielding thickness to prevent fuselage penetration. The impact analysis was conducted using an FAA-provided composite blade geometry. The fuselage geometry was based on a medium-sized passenger composite airframe. In the analysis, both the blade and fuselage were assumed to be constructed from a T700S/PR520 triaxially-braided composite architecture. Sufficient test data on T700S/PR520 is available to enable reliable analysis, and also demonstrate its good impact resistance properties. This system was also used in modeling the surrogate blade. The estimated additional weight required for fuselage shielding for a wing- mounted counterrotating open-rotor blade is 236 lb per aircraft. This estimate is based on the shielding material serving the dual use of shielding and fuselage structure. If the

  12. Exergo-Economic Analysis of an Experimental Aircraft Turboprop Engine Under Low Torque Condition

    Science.gov (United States)

    Atilgan, Ramazan; Turan, Onder; Aydin, Hakan

    Exergo-economic analysis is an unique combination of exergy analysis and cost analysis conducted at the component level. In exergo-economic analysis, cost of each exergy stream is determined. Inlet and outlet exergy streams of the each component are associated to a monetary cost. This is essential to detect cost-ineffective processes and identify technical options which could improve the cost effectiveness of the overall energy system. In this study, exergo-economic analysis is applied to an aircraft turboprop engine. Analysis is based on experimental values at low torque condition (240 N m). Main components of investigated turboprop engine are the compressor, the combustor, the gas generator turbine, the free power turbine and the exhaust. Cost balance equations have been formed for all components individually and exergo-economic parameters including cost rates and unit exergy costs have been calculated for each component.

  13. Noise simulation of aircraft engine fans by the boundary element method

    Science.gov (United States)

    Pyatunin, K. R.; Arkharova, N. V.; Remizov, A. E.

    2016-07-01

    Numerical simulation results of the civil aircraft engine fan stage noise in the far field are presented. Non-steady-state rotor-stator interaction is calculated the commercial software that solves the Navier-Stokes equations using differentturbulence models. Noise propagation to the far acoustic field is calculated by the boundary element method using acoustic Lighthill analogies without taking into account the mean current in the air inlet duct. The calculated sound pressure levels at points 50 m from the engine are presented, and the directional patterns of the acoustic radiation are shown. The use of the eddy resolving turbulence model to calculate rotor-stator interaction increases the accuracy in predicting fan stage noise.

  14. Cascade Optimization Strategy with Neural Network and Regression Approximations Demonstrated on a Preliminary Aircraft Engine Design

    Science.gov (United States)

    Hopkins, Dale A.; Patnaik, Surya N.

    2000-01-01

    A preliminary aircraft engine design methodology is being developed that utilizes a cascade optimization strategy together with neural network and regression approximation methods. The cascade strategy employs different optimization algorithms in a specified sequence. The neural network and regression methods are used to approximate solutions obtained from the NASA Engine Performance Program (NEPP), which implements engine thermodynamic cycle and performance analysis models. The new methodology is proving to be more robust and computationally efficient than the conventional optimization approach of using a single optimization algorithm with direct reanalysis. The methodology has been demonstrated on a preliminary design problem for a novel subsonic turbofan engine concept that incorporates a wave rotor as a cycle-topping device. Computations of maximum thrust were obtained for a specific design point in the engine mission profile. The results (depicted in the figure) show a significant improvement in the maximum thrust obtained using the new methodology in comparison to benchmark solutions obtained using NEPP in a manual design mode.

  15. Modern mechanical engineering research, development and education

    CERN Document Server

    2014-01-01

    This book covers modern subjects of mechanical engineering such as nanomechanics and nanotechnology, mechatronics and robotics, computational mechanics, biomechanics, alternative energies, sustainability as well as all aspects related with mechanical engineering education. The chapters help enhance the understanding of both the fundamentals of mechanical engineering and its application to the solution of problems in modern industry. This book is suitable for students, both in final undergraduate mechanical engineering courses or at the graduate level. It also serves as a useful reference for academics, mechanical engineering researchers, mechanical, materials and manufacturing engineers, professionals in related with mechanical engineering.

  16. Prototype-Technology Evaluator and Research Aircraft (PTERA) Flight Test Assessment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Area-I team has developed and fabricated the unmanned Prototype-Technology Evaluation and Research Aircraft or PTERA ("ptera" being Greek for wing, or...

  17. Aircraft noise effects on sleep: Mechanisms, mitigation and research needs

    Directory of Open Access Journals (Sweden)

    Mathias Basner

    2010-01-01

    Full Text Available There is an ample number of laboratory and field studies which provide sufficient evidence that aircraft noise disturbs sleep and, depending on traffic volume and noise levels, may impair behavior and well-being during the day. Although clinical sleep disorders have been shown to be associated with increased risk of cardiovascular diseases, only little is known about the long-term effects of aircraft noise disturbed sleep on health. National and international laws and guidelines try to limit aircraft noise exposure facilitating active and passive noise control to prevent relevant sleep disturbances and its consequences. Adopting the harmonized indicator of the European Union Directive 2002/49/EC, the WHO Night Noise Guideline for Europe (NNG defines four Lnight , outside ranges associated with different risk levels of sleep disturbance and other health effects ( 55 dBA. Although traffic patterns differing in number and noise levels of events that lead to varying degrees of sleep disturbance may result in the same Lnight , simulations of nights with up to 200 aircraft noise events per night nicely corroborate expert opinion guidelines formulated in WHO′s NNG. In the future, large scale field studies on the effects of nocturnal (aircraft noise on sleep are needed. They should involve representative samples of the population including vulnerable groups like children and chronically ill subjects. Optimally, these studies are prospective in nature and examine the long-term consequences of noise-induced sleep disturbances. Furthermore, epidemiological case-control studies on the association of nocturnal (aircraft noise exposure and cardiovascular disease are needed. Despite the existing gaps in knowledge on long-term health effects, sufficient data are available for defining limit values, guidelines and protection concepts, which should be updated with the availability of new data.

  18. PM emissions measurements of in-service commercial aircraft engines during the Delta-Atlanta Hartsfield Study

    Science.gov (United States)

    Lobo, Prem; Hagen, Donald E.; Whitefield, Philip D.; Raper, David

    2015-03-01

    This paper describes the results of the physical characterization of aircraft engine PM emission measurements conducted during the Delta-Atlanta Hartsfield Study at the Hartsfield-Jackson Atlanta International Airport. Engine exit plane PM emissions were sampled from on-wing engines on several in-service commercial transport aircraft from the fleet of Delta Airlines. The size distributions were lognormal in nature with a single mode. The geometric mean diameter was found to increase with increasing engine thrust, ranging from 15 nm at idle to 40 nm at takeoff. PM number- and mass-based emission indices were observed to be higher at the idle conditions (4% and 7%), lowest at 15%-30% thrust, and then increase with increasing thrust. Emissions measurements were also conducted during an advected plume study where over 300 exhaust plumes generated by a broad mix of commercial transports were sampled 100-350 m downwind from aircraft operational runways during normal airport operations. The range of values measured at take-off for the different engine types in terms of PM number-based emission index was between 7 × 1015-9 × 1017 particles/kg fuel burned, and that for PM mass-based emission index was 0.1-0.6 g/kg fuel burned. PM characteristics of aircraft engine specific exhaust were found to evolve over time as the exhaust plume expands, dilutes with ambient air, and cools. The data from these measurements will enhance the emissions inventory development for a subset of engines operating in the commercial fleet and improve/validate current environmental impact predictive tools with real world aircraft engine specific PM emissions inputs.

  19. Low-order nonlinear dynamic model of IC engine-variable pitch propeller system for general aviation aircraft

    Science.gov (United States)

    Richard, Jacques C.

    1995-01-01

    This paper presents a dynamic model of an internal combustion engine coupled to a variable pitch propeller. The low-order, nonlinear time-dependent model is useful for simulating the propulsion system of general aviation single-engine light aircraft. This model is suitable for investigating engine diagnostics and monitoring and for control design and development. Furthermore, the model may be extended to provide a tool for the study of engine emissions, fuel economy, component effects, alternative fuels, alternative engine cycles, flight simulators, sensors, and actuators. Results show that the model provides a reasonable representation of the propulsion system dynamics from zero to 10 Hertz.

  20. Safety Analysis of Dual Purpose Metal Cask Subjected to Impulsive Loads due to Aircraft Engine Crash

    Science.gov (United States)

    Shirai, Koji; Namba, Kosuke; Saegusa, Toshiari

    In Japan, the first Interim Storage Facility of spent nuclear fuel away from reactor site is being planned to start its commercial operation around 2010, in use of dual-purpose metal cask in the northern part of Main Japan Island. Business License Examination for safety design approval has started since March, 2007. To demonstrate the more scientific and rational performance of safety regulation activities on each phase for the first license procedure, CREPEI has executed demonstration tests with full scale casks, such as drop tests onto real targets without impact limiters(1) and seismic tests subjected to strong earthquake motions(2). Moreover, it is important to develop the knowledge for the inherent security of metal casks under extreme mechanical-impact conditions, especially for increasing interest since the terrorist attacks from 11th September 2001(3)-(6). This paper presents dynamic mechanical behavior of the metal cask lid closure system caused by direct aircraft engine crash and describes calculated results (especially, leak tightness based on relative dynamic displacements between metallic seals). Firstly, the local penetration damage of the interim storage facility building by a big passenger aircraft engine crash (diameter 2.7m, length 4.3m, weight 4.4ton, impact velocity 90m/s) has been examined. The reduced velocity is calculated by the local damage formula for concrete structure with its thickness of 70cm. The load vs. time function for this reduced velocity (60m/s) is estimated by the impact analysis using Finite Element code LS-DYNA with the full scale engine model onto a hypothetically rigid target. Secondly, as the most critical scenarios for the metal cask, two impact scenarios (horizontal impact hitting the cask and vertical impact onto the lid metallic seal system) are chosen. To consider the geometry of all bolts for two lids, the gasket reaction forces and the inner pressure of the cask cavity, the detailed three dimensional FEM models are

  1. MODELLING AND MEASUREMENT OF NOx CONCENTRATION IN PLUME FROM AIRCRAFT ENGINE UNDER OPERATION CONDITIONS AT THE AERODROME AREA

    Directory of Open Access Journals (Sweden)

    Oleksandr Zaporozhets

    2016-06-01

    Full Text Available Purpose: Airport air pollution is growing concern because of the air traffic expansion over the years (at annual rate of 5 %, rising tension of airports and growing cities expansion close each other (for such Ukrainian airports, as Zhulyany, Boryspol, Lviv, Odesa and Zaporizhzhia and accordingly growing public concern with air quality around the airport. Analysis of inventory emission results at major European and Ukrainian airports highlighted, that an aircraft is the dominant source of air pollution in most cases under consideration. For accurate assessment of aircraft emission contribution to total airport pollution and development of successful mitigation strategies, it is necessary to combine the modeling and measurement methods. Methods: Measurement of NOx concentration in the jet/plume from aircraft engine was implemented by chemiluminescence method under real operating conditions (taxi, landing, accelerating on the runway and take-off at International Boryspol airport (IBA. Modeling of NOx concentration was done by complex model PolEmiCa, which takes into account the transport and dilution of air contaminates by exhaust gases jet and the wing trailing vortexes.Results: The results of the measured NOx concentration in plume from aircraft engine for take-off conditions at IBA were used for improvement and validation of the complex model PolEmiCa. The comparison of measured and modeled instantaneous concentration of NOx was sufficiently improved by taking into account the impact of wing trailing vortices on the parameters of the jet (buoyancy height, horizontal and vertical deviation and on concentration distribution in plume. Discussion: Combined approach of modeling and measurement methods provides more accurate representation of aircraft emission contribution to total air pollution in airport area. Modeling side provides scientific grounding for organization of instrumental monitoring of aircraft engine emissions, particularly, scheme

  2. Research of low boom and low drag supersonic aircraft design

    Institute of Scientific and Technical Information of China (English)

    Feng Xiaoqiang; Li Zhanke; Song Bifeng

    2014-01-01

    Sonic boom reduction will be an issue of utmost importance in future supersonic trans-port, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass-George-Darden (SGD) inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a concep-tual supersonic aircraft design environment (CSADE) is constructed. The architecture of CSADE includes inner optimization level and out optimization level. The low boom configuration is gener-ated in inner optimization level by matching the target equivalent area distribution and actual equivalent area distribution. And low boom/low drag configuration is generated in outer optimiza-tion level by using NSGA-II multi-objective genetic algorithm to optimize the control parameters of SGD method and aircraft shape. Two objective functions, low sonic boom and low wave drag, are considered in CSADE. Physically reasonable Pareto solutions are obtained from the present optimization. Some supersonic aircraft configurations are selected from Pareto front and the optimization results indicate that the swept forward wing configuration has benefits in both sonic boom reduction and wave drag reduction. The results are validated by using computational fluid dynamics (CFD) analysis.

  3. IR signature study of aircraft engine for variation in nozzle exit area

    Science.gov (United States)

    Baranwal, Nidhi; Mahulikar, Shripad P.

    2016-01-01

    In general, jet engines operate with choked nozzle during take-off, climb and cruise, whereas unchoking occurs while landing and taxiing (when engine is not running at full power). Appropriate thrust in an aircraft in all stages of the flight, i.e., take-off, climb, cruise, descent and landing is achieved through variation in the nozzle exit area. This paper describes the effect on thrust and IR radiance of a turbojet engine due to variation in the exit area of a just choked converging nozzle (Me = 1). The variations in the nozzle exit area result in either choking or unchoking of a just choked converging nozzle. Results for the change in nozzle exit area are analyzed in terms of thrust, mass flow rate and specific fuel consumption. The solid angle subtended (Ω) by the exhaust system is estimated analytically, for the variation in nozzle exit area (Ane), as it affects the visibility of the hot engine parts from the rear aspect. For constant design point thrust, IR radiance is studied from the boresight (ϕ = 0°, directly from the rear side) for various percentage changes in nozzle exit area (%ΔAne), in the 1.9-2.9 μm and 3-5 μm bands.

  4. Sensitivity Analysis for Safety Design Verification of General Aviation Reciprocating Aircraft Engine

    Institute of Scientific and Technical Information of China (English)

    CAO Jiaokun; DING Shuiting

    2012-01-01

    This paper presents an application of global sensitivity analysis for system safety analysis of reciprocating aircraft engine.Compared with local sensitivity analysis results,global sensitivity analysis could provide more information on parameter interactions,which are significant in complex system safety analysis.First,a deterministic aviation reciprocating engine thermodynamics model is developed and parameters of interest are defined as random variables.Then,samples are generated by Monte Carlo method for the parameters used in engine model on the basis of definition of factor distribution.Eventually,results from engine model are generated and importance indices are calculated.Based on the analysis results,design is improved to satisfy the airworthiness requirements.The results reveal that by using global sensitivity analysis,the parameters could be ranked with respect to their importance,including first order indices and total sensitivity indices.By reducing the uncertainty of parameters and adjusting the range of inputs,safety criteria would be satisfied.

  5. Sensor Selection for Aircraft Engine Performance Estimation and Gas Path Fault Diagnostics

    Science.gov (United States)

    Simon, Donald L.; Rinehart, Aidan W.

    2016-01-01

    This paper presents analytical techniques for aiding system designers in making aircraft engine health management sensor selection decisions. The presented techniques, which are based on linear estimation and probability theory, are tailored for gas turbine engine performance estimation and gas path fault diagnostics applications. They enable quantification of the performance estimation and diagnostic accuracy offered by different candidate sensor suites. For performance estimation, sensor selection metrics are presented for two types of estimators including a Kalman filter and a maximum a posteriori estimator. For each type of performance estimator, sensor selection is based on minimizing the theoretical sum of squared estimation errors in health parameters representing performance deterioration in the major rotating modules of the engine. For gas path fault diagnostics, the sensor selection metric is set up to maximize correct classification rate for a diagnostic strategy that performs fault classification by identifying the fault type that most closely matches the observed measurement signature in a weighted least squares sense. Results from the application of the sensor selection metrics to a linear engine model are presented and discussed. Given a baseline sensor suite and a candidate list of optional sensors, an exhaustive search is performed to determine the optimal sensor suites for performance estimation and fault diagnostics. For any given sensor suite, Monte Carlo simulation results are found to exhibit good agreement with theoretical predictions of estimation and diagnostic accuracies.

  6. The NASA Earth Research-2 (ER-2) Aircraft: A Flying Laboratory for Earth Science Studies

    Science.gov (United States)

    Navarro, Robert

    2007-01-01

    The National Aeronautics and Space Administration Dryden Flight Research Center, Edwards, California, has two Lockheed Martin Corporation (Bethesda, Maryland) Earth Research-2 (ER2) aircraft that serve as high-altitude and long-range flying laboratories. The ER-2 aircraft has been successfully utilized to conduct scientific studies of stratospheric and tropospheric chemistry, land-use mapping, disaster assessment, preliminary testing and calibration and validation of satellite sensors. The research missions for the ER-2 aircraft are planned, implemented, and managed by the Dryden Flight Research Center Science Mission Directorate. Maintenance and instrument payload integration is conducted by Dryden personnel. The ER-2 aircraft provides experimenters with a wide array of payload accommodations areas with suitable environment control with required electrical and mechanical interfaces. Missions may be flown out of Dryden or from remote bases worldwide, according to research requirements. The NASA ER-2 aircraft is utilized by a variety of customers, including U.S. Government agencies, civilian organizations, universities, and state governments. The combination of the ER-2 aircraft s range, endurance, altitude, payload power, payload volume and payload weight capabilities complemented by a trained maintenance and operations team provides an excellent and unique platform system to the science community and other customers.

  7. Engineering Research in Irish Economic Development

    Science.gov (United States)

    Kelly, John

    2011-01-01

    This article summarizes the main findings and recommendations of a report published in December 2010 by the Irish Academy of Engineering (IAE). The report, representing the views of a committee of distinguished Irish engineers from a wide range of disciplines, addresses the role of engineering research in Ireland's economic development and the…

  8. Supersonic cruise research aircraft structural studies: Methods and results

    Science.gov (United States)

    Sobieszczanski-Sobieski, J.; Gross, D.; Kurtze, W.; Newsom, J.; Wrenn, G.; Greene, W.

    1981-01-01

    NASA Langley Research Center SCAR in-house structural studies are reviewed. In methods development, advances include a new system of integrated computer programs called ISSYS, progress in determining aerodynamic loads and aerodynamically induced structural loads (including those due to gusts), flutter optimization for composite and metal airframe configurations using refined and simplified mathematical models, and synthesis of active controls. Results given address several aspects of various SCR configurations. These results include flutter penalties on composite wing, flutter suppression using active controls, roll control effectiveness, wing tip ground clearance, tail size effect on flutter, engine weight and mass distribution influence on flutter, and strength and flutter optimization of new configurations. The ISSYS system of integrated programs performed well in all the applications illustrated by the results, the diversity of which attests to ISSYS' versatility.

  9. Design of Prototype-Technology Evaluator and Research Aircraft (PTERA) Configuration for Loss of Control Flight Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Area-I team has developed and fabricated the unmanned Prototype-Technology Evaluation and Research Aircraft or PTERA ("ptera" being Greek for wing, or...

  10. Conceptual design and RCS performance research of shipborne early warning aircraft

    Institute of Scientific and Technical Information of China (English)

    Kuizhi Yue; Yong Gao; Guanxiong Li; Dazhao Yu

    2014-01-01

    In order to improve the survivability of the aircraft, conceptual design and radar cross section (RCS) performance research are done. The CATIA software is used to design the 3D digital model of the shipborne early warning aircraft, and some measures are taken to reduce the RCS characteristics of the early warning aircraft at the same time. Based on the physical optics method and the equivalent electromagnetic flow method, the aircraft’s RCS characteristics and strength distribution charac-teristics are simulated numerical y, and compared with the foreign advanced shipborne early warning aircraft. The simulation results show that under the X radar band, when the incident wave pitching angle is 0◦, compared with the foreign advanced shipborne early warning aircraft, the forward RCS average value of the concep-tual shipborne early warning aircraft is reduced to 24.49%, the lateral RCS average value is reduced to 5.04%, and the backward RCS average value is reduced to 39.26%. The research results of this paper are expected to provide theoretical basis and technical support for the conceptual design and the stealth design of the shipborne early warning aircraft.

  11. 75 FR 53846 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Models TAE 125-01 and TAE 125-02...

    Science.gov (United States)

    2010-09-02

    ... TAE 125-02-99 reciprocating engines, installed in, but not limited to, Diamond Aircraft Industries..., Acting Manager, Engine and Propeller Directorate, Aircraft Certification Service. BILLING CODE 4910-13-P ...-47-AD; Amendment 39-16314; AD 2010-11-09] RIN 2120-AA64 Airworthiness Directives; Thielert...

  12. Aircraft Control Using Engine Thrust: A History of Learning TOC Real-Time

    Science.gov (United States)

    Cole, Jennifer H.

    2006-01-01

    A history of learning the operation of Throttles Only Control (TOC) to control an aircraft in real time using engine thrust is shown. The topics include: 1) Past TOC Accidents/Incidents; 2) 1972: DC-10 American Airlines; 3) May 1974: USAF B-52H; 4) April 1975: USAF C-5A; 5) April 1975: USAF C-5A; 6) 1981: USAF B-52G; 7) August 1985: JAL 123 B-747; 8) JAL 123 Survivor Story; 9) JAL 123 Investigation Findings; 10) July 1989: UAL 232 DC-10; 11) UAL 232 DC-10; 12) Eastwind 517 B-737; 13) November 2003: DHL A-300; 14) Historically, TOC has saved lives; 15) Automated Throttles-Only Control; 16) PCA Project; 17) Propulsion-Controlled Aircraft; 18) MD-11 PCA System and Flight Test Envelope; 19) MD-11 Simulation, PCA ILS-Soupled Landing Dispersion; 20) Throttles-Only Pitch and Roll Control Power; 21) PCA in Commercial Fleet; 22) Fall 2005: PCAR Project; 23) PCAR Background - TOC; and 24) PCAR Background - TOC.

  13. Emissions of NOx, particle mass and particle numbers from aircraft main engines, APU's and handling equipment at Copenhagen Airport

    Science.gov (United States)

    Winther, Morten; Kousgaard, Uffe; Ellermann, Thomas; Massling, Andreas; Nøjgaard, Jacob Klenø; Ketzel, Matthias

    2015-01-01

    This paper presents a detailed emission inventory for NOx, particle mass (PM) and particle numbers (PN) for aircraft main engines, APU's and handling equipment at Copenhagen Airport (CPH) based on time specific activity data and representative emission factors for the airport. The inventory has a high spatial resolution of 5 m × 5 m in order to be suited for further air quality dispersion calculations. Results are shown for the entire airport and for a section of the airport apron area ("inner apron") in focus. The methodology presented in this paper can be used to quantify the emissions from aircraft main engines, APU and handling equipment in other airports. For the entire airport, aircraft main engines is the largest source of fuel consumption (93%), NOx, (87%), PM (61%) and PN (95%). The calculated fuel consumption [NOx, PM, PN] shares for APU's and handling equipment are 5% [4%, 8%, 5%] and 2% [9%, 31%, 0%], respectively. At the inner apron area for handling equipment the share of fuel consumption [NOx, PM, PN] are 24% [63%, 75%, 2%], whereas APU and main engines shares are 43% [25%, 19%, 54%], and 33% [11%, 6%, 43%], respectively. The inner apron NOx and PM emission levels are high for handling equipment due to high emission factors for the diesel fuelled handling equipment and small for aircraft main engines due to small idle-power emission factors. Handling equipment is however a small PN source due to the low number based emission factors. Jet fuel sulphur-PM sensitivity calculations made in this study with the ICAO FOA3.0 method suggest that more than half of the PM emissions from aircraft main engines at CPH originate from the sulphur content of the fuel used at the airport. Aircraft main engine PN emissions are very sensitive to the underlying assumptions. Replacing this study's literature based average emission factors with "high" and "low" emission factors from the literature, the aircraft main engine PN emissions were estimated to change with a

  14. Airborne remote sensing of cloud properties with the German research aircraft HALO

    OpenAIRE

    Van Hagen, Martin; Hirsch, Lutz; Konow, Heike; Mech, Mario; Orlandi, Emiliano; Crewell, Susanne; Groß, Silke; Fix, Andreas; Wirth, Martin

    2014-01-01

    The new German research aircraft HALO (High Altitude Long range) can be equipped with a remote sensing payload to study cloud properties and water vapor profiles of the atmosphere. This package, first flown during the NARVAL (Next‐generation Aircraft Remote sensing for VALidation studies) mission in December 2013 and January 2014, consists of a cloud radar, microwave radiometers and a lidar system. HALO is a for atmospheric measurements modified Gulfstream G550 business jet with a...

  15. Research Trends with Cross Tabulation Search Engine

    Science.gov (United States)

    Yin, Chengjiu; Hirokawa, Sachio; Yau, Jane Yin-Kim; Hashimoto, Kiyota; Tabata, Yoshiyuki; Nakatoh, Tetsuya

    2013-01-01

    To help researchers in building a knowledge foundation of their research fields which could be a time-consuming process, the authors have developed a Cross Tabulation Search Engine (CTSE). Its purpose is to assist researchers in 1) conducting research surveys, 2) efficiently and effectively retrieving information (such as important researchers,…

  16. Standard Test Method for Stress-Corrosion of Titanium Alloys by Aircraft Engine Cleaning Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This test method establishes a test procedure for determining the propensity of aircraft turbine engine cleaning and maintenance materials for causing stress corrosion cracking of titanium alloy parts. 1.2 The evaluation is conducted on representative titanium alloys by determining the effect of contact with cleaning and maintenance materials on tendency of prestressed titanium alloys to crack when subsequently heated to elevated temperatures. 1.3 Test conditions are based upon manufacturer's maximum recommended operating solution concentration. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see and .

  17. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    Science.gov (United States)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1996-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  18. The induction of water to the inlet air as a means of internal cooling in aircraft-engine cylinders

    Science.gov (United States)

    Rothrock, Addison M; Krsek, Alois, Jr; Jones, Anthony W

    1943-01-01

    Report presents the results of investigations conducted on a full-scale air-cooled aircraft-engine cylinder of 202-cubic inch displacement to determine the effects of internal cooling by water induction on the maximum permissible power and output of an internal-combustion engine. For a range of fuel-air and water-fuel ratios, the engine inlet pressure was increased until knock was detected aurally, the power was then decreased 7 percent holding the ratios constant. The data indicated that water was a very effective internal coolant, permitting large increases in engine power as limited by either knock or by cylinder temperatures.

  19. Understanding the Order of Engineering Design Research

    Directory of Open Access Journals (Sweden)

    I. Horváth

    2003-01-01

    Full Text Available Engineering design research manifests as a platform for exploration, description, arrangement, rationalization, and application of design knowledge. What we can see when we are looking at the research into engineering design is an almost chaotically fragmented picture. Is it possible to have a holistic view on the contents and internal relationships of engineering design research? This paper considers teleology, a reflection of a branch of philosophical speculations, as the doctrine of ordering knowledge of engineering design and structuring engineering design research accordingly. Teleology explains that the ultimate reason behind design is to sustain human existence and well being by virtual creation of artifacts and services for society. To this end, knowledge of engineering research is supposed to be transferred from the platform of scientific/theoretical exploration and comprehension to the platform of technical/pragmatic application. This implies a natural streaming of knowledge of engineering design. In order to make the teleological explanation operational, a framework of reasoning has been constructed by adopting the analogy of the source, channel and sink of a stream. To represent the source, channel and sink categories of engineering design knowledge, the author inaugurated nine categories in the framework. It has been hypothesized that the introduced categories are equally valid for research in engineering design as well as for the knowledge of engineering design. Within each category, research domains and trajectories have been defined. The proposed teleology-based framework lends itself to a better understanding of the disciplinary articulation and intrinsic relationships of engineering design research. It is hoped, among other things, to form a basis for a shared understanding, to make the influence of decisions on research programs more transparent, as well as to facilitate organizing subject materials for various design

  20. Development of Software Engineering: A Research Perspective

    Institute of Scientific and Technical Information of China (English)

    Hong Mei; Dong-Gang Cao; Fu-Qing Yang

    2006-01-01

    In the past 40 years, software engineering has emerged as an important sub-field of computer science and has made significant contribution to the software industry. Now it is gradually becoming a new independent discipline. This paper presents a survey of software engineering development from a research perspective. Firstly, the history of software engineering is reviewed with focus on the driving forces of software technology, the software engineering framework and the milestones of software engineering development. Secondly, after reviewing the past academic efforts, the current research activities are surveyed and new challenges brought by Internet are analyzed. Software engineering researches and activities in China are also reviewed. The work in Peking University is described as a representative.

  1. Qualitative research methods in Software Engineering

    Directory of Open Access Journals (Sweden)

    Patrick Anya

    2014-12-01

    Full Text Available In the investigation of Software Engineering coexist two different research methods: 1 the quantitative that try to measure and analyze the casual relationship between the variables in a frame with free values, and 2 the qualitative that examine the creation process of meanings from which is generated new theorems or improve. Apply this methods separately in the research in software engineer makes evident that obtain results are incomplete and so is difficult to choose definitively wit which of them embark in a specific research. To approach this problem, in this article are described the quantitative methods as research methods to this engineer, and described its benefits and difficulties.

  2. A Bibliometric Analysis of Climate Engineering Research

    Science.gov (United States)

    Belter, C. W.; Seidel, D. J.

    2013-12-01

    The past five years have seen a dramatic increase in the number of media and scientific publications on the topic of climate engineering, or geoengineering, and some scientists are increasingly calling for more research on climate engineering as a possible supplement to climate change mitigation and adaptation strategies. In this context, understanding the current state of climate engineering research can help inform policy discussions and guide future research directions. Bibliometric analysis - the quantitative analysis of publications - is particularly applicable to fields with large bodies of literature that are difficult to summarize by traditional review methods. The multidisciplinary nature of the published literature on climate engineering makes it an ideal candidate for bibliometric analysis. Publications on climate engineering are found to be relatively recent (more than half of all articles during 1988-2011 were published since 2008), include a higher than average percentage of non-research articles (30% compared with 8-15% in related scientific disciplines), and be predominately produced by countries located in the Northern Hemisphere and speaking English. The majority of this literature focuses on land-based methods of carbon sequestration, ocean iron fertilization, and solar radiation management and is produced with little collaboration among research groups. This study provides a summary of existing publications on climate engineering, a perspective on the scientific underpinnings of the global dialogue on climate engineering, and a baseline for quantitatively monitoring the development of climate engineering research in the future.

  3. Feminist methodologies and engineering education research

    Science.gov (United States)

    Beddoes, Kacey

    2013-03-01

    This paper introduces feminist methodologies in the context of engineering education research. It builds upon other recent methodology articles in engineering education journals and presents feminist research methodologies as a concrete engineering education setting in which to explore the connections between epistemology, methodology and theory. The paper begins with a literature review that covers a broad range of topics featured in the literature on feminist methodologies. Next, data from interviews with engineering educators and researchers who have engaged with feminist methodologies are presented. The ways in which feminist methodologies shape their research topics, questions, frameworks of analysis, methods, practices and reporting are each discussed. The challenges and barriers they have faced are then discussed. Finally, the benefits of further and broader engagement with feminist methodologies within the engineering education community are identified.

  4. Ten recommendations for software engineering in research

    OpenAIRE

    Hastings, Janna; Haug, Kenneth; Steinbeck, Christoph

    2014-01-01

    Research in the context of data-driven science requires a backbone of well-written software, but scientific researchers are typically not trained at length in software engineering, the principles for creating better software products. To address this gap, in particular for young researchers new to programming, we give ten recommendations to ensure the usability, sustainability and practicality of research software.

  5. Ten recommendations for software engineering in research.

    Science.gov (United States)

    Hastings, Janna; Haug, Kenneth; Steinbeck, Christoph

    2014-01-01

    Research in the context of data-driven science requires a backbone of well-written software, but scientific researchers are typically not trained at length in software engineering, the principles for creating better software products. To address this gap, in particular for young researchers new to programming, we give ten recommendations to ensure the usability, sustainability and practicality of research software.

  6. Summaries of FY 1994 engineering research

    International Nuclear Information System (INIS)

    This report documents the Basic Energy Sciences Engineering Research Program for fiscal year 1994; it provides a summary of each of the program projects in addition to a brief program overview. The report is intended to provide staff of Congressional committees, other executive departments, and other DOE offices with substantive program information so as to facilitate governmental overview and coordination of Federal research programs. Of equal importance, its availability facilitates communication of program information to interested research engineers and scientists

  7. Summaries of FY 1994 engineering research

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This report documents the Basic Energy Sciences Engineering Research Program for fiscal year 1994; it provides a summary of each of the program projects in addition to a brief program overview. The report is intended to provide staff of Congressional committees, other executive departments, and other DOE offices with substantive program information so as to facilitate governmental overview and coordination of Federal research programs. Of equal importance, its availability facilitates communication of program information to interested research engineers and scientists.

  8. Domain Engineering - A Software Engineering discipline in Need of Research

    DEFF Research Database (Denmark)

    Bjørner, Dines

    2000-01-01

    Before software can be developed its requirements must be stated. Before requirements can be expressed the application domain must be understood. In this paper we outline some of the basic facets of domain engineering. Domains seem, it is our experience, far more stable than computing requirements......, and these again seem more stable than software designs. Thus, almost like the universal laws of physics, it pays off to first develop theories of domains. But domain engineering, as in fact also requirements engineering, really is in need of thoroughly researched development principles, techniques and tools....... The aim of this paper is to advocate: that researchers study these development method components, and that universities focus their education on basing well-nigh any course on the use of formal techniques: Specification and verification, and that software engineers take heed: Start applying formal...

  9. Sensors and Rotordynamics Health Management Research for Aircraft Turbine Engines

    Science.gov (United States)

    Lekki, J.; Abdul-Aziz, A.; Adamovsky, G.; Berger, D.; Fralick, G.; Gyekenyesi, A.; Hunter, G.; Tokars, R.; Venti, M.; Woike, M.; Wrbanek, J.; Wrbanek, S.

    2011-01-01

    Develop Advanced Sensor Technology and rotordynamic structural diagnostics to address existing Aviation Safety Propulsion Health Management needs as well as proactively begin to address anticipated safety issues for new technologies.

  10. Is Engineering Design Disappearing from Design Research?

    DEFF Research Database (Denmark)

    Andreasen, Mogens Myrup; Howard, Thomas J.

    2011-01-01

    Most systems and products need to be engineered during their design, based upon scientific insight into principles, mechanisms, materials and production pos-sibilities, leading to reliability, durability and value for the user. Despite the central importance and design’s crucial dependency...... on engineer-ing, we observe a declining focus on engineering design in design research, articu-lated in the composition of contributions to Design Society conferences. Engineer-ing design relates closely to the ‘materialisation’ of products and systems, i.e. the embodiment and detailing. The role of clever...... materialisation is enormous where poor engineering will often manifest in a multitude of consequences for down-stream activities. In this article we will draw a picture of what happens in the embodiment phase of designing, try to create an overview of current understandings and sum up the challenges of proper...

  11. Amphibious Aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — A brief self composed research article on Amphibious Aircrafts discussing their use, origin and modern day applications along with their advantages and...

  12. Design of the blisk of an aircraft turbojet engine and verification of its resonance free operation

    Directory of Open Access Journals (Sweden)

    Chromek L.

    2016-06-01

    Full Text Available Integral turbine wheels belong to one of the most stressed parts of jet aircraft engines. In addition to high rotational speeds and temperatures, they are also subjected to dynamic forces from a non-uniform pressure field in the flow path. Dynamic forces even at a relatively small amplitude can cause failure by fatigue, which leads to fracture of blades and crash of the machine. These adverse conditions, called resonance, should be avoided already in the design stage when a suitable choice of stator vanes and the number of blades can move the critical speed of the blisk beyond the operating speed or at least reduce their influence. In the case of a small jet engine produced by the První brněnská strojírna (PBS Velká Bíteš, the operating speed is of nearly half of the entire speed range of the machine. This makes the design of a proposed turbine wheel very complicated. A higher harmonic order of aerodynamic excitation is almost always present, its influence was therefore tested experimentally by vibration tests in the test station PBS Velká Bíteš.

  13. An improved particle filtering algorithm for aircraft engine gas-path fault diagnosis

    Directory of Open Access Journals (Sweden)

    Qihang Wang

    2016-07-01

    Full Text Available In this article, an improved particle filter with electromagnetism-like mechanism algorithm is proposed for aircraft engine gas-path component abrupt fault diagnosis. In order to avoid the particle degeneracy and sample impoverishment of normal particle filter, the electromagnetism-like mechanism optimization algorithm is introduced into resampling procedure, which adjusts the position of the particles through simulating attraction–repulsion mechanism between charged particles of the electromagnetism theory. The improved particle filter can solve the particle degradation problem and ensure the diversity of the particle set. Meanwhile, it enhances the ability of tracking abrupt fault due to considering the latest measurement information. Comparison of the proposed method with three different filter algorithms is carried out on a univariate nonstationary growth model. Simulations on a turbofan engine model indicate that compared to the normal particle filter, the improved particle filter can ensure the completion of the fault diagnosis within less sampling period and the root mean square error of parameters estimation is reduced.

  14. A High-Fidelity Simulation of a Generic Commercial Aircraft Engine and Controller

    Science.gov (United States)

    May, Ryan D.; Csank, Jeffrey; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei

    2010-01-01

    A new high-fidelity simulation of a generic 40,000 lb thrust class commercial turbofan engine with a representative controller, known as CMAPSS40k, has been developed. Based on dynamic flight test data of a highly instrumented engine and previous engine simulations developed at NASA Glenn Research Center, this non-proprietary simulation was created especially for use in the development of new engine control strategies. C-MAPSS40k is a highly detailed, component-level engine model written in MATLAB/Simulink (The MathWorks, Inc.). Because the model is built in Simulink, users have the ability to use any of the MATLAB tools for analysis and control system design. The engine components are modeled in C-code, which is then compiled to allow faster-than-real-time execution. The engine controller is based on common industry architecture and techniques to produce realistic closed-loop transient responses while ensuring that no safety or operability limits are violated. A significant feature not found in other non-proprietary models is the inclusion of transient stall margin debits. These debits provide an accurate accounting of the compressor surge margin, which is critical in the design of an engine controller. This paper discusses the development, characteristics, and capabilities of the C-MAPSS40k simulation

  15. Investigational research on eco-smart engines; Eco-smart engine no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper investigated the trend of research on eco-smart engines into which optimization function of engine performance, high environmental-adaptability, etc. are integrated. The investigation was made in Japan and abroad on technologies of combustion, structure/material, control, design/analysis, systematization, etc. In case of Japan, specifications were established for three types of engines, subsonic, supersonic and hypersonic aircraft, and the research subjects to fulfil the specifications were extracted. In case of the U.S. and Europe, the survey was made of combustion, materials, noise, design concept, control, etc. Important subjects are selected in priority order. Namely, for the enhancement of efficiency, the following were taken up: three-dimensional fiber-reinforced large-size light-weight structure application technology, heat-resistant advanced-material structure damage-tolerant design technology, pseudo-vesicular structure transpiration cooling technology, etc. For the reduction of NOx emission, the paper took up technologies of environmentally optimization combustion, AI combustion control, and non-cooling combustor liner application. For the noise reduction, technologies of new inclination hole orientation noise absorbing structure material application, super noise control, and innovative CFD utilization low noise aerodynamics. Moreover, the results of fiscal 1997 were outlined to indicate the research in the next fiscal year. 14 figs., 10 tabs.

  16. Mechanical Engineering Department engineering research: Annual report, FY 1986

    International Nuclear Information System (INIS)

    This report provides information on the five areas of research interest in LLNL's Mechanical Engineering Department. In Computer Code Development, a solid geometric modeling program is described. In Dynamic Systems and Control, structure control and structure dynamics are discussed. Fabrication technology involves machine cutting, interferometry, and automated optical component manufacturing. Materials engineering reports on composite material research and measurement of molten metal surface properties. In Nondestructive Evaluation, NMR, CAT, and ultrasound machines are applied to manufacturing processes. A model for underground collapse is developed. Finally, an alternative heat exchanger is investigated for use in a fusion power plant. Separate abstracts were prepared for each of the 13 reports in this publication

  17. Subsonic Ultra Green Aircraft Research Phase II: N+4 Advanced Concept Development

    Science.gov (United States)

    Bradley, Marty K.; Droney, Christopher K.

    2012-01-01

    This final report documents the work of the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team on Task 1 of the Phase II effort. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. Using a quantitative workshop process, the following technologies, appropriate to aircraft operational in the N+4 2040 timeframe, were identified: Liquefied Natural Gas (LNG), Hydrogen, fuel cell hybrids, battery electric hybrids, Low Energy Nuclear (LENR), boundary layer ingestion propulsion (BLI), unducted fans and advanced propellers, and combinations. Technology development plans were developed.

  18. An overview of NASA intermittent combustion engine research

    Science.gov (United States)

    Willis, E. A.; Wintucky, W. T.

    1984-01-01

    This paper overviews the current program, whose objective is to establish the generic technology base for advanced aircraft I.C. engines of the early 1990's and beyond. The major emphasis of this paper is on development of the past two years. Past studies and ongoing confirmatory experimental efforts are reviewed, which show unexpectedly high potential when modern aerospace technologies are applied to inherently compact and balanced I.C. engine configurations. Currently, the program is focussed on two engine concepts, the stratified-charge, multi-fuel rotary and the lightweight two-stroke diesel. A review is given of contracted and planned high performance one-rotor and one-cylinder test engine work addressing several levels of technology. Also reviewed are basic supporting efforts, e.g., the development and experimental validation of computerized airflow and combustion process models, being performed in-house at Lewis Research Center and by university grants. Previously announced in STAR as N84-24583

  19. Satellite communications provisions on NASA Ames instrumented aircraft platforms for Earth science research/applications

    Science.gov (United States)

    Shameson, L.; Brass, J. A.; Hanratty, J. J.; Roberts, A. C.; Wegener, S. S.

    1995-01-01

    Earth science activities at NASA Ames are research in atmospheric and ecosystem science, development of remote sensing and in situ sampling instruments, and their integration into scientific research platform aircraft. The use of satellite communications can greatly extend the capability of these agency research platform aircraft. Current projects and plans involve satellite links on the Perseus UAV and the ER-2 via TDRSS and a proposed experiment on the NASA Advanced Communications Technology Satellite. Provisions for data links on the Perseus research platform, via TDRSS S-band multiple access service, have been developed and are being tested. Test flights at Dryden are planned to demonstrate successful end-to-end data transfer. A Unisys Corp. airborne satcom STARLink system is being integrated into an Ames ER-2 aircraft. This equipment will support multiple data rates up to 43 Mb/s each via the TDRS S Ku-band single access service. The first flight mission for this high-rate link is planned for August 1995. Ames and JPL have proposed an ACTS experiment to use real-time satellite communications to improve wildfire research campaigns. Researchers and fire management teams making use of instrumented aircraft platforms at a prescribed burn site will be able to communicate with experts at Ames, the U.S. Forest Service, and emergency response agencies.

  20. Performance studies on the application of four-engine and two-engine USB propulsive lift to the E-2C aircraft

    Science.gov (United States)

    Riddle, D. W.; Stevens, V. C.

    1986-01-01

    A study has been completed of the performance benefits to be derived from applying advanced upper-surface blowing (USB) propulsive-lift technology to the E-2C aircraft. The results of comparing four-engine with two-engine USB configurations are discussed, and engine sizing and aerodynamic/structural considerations pertaining to the E-2C/USB modification are examined. The effects of the modification on performance are described in detail with regard to takeoff distance and landing distance estimation in free-deck operations, operations using catapult and arresting gear, ceiling and radar surveillance missions, and range and endurance capability.

  1. Summaries of FY 1991 engineering research

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    This report documents the BES Engineering Research Program for fiscal year 1991; it provides a summary for each of the program projects in addition to a brief program overview. The report is intended to provide staff of Congressional committees, other executive departments, and other DOE offices with substantive program information so as to facilitate governmental overview and coordination of Federal research programs. Of equal importance, its availability facilitates communication of program information to interested research engineers and scientists. The organizational chart for the DOE Office of Energy Research (OER) delineates the six Divisions within the OER Office of Basic Energy Sciences (BES). Each BES Division administers basic, mission oriented research programs in the area indicated by its title. The BES Engineering Research Program is one such program; it is administered by the Engineering and Geosciences Division of BES. In preparing this report we asked the principal investigators to submit summaries for their projects that were specifically applicable to fiscal year 1991. Major topics covered include fluid mechanics, fracture mechanics, chemical engineering and mechanical engineering.

  2. Innovation and Research on Engineering Education

    DEFF Research Database (Denmark)

    de Graaff, Erik; Kolmos, Anette

    2014-01-01

    Our Western society depends strongly on continuous technological innovation. Engineers, the designers of the future technology need extensive competencies to face the challenge of dealing with ever increasing complexity. In some areas more than half the knowledge they learn in University...... is obsolete by the time the enter practice. Recognition of these issues has recently resulted in worldwide increase of attention for innovation of engineering education. This chapter presents a brief outline of the traditions in higher engineering education culminating in the stage of research and development...... in the last century. Next, the recent revival of engineering education research is described, contrasting the developments in the USA with Europe and the rest of the world. The efforts in the USA appear to follow Boyer’s concept scholarship of teaching, and aim for the establishment of engineering education...

  3. Correction of static pressure on a research aircraft in accelerated flight using differential pressure measurements

    Directory of Open Access Journals (Sweden)

    A. R. Rodi

    2012-11-01

    Full Text Available A method is described that estimates the error in the static pressure measurement on an aircraft from differential pressure measurements on the hemispherical surface of a Rosemount model 858AJ air velocity probe mounted on a boom ahead of the aircraft. The theoretical predictions for how the pressure should vary over the surface of the hemisphere, involving an unknown sensitivity parameter, leads to a set of equations that can be solved for the unknowns – angle of attack, angle of sideslip, dynamic pressure and the error in static pressure – if the sensitivity factor can be determined. The sensitivity factor was determined on the University of Wyoming King Air research aircraft by comparisons with the error measured with a carefully designed sonde towed on connecting tubing behind the aircraft – a trailing cone – and the result was shown to have a precision of about ±10 Pa over a wide range of conditions, including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, geometric altitude data from a combined Global Navigation Satellite System (GNSS and inertial measurement unit (IMU system are used to estimate acceleration effects on the error, and the algorithm is shown to predict corrections to a precision of better than ±20 Pa under those conditions. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are discussed.

  4. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft

    Science.gov (United States)

    Denham, Casey; Owens, D. Bruce

    2016-01-01

    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  5. `Research and Development of Technology for Controlling the Structure of Multiple-Function Component,` local research and development of important technology for fiscal 1997. 2. Technological development of advanced surface treatment for methane-powered aircraft engine components (Laser-aided advanced treatment system (technology)); 1997 nendo juyo chiiki gijutsu kenkyu kaihatsu `fukugo kino buzai kozo seigyo gijutsu no kenkyu kaihatsu`. 2. Methane nenryo kokukiyo engine buzai no kodo hyomen kako gijutsu kaihatsu (laser oyo senshin kako system gijutsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Surface reforming technologies, such as laser-aided Ti alloying, are studied for developing erosion-resistant materials for the fore section of a methane-fueled aircraft engine. In the formation of intermetallic compound film, the laser plasma hybrid spraying is applied for the formation of a film which is 100-400 times higher than Ti6Al4V in terms of resistance to erosion. For the quantitative evaluation of bond strength, a boundary shear testing jig is built. When the laser irradiating conditions are optimized, the boundary shear strength is elevated to 150-230MPa. NiAl film is studied for realizing resistance to high-temperature oxidation, and then a perfect NiAl film is obtained, which is done by use of a mechanical alloying powder mixed on the atomic level. In the manufacture of ceramic cermet film, a powder is studied, in which powder SiC and Al2O3, excellent in high-temperature oxidation characteristics and fracture toughness, are the parent materials which are coated by NiCr. It is found that an excellent oxidation-resistant film will be manufactured by use of this powder. 40 refs., 132 figs., 12 tabs.

  6. Methodology of Computer-Aided Design of Variable Guide Vanes of Aircraft Engines

    Science.gov (United States)

    Falaleev, Sergei V.; Melentjev, Vladimir S.; Gvozdev, Alexander S.

    2016-01-01

    The paper presents a methodology which helps to avoid a great amount of costly experimental research. This methodology includes thermo-gas dynamic design of an engine and its mounts, the profiling of compressor flow path and cascade design of guide vanes. Employing a method elaborated by Howell, we provide a theoretical solution to the task of…

  7. Biomedical engineering for health research and development.

    Science.gov (United States)

    Zhang, X-Y

    2015-01-01

    Biomedical engineering is a new area of research in medicine and biology, providing new concepts and designs for the diagnosis, treatment and prevention of various diseases. There are several types of biomedical engineering, such as tissue, genetic, neural and stem cells, as well as chemical and clinical engineering for health care. Many electronic and magnetic methods and equipments are used for the biomedical engineering such as Computed Tomography (CT) scans, Magnetic Resonance Imaging (MRI) scans, Electroencephalography (EEG), Ultrasound and regenerative medicine and stem cell cultures, preparations of artificial cells and organs, such as pancreas, urinary bladders, liver cells, and fibroblasts cells of foreskin and others. The principle of tissue engineering is described with various types of cells used for tissue engineering purposes. The use of several medical devices and bionics are mentioned with scaffold, cells and tissue cultures and various materials are used for biomedical engineering. The use of biomedical engineering methods is very important for the human health, and research and development of diseases. The bioreactors and preparations of artificial cells or tissues and organs are described here.

  8. Detonation Engine Research Facility (DERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility is configured to safely conduct experimental pressuregain combustion research. The DERF is capable of supporting up to 60,000 lbf thrust...

  9. Nanoscale Science, Engineering and Technology Research Directions

    Energy Technology Data Exchange (ETDEWEB)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  10. Reengineering Biomedical Translational Research with Engineering Ethics.

    Science.gov (United States)

    Sunderland, Mary E; Nayak, Rahul Uday

    2015-08-01

    It is widely accepted that translational research practitioners need to acquire special skills and knowledge that will enable them to anticipate, analyze, and manage a range of ethical issues. While there is a small but growing literature that addresses the ethics of translational research, there is a dearth of scholarship regarding how this might apply to engineers. In this paper we examine engineers as key translators and argue that they are well positioned to ask transformative ethical questions. Asking engineers to both broaden and deepen their consideration of ethics in their work, however, requires a shift in the way ethics is often portrayed and perceived in science and engineering communities. Rather than interpreting ethics as a roadblock to the success of translational research, we suggest that engineers should be encouraged to ask questions about the socio-ethical dimensions of their work. This requires expanding the conceptual framework of engineering beyond its traditional focus on "how" and "what" questions to also include "why" and "who" questions to facilitate the gathering of normative, socially-situated information. Empowering engineers to ask "why" and "who" questions should spur the development of technologies and practices that contribute to improving health outcomes. PMID:24928281

  11. Fly in Atmosphere by Drag Force - Easy Thrust Generation Aircraft Engine Based Physics

    Science.gov (United States)

    Pierre Celestin, Mwizerwa

    2013-11-01

    This paper aims to present to the science community another way to fly in atmosphere, a way which is much more cheaper, efficient, safe and easy. Over the years scientists have been trying to find a way to built the vertically taking off vehicles but there have been no satisfactory success(what have been found was very expensive), Even aircrafts we know now need very sophisticated and expensive engines and not efficient enough. This way of flying may help our governments to spend less money on technologies and will help people to travel at very low prices so that, it may be a solution to the crisis which the world faces nowadays. In other words, it is my proposal to the next generation technologies we was looking for for years because everything can fly from the car to the trucks, the spaceships and even the hotels maybe constructed and fly as we construct the ships which sail in the oceans. My way of flying will have many applications in all the aspect of travel as it is going to be explained.

  12. Distributions of grain parameters on the surface of aircraft engine turbine blades

    Directory of Open Access Journals (Sweden)

    J. Chmiela

    2010-10-01

    Full Text Available In the quality assurance system for components cast using the lost wax method, the object of evaluation is the grain size on the surface of the casting. This paper describes a new method for evaluating the primary grain parameters on the surface of aircraft engine turbine blades. Effectiveness of the method has been tested on two macrostructures distinguished by a high degree of diversity in the grain size. The grounds for evaluating the grain parameters consist of geometric measurement of the turbine blade using a laser profilometer and of approximation of the measurement results using a polynomial of a proper degree. The so obtained analytical non-planar surface serves as a reference point for an assessment of the parameters of grains observed on the real blade surface of a variable curvature. The aspects subjected to evaluation included: the grain areas, shape and elongation coefficients of grains on a non-planar surface of the blade airfoil, using measurements taken on a perpendicular projection by means of a stereoscopic microscope and image analysis methods, and by making calculations using the Mathematica® package.

  13. Inhomogeneity of the grain size of aircraft engine turbine polycrystalline blades

    Directory of Open Access Journals (Sweden)

    J. Chmiela

    2011-10-01

    Full Text Available The determination of the behaviour of inhomogeneous materials with a complex microstructure requires taking into account the inhomogeneity of the grain size, as it is the basis for the process of designing and modelling effective behaviours. Therefore, the functional description of the inhomogeneity is becoming an important issue. The paper presents an analytical approach to the grain size inhomogeneity, based on the derivative of a logarithmic-logistic function. The solution applied enabled an effective evaluation of the inhomogeneity of two macrostructures of aircraft engine turbine blades, characterized by a high degree of diversity in the grain size. For the investigated single-modal and bimodal grain size distributions on a perpendicular projection and for grains with a non-planar surface, we identified the parameters that describe the degree of inhomogeneity of the constituents of weight distributions and we also derived a formula describing the overall degree of inhomogeneity of bimodal distributions. The solution presented in the paper is of a general nature and it can be used to describe the degree of inhomogeneity of multi-modal distributions. All the calculations were performed using the Mathematica® package.

  14. Analytical Design Package (ADP2): A computer aided engineering tool for aircraft transparency design

    Science.gov (United States)

    Wuerer, J. E.; Gran, M.; Held, T. W.

    1994-01-01

    The Analytical Design Package (ADP2) is being developed as a part of the Air Force Frameless Transparency Program (FTP). ADP2 is an integrated design tool consisting of existing analysis codes and Computer Aided Engineering (CAE) software. The objective of the ADP2 is to develop and confirm an integrated design methodology for frameless transparencies, related aircraft interfaces, and their corresponding tooling. The application of this methodology will generate high confidence for achieving a qualified part prior to mold fabrication. ADP2 is a customized integration of analysis codes, CAE software, and material databases. The primary CAE integration tool for the ADP2 is P3/PATRAN, a commercial-off-the-shelf (COTS) software tool. The open architecture of P3/PATRAN allows customized installations with different applications modules for specific site requirements. Integration of material databases allows the engineer to select a material, and those material properties are automatically called into the relevant analysis code. The ADP2 materials database will be composed of four independent schemas: CAE Design, Processing, Testing, and Logistics Support. The design of ADP2 places major emphasis on the seamless integration of CAE and analysis modules with a single intuitive graphical interface. This tool is being designed to serve and be used by an entire project team, i.e., analysts, designers, materials experts, and managers. The final version of the software will be delivered to the Air Force in Jan. 1994. The Analytical Design Package (ADP2) will then be ready for transfer to industry. The package will be capable of a wide range of design and manufacturing applications.

  15. Calibration and Quality Assurance of Flux Observations from a Small Research Aircraft

    NARCIS (Netherlands)

    Vellinga, O.S.; Dobosy, R.J.; Dumas, E.J.; Beniamino, G.; Elbers, J.A.; Hutjes, R.W.A.

    2013-01-01

    Small environmental research aircraft (ERA) are becoming more common for detailed studies of air–surface interactions. The Sky Arrow 650 ERA, used by multiple groups, is designed to minimize the complexity of high-precision airborne turbulent wind measurement. Its relative wind probe, of a nine-port

  16. FY08 Engineering Research and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Minichino, C; McNichols, D

    2009-02-24

    This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2008. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: 'Enable program success today and ensure the Laboratory's vitality tomorrow.' Engineering's mission is carried out through basic research and technology development. Research is the vehicle for creating competencies that are cutting-edge, or require discovery-class groundwork to be fully understood. Our technology efforts are discipline-oriented, preparing research breakthroughs for broader application to a variety of Laboratory needs. The term commonly used for technology-based projects is 'reduction to practice.' As we pursue this two-pronged approach, an enormous range of technological capabilities result. This report combines our work in research and technology into one volume, organized into thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Engineering Systems for Knowledge and Inference; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.

  17. Hybrid upper surface blown flap propulsive-lift concept for the Quiet Short-Haul Research Aircraft

    Science.gov (United States)

    Cochrane, J. A.; Carros, R. J.

    1975-01-01

    The hybrid upper surface blowing concept consists of wing-mounted turbofan engines with a major portion of the fan exhaust directed over the wing upper surface to provide high levels of propulsive lift, but with a portion of the fan airflow directed over selected portions of the airframe to provide boundary layer control. NASA-sponsored preliminary design studies identified the hybrid upper surface blowing concept as the best propulsive lift concept to be applied to the Quiet Short-Haul Research Aircraft (QSRA) that is planned as a flight facility to conduct flight research at low noise levels, high approach lift coefficients, and steep approaches. Data from NASA in-house and NASA-sponsored small and large-scale wind tunnel tests of various configurations using this concept are presented.

  18. Toward improved durability in advanced aircraft engine hot sections; Proceedings of the Thirty-third ASME International Gas Turbine and Aeroengine Congress and Exposition, Amsterdam, Netherlands, June 5-9, 1988

    Science.gov (United States)

    Sokolowski, Daniel E. (Editor)

    1988-01-01

    The present conference on durability improvement methods for advanced aircraft gas turbine hot-section components discusses NASA's 'HOST' project, advanced high-temperature instrumentation for hot-section research, the development and application of combustor aerothermal models, and the evaluation of a data base and numerical model for turbine heat transfer. Also discussed are structural analysis methods for gas turbine hot section components, fatigue life-prediction modeling for turbine hot section materials, and the service life modeling of thermal barrier coatings for aircraft gas turbine engines.

  19. Domain Engineering - A Software Engineering discipline in Need of Research

    DEFF Research Database (Denmark)

    Bjørner, Dines

    2000-01-01

    , and these again seem more stable than software designs. Thus, almost like the universal laws of physics, it pays off to first develop theories of domains. But domain engineering, as in fact also requirements engineering, really is in need of thoroughly researched development principles, techniques and......Before software can be developed its requirements must be stated. Before requirements can be expressed the application domain must be understood. In this paper we outline some of the basic facets of domain engineering. Domains seem, it is our experience, far more stable than computing requirements...... formal techniques. A brief example of describing stake-holder perspectives will be given - on the background of which we then proceed to survey the notions of domain intrinsics, domain support technologies, domain management & organisation, domain rules & regulations, domain human behaviour, etc. We show...

  20. Biomedical engineering frontier research and converging technologies

    CERN Document Server

    Jun, Ho-Wook; Shin, Jennifer; Lee, SangHoon

    2016-01-01

    This book provides readers with an integrative overview of the latest research and developments in the broad field of biomedical engineering. Each of the chapters offers a timely review written by leading biomedical engineers and aims at showing how the convergence of scientific and engineering fields with medicine has created a new basis for practically solving problems concerning human health, wellbeing and disease. While some of the latest frontiers of biomedicine, such as neuroscience and regenerative medicine, are becoming increasingly dependent on new ideas and tools from other disciplines, the paradigm shift caused by technological innovations in the fields of information science, nanotechnology, and robotics is opening new opportunities in healthcare, besides dramatically changing the ways we actually practice science. At the same time, a new generation of engineers, fluent in many different scientific “languages,” is creating entirely new fields of research that approach the “old” questions f...

  1. A Research Agenda for Security Engineering

    Directory of Open Access Journals (Sweden)

    Rich Goyette

    2013-08-01

    Full Text Available Despite nearly 30 years of research and application, the practice of information system security engineering has not yet begun to exhibit the traits of a rigorous scientific discipline. As cyberadversaries have become more mature, sophisticated, and disciplined in their tradecraft, the science of security engineering has not kept pace. The evidence of the erosion of our digital security – upon which society is increasingly dependent – appears in the news almost daily. In this article, we outline a research agenda designed to begin addressing this deficit and to move information system security engineering toward a mature engineering discipline. Our experience suggests that there are two key areas in which this movement should begin. First, a threat model that is actionable from the perspectives of risk management and security engineering should be developed. Second, a practical and relevant security-measurement framework should be developed to adequately inform security-engineering and risk-management processes. Advances in these areas will particularly benefit business/government risk assessors as well as security engineers performing security design work, leading to more accurate, meaningful, and quantitative risk analyses and more consistent and coherent security design decisions. Threat modelling and security measurement are challenging activities to get right – especially when they need to be applied in a general context. However, these are decisive starting points because they constitute the foundation of a scientific security-engineering practice. Addressing these challenges will require stronger and more coherent integration between the sub-disciplines of risk assessment and security engineering, including new tools to facilitate that integration. More generally, changes will be required in the way security engineering is both taught and practiced to take into account the holistic approach necessary from a mature, scientific

  2. Status of Technological Advancements for Reducing Aircraft Gas Turbine Engine Pollutant Emissions

    Science.gov (United States)

    Rudey, R. A.

    1975-01-01

    Combustor test rig results indicate that substantial reductions from current emission levels of carbon monoxide (CO), total unburned hydrocarbons (THC), oxides of nitrogen (NOx), and smoke are achievable by employing varying degrees of technological advancements in combustion systems. Minor to moderate modifications to existing conventional combustors produced significant reductions in CO and THC emissions at engine low power (idle/taxi) operating conditions but did not effectively reduce NOx at engine full power (takeoff) operating conditions. Staged combusiton techniques were needed to simultaneously reduce the levels of all the emissions over the entire engine operating range (from idle to takeoff). Emission levels that approached or were below the requirements of the 1979 EPA standards were achieved with the staged combustion systems and in some cases with the minor to moderate modifications to existing conventional combustion systems. Results from research programs indicate that an entire new generation of combustor technology with extremely low emission levels may be possible in the future.

  3. Analytical and experimental evaluations of the effect of broad property fuels on combustors for commercial aircraft gas turbine engines

    Science.gov (United States)

    Smith, A. L.

    1980-01-01

    The impacts of broad property fuels on the design, performance, durability, emissions, and operational characteristics of current and advanced combustors for commercial aircraft gas turbine engines were studied. The effect of fuel thermal stability on engine and airframe fuel system was evaluated. Tradeoffs between fuel properties, exhaust emissions, and combustor life were also investigated. Results indicate major impacts of broad property fuels on allowable metal temperatures in fuel manifolds and injector support, combustor cyclic durability, and somewhat lesser impacts on starting characteristics, lightoff, emissions, and smoke.

  4. Council of Energy Engineering Research. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Richard J.

    2003-08-22

    The Engineering Research Program, a component program of the DOE Office of Basic Energy Sciences (BES), was established in 1979 to aid in resolving the numerous engineering issues arising from efforts to meet U.S. energy needs. The major product of the program became part of the body of knowledge and data upon which the applied energy technologies are founded; the product is knowledge relevant to energy exploration, production, conversion and use.

  5. FY06 Engineering Research and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Minichino, C; Alves, S W; Anderson, A T; Bennett, C V; Brown, C G; Brown, W D; Chinn, D; Clague, D; Clark, G; Cook, E G; Davidson, J C; Deri, R J; Dougherty, G; Fasenfest, B J; Florando, J N; Fulkerson, E S; Haugen, P; Heebner, J E; Hickling, T; Huber, R; Hunter, S L; Javedani, J; Kallman, J S; Kegelmeyer, L M; Koning, J; Kosovic, B; Kroll, J J; LeBlanc, M; Lin, J; Mariella, R P; Miles, R; Nederbragt, W W; Ness, K D; Nikolic, R J; Paglieroni, D; Pannu, S; Pierce, E; Pocha, M D; Poland, D N; Puso, M A; Quarry, M J; Rhee, M; Romero, C E; Rose, K A; Sain, J D; Sharpe, R M; Spadaccini, C M; Stolken, J S; Van Buuren, A; Wemhoff, A; White, D; Yao, Y

    2007-01-22

    This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2006. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. Engineering's investment in technologies is carried out primarily through two internal programs: the Laboratory Directed Research and Development (LDRD) program and the technology base, or ''Tech Base'', program. LDRD is the vehicle for creating technologies and competencies that are cutting-edge, or require discovery-class research to be fully understood. Tech Base is used to prepare those technologies to be more broadly applicable to a variety of Laboratory needs. The term commonly used for Tech Base projects is ''reduction to practice''. Thus, LDRD reports have a strong research emphasis, while Tech Base reports document discipline-oriented, core competency activities. This report combines the LDRD and Tech Base summaries into one volume, organized into six thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Precision Engineering; Engineering Systems for Knowledge and Inference; and Energy Manipulation.

  6. A Research Agenda for Security Engineering

    OpenAIRE

    Rich Goyette; Yan Robichaud; François Marinier

    2013-01-01

    Despite nearly 30 years of research and application, the practice of information system security engineering has not yet begun to exhibit the traits of a rigorous scientific discipline. As cyberadversaries have become more mature, sophisticated, and disciplined in their tradecraft, the science of security engineering has not kept pace. The evidence of the erosion of our digital security – upon which society is increasingly dependent – appears in the news almost daily. In this article, we outl...

  7. 航空发动机数控系统在台架试验中的电磁干扰与防治研究%Research on Electromagnetic Interference and Prevention in the Bench Test Of Numerical Control System for Aircraft Engine

    Institute of Scientific and Technical Information of China (English)

    徐奇军; 易伟; 李烨

    2013-01-01

    应用电磁干扰理论,分析了干扰案例的干扰机理和耦合通道,导出了干扰案例的等效电路,建立了Matlab仿真模型并进行了验证,最后根据上述模型给出了消除干扰的解决措施.Matlab仿真和台架试验结果表明,仿真模型和解决方案是合理、正确、可行的.该研究能够为航空发动机数控系统电磁干扰故障理论分析起一定的指导作用,有利于采取针对性措施,提高应急能力.%The electromagnetic interference case in the bench test of numerical control system for the aircraft engine is studied by using electromagnetic interference theory.Firstly,the major sources of interference and the major coupling channels are analyzed.Secondly,the equivalent circuit of the electromagnetic interference case is gotten,and the Matlab simulation model is built and verified.Finally,according to the proposed model,the solutions to eliminate interference are given.The simulation and bench test results show that the simulation model and the solutions are reasonable,correct and feasible.The study plays a guiding role in theory analysis on electromagnetic interference which is found in numerical control system of aircraft engines,and it is helpful to take specific measures and improve the capability of the emergency response.

  8. CV-990 Landing Systems Research Aircraft (LSRA) during final Space Shuttle tire test

    Science.gov (United States)

    1995-01-01

    A Convair 990 (CV-990) was used as a Landing Systems Research Aircraft (LSRA) at NASA's Dryden Flight Research Center, Edwards, California, to test space shuttle landing gear and braking systems as part of NASA's effort to upgrade and improve space shuttle capabilities. The first flight at Dryden of the CV-990 with shuttle test components occurred in April 1993, and tests continued into August 1995, when this photo shows a test of the shuttle tires. The purpose of this series of tests was to determine the performance parameters and failure limits of the tires. This particular landing was on the dry lakebed at Edwards, but other tests occurred on the main runway there. The CV-990, built in 1962 by the Convair Division of General Dynamics Corp., Ft. Worth, Texas, served as a research aircraft at Ames Research Center, Moffett Field, California, before it came to Dryden.

  9. Mechanical Engineering Department engineering research: Annual report, FY 1986

    Energy Technology Data Exchange (ETDEWEB)

    Denney, R.M.; Essary, K.L.; Genin, M.S.; Highstone, H.H.; Hymer, J.D.; Taft, S.O. (eds.)

    1986-12-01

    This report provides information on the five areas of research interest in LLNL's Mechanical Engineering Department. In Computer Code Development, a solid geometric modeling program is described. In Dynamic Systems and Control, structure control and structure dynamics are discussed. Fabrication technology involves machine cutting, interferometry, and automated optical component manufacturing. Materials engineering reports on composite material research and measurement of molten metal surface properties. In Nondestructive Evaluation, NMR, CAT, and ultrasound machines are applied to manufacturing processes. A model for underground collapse is developed. Finally, an alternative heat exchanger is investigated for use in a fusion power plant. Separate abstracts were prepared for each of the 13 reports in this publication. (JDH)

  10. Aircraft engine-mounted camera system for long wavelength infrared imaging of in-service thermal barrier coated turbine blades

    Science.gov (United States)

    Markham, James; Cosgrove, Joseph; Scire, James; Haldeman, Charles; Agoos, Ian

    2014-12-01

    This paper announces the implementation of a long wavelength infrared camera to obtain high-speed thermal images of an aircraft engine's in-service thermal barrier coated turbine blades. Long wavelength thermal images were captured of first-stage blades. The achieved temporal and spatial resolutions allowed for the identification of cooling-hole locations. The software and synchronization components of the system allowed for the selection of any blade on the turbine wheel, with tuning capability to image from leading edge to trailing edge. Its first application delivered calibrated thermal images as a function of turbine rotational speed at both steady state conditions and during engine transients. In advance of presenting these data for the purpose of understanding engine operation, this paper focuses on the components of the system, verification of high-speed synchronized operation, and the integration of the system with the commercial jet engine test bed.

  11. Summaries of FY 1993 Engineering Research

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report documents the BES Engineering Research Program for fiscal year 1993; it provides a summary for each of the program projects in addition to a brief program overview. The report is intended to provide staff of Congressional committees, other executive departments, and other DOE offices with substantive program information so as to facilitate governmental overview and coordination of Federal research programs. Of equal importance, its availability facilitates communication of program information to interested research engineers and scientists. The organizational chart for the DOE Office of Energy Research (OER) on the next page delineates the six Divisions within the OER Office of Basic Energy Sciences (BES). Each BES Division administers basic, mission oriented research programs in the area indicated by its title. The BES Engineering Research Program is one such program; it is administered by the Engineering and Geosciences Division of BES. In preparing this report we asked the principal investigators to submit summaries for their projects that were specifically applicable to fiscal year 1993. The summaries received have been edited if necessary.

  12. Practical Application of a Subscale Transport Aircraft for Flight Research in Control Upset and Failure Conditions

    Science.gov (United States)

    Cunningham, Kevin; Foster, John V.; Morelli, Eugene A.; Murch, Austin M.

    2008-01-01

    Over the past decade, the goal of reducing the fatal accident rate of large transport aircraft has resulted in research aimed at the problem of aircraft loss-of-control. Starting in 1999, the NASA Aviation Safety Program initiated research that included vehicle dynamics modeling, system health monitoring, and reconfigurable control systems focused on flight regimes beyond the normal flight envelope. In recent years, there has been an increased emphasis on adaptive control technologies for recovery from control upsets or failures including damage scenarios. As part of these efforts, NASA has developed the Airborne Subscale Transport Aircraft Research (AirSTAR) flight facility to allow flight research and validation, and system testing for flight regimes that are considered too risky for full-scale manned transport airplane testing. The AirSTAR facility utilizes dynamically-scaled vehicles that enable the application of subscale flight test results to full scale vehicles. This paper describes the modeling and simulation approach used for AirSTAR vehicles that supports the goals of efficient, low-cost and safe flight research in abnormal flight conditions. Modeling of aerodynamics, controls, and propulsion will be discussed as well as the application of simulation to flight control system development, test planning, risk mitigation, and flight research.

  13. Probing Aircraft Flight Test Hazard Mitigation for the Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Research Team

    Science.gov (United States)

    Kelly, Michael J.

    2013-01-01

    The Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Project Integration Manager requested in July 2012 that the NASA Engineering and Safety Center (NESC) form a team to independently assess aircraft structural failure hazards associated with the ACCESS experiment and to identify potential flight test hazard mitigations to ensure flight safety. The ACCESS Project Integration Manager subsequently requested that the assessment scope be focused predominantly on structural failure risks to the aircraft empennage raft empennage.

  14. Modal analysis by holographic interferometry of a turbine blade for aircraft engines

    Science.gov (United States)

    Caponero, Michele A.; De Angelis, Alberto; Filetti, V. R.; Gammella, S.

    1994-11-01

    Within the planning stage devoted to realize an innovative turbine for an aircraft engine, an experimental prototype has been made. Several measurements have been carried out to experimentally verify the expected structural and dynamic features of such a prototype. Expected properties were worked out by finite elements method, using the well-known Nastran software package. Natural frequencies and vibration modes of the designed prototype were computed assuming the turbine being in both `dynamic condition' (rotating turbine at running speed and temperature), and in `static condition' (still turbine at room temperature). We present the experimental modal analysis carried out by time average holographic interferometry, being the prototype in `static condition;' results show the modal behavior of the prototype. Experimental and computed modal features are compared to evaluate the reliability of the finite elements model of the turbine used for computation by the Nastran package; reliability of the finite elements model must be checked to validate results computed assuming the turbine blade is in hostile environments, such as `dynamic condition,' which could hardly be tested by experimental measurements. A piezoelectric transducer was used to excite the turbine blade by sine variable pressure. To better estimate the natural vibration modes, two holographic interferograms have been made for each identified natural frequency, being the sensitivity vector directions of the two interferograms perpendicular to each other. The first ten lower natural frequencies and vibration modes of the blade have been analyzed; experimental and computed results are compared and discussed. Experimental and computed values of natural frequencies are in good agrement between each other. Several differences are present between experimental and computed modal patterns; a possible cause of such discrepancies is identified in wrong structural constraints imposed at nodes of the finite elements

  15. Evaluation of Research in Engineering Science in Norway

    DEFF Research Database (Denmark)

    Van Brussel, Hendrik Van Brussel; Lindberg, Bengt; Cederwall, Klas;

    This report presents the conclusions of Panel 1: Construction engineering, Production and Operation. The Research Council of Norway (NFR) appointed three expert panels to evaluate Research in Engineering Science in Norway .......This report presents the conclusions of Panel 1: Construction engineering, Production and Operation. The Research Council of Norway (NFR) appointed three expert panels to evaluate Research in Engineering Science in Norway ....

  16. Summaries of FY 1996 engineering research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This report documents the Basic Energy Sciences (BES) Engineering Research Program for fiscal year 1996; it provides a summary for each of the program projects in addition to a brief program overview. The report is intended to provide staff of Congressional committees, other executive departments, and other DOE offices with substantive program information so as to facilitate governmental overview and coordination of Federal research programs. Of equal importance, its availability facilitates communication of program information to interested research engineers and scientists. Each BES Division administers basic, mission oriented research programs in the area indicated by its title. The BES Engineering Research Program is one such program; it is administered by the Engineering and Geosciences Division of BES. In preparing this report the principal investigators were asked to submit summaries for their projects that were specifically applicable to fiscal year 1996. The summaries received have been edited if necessary, but the press for timely publication made it impractical to have the investigators review and approve the revised summaries prior to publication. For more information about a given project, it is suggested that the investigators be contacted directly.

  17. Federal Interagency Committee on Aviation Noise (FICAN) Position on Research into Effects of Aircraft Noise on Classroom Learning.

    Science.gov (United States)

    2000

    This symposium report presents a summary of research on the affect of aircraft noise on the classroom environment revealing that aircraft noise can interfere with learning in the following areas: reading, motivation, language and speech acquisition, and memory. The strongest findings are in the area of reading, where more than 20 studies have…

  18. Using ethnographic methods in software engineering research

    DEFF Research Database (Denmark)

    Sharp, Helen, C.; Dittrich, Yvonne; De Souza, Cleidson

    2010-01-01

    This tutorial provides an overview of the role of ethnography in Software Engineering research. It describes the use of ethnographic methods as a means to provide an in-depth understanding of the socio-technological realities surrounding everyday software development practice. The knowledge gained......-depth discussion of methods for data collection and analysis used in ethnographic studies. It then describes how these methods can be and have been used by software engineering researchers to understand developers' work practices, to inform the development of processes, methods and tools and to evaluate...... can be used to improve processes, methods and tools as well as develop observed industrial practices. The tutorial begins with a brief historical account of ethnography in the fields of Software Engineering, CSCW, Information Systems and other related areas. This sets the stage for a more in...

  19. Production-teaching-research of a Commercial Aircraft Corporation in the Chinese Industry Chain

    Institute of Scientific and Technical Information of China (English)

    CHEN Lin; WANG Shuang-yuan; WEI Lin-wan

    2012-01-01

    For the future development of a commercial aircraft corporation, this paper focused on the research and technological innovation model in an industrial chain and explored how to promote the sustainable development of technological innovation on the basis of the Chinese aviation industry. It puts forward several ways to reinforce cooperation, such as strengthening policies and regulations, government's support for research cooperations, accelerating construction of the production-teaching-research oriented public technology platform and service system, and firming the industry awareness of universities and research institutes, and so on.

  20. 77 FR 52701 - Board on Coastal Engineering Research

    Science.gov (United States)

    2012-08-30

    ... Department of the Army; Corps of Engineers Board on Coastal Engineering Research AGENCY: Department of the... Committee: Board on Coastal Engineering Research. Date of Meeting: September 18-20, 2012. Place: Starboard... coastal engineering field and the objectives of the Chief of Engineers. Proposed Agenda: The goal of...

  1. Aircraft noise prediction

    Science.gov (United States)

    Filippone, Antonio

    2014-07-01

    This contribution addresses the state-of-the-art in the field of aircraft noise prediction, simulation and minimisation. The point of view taken in this context is that of comprehensive models that couple the various aircraft systems with the acoustic sources, the propagation and the flight trajectories. After an exhaustive review of the present predictive technologies in the relevant fields (airframe, propulsion, propagation, aircraft operations, trajectory optimisation), the paper addresses items for further research and development. Examples are shown for several airplanes, including the Airbus A319-100 (CFM engines), the Bombardier Dash8-Q400 (PW150 engines, Dowty R408 propellers) and the Boeing B737-800 (CFM engines). Predictions are done with the flight mechanics code FLIGHT. The transfer function between flight mechanics and the noise prediction is discussed in some details, along with the numerical procedures for validation and verification. Some code-to-code comparisons are shown. It is contended that the field of aircraft noise prediction has not yet reached a sufficient level of maturity. In particular, some parametric effects cannot be investigated, issues of accuracy are not currently addressed, and validation standards are still lacking.

  2. Current Research in Aircraft Tire Design and Performance

    Science.gov (United States)

    Tanner, J. A.; Mccarthy, J. L.; Clark, S. K.

    1981-01-01

    A review of the tire research programs which address the various needs identified by landing gear designers and airplane users is presented. The experimental programs are designed to increase tire tread lifetimes, relate static and dynamic tire properties, establish the tire hydroplaning spin up speed, study gear response to tire failures, and define tire temperature profiles during taxi, braking, and cornering operations. The analytical programs are aimed at providing insights into the mechanisms of heat generation in rolling tires and developing the tools necessary to streamline the tire design process and to aid in the analysis of landing gear problems.

  3. Concept to Reality: Contributions of the Langley Research Center to US Civil Aircraft of the 1990s

    Science.gov (United States)

    Chambers, Joseph R.

    2003-01-01

    This document is intended to be a companion to NASA SP-2000-4519, 'Partners in Freedom: Contributions of the Langley Research Center to U.S. Military Aircraft of the 1990s'. Material included in the combined set of volumes provides informative and significant examples of the impact of Langley's research on U.S. civil and military aircraft of the 1990s. This volume, 'Concept to Reality: Contributions of the NASA Langley Research Center to U.S. Civil Aircraft of the 1990s', highlights significant Langley contributions to safety, cruise performance, takeoff and landing capabilities, structural integrity, crashworthiness, flight deck technologies, pilot-vehicle interfaces, flight characteristics, stall and spin behavior, computational design methods, and other challenging technical areas for civil aviation. The contents of this volume include descriptions of some of the more important applications of Langley research to current civil fixed-wing aircraft (rotary-wing aircraft are not included), including commercial airliners, business aircraft, and small personal-owner aircraft. In addition to discussions of specific aircraft applications, the document also covers contributions of Langley research to the operation of civil aircraft, which includes operating problems. This document is organized according to disciplinary technologies, for example, aerodynamics, structures, materials, and flight systems. Within each discussion, examples are cited where industry applied Langley technologies to specific aircraft that were in operational service during the 1990s and the early years of the new millennium. This document is intended to serve as a key reference for national policy makers, internal NASA policy makers, Congressional committees, the media, and the general public. Therefore, it has been written for a broad general audience and does not presume any significant technical expertise. An extensive bibliography is provided for technical specialists and others who desire a

  4. Methods for designing treatments to reduce interior noise of predominant sources and paths in a single engine light aircraft

    Science.gov (United States)

    Hayden, Richard E.; Remington, Paul J.; Theobald, Mark A.; Wilby, John F.

    1985-01-01

    The sources and paths by which noise enters the cabin of a small single engine aircraft were determined through a combination of flight and laboratory tests. The primary sources of noise were found to be airborne noise from the propeller and engine casing, airborne noise from the engine exhaust, structureborne noise from the engine/propeller combination and noise associated with air flow over the fuselage. For the propeller, the primary airborne paths were through the firewall, windshield and roof. For the engine, the most important airborne path was through the firewall. Exhaust noise was found to enter the cabin primarily through the panels in the vicinity of the exhaust outlet although exhaust noise entering the cabin through the firewall is a distinct possibility. A number of noise control techniques were tried, including firewall stiffening to reduce engine and propeller airborne noise, to stage isolators and engine mounting spider stiffening to reduce structure-borne noise, and wheel well covers to reduce air flow noise.

  5. Polar Research with Unmanned Aircraft and Tethered Balloons

    Energy Technology Data Exchange (ETDEWEB)

    Ivey, M [Sandia National Laboratories; Petty, R [U.S. Department of Energy; Desilets, D [Sandia National Laboratories; Verlinde, J; Ellingson, R [Florida State University

    2014-01-24

    The Arctic is experiencing rapid climate change, with nearly double the rate of surface warming observed elsewhere on the planet. While various positive feedback mechanisms have been suggested, the reasons for Arctic amplification are not well understood, nor are the impacts to the global carbon cycle well quantified. Additionally, there are uncertainties associated with the complex interactions between Earth’s surface and the atmosphere. Elucidating the causes and consequences of Arctic warming is one of the many goals of the Climate and Environmental Sciences Division (CESD) of the U.S. Department of Energy’s (DOE) Biological and Environmental Research (BER) program, and is part of the larger CESD initiative to develop a robust predictive understanding of Earth’s climate system.

  6. NASA rotor system research aircraft flight-test data report: Helicopter and compound configuration

    Science.gov (United States)

    Erickson, R. E.; Kufeld, R. M.; Cross, J. L.; Hodge, R. W.; Ericson, W. F.; Carter, R. D. G.

    1984-01-01

    The flight test activities of the Rotor System Research Aircraft (RSRA), NASA 740, from June 30, 1981 to August 5, 1982 are reported. Tests were conducted in both the helicopter and compound configurations. Compound tests reconfirmed the Sikorsky flight envelope except that main rotor blade bending loads reached endurance at a speed about 10 knots lower than previously. Wing incidence changes were made from 0 to 10 deg.

  7. Engineering education in research-intensive universities

    Science.gov (United States)

    Alpay, E.; Jones, M. E.

    2012-12-01

    The strengths and weaknesses of engineering education in research-intensive institutions are reported and key areas for developmental focus identified. The work is based on a questionnaire and session summaries used during a two-day international conference held at Imperial College London. The findings highlight several common concerns, such as the need to improve faculty motivation towards teaching, broaden the workplace skills of students, widen employer engagement in teaching and raise the relevance and value of scholarly activity in the discipline of engineering education. Examples of good practice used to address such issues are reported.

  8. Using Synthetic Kerosene in Civil Jet Aircraft

    NARCIS (Netherlands)

    Snijders, T.A.; Melkert, J.A.

    2008-01-01

    TU Delft in the Netherlands is performing research into the effects of the use of synthetic kerosene in aircraft. The research program consists of both desk research and tests. In the desk research gas turbine simulations will be combined with payload range performance calculations to show engine ef

  9. 78 FR 13030 - Board on Coastal Engineering Research

    Science.gov (United States)

    2013-02-26

    ... Department of the Army; Corps of Engineers Board on Coastal Engineering Research AGENCY: Department of the... Committee: Board on Coastal Engineering Research. Date of Meeting: March 18-19, 2013. Place: Conference Room... development of research projects in consonance with the needs of the coastal engineering field and...

  10. 78 FR 48659 - Board on Coastal Engineering Research

    Science.gov (United States)

    2013-08-09

    ... Department of the Army; Corps of Engineers Board on Coastal Engineering Research AGENCY: Department of the... advisory committee meeting will take place: Name of Committee: Board on Coastal Engineering Research. Date..., and the availability of space, the Board on Coastal Engineering Research meeting is open to the...

  11. 76 FR 37084 - Board on Coastal Engineering Research

    Science.gov (United States)

    2011-06-24

    ... Department of the Army; Corps of Engineers Board on Coastal Engineering Research AGENCY: Department of the... Committee: Board on Coastal Engineering Research. Date of Meeting: July 26-28, 2011. Place: Crowne Jewel... development of research projects in consonance with the needs of the coastal engineering field and...

  12. 75 FR 28593 - Board on Coastal Engineering Research

    Science.gov (United States)

    2010-05-21

    ... Department of the Army; Corps of Engineers Board on Coastal Engineering Research AGENCY: Department of the... Committee: Board on Coastal Engineering Research. Date of Meeting: June 22-24, 2010. Place: Hudson Ballroom... development of research projects in consonance with the needs of the coastal engineering field and...

  13. Final Report: Performance Engineering Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Mellor-Crummey, John [Rice University

    2014-10-27

    This document is a final report about the work performed for cooperative agreement DE-FC02-06ER25764, the Rice University effort of Performance Engineering Research Institute (PERI). PERI was an Enabling Technologies Institute of the Scientific Discovery through Advanced Computing (SciDAC-2) program supported by the Department of Energy's Office of Science Advanced Scientific Computing Research (ASCR) program. The PERI effort at Rice University focused on (1) research and development of tools for measurement and analysis of application program performance, and (2) engagement with SciDAC-2 application teams.

  14. Preliminary Axial Flow Turbine Design and Off-Design Performance Analysis Methods for Rotary Wing Aircraft Engines. Part 1; Validation

    Science.gov (United States)

    Chen, Shu-cheng, S.

    2009-01-01

    For the preliminary design and the off-design performance analysis of axial flow turbines, a pair of intermediate level-of-fidelity computer codes, TD2-2 (design; reference 1) and AXOD (off-design; reference 2), are being evaluated for use in turbine design and performance prediction of the modern high performance aircraft engines. TD2-2 employs a streamline curvature method for design, while AXOD approaches the flow analysis with an equal radius-height domain decomposition strategy. Both methods resolve only the flows in the annulus region while modeling the impact introduced by the blade rows. The mathematical formulations and derivations involved in both methods are documented in references 3, 4 for TD2-2) and in reference 5 (for AXOD). The focus of this paper is to discuss the fundamental issues of applicability and compatibility of the two codes as a pair of companion pieces, to perform preliminary design and off-design analysis for modern aircraft engine turbines. Two validation cases for the design and the off-design prediction using TD2-2 and AXOD conducted on two existing high efficiency turbines, developed and tested in the NASA/GE Energy Efficient Engine (GE-E3) Program, the High Pressure Turbine (HPT; two stages, air cooled) and the Low Pressure Turbine (LPT; five stages, un-cooled), are provided in support of the analysis and discussion presented in this paper.

  15. The development of turbojet aircraft in Germany, Britain, and the United States: A multi-national comparison of aeronautical engineering, 1935--1946

    Science.gov (United States)

    Pavelec, Sterling Michael

    In the 1930s aeronautical engineering needed revision. A presumptive anomaly was envisaged as piston-engine aircraft flew higher and faster. Radical alternatives to piston engines were considered in the unending quest for speed. Concurrently, but unwittingly, two turbojet engine programs were undertaken in Europe. The air-breathing three-stage turbojet engine was based on previous turbine technology; the revolutionary idea was the gas turbine as a prime mover for aircraft. In Germany, Dr. Hans von Ohain was the first to complete a flight-worthy turbojet engine for aircraft. Installed in a Heinkel designed aircraft, the Germans began the jet age on 27 August 1939. The Germans led throughout the war and were the first to produce jet aircraft for combat operations. The principal limiting factor for the German jet program was a lack of reliable engines. The continuing myths that Hitler orders, too little fuel, or too few pilots hindered the program are false. In England, Frank Whittle, without substantial support, but with dogged determination, also developed a turbojet engine. The British came second in the jet race when the Whittle engine powered the Gloster Pioneer on 15 May 1941. The Whittle-Gloster relationship continued and produced the only Allied combat jet aircraft during the war, the Meteor, which was confined to Home Defense in Britain. The American turbojet program was built directly from the Whittle engine. General Electric copied the Whittle designs and Bell Aircraft was contracted to build the first American jet plane. The Americans began the jet age on 1 October 1942 with a lackluster performance from their first jet, the Airacomet. But the Americans forged ahead, and had numerous engine and airframe programs in development by the end of the war. But, the Germans did it right and did it first. Partly because of a predisposition towards excellent engineering and physics, partly out of necessity, the Germans were able to produce combat turbojet aircraft

  16. Engineering research, development and technology report

    Energy Technology Data Exchange (ETDEWEB)

    Langland, R T

    1999-02-01

    Nineteen ninety-eight has been a transition year for Engineering, as we have moved from our traditional focus on thrust areas to a more focused approach with research centers. These five new centers of excellence collectively comprise Engineering's Science and Technology program. This publication summarizes our formative year under this new structure. Let me start by talking about the differences between a thrust area and a research center. The thrust area is more informal, combining an important technology with programmatic priorities. In contrast, a research center is directly linked to an Engineering core technology. It is the purer model, for it is more enduring yet has the scope to be able to adapt quickly to evolving programmatic priorities. To put it another way, the mission of a thrust area was often to grow the programs in conjunction with a technology, whereas the task of a research center is to vigorously grow our core technologies. By cultivating each core technology, we in turn enable long-term growth of new programs.

  17. Model-Based Control of a Nonlinear Aircraft Engine Simulation using an Optimal Tuner Kalman Filter Approach

    Science.gov (United States)

    Connolly, Joseph W.; Csank, Jeffrey Thomas; Chicatelli, Amy; Kilver, Jacob

    2013-01-01

    This paper covers the development of a model-based engine control (MBEC) methodology featuring a self tuning on-board model applied to an aircraft turbofan engine simulation. Here, the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) serves as the MBEC application engine. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC over a wide range of operating points. The on-board model is a piece-wise linear model derived from CMAPSS40k and updated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. Investigations using the MBEC to provide a stall margin limit for the controller protection logic are presented that could provide benefits over a simple acceleration schedule that is currently used in traditional engine control architectures.

  18. Correction of static pressure on a research aircraft in accelerated flight using differential pressure measurements

    Directory of Open Access Journals (Sweden)

    A. R. Rodi

    2012-05-01

    Full Text Available Geometric altitude data from a combined Global Navigation Satellite System (GNSS and inertial measurement unit (IMU system on the University of Wyoming King Air research aircraft are used to estimate acceleration effects on static pressure measurement. Using data collected during periods of accelerated flight, comparison of measured pressure with that derived from GNSS/IMU geometric altitude show that errors exceeding 150 Pa can occur which is significant in airspeed and atmospheric air motion determination. A method is developed to predict static pressure errors from analysis of differential pressure measurements from a Rosemount model 858 differential pressure air velocity probe. The method was evaluated with a carefully designed probe towed on connecting tubing behind the aircraft – a "trailing cone" – in steady flight, and shown to have a precision of about ±10 Pa over a wide range of conditions including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, compared to the GNSS/IMU data, this algorithm predicts corrections to a precision of better than ±20 Pa. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are examined.

  19. Converging clinical and engineering research on neurorehabilitation

    CERN Document Server

    Torricelli, Diego; Pajaro, Marta

    2013-01-01

    Restoring human motor and cognitive function has been a fascinating research area during the last century. Interfacing the human nervous system with electro-mechanical rehabilitation machines is facing its crucial passage from research to clinical practice, enhancing the potentiality of therapists, clinicians and researchers to rehabilitate, diagnose and generate knowledge. The 2012 International Conference on Neurorehabilitation (ICNR2012, www.icnr2012.org) brings together researchers and students from the fields of Clinical Rehabilitation, Applied Neurophysiology and Biomedical Engineering, covering a wide range of research topics:   · Clinical Impact of Technology · Brain-Computer Interface in Rehabilitation · Neuromotor & Neurosensory modeling and processing · Biomechanics in Rehabilitation · Neural Prostheses in Rehabilitation · Neuro-Robotics in Rehabilitation · Neuromodulation   This Proceedings book includes general contributions from oral and poster sessions, as well as from special sess...

  20. Fabrication methods for YF-12 wing panels for the Supersonic Cruise Aircraft Research Program

    Science.gov (United States)

    Hoffman, E. L.; Payne, L.; Carter, A. L.

    1975-01-01

    Advanced fabrication and joining processes for titanium and composite materials are being investigated by NASA to develop technology for the Supersonic Cruise Aircraft Research (SCAR) Program. With Lockheed-ADP as the prime contractor, full-scale structural panels are being designed and fabricated to replace an existing integrally stiffened shear panel on the upper wing surface of the NASA YF-12 aircraft. The program involves ground testing and Mach 3 flight testing of full-scale structural panels and laboratory testing of representative structural element specimens. Fabrication methods and test results for weldbrazed and Rohrbond titanium panels are discussed. The fabrication methods being developed for boron/aluminum, Borsic/aluminum, and graphite/polyimide panels are also presented.

  1. Dynamic structural aeroelastic stability testing of the XV-15 tilt rotor research aircraft

    Science.gov (United States)

    Schroers, L. G.

    1982-01-01

    For the past 20 years, a significant effort has been made to understand and predict the structural aeroelastic stability characteristics of the tilt rotor concept. Beginning with the rotor-pylon oscillation of the XV-3 aircraft, the problem was identified and then subjected to a series of theoretical studies, plus model and full-scale wind tunnel tests. From this data base, methods were developed to predict the structural aeroelastic stability characteristics of the XV-15 Tilt Rotor Research Aircraft. The predicted aeroelastic characteristics are examined in light of the major parameters effecting rotor-pylon-wing stability. Flight test techniques used to obtain XV-15 aeroelastic stability are described. Flight test results are summarized and compared to the predicted values. Wind tunnel results are compared to flight test results and correlated with predicted values.

  2. Research of Zlin Z42 engine´s operation by EDM-800 monitoring system

    Directory of Open Access Journals (Sweden)

    Maria MRAZOVA

    2015-09-01

    Full Text Available The purpose of this paper is based on the analysis of the M137 engine performance by the EDM- 800 monitoring system that is also mounted on Zlin Z42 aircraft in operation of Air Training and Education Centre of the University of Zilina. This research consists of measurements based on the comparison and analysis of the engine parameters where its performance was simulated under various temperature conditions. Measured parameters are monitored during these flight regimes – take off, climb, cruise and approach. Briefly, these measurements are able to detect the existing problems during the engine operation and consequently they will be helpful to prevent potential engine malfunctions in the future operations.

  3. An Electronic Workshop on the Performance Seeking Control and Propulsion Controlled Aircraft Results of the F-15 Highly Integrated Digital Electronic Control Flight Research Program

    Science.gov (United States)

    Powers, Sheryll Goecke (Compiler)

    1995-01-01

    Flight research for the F-15 HIDEC (Highly Integrated Digital Electronic Control) program was completed at NASA Dryden Flight Research Center in the fall of 1993. The flight research conducted during the last two years of the HIDEC program included two principal experiments: (1) performance seeking control (PSC), an adaptive, real-time, on-board optimization of engine, inlet, and horizontal tail position on the F-15; and (2) propulsion controlled aircraft (PCA), an augmented flight control system developed for landings as well as up-and-away flight that used only engine thrust (flight controls locked) for flight control. In September 1994, the background details and results of the PSC and PCA experiments were presented in an electronic workshop, accessible through the Dryden World Wide Web (http://www.dfrc.nasa.gov/dryden.html) and as a compact disk.

  4. 75 FR 62113 - Board on Coastal Engineering Research

    Science.gov (United States)

    2010-10-07

    ... Department of the Army; Corps of Engineers Board on Coastal Engineering Research AGENCY: Department of the... Committee: Board on Coastal Engineering Research. Date of Meeting: October 25-26, 2010. Place: Atlanta... consonance with the needs of the coastal engineering field and the objectives of the Chief of...

  5. High Temperature Lightweight Self-Healing Ceramic Composites for Aircraft Engine Applications

    Science.gov (United States)

    Raj, Sai V.; Singh, Mrityunjay; Bhatt, Ramakrishna T.

    2014-01-01

    The present research effort was undertaken to develop a new generation of SiC fiber- reinforced engineered matrix composites (EMCs) with sufficient high temperature plasticity to reduce crack propagation and self-healing capabilities to fill surface-connected cracks to prevent the oxygen ingress to the fibers. A matrix engineered with these capabilities is expected to increase the load bearing capabilities of SiCSiC CMCs at high temperatures. Several matrix compositions were designed to match the coefficient of thermal expansion (CTE) of the SiC fibers using a rule of mixture (ROM) approach. The CTE values of these matrices were determined and it was demonstrated that they were generally in good agreement with that of monolithic SiC between room temperature and 1525 K. The parameters to hot press the powders were optimized, and specimens were fabricated for determining bend strength, CTE, oxidation and microstructural characteristics of the engineered matrices. The oxidation tests revealed that some of the matrices exhibited catastrophic oxidation, and therefore, these were eliminated from further consideration. Two promising compositions were down selected based on these results for further development. Four-point bend tests were conducted on these two promising matrices between room temperature and 1698 K. Although theses matrices were brittle and failed at low stresses at room temperature, they exhibited high temperature ductility and higher stresses at the higher temperatures. The effects of different additives on the self-healing capabilities of these matrices were investigated. The results of preliminary studies conducted to slurry and melt infiltration trials with CrSi2 are described.

  6. Jet aircraft engine emissions database development: 1992 military, charter, and nonscheduled traffic

    Science.gov (United States)

    Metwally, Munir

    1995-01-01

    Studies relating to environmental emissions database for the military, charter, and non-scheduled traffic for the year 1992 were conducted by McDonnell Douglas Aerospace Transport Aircraft. The report also includes a comparison with a previous emission database for year 1990. Discussions of the methodology used in formulating these databases are provided.

  7. Mechanical Behaviour of Inconel 718 Thin-Walled Laser Welded Components for Aircraft Engines

    Directory of Open Access Journals (Sweden)

    Enrico Lertora

    2014-01-01

    Full Text Available Nickel alloys are very important in many aerospace applications, especially to manufacture gas turbines and aero engine components, where high strength and temperature resistance are necessary. These kinds of alloys have to be welded with high energy density processes, in order to preserve their high mechanical properties. In this work, CO2 laser overlap joints between Inconel 718 sheets of limited thickness in the absence of postweld heat treatment were made. The main application of this kind of joint is the manufacturing of a helicopter engine component. In particular the aim was to obtain a specific cross section geometry, necessary to overcome the mechanical stresses found in these working conditions without failure. Static and dynamic tests were performed to assess the welds and the parent material fatigue life behaviour. Furthermore, the life trend was identified. This research pointed out that a full joint shape control is possible by choosing proper welding parameters and that the laser beam process allows the maintenance of high tensile strength and ductility of Inconel 718 but caused many liquation microcracks in the heat affected zone (HAZ. In spite of these microcracks, the fatigue behaviour of the overlap welds complies with the technical specifications required by the application.

  8. Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use

    Directory of Open Access Journals (Sweden)

    Adam C. Watts

    2012-06-01

    Full Text Available Unmanned Aircraft Systems (UAS have evolved rapidly over the past decade driven primarily by military uses, and have begun finding application among civilian users for earth sensing reconnaissance and scientific data collection purposes. Among UAS, promising characteristics are long flight duration, improved mission safety, flight repeatability due to improving autopilots, and reduced operational costs when compared to manned aircraft. The potential advantages of an unmanned platform, however, depend on many factors, such as aircraft, sensor types, mission objectives, and the current UAS regulatory requirements for operations of the particular platform. The regulations concerning UAS operation are still in the early development stages and currently present significant barriers to entry for scientific users. In this article we describe a variety of platforms, as well as sensor capabilities, and identify advantages of each as relevant to the demands of users in the scientific research sector. We also briefly discuss the current state of regulations affecting UAS operations, with the purpose of informing the scientific community about this developing technology whose potential for revolutionizing natural science observations is similar to those transformations that GIS and GPS brought to the community two decades ago.

  9. Fuzzy information & engineering and operations research & management

    CERN Document Server

    Nasseri, Hadi

    2014-01-01

    Fuzzy Information & Engineering and Operations Research & Management is the monograph from submissions by the 6th International Conference on Fuzzy Information and Engineering (ICFIE2012, Iran) and by the 6th academic conference from Fuzzy Information  Engineering Branch of Operation Research Society of China (FIEBORSC2012, Shenzhen,China). It is  published by Advances in Intelligent and Soft Computing (AISC). We have received more than 300 submissions. Each paper of it has undergone a rigorous review process. Only high-quality papers are included in it containing papers as follows: I.                    Programming and Optimization. II.                 Lattice and Measures. III.               Algebras  and Equation. IV.               Forecasting, Clustering and Recognition. V.     Systems and Algorithm. VI.                 Graph and Network. VII. Others.

  10. Propulsion controlled aircraft computer

    Science.gov (United States)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  11. Weibull-Based Design Methodology for Rotating Structures in Aircraft Engines

    OpenAIRE

    Zaretsky V. E.; Hendricks C. R.; Soditus S.

    2003-01-01

    The NASA Energy-Efficient Engine (E3-Engine) is used as the basis of a Weibull-based life and reliability analysis. Each component's life, and thus the engine's life, is defined by high-cycle fatigue or low-cycle fatigue. Knowing the cumulative life distribution of each of the components making up the engine as represented by a Weibull slope is a prerequisite to predicting the life and reliability of the entire engine. As the engine's Weibull slope increases, the predicted life decreases. The...

  12. COLLABORATION IN SOUTH AFRICAN ENGINEERING RESEARCH

    Directory of Open Access Journals (Sweden)

    R. Sooryamoorthy

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: The production of scientific publications in engineering in South Africa has expanded over the last three decades. Because engineering is an important science, this expansion has implications for the growth and development of the economy. Drawing on a sample range of years of the publications stored in the ISI Web of Knowledge, the engineering publications of South Africans for a 30-year period from 1975-2005 are analysed. This analysis shows that the production of scientific publications in engineering by South African researchers has increased during the analysed period; that the number of researchers per publication has grown; that the number of countries collaborating with South Africa has increased; and that the number of sole-authored papers has decreased. Domestic collaboration (between researchers within South Africa has decreased, while international collaboration has grown considerably. The key objective of the paper is to find out whether the production of publications is related to the level of collaboration, and to see how collaboration can be regressed from other known variables. It is clear from the study that collaboration is a decisive factor in the production of scientific publications in engineering in South Africa.

    AFRIKAANSE OPSOMMING Die produksie van wetenskaplike publikasies in ingenieurswese in Suid-Afrika het oor die afgelope drie dekades toegeneem. Aangesien ingenieurswese ‘n belangrike wetenskap is, beïnvloed dié toename die groei en ontwikkeling van die ekonomie. Deur na ‘n monster van voormalige publikasies op die “ISI Web of Science” te kyk, is die publikasies in ingenieurswese deur Suid-Afrikaners oor ‘n 30 jaar periode van 1975-2005 geanaliseer. Die analise toon dat die produksie van wetenskaplike publikasies in ingenieurswese deur Suid-Afrikaanse navorsers toegeneem het oor dié tydperk; dat die aantal navorsers per publikasie gegroei het; dat daar ‘n toename was in die

  13. 77 FR 3240 - Board on Coastal Engineering Research

    Science.gov (United States)

    2012-01-23

    ... the following committee meeting: Name of Committee: Board on Coastal Engineering Research. DATES: Date... development of research projects in consonance with the needs of the coastal engineering field and the... devoted to addressing the role of the Board on Coastal Engineering Research, including the history of...

  14. Summaries of FY 1997 engineering research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This report documents the Basic Energy Sciences (BES) Engineering Research Program for fiscal year 1997, it provides a summary for each of the program projects in addition to a brief program overview. The report is intended to provide staff of Congressional committees, other executive departments, and other DOE offices with substantive program information so as to facilitate governmental overview and coordination of Federal research programs. Of equal importance, its availability facilitates communication of program information to interested research engineers and scientists. The individual project summaries follow the program overview. The summaries are ordered alphabetically by name of institution; the table of contents lists all the institutions at which projects were sponsored in fiscal year 1997. Each project entry begins with an institutional-departmental heading. The names of investigators are listed immediately below the title. The funding level for fiscal year 1997 appears to the right of address. The summary description of the project completes the entry. A separate index of Principal Investigators includes phone number, fax number and e-main address, where available.

  15. Human engineering problems in the operation of controls and the design of aircraft instruments

    Directory of Open Access Journals (Sweden)

    W.T.V. Adiseshiah

    1958-07-01

    Full Text Available "Speed and accuracy in performance are major considerations in the design of man-machine systems which involve displays for presenting information to the senses, and controls for human use. Sensory capacity, mobility and muscle strength, mental stamina, and capacity for team work are psychological factors which call for appropriate attention. In the design and selection of control devices, it is important to consider size and shape, location and action of the control devices. These should be compatible with the element to be controlled. four matters call for attention: firstly, control dimensions should take into consideration the normal hand grasp limitations of the operator. Secondly, knob of the controls should be suitably shape coded so as to forestall inadvertent operation of wrong controls. Thirdly, controls which have to be used most often should be placed within convenient reach of the operator. Fourthly, the human operator cannot be expected to perform at maximum capacity for any great length of time. Correctly positioned power controls are being increasingly used in present day aircraft. In the design of aircraft instruments and the layout of flying panels, the limitations of the human operator, emergencies which are likely to arise during flight, and imperfections in the indications of instruments need to be taken into account. The design of aircraft instruments such as the altimeter, the air speed indicator, and the artificial horizon, are being improved from time to time so as to meet the new requirements in flying. Single and multiple instrument combinations have effected a saving of time in locating parts of a total picture, e.g. the composite indication of fuel state in modern aircraft. Many unsolved problems still remain with regard to the use of certain items such as the aiming, photographic and oxygen equipments. "

  16. Enhanced Bank of Kalman Filters Developed and Demonstrated for In-Flight Aircraft Engine Sensor Fault Diagnostics

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2005-01-01

    In-flight sensor fault detection and isolation (FDI) is critical to maintaining reliable engine operation during flight. The aircraft engine control system, which computes control commands on the basis of sensor measurements, operates the propulsion systems at the demanded conditions. Any undetected sensor faults, therefore, may cause the control system to drive the engine into an undesirable operating condition. It is critical to detect and isolate failed sensors as soon as possible so that such scenarios can be avoided. A challenging issue in developing reliable sensor FDI systems is to make them robust to changes in engine operating characteristics due to degradation with usage and other faults that can occur during flight. A sensor FDI system that cannot appropriately account for such scenarios may result in false alarms, missed detections, or misclassifications when such faults do occur. To address this issue, an enhanced bank of Kalman filters was developed, and its performance and robustness were demonstrated in a simulation environment. The bank of filters is composed of m + 1 Kalman filters, where m is the number of sensors being used by the control system and, thus, in need of monitoring. Each Kalman filter is designed on the basis of a unique fault hypothesis so that it will be able to maintain its performance if a particular fault scenario, hypothesized by that particular filter, takes place.

  17. Cost and schedule management on the quiet short-haul research aircraft project

    Science.gov (United States)

    Wilcox, D. E.; Patterakis, P.

    1979-01-01

    The Quiet Short-Haul Research Aircraft (QSRA) Project, one of the largest aeronautical programs undertaken by NASA to date, achieved a significant cost underrun. This is attributed to numerous factors, not the least of which were the contractual arrangement and the system of cost and schedule management employed by the contractor. This paper summarizes that system and the methods used for cost/performance measurement by the contractor and by the NASA project management. Recommendations are made for the use of some of these concepts in particular for future programs of a similar nature.

  18. Potential uses of small unmanned aircraft systems (UAS) in weed research

    DEFF Research Database (Denmark)

    Rasmussen, Jesper; Nielsen, Jon; Garcia Ruiz, Francisco Jose;

    2013-01-01

    Small unmanned aerial systems (UAS) with cameras have not been adopted in weed research, but offer low-cost sensing with high flexibility in terms of spatial resolution. A small rotary-wing UAS was tested as part of a search for an inexpensive, user-friendly and reliable aircraft for practical...... in the range from 0.3 to 17.1 mm per pixel. This finding is important because spatial resolution is inversely related to sensing capacity. We captured 20 plots comprising a total of about 0.2 ha in one image at 50 m altitude without losing information about the cultivation impacts on vegetation compared...

  19. Collaborative Engineering for Research and Development

    Science.gov (United States)

    Davis, Jose M.; Keys, L. Ken; Chen, Injazz J.

    2004-01-01

    Research and development (R&D) organizations are being required to be relevant, to be more application-oriented, and to be partners in the strategic management of the business while meeting the same challenges as the rest of the organization, namely: (1) reduced time to market; (2) reduced cost; (3) improved quality; (4) increased reliability; and (5) increased focus on customer needs. Recent advances in computer technology and the Internet have created a new paradigm of collaborative engineering or collaborative product development (CPD), from which new types of relationships among researchers and their partners have emerged. Research into the applicability and benefits of CPD in a low/no production, R&D, and/or government environment is limited. In addition, the supply chain management (SCM) aspects of these relationships have not been studied. This paper presents research conducted at the NASA Glenn Research Center (GRC) investigating the applicability of CPD and SCM in an R&D organization. The study concentrates on the management and implementation of space research activities at GRC. Results indicate that although the organization is engaged in collaborative relationships that incorporate aspects of SCM, a number of areas, such as development of trust and information sharing merit special attention.

  20. Organizational Influences on Interdisciplinary Interactions during Research and Design of Large-Scale Complex Engineered Systems

    Science.gov (United States)

    McGowan, Anna-Maria R.; Seifert, Colleen M.; Papalambros, Panos Y.

    2012-01-01

    The design of large-scale complex engineered systems (LaCES) such as an aircraft is inherently interdisciplinary. Multiple engineering disciplines, drawing from a team of hundreds to thousands of engineers and scientists, are woven together throughout the research, development, and systems engineering processes to realize one system. Though research and development (R&D) is typically focused in single disciplines, the interdependencies involved in LaCES require interdisciplinary R&D efforts. This study investigates the interdisciplinary interactions that take place during the R&D and early conceptual design phases in the design of LaCES. Our theoretical framework is informed by both engineering practices and social science research on complex organizations. This paper provides preliminary perspective on some of the organizational influences on interdisciplinary interactions based on organization theory (specifically sensemaking), data from a survey of LaCES experts, and the authors experience in the research and design. The analysis reveals couplings between the engineered system and the organization that creates it. Survey respondents noted the importance of interdisciplinary interactions and their significant benefit to the engineered system, such as innovation and problem mitigation. Substantial obstacles to interdisciplinarity are uncovered beyond engineering that include communication and organizational challenges. Addressing these challenges may ultimately foster greater efficiencies in the design and development of LaCES and improved system performance by assisting with the collective integration of interdependent knowledge bases early in the R&D effort. This research suggests that organizational and human dynamics heavily influence and even constrain the engineering effort for large-scale complex systems.

  1. Cascade Optimization for Aircraft Engines With Regression and Neural Network Analysis - Approximators

    Science.gov (United States)

    Patnaik, Surya N.; Guptill, James D.; Hopkins, Dale A.; Lavelle, Thomas M.

    2000-01-01

    The NASA Engine Performance Program (NEPP) can configure and analyze almost any type of gas turbine engine that can be generated through the interconnection of a set of standard physical components. In addition, the code can optimize engine performance by changing adjustable variables under a set of constraints. However, for engine cycle problems at certain operating points, the NEPP code can encounter difficulties: nonconvergence in the currently implemented Powell's optimization algorithm and deficiencies in the Newton-Raphson solver during engine balancing. A project was undertaken to correct these deficiencies. Nonconvergence was avoided through a cascade optimization strategy, and deficiencies associated with engine balancing were eliminated through neural network and linear regression methods. An approximation-interspersed cascade strategy was used to optimize the engine's operation over its flight envelope. Replacement of Powell's algorithm by the cascade strategy improved the optimization segment of the NEPP code. The performance of the linear regression and neural network methods as alternative engine analyzers was found to be satisfactory. This report considers two examples-a supersonic mixed-flow turbofan engine and a subsonic waverotor-topped engine-to illustrate the results, and it discusses insights gained from the improved version of the NEPP code.

  2. Test and evaluation of the HIDEC engine uptrim algorithm. [Highly Integrated Digital Electronic Control for aircraft

    Science.gov (United States)

    Ray, R. J.; Myers, L. P.

    1986-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemente into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.

  3. An experimental and analytical method for approximate determination of the tilt rotor research aircraft rotor/wing download

    Science.gov (United States)

    Jordon, D. E.; Patterson, W.; Sandlin, D. R.

    1985-01-01

    The XV-15 Tilt Rotor Research Aircraft download phenomenon was analyzed. This phenomenon is a direct result of the two rotor wakes impinging on the wing upper surface when the aircraft is in the hover configuration. For this study the analysis proceeded along tow lines. First was a method whereby results from actual hover tests of the XV-15 aircraft were combined with drag coefficient results from wind tunnel tests of a wing that was representative of the aircraft wing. Second, an analytical method was used that modeled that airflow caused gy the two rotors. Formulas were developed in such a way that acomputer program could be used to calculate the axial velocities were then used in conjunction with the aforementioned wind tunnel drag coefficinet results to produce download values. An attempt was made to validate the analytical results by modeling a model rotor system for which direct download values were determinrd..

  4. Lunar Landing Research Vehicle (LLRV) engine test firing on ramp

    Science.gov (United States)

    1964-01-01

    This 1964 NASA Flight Reserch Center photograph shows a ground engine test underway on the Lunar Landing Research Vehicle (LLRV) number 1. When Apollo planning was underway in 1960, NASA was looking for a simulator to profile the descent to the moon's surface. Three concepts surfaced: an electronic simulator, a tethered device, and the ambitious Dryden contribution, a free-flying vehicle. All three became serious projects, but eventually the NASA Flight Research Center's (FRC) Landing Research Vehicle (LLRV) became the most significant one. Hubert M. Drake is credited with originating the idea, while Donald Bellman and Gene Matranga were senior engineers on the project, with Bellman, the project manager. Simultaneously, and independently, Bell Aerosystems Company, Buffalo, N.Y., a company with experience in vertical takeoff and landing (VTOL) aircraft, had conceived a similar free-flying simulator and proposed their concept to NASA headquarters. NASA Headquarters put FRC and Bell together to collaborate. The challenge was; to allow a pilot to make a vertical landing on earth in a simulated moon environment, one sixth of the earth's gravity and with totally transparent aerodynamic forces in a 'free flight' vehicle with no tether forces acting on it. Built of tubular aluminum like a giant four-legged bedstead, the vehicle was to simulate a lunar landing profile from around 1500 feet to the moon's surface. To do this, the LLRV had a General Electric CF-700-2V turbofan engine mounted vertically in gimbals, with 4200 pounds of thrust. The engine, using JP-4 fuel, got the vehicle up to the test altitude and was then throttled back to support five-sixths of the vehicle's weight, simulating the reduced gravity of the moon. Two hydrogen-peroxide lift rockets with thrust that could be varied from 100 to 500 pounds handled the LLRV's rate of descent and horizontal translations. Sixteen smaller hydrogen-peroxide rockets, mounted in pairs, gave the pilot control in pitch, yaw

  5. Research on windmill starting characteristics of MTE-D micro turbine engine

    Institute of Scientific and Technical Information of China (English)

    Xia Chen; Fu Xin; Wan Zhaoyun; Huang Guoping; Chen Jie

    2013-01-01

    Micro turbine engine (MTE) is an important kind of propulsion system for miniature unmanned aircraft or missiles,because of its better high-speed performance (than propeller propulsion) and higher propulsion efficiency (obviously than rockets).Windmill start is a common airstarting mode used in micro turbine engine.The windmill starting characteristics are important to the practical use of micro turbine engine.In this paper,the windmill starting characteristics research for a 12 cm diameter (MTE-D) micro turbine engine is carried out by experiment andnumerical simulation.The characteristic of rotor mechanical losses at low-speed condition is studied,and the engine common working line of windmill starting process is obtained.Based on the engine windmill characteristics,the propane ignition characteristics under different inflow conditions are researched,and the envelope of propane ignition and propane flameout is determined.The experimental research of fuel supply and ignition characteristics is completed,and the envelope of fuel supply and ignition is obtained.The windmill stage,propane ignition stage,fuel ignition stage and acceleration process from idling-speed to 80% full speed of MTE-D micro turbine engine is optimized,and the optimization windmill starting parameters are collected.The successful windmill starting experiment under this condition with engine speed up to 80% full speed indicates that these starting parameters are reasonable.All the starting parameters of MTE-D micro turbine engine obtained in this work are dimensionless parameters,and the conclusions obtained in this study have some reference to other micro turbine engines with the similar structural form and starting process.

  6. ROTAX航空发动机914UL/F概述%General Overviews of ROTAX Aircraft Engines 914UL/F

    Institute of Scientific and Technical Information of China (English)

    秦德; 马红玉

    2014-01-01

    主要介绍ROTAX航空发动机914UL/F基本参数、结构特点、性能和应用的领域,并对结构设计参数和强化指标进行了分析,从而将有助于这款活塞式航空发动机在国内轻型飞机上的应用。%This paper mainly introduces the basic parameters, characteristics of structure, performance and application fields of aircraft engine ROTAX 914UL/F. The structure design parameters and intensifying indexes are analyzed. It will be helpful to the application of this aircraft piston engine in the domestic light aircraft.

  7. Dynamically Scaled Modular Aircraft for Flight-Based Aviation Safety Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Area-I, Incorporated personnel have led the design, fabrication, and flight testing of twelve unmanned aircraft and one manned aircraft. Partnered with NASA and...

  8. Effect of structural flexibility on the design of vibration-isolating mounts for aircraft engines

    Science.gov (United States)

    Phillips, W. H.

    1984-01-01

    Previous analyses of the design of vibration-isolating mounts for a rear-mounted engine to decouple linear and rotational oscillations are extended to take into account flexibility of the engine-mount structure. Equations and curves are presented to allow the design of mount systems and to illustrate the results for a range of design conditions.

  9. Weibull-Based Design Methodology for Rotating Structures in Aircraft Engines

    Directory of Open Access Journals (Sweden)

    Erwin V. Zaretsky

    2003-01-01

    Full Text Available The NASA Energy-Efficient Engine (E3-Engine is used as the basis of a Weibull-based life and reliability analysis. Each component's life, and thus the engine's life, is defined by high-cycle fatigue or low-cycle fatigue. Knowing the cumulative life distribution of each of the components making up the engine as represented by a Weibull slope is a prerequisite to predicting the life and reliability of the entire engine. As the engine's Weibull slope increases, the predicted life decreases. The predicted engine lives L5 (95% probability of survival of approximately 17,000 and 32,000 hr do correlate with current engine-maintenance practices without and with refurbishment, respectively. The individual high-pressure turbine (HPT blade lives necessary to obtain a blade system life L0.1 (99.9% probability of survival of 9000 hr for Weibull slopes of 3, 6, and 9 are 47,391; 20,652; and 15,658 hr, respectively. For a design life of the HPT disks having probable points of failure equal to or greater than 36,000 hr at a probability of survival of 99.9%, the predicted disk system life L0.1 can vary from 9408 to 24,911 hr.

  10. Preliminary Axial Flow Turbine Design and Off-Design Performance Analysis Methods for Rotary Wing Aircraft Engines. Part 2; Applications

    Science.gov (United States)

    Chen, Shu-cheng, S.

    2009-01-01

    In this paper, preliminary studies on two turbine engine applications relevant to the tilt-rotor rotary wing aircraft are performed. The first case-study is the application of variable pitch turbine for the turbine performance improvement when operating at a substantially lower shaft speed. The calculations are made on the 75 percent speed and the 50 percent speed of operations. Our results indicate that with the use of the variable pitch turbines, a nominal (3 percent (probable) to 5 percent (hypothetical)) efficiency improvement at the 75 percent speed, and a notable (6 percent (probable) to 12 percent (hypothetical)) efficiency improvement at the 50 percent speed, without sacrificing the turbine power productions, are achievable if the technical difficulty of turning the turbine vanes and blades can be circumvented. The second casestudy is the contingency turbine power generation for the tilt-rotor aircraft in the One Engine Inoperative (OEI) scenario. For this study, calculations are performed on two promising methods: throttle push and steam injection. By isolating the power turbine and limiting its air mass flow rate to be no more than the air flow intake of the take-off operation, while increasing the turbine inlet total temperature (simulating the throttle push) or increasing the air-steam mixture flow rate (simulating the steam injection condition), our results show that an amount of 30 to 45 percent extra power, to the nominal take-off power, can be generated by either of the two methods. The methods of approach, the results, and discussions of these studies are presented in this paper.

  11. BEST: A Learner-Centered Workplace Literacy Partnership of the Vermont Institute for Self-Reliance and General Electric Aircraft Engines Rutland, VT. Final Performance Report.

    Science.gov (United States)

    Lashof, Judith R.

    The Vermont Institute for Self Reliance (VISR) conducted a Basic Educational Skills for Training (BEST) program, a national demonstration project in workplace literacy, from April 1990 to March 1992. BEST provided learner-centered, context-based literacy instruction onsite, on company time, at two General Electric (GE) Aircraft Engines Rutland…

  12. Enabling Electric Propulsion for Flight - Hybrid Electric Aircraft Research at AFRC

    Science.gov (United States)

    Clarke, Sean; Lin, Yohan; Kloesel, Kurt; Ginn, Starr

    2014-01-01

    Advances in electric machine efficiency and energy storage capability are enabling a new alternative to traditional propulsion systems for aircraft. This has already begun with several small concept and demonstration vehicles, and NASA projects this technology will be essential to meet energy and emissions goals for commercial aviation in the next 30 years. In order to raise the Technology Readiness Level of electric propulsion systems, practical integration and performance challenges will need to be identified and studied in the near-term so that larger, more advanced electric propulsion system testbeds can be designed and built. Researchers at NASA Armstrong Flight Research Center are building up a suite of test articles for the development, integration, and validation of these systems in a real world environment.

  13. Artificial Intelligence Research in Engineering at North Carolina State University

    OpenAIRE

    Rasdorf, William J.; Fisher, Edward L.

    1985-01-01

    This article presents a summary of ongoing, funded artificial intelligence research at North Carolina State University. The primary focus of the research is engineering aspects of artificial intelligence. These research efforts can be categorized into four main areas: engineering expert systems, generative database management systems, human-machine communication, and robotics and vision. Involved in the research are investigators from both the School of Engineering and the Department of Compu...

  14. Engineering Research Division publication report, calendar year 1980

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E.K.; Livingston, P.L.; Rae, D.C. (eds.)

    1980-06-01

    Each year the Engineering Research Division of the Electronics Engineering Department at Lawrence Livermore Laboratory has issued an internal report listing all formal publications produced by the Division during the calendar year. Abstracts of 1980 reports are presented.

  15. Engineering Research Division report on reports: calendar year 1979

    International Nuclear Information System (INIS)

    A bibliography of publications of members of the Engineering Research Division of the Electronics Engineering Department is presented for 1979. Abstracts for 148 publications are included, along with author and keywork indexes

  16. Engineering Research Division publication report, calendar year 1980

    International Nuclear Information System (INIS)

    Each year the Engineering Research Division of the Electronics Engineering Department at Lawrence Livermore Laboratory has issued an internal report listing all formal publications produced by the Division during the calendar year. Abstracts of 1980 reports are presented

  17. Engineering Research Division report on reports: calendar year 1979. [LLL

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C.L.; Johnston, S.J. (eds.)

    1980-03-01

    A bibliography of publications of members of the Engineering Research Division of the Electronics Engineering Department is presented for 1979. Abstracts for 148 publications are included, along with author and keywork indexes. (RWR)

  18. Blade loss transient dynamics analysis, volume 1. Task 1: Survey and perspective. [aircraft gas turbine engines

    Science.gov (United States)

    Gallardo, V. C.; Gaffney, E. F.; Bach, L. J.; Stallone, M. J.

    1981-01-01

    An analytical technique was developed to predict the behavior of a rotor system subjected to sudden unbalance. The technique is implemented in the Turbine Engine Transient Rotor Analysis (TETRA) computer program using the component element method. The analysis was particularly aimed toward blade-loss phenomena in gas turbine engines. A dual-rotor, casing, and pylon structure can be modeled by the computer program. Blade tip rubs, Coriolis forces, and mechanical clearances are included. The analytical system was verified by modeling and simulating actual test conditions for a rig test as well as a full-engine, blade-release demonstration.

  19. Aircraft Recirculation Filter for Air-Quality and Incident Assessment

    OpenAIRE

    Eckels, Steven J.; Jones, Byron; Mann, Garrett; Mohan, Krishnan R.; Weisel, Clifford P.

    2014-01-01

    The current research examines the possibility of using recirculation filters from aircraft to document the nature of air-quality incidents on aircraft. These filters are highly effective at collecting solid and liquid particulates. Identification of engine oil contaminants arriving through the bleed air system on the filter was chosen as the initial focus. A two-step study was undertaken. First, a compressor/bleed air simulator was developed to simulate an engine oil leak, and samples were an...

  20. CV-990 Landing Systems Research Aircraft (LSRA) flight #145 drilling of shuttle tire using Tire Assa

    Science.gov (United States)

    1995-01-01

    Created from a 1/16th model of a German World War II tank, the TAV (Tire Assault Vehicle) was an important safety feature for the Convair 990 Landing System Research Aircraft, which tested space shuttle tires. It was imperative to know the extreme conditions the shuttle tires could tolerate at landing without putting the shuttle and its crew at risk. In addition, the CV990 was able to land repeatedly to test the tires. The TAV was built from a kit and modified into a radio controlled, video-equipped machine to drill holes in aircraft test tires that were in imminent danger of exploding because of one or more conditions: high air pressure, high temperatures, and cord wear. An exploding test tire releases energy equivalent to two and one-half sticks of dynamite and can cause severe injuries to anyone within 50 ft. of the explosion, as well as ear injury - possibly permanent hearing loss - to anyone within 100 ft. The degree of danger is also determined by the temperature pressure and cord wear of a test tire. The TAV was developed by David Carrott, a PRC employee under contract to NASA.

  1. Security Research on Engineering Database System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Engine engineering database system is an oriented C AD applied database management system that has the capability managing distributed data. The paper discusses the security issue of the engine engineering database management system (EDBMS). Through studying and analyzing the database security, to draw a series of securi ty rules, which reach B1, level security standard. Which includes discretionary access control (DAC), mandatory access control (MAC) and audit. The EDBMS implem ents functions of DAC, ...

  2. Biomedical engineering research at DOE national labs

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-03-01

    Biomedical Engineering is the application of principles of physics, chemistry, nd engineering to problems of human health. The National Laboratories of the U.S. Department of Energy have been leaders in this scientific field since 1947. This inventory of their biomedical engineering projects was compiled in January 1999.

  3. UPS fellowships support creative engineering research

    OpenAIRE

    Crumbley, Liz

    2007-01-01

    A new $40,000 grant marks the 11th anniversary of support from the United Parcel Service (UPS) Foundation for doctoral fellowships in the Human Factors and Safety Engineering Graduate Program in the Grado Department of Industrial and Systems Engineering (ISE) in the College of Engineering.

  4. The Atlantic rift in Engineering Education Research Methodology

    DEFF Research Database (Denmark)

    de Graaff, Erik

    2015-01-01

    In Europe educational research branched off from social sciences during the sixties of the last century. Combining theories and methods from pedagogy, sociology and psychology researchers explored the different fields of education, ranging from kindergarten till higher education including...... engineering. A revival of engineering education research started in the USA around the turn of the century. Building on the concept of ‘scholarship of teaching’, engineers were challenged to investigate their own role as educators. Since these researchers have their academic background mostly in engineering...... and science, they tend to aim for ‘rigorous research’ according to the natural sciences. Worldwide the engineering education community has recognized the need to blend both the social sciences research approach and rigorous research. This paper explores the variation in research methods used by researchers...

  5. Extending Engineering Practice Research with Shared Qualitative Data

    Science.gov (United States)

    Trevelyan, James

    2016-01-01

    Research on engineering practice is scarce and sharing of qualitative research data can reduce the effort required for an aspiring researcher to obtain enough data from engineering workplaces to draw generalizable conclusions, both qualitative and quantitative. This paper describes how a large shareable qualitative data set on engineering…

  6. 76 FR 44648 - Research, Engineering and Development Advisory Committee

    Science.gov (United States)

    2011-07-26

    ..., DC on July 14, 2011. Paul Fontaine, Director (A), Research & Technology Development. BILLING CODE... Federal Aviation Administration Research, Engineering and Development Advisory Committee Pursuant to... given of a meeting of the FAA Research, Engineering and Development (R,E&D) Advisory Committee....

  7. 76 FR 12404 - Research, Engineering and Development Advisory Committee

    Science.gov (United States)

    2011-03-07

    ..., DC, on February 24, 2011. Paul Fontaine, Director (A), Research & Technology Development. BILLING... Federal Aviation Administration Research, Engineering and Development Advisory Committee Pursuant to... given of a meeting of the FAA Research, Engineering and Development (R,E&D) Advisory Committee....

  8. Sampling and analysis of aircraft engine cold start particles and demonstration of an electrostatic personal particle sampler.

    Science.gov (United States)

    Armendariz, Alfredo; Leith, David; Boundy, Maryanne; Goodman, Randall; Smith, Les; Carlton, Gary

    2003-01-01

    Aircraft engines emit an aerosol plume during startup in extremely cold weather that can drift into areas occupied by flightline ground crews. This study tested a personal sampler used to assess exposure to particles in the plume under challenging field conditions. Area and personal samples were taken at two U.S. Air Force (USAF) flightlines during the winter months. Small tube-and-wire electrostatic precipitators (ESPs) were mounted on a stationary stand positioned behind the engines to sample the exhaust. Other ESPs were worn by ground crews to sample breathing zone concentrations. In addition, an aerodynamic particle sizer 3320 (APS) was used to determine the size distribution of the particles. Samples collected with the ESP were solvent extracted and analyzed with gas chromatography-mass spectrometry. Results indicated that the plume consisted of up to 75 mg/m(3) of unburned jet fuel particles. The APS showed that nearly the entire particle mass was respirable, because the plumes had mass median diameters less than 2 micro m. These tests demonstrated that the ESP could be used at cold USAF flightlines to perform exposure assessments to the cold start particles.

  9. Engineering education research in European Journal of Engineering Education and Journal of Engineering Education: citation and reference discipline analysis

    Science.gov (United States)

    Wankat, Phillip C.; Williams, Bill; Neto, Pedro

    2014-01-01

    The authors, citations and content of European Journal of Engineering Education (EJEE) and Journal of Engineering Education (JEE) in 1973 (JEE, 1975 EJEE), 1983, 1993, 2003, and available 2013 issues were analysed. Both journals transitioned from house organs to become engineering education research (EER) journals, although JEE transitioned first. In this process the number of citations rose, particularly of education and psychology sources; the percentage of research articles increased markedly as did the number of reference disciplines. The number of papers per issue, the number of single author papers, and the citations of science and engineering sources decreased. EJEE has a very broad geographic spread of authors while JEE authors are mainly US based. A 'silo' mentality where general engineering education researchers do not communicate with EER researchers in different engineering disciplines is evident. There is some danger that EER may develop into a silo that does not communicate with technically oriented engineering professors.

  10. Application of modern control design methodology to oblique wing research aircraft

    Science.gov (United States)

    Vincent, James H.

    1991-01-01

    A Linear Quadratic Regulator synthesis technique was used to design an explicit model following control system for the Oblique Wing Research Aircraft (OWRA). The forward path model (Maneuver Command Generator) was designed to incorporate the desired flying qualities and response decoupling. The LQR synthesis was based on the use of generalized controls, and it was structured to provide a proportional/integral error regulator with feedforward compensation. An unexpected consequence of this design approach was the ability to decouple the control synthesis into separate longitudinal and lateral directional designs. Longitudinal and lateral directional control laws were generated for each of the nine design flight conditions, and gain scheduling requirements were addressed. A fully coupled 6 degree of freedom open loop model of the OWRA along with the longitudinal and lateral directional control laws was used to assess the closed loop performance of the design. Evaluations were performed for each of the nine design flight conditions.

  11. Aircraft Noise Prediction Program (ANOPP) Fan Noise Prediction for Small Engines

    Science.gov (United States)

    Hough, Joe W.; Weir, Donald S.

    1996-01-01

    The Fan Noise Module of ANOPP is used to predict the broadband noise and pure tones for axial flow compressors or fans. The module, based on the method developed by M. F. Heidmann, uses empirical functions to predict fan noise spectra as a function of frequency and polar directivity. Previous studies have determined the need to modify the module to better correlate measurements of fan noise from engines in the 3000- to 6000-pound thrust class. Additional measurements made by AlliedSignal have confirmed the need to revise the ANOPP fan noise method for smaller engines. This report describes the revisions to the fan noise method which have been verified with measured data from three separate AlliedSignal fan engines. Comparisons of the revised prediction show a significant improvement in overall and spectral noise predictions.

  12. Development and Deployment of an Aerospace Recommended Practice (ARP) Compliant Measurement System for nvPM Certification Measurements of Aircraft Engines - Current Status.

    Science.gov (United States)

    Whitefield, P. D.; Hagen, D. E.; Lobo, P.; Miake-Lye, R. C.

    2015-12-01

    The Society of Automotive Engineers (SAE) Aircraft Exhaust Emissions Measurement Committee (E-31) has published an Aerospace Information Report (AIR) 6241 detailing the sampling system for the measurement of non-volatile particulate matter (nvPM) from aircraft engines (SAE 2013). The system is designed to operate in parallel with existing International Civil Aviation Organization (ICAO) Annex 16 compliant combustion gas sampling systems used for emissions certification from aircraft engines captured by conventional (Annex 16) gas sampling rakes (ICAO, 2008). The SAE E-31 committee is also working to ballot an Aerospace Recommended Practice (ARP) that will provide the methodology and system specification to measure nvPM from aircraft engines. The ARP is currently in preparation and is expected to be ready for ballot in 2015. A prototype AIR-compliant nvPM measurement system - The North American Reference System (NARS) has been built and evaluated at the MSTCOE under the joint sponsorship of the FAA, EPA and Transport Canada. It has been used to validate the performance characteristics of OEM AIR-compliant systems and is being used in engine certification type testing at OEM facilities to obtain data from a set of representative engines in the fleet. The data collected during these tests will be used by ICAO/CAEP/WG3/PMTG to develop a metric on which on the regulation for nvPM emissions will be based. This paper will review the salient features of the NARS including: (1) emissions sample transport from probe tip to the key diagnostic tools, (2) the mass and number-based diagnostic tools for nvPM mass and number concentration measurement and (3) methods employed to assess the extent of nvPM loss throughout the sampling system. This paper will conclude with a discussion of the recent results from inter-comparison studies conducted with other US - based systems that gives credence to the ARP's readiness for ballot.

  13. Engineering Research and Technology Development on the Space Station

    Science.gov (United States)

    1996-01-01

    This report identifies and assesses the kinds of engineering research and technology development applicable to national, NASA, and commercial needs that can appropriately be performed on the space station. It also identifies the types of instrumentation that should be included in the space station design to support engineering research. The report contains a preliminary assessment of the potential benefits to U.S. competitiveness of engineering research that might be conducted on a space station, reviews NASA's current approach to jointly funded or cooperative experiments, and suggests modifications that might facilitate university and industry participation in engineering research and technology development activities on the space station.

  14. NARVAL North - Remote Sensing of Postfrontal Convective Clouds and Precipitation over the North Atlantic with the Research Aircraft HALO

    Science.gov (United States)

    Klepp, Christian; Ament, Felix; Bakan, Stephan; Crewell, Susanne; Hagen, Martin; Hirsch, Lutz; Jansen, Friedhelm; Konow, Heike; Mech, Mario; Pfeilsticker, Klaus; Schäfler, Andreas; Stevens, Bjorn

    2014-05-01

    The new German research aircraft HALO (High Altitude and Long Range Research Aircraft) became recently available for measurement flights in atmospheric research. It's capacity of measuring from a high altitude vertical profiles of all components of atmospheric water - like vapor, liquid and ice, in both cloud and precipitation forms, as well as the aerosol particles upon which cloud droplets form - makes it a unique research platform. The aircraft, equipped with advanced radiometers, radar and lidar technology, the HALO Microwave Package (HAMP), is an initiative by German climate and environmental research institutions and is operated by the German Aerospace Center (DLR). One of the first major missions to exploit the capabilities of HALO was conducted for the NARVAL project (Next-generation Aircraft Remote-Sensing for Validation Studies) during January 2014. After studying subtropical clouds one month before in the first NARVAL phase, the interest of NARVAL North focused on the study of cold air convection and precipitation in the form of rain and snow. Based at Keflavik airport (Iceland), several flights were conducted to examine the specific small-scale precipitation structures behind the backsides of cold fronts over the North Atlantic. This should help to narrow the gap in the understanding of substantial differences between satellite observations and model calculations in such situations. First data analysis of these measurements indicate promising results. The poster will describe the HALO instrument packages as well as the collected observations during the campaign and will present preliminary scientific findings.

  15. Aircraft Nuclear Propulsion Project Quarterly Progress Report for Period Ending December 31, 1956

    Energy Technology Data Exchange (ETDEWEB)

    NA, NA [ORNL

    1957-03-12

    This quarterly progress report of the Aircraft Nuclear Propulsion Project at ORNL records the technical progress of research on circulating-fuel reactors and other ANP research at the Laboratory. The report is divided into five major parts: 1) Aircraft Reactor Engineering, 2) Chemistry, and 3) Metallurgy, 4) Heat Transfer and Physical Properties, Radiation Damage, and Fuel Recovery and Reprocessing, and 5) Reactor Shielding.

  16. Self-organizing radial basis function networks for adaptive flight control and aircraft engine state estimation

    Science.gov (United States)

    Shankar, Praveen

    The performance of nonlinear control algorithms such as feedback linearization and dynamic inversion is heavily dependent on the fidelity of the dynamic model being inverted. Incomplete or incorrect knowledge of the dynamics results in reduced performance and may lead to instability. Augmenting the baseline controller with approximators which utilize a parametrization structure that is adapted online reduces the effect of this error between the design model and actual dynamics. However, currently existing parameterizations employ a fixed set of basis functions that do not guarantee arbitrary tracking error performance. To address this problem, we develop a self-organizing parametrization structure that is proven to be stable and can guarantee arbitrary tracking error performance. The training algorithm to grow the network and adapt the parameters is derived from Lyapunov theory. In addition to growing the network of basis functions, a pruning strategy is incorporated to keep the size of the network as small as possible. This algorithm is implemented on a high performance flight vehicle such as F-15 military aircraft. The baseline dynamic inversion controller is augmented with a Self-Organizing Radial Basis Function Network (SORBFN) to minimize the effect of the inversion error which may occur due to imperfect modeling, approximate inversion or sudden changes in aircraft dynamics. The dynamic inversion controller is simulated for different situations including control surface failures, modeling errors and external disturbances with and without the adaptive network. A performance measure of maximum tracking error is specified for both the controllers a priori. Excellent tracking error minimization to a pre-specified level using the adaptive approximation based controller was achieved while the baseline dynamic inversion controller failed to meet this performance specification. The performance of the SORBFN based controller is also compared to a fixed RBF network

  17. Generation After Next Propulsor Research: Robust Design for Embedded Engine Systems

    Science.gov (United States)

    Arend, David J.; Tillman, Gregory; O'Brien, Walter F.

    2012-01-01

    The National Aeronautics and Space Administration, United Technologies Research Center and Virginia Polytechnic and State University have contracted to pursue multi-disciplinary research into boundary layer ingesting (BLI) propulsors for generation after next environmentally responsible subsonic fixed wing aircraft. This Robust Design for Embedded Engine Systems project first conducted a high-level vehicle system study based on a large commercial transport class hybrid wing body aircraft, which determined that a 3 to 5 percent reduction in fuel burn could be achieved over a 7,500 nanometer mission. Both pylon-mounted baseline and BLI propulsion systems were based on a low-pressure-ratio fan (1.35) in an ultra-high-bypass ratio engine (16), consistent with the next generation of advanced commercial turbofans. An optimized, coupled BLI inlet and fan system was subsequently designed to achieve performance targets identified in the system study. The resulting system possesses an inlet with total pressure losses less than 0.5%, and a fan stage with an efficiency debit of less than 1.5 percent relative to the pylon-mounted, clean-inflow baseline. The subject research project has identified tools and methodologies necessary for the design of next-generation, highly-airframe-integrated propulsion systems. These tools will be validated in future large-scale testing of the BLI inlet / fan system in NASA's 8 foot x 6 foot transonic wind tunnel. In addition, fan unsteady response to screen-generated total pressure distortion is being characterized experimentally in a JT15D engine test rig. These data will document engine sensitivities to distortion magnitude and spatial distribution, providing early insight into key physical processes that will control BLI propulsor design.

  18. Engineering Research, Development and Technology, FY95: Thrust area report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

  19. The Use of Web Search Engines in Information Science Research.

    Science.gov (United States)

    Bar-Ilan, Judit

    2004-01-01

    Reviews the literature on the use of Web search engines in information science research, including: ways users interact with Web search engines; social aspects of searching; structure and dynamic nature of the Web; link analysis; other bibliometric applications; characterizing information on the Web; search engine evaluation and improvement; and…

  20. Delivering better power: the role of simulation in reducing the environmental impact of aircraft engines.

    Science.gov (United States)

    Menzies, Kevin

    2014-08-13

    The growth in simulation capability over the past 20 years has led to remarkable changes in the design process for gas turbines. The availability of relatively cheap computational power coupled to improvements in numerical methods and physical modelling in simulation codes have enabled the development of aircraft propulsion systems that are more powerful and yet more efficient than ever before. However, the design challenges are correspondingly greater, especially to reduce environmental impact. The simulation requirements to achieve a reduced environmental impact are described along with the implications of continued growth in available computational power. It is concluded that achieving the environmental goals will demand large-scale multi-disciplinary simulations requiring significantly increased computational power, to enable optimization of the airframe and propulsion system over the entire operational envelope. However even with massive parallelization, the limits imposed by communications latency will constrain the time required to achieve a solution, and therefore the position of such large-scale calculations in the industrial design process.

  1. NASA/USRA high altitude research aircraft. Gryphon: Soar like an eagle with the roar of a lion

    Science.gov (United States)

    Rivera, Jose; Nunes, Anne; Mcray, Mike; Wong, Walter; Ong, Audrey; Coble, Scott

    1991-01-01

    At the equator, the ozone layer ranges from 65,000 to 130,000+ feet. This is beyond the capabilities of the ER-2, which is NASA's current high altitude reconnaissance aircraft. The Universities Space Research Association, in cooperation with NASA, is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozoned layer at the equator. This aircraft must be able to satisfy four mission profiles. Mission one is a polar mission which ranges from Chile to the South Pole and back to Chile, a total range of 6000 n. mi. at 100,000 feet with a 2500 lb. payload. The second mission is also a polar mission with a decreased altitude of 70,000 feet and an increased payload of 4000 lb. For the third mission, the aircraft will take-off at NASA Ames, cruise at 100,000 feet carrying a 2500 lb. payload, and land in Puerto Montt, Chile. The final mission requires the aircraft to take-off at NASA Ames, cruise at 100,000 feet with a 1000 lb. payload, make an excursion to 120,000 feet, and land at Howard AFB, Panama. All three missions require that a subsonic Mach number be maintained due to constraints imposed by the air sampling equipment. The aircraft need not be manned for all four missions. Three aircraft configurations were determined to be the most suitable for meeting the above requirements. The performance of each configuration is analyzed to investigate the feasibility of the project requirements. In the event that a requirement can not be obtained within the given constraints, recommendations for proposal modifications are given.

  2. International Conference on Research and Innovations in Mechanical Engineering

    CERN Document Server

    Singh, Paramjit; Singh, Harwinder; Brar, Gurinder

    2014-01-01

    This book comprises the proceedings of International Conference on Research and Innovations in Mechanical Engineering (ICRIME 2013) organized by Guru Nanak Dev Engineering College, Ludhiana with support from AICTE, TEQIP, DST and PTU, Jalandhar. This international conference served as a premier forum for communication of new advances and research results in the fields of mechanical engineering. The proceedings reflect the conference’s emphasis on strong methodological approaches and focus on applications within the domain of mechanical engineering. The contents of this volume aim to highlight new theoretical and experimental findings in the fields of mechanical engineering and closely related fields, including interdisciplinary fields such as robotics and mechatronics.

  3. Modern optical diagnostics in engine research

    Science.gov (United States)

    Leipertz, A.; Wensing, M.

    2007-10-01

    Different optical diagnistic techniques are used to gain insight into the single steps forming the functioning chain of the engine combustion process and the complex interplay between these single steps. Examples are given for the application of Mie scattering, laser-induced fluorescence, Raman scattering, CARS and laser-induced incandescence to study diesel engine, SI engine and HCCI combustion processes. The careful adaptation of each optical tool to one part of the engine process makes it possible to get valuable information with minimum change of the process investigated. The paper demonstrates that in addition to conventional engine measurement techniques, a number of different optical techniques must be applied -- and sometimes simultaneously -- to successfully determine the critical parameters of the processes and to investigate their influences on the performance and the quality of real engine combustion.

  4. Multi-Domain Modeling and Simulation of an Aircraft System for Advanced Vehicle-Level Reasoning Research and Development

    Directory of Open Access Journals (Sweden)

    : F. Khan

    2014-05-01

    Full Text Available In this paper, we describe a simulation based health monitoring system test-bed for aircraft systems. The purpose of the test-bed is to provide a technology neutral basis for implementing and evaluation of reasoning systems on vehicle level and software architecture in support of the safety and maintenance process. This simulation test-bed will provide the sub-system level results and data which can be fed to the VLRS to generate vehicle level reasoning to achieve broader level diagnoses. This paper describes real-time system architecture and concept of operations for the aircraft major sub-systems. The four main components in the real-time test-bed are the aircraft sub-systems (e.g. battery, fuel, engine, generator, heating and lighting system simulation model, fault insertion unit, health monitoring data processing and user interface. In this paper, we adopted a component based modelling paradigm for the implementation of the virtual aircraft systems. All of the fault injections are currently implemented via software. The fault insertion unit allows for the repeatable injection of faults into the system. The simulation test-bed has been tested with many different faults which were undetected on system level to process and detect on the vehicle level reasoning. This article also shows how one system fault can affect the overall health of the vehicle.

  5. Nonintrusive optical measurements of aircraft engine exhaust emissions and comparison with standard intrusive techniques.

    Science.gov (United States)

    Schäfer, K; Heland, J; Lister, D H; Wilson, C W; Howes, R J; Falk, R S; Lindermeir, E; Birk, M; Wagner, G; Haschberger, P; Bernard, M; Legras, O; Wiesen, P; Kurtenbach, R; Brockmann, K J; Kriesche, V; Hilton, M; Bishop, G; Clarke, R; Workman, J; Caola, M; Geatches, R; Burrows, R; Black, J D; Hervé, P; Vally, J

    2000-01-20

    Nonintrusive systems for the measurement on test rigs of aeroengine exhaust emissions required for engine certification (CO, NO(x), total unburned hydrocarbon, and smoke), together with CO(2) and temperature have been developed. These results have been compared with current certified intrusive measurements on an engine test. A spectroscopic database and data-analysis software has been developed to enable Fourier-transform Infrared measurement of concentrations of molecular species. CO(2), CO, and NO data showed agreement with intrusive techniques of approximately ?30%. A narrow-band spectroscopic device was used to measure CO(2) (with deviations of less than ?10% from the intrusive measurement), whereas laser-induced incandescence was used to measure particles. Future improvements to allow for the commercial use of the nonintrusive systems have been identified and the methods are applicable to any measurement of combustion emissions.

  6. A research agenda for academic petroleum engineering programs. [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Calhoun, J.C. Jr.

    1990-03-31

    The development of a research agenda should be a direct way of portraying the scope of petroleum engineering, of identifying the critical technological issues faced by the profession,of elucidating the gaps between the existing research resources and the needs. and of outlining a program of research through which the petroleum engineering departments can be collectively of maximum service. Such an agenda would be of value to the profession of petroleum engineering, to industry and to government agencies, as well as to the faculty and students of the petroleum engineering departments. The purposes of the activity that led to this report, therefore, were to develop a statement to serve as a beginning research agenda for the petroleum engineering academic community; to bring together representatives of the petroleum engineering academic community to recognize the importance of developing a consensus posture with respect to research; and to provide a document that will assist in portraying to industry, government agencies and others the problems and needs of the petroleum engineering departments for conducting research. Contents of this report include; introduction; the background; the scope of petroleum engineering research; priority research topics and technological issues; non-technological research issues; and conclusions and recommendations.

  7. A research agenda for academic petroleum engineering programs

    Energy Technology Data Exchange (ETDEWEB)

    Calhoun, J.C. Jr.

    1990-03-31

    The development of a research agenda should be a direct way of portraying the scope of petroleum engineering, of identifying the critical technological issues faced by the profession,of elucidating the gaps between the existing research resources and the needs. and of outlining a program of research through which the petroleum engineering departments can be collectively of maximum service. Such an agenda would be of value to the profession of petroleum engineering, to industry and to government agencies, as well as to the faculty and students of the petroleum engineering departments. The purposes of the activity that led to this report, therefore, were to develop a statement to serve as a beginning research agenda for the petroleum engineering academic community; to bring together representatives of the petroleum engineering academic community to recognize the importance of developing a consensus posture with respect to research; and to provide a document that will assist in portraying to industry, government agencies and others the problems and needs of the petroleum engineering departments for conducting research. Contents of this report include; introduction; the background; the scope of petroleum engineering research; priority research topics and technological issues; non-technological research issues; and conclusions and recommendations.

  8. Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability

    International Nuclear Information System (INIS)

    The present paper describes a hybrid PSO–SVM-based model for the prediction of the remaining useful life of aircraft engines. The proposed hybrid model combines support vector machines (SVMs), which have been successfully adopted for regression problems, with the particle swarm optimization (PSO) technique. This optimization technique involves kernel parameter setting in the SVM training procedure, which significantly influences the regression accuracy. However, its use in reliability applications has not been yet widely explored. Bearing this in mind, remaining useful life values have been predicted here by using the hybrid PSO–SVM-based model from the remaining measured parameters (input variables) for aircraft engines with success. A coefficient of determination equal to 0.9034 was obtained when this hybrid PSO–RBF–SVM-based model was applied to experimental data. The agreement of this model with experimental data confirmed its good performance. One of the main advantages of this predictive model is that it does not require information about the previous operation states of the engine. Finally, the main conclusions of this study are exposed. - Highlights: • A hybrid PSO–SVM-based model is built as a predictive model of the RUL values for aircraft engines. • The remaining physical–chemical variables in this process are studied in depth. • The obtained regression accuracy of our method is about 95%. • The results show that PSO–SVM-based model can assist in the diagnosis of the RUL values with accuracy

  9. Electron microscopic study of soot particulate matter emissions from aircraft turbine engines.

    Science.gov (United States)

    Liati, Anthi; Brem, Benjamin T; Durdina, Lukas; Vögtli, Melanie; Dasilva, Yadira Arroyo Rojas; Eggenschwiler, Panayotis Dimopoulos; Wang, Jing

    2014-09-16

    The microscopic characteristics of soot particulate matter (PM) in gas turbine exhaust are critical for an accurate assessment of the potential impacts of the aviation industry on the environment and human health. The morphology and internal structure of soot particles emitted from a CFM 56-7B26/3 turbofan engine were analyzed in an electron microscopic study, down to the nanoscale, for ∼ 100%, ∼ 65%, and ∼ 7% static engine thrust as a proxy for takeoff, cruising, and taxiing, respectively. Sampling was performed directly on transmission electron microscopy (TEM) grids with a state-of-the-art sampling system designed for nonvolatile particulate matter. The electron microscopy results reveal that ∼ 100% thrust produces the highest amount of soot, the highest soot particle volume, and the largest and most crystalline primary soot particles with the lowest oxidative reactivity. The opposite is the case for soot produced during taxiing, where primary soot particles are smallest and most reactive and the soot amount and volume are lowest. The microscopic characteristics of cruising condition soot resemble the ones of the ∼ 100% thrust conditions, but they are more moderate. Real time online measurements of number and mass concentration show also a clear correlation with engine thrust level, comparable with the TEM study. The results of the present work, in particular the small size of primary soot particles present in the exhaust (modes of 24, 20, and 13 nm in diameter for ∼ 100%, ∼ 65% and ∼ 7% engine thrust, respectively) could be a concern for human health and the environment and merit further study. This work further emphasizes the significance of the detailed morphological characteristics of soot for assessing environmental impacts.

  10. Mechanical Behaviour of Inconel 718 Thin-Walled Laser Welded Components for Aircraft Engines

    OpenAIRE

    Enrico Lertora; Chiara Mandolfino; Carla Gambaro

    2014-01-01

    Nickel alloys are very important in many aerospace applications, especially to manufacture gas turbines and aero engine components, where high strength and temperature resistance are necessary. These kinds of alloys have to be welded with high energy density processes, in order to preserve their high mechanical properties. In this work, CO2 laser overlap joints between Inconel 718 sheets of limited thickness in the absence of postweld heat treatment were made. The main application of this kin...

  11. A compact, fast UV photometer for measurement of ozone from research aircraft

    Directory of Open Access Journals (Sweden)

    R. S. Gao

    2012-09-01

    Full Text Available In situ measurements of atmospheric ozone (O3 are performed routinely from many research aircraft platforms. The most common technique depends on the strong absorption of ultraviolet (UV light by ozone. As atmospheric science advances to the widespread use of unmanned aircraft systems (UASs, there is an increasing requirement for minimizing instrument space, weight, and power while maintaining instrument accuracy, precision and time response. The design and use of a new, dual-beam, UV photometer instrument for in situ O3 measurements is described. A polarization optical-isolator configuration is utilized to fold the UV beam inside the absorption cells, yielding a 60-cm absorption length with a 30-cm cell. The instrument has a fast sampling rate (2 Hz at <200 hPa, 1 Hz at 200–500 hPa, and 0.5 Hz at ≥ 500 hPa, high accuracy (3% excluding operation in the 300–450 hPa range, where the accuracy may be degraded to about 5%, and excellent precision (1.1 × 1010 O3 molecules cm−3 at 2 Hz, which corresponds to 3.0 ppb at 200 K and 100 hPa, or 0.41 ppb at 273 K and 1013 hPa. The size (36 l, weight (18 kg, and power (50–200 W make the instrument suitable for many UASs and other airborne platforms. Inlet and exhaust configurations are also described for ambient sampling in the troposphere and lower stratosphere (1000–50 hPa that control the sample flow rate to maximize time response while minimizing loss of precision due to induced turbulence in the sample cell. In-flight and laboratory intercomparisons with existing O3 instruments show that measurement accuracy is maintained in flight.

  12. Development of a Technique and Method of Testing Aircraft Models with Turboprop Engine Simulators in a Small-scale Wind Tunnel - Results of Tests

    Directory of Open Access Journals (Sweden)

    A. V. Petrov

    2004-01-01

    Full Text Available This report presents the results of experimental investigations into the interaction between the propellers (Ps and the airframe of a twin-engine, twin-boom light transport aircraft with a Π-shaped tail. An analysis was performed of the forces and moments acting on the aircraft with rotating Ps. The main features of the methodology for windtunnel testing of an aircraft model with running Ps in TsAGI’s T-102 wind tunnel are outlined.The effect of 6-blade Ps slipstreams on the longitudinal and lateral aerodynamic characteristics as well as the effectiveness of the control surfaces was studied on the aircraft model in cruise and takeoff/landing configurations. The tests were conducted at flow velocities of V∞ = 20 to 50 m/s in the ranges of angles of attack α =  -6 to 20 deg, sideslip angles of β = -16 to 16 deg and blade loading coefficient of B 0 to 2.8. For the aircraft of unusual layout studied, an increase in blowing intensity is shown to result in decreasing longitudinal static stability and significant asymmetry of the directional stability characteristics associated with the interaction between the Ps slipstreams of the same (left-hand rotation and the empennage.

  13. Cost/benefit studies of advanced materials technologies for future aircraft turbine engines: Materials for advanced turbine engines

    Science.gov (United States)

    Stearns, M.; Wilbers, L.

    1982-01-01

    Cost benefit studies were conducted on six advanced materials and processes technologies applicable to commercial engines planned for production in the 1985 to 1990 time frame. These technologies consisted of thermal barrier coatings for combustor and high pressure turbine airfoils, directionally solidified eutectic high pressure turbine blades, (both cast and fabricated), and mixers, tail cones, and piping made of titanium-aluminum alloys. A fabricated titanium fan blisk, an advanced turbine disk alloy with improved low cycle fatigue life, and a long-life high pressure turbine blade abrasive tip and ceramic shroud system were also analyzed. Technologies showing considerable promise as to benefits, low development costs, and high probability of success were thermal barrier coating, directionally solidified eutectic turbine blades, and abrasive-tip blades/ceramic-shroud turbine systems.

  14. Experimental research on the Stirling engine

    Science.gov (United States)

    Ishizaki, Y.; Tani, Y.; Haramura, N.

    1982-01-01

    Experiments on Stirling engines of the 50 KW class were conducted to clarify the characteristics of the engine and its problems. The problems involve durability of the high temperature heat exchanger which is exposed to high flame temperatures above 1600 C, thermal distortion and high temperature corrosion of the devices near combustion, and of the preheater.

  15. Process Systems Engineering Education: Learning by Research

    Science.gov (United States)

    Abbas, A.; Alhammadi, H. Y.; Romagnoli, J. A.

    2009-01-01

    In this paper, we discuss our approach in teaching the final-year course Process Systems Engineering. Students are given ownership of the course by transferring to them the responsibility of learning. A project-based group environment stimulates learning while solving a real engineering problem. We discuss postgraduate student involvement and how…

  16. Women, Engineering and Research: Providing Choice and Balance

    OpenAIRE

    Chan, Cecilia; Murphy, Mike

    2006-01-01

    Research cannot reach its full potential when half the population is excluded from its activities”1. Women researchers in engineering remain a minority in both Higher Education and industry in Ireland. Recent statistics of women graduating in science and engineering indicated an increase (a slow increase) but the numbers moving through to completion of PhD and careers in academia or industry remain quite low. Statistics on women in professorial and senior positions within the engineering sec...

  17. Analysis of the engine fragment threat and the crush environment for small packages carried on U.S. commercial jet aircraft

    International Nuclear Information System (INIS)

    The results of two separate analyses are reported. The engine fragment analysis determined the probability of a small package being in the path of a fragment from a failure in a gas turbine engine. The calculated values show that, depending on aircraft type, the incidence rate varies by approximately an order of magnitude from a high of about once per 5 million flights to a low of nearly once every 40 million package flights for a flight of five hours' duration. The analysis of the crush environment consisted of an examination of two principal crush modes, i.e., vertical and longitudinal crush. The vertical crush mode was examined by formulating a structural model of the cargo deck beams of the aircraft. The longitudinal crush mode was studied by using dynamic models of the aircraft cargo and the radioactive material package (RAM). The results of the analysis of these crush modes provided the basis for the formulation of a 310 kN/(70,000 lb) crush test to simulate vertical crush. The longitudinal crush analysis indicated that it was possible, under infrequently occurring conditions, to produce extremely large crush forces and hence it was recommended that RAM packages be located in the aft end of aircraft cargo compartments to minimize the effects of longitudinal crush

  18. Users Guide for NASA Lewis Research Center DC-9 Reduced-Gravity Aircraft Program

    Science.gov (United States)

    Neumann, Eric S.; Withrow, James P.; Yaniec, John S.

    1996-01-01

    The document provides guidelines and information for users of the DC-9 Reduced-Gravity Aircraft Program. It describes the facilities, requirements for test personnel, equipment design and installation, mission preparation, and in-flight procedures. Those who have used the KC-135 reduced-gravity aircraft will recognize that many of the procedures and guidelines are the same.

  19. Future development programs. [for emission reduction and production of aircraft engines

    Science.gov (United States)

    Waters, L.

    1976-01-01

    A company program was planned which has a main drive to develop those emission reduction concepts that have the promise of earliest success. These programs were proposed in an attempt to enhance existing engine systems, exploiting their potential for emission reduction as far as is compatible with retaining the well established features in them that are well understood and in current production. The intended programs identified in the area of new concepts were: (1) upgrading the TCM fuel system, (2) evaluation of accelerator pump, (3) reduced cooling requirement, and (4) variable spark timing.

  20. Sound Generation in the Presence of Moving Surfaces with Application to Internally Generated Aircraft Engine Noise

    Science.gov (United States)

    Goldstein, Marvin E.; Envia, E.

    2002-01-01

    In many cases of technological interest solid boundaries play a direct role in the aerodynamic sound generation process and their presence often results in a large increase in the acoustic radiation. A generalized treatment of the emission of sound from moving boundaries is presented. The approach is similar to that of Ffowcs Williams and Hawkings (1969) but the effect of the surrounding mean flow is explicitly accounted for. The results are used to develop a rational framework for the prediction of internally generated aero-engine noise. The final formulas suggest some new noise sources that may be of practical significance.

  1. Impact Testing and Analysis of Composites for Aircraft Engine Fan Cases

    Science.gov (United States)

    Roberts, Gary D.; Revilock, Duane M.; Binienda, Wieslaw K.; Nie, Walter Z.; Mackenzie, S. Ben; Todd, Kevin B.

    2002-01-01

    The fan case in a jet engine is a heavy structure because of its size and because of the requirement that it contain a blade released during engine operation. Composite materials offer the potential for reducing the weight of the case. Efficient design, test, and analysis methods are needed to efficiently evaluate the large number of potential composite materials and design concepts. The type of damage expected in a composite case under blade-out conditions was evaluated using a subscale test in which a glass/epoxy composite half-ring target was impacted with a wedge-shaped titanium projectile. Fiber shearing occurred near points of contact between the projectile and target. Delamination and tearing occurred on a larger scale. These damage modes were reproduced in a simpler test in which flat glass/epoxy composites were impacted with a blunt cylindrical projectile. A surface layer of ceramic eliminated fiber shear fracture but did not reduce delamination. Tests on 3D woven carbon/epoxy composites indicated that transverse reinforcement is effective in reducing delamination. A 91 cm (36 in.) diameter full-ring sub-component was proposed for larger scale testing of these and other composite concepts. Explicit, transient, finite element analyses indicated that a full-ring test is needed to simulate complete impact dynamics, but simpler tests using smaller ring sections are adequate when evaluation of initial impact damage is the primary concern.

  2. Evaluation of Ceramic Matrix Composite Technology for Aircraft Turbine Engine Applications

    Science.gov (United States)

    Halbig, Michael C.; Jaskowiak, Martha H.; Kiser, James D.; Zhu, Dongming

    2013-01-01

    The goals of the NASA Environmentally Responsible Aviation (ERA) Project are to reduce the NO(x) emissions, fuel burn, and noise from turbine engines. In order to help meet these goals, commercially-produced ceramic matrix composite (CMC) components and environmental barrier coatings (EBCs) are being evaluated as parts and panels. The components include a CMC combustor liner, a CMC high pressure turbine vane, and a CMC exhaust nozzle as well as advanced EBCs that are tailored to the operating conditions of the CMC combustor and vane. The CMC combustor (w/EBC) could provide 2700 F temperature capability with less component cooling requirements to allow for more efficient combustion and reductions in NOx emissions. The CMC vane (w/EBC) will also have temperature capability up to 2700 F and allow for reduced fuel burn. The CMC mixer nozzle will offer reduced weight and improved mixing efficiency to provide reduced fuel burn. The main objectives are to evaluate the manufacturability of the complex-shaped components and to evaluate their performance under simulated engine operating conditions. Progress in CMC component fabrication, evaluation, and testing is presented in which the goal is to advance from the proof of concept validation (TRL 3) to a system/subsystem or prototype demonstration in a relevant environment (TRL 6).

  3. Flux measurements by the NRC Twin Otter atmospheric research aircraft: 1987-2011

    Science.gov (United States)

    Desjardins, Raymond L.; Worth, Devon E.; MacPherson, J. Ian; Bastian, Matthew; Srinivasan, Ramesh

    2016-03-01

    Over the past 30 years, the Canadian Twin Otter research group has operated an aircraft platform for the study of atmospheric greenhouse gas fluxes (carbon dioxide, ozone, nitrous oxide and methane) and energy exchange (latent and sensible heat) over a wide range of terrestrial ecosystems in North America. Some of the acquired data from these projects have now been archived at the Flight Research Laboratory and Agriculture and Agri-Food Canada. The dataset, which contains the measurements obtained in eight projects from 1987 to 2011 are now publicly available. All these projects were carried out in order to improve our understanding of the biophysical controls acting on land-surface atmosphere fluxes. Some of the projects also attempted to quantify the impacts of agroecosystems on the environment. To provide information on the data available, we briefly describe each project and some of the key findings by referring to previously published relevant work. As new flux analysis techniques are being developed, we are confident that much additional information can be extracted from this unique data set.

  4. Subsonic Ultra Green Aircraft Research: Phase II- Volume III-Truss Braced Wing Aeroelastic Test Report

    Science.gov (United States)

    Bradley, Marty K.; Allen, Timothy J.; Droney, Christopher

    2014-01-01

    This Test Report summarizes the Truss Braced Wing (TBW) Aeroelastic Test (Task 3.1) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, which includes the time period of February 2012 through June 2014. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, Virginia Tech, and NextGen Aeronautics. The model was fabricated by NextGen Aeronautics and designed to meet dynamically scaled requirements from the sized full scale TBW FEM. The test of the dynamically scaled SUGAR TBW half model was broken up into open loop testing in December 2013 and closed loop testing from January 2014 to April 2014. Results showed the flutter mechanism to primarily be a coalescence of 2nd bending mode and 1st torsion mode around 10 Hz, as predicted by analysis. Results also showed significant change in flutter speed as angle of attack was varied. This nonlinear behavior can be explained by including preload and large displacement changes to the structural stiffness and mass matrices in the flutter analysis. Control laws derived from both test system ID and FEM19 state space models were successful in suppressing flutter. The control laws were robust and suppressed flutter for a variety of Mach, dynamic pressures, and angle of attacks investigated.

  5. Researches on direct injection in internal-combustion engines

    Science.gov (United States)

    Tuscher, Jean E

    1941-01-01

    These researches present a solution for reducing the fatigue of the Diesel engine by permitting the preservation of its components and, at the same time, raising its specific horsepower to a par with that of carburetor engines, while maintaining for the Diesel engine its perogative of burning heavy fuel under optimum economical conditions. The feeding of Diesel engines by injection pumps actuated by engine compression achieves the required high speeds of injection readily and permits rigorous control of the combustible charge introduced into each cylinder and of the peak pressure in the resultant cycle.

  6. FILLER ENGINEERING FOR PAPERMAKING: COMPARISION WITH FIBER ENGINEERING AND SOME IMPORTANT RESEARCH TOPICS

    Directory of Open Access Journals (Sweden)

    Jing Shen

    2010-05-01

    Full Text Available Fibers and fillers are important raw materials for the preparation of paper products. Similar to fiber engineering, filler engineering for papermaking has become an active research area. There are similarities as well as differences between engineering involving each of these classes of materials. There are differences in such aspects as the nature of materials to be engineered, applicable engineering methods, and engineerablity of the material surfaces. The co-development of fiber engineering and filler engineering can potentially provide many benefits to the papermaking industry. For filler engineering, the relevant research topics broadly can include fibrous filler engineering, hollow/porous filler engineering, acid-stabilization of calcium carbonate fillers, surface encapsulation of naturally occurring polymers or their derivatives, preflocculation, precoagulation, cationic modification, filler/size hybrid formation, organic filler engineering, using combinations of different types of available fillers, multilayer deposition modification, modification with polymer latexes or dispersants, physical modification, mechanical modification, surface functionalization, fines-filler composite/hybrids or fiber-filler composite/ hybrid formation, in-situ polymerization modification, surface grafting, physical treatment in the presence of polymeric additives, filler precipitation, and core-shell composite filler engineering.

  7. A New Predictive Model Based on the ABC Optimized Multivariate Adaptive Regression Splines Approach for Predicting the Remaining Useful Life in Aircraft Engines

    Directory of Open Access Journals (Sweden)

    Paulino José García Nieto

    2016-05-01

    Full Text Available Remaining useful life (RUL estimation is considered as one of the most central points in the prognostics and health management (PHM. The present paper describes a nonlinear hybrid ABC–MARS-based model for the prediction of the remaining useful life of aircraft engines. Indeed, it is well-known that an accurate RUL estimation allows failure prevention in a more controllable way so that the effective maintenance can be carried out in appropriate time to correct impending faults. The proposed hybrid model combines multivariate adaptive regression splines (MARS, which have been successfully adopted for regression problems, with the artificial bee colony (ABC technique. This optimization technique involves parameter setting in the MARS training procedure, which significantly influences the regression accuracy. However, its use in reliability applications has not yet been widely explored. Bearing this in mind, remaining useful life values have been predicted here by using the hybrid ABC–MARS-based model from the remaining measured parameters (input variables for aircraft engines with success. A correlation coefficient equal to 0.92 was obtained when this hybrid ABC–MARS-based model was applied to experimental data. The agreement of this model with experimental data confirmed its good performance. The main advantage of this predictive model is that it does not require information about the previous operation states of the aircraft engine.

  8. Aircraft Research Guideline 1999 - 2002: High pressure compressor - preliminary design as a basis for the development of an efficient and environmentally friendly core engine. Final report; Leitlinie Luftfahrtforschung 1999 - 2002: Hochdruckverdichter-Vorauslegung als Grundlagenuntersuchung zur Entwicklung eines Kerntriebwerkes fuer einen effizienten und umweltfreundlichen Antrieb. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Klinger, H.

    2001-08-01

    This report completes the documentation for the research project 'High Pressure Compressor - Preliminary Design as Basis for the Development of an Efficient and Environmentally Friendly Core Engine' which was funded by the Ministry of Economics of State Brandenburg. The objective of the project is to deliver a preliminary compressor aerodynamic design as well as design studies for an efficient, weight and cost improved compressor. The increase of stage pressure ratio and improved efficiency, whilst stage and blade count is reduced, has been achieved by advanced 3D methods. Compressor stability also at off-design conditions will be retained. The mechanical design focusses on a cost and weight optimised rotor not only for a conventional bladed discs but also for Blish stages. Various options for split casings have been developed and assessed. Alternative vortex reducers based on different design options have been carried out. The results from this project will be directly exploited in a follow-on project for a new nine-stage compressor. The new high pressure compressor will be a key element of the future two-shaft-engine architecture. (orig.) [German] Der vorliegende Bericht schliesst das vom Land Brandenburg im Rahmen der Leitlinie Luftfahrtforschung gefoerderte Vorhaben 'Hochdruckverdichter - Vorauslegung als Grundlagenuntersuchung zur Entwicklung eines Kerntriebwerkes fuer einen effizienten und umweltfreundlichen Antrieb' ab. Ziel dieses Vorhabens ist es, im Rahmen einer aerodynamischen Vorauslegung sowie Designstudien die notwendigen Technologien zu erarbeiten, um einen hinsichtlich Effizienz, Kosten, Gewicht und Wartungsintervallen verbesserten Hochdruckverdichter auszulegen. Die Erhoehung des Druckverhaeltnisses und des Wirkungsgrads bei verringerter Stufen- und Schaufelzahl sowie ein stabiles Betriebsverhalten auch ausserhalb des Auslegungspunktes wurde dabei durch eine aeusserst fortschrittliche 3D Schaufelauslegung erreicht. Auf der

  9. Review for dynamic researches in civil engineering in recent years

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Structure dynamic research is a hot field in civil engineering.It involves in many challenge topics,such as dynamic analysis and tests under earthquake,wind or other dynamic excitations.This paper introduces main dynamic researches in civil engineering in recent years,which will be classified into five aspects,especially for researches published in Science in China Series E:Technological Sciences.

  10. Engineering therapeutic processes: from research to commodity

    Science.gov (United States)

    Galloway, Robert L.

    2014-03-01

    Three of the most important forces driving medical care are: patient specificity, treatment specificity and the move from discovery to design. Engineers while trained in specificity, efficiency, and design are often not trained in either biology or medical processes. Yet they are increasing critical to medical care. For example, modern medical imaging at US hospitals generates 1 exabyte (10^18 bytes) of data per year clearly beyond unassisted human analysis. It is not desirable to involve engineers in the acquisition, storage and analysis of this data, it is essential. While in the past we have nibbled around the edges of medical care, it is time and perhaps past time to insert ourselves more squarely into medical processes, making them more efficient, more specific and more robust. This requires engineers who understand biology and physicians who are willing to step away from classic medical thinking to try new approaches. But once the idea is proven in a laboratory, it must move into use and then into common practice. This requires additional engineering to make the process robust to noisy data and imprecise practices as well as workflow analysis to get the new technique into operating and treatment rooms. True innovation and true translation will require physicians, engineers, other medical stakeholders and even corporate involvement to take a new, important idea and move it not just to a patient but to all patients.

  11. The Attenuation of a Detonation Wave by an Aircraft Engine Axial Turbine Stage

    Science.gov (United States)

    VanZante, Dale; Envia, Edmane; Turner, Mark G.

    2007-01-01

    A Constant Volume Combustion Cycle Engine concept consisting of a Pulse Detonation Combustor (PDC) followed by a conventional axial turbine was simulated numerically to determine the attenuation and reflection of a notional PDC pulse by the turbine. The multi-stage, time-accurate, turbomachinery solver TURBO was used to perform the calculation. The solution domain consisted of one notional detonation tube coupled to 5 vane passages and 8 rotor passages representing 1/8th of the annulus. The detonation tube was implemented as an initial value problem with the thermodynamic state of the tube contents, when the detonation wave is about to exit, provided by a 1D code. Pressure time history data from the numerical simulation was compared to experimental data from a similar configuration to verify that the simulation is giving reasonable results. Analysis of the pressure data showed a spectrally averaged attenuation of about 15 dB across the turbine stage. An evaluation of turbine performance is also presented.

  12. Using Hyperspectral Aircraft Remote Sensing to Support Ecosystems Services Research in New England Lakes and Ponds

    Science.gov (United States)

    Keith, D. J.; Milstead, B.; Walker, H.; Worthy, D.; Szykman, J.; Wusk, M.; Kagey, L.; Howell, C.; Snook, H.; Drueke, C.

    2010-12-01

    Northeastern lakes and ponds provide important ecosystem services to New England residents and visitors. These include the provisioning of abundant, clean water for consumption, agriculture, and industry as well as cultural services (recreation, aesthetics, and wilderness experiences) which enhance local economies and quality of life. Less understood, but equally important, are the roles that these lakes play in protecting all life through supportive services such as nutrient cycling. Nitrogen and phosphorus have a direct impact on the condition of fresh water lakes. Excesses of these nutrients can lead to eutrophication, toxic cyanobacteria blooms, decreased biodiversity, and loss of ecosystem function leading to a reduction in the availability and delivery of ecosystem services. In this study, we examined how variations in lake nutrient concentrations and phytoplankton pigment concentrations correlated with changes in the potential to provide cultural ecosystem services. Using a NASA Cessna 206 aircraft, hyperspectral data were collected during late summer 2009 from 55 lakes in New Hampshire, Massachusetts, Connecticut, and Rhode Island over a 2 day period. From the spectral data, algorithms were created which estimated concentrations of chlorophyll a, phycocyanin, and colored dissolved organic matter. The remotely sensed estimates were supplemented by in situ chlorophyll a, total nitrogen, total phosphorus and lake color data from 43 lakes sampled by field crews from the New England states. The purpose of this research is to understand how variations in lake nutrient concentrations and phytoplankton pigment concentrations correlate with changes in availability of cultural ecosystem services in the surveyed lakes. This dataset will be combined with information from the EPA National Lake Survey (2007), the EPA New England Lakes and Ponds Survey (2008) and the USGS SPARROW model to explore the association between lake condition and the provisioning of ecosystem

  13. The Research of Software Engineering Curriculum Reform

    Science.gov (United States)

    Kuang, Li-Qun; Han, Xie

    With the problem that software engineering training can't meet the needs of the community, this paper analysis some outstanding reasons in software engineering curriculum teaching, such as old teaching contents, weak in practice and low quality of teachers etc. We propose the methods of teaching reform as guided by market demand, update the teaching content, optimize the teaching methods, reform the teaching practice, strengthen the teacher-student exchange and promote teachers and students together. We carried out the reform and explore positive and achieved the desired results.

  14. Estimation of dynamic rotor loads for the rotor systems research aircraft: Methodology development and validation

    Science.gov (United States)

    Duval, R. W.; Bahrami, M.

    1985-01-01

    The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission systm from the fuselage. A mathematical model relating applied rotor loads and inertial loads of the rotor/transmission system to the load cell response is required to allow the load cells to be used to estimate rotor loads from flight data. Such a model is derived analytically by applying a force and moment balance to the isolated rotor/transmission system. The model is tested by comparing its estimated values of applied rotor loads with measured values obtained from a ground based shake test. Discrepancies in the comparison are used to isolate sources of unmodeled external loads. Once the structure of the mathematical model has been validated by comparison with experimental data, the parameters must be identified. Since the parameters may vary with flight condition it is desirable to identify the parameters directly from the flight data. A Maximum Likelihood identification algorithm is derived for this purpose and tested using a computer simulation of load cell data. The identification is found to converge within 10 samples. The rapid convergence facilitates tracking of time varying parameters of the load cell model in flight.

  15. Performance of WVSS-II hygrometers on the FAAM Research Aircraft

    Directory of Open Access Journals (Sweden)

    A. K. Vance

    2014-08-01

    Full Text Available We compare the performance of five hygrometers fitted to the Facility for Airborne Atmospheric Measurement's (FAAM BAe 146-301 research aircraft using data from approximately one hundred flights executed over the course of two years under a wide range of conditions. Bulk comparison of cloud free data show good agreement between chilled mirror hygrometers and a WVSS-II fed from a modified Rosemount inlet but that a WVSS-II fed from the standard flush inlet appears to over read compared to the other instruments, except at higher humidities. Statistical assessment of hygrometer performance in cloudy conditions is problematic due to the variable nature of clouds, so a number of case studies are used instead to investigate the performance of the hygrometers in sub optimal conditions. It is found that the flush inlet is not susceptible to either liquid or solid water but that the Rosemount inlet has a significant susceptibility to liquid water; it is not susceptible to ice. In all conditions the WVSS-II respond much more rapidly than the chilled mirror devices, with the flush inlet-fed WVSS-II being more rapid than that connected to the Rosemount.

  16. Thrust Area Report, Engineering Research, Development and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  17. 2007 Plant Metabolic Engineering Gordon Conference and Graduate Research Seminar

    Energy Technology Data Exchange (ETDEWEB)

    Erich Grotewold

    2008-09-15

    Plant Metabolic Engineering is an emerging field that integrates a diverse range of disciplines including plant genetics, genomics, biochemistry, chemistry and cell biology. The Gordon-Kenan Graduate Research Seminar (GRS) in Plant Metabolic Engineering was initiated to provide a unique opportunity for future researcher leaders to present their work in this field. It also creates an environment allowing for peer-review and critical assessment of work without the intimidation usually associated with the presence of senior investigators. The GRS immediately precedes the Plant Metabolic Engineering Gordon Research Conference and will be for and by graduate students and post-docs, with the assistance of the organizers listed.

  18. Challenges and Progress in Aerodynamic Design of Hybrid Wingbody Aircraft with Embedded Engines

    Science.gov (United States)

    Liou, Meng-Sing; Kim, Hyoungjin; Liou, May-Fun

    2016-01-01

    We summarize the contributions to high-fidelity capabilities for analysis and design of hybrid wingbody (HWB) configurations considered by NASA. Specifically, we focus on the embedded propulsion concepts of the N2-B and N3-X configurations, some of the future concepts seriously investigated by the NASA Fixed Wing Project. The objective is to develop the capability to compute the integrated propulsion and airframe system realistically in geometry and accurately in flow physics. In particular, the propulsion system (including the entire engine core-compressor, combustor, and turbine stages) is vastly more difficult and costly to simulate with the same level of fidelity as the external aerodynamics. Hence, we develop an accurate modeling approach that retains important physical parameters relevant to aerodynamic and propulsion analyses for evaluating the HWB concepts. Having the analytical capabilities at our disposal, concerns and issues that were considered to be critical for the HWB concepts can now be assessed reliably and systematically; assumptions invoked by previous studies were found to have serious consequences in our study. During this task, we establish firmly that aerodynamic analysis of a HWB concept without including installation of the propulsion system is far from realistic and can be misleading. Challenges in delivering the often-cited advantages that belong to the HWB are the focus of our study and are emphasized in this report. We have attempted to address these challenges and have had successes, which are summarized here. Some can have broad implications, such as the concept of flow conditioning for reducing flow distortion and the modeling of fan stages. The design optimization capability developed for improving the aerodynamic characteristics of the baseline HWB configurations is general and can be employed for other applications. Further improvement of the N3-X configuration can be expected by expanding the design space. Finally, the support of

  19. DC-9/JT8D refan, Phase 1. [technical and economic feasibility of retrofitting DC-9 aircraft with refan engine to achieve desired acoustic levels

    Science.gov (United States)

    1973-01-01

    Analyses and design studies were conducted on the technical and economic feasibility of installing the JT8D-109 refan engine on the DC-9 aircraft. Design criteria included minimum change to the airframe to achieve desired acoustic levels. Several acoustic configurations were studied with two selected for detailed investigations. The minimum selected acoustic treatment configuration results in an estimated aircraft weight increase of 608 kg (1,342 lb) and the maximum selected acoustic treatment configuration results in an estimated aircraft weight increase of 809 kg (1,784 lb). The range loss for the minimum and maximum selected acoustic treatment configurations based on long range cruise at 10 668 m (35,000 ft) altitude with a typical payload of 6 804 kg (15,000 lb) amounts to 54 km (86 n. mi.) respectively. Estimated reduction in EPNL's for minimum selected treatment show 8 EPNdB at approach, 12 EPNdB for takeoff with power cutback, 15 EPNdB for takeoff without power cutback and 12 EPNdB for sideline using FAR Part 36. Little difference was estimated in EPNL between minimum and maximum treatments due to reduced performance of maximum treatment. No major technical problems were encountered in the study. The refan concept for the DC-9 appears technically feasible and economically viable at approximately $1,000,000 per airplane. An additional study of the installation of JT3D-9 refan engine on the DC-8-50/61 and DC-8-62/63 aircraft is included. Three levels of acoustic treatment were suggested for DC-8-50/61 and two levels for DC-8-62/63. Results indicate the DC-8 technically can be retrofitted with refan engines for approximately $2,500,000 per airplane.

  20. Artificial Sight Basic Research, Biomedical Engineering, and Clinical Advances

    CERN Document Server

    Humayun, Mark S; Chader, Gerald; Greenbaum, Elias

    2008-01-01

    Artificial sight is a frontier area of modern ophthalmology combining the multidisciplinary skills of surgical ophthalmology, biomedical engineering, biological physics, and psychophysical testing. Many scientific, engineering, and surgical challenges must be surmounted before widespread practical applications can be realized. The goal of Artificial Sight is to summarize the state-of-the-art research in this exciting area, and to describe some of the current approaches and initiatives that may help patients in a clinical setting. The Editors are active researchers in the fields of artificial sight, biomedical engineering and biological physics. They have received numerous professional awards and recognition for their work. The artificial sight team at the Doheny Eye Institute, led by Dr. Mark Humayun, is a world leader in this area of biomedical engineering and clinical research. Key Features Introduces and assesses the state of the art for a broad audience of biomedical engineers, biophysicists, and clinical...

  1. Status of Research in Biomedical Engineering 1968.

    Science.gov (United States)

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    This status report is divided into eight sections. The first four represent the classical engineering or building aspects of bioengineering and deal with biomedical instrumentation, prosthetics, man-machine systems and computer and information systems. The next three sections are related to the scientific, intellectual and academic influence of…

  2. Biomedical engineering: A platform for research and innovation in ultrasound

    Science.gov (United States)

    Holland, Christy K.

    2001-05-01

    An undergraduate or graduate degree in biomedical engineering prepares students to solve problems at the interface between engineering and medicine. Biomedical engineering encompasses evolving areas such as advanced medical imaging for diagnosis and treatment of disease, tissue engineering for designing and manufacturing biological implants for damaged or diseased tissues and organs, and bioinformatics for determining which genes play a major role in health and disease. Biomedical engineering academic programs produce graduates with the ability to pursue successful careers in the biomedical device industry or to obtain advanced degrees leading to careers in biomedical engineering research, medicine, law or business. Biomedical engineering majors take courses in biology, anatomy, physics, chemistry, engineering, mathematics and medical product design and value life-long learning. Students learn to work effectively in interdisciplinary teams comprised of individuals with diverse social, cultural and technical backgrounds. Biomedical engineering is becoming increasingly important in imaging and image-guided research. Some examples of innovative ultrasound technology under development are ultrasound devices to accelerate the dissolution of blood clots, advanced surgical instruments with ultrasound guidance and ultrasound contrast agents for targeted drug delivery. Biomedical engineering is a great career choice for technically minded individuals who endeavor to work on applied problems that are medically relevant.

  3. FY10 Engineering Innovations, Research and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, M A; Aceves, S M; Paulson, C N; Candy, J V; Bennett, C V; Carlisle, K; Chen, D C; White, D A; Bernier, J V; Puso, M A; Weisgraber, T H; Corey, B; Lin, J I; Wheeler, E K; Conway, A M; Kuntz, J D; Spadaccini, C M; Dehlinger, D A; Kotovsky, J; Nikolic, R; Mariella, R P; Foudray, A K; Tang, V; Guidry, B L; Ng, B M; Lemmond, T D; Chen, B Y; Meyers, C A; Houck, T L

    2011-01-11

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&D 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but

  4. Assessing Regional Scale Fluxes of Mass, Momentum, and Energy with Small Environmental Research Aircraft

    Science.gov (United States)

    Zulueta, Rommel Callejo

    Natural ecosystems are rarely structurally or functionally homogeneous. This is true for the complex coastal regions of Magdalena Bay, Baja California Sur, Mexico, and the Barrow Peninsula on the Arctic Coastal Plain of Alaska. The coastal region of Magdalena Bay is comprised of the Pacific coastal ocean, eutrophic lagoon, mangroves, and desert ecosystems all adjacent and within a few kilometers, while the Barrow Peninsula is a mosaic of small ponds, thaw lakes, different aged vegetated thaw-lake basins ( VDTLBs ) and interstitial tundra which have been dynamically formed by both short- and long-term processes. We used a combination of tower- and small environmental research aircraft (SERA)-based eddy covariance measurements to characterize the spatial and temporal patterns of CO2, latent, and sensible heat fluxes along with MODIS NDVI, and land surface information, to scale the SERA-based CO2 fluxes up to the regional scale. In the first part of this research, the spatial variability in ecosystem fluxes from the Pacific coastal ocean, eutrophic lagoon, mangroves, and desert areas of northern Magdalena Bay were studied. SERA-derived average midday CO2 fluxes from the desert showed a slight uptake of -1.32 mumol CO2 m-2 s-1, the coastal ocean also showed uptake of -3.48 mumol CO2 m-2 s -1, and the lagoon mangroves showed the highest uptake of -8.11 mumol CO2 m-2 s-1. Additional simultaneous measurements of NDVI allowed simple linear modeling of CO2 flux as a function of NDVI for the mangroves of the Magdalena Bay region. In the second part of this research, the spatial variability of ecosystem fluxes across the 1802 km2 Barrow Peninsula region was studied. During typical 2006 summer conditions, the midday hourly CO2 flux over the region was -2.04 x 105 kgCO2 hr-1. The CO2 fluxes among the interstitial tundra, Ancient and Old VDTLBs, as well as between the Medium and Young VDTLBs were not significantly different. Combined, the interstitial tundra and Old and Ancient

  5. Case Study Research in Software Engineering Guidelines and Examples

    CERN Document Server

    Runeson, Per; Rainer, Austen; Regnell, Bjorn

    2012-01-01

    Based on their own experiences of in-depth case studies of software projects in international corporations, in this book the authors present detailed practical guidelines on the preparation, conduct, design and reporting of case studies of software engineering.  This is the first software engineering specific book on the case study research method.

  6. Career Pathways of Science, Engineering and Technology Research Postgraduates

    Science.gov (United States)

    Giles, Marnie; Ski, Chantal; Vrdoljak, Davorin

    2009-01-01

    Suitably qualified scientists and engineers are essential for research and development, innovation and, in turn, the growth of the economy. Science, engineering and technology skills are therefore necessary for Australia to remain competitive in a global market. This article reports findings from a nationwide study investigating the career…

  7. The research on HRM model of geosciences engineering perambulation enterprise

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Firstly,this paper defines the definition of geosciences engineering perambulation enterprise,which belongs to the knowledgeable enterprise;then,it summarizes the general HRM model presented by other researchers,based on those models,this paper builds a new HRM model of geosciences engineering perambulation enterprise.

  8. Development of a Taxonomy of Keywords for Engineering Education Research

    Science.gov (United States)

    Finelli, Cynthia J.; Borrego, Maura; Rasoulifar, Golnoosh

    2016-01-01

    The diversity of engineering education research provides an opportunity for cross-fertilisation of ideas and creativity, but it also can result in fragmentation of the field and duplication of effort. One solution is to establish a standardised taxonomy of engineering education terms to map the field and communicate and connect research…

  9. Anti-seismic research on nuclear engineering siting

    Institute of Scientific and Technical Information of China (English)

    Li CHEN; Lei NIE; Jijiang LI; Delong WANG; Xiangyu REN

    2006-01-01

    Nuclear engineering belongs to significant project; there is higher requirement on sitings. The study has discussed basic factors of selecting sites, anti-seismic research on sitings including the seismic ground motion, probability methods of seismic hazard analysis as well as interaction about structure and foundation, meanwhile provide the reason for nuclear engineering selecting sites.

  10. Effective Sensor Selection and Data Anomaly Detection for Condition Monitoring of Aircraft Engines.

    Science.gov (United States)

    Liu, Liansheng; Liu, Datong; Zhang, Yujie; Peng, Yu

    2016-01-01

    In a complex system, condition monitoring (CM) can collect the system working status. The condition is mainly sensed by the pre-deployed sensors in/on the system. Most existing works study how to utilize the condition information to predict the upcoming anomalies, faults, or failures. There is also some research which focuses on the faults or anomalies of the sensing element (i.e., sensor) to enhance the system reliability. However, existing approaches ignore the correlation between sensor selecting strategy and data anomaly detection, which can also improve the system reliability. To address this issue, we study a new scheme which includes sensor selection strategy and data anomaly detection by utilizing information theory and Gaussian Process Regression (GPR). The sensors that are more appropriate for the system CM are first selected. Then, mutual information is utilized to weight the correlation among different sensors. The anomaly detection is carried out by using the correlation of sensor data. The sensor data sets that are utilized to carry out the evaluation are provided by National Aeronautics and Space Administration (NASA) Ames Research Center and have been used as Prognostics and Health Management (PHM) challenge data in 2008. By comparing the two different sensor selection strategies, the effectiveness of selection method on data anomaly detection is proved. PMID:27136561

  11. Effective Sensor Selection and Data Anomaly Detection for Condition Monitoring of Aircraft Engines.

    Science.gov (United States)

    Liu, Liansheng; Liu, Datong; Zhang, Yujie; Peng, Yu

    2016-04-29

    In a complex system, condition monitoring (CM) can collect the system working status. The condition is mainly sensed by the pre-deployed sensors in/on the system. Most existing works study how to utilize the condition information to predict the upcoming anomalies, faults, or failures. There is also some research which focuses on the faults or anomalies of the sensing element (i.e., sensor) to enhance the system reliability. However, existing approaches ignore the correlation between sensor selecting strategy and data anomaly detection, which can also improve the system reliability. To address this issue, we study a new scheme which includes sensor selection strategy and data anomaly detection by utilizing information theory and Gaussian Process Regression (GPR). The sensors that are more appropriate for the system CM are first selected. Then, mutual information is utilized to weight the correlation among different sensors. The anomaly detection is carried out by using the correlation of sensor data. The sensor data sets that are utilized to carry out the evaluation are provided by National Aeronautics and Space Administration (NASA) Ames Research Center and have been used as Prognostics and Health Management (PHM) challenge data in 2008. By comparing the two different sensor selection strategies, the effectiveness of selection method on data anomaly detection is proved.

  12. Effective Sensor Selection and Data Anomaly Detection for Condition Monitoring of Aircraft Engines

    Directory of Open Access Journals (Sweden)

    Liansheng Liu

    2016-04-01

    Full Text Available In a complex system, condition monitoring (CM can collect the system working status. The condition is mainly sensed by the pre-deployed sensors in/on the system. Most existing works study how to utilize the condition information to predict the upcoming anomalies, faults, or failures. There is also some research which focuses on the faults or anomalies of the sensing element (i.e., sensor to enhance the system reliability. However, existing approaches ignore the correlation between sensor selecting strategy and data anomaly detection, which can also improve the system reliability. To address this issue, we study a new scheme which includes sensor selection strategy and data anomaly detection by utilizing information theory and Gaussian Process Regression (GPR. The sensors that are more appropriate for the system CM are first selected. Then, mutual information is utilized to weight the correlation among different sensors. The anomaly detection is carried out by using the correlation of sensor data. The sensor data sets that are utilized to carry out the evaluation are provided by National Aeronautics and Space Administration (NASA Ames Research Center and have been used as Prognostics and Health Management (PHM challenge data in 2008. By comparing the two different sensor selection strategies, the effectiveness of selection method on data anomaly detection is proved.

  13. In-flight control and communication architecture of the GLORIA imaging limb-sounder on atmospheric research aircraft

    Science.gov (United States)

    Kretschmer, E.; Bachner, M.; Blank, J.; Dapp, R.; Ebersoldt, A.; Friedl-Vallon, F.; Guggenmoser, T.; Gulde, T.; Hartmann, V.; Lutz, R.; Maucher, G.; Neubert, T.; Oelhaf, H.; Preusse, P.; Schardt, G.; Schmitt, C.; Schönfeld, A.; Tan, V.

    2015-02-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), a Fourier transform spectrometer based limb spectral imager, operates on high-altitude research aircraft to study the transit region between the troposphere and the stratosphere. It is one of the most sophisticated systems to be flown on research aircraft in Europe, requiring constant monitoring and human intervention in addition to an automation system. To ensure proper functionality and interoperability on multiple platforms, a flexible control and communication system was laid out. The architectures of the communication system as well as the protocols used are reviewed. The integration of this architecture in the automation process as well as the scientific campaign flight application context are discussed.

  14. In-flight control and communication architecture of the GLORIA imaging limb sounder on atmospheric research aircraft

    Science.gov (United States)

    Kretschmer, E.; Bachner, M.; Blank, J.; Dapp, R.; Ebersoldt, A.; Friedl-Vallon, F.; Guggenmoser, T.; Gulde, T.; Hartmann, V.; Lutz, R.; Maucher, G.; Neubert, T.; Oelhaf, H.; Preusse, P.; Schardt, G.; Schmitt, C.; Schönfeld, A.; Tan, V.

    2015-06-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), a Fourier-transform-spectrometer-based limb spectral imager, operates on high-altitude research aircraft to study the transit region between the troposphere and the stratosphere. It is one of the most sophisticated systems to be flown on research aircraft in Europe, requiring constant monitoring and human intervention in addition to an automation system. To ensure proper functionality and interoperability on multiple platforms, a flexible control and communication system was laid out. The architectures of the communication system as well as the protocols used are reviewed. The integration of this architecture in the automation process as well as the scientific campaign flight application context are discussed.

  15. In-flight control and communication architecture of the GLORIA imaging limb-sounder on atmospheric research aircraft

    Directory of Open Access Journals (Sweden)

    E. Kretschmer

    2015-02-01

    Full Text Available The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA, a Fourier transform spectrometer based limb spectral imager, operates on high-altitude research aircraft to study the transit region between the troposphere and the stratosphere. It is one of the most sophisticated systems to be flown on research aircraft in Europe, requiring constant monitoring and human intervention in addition to an automation system. To ensure proper functionality and interoperability on multiple platforms, a flexible control and communication system was laid out. The architectures of the communication system as well as the protocols used are reviewed. The integration of this architecture in the automation process as well as the scientific campaign flight application context are discussed.

  16. Software, Software Engineering and Software Engineering Research:Some Unconventional Thoughts

    Institute of Scientific and Technical Information of China (English)

    David Notkin

    2009-01-01

    Software engineering is broadly discussed as falling far short of expectations. Data and examples are used to justify how software itself is often poor, how the engineering of software leaves much to be desired, and how research in software engineering has not made enough progress to help overcome these weaknesses. However, these data and examples are presented and interpreted in ways that are arguably imbalanced. This imbalance, usually taken at face value, may be distracting the field from making significant progress towards improving the effective engineering of software, a goal the entire community shares. Research dichotomies, which tend to pit one approach against another, often subtly hint that there is a best way to engineer software or a best way to perform research on software. This, too, may be distracting the field from important classes of progress.

  17. FOSER - Future of Software Engineering Research

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — The 2010 Report of the Presidents Council of Advisors on Science and Technology PCAST, entitled ?Designing a Digital Future: Federally Funded Research and...

  18. Court rulings as evidence for social engineering research

    OpenAIRE

    Pham, Ngoc-Minh Michal

    2015-01-01

    This paper is about the question whether court rulings can be used as evidence for Social Engineering research. It goes into the methodology of acquiring and analysing the material and presents the results.

  19. Aeronautical Engineering: A Continuing Bibliography with Indexes. SUPPL-422

    Science.gov (United States)

    2000-01-01

    This report lists reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  20. Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 392

    Science.gov (United States)

    1999-01-01

    This report lists reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.