Sample records for aircraft components

  1. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components... (United States)


    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States (HTSUS) by meeting the following requirements: (1) The aircraft, aircraft engines,...

  2. Validation Effectiveness of Develop Maintainability Allocation on Aircraft Mechanical Components

    Directory of Open Access Journals (Sweden)

    Wan Husain W.M.S.


    Full Text Available Maintainability Allocation is a process to identify the allowable maximum task time for each individual component. Consequently, this provides clear pictures to the designers to design and identify potential design improvement within allowable maintenance allocation time limits. During the design process elements such as missteps or misapplications most commonly occur. Here, the authors propose having the maximum target for each individual maintainability component. The main objective of this paper is to present the validation process of developed Maintainability Allocation to potentially eliminate previous problems. The process of validation begins with analysed all the data collected from Service Difficulty Reports (SDR for selected aircraft. This is to understand the problems from existing aircraft before a new design is proposed through the process of Maintainability Allocation prediction. The validation processes have discovered the importance of utilising historical information such as feedback information. The second area is looking at the element of quantifying the data collected from aircraft feedback information which contains various types of information that could be used for future improvement. Validation process shows that feedback information has helped to identify the critical and sensitive components that need more attention for further improvement. The study shows that the aircraft maintenance related feedback information systems analyses were very useful for deciding maintainability effectiveness; these include planning, organising maintenance and design improvement. There is no doubt that feedback information has the ability to contribute an important role in design activities. The results also show that maintainability is an important measure that can be used as a guideline for managing efforts made for the improvement of aircraft components.

  3. Structural Weight Optimization of Aircraft Wing Component Using FEM Approach.


    Arockia Ruban M,; Kaveti Aruna


    One of the main challenges for the civil aviation industry is the reduction of its environmental impact by better fuel efficiency by virtue of Structural optimization. Over the past years, improvements in performance and fuel efficiency have been achieved by simplifying the design of the structural components and usage of composite materials to reduce the overall weight of the structure. This paper deals with the weight optimization of transport aircraft with low wing configuratio...

  4. Development of composite aircraft components in INCDT COMOTI, Bucharest

    Directory of Open Access Journals (Sweden)

    Raluca VOICU


    Full Text Available This paper presents the recent research activities within INCDT COMOTI, in the composite materials field. The author makes a short introduction of this field and presents an example of application developed within the composite materials laboratory from INCDT COMOTI, targeting the aeronautic field. The aircraft component is a stator blade made of CFRP composites, integrating new active noise reduction technologies and manufactured by means of the autoclave technology.

  5. Corrosion Preventative Compounds (CPCs) Effect on Aircraft Electrical Wiring Components (United States)


    Electrical Wiring Components TR285HN301 Final Report Revision: - • Fretting research project was performed on nano -miniature connectors...CPCs, including gold plated edge card connectors, electrical connectors, tin plated pins, nano -miniature connectors. Current Air Force and NAVAIR...early 1980’s on many Navy aircraft. The Navy’s standard wire type. M5086/2-20 c Polyvinyl chloride, polyamide jacket, glass fiber braid ( PVC /glass

  6. Structural Weight Optimization of Aircraft Wing Component Using FEM Approach.

    Directory of Open Access Journals (Sweden)

    Arockia Ruban M,


    Full Text Available One of the main challenges for the civil aviation industry is the reduction of its environmental impact by better fuel efficiency by virtue of Structural optimization. Over the past years, improvements in performance and fuel efficiency have been achieved by simplifying the design of the structural components and usage of composite materials to reduce the overall weight of the structure. This paper deals with the weight optimization of transport aircraft with low wing configuration. The Linear static and Normal Mode analysis were carried out using MSc Nastran & Msc Patran under different pressure conditions and the results were verified with the help of classical approach. The Stress and displacement results were found and verified and hence arrived to the conclusion about the optimization of the wing structure.

  7. Techno-economic requirements for composite aircraft components (United States)

    Palmer, Ray


    The primary reason for use of composites is to save structural weight. A well designed composite aircraft structure will usually save 25-30 percent of a well designed metal structure. The weight savings then translates into improved performance of the aircraft in measures of greater payload, increased flying range or improved efficiency - less use of fuel. Composite materials offer technical advantages. Key technical advantages that composites offer are high stiffness, tailored strength capability, fatigue resistance, and corrosion resistance. Low thermal expansion properties produce dimensionally stable structures over a wide range of temperature. Specialty resin 'char' forming characteristics in a fire environment offer potential fire barrier application and safer aircraft. The materials and processes of composite fabrication offer the potential for lower cost structures in the near future. The application of composite materials to aircraft are discussed.

  8. Fault mechanism analysis and simulation for continuity resistance test of electrical components in aircraft engine (United States)

    Shi, Xudong; Yin, Yaping; Wang, Jialin; Sun, Zhaorong


    A large number of electrical components are used in civil aircraft engines, whose electrical circuits are usually intricate and complicated. Continuity resistance is an important parameter for the operating state of electrical components. Electrical continuity fault has serious impact on the reliability of the aircraft engine. In this paper, mathematical models of electrical components are established, and simulation is made by Simulink to analyze the electrical continuity fault.

  9. Managing Life-Cycle Information of Aircraft Components (United States)


    starting to implement Product Life Cycle Management ( PLM ), a closed-loop system that encompasses internationally standardized data-exchange technology...aircraft have much to gain from the use of tracking technologies in support of a PLM system. To investigate how efficiencies can be attained in the...missing the card. The problem stems from the lack of reliability of the card-based system. Moving to an automated PLM system would address these

  10. Potential emissions savings of lightweight composite aircraft components evaluated through life cycle assessment

    Directory of Open Access Journals (Sweden)


    Full Text Available A cradle-to-grave life cycle assessment (LCA of structural aircraft materials has been utilised to assess and compare the total emissions produced during manufacturing, use and disposal of aerospace materials and their selected components. First, a comparison of aluminium, GLARE and carbon fibre reinforced polymer (CFRP plates was performed to investigate the potential of lightweight composites in reducing aviation emissions. Subsequently, a case study is presented on a tubular component for which more accurate manufacturing data were directly available. A structural steel tube was replaced with a composite tubular component. The analysis has shown that once the composite material is used as a component in the aircraft, there is a cumulative saving of aircraft fuel and emissions, in particular from CFRP structures. The environmental analysis included the long-term use predictions for CFRPs, involving detailed raw materials production, use and operation, and disposal scenarios.

  11. An analysis of the aircraft engine Component Improvement Program (CIP) : a life cycle cost approach


    Borer, Chris Joseph


    Approved for public release; distribution unlimited. Increasing budgetary constraints have prompted actions to reduce the maintenance cost of current naval aircraft. This thesis examines the Aircraft Engine Component Improvement Program (CIP), its impact on these cost at the organizational and intermediate levels of maintenance, and savings from these improvements. The objectives of the research were to identify current life cycle cost (LCC) models used by the Navy andor the other services...

  12. Drag/thrust analysis of jet-propelled transonic transport aircraft; definition of physical drag components

    Energy Technology Data Exchange (ETDEWEB)

    Destarac, D. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France); Van der Vooren, J. [Senior research scientist, retired, Hoekse Waard (Netherlands)


    Drag/thrust analysis of jet-propelled transonic transport aircraft on the basis of calculated viscous flow is discussed. Unique definitions for viscous drag plus wave drag and for induced drag are established. The concept of additive through flow drag is introduced. Drag/thrust bookkeeping is given attention. All drag components can be calculated in the flow region adjacent to the aircraft, where numerical accuracy is expectingly highest. Uniform handling of complex aircraft configurations is brought within reach. Near-field/far-field drag balances are exact. Computational aspects are discussed, in particular the elimination of spurious drag sources. Numerical examples are given for a wing-body and for a wing-body-pylon-nacelle configuration. In either case, the spurious drag sources are eliminated. Acceptable agreement is obtained for the total drag in the first case, and for the installation drag in the second case. Extension of the analysis presented to propeller-driven transport aircraft is straightforward. (author)

  13. Aircraft (United States)

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.


    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  14. Federal Aviation Administration (FAA airworthiness certification for ceramic matrix composite components in civil aircraft systems

    Directory of Open Access Journals (Sweden)

    Gonczy Stephen T.


    Full Text Available Ceramic matrix composites (CMCs are being designed and developed for engine and exhaust components in commercial aviation, because they offer higher temperature capabilities, weight savings, and improved durability compared to metals. The United States Federal Aviation Administration (FAA issues and enforces regulations and minimum standards covering the safe manufacture, operation, and maintenance of civil aircraft. As new materials, these ceramic composite components will have to meet the certification regulations of the FAA for “airworthiness”. The FAA certification process is defined in the Federal Aviation Regulations (Title 14 of the Code of Federal Regulations, FAA policy statements, orders, advisory circulars, technical standard orders, and FAA airworthiness directives. These regulations and documents provide the fundamental requirements and guidelines for design, testing, manufacture, quality assurance, registration, operation, inspection, maintenance, and repair of aircraft systems and parts. For metallic parts in aircraft, the FAA certification and compliance process is well-established for type and airworthiness certification, using ASTM and SAE standards, the MMPDS data handbook, and FAA advisory circulars. In a similar manner for polymer matrix composites (PMC, the PMC industry and the FAA have jointly developed and are refining parallel guidelines for polymer matrix composites (PMCs, using guidance in FAA circulars and the CMH-17 PMC handbook. These documents discuss design methods and codes, material testing, property data development, life/durability assessment, production processes, QA procedures, inspection methods, operational limits, and repairs for PMCs. For ceramic composites, the FAA and the CMC and aerospace community are working together (primarily through the CMH-17 CMC handbook to define and codify key design, production, and regulatory issues that have to be addressed in the certification of CMC components in

  15. A new principle and device for large aircraft components gaining accurate support by ball joint

    Institute of Scientific and Technical Information of China (English)

    Bao-gui QIU; Jun-xia JIANG; Ying-lin KE


    How to obtain an accurate support for large components by ball joint is a key process in aircraft digital assembly. A novel principle and device is developed to solve the problem. Firstly, the working principle of the device is introduced. When three or four displacement sensors installed in the localizer are touched by the ball-head, the spatial relation is calculated between the large aircraft component's ball-head and the localizer's ball-socket. The localizer is driven to achieve a new position by compensation. Relatively, a support revising algorithm is proposed. The localizer's ball-socket approaches the ball-head based on the displacement sensors. According to the points selected from its spherical surface, the coordinates of ball-head spherical center are computed by geometry. Finally, as a typical application, the device is used to conduct a test-fuselage's ball-head into a localizer's ball-socket. Positional deviations of the spherical centers between the ball-head and the ball-socket in the x, y, and z directions are all controlled within ±0.05 mm under various working conditions. The results of the experiments show that the device has the characteristics of high precision, excellent stability, strong operability, and great potential to be applied widely in the modern aircraft industry.

  16. Methods of saving energy and materials in the manufacture of integrated aircraft structure components

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, J.C.; Welschof, K.; Janssen, W.; Mahlke, M.; Sprangers, W.; Binding, J.


    In the framework of a special research unit, methods for saving energy and raw materials are investigated for selected production processes. Integral construction components of the aircraft industry which today are mostly produced by metal-cutting processes, are the basis of the joint research work of six of the total of nineteen participating projects. Research is carried out on the possibilities for reducing the expenditure of material and energy by the application of alternative production processes in the field of primary shaping, deforming and joining as well as by structural optimization. By means of a computer-aided evaluation of the possible production methods, the alternatives can be compared with regard to their energy and raw material requirements.

  17. Application research of centrifugal investment cast TiAl component used for advanced aircraft engine

    Institute of Scientific and Technical Information of China (English)

    李俊涛; 李世琼; 张继; 马万青; 邹敦叙; 仲增墉


    A more complex structural component with small size and very thin walls and blades used for advanced aircraft engine was fabricated well by induction skull melting and centrifugal investment casting with a proper ceramic mold. The tensile elongation and ultimate strength of the hot isostatically pressed (HIPped) Ti-46.5Al-2.5V-1Cr (mole fraction, %) casting alloy sare up to 2.5% and 645 Mpa at room temperature, and 31% and 593 Mpa a t 800 ℃. The fracture roughness at room temperature is up to 28 Mpa*m1/2 . The endurance tensile strength at 800 ℃ for 150 h, is higher than 200 Mpa. The high cycle rotary bending fatigue strengths for 1×107 cycles at room temperature and 800 ℃ a re 412 Mpa and 270 Mpa, respectively.

  18. Compton imaging tomography for nondestructive evaluation of large multilayer aircraft components and structures (United States)

    Romanov, Volodymyr; Grubsky, Victor; Zahiri, Feraidoon


    We present a novel NDT/NDE tool for non-contact, single-sided 3D inspection of aerospace components, based on Compton Imaging Tomography (CIT) technique, which is applicable to large, non-uniform, and/or multilayer structures made of composites or lightweight metals. CIT is based on the registration of Compton-scattered X-rays, and permits the reconstruction of the full 3D (tomographic) image of the inspected objects. Unlike conventional computerized tomography (CT), CIT requires only single-sided access to objects, and therefore can be applied to large structures without their disassembly. The developed tool provides accurate detection, identification, and precise 3D localizations and measurements of any possible internal and surface defects (corrosions, cracks, voids, delaminations, porosity, and inclusions), and also disbonds, core and skin defects, and intrusion of foreign fluids (e.g., fresh and salt water, oil) inside of honeycomb sandwich structures. The NDE capabilities of the system were successfully demonstrated on various aerospace structure samples provided by several major aerospace companies. Such a CIT-based tool can detect and localize individual internal defects with dimensions about 1-2 mm3, and honeycomb disbond defects less than 6 mm by 6 mm area with the variations in the thickness of the adhesive by 100 m. Current maximum scanning speed of aircraft/spacecraft structures is about 5-8 min/ft2 (50-80 min/m2).

  19. Auto-normalization algorithm for robotic precision drilling system in aircraft component assembly

    Institute of Scientific and Technical Information of China (English)

    Tian Wei; Zhou Weixue; Zhou Wei; Liao Wenhe; Zeng Yuanfan


    A novel approach is proposed to detect the normal vector to product surface in real time for the robotic precision drilling system in aircraft component assembly,and the auto-normalization algorithm is presented based on the detection system.Firstly,the deviation between the normal vector and the spindle axis is measured by the four laser displacement sensors installed at the head of the multi-function end effector.Then,the robot target attitude is inversely solved according to the auto-normalization algorithm.Finally,adjust the robot to the target attitude via pitch and yaw rotations about the tool center point and the spindle axis is corrected in line with the normal vector simultaneously.To test and verify the auto-normalization algorithm,an experimental platform is established in which the laser tracker is introduced for accurate measurement.The results show that the deviations between the corrected spindle axis and the normal vector are all reduced to less than 0.5°,with the mean value 0.32°.It is demonstrated the detection method and the autonormalization algorithm are feasible and reliable.

  20. Creep-fatigue interaction in aircraft gas turbine components by simulation and testing at scaled temperatures (United States)

    Sabour, Mohammad Hossein

    Advanced gas turbine engines, which use hot section airfoil cooling, present a wide range of design problems. The frequencies of applied loads and the natural frequencies of the blade also are important since they have significant effects on failure of the component due to fatigue phenomenon. Due to high temperature environment the thermal creep and fatigue are quite severe. One-dimensional creep model, using ANSYS has been formulated in order to predict the creep life of a gas turbine engine blade. Innovative mathematical models for the prediction of the operating life of aircraft components, specifically gas turbine blades, which are subjected to creep-fatigue at high temperatures, are proposed. The components are modeled by FEM, mathematically, and using similitude principles. Three models have been suggested and evaluated numerically and experimentally. Using FEM method for natural frequencies causes phenomena such as curve veering which is studied in more detail. The simulation studies on the life-limiting modes of failure, as well as estimating the expected lifetime of the blade, using the proposed models have been carried out. Although the scale model approach has been used for quite some time, the thermal scaling has been used in this study for the first time. The only thermal studies in literature using scaling for structures is by NASA in which materials of both the prototype and the model are the same, but in the present study materials also are different. The finite element method is employed to model the structure. Because of stress redistribution due to the creep process, it is necessary to include a full inelastic creep step in the finite element formulation. Otherwise over-conservative creep life predictions will be estimated if only the initial elastic stresses are considered. The experimental investigations are carried out in order to validate the models. The main contributions in the thesis are: (1) Using similitude theory for life prediction of

  1. Measurements of the high energy neutron component of cosmic radiation fields in aircraft using etched track dosemeters

    CERN Document Server

    Bartlett, D T; Tanner, R J; Steele, J D


    Measurements of the complex cosmic radiation field in aircraft at altitude are made with a passive survey meter comprising routine-use thermoluminescent detectors and etched track detectors. The energy dependence of response of the etched track detectors used to determine the neutron component has been characterized, partly, up to a neutron energy of 180 MeV. The neutron detectors are routinely calibrated in the CERN EC Ref.Field. The 15% determination level for total dose equivalent is 100 mu Sv. The evidence is that the passive survey meter provides a reliable determination of route dose. (41 refs).

  2. An estimation method for direct maintenance cost of aircraft components based on particle swarm optimization with immunity algorithm

    Institute of Scientific and Technical Information of China (English)

    WU Jing-min; ZUO Hong-fu; CHEN Yong


    A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented.Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune selection mechanisms were used to prevent the undulate phenomenon during the evolutionary process. The algorithm was introduced through an application in the direct maintenance cost (DMC) estimation of aircraft components. Experiments results show that the algorithm can compute simply and run quickly. It resolves the combinatorial optimization problem of component DMC estimation with simple and available parameters. And it has higher accuracy than individual methods, such as PLS, BP and v-SVM, and also has better performance than other combined methods, such as basic PSO and BP neural network.

  3. Aircraft noise reduction technology. [to show impact on individuals and communities, component noise sources, and operational procedures to reduce impact (United States)


    Aircraft and airport noise reduction technology programs conducted by NASA are presented. The subjects discussed are: (1) effects of aircraft noise on individuals and communities, (2) status of aircraft source noise technology, (3) operational procedures to reduce the impact of aircraft noise, and (4) NASA relations with military services in aircraft noise problems. References to more detailed technical literature on the subjects discussed are included.

  4. Mechanical Behaviour of Inconel 718 Thin-Walled Laser Welded Components for Aircraft Engines

    Directory of Open Access Journals (Sweden)

    Enrico Lertora


    Full Text Available Nickel alloys are very important in many aerospace applications, especially to manufacture gas turbines and aero engine components, where high strength and temperature resistance are necessary. These kinds of alloys have to be welded with high energy density processes, in order to preserve their high mechanical properties. In this work, CO2 laser overlap joints between Inconel 718 sheets of limited thickness in the absence of postweld heat treatment were made. The main application of this kind of joint is the manufacturing of a helicopter engine component. In particular the aim was to obtain a specific cross section geometry, necessary to overcome the mechanical stresses found in these working conditions without failure. Static and dynamic tests were performed to assess the welds and the parent material fatigue life behaviour. Furthermore, the life trend was identified. This research pointed out that a full joint shape control is possible by choosing proper welding parameters and that the laser beam process allows the maintenance of high tensile strength and ductility of Inconel 718 but caused many liquation microcracks in the heat affected zone (HAZ. In spite of these microcracks, the fatigue behaviour of the overlap welds complies with the technical specifications required by the application.

  5. Computation of aircraft component flow fields at transonic Mach numbers using a three-dimensional Navier-Stokes algorithm (United States)

    Shrewsbury, George D.; Vadyak, Joseph; Schuster, David M.; Smith, Marilyn J.


    A computer analysis was developed for calculating steady (or unsteady) three-dimensional aircraft component flow fields. This algorithm, called ENS3D, can compute the flow field for the following configurations: diffuser duct/thrust nozzle, isolated wing, isolated fuselage, wing/fuselage with or without integrated inlet and exhaust, nacelle/inlet, nacelle (fuselage) afterbody/exhaust jet, complete transport engine installation, and multicomponent configurations using zonal grid generation technique. Solutions can be obtained for subsonic, transonic, or hypersonic freestream speeds. The algorithm can solve either the Euler equations for inviscid flow, the thin shear layer Navier-Stokes equations for viscous flow, or the full Navier-Stokes equations for viscous flow. The flow field solution is determined on a body-fitted computational grid. A fully-implicit alternating direction implicit method is employed for the solution of the finite difference equations. For viscous computations, either a two layer eddy-viscosity turbulence model or the k-epsilon two equation transport model can be used to achieve mathematical closure.

  6. Structural Diagnostics of CFRP Composite Aircraft Components by Ultrasonic Guided Waves and Built-In Piezoelectric Transducers

    Energy Technology Data Exchange (ETDEWEB)

    Matt, Howard M. [Univ. of California, San Diego, CA (United States)


    To monitor in-flight damage and reduce life-cycle costs associated with CFRP composite aircraft, an autonomous built-in structural health monitoring (SHM) system is preferred over conventional maintenance routines and schedules. This thesis investigates the use of ultrasonic guided waves and piezoelectric transducers for the identification and localization of damage/defects occurring within critical components of CFRP composite aircraft wings, mainly the wing skin-to-spar joints. The guided wave approach for structural diagnostics was demonstrated by the dual application of active and passive monitoring techniques. For active interrogation, the guided wave propagation problem was initially studied numerically by a semi-analytical finite element method, which accounts for viscoelastic damping, in order to identify ideal mode-frequency combinations sensitive to damage occurring within CFRP bonded joints. Active guided wave tests across three representative wing skin-to-spar joints at ambient temperature were then conducted using attached Macro Fiber Composite (MFC) transducers. Results from these experiments demonstrate the importance of intelligent feature extraction for improving the sensitivity to damage. To address the widely neglected effects of temperature on guided wave base damage identification, analytical and experimental analyses were performed to characterize the influence of temperature on guided wave signal features. In addition, statistically-robust detection of simulated damage in a CFRP bonded joint was successfully achieved under changing temperature conditions through a dimensionally-low, multivariate statistical outlier analysis. The response of piezoceramic patches and MFC transducers to ultrasonic Rayleigh and Lamb wave fields was analytically derived and experimentally validated. This theory is useful for designing sensors which possess optimal sensitivity toward a given mode-frequency combination or for predicting the frequency dependent

  7. Kinetic Metallization. Repair of IVD Al Coatings and Mg Alloys Aircraft Components Using Portable Kinetic Metallization Systems (United States)


    person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number...aircraft carriers & depots Environmentally sustainable Meets Navy JTP-2003 Portable system & Handheld spray gun Robotic deployment for OEM Applications...Problem - Field & Depot Repair of Damaged IVD-Al & Mg Alloys NADEP Facilities PEO(T) F/A-18, EA-18G PMA -271 E-6B

  8. Component

    Directory of Open Access Journals (Sweden)

    Tibor Tot


    Full Text Available A unique case of metaplastic breast carcinoma with an epithelial component showing tumoral necrosis and neuroectodermal stromal component is described. The tumor grew rapidly and measured 9 cm at the time of diagnosis. No lymph node metastases were present. The disease progressed rapidly and the patient died two years after the diagnosis from a hemorrhage caused by brain metastases. The morphology and phenotype of the tumor are described in detail and the differential diagnostic options are discussed.

  9. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or... (United States)


    ..., airframes, aircraft engines, propellers, appliances, or component parts for return to service after... Administrator, may approve an aircraft, airframe, aircraft engine, propeller, appliance, or component part for..., airframe, aircraft engine, propeller, appliance, or component part for return to service as provided...

  10. The Analysis of Fatigue Behavior of Joint-strengthened Component in Aircraft%飞机连接加强件疲劳特性分析

    Institute of Scientific and Technical Information of China (English)

    何宇廷; 富贵华


    To analyze the fatigue behavior of joint-strengthened component in aircraft, a series of special finite element method (FEM) programs, in which 4-node isoparametric plane elements and two-dimensional rivet elements are used, are presented to analyze the detail stresses of the riveted component. After calculating the detail stresses of joint-strengthened component and determining its fatigue dangerous position, the stress severity factor method is used to calculate the fatigue life of the component and its fatigue safety life is gained.%针对飞机上一重要承力连接加强件,采用平 面四节点等参元与二维受剪钉元组合而成的有限元程序进行了细节应力分析,确定了疲劳危 险部位。接着,在给定的等效载荷谱作用下,采用应力严重系数法计算了其疲劳寿命,得到 了有益的结果。

  11. Failure Analysis of Crack on Aircraft's Strengthened Wing Rib Component%某型飞机加强翼肋组件裂纹失效分析

    Institute of Scientific and Technical Information of China (English)

    吴江; 周毅; 杨兆军


    通过化学成分分析、金相组织检测、硬度检测、断口形貌分析以及工况分析,对某型飞机加强翼肋组件裂纹的失效原因进行分析.结果表明,加强翼肋组件制造质量正常无缺陷,由于其结构设计不当,导致在冲击载荷作用下工作应力过大而发生低周疲劳断裂.%The failure analysis of crack on a certain type of aircraft's strengthened wing rib components were accomplished based on chemical composition analysis, metallographic examination, hardness testing, fracture morphology analysis and performance analysis. The results show that the manufacturing quality of the strengthened wing rib component is normal without defect. Low cycle fatigue fracture on the strengthened wing rib components appears because the structural design is undeserved and it causes too big impact load stress.

  12. Definition of 1992 Technology Aircraft Noise Levels and the Methodology for Assessing Airplane Noise Impact of Component Noise Reduction Concepts (United States)

    Kumasaka, Henry A.; Martinez, Michael M.; Weir, Donald S.


    This report describes the methodology for assessing the impact of component noise reduction on total airplane system noise. The methodology is intended to be applied to the results of individual study elements of the NASA-Advanced Subsonic Technology (AST) Noise Reduction Program, which will address the development of noise reduction concepts for specific components. Program progress will be assessed in terms of noise reduction achieved, relative to baseline levels representative of 1992 technology airplane/engine design and performance. In this report, the 1992 technology reference levels are defined for assessment models based on four airplane sizes - an average business jet and three commercial transports: a small twin, a medium sized twin, and a large quad. Study results indicate that component changes defined as program final goals for nacelle treatment and engine/airframe source noise reduction would achieve from 6-7 EPNdB reduction of total airplane noise at FAR 36 Stage 3 noise certification conditions for all of the airplane noise assessment models.

  13. An analysis of the costs and benefit in improving the T56-A-427 interconnector harness end and mating thermocouple end connector under the aircraft engine Component Improvement Program (CIP)


    Murphy, Thomas Joseph


    Approved for public release; distribution is unlimited. This thesis is a study validating the cost effectiveness of the Component Improvement Program for aircraft engines. It determines the costs and benefits derived from the Navy incorporating Power Plant Change 111 which improved the interconnector harness end and mating thermocouple end connector of the T56-A-427 engine. Useful maintenance data pertaining to this component was extracted from the Naval Logistics Data Analysis (NALDA) sys...

  14. Effect of noise reducing components on nose landing gear stability for a mid-size aircraft coupled with vortex shedding and freeplay (United States)

    Eret, Petr; Kennedy, John; Bennett, Gareth J.


    In the pursuit of quieter aircraft, significant effort has been dedicated to airframe noise identification and reduction. The landing gear is one of the main sources of airframe noise on approach. The addition of noise abatement technologies such as fairings or wheel hub caps is usually considered to be the simplest solution to reduce this noise. After touchdown, noise abatement components can potentially affect the inherently nonlinear and dynamically complex behaviour (shimmy) of landing gear. Moreover, fairings can influence the aerodynamic load on the system and interact with the mechanical freeplay in the torque link. This paper presents a numerical study of nose landing gear stability for a mid-size aircraft with low noise solutions, which are modelled by an increase of the relevant model structural parameters to address a hypothetical effect of additional fairings and wheel hub caps. The study shows that the wheel hub caps are not a threat to stability. A fairing has a destabilising effect due to the increased moment of inertia of the strut and a stabilising effect due to the increased torsional stiffness of the strut. As the torsional stiffness is dependent on the method of attachment, in situations where the fairing increases the torsional inertia with little increase to the torsional stiffness, a net destabilising effect can result. Alternatively, it is possible that for the case that if the fairing were to increase equally both the torsional stiffness and the moment of inertia of the strut, then their effects could be mutually negated. However, it has been found here that for small and simple fairings, typical of current landing gear noise abatement design, their implementation will not affect the dynamics and stability of the system in an operational range (Fz ≤ 50 000 N, V ≤ 100 m/s). This generalisation is strictly dependent on size and installation methods. The aerodynamic load, which would be influenced by the presence of fairings, was modelled

  15. Fire resistant aircraft seat program (United States)

    Fewell, L. A.


    Foams, textiles, and thermoformable plastics were tested to determine which materials were fire retardant, and safe for aircraft passenger seats. Seat components investigated were the decorative fabric cover, slip covers, fire blocking layer, cushion reinforcement, and the cushioning layer.

  16. Aircraft Design (United States)

    Bowers, Albion H. (Inventor); Uden, Edward (Inventor)


    The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.

  17. Large Aircraft Component Transport Based on Omni-Directional Mobile and Multi-Point Supporting%基于全向移动与多点柔性支撑的飞机大部件运输技术

    Institute of Scientific and Technical Information of China (English)

    姚定; 佘晶; 黄翔; 徐燕


    为实现飞机大部件车间叛运输机动灵活,基于全向移动技术,提出了一种飞机大部件全向移动运输平台,以满足大尺寸空间、重载条件的运输作业要求;为改变当首企业一车一用、专车专用现象,基于秉性的思想,提出了一种多点柔性支撑系统.结合某型飞机机翼大部件特点,实际研制了一辆全向移动柔性运输架车样车,在此基础上开发了相应控制与离线鳊程系统.研究结果表明:架丰可以实现较高精度的全向移动,具有较大的灵活性,能够满足飞机部件柔性运输要求.%To flexibly transport the large aircraft components in workshops, one type of omni-directional transporting platform of large aircraft component based on omni-directional technology is presented to meet the transportation requirements of large size and heavy load. To change the present condition that one car for a single use, as well as one car for a special use, a novel type of multi-point flexible supporting tool system based on the flexible supporting tool is proposed. Considering the characteristics of one certain type of aircraft wing components, an omni-directional transporting platform prototype is manufactured. And then the corresponding control and programming system is developed. Research result shows that higher accuracy and greater flexibility of transporting can be achieved by using omni-directional technology, and the requirements of aircraft component flexible transporting can be perfectly met.

  18. Preparation of Waterborne Two-Component Polyurethane Coatings for the Aircraft Cabin Interior Decoration%飞机舱内装饰用水性双组分聚氨酯涂料的制备

    Institute of Scientific and Technical Information of China (English)



    A waterborne two-component polyurethane coatings for the aircraft cabin interior decoration was prepared. The influences of waterborne resin,curing agent,flame retardant,antiscratch agent on the adhesion, flame resistance,stain resistance,scratch resistance of the coatings were discussed.%制备了一种飞机舱内装饰用水性双组分聚氨酯涂料.讨论了水性树脂、固化剂、阻燃剂、抗划伤剂对其附着力、阻燃性、耐沾污性、抗划痕性等性能的影响.

  19. Causes of aircraft electrical failures (United States)

    Galler, Donald; Slenski, George


    The results of a survey of data on failures of aircraft electronic and electrical components that was conducted to identify problematic components are reported. The motivation for the work was to determine priorities for future work on the development of accident investigation techniques for aircraft electrical components. The primary source of data was the Airforce Mishap Database, which is maintained by the Directorate of Aerospace Safety at Norton Air Force Base. Published data from the Air Force Avionics Integrity Program (AVIP) and Hughes Aircraft were also reviewed. Statistical data from these three sources are presented. Two major conclusions are that problems with interconnections are major contributors to aircraft electrical equipment failures, and that environmental factors, especially corrosion, are significant contributors to connector problems.

  20. Amphibious Aircraft (United States)

    National Aeronautics and Space Administration — A brief self composed research article on Amphibious Aircrafts discussing their use, origin and modern day applications along with their advantages and disadvantages...

  1. Robots for Aircraft Maintenance (United States)


    Marshall Space Flight Center charged USBI (now Pratt & Whitney) with the task of developing an advanced stripping system based on hydroblasting to strip paint and thermal protection material from Space Shuttle solid rocket boosters. A robot, mounted on a transportable platform, controls the waterjet angle, water pressure and flow rate. This technology, now known as ARMS, has found commercial applications in the removal of coatings from jet engine components. The system is significantly faster than manual procedures and uses only minimal labor. Because the amount of "substrate" lost is minimal, the life of the component is extended. The need for toxic chemicals is reduced, as is waste disposal and human protection equipment. Users of the ARMS work cell include Delta Air Lines and the Air Force, which later contracted with USBI for development of a Large Aircraft Paint Stripping system (LARPS). LARPS' advantages are similar to ARMS, and it has enormous potential in military and civil aircraft maintenance. The technology may also be adapted to aircraft painting, aircraft inspection techniques and paint stripping of large objects like ships and railcars.

  2. Algorithm for Multi-Axis Cooperative Control of Aircraft Component Flexible Assembly%飞机部件柔性装配多轴协同控制算法研究

    Institute of Scientific and Technical Information of China (English)

    黄果; 王仲奇; 康永刚; 胡玉龙


    根据飞机部件柔性装配多轴协同控制的需求,采用模糊自整定PID算法进行实时控制.依据模糊自整定PID控制策略和PID参数的整定原则,结合MATLAB软件,用MATLAB语言编程与SIMULINK相结合的方法实现了一种飞机部件柔性装配模糊自整定PID控制器的设计、分析与仿真.%According to the aircraft component flexible assembly multi-axis cooperative control requirements, fuzzy self-tuning PID algorithm is used for realtime control. Based on fuzzy self-tuning PID control strategy and PID parameters setting principle, combined with the MATLAB software, MATLAB language programming and SIMULINK is combined to realize a kind of aircraft parts flexible assembly fuzzy self-tuning PID controller design, analysis and simulation.

  3. Aircraft cybernetics (United States)


    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  4. Towards Prognostics for Electronics Components (United States)

    National Aeronautics and Space Administration — Electronics components have an increasingly critical role in avionics systems and in the development of future aircraft systems. Prognostics of such components is...

  5. Trajectory Control for Very Flexible Aircraft (United States)


    total airspeed and the classic aircraft longitudinal , lateral, and vertical velocity components are u positive out the nose, v positive out the right...wing flexibility is a secondary and minimal contribution to aircraft longitudinal motion. Using this assumption and the previous assumptions of

  6. Cycle Counting Methods of the Aircraft Engine (United States)

    Fedorchenko, Dmitrii G.; Novikov, Dmitrii K.


    The concept of condition-based gas turbine-powered aircraft operation is realized all over the world, which implementation requires knowledge of the end-of-life information related to components of aircraft engines in service. This research proposes an algorithm for estimating the equivalent cyclical running hours. This article provides analysis…

  7. Advanced technology components for model GTP305-2 aircraft auxiliary power system. Final report 6 May 75-15 Jul 79

    Energy Technology Data Exchange (ETDEWEB)

    Kidwell, J.R.; Large, G.D.


    The GTP305-2 Advanced APU is a single shaft, all shaft power engine incorporating an axial-centrifugal compressor, a reverse flow annular combustor and a radial-axial turbine. Cycle analyses indicated a 10-percent high pressure compressor flow increase improved matching characteristics with the low pressure compressor. The combustion system is a reverse flow annular combustor with an air-assist/airblast fuel injection system. The radial-axial turbine stage is characterized by an integrally cast turbine rotor and a cast exhaust duct assembly. The Integrated Components Assembly (ICA) rig consists of the combustor and turbines with a dummy mass on the shaft to simulate the compressor. ICA testing was conducted to establish component performance at design operating conditions. ICA and cold air aerodynamic testing of the turbine stage and cooling flow effects, indicates design efficiency goals were exceeded. ICA test results, cold-air testing and combustion system parameters were input to the cycle model. Room temperature strain-control LCF tests were performed and results analyzed on a Weibull distribution. Data analysis indicated LCF life improvement was obtained through HIP and heat treatment.

  8. Smart Sensor System for NDE or Corrosion in Aging Aircraft (United States)

    Bar-Cohen, Y.; Marzwell, N.; Osegueda, R.; Ferregut, C.


    The extension of the operation life of military and civilian aircraft rather than replacing them with new ones is increasing the probability of aircraft component failure as a result of aging. Aircraft that already have endured a long srvice life of more than 40 years are now being considered for another 40 years of service.

  9. Wearproof composition coatings on the basis of SiC-AL2O3 for restoration and reiforcement of the components of aircraft ground support equipment

    Directory of Open Access Journals (Sweden)

    О. П. Уманський


    Full Text Available On the ground of research of a contact interaction of the melts of the system Ni–Al with the ceramics of SiC–Al2O3 content, the possibility of wearproof coating deposition of the system SiC–Al2O3–Ni–Al by gas-flame techniques has been proved. Technological features of their acquisition also have been studied. The structure of coatings from composition material that contains the SiC–Al2O3 wearproof component and Ni–Al metallic binder, deposited by the method of high velocity air fuel deposition (HVAF on medium-carbon steel steels has been researched. Tribotechnical descriptions of the deposited coatings under the conditions of friction without lubricating materials in the air environment in wide range of speed-load modes of the “pin–on–disk” layout have been studied. The features and regularities of their wear mechanisms retaining the constant speed and constant load have been determined

  10. Noise of High Performance Aircraft at Afterburner (United States)


    aircraft carrier, navy personnel work in close proximity to high performance jets at takeoffs and landings. The noise level emitted by these jets is...any major differences between the dominant noise components of these jets and those of a standard high temperature laboratory supersonic jet . It is...noise. For the F18E aircraft, we find that its noise, at high engine power settings, also includes new noise components in addition to the usual fine

  11. Aircraft Carriers

    DEFF Research Database (Denmark)

    Nødskov, Kim; Kværnø, Ole

    in Asia and will balance the carrier acquisitions of the United States, the United Kingdom, Russia and India. China’s current military strategy is predominantly defensive, its offensive elements being mainly focused on Taiwan. If China decides to acquire a large carrier with offensive capabilities......, then the country will also acquire the capability to project military power into the region beyond Taiwan, which it does not possess today. In this way, China will have the military capability to permit a change of strategy from the mainly defensive, mainland, Taiwan-based strategy to a more assertive strategy...... catapult with which to launch the fi ghter aircraft, not to mention the possible development of a nuclear power plant for the ship. The Russian press has indicated that China is negotiating to buy SU-33 fi ghters, which Russia uses on the Kuznetsov carrier. The SU-33 is, in its modernized version...

  12. Aircraft Electric Secondary Power (United States)


    Technologies resulted to aircraft power systems and aircraft in which all secondary power is supplied electrically are discussed. A high-voltage dc power generating system for fighter aircraft, permanent magnet motors and generators for aircraft, lightweight transformers, and the installation of electric generators on turbine engines are among the topics discussed.

  13. Aircraft Cabin Environmental Quality Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Gundel, Lara; Kirchstetter, Thomas; Spears, Michael; Sullivan, Douglas


    The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Results from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.

  14. Lifecycle Information of Aircraft Engine Components (United States)


    IUID Implementation Initiatives IUID RFID Mark Item Package Technology 2D Data Matrix UHF RF w/ EPC encoding Purpose Lifecycle visibility Supply...Management Acquiring Combat Capability via Public-Private Partnerships (PPPs) BCA: Contractor vs. Organic Growth Defense Industry Consolidation EU-US...Commodity Sourcing Strategies Contracting Government Procurement Functions Contractors in 21st-century Combat Zone Joint Contingency Contracting

  15. 飞机大部件调姿平台力位混合控制系统设计%Design on hybrid force position control of large aircraft components posture alignment platform

    Institute of Scientific and Technical Information of China (English)

    罗中海; 孟祥磊; 巴晓甫; 费少华; 方强


    In order to solve the problem that perpendicularity and parallelism error of three‐axis localizers cause posture alignment error and internal force of aircraft components ,the paper introduces a hybrid force position control system for posture alignment platform of large aircraft components . Error model of posture alignment was established to explain the problem .Then the strategy to select axes under position control and axes under force control was proposed based on condition number of mechanism’s Jacobian matrix .Static error calculation indicates that hybrid control strategy may improve posture accuracy and reduce internal force significantly under the given posture alignment condition w hen 0 .05 mm/m perpendicularity error exists on each localizer and the maximum parallelism error was 0 .1 mm/m and the averaged parallelism error was 0 .07 mm/m between localizers .The experiment indicates that the torque controller follows the desire torque signal properly with disturbing position signal and the dynamic torque error is below 0 .03 N · m ,w hich is applicable on real posture alignment platform .%为了解决调姿平台中,由于三坐标定位器自身各轴垂直度和相互各轴平行度误差引起的调姿误差以及对飞机大部件造成内力的问题,提出一种飞机大部件调姿平台的力/位置混合控制方法.通过建立调姿误差模型,分析三坐标定位器自身垂直度和相互平行度误差对姿态控制以及部件内力的影响;根据机构雅可比矩阵条件数,提出调姿平台力控制轴和位置控制轴分配策略;通过静态误差计算得到,在三坐标定位器垂直度误差为0.05 m m/m ,同向轴两两之间最大平行度误差为0.1 mm/m且平均平行度误差为0.07 mm/m时,在给定的部件尺寸和调姿轨迹下,力/位置混合控制方法的调姿精度优于全位置控制方法,并且显著降低了调姿部件内力.实验结果表明,力控

  16. Propulsion controlled aircraft computer (United States)

    Cogan, Bruce R. (Inventor)


    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  17. Hail damage to typical aircraft surfaces. (United States)

    Hayduk, R. J.


    Severe structural damage can occur when aircraft collide with hailstones. Consequently, methods of predicting hail damage to airplane surfaces are needed by the aircraft designer. This paper describes an analytical method of predicting the dent depth and final deformed shape for simple structural components impacted by hailstones. The solution was accomplished by adapting the DEPROSS computer program to the problem of normal impact of hail on flat metallic sheets and spherical metallic caps. Experimental data and analytical predictions are presented for hail damage to typical aircraft surfaces along with a description of the hail gun and hail simulation technique used in the experimental study.

  18. Static Aeroelasticity in Combat Aircraft. (United States)


    Simulation Maneuverability Performance System Integration Design Load Spectren FIG. 1 HIGH PERFORMANCE AIRCRAFT DESIGN Simulation has a great potential...Aeroelasticity has also a great effect on the flight control system design. If the basic control powers are reduced by increasing dynamic pressure...Components Flight Envelope Structure Concept a Total Aircraf Analysis FIG, 2 BASIC DATAS FOR AEROELASTIC DESIGN STUDIES Aeroelastic activities are now devided

  19. Development and experimental characterization of a fuel cell powered aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Thomas H.; Moffitt, Blake A.; Mavris, Dimitri N.; Parekh, David E. [Georgia Institute of Technology, Atlanta, GA 30332-0405 (United States)


    This paper describes the characteristics and performance of a fuel cell powered unmanned aircraft. The aircraft is novel as it is the largest compressed hydrogen fuel cell powered airplane built to date and is currently the only fuel cell aircraft whose design and test results are in the public domain. The aircraft features a 500 W polymer electrolyte membrane fuel cell with full balance of plant and compressed hydrogen storage incorporated into a custom airframe. Details regarding the design requirements, implementation and control of the aircraft are presented for each major aircraft system. The performances of the aircraft and powerplant are analyzed using data from flights and laboratory tests. The efficiency and component power consumption of the fuel cell propulsion system are measured at a variety of flight conditions. The performance of the aircraft powerplant is compared to other 0.5-1 kW-scale fuel cell powerplants in the literature and means of performance improvement for this aircraft are proposed. This work represents one of the first studies of fuel cell powered aircraft to result in a demonstration aircraft. As such, the results of this study are of practical interest to fuel cell powerplant and aircraft designers. (author)

  20. In-Service Aircraft Engine System Life Monitor Using Advanced Life-Estimating Technique Project (United States)

    National Aeronautics and Space Administration — It is proposed to develop an accurate in-service aircraft engine life monitor system for the prediction of remaining component and system life for aircraft engines....

  1. Unmanned aircraft systems (United States)

    Unmanned platforms have become increasingly more common in recent years for acquiring remotely sensed data. These aircraft are referred to as Unmanned Airborne Vehicles (UAV), Remotely Piloted Aircraft (RPA), Remotely Piloted Vehicles (RPV), or Unmanned Aircraft Systems (UAS), the official term used...

  2. Rapid Parameterization Schemes for Aircraft Shape Optimization (United States)

    Li, Wu


    A rapid shape parameterization tool called PROTEUS is developed for aircraft shape optimization. This tool can be applied directly to any aircraft geometry that has been defined in PLOT3D format, with the restriction that each aircraft component must be defined by only one data block. PROTEUS has eight types of parameterization schemes: planform, wing surface, twist, body surface, body scaling, body camber line, shifting/scaling, and linear morphing. These parametric schemes can be applied to two types of components: wing-type surfaces (e.g., wing, canard, horizontal tail, vertical tail, and pylon) and body-type surfaces (e.g., fuselage, pod, and nacelle). These schemes permit the easy setup of commonly used shape modification methods, and each customized parametric scheme can be applied to the same type of component for any configuration. This paper explains the mathematics for these parametric schemes and uses two supersonic configurations to demonstrate the application of these schemes.

  3. Survival analysis of aging aircraft (United States)

    Benavides, Samuel

    work demonstrates the development of a probabilistic corrosion failure model using survival analysis methods and techniques. Using a parsimonious approach, the coefficients of a Cox proportional hazards model were derived from a set of environmental, geographical and operational predictor variables. To determine if the variables satisfied the proportional hazard assumption, numerous statistical tests were performed---such as the equivalence tests of the log rank, Wilcoxon, Peto-Peto and Fleming-Harrington---and graphical plots generated such as observed-versus-expected plots and log(-log) survival curves. Finally, in a paradigm enhancement to current design methodologies, this dissertation place sets survival analysis modeling in the context of an emerging holistic structural integrity philosophy. While traditional aircraft design and life prediction methodologies consider only the cyclic fatigue domain without consideration to the environmental or unique operating spectrum that aircraft may fly in, a holistic approach considers the cradle-to-grave driving forces in the life of a component, such as corrosion assisted crack nucleation in a material. This dissertation, which uses real-world failure data obtained from structural aircraft components, is poised to narrow the cradle-to-grave loop and provide holistic feedback in the understanding of aircraft structural system failures.

  4. Study of the contribution of the different components of atmospheric cosmic radiation in dose received by the aircraft crew; Avaliacao da contribuicao dos diferentes componentes da radiacao cosmica atmosferica na dose em tripulacoes de aeronaves

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Marlon A.; Prado, Adriane C.M., E-mail:, E-mail: [Instituto Tecnologico de Aeronautica (ITA/DCTA), Sao Jose dos Campos, SP (Brazil); Federico, Claudio A.; Goncalez, Odair L., E-mail:, E-mail: [Instituto de Estudos Avancados (IEAv/DCTA), Sao Jose dos Campos, SP (Brazil)


    The crews and aircraft passengers are exposed to atmospheric cosmic radiation. The flow of this radiation is modulated by the solar cycle and space weather, varying with the geomagnetic latitude and altitude. This paper presents a study of the contributions of radiation in total ambient dose equivalent of the crews depending on flight altitude up to 20 km, during maximum and minimum solar and in equatorial and polar regions. The results of calculations of the particle flows generated by the EXPACS and QARM codes are used. The particles evaluated that contributing significantly in the ambient dose equivalent are neutrons, protons, electrons, positrons, alphas, photons, muons and charged pions. This review allows us to characterize the origin of the dose received by crews and also support a project of a dosimetric system suitable for this ionizing radiation field in aircraft and on the ground.

  5. Integrating the Unmanned Aircraft System into the National Airspace System (United States)


    and the ground control system. The ground control system is comprised of several integrated components to include: avionics , fuel, navigation...accessed January 15, 2011). U.S. Army Unmanned Aircraft Systems Roadmap 2010-2035: Eyes of the Army. Fort Rucker, Ala .: U.S. Army Unmanned Aircraft

  6. Aircraft Noise Prediction



    This contribution addresses the state-of-the-art in the field of aircraft noise prediction, simulation and minimisation. The point of view taken in this context is that of comprehensive models that couple the various aircraft systems with the acoustic sources, the propagation and the flight trajectories. After an exhaustive review of the present predictive technologies in the relevant fields (airframe, propulsion, propagation, aircraft operations, trajectory optimisation), the paper add...

  7. 78 FR 3356 - Airworthiness Directives; Various Aircraft Equipped With Wing Lift Struts (United States)


    ... Directives; Various Aircraft Equipped With Wing Lift Struts AGENCY: Federal Aviation Administration (FAA... airworthiness directive (AD) that applies to certain aircraft equipped with wing lift struts. The existing AD... Joint Aircraft System Component (JASC)/Air Transport Association (ATA) of America Code 57, Wings....

  8. 14 CFR 33.91 - Engine system and component tests. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine system and component tests. 33.91 Section 33.91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system...

  9. Plasma Fairings for Quieting Aircraft Landing Gear Noise Project (United States)

    National Aeronautics and Space Administration — A major component of airframe noise for commercial transport aircraft is the deployed landing gear. The noise from the gear originates due to complex, unsteady bluff...

  10. Cable Tensiometer for Aircraft (United States)

    Nunnelee, Mark (Inventor)


    The invention is a cable tensiometer that can be used on aircraft for real-time, in-flight cable tension measurements. The invention can be used on any aircraft cables with high precision. The invention is extremely light-weight, hangs on the cable being tested and uses a dual bending beam design with a high mill-volt output to determine tension.

  11. Aircraft operations management manual (United States)


    The NASA aircraft operations program is a multifaceted, highly diverse entity that directly supports the agency mission in aeronautical research and development, space science and applications, space flight, astronaut readiness training, and related activities through research and development, program support, and mission management aircraft operations flights. Users of the program are interagency, inter-government, international, and the business community. This manual provides guidelines to establish policy for the management of NASA aircraft resources, aircraft operations, and related matters. This policy is an integral part of and must be followed when establishing field installation policy and procedures covering the management of NASA aircraft operations. Each operating location will develop appropriate local procedures that conform with the requirements of this handbook. This manual should be used in conjunction with other governing instructions, handbooks, and manuals.

  12. Backward Extrusion of Aluminum Alloy Sections Used in Aircraft Structural Components / Wyciskanie Przeciwbieżne Kształtowników Ze Stopów Aluminium Stosowanych Na Elementy Konstrukcji Lotniczych

    Directory of Open Access Journals (Sweden)

    Pawłowska B.


    Full Text Available The paper presents an analysis of selected aluminum alloys as structural materials used in production of aircraft parts as well as specification of technological parameters of Al alloys extrusion on a backward press with their effect on mechanical properties, microstructure and quality of the final product. Upsetting tests with backward extrusion complex cross-sectional profile tests were conducted on aluminum alloys 7075, 2024, 2099. Based on the results, specifications of forging in the form of unit stress - effective strain relations were determined using logarithmic deformation index, allowing proper choice of extrusion parameters. The range of temperatures for hot plastic treatment along with range of extrusion rate for the analyzed thin-walled aircraft profiles were determined. Tests were also conducted on the microstructure of Al alloys in the initial state as well as after the extrusion process had been completed. It has been proved that the proper choice of parameters in the case of a specific profile extruded from Aluminum alloys 2024, 7075, 2099, allows the manufacturing of products of complex crosssections and the quality required in aerospace industry. This has been demonstrated on the example of complex cross-sectional profiles using elements of varied wall thickness.

  13. Component-specific modeling. [jet engine hot section components (United States)

    Mcknight, R. L.; Maffeo, R. J.; Tipton, M. T.; Weber, G.


    Accomplishments are described for a 3 year program to develop methodology for component-specific modeling of aircraft hot section components (turbine blades, turbine vanes, and burner liners). These accomplishments include: (1) engine thermodynamic and mission models, (2) geometry model generators, (3) remeshing, (4) specialty three-dimensional inelastic structural analysis, (5) computationally efficient solvers, (6) adaptive solution strategies, (7) engine performance parameters/component response variables decomposition and synthesis, (8) integrated software architecture and development, and (9) validation cases for software developed.

  14. Predicting Visibility of Aircraft (United States)

    Watson, Andrew; Ramirez, Cesar V.; Salud, Ellen


    Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO). In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration. PMID:19462007

  15. Aircraft-skin Infrared Radiation Characteristics Modeling and Analysis

    Institute of Scientific and Technical Information of China (English)

    Lu Jianwei; Wang Qiang


    One of the most important problems of stealth technology is to evaluate the infrared radiation (IR) level received by IR sensors from fighters to be detected. This article presents a synthetic method for calculating the IR emitted from aircraft-skin. By reckoning the aerodynamic heating and hot engine casing to be the main heat sources of the exposed aircraft-skin, a numerical model of skin temperature distribution is established through computational fluid dynamics (CFD) technique. Based on it, an infrared signature model for solving the complex geometry and structure of a fighter is proposed with the reverse Monte Carlo (RMC) method. Finally, by way of determining the IR intensity from aircraft-skin, the aircraft components that emit the most IR can be identified; and the cooling effects of the main aircraft components on IR intensity are investigated. It is found that reduction by 10 K in the skin temperature of head, vertical stabilizers and wings could lead to decline of more than 8% of the IR intensity on the aircraft-skin in front view while at the broadside of the aircraft, the drops in IR intensity could attain under 8%. The results provide useful reference in designing stealthy aircraft.

  16. Tropospheric sampling with aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Daum, P.H.; Springston, S.R.


    Aircraft constitute a unique environment which places stringent requirements on the instruments used to measure the concentrations of atmospheric trace gases and aerosols. Some of these requirements such as minimization of size, weight, and power consumption are general; others are specific to individual techniques. This review presents the basic principles and considerations governing the deployment of trace gas and aerosol instrumentation on an aircraft. An overview of common instruments illustrates these points and provides guidelines for designing and using instruments on aircraft-based measurement programs.

  17. Lightning hazards to aircraft (United States)

    Corn, P. B.


    Lightning hazards and, more generally, aircraft static electricity are discussed by a representative for the Air Force Flight Dynamics Laboratory. An overview of these atmospheric electricity hazards to aircraft and their systems is presented with emphasis on electrical and electronic subsystems. The discussion includes reviewing some of the characteristics of lightning and static electrification, trends in weather and lightning-related mishaps, some specific threat mechanisms and susceptible aircraft subsystems and some of the present technology gaps. A roadmap (flow chart) is presented to show the direction needed to address these problems.



    RAHMATI, Sadegh; GHASED, Amir


    Abstract. Generally domain Aircraft uses conventional fuel. These fuel having limited life, high cost and pollutant. Also nowadays price of petrol and other fuels are going to be higher, because of scarcity of those fuels. So there is great demand of use of non-exhaustible unlimited source of energy like solar energy. Solar aircraft is one of the ways to utilize solar energy. Solar aircraft uses solar panel to collect the solar radiation for immediate use but it also store the remaining part ...

  19. Control strategies for aircraft airframe noise reduction

    Institute of Scientific and Technical Information of China (English)

    Li Yong; Wang Xunnian; Zhang Dejiu


    With the development of low-noise aircraft engine,airframe noise now represents a major noise source during the commercial aircraft's approach to landing phase.Noise control efforts have therefore been extensively focused on the airframe noise problems in order to further reduce aircraft overall noise.In this review,various control methods explored in the last decades for noise reduction on airframe components including high-lift devices and landing gears are summarized.We introduce recent major achievements in airframe noise reduction with passive control methods such as fairings,deceleration plates,splitter plates,acoustic liners,slat cove cover and side-edge replacements,and then discuss the potential and control mechanism of some promising active flow control strategies for airframe noise reduction,such as plasma technique and air blowing/suction devices.Based on the knowledge gained throughout the extensively noise control testing,a few design concepts on the landing gear,high-lift devices and whole aircraft are provided for advanced aircraft low-noise design.Finally,discussions and suggestions are given for future research on airframe noise reduction.

  20. Depreciation of aircraft (United States)

    Warner, Edward P


    There is a widespread, and quite erroneous, impression to the effect that aircraft are essentially fragile and deteriorate with great rapidity when in service, so that the depreciation charges to be allowed on commercial or private operation are necessarily high.

  1. Essentials of aircraft armaments

    CERN Document Server

    Kaushik, Mrinal


    This book aims to provide a complete exposure about armaments from their design to launch from the combat aircraft. The book details modern ammunition and their tactical roles in warfare. The proposed book discusses aerodynamics, propulsion, structural as well as navigation, control, and guidance of aircraft armament. It also introduces the various types of ammunition developed by different countries and their changing trends. The book imparts knowledge in the field of design, and development of aircraft armaments to aerospace engineers and covers the role of the United Nations in peacekeeping and disarmament. The book will be very useful to researchers, students, and professionals working in design and manufacturing of aircraft armaments. The book will also serve air force and naval aspirants, and those interested in working on defence research and developments organizations. .

  2. Solar thermal aircraft (United States)

    Bennett, Charles L.


    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  3. Aircraft electromagnetic compatibility (United States)

    Clarke, Clifton A.; Larsen, William E.


    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  4. Aircraft Fire Protection Laboratory (United States)

    Federal Laboratory Consortium — The Navy Aircraft Protection Laboratory provides complete test support for all Navy air vehicle fire protection systems.The facility allows for the simulation of a...

  5. Aircraft Fire Protection Laboratory (United States)

    Federal Laboratory Consortium — The Navy Aircraft Protection Laboratory provides complete test support for all Navy air vehicle fire protection systems. The facility allows for the simulation of a...

  6. Automatic aircraft recognition (United States)

    Hmam, Hatem; Kim, Jijoong


    Automatic aircraft recognition is very complex because of clutter, shadows, clouds, self-occlusion and degraded imaging conditions. This paper presents an aircraft recognition system, which assumes from the start that the image is possibly degraded, and implements a number of strategies to overcome edge fragmentation and distortion. The current vision system employs a bottom up approach, where recognition begins by locating image primitives (e.g., lines and corners), which are then combined in an incremental fashion into larger sets of line groupings using knowledge about aircraft, as viewed from a generic viewpoint. Knowledge about aircraft is represented in the form of whole/part shape description and the connectedness property, and is embedded in production rules, which primarily aim at finding instances of the aircraft parts in the image and checking the connectedness property between the parts. Once a match is found, a confidence score is assigned and as evidence in support of an aircraft interpretation is accumulated, the score is increased proportionally. Finally a selection of the resulting image interpretations with the highest scores, is subjected to competition tests, and only non-ambiguous interpretations are allowed to survive. Experimental results demonstrating the effectiveness of the current recognition system are given.

  7. Identification of Aircraft Hazards

    Energy Technology Data Exchange (ETDEWEB)

    K. Ashley


    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section, as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).


    Energy Technology Data Exchange (ETDEWEB)

    K.L. Ashley


    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section, as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7).

  9. Aircraft Operations Classification System (United States)

    Harlow, Charles; Zhu, Weihong


    Accurate data is important in the aviation planning process. In this project we consider systems for measuring aircraft activity at airports. This would include determining the type of aircraft such as jet, helicopter, single engine, and multiengine propeller. Some of the issues involved in deploying technologies for monitoring aircraft operations are cost, reliability, and accuracy. In addition, the system must be field portable and acceptable at airports. A comparison of technologies was conducted and it was decided that an aircraft monitoring system should be based upon acoustic technology. A multimedia relational database was established for the study. The information contained in the database consists of airport information, runway information, acoustic records, photographic records, a description of the event (takeoff, landing), aircraft type, and environmental information. We extracted features from the time signal and the frequency content of the signal. A multi-layer feed-forward neural network was chosen as the classifier. Training and testing results were obtained. We were able to obtain classification results of over 90 percent for training and testing for takeoff events.

  10. Identifying tacit strategies in aircraft maneuvers (United States)

    Lewis, Charles M.; Heidorn, P. B.


    Two machine-learning methods are presently used to characterize the avoidance strategies used by skilled pilots in simulated aircraft encounters, and a general framework for the characterization of the strategic components of skilled behavior via qualitative representation of situations and responses is presented. Descriptions of pilot maneuvers that were 'conceptually equivalent' were ascertained by a concept-learning algorithm in conjunction with a classifier system that employed a generic algorithm; satisficing and 'buggy' strategies were thereby revealed.

  11. Advanced energy systems (APU) for large commercial aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Westenberger, A.; Bleil, J.; Arendt, M. [Airbus Deutschland GmbH, Hamburg (Germany)


    The intention of using a highly integrated component using on fuel cell technology installed on board of large commercial passenger aircraft for the generation of onboard power for the systems demand during an entire aircraft mission was subject of several studies. The results of these studies have been based on the simulation of the whole system in the context of an aircraft system environment. In front of the work stood the analyses of different fuel cell technologies and the analyses of the aircraft system environment. Today onboard power is provided on ground by an APU and in flight by the main engines. In order to compare fuel cell technology with the today's usual gas turbine operational characteristics have been analysed. A second analysis was devoted to the system demand for typical aircraft categories. The MEA system concept was supposed in all cases. The favourable concept represented an aircraft propelled by conventional engines with starter generator units, providing AC electrical power, covering in total proximately half of the power demand and a component based on fuel cell technology. This component provided electrical DC power, clean potable water, thermal energy at 180 degrees Celsius and nitrogen enriched air for fire suppression and fire extinguishing agent. In opposite of a usual gas turbine based APU, this new unit was operated as the primary power system. (orig.)

  12. Advanced Aircraft Material

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Prince


    Full Text Available There has been long debate on “advanced aircraft material” from past decades & researchers too came out with lots of new advanced material like composites and different aluminum alloys. Now days a new advancement that is in great talk is third generation Aluminum-lithium alloy. Newest Aluminum-lithium alloys are found out to have low density, higher elastic modulus, greater stiffness, greater cryogenic toughness, high resistance to fatigue cracking and improved corrosion resistance properties over the earlier used aircraft material as mentioned in Table 3 [1-5]. Comparison had been made with nowadays used composite material and is found out to be more superior then that

  13. Aircraft Fuel Systems Career Ladder. (United States)


    type fittings remove and install fuel cells clean work areas inspect aircraft for safety pin installation purge tanks or cells using blow purge method...INSPECT AIRCRAFT FOR SAFETY PIN INSTALLATION 84 H254 PURGE TANKS OR CELLS USING BLOW PURGE METHOD 83 H227 CHECK AIRCRAFT FOR LIQUID OXYGEN (LOX...H243 INSPECT AIRCRAFT FOR SAFETY PIN INSTALLATION 52 M483 MIX SEALANTS BY HAND 48 K372 CONNECT OR DISCONNECT WIGGINS TYPE FITTINGS 48 H236 DISCONNECT

  14. Aircraft Oxygen Generation (United States)


    aircraft use some form of on-board oxygen generation provided by one of two corporations that dominate this market . A review of safety incident data...manufacture of synthetic resins (e.g., Bakelite), and for 161 making dyestuffs, flavorings, perfumes , and other chemicals. Some are used as

  15. Aircraft noise prediction (United States)

    Filippone, Antonio


    This contribution addresses the state-of-the-art in the field of aircraft noise prediction, simulation and minimisation. The point of view taken in this context is that of comprehensive models that couple the various aircraft systems with the acoustic sources, the propagation and the flight trajectories. After an exhaustive review of the present predictive technologies in the relevant fields (airframe, propulsion, propagation, aircraft operations, trajectory optimisation), the paper addresses items for further research and development. Examples are shown for several airplanes, including the Airbus A319-100 (CFM engines), the Bombardier Dash8-Q400 (PW150 engines, Dowty R408 propellers) and the Boeing B737-800 (CFM engines). Predictions are done with the flight mechanics code FLIGHT. The transfer function between flight mechanics and the noise prediction is discussed in some details, along with the numerical procedures for validation and verification. Some code-to-code comparisons are shown. It is contended that the field of aircraft noise prediction has not yet reached a sufficient level of maturity. In particular, some parametric effects cannot be investigated, issues of accuracy are not currently addressed, and validation standards are still lacking.

  16. Aircraft Emissions Characterization (United States)


    sample from each trap through a heated (1500C) six-port valve ’ Carle Instruments Model 5621) and onto the analytical column. The coLoponents in each...Environmental Protection, Vol. II. Aircraft Engine Emissions, Int. Civil Aviation Organ., 1981. 7. Nebel , G. J., "Benzene in Auto Exhaust," J. Air Poll

  17. Braking performance of aircraft tires (United States)

    Agrawal, Satish K.

    This paper brings under one cover the subject of aircraft braking performance and a variety of related phenomena that lead to aircraft hydroplaning, overruns, and loss of directional control. Complex processes involving tire deformation, tire slipping, and fluid pressures in the tire-runway contact area develop the friction forces for retarding the aircraft; this paper describes the physics of these processes. The paper reviews the past and present research efforts and concludes that the most effective way to combat the hazards associated with aircraft landings and takeoffs on contaminated runways is by measuring and displaying in realtime the braking performance parameters in the aircraft cockpit.

  18. Towards Prognostics for Electronics Components (United States)

    Saha, Bhaskar; Celaya, Jose R.; Wysocki, Philip F.; Goebel, Kai F.


    Electronics components have an increasingly critical role in avionics systems and in the development of future aircraft systems. Prognostics of such components is becoming a very important research field as a result of the need to provide aircraft systems with system level health management information. This paper focuses on a prognostics application for electronics components within avionics systems, and in particular its application to an Isolated Gate Bipolar Transistor (IGBT). This application utilizes the remaining useful life prediction, accomplished by employing the particle filter framework, leveraging data from accelerated aging tests on IGBTs. These tests induced thermal-electrical overstresses by applying thermal cycling to the IGBT devices. In-situ state monitoring, including measurements of steady-state voltages and currents, electrical transients, and thermal transients are recorded and used as potential precursors of failure.

  19. Evaluation of the doses to aircrew members by considering the aircraft structures (United States)

    Battistoni, G.; Ferrari, A.; Pelliccioni, M.; Villari, R.

    A mathematical model of an aircraft has been developed with the aim to investigate the influence of the aircraft structures and contents on the exposure of aircrew and passengers to the galactic component of cosmic rays. The irradiation of the mathematical model in the cosmic ray environment has been simulated using the Monte Carlo transport code FLUKA. Effective dose and ambient dose equivalent rates have been determined inside the aircraft at several locations along the fuselage at typical civil aviation altitudes.

  20. Commercial Aircraft Integrated Vehicle Health Management Study (United States)

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Jones, Sharon Monica; Kurtoglu, Tolga; Leone, Karen M.; Sandifer, Carl E.; Thomas, Megan A.


    Statistical data and literature from academia, industry, and other government agencies were reviewed and analyzed to establish requirements for fixture work in detection, diagnosis, prognosis, and mitigation for IVHM related hardware and software. Around 15 to 20 percent of commercial aircraft accidents between 1988 and 2003 involved inalftfnctions or failures of some aircraft system or component. Engine and landing gear failures/malfunctions dominate both accidents and incidents. The IVI vl Project research technologies were found to map to the Joint Planning and Development Office's National Research and Development Plan (RDP) as well as the Safety Working Group's National Aviation Safety Strategic. Plan (NASSP). Future directions in Aviation Technology as related to IVHlvl were identified by reviewing papers from three conferences across a five year time span. A total of twenty-one trend groups in propulsion, aeronautics and aircraft categories were compiled. Current and ftiture directions of IVHM related technologies were gathered and classified according to eight categories: measurement and inspection, sensors, sensor management, detection, component and subsystem monitoring, diagnosis, prognosis, and mitigation.

  1. 基于DG的航天器部件可诊断性测点配置方法%Design of sensor location based on directed graph of the aircraft components on diagnostic criteria

    Institute of Scientific and Technical Information of China (English)

    刘睿; 周军; 李鑫; 刘莹莹


    This paper accomplishes the study of sensor location satisfying the diagnostic criteria which in-clude detectability and isolability.Traditionally,the directed graph (DG)is used in the sensor location satisfy-ing the diagnostic criteria.However,in most cases,the spacecraft components are complex and the roots are too excessive.It is hard to develop the bipartite graph when using the DG method.So a description using the in-cidence matrix is put forward,which is easy to program and extend.At the meantime,the transition relation-ship between the bipartite graph and the incidence matrix is presented.Finally,the sensor location problem based on the diagnostic criteria of the fly wheel is resolved.The results demonstrate that the method is valuable for sensor location of spacecraft components.%以故障可诊断性,即可检测性和可分离性为目标进行测点配置方法研究。针对航天器部件测点较多,传统基于有向图(directed graph,DG)的方法在偶图绘制非常复杂且容易出错的情况,引入关联矩阵描述处理可诊断性测点配置方法,关联矩阵方法便于应用计算机编程,且在节点较多时便于扩展。在基于DG可诊断性测点配置方法思路的基础上,对应了关联矩阵与DG二者之间的转化关系,并以动量轮为例进行基于可诊断性的测点配置。结果表明该方法对卫星部件级测点配置具有实用价值。

  2. Aircraft family design using enhanced collaborative optimization (United States)

    Roth, Brian Douglas

    Significant progress has been made toward the development of multidisciplinary design optimization (MDO) methods that are well-suited to practical large-scale design problems. However, opportunities exist for further progress. This thesis describes the development of enhanced collaborative optimization (ECO), a new decomposition-based MDO method. To support the development effort, the thesis offers a detailed comparison of two existing MDO methods: collaborative optimization (CO) and analytical target cascading (ATC). This aids in clarifying their function and capabilities, and it provides inspiration for the development of ECO. The ECO method offers several significant contributions. First, it enhances communication between disciplinary design teams while retaining the low-order coupling between them. Second, it provides disciplinary design teams with more authority over the design process. Third, it resolves several troubling computational inefficiencies that are associated with CO. As a result, ECO provides significant computational savings (relative to CO) for the test cases and practical design problems described in this thesis. New aircraft development projects seldom focus on a single set of mission requirements. Rather, a family of aircraft is designed, with each family member tailored to a different set of requirements. This thesis illustrates the application of decomposition-based MDO methods to aircraft family design. This represents a new application area, since MDO methods have traditionally been applied to multidisciplinary problems. ECO offers aircraft family design the same benefits that it affords to multidisciplinary design problems. Namely, it simplifies analysis integration, it provides a means to manage problem complexity, and it enables concurrent design of all family members. In support of aircraft family design, this thesis introduces a new wing structural model with sufficient fidelity to capture the tradeoffs associated with component

  3. Aircraft propeller induced structure-borne noise (United States)

    Unruh, James F.


    A laboratory-based test apparatus employing components typical of aircraft construction was developed that would allow the study of structure-borne noise transmission due to propeller induced wake/vortex excitation of in-wake structural appendages. The test apparatus was employed to evaluate several aircraft installation effects (power plant placement, engine/nacelle mass loading, and wing/fuselage attachment methods) and several structural response modifications for structure-borne noise control (the use of wing blocking mass/fuel, wing damping treaments, and tuned mechanical dampers). Most important was the development of in-flight structure-borne noise transmission detection techniques using a combination of ground-based frequency response function testing and in-flight structural response measurement. Propeller wake/vortex excitation simulation techniques for improved ground-based testing were also developed to support the in-flight structure-borne noise transmission detection development.

  4. Aircraft Data Acquisition


    Elena BALMUS


    The introduction of digital systems instead of analog ones has created a major separation in the aviation technology. Although the digital equipment made possible that the increasingly faster controllers take over, we should say that the real world remains essentially analogue [4]. Fly-by-wire designers attempting to control and measure the real feedback of an aircraft were forced to find a way to connect the analogue environment to their digital equipment. In order to manage the implications...

  5. Airline and Aircraft Reliability


    Hauka, Maris; Paramonovs, Jurijs


    Development of the inspection programme of fatigue-prone aircraft construction under limitation of airline fatigue failure rate. The highest economical effectiveness of airline under limitation of fatigue failure rate and failure probability is discussed. For computing is used exponential regression, Monte Carlo method, Log Normal distribution, Markov chains and semi-Markov process theory. The minimax approach is offered for processing the results of full-scale fatigue approval test of an air...

  6. Slotted Aircraft Wing (United States)

    McLean, James D. (Inventor); Witkowski, David P. (Inventor); Campbell, Richard L. (Inventor)


    A swept aircraft wing includes a leading airfoil element and a trailing airfoil element. At least one full-span slot is defined by the wing during at least one transonic condition of the wing. The full-span slot allows a portion of the air flowing along the lower surface of the leading airfoil element to split and flow over the upper surface of the trailing airfoil element so as to achieve a performance improvement in the transonic condition.

  7. Computer program to predict noise of general aviation aircraft: User's guide (United States)

    Mitchell, J. A.; Barton, C. K.; Kisner, L. S.; Lyon, C. A.


    Program NOISE predicts General Aviation Aircraft far-field noise levels at FAA FAR Part 36 certification conditions. It will also predict near-field and cabin noise levels for turboprop aircraft and static engine component far-field noise levels.

  8. Interaction of Aircraft Wakes From Laterally Spaced Aircraft (United States)

    Proctor, Fred H.


    Large Eddy Simulations are used to examine wake interactions from aircraft on closely spaced parallel paths. Two sets of experiments are conducted, with the first set examining wake interactions out of ground effect (OGE) and the second set for in ground effect (IGE). The initial wake field for each aircraft represents a rolled-up wake vortex pair generated by a B-747. Parametric sets include wake interactions from aircraft pairs with lateral separations of 400, 500, 600, and 750 ft. The simulation of a wake from a single aircraft is used as baseline. The study shows that wake vortices from either a pair or a formation of B-747 s that fly with very close lateral spacing, last longer than those from an isolated B-747. For OGE, the inner vortices between the pair of aircraft, ascend, link and quickly dissipate, leaving the outer vortices to decay and descend slowly. For the IGE scenario, the inner vortices ascend and last longer, while the outer vortices decay from ground interaction at a rate similar to that expected from an isolated aircraft. Both OGE and IGE scenarios produce longer-lasting wakes for aircraft with separations less than 600 ft. The results are significant because concepts to increase airport capacity have been proposed that assume either aircraft formations and/or aircraft pairs landing on very closely spaced runways.

  9. Aircrew physical training is the component of flight safety.

    Directory of Open Access Journals (Sweden)

    Popov F.I.


    Full Text Available The components and elements of aviation system for aircraft accidents prevention are realized in the article. The role and meaning of flying hours aircrew physical training in accordance with military and professional activity specification, system reliability "aircraft - pilot - environment" and its effective utilization in the training and combat activity conditions and flight safety improvement were developed in this article.

  10. Guidance Systems of Fighter Aircraft

    Directory of Open Access Journals (Sweden)

    K.N. Rajanikanth


    Full Text Available Mission performance of a fighter aircraft is crucial for survival and strike capabilities in todays' aerial warfare scenario. The guidance functions of such an aircraft play a vital role inmeeting the requirements and accomplishing the mission success. This paper presents the requirements of precision guidance for various missions of a fighter aircraft. The concept ofguidance system as a pilot-in-loop system is pivotal in understanding and designing such a system. Methodologies of designing such a system are described.

  11. Guidance Systems of Fighter Aircraft


    K.N. Rajanikanth; Rao, R S; P. S. Subramanyam; Ajai Vohra


    Mission performance of a fighter aircraft is crucial for survival and strike capabilities in todays' aerial warfare scenario. The guidance functions of such an aircraft play a vital role inmeeting the requirements and accomplishing the mission success. This paper presents the requirements of precision guidance for various missions of a fighter aircraft. The concept ofguidance system as a pilot-in-loop system is pivotal in understanding and designing such a system. Methodologies of designing s...

  12. Scheduling of an aircraft fleet (United States)

    Paltrinieri, Massimo; Momigliano, Alberto; Torquati, Franco


    Scheduling is the task of assigning resources to operations. When the resources are mobile vehicles, they describe routes through the served stations. To emphasize such aspect, this problem is usually referred to as the routing problem. In particular, if vehicles are aircraft and stations are airports, the problem is known as aircraft routing. This paper describes the solution to such a problem developed in OMAR (Operative Management of Aircraft Routing), a system implemented by Bull HN for Alitalia. In our approach, aircraft routing is viewed as a Constraint Satisfaction Problem. The solving strategy combines network consistency and tree search techniques.

  13. Optics in aircraft engines (United States)

    Vachon, James; Malhotra, Subhash

    The authors describe optical IR&D (independent research and development) programs designed to demonstrate and evaluate optical technologies for incorporation into next-generation military and commercial aircraft engines. Using a comprehensive demonstration program to validate this technology in an on-engine environment, problems encountered can be resolved early and risk can be minimized. In addition to specific activities related to the optics demonstration on the fighter engine, there are other optical programs underway, including a solenoid control system, a light off detection system, and an optical communication link. Research is also underway in simplifying opto-electronics and exploiting multiplexing to further reduce cost and weight.

  14. Aircraft propeller control (United States)

    Day, Stanley G. (Inventor)


    In the invention, the speeds of both propellers in a counterrotating aircraft propeller pair are measured. Each speed is compared, using a feedback loop, with a demanded speed and, if actual speed does not equal demanded speed for either propeller, pitch of the proper propeller is changed in order to attain the demanded speed. A proportional/integral controller is used in the feedback loop. Further, phase of the propellers is measured and, if the phase does not equal a demanded phase, the speed of one propeller is changed, by changing pitch, until the proper phase is attained.

  15. Commercial Aircraft Protection

    Energy Technology Data Exchange (ETDEWEB)

    Ehst, David A. [Argonne National Lab. (ANL), Argonne, IL (United States)


    This report summarizes the results of theoretical research performed during 3 years of P371 Project implementation. In results of such research a new scientific conceptual technology of quasi-passive individual infrared protection of heat-generating objects – Spatial Displacement of Thermal Image (SDTI technology) was developed. Theoretical substantiation and description of working processes of civil aircraft individual IR-protection system were conducted. The mathematical models and methodology were presented, there were obtained the analytical dependencies which allow performing theoretical research of the affect of intentionally arranged dynamic field of the artificial thermal interferences with variable contrast onto main parameters of optic-electronic tracking and homing systems.

  16. Chemistry in aircraft plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kraabol, A.G.; Stordal, F.; Knudsen, S. [Norwegian Inst. for Air Research, Kjeller (Norway); Konopka, P. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere


    An expanding plume model with chemistry has been used to study the chemical conversion of NO{sub x} to reservoir species in aircraft plumes. The heterogeneous conversion of N{sub 2}O{sub 5} to HNO{sub 3}(s) has been investigated when the emissions take place during night-time. The plume from an B747 has been simulated. During a ten-hour calculation the most important reservoir species was HNO{sub 3} for emissions at noon. The heterogeneous reactions had little impact on the chemical loss of NO{sub x} to reservoir species for emissions at night. (author) 4 refs.

  17. Hydrogen aircraft technology (United States)

    Brewer, G. D.


    A comprehensive evaluation is conducted of the technology development status, economics, commercial feasibility, and infrastructural requirements of LH2-fueled aircraft, with additional consideration of hydrogen production, liquefaction, and cryostorage methods. Attention is given to the effects of LH2 fuel cryotank accommodation on the configurations of prospective commercial transports and military airlifters, SSTs, and HSTs, as well as to the use of the plentiful heatsink capacity of LH2 for innovative propulsion cycles' performance maximization. State-of-the-art materials and structural design principles for integral cryotank implementation are noted, as are airport requirements and safety and environmental considerations.

  18. Aircraft Engine Life-Consumption Monitoring for Real-Time Reliability Determination Project (United States)

    National Aeronautics and Space Administration — The object of this research is to develop an in-service life-monitor system for the prediction of the remaining component and system life of aircraft engines. The...

  19. NASA's Aeroacoustic Tools and Methods for Analysis of Aircraft Noise (United States)

    Rizzi, Stephen A.; Lopes, Leonard V.; Burley, Casey L.


    Aircraft community noise is a significant concern due to continued growth in air traffic, increasingly stringent environmental goals, and operational limitations imposed by airport authorities. The ability to quantify aircraft noise at the source and ultimately at observers is required to develop low noise aircraft designs and flight procedures. Predicting noise at the source, accounting for scattering and propagation through the atmosphere to the observer, and assessing the perception and impact on a community requires physics-based aeroacoustics tools. Along with the analyses for aero-performance, weights and fuel burn, these tools can provide the acoustic component for aircraft MDAO (Multidisciplinary Design Analysis and Optimization). Over the last decade significant progress has been made in advancing the aeroacoustic tools such that acoustic analyses can now be performed during the design process. One major and enabling advance has been the development of the system noise framework known as Aircraft NOise Prediction Program2 (ANOPP2). ANOPP2 is NASA's aeroacoustic toolset and is designed to facilitate the combination of acoustic approaches of varying fidelity for the analysis of noise from conventional and unconventional aircraft. The toolset includes a framework that integrates noise prediction and propagation methods into a unified system for use within general aircraft analysis software. This includes acoustic analyses, signal processing and interfaces that allow for the assessment of perception of noise on a community. ANOPP2's capability to incorporate medium fidelity shielding predictions and wind tunnel experiments into a design environment is presented. An assessment of noise from a conventional and Hybrid Wing Body (HWB) aircraft using medium fidelity scattering methods combined with noise measurements from a model-scale HWB recently placed in NASA's 14x22 wind tunnel are presented. The results are in the form of community noise metrics and

  20. Global Local Structural Optimization of Transportation Aircraft Wings

    NARCIS (Netherlands)

    Ciampa, P.D.; Nagel, B.; Van Tooren, M.J.L.


    The study presents a multilevel optimization methodology for the preliminary structural design of transportation aircraft wings. A global level is defined by taking into account the primary wing structural components (i.e., ribs, spars and skin) which are explicitly modeled by shell layered finite e

  1. Aeroelastic Loads Modeling for Composite Aircraft Design Support

    NARCIS (Netherlands)

    Baluch, H.A.


    With regard to the simulation of structural vibrations and consequent aeroelastic loads in aircraft components, the use of elastic axis e.a as reference of vibrations is quite common. The e.a decouples the bending and torsion degrees of freedom (D.o.F) during the dynamic analysis. The use of the e.a

  2. Research on uncertainty in measurement assisted alignment in aircraft assembly

    Institute of Scientific and Technical Information of China (English)

    Chen Zhehan; Du Fuzhou; Tang Xiaoqing


    Operations in assembling and joining large size aircraft components are changed to novel digital and flexible ways by digital measurement assisted alignment. Positions and orientations (P&O) of aligned components are critical characters which assure geometrical positions and rela-tionships of those components. Therefore, evaluating the P&O of a component is considered nec-essary and critical for ensuring accuracy in aircraft assembly. Uncertainty of position and orientation (U-P&O), as a part of the evaluating result of P&O, needs to be given for ensuring the integrity and credibility of the result; furthermore, U-P&O is necessary for error tracing and quality evaluating of measurement assisted aircraft assembly. However, current research mainly focuses on the process integration of measurement with assembly, and usually ignores the uncer-tainty of measured result and its influence on quality evaluation. This paper focuses on the expres-sion, analysis, and application of U-P&O in measurement assisted alignment. The geometrical and algebraical connotations of U-P&O are presented. Then, an analytical algorithm for evaluating the multi-dimensional U-P&O is given, and the effect factors and characteristics of U-P&O are dis-cussed. Finally, U-P&O is used to evaluate alignment in aircraft assembly for quality evaluating and improving. Cases are introduced with the methodology.

  3. 76 FR 60367 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes (United States)


    ... repetitive inspections and lubrication of the nose baggage door latching mechanism and lock assembly. This... nose baggage door components ] and repetitive inspections and lubrications of the nose baggage door... commenters stated this would match program extensions for aircraft that are in for-hire or...

  4. Advanced materials research for long-haul aircraft turbine engines (United States)

    Signorelli, R. A.; Blankenship, C. P.


    The status of research efforts to apply low to intermediate temperature composite materials and advanced high temperature materials to engine components is reviewed. Emerging materials technologies and their potential benefits to aircraft gas turbines were emphasized. The problems were identified, and the general state of the technology for near term use was assessed.

  5. Aircraft modifications: Assessing the current state of Air Force aircraft modifications and the implications for future military capability (United States)

    Hill, Owen Jacob

    How prepared is the U.S. Air Force to modify its aircraft fleet in upcoming years? Aircraft modernization is a complex interaction of new and legacy aircraft, organizational structure, and planning policy. This research will take one component of modernization: aircraft modification, and apply a new method of analysis in order to help formulate policy to promote modernization. Departing from previous small-sample studies dependent upon weight as a chief explanatory variable, this dissertation incorporates a comprehensive dataset that was constructed for this research of all aircraft modifications from 1996 through 2005. With over 700 modification programs, this dataset is used to examine changes to the current modification policy using policy-response regression models. These changes include separating a codependent procurement and installation schedule, reducing the documentation requirements for safety modifications, and budgeting for aging aircraft modifications. The research then concludes with predictive models for the F-15 and F-16 along with their replacements: the F-22 and F-35 Joint Strike Fighter.

  6. Aircraft gas turbine materials and processes. (United States)

    Kear, B H; Thompson, E R


    Materials and processing innovations that have been incorporated into the manufacture of critical components for high-performance aircraft gas turbine engines are described. The materials of interest are the nickel- and cobalt-base superalloys for turbine and burner sections of the engine, and titanium alloys and composites for compressor and fan sections of the engine. Advanced processing methods considered include directional solidification, hot isostatic pressing, superplastic foring, directional recrystallization, and diffusion brazing. Future trends in gas turbine technology are discussed in terms of materials availability, substitution, and further advances in air-cooled hardware.

  7. Computational analysis of aircraft pressure relief doors (United States)

    Schott, Tyler

    Modern trends in commercial aircraft design have sought to improve fuel efficiency while reducing emissions by operating at higher pressures and temperatures than ever before. Consequently, greater demands are placed on the auxiliary bleed air systems used for a multitude of aircraft operations. The increased role of bleed air systems poses significant challenges for the pressure relief system to ensure the safe and reliable operation of the aircraft. The core compartment pressure relief door (PRD) is an essential component of the pressure relief system which functions to relieve internal pressure in the core casing of a high-bypass turbofan engine during a burst duct over-pressurization event. The successful modeling and analysis of a burst duct event are imperative to the design and development of PRD's to ensure that they will meet the increased demands placed on the pressure relief system. Leveraging high-performance computing coupled with advances in computational analysis, this thesis focuses on a comprehensive computational fluid dynamics (CFD) study to characterize turbulent flow dynamics and quantify the performance of a core compartment PRD across a range of operating conditions and geometric configurations. The CFD analysis was based on a compressible, steady-state, three-dimensional, Reynolds-averaged Navier-Stokes approach. Simulations were analyzed, and results show that variations in freestream conditions, plenum environment, and geometric configurations have a non-linear impact on the discharge, moment, thrust, and surface temperature characteristics. The CFD study revealed that the underlying physics for this behavior is explained by the interaction of vortices, jets, and shockwaves. This thesis research is innovative and provides a comprehensive and detailed analysis of existing and novel PRD geometries over a range of realistic operating conditions representative of a burst duct over-pressurization event. Further, the study provides aircraft


    Directory of Open Access Journals (Sweden)

    C.M. Meyer


    Full Text Available Many sources maintain that the role played by air power in the 1973 Yom Kippur War was important. Other interpretations state that control of air space over the battlefield areas, (either by aircraft or anti-aircraft defences, was vital.

  9. Aircraft landing using GPS (United States)

    Lawrence, David Gary

    The advent of the Global Positioning System (GPS) is revolutionizing the field of navigation. Commercial aviation has been particularly influenced by this worldwide navigation system. From ground vehicle guidance to aircraft landing applications, GPS has the potential to impact many areas of aviation. GPS is already being used for non-precision approach guidance; current research focuses on its application to more critical regimes of flight. To this end, the following contributions were made: (1) Development of algorithms and a flexible software architecture capable of providing real-time position solutions accurate to the centimeter level with high integrity. This architecture was used to demonstrate 110 automatic landings of a Boeing 737. (2) Assessment of the navigation performance provided by two GPS-based landing systems developed at Stanford, the Integrity Beacon Landing System, and the Wide Area Augmentation System. (3) Preliminary evaluation of proposed enhancements to traditional techniques for GPS positioning, specifically, dual antenna positioning and pseudolite augmentation. (4) Introduction of a new concept for positioning using airport pseudolites. The results of this research are promising, showing that GPS-based systems can potentially meet even the stringent requirements of a Category III (zero visibility) landing system. Although technical and logistical hurdles still exist, it is likely that GPS will soon provide aircraft guidance in all phases of flight, including automatic landing, roll-out, and taxi.

  10. Is electronic life-cycle tracking of aircraft parts degrading readiness?



    Approved for public release; distribution is unlimited. The Naval Aviation Logistics Command Managed Information System (NALCOMIS), the current Navy and Marine Corps electronic tracking system for aircraft components, provides complete, up-to-date life-cycle information about aircraft and associated components to all maintenance agencies across the Naval Aviation Enterprise (NAE). By design, the system is meant to facilitate efficient receipt, repair, documentation, and transfer of all air...

  11. High performance cutting of aircraft and turbine components (United States)

    Krämer, A.; Lung, D.; Klocke, F.


    Titanium and nickel-based alloys belong to the group of difficult-to-cut materials. The machining of these high-temperature alloys is characterized by low productivity and low process stability as a result of their physical and mechanical properties. Major problems during the machining of these materials are low applicable cutting speeds due to excessive tool wear, long machining times, and thus high manufacturing costs, as well as the formation of ribbon and snarled chips. Under these conditions automation of the production process is limited. This paper deals with strategies to improve machinability of titanium and nickel-based alloys. Using the example of the nickel-based alloy Inconel 718 high performance cutting with advanced cutting materials, such as PCBN and cutting ceramics, is presented. Afterwards the influence of different cooling strategies, like high-pressure lubricoolant supply and cryogenic cooling, during machining of TiAl6V4 is shown.

  12. Probabilistic Remaining Useful Life Prediction of Composite Aircraft Components Project (United States)

    National Aeronautics and Space Administration — A composite fatigue damage assessment and risk informed prognosis toolkit will be developed by enhancing and integrating existing solution modules within a...

  13. Probabilistic Remaining Useful Life Prediction of Composite Aircraft Components Project (United States)

    National Aeronautics and Space Administration — A Probabilistic Fatigue Damage Assessment Network (PFDAN) toolkit for Abaqus will be developed for probabilistic life management of a laminated composite structure...

  14. Temperature profiles, current components, and other data from XBT casts and current meters from AIRCRAFT and other platforms from the TOGA Area - Atlantic as part of the Seasonal Response of the Equatorial Atlantic Experiment/Francais Ocean Et Climat Dans L'Atlantique Equatorial (SEQUAL/FOCAL) project from 1979-01-16 to 1985-01-01 (NCEI Accession 8700213) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles and current meter data were collected from AIRCRAFT and other platforms in the NW Atlantic (limit-40 W) from 16 January 1979 to 01 January...

  15. Commercial aircraft composite technology

    CERN Document Server

    Breuer, Ulf Paul


    This book is based on lectures held at the faculty of mechanical engineering at the Technical University of Kaiserslautern. The focus is on the central theme of societies overall aircraft requirements to specific material requirements and highlights the most important advantages and challenges of carbon fiber reinforced plastics (CFRP) compared to conventional materials. As it is fundamental to decide on the right material at the right place early on the main activities and milestones of the development and certification process and the systematic of defining clear requirements are discussed. The process of material qualification - verifying material requirements is explained in detail. All state-of-the-art composite manufacturing technologies are described, including changes and complemented by examples, and their improvement potential for future applications is discussed. Tangible case studies of high lift and wing structures emphasize the specific advantages and challenges of composite technology. Finally,...

  16. Aircraft control system (United States)

    Lisoski, Derek L. (Inventor); Kendall, Greg T. (Inventor)


    A solar rechargeable, long-duration, span-loaded flying wing, having no fuselage or rudder. Having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn, pitch and yaw. The wing is configured to deform under flight loads to position the propellers such that the control can be achieved. Each of five segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other segments, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface.

  17. Aircraft recognition and pose estimation (United States)

    Hmam, Hatem; Kim, Jijoong


    This work presents a geometry based vision system for aircraft recognition and pose estimation using single images. Pose estimation improves the tracking performance of guided weapons with imaging seekers, and is useful in estimating target manoeuvres and aim-point selection required in the terminal phase of missile engagements. After edge detection and straight-line extraction, a hierarchy of geometric reasoning algorithms is applied to form line clusters (or groupings) for image interpretation. Assuming a scaled orthographic projection and coplanar wings, lateral symmetry inherent in the airframe provides additional constraints to further reject spurious line clusters. Clusters that accidentally pass all previous tests are checked against the original image and are discarded. Valid line clusters are then used to deduce aircraft viewing angles. By observing that the leading edges of wings of a number of aircraft of interest are within 45 to 65 degrees from the symmetry axis, a bounded range of aircraft viewing angles can be found. This generic property offers the advantage of not requiring the storage of complete aircraft models viewed from all aspects, and can handle aircraft with flexible wings (e.g. F111). Several aircraft images associated with various spectral bands (i.e. visible and infra-red) are finally used to evaluate the system's performance.

  18. Structural analysis of Aircraft fuselage splice joint (United States)

    Udaya Prakash, R.; Kumar, G. Raj; Vijayanandh, R.; Senthil Kumar, M.; Ramganesh, T.


    In Aviation sector, composite materials and its application to each component are one of the prime factors of consideration due to the high strength to weight ratio, design flexibility and non-corrosive so that the composite materials are widely used in the low weight constructions and also it can be treated as a suitable alternative to metals. The objective of this paper is to estimate and compare the suitability of a composite skin joint in an aircraft fuselage with different joints by simulating the displacement, normal stress, vonmises stress and shear stress with the help of numerical solution methods. The reference Z-stringer component of this paper is modeled by CATIA and numerical simulation is carried out by ANSYS has been used for splice joint presents in the aircraft fuselage with three combinations of joints such as riveted joint, bonded joint and hybrid joint. Nowadays the stringers are using to avoid buckling of fuselage skin, it has joined together by rivets and they are connected end to end by splice joint. Design and static analysis of three-dimensional models of joints such as bonded, riveted and hybrid are carried out and results are compared.

  19. 40 CFR 87.6 - Aircraft safety. (United States)


    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Aircraft safety. 87.6 Section 87.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.6 Aircraft safety. The provisions...

  20. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers. (United States)


    ... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on... provisions of §§ 21.183(c), 21.184(b), or 21.185(c); and (2) New aircraft engines or propellers...

  1. 78 FR 54385 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine (United States)


    ... Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration... directive (AD) for various aircraft equipped with Rotax Aircraft Engines 912 A Series Engine. This AD...; phone: +43 7246 601 0; fax: +43 7246 601 9130; Internet: . You...

  2. Electronic components

    CERN Document Server

    Colwell, Morris A


    Electronic Components provides a basic grounding in the practical aspects of using and selecting electronics components. The book describes the basic requirements needed to start practical work on electronic equipment, resistors and potentiometers, capacitance, and inductors and transformers. The text discusses semiconductor devices such as diodes, thyristors and triacs, transistors and heat sinks, logic and linear integrated circuits (I.C.s) and electromechanical devices. Common abbreviations applied to components are provided. Constructors and electronics engineers will find the book useful

  3. Aircraft Engine Technology for Green Aviation to Reduce Fuel Burn (United States)

    Hughes, Christopher E.; VanZante, Dale E.; Heidmann, James D.


    The NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Integrated Systems Research Program Environmentally Responsible Aviation Project in the Aeronautics Research Mission Directorate are conducting research on advanced aircraft technology to address the environmental goals of reducing fuel burn, noise and NOx emissions for aircraft in 2020 and beyond. Both Projects, in collaborative partnerships with U.S. Industry, Academia, and other Government Agencies, have made significant progress toward reaching the N+2 (2020) and N+3 (beyond 2025) installed fuel burn goals by fundamental aircraft engine technology development, subscale component experimental investigations, full scale integrated systems validation testing, and development validation of state of the art computation design and analysis codes. Specific areas of propulsion technology research are discussed and progress to date.

  4. System identification methods for aircraft flight control development and validation (United States)

    Tischler, Mark B.


    System-identification methods compose a mathematical model, or series of models, from measurements of inputs and outputs of dynamic systems. The extracted models allow the characterization of the response of the overall aircraft or component subsystem behavior, such as actuators and on-board signal processing algorithms. This paper discusses the use of frequency-domain system-identification methods for the development and integration of aircraft flight-control systems. The extraction and analysis of models of varying complexity from nonparametric frequency-responses to transfer-functions and high-order state-space representations is illustrated using the Comprehensive Identification from FrEquency Responses (CIFER) system-identification facility. Results are presented for test data of numerous flight and simulation programs at the Ames Research Center including rotorcraft, fixed-wing aircraft, advanced short takeoff and vertical landing (ASTOVL), vertical/short takeoff and landing (V/STOL), tiltrotor aircraft, and rotor experiments in the wind tunnel. Excellent system characterization and dynamic response prediction is achieved for this wide class of systems. Examples illustrate the role of system-identification technology in providing an integrated flow of dynamic response data around the entire life-cycle of aircraft development from initial specifications, through simulation and bench testing, and into flight-test optimization.

  5. VTOL to Transonic Aircraft Project (United States)

    National Aeronautics and Space Administration — The cyclogyro, an aircraft propulsion concept with the potential for VTOL to the lower bounds of transonic flight, is conceptually simple but structurally and...

  6. Western Pacific Typhoon Aircraft Fixes (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Western Pacific typhoon aircraft reconnaissance data from the years 1946 - 1965 and 1978, excluding 1952, were transcribed from original documents, or copy of...

  7. Aircraft recognition and tracking device (United States)

    Filis, Dimitrios P.; Renios, Christos I.


    The technology of aircraft recognition and tracking has various applications in all areas of air navigation, be they civil or military, spanning from air traffic control and regulation at civilian airports to anti-aircraft weapon handling and guidance for military purposes.1, 18 The system presented in this thesis is an alternative implementation of identifying and tracking flying objects, which benefits from the optical spectrum by using an optical camera built into a servo motor (pan-tilt unit). More specifically, through the purpose-developed software, when a target (aircraft) enters the field of view of the camera18, it is both detected and identified.5, 22 Then the servo motor, being provided with data on target position and velocity, tracks the aircraft while it is in constant communication with the camera (Fig. 1). All the features are so designed as to operate under real time conditions.

  8. Structural Dynamics of Maneuvering Aircraft. (United States)



  9. Aircraft vibration and flutter

    Directory of Open Access Journals (Sweden)

    R. R. Aggarwal


    Full Text Available "The paper outlines the theoretical and experimental procedure one has to adopt for flutter prevention during the various stages (project, design and prototype of the development of modern aircraft. With the advent of high speed, the aerodynamic coefficients have to be calculated with due regards to the effects of compressibility, finite aspect ratio of the lifting surfaces, sweep back and other peculiar shapes of the wings. The use of thin, small aspect ratio with external masses, necessitates the computation of higher frequency modes of vibration. Single degree of freedom flutter and the effect of control surface non-linearities has also become very important. Thus, it is shown how the availability of high speed computing machines, improved experimental technique for model and full scale testing has not kept pace with the uncertainties associated with the transonic speeds, low aspect ratio and the high frequency modes. Cross-checking of theoretical and experimental results at every stage seem to be the only answer."

  10. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Anderson, M.R.; Miake-Lye, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)


    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  11. Parabolic aircraft solidification experiments (United States)

    Workman, Gary L. (Principal Investigator); Smith, Guy A.; OBrien, Susan


    A number of solidification experiments have been utilized throughout the Materials Processing in Space Program to provide an experimental environment which minimizes variables in solidification experiments. Two techniques of interest are directional solidification and isothermal casting. Because of the wide-spread use of these experimental techniques in space-based research, several MSAD experiments have been manifested for space flight. In addition to the microstructural analysis for interpretation of the experimental results from previous work with parabolic flights, it has become apparent that a better understanding of the phenomena occurring during solidification can be better understood if direct visualization of the solidification interface were possible. Our university has performed in several experimental studies such as this in recent years. The most recent was in visualizing the effect of convective flow phenomena on the KC-135 and prior to that were several successive contracts to perform directional solidification and isothermal casting experiments on the KC-135. Included in this work was the modification and utilization of the Convective Flow Analyzer (CFA), the Aircraft Isothermal Casting Furnace (ICF), and the Three-Zone Directional Solidification Furnace. These studies have contributed heavily to the mission of the Microgravity Science and Applications' Materials Science Program.

  12. Real-Time Aircraft Engine-Life Monitoring (United States)

    Klein, Richard


    This project developed an inservice life-monitoring system capable of predicting the remaining component and system life of aircraft engines. The embedded system provides real-time, inflight monitoring of the engine's thrust, exhaust gas temperature, efficiency, and the speed and time of operation. Based upon this data, the life-estimation algorithm calculates the remaining life of the engine components and uses this data to predict the remaining life of the engine. The calculations are based on the statistical life distribution of the engine components and their relationship to load, speed, temperature, and time.

  13. Aircraft vulnerability modeling and computation methods based on product structure and CATIA

    Institute of Scientific and Technical Information of China (English)

    Li Jun; Yang Wei; Zhang Yugang; Pei Yang; Ren Yunsong; Wang Wei


    Survivability strengthening/vulnerability reduction designs have become one of the most important design disciplines of military aircraft now.Due to progressiveness and complexity of modern combat aircraft,the existing vulnerability modeling and computation methods cannot meet the current engineering application requirements.Therefore,a vulnerability modeling and computation method based on product structure and CATIA is proposed in sufficient consideration of the design characteristics of modern combat aircraft.This method directly constructs the aircraft vulnerability model by CATIA or the digital model database,and manages all the product components of the vulnerability model via aircraft product structure.Using CAA second development,the detailed operations and computation methods of vulnerability analysis are integrated into CATIA software environment.Comprehensive assessment data and visual kill probability Iso-contours can also be presented,which meet the vulnerability analysis requirements of modern combat aircraft effectively.The intact vulnerability model of one hypothetical aircraft is constructed,and the effects of redundant technology to the aircraft vulnerability are assessed,which validate the engineering practicality of the method.

  14. Real-Time Minimization of Tracking Error for Aircraft Systems (United States)

    Garud, Sumedha; Kaneshige, John T.; Krishnakumar, Kalmanje S.; Kulkarni, Nilesh V.; Burken, John


    This technology presents a novel, stable, discrete-time adaptive law for flight control in a Direct adaptive control (DAC) framework. Where errors are not present, the original control design has been tuned for optimal performance. Adaptive control works towards achieving nominal performance whenever the design has modeling uncertainties/errors or when the vehicle suffers substantial flight configuration change. The baseline controller uses dynamic inversion with proportional-integral augmentation. On-line adaptation of this control law is achieved by providing a parameterized augmentation signal to a dynamic inversion block. The parameters of this augmentation signal are updated to achieve the nominal desired error dynamics. If the system senses that at least one aircraft component is experiencing an excursion and the return of this component value toward its reference value is not proceeding according to the expected controller characteristics, then the neural network (NN) modeling of aircraft operation may be changed.

  15. Initiation of Damage to the Hot Part of Aircraft Turbine Engines

    Directory of Open Access Journals (Sweden)

    Szczepankowski Andrzej


    Full Text Available In the paper, the initiation causes of damage to flame tubes of a basic combustion chamber and turbine units, which are the most common in the operation process of aircraft turbine engines (ATE, were presented. They were illustrated with the use of numerous examples of progressing degradation of the surface condition of parts and components of various types of aircraft engines which was found during endoscopic controls.

  16. A Parametrical Transport Aircraft Fuselage Model for Preliminary Sizing and Beyond


    Schwinn, Dominik; Kohlgrüber, Dieter; Scherer, Julian; Siemann, Martin


    Aircraft design generally comprises three consecutive phases: Conceptual, preliminary and detailed design phase. The preliminary design phase is of particular interest as the basic layout of the primary structure is defined. Up to date, semi-analytical methods are widely used in this design stage to estimate the structural mass. Although these methods lead to adequate results for the major aircraft components of standard configurations, the evaluation of new configurations (e.g. box wing, ble...

  17. Flight service evaluation of Kevlar-49/epoxy composite panels in wide-bodied commercial transport aircraft (United States)

    Stone, R. H.


    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after three years' service, and found to be performing satisfactorily. There are six Kevlar-49 panels on each aircraft, including sandwich and solid laminate wing-body panels, and 150 C service aft engine fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  18. Modeling aircraft noise induced sleep disturbance (United States)

    McGuire, Sarah M.

    One of the primary impacts of aircraft noise on a community is its disruption of sleep. Aircraft noise increases the time to fall asleep, the number of awakenings, and decreases the amount of rapid eye movement and slow wave sleep. Understanding these changes in sleep may be important as they could increase the risk for developing next-day effects such as sleepiness and reduced performance and long-term health effects such as cardiovascular disease. There are models that have been developed to predict the effect of aircraft noise on sleep. However, most of these models only predict the percentage of the population that is awakened. Markov and nonlinear dynamic models have been developed to predict an individual's sleep structure during the night. However, both of these models have limitations. The Markov model only accounts for whether an aircraft event occurred not the noise level or other sound characteristics of the event that may affect the degree of disturbance. The nonlinear dynamic models were developed to describe normal sleep regulation and do not have a noise effects component. In addition, the nonlinear dynamic models have slow dynamics which make it difficult to predict short duration awakenings which occur both spontaneously and as a result of nighttime noise exposure. The purpose of this research was to examine these sleep structure models to determine how they could be altered to predict the effect of aircraft noise on sleep. Different approaches for adding a noise level dependence to the Markov Model was explored and the modified model was validated by comparing predictions to behavioral awakening data. In order to determine how to add faster dynamics to the nonlinear dynamic sleep models it was necessary to have a more detailed sleep stage classification than was available from visual scoring of sleep data. An automatic sleep stage classification algorithm was developed which extracts different features of polysomnography data including the

  19. Effects of Structural Flexibility on Aircraft-Engine Mounts (United States)

    Phillips, W. H.


    Analysis extends technique for design of widely used type of vibration-isolating mounts for aircraft engines, in which rubber mounting pads located in plane behind center of gravity of enginepropeller combination. New analysis treats problem in statics. Results of simple approach useful in providing equations for design of vibrationisolating mounts. Equations applicable in usual situation in which engine-mount structure itself relatively light and placed between large mass of engine and other heavy components of airplane.

  20. Modular Electric Propulsion Test Bed Aircraft Project (United States)

    National Aeronautics and Space Administration — An all electric aircraft test bed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered aircraft....

  1. Versatile Electric Propulsion Aircraft Testbed Project (United States)

    National Aeronautics and Space Administration — An all-electric aircraft testbed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered aircraft....

  2. Introduction to unmanned aircraft systems

    CERN Document Server

    Marshall, Douglas M; Hottman, Stephen B; Shappee, Eric; Most, Michael Thomas


    Introduction to Unmanned Aircraft Systems is the editors' response to their unsuccessful search for suitable university-level textbooks on this subject. A collection of contributions from top experts, this book applies the depth of their expertise to identify and survey the fundamentals of unmanned aircraft system (UAS) operations. Written from a nonengineering civilian operational perspective, the book starts by detailing the history of UASs and then explores current technology and what is expected for the future. Covering all facets of UAS elements and operation-including an examination of s

  3. Future aircraft networks and schedules (United States)

    Shu, Yan


    Because of the importance of air transportation scheduling, the emergence of small aircraft and the vision of future fuel-efficient aircraft, this thesis has focused on the study of aircraft scheduling and network design involving multiple types of aircraft and flight services. It develops models and solution algorithms for the schedule design problem and analyzes the computational results. First, based on the current development of small aircraft and on-demand flight services, this thesis expands a business model for integrating on-demand flight services with the traditional scheduled flight services. This thesis proposes a three-step approach to the design of aircraft schedules and networks from scratch under the model. In the first step, both a frequency assignment model for scheduled flights that incorporates a passenger path choice model and a frequency assignment model for on-demand flights that incorporates a passenger mode choice model are created. In the second step, a rough fleet assignment model that determines a set of flight legs, each of which is assigned an aircraft type and a rough departure time is constructed. In the third step, a timetable model that determines an exact departure time for each flight leg is developed. Based on the models proposed in the three steps, this thesis creates schedule design instances that involve almost all the major airports and markets in the United States. The instances of the frequency assignment model created in this thesis are large-scale non-convex mixed-integer programming problems, and this dissertation develops an overall network structure and proposes iterative algorithms for solving these instances. The instances of both the rough fleet assignment model and the timetable model created in this thesis are large-scale mixed-integer programming problems, and this dissertation develops subproblem schemes for solving these instances. Based on these solution algorithms, this dissertation also presents

  4. 77 FR 1626 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine (United States)


    ... Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration (FAA), DOT... various aircraft equipped with Rotax Aircraft Engines 912 A series engine. This AD results from mandatory... Rotax Aircraft Engines BRP has issued Alert Service Bulletin ASB- 912-059 and ASB-914-042...

  5. 76 FR 31465 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine (United States)


    ... Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration...:// . You may review copies of the referenced service information at the... by examining the MCAI in the AD docket. Relevant Service Information Rotax Aircraft Engines...

  6. 14 CFR 35.43 - Propeller hydraulic components. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller hydraulic components. 35.43 Section 35.43 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.43 Propeller hydraulic components....

  7. Intelligent Life-Extending Controls for Aircraft Engines Studied (United States)

    Guo, Ten-Huei


    Current aircraft engine controllers are designed and operated to provide desired performance and stability margins. Except for the hard limits for extreme conditions, engine controllers do not usually take engine component life into consideration during the controller design and operation. The end result is that aircraft pilots regularly operate engines under unnecessarily harsh conditions to strive for optimum performance. The NASA Glenn Research Center and its industrial and academic partners have been working together toward an intelligent control concept that will include engine life as part of the controller design criteria. This research includes the study of the relationship between control action and engine component life as well as the design of an intelligent control algorithm to provide proper tradeoffs between performance and engine life. This approach is expected to maintain operating safety while minimizing overall operating costs. In this study, the thermomechanical fatigue (TMF) of a critical component was selected to demonstrate how an intelligent engine control algorithm can significantly extend engine life with only a very small sacrifice in performance. An intelligent engine control scheme based on modifying the high-pressure spool speed (NH) was proposed to reduce TMF damage from ground idle to takeoff. The NH acceleration schedule was optimized to minimize the TMF damage for a given rise-time constraint, which represents the performance requirement. The intelligent engine control scheme was used to simulate a commercial short-haul aircraft engine.

  8. Fault diagnosis and isolation of the componentand sensor for aircraft engine

    Institute of Scientific and Technical Information of China (English)

    QIU Xiao-jie; HUANG Jin-quan; LU Feng; LIU Nan


    Aircraft engine component and sensor fault detection and isolation approach was proposed,which included fault type detection module and component-sensor simultaneous fault isolation module.The approach can not only distinguish among sensor fault,component fault and component-sensor simultaneous fault,but also isolate and locate sensor fault and the type of engine component fault when the engine component fault and the sensor faults occur simultaneously.The double-threshold mechanism has been proposed,in which the fault diagnostic threshold changed with the sensor type and the engine condition,and it greatly improved the accuracy and robustness of sensor fault diagnosis system.Simulation results show that the approach proposed can diagnose and isolate the sensor and engine component fault with improved accuracy.It effectively improves the fault diagnosis ability of aircraft engine.

  9. Analyses of Aircraft Responses to Atmospheric Turbulence


    Van Staveren, W.H.J.J.


    The response of aircraft to stochastic atmospheric turbulence plays an important role in aircraft-design (load calculations), Flight Control System (FCS) design and flight-simulation (handling qualities research and pilot training). In order to simulate these aircraft responses, an accurate mathematical model is required. Two classical models will be discussed in this thesis, that is the Delft University of Technology (DUT) model and the Four Point Aircraft (FPA) model. Although they are well...


    Directory of Open Access Journals (Sweden)

    Robert KONIECZKA


    Full Text Available This article provides a summary of the issues involved in de-icing several kinds of aircrafts before flight. The basic risks of an iced aircraft and the factors that can influence its intensity are stated. It discusses the methods for de-icing and protecting against ice formation on small aircrafts, helicopters, and large aircrafts. It also classifies the fluids and other methods used for these de-icing operations, and explains the characteristics and limitations of their use.

  11. Residents' Annoyance Responses to Aircraft Noise Events


    United States, National Aeronautics and Space Administration


    In a study conducted in the vicinity of Salt Lake City International Airport, community residents reported their annoyance with individual aircraft flyovers during rating sessions conducted in their homes. Annoyance ratings were obtained at different times of the day. Aircraft noise levels were measured, and other characteristics of the aircraft were noted by trained observers. Metrics commonly used for assessing aircraft noise were compared, but none performed significantly better than A-...

  12. Numeric Design and Performance Analysis of Solid Oxide Fuel Cell -- Gas Turbine Hybrids on Aircraft (United States)

    Hovakimyan, Gevorg

    The aircraft industry benefits greatly from small improvements in aircraft component design. One possible area of improvement is in the Auxiliary Power Unit (APU). Modern aircraft APUs are gas turbines located in the tail section of the aircraft that generate additional power when needed. Unfortunately the efficiency of modern aircraft APUs is low. Solid Oxide Fuel Cell/Gas Turbine (SOFC/GT) hybrids are one possible alternative for replacing modern gas turbine APUs. This thesis investigates the feasibility of replacing conventional gas turbine APUs with SOFC/GT APUs on aircraft. An SOFC/GT design algorithm was created in order to determine the specifications of an SOFC/GT APU. The design algorithm is comprised of several integrated modules which together model the characteristics of each component of the SOFC/GT system. Given certain overall inputs, through numerical analysis, the algorithm produces an SOFC/GT APU, optimized for specific power and efficiency, capable of performing to the required specifications. The SOFC/GT design is then input into a previously developed quasi-dynamic SOFC/GT model to determine its load following capabilities over an aircraft flight cycle. Finally an aircraft range study is conducted to determine the feasibility of the SOFC/GT APU as a replacement for the conventional gas turbine APU. The design results show that SOFC/GT APUs have lower specific power than GT systems, but have much higher efficiencies. Moreover, the dynamic simulation results show that SOFC/GT APUs are capable of following modern flight loads. Finally, the range study determined that SOFC/GT APUs are more attractive over conventional APUs for longer range aircraft.

  13. Quantitative Inspection Technologies for Aging Military Aircraft (United States)


    177 Figure 133. Aircraft Mockup With EDM Notches Marked As Red Dots And Numbered In Magnified Photos...178 ix Approved for public release; distribution is unlimited Figure 134. First Test Of The Pantograph Scanner On The Mockup Aircraft...180 Figure 137. CAD Model Of Arc Scanner And Simulated Aircraft Fitting Mockup Panel ..................................... 181 Figure 138

  14. Policy and the evaluation of aircraft noise

    NARCIS (Netherlands)

    Kroesen, M.; Molin, E.J.E.; Van Wee, G.P.


    In this paper, we hypothesize and test the ideas that (1) people’s subjectivity in relation to aircraft noise is shaped by the policy discourse, (2) this results in a limited number of frames towards aircraft noise, (3) the frames inform people how to think and feel about aircraft noise and (4) the

  15. 19 CFR 122.37 - Precleared aircraft. (United States)


    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Precleared aircraft. 122.37 Section 122.37 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Landing Requirements § 122.37 Precleared aircraft. (a) Application. This section applies when aircraft carrying...

  16. 19 CFR 122.64 - Other aircraft. (United States)


    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Other aircraft. 122.64 Section 122.64 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Clearance of Aircraft and Permission To Depart § 122.64 Other aircraft. Clearance or permission to depart shall be...

  17. Analyses of Aircraft Responses to Atmospheric Turbulence

    NARCIS (Netherlands)

    Van Staveren, W.H.J.J.


    The response of aircraft to stochastic atmospheric turbulence plays an important role in aircraft-design (load calculations), Flight Control System (FCS) design and flight-simulation (handling qualities research and pilot training). In order to simulate these aircraft responses, an accurate mathemat

  18. 14 CFR 91.117 - Aircraft speed. (United States)


    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aircraft speed. 91.117 Section 91.117... speed. (a) Unless otherwise authorized by the Administrator, no person may operate an aircraft below 10... than the maximum speed prescribed in this section, the aircraft may be operated at that minimum speed....

  19. Aeroservoelastic model based active control for large civil aircraft

    Institute of Scientific and Technical Information of China (English)


    A modeling and control approach for an advanced configured large civil aircraft with aeroservoelasticity via the LQG method and control allocation is presented.Mathematical models and implementation issues for the multi-input/multi-output(MIMO) aeroservoelastic system simulation developed for a flexible wing with multi control surfaces are described.A fuzzy logic based optimization approach is employed to solve the constrained control allocation problem via intelligently adjusting the components of output vector and find a proper vector in the attainable moment set(AMS) autonomously.The basic idea is to minimize the L2 norm of error between the desired moment and achievable moment using the designing freedom provided by redundantly allocated actuators and control surfaces.Considering the constraints of control surfaces,in order to obtain acceptable performance of aircraft such as stability and maneuverability,the fuzzy weights are updated by the learning algorithm,which makes the closed-loop system self-adaptation.Finally,an application example of flight control designing for the advanced civil aircraft is discussed as a demonstration.The studies we have performed showed that the advanced configured large civil aircraft has good performance with the proper designed control law designed via the proposed approach.The gust alleviation and flutter suppression are applied with the synergetic effects of elevator,ailerons,equivalent rudders and flaps.The results show good closed loop performance and meet the requirement of constraint of control surfaces.

  20. Prediction of UHPFRC panels thickness subjected to aircraft engine impact

    Directory of Open Access Journals (Sweden)

    Duc-Kien Thai


    Full Text Available In the practical design of nuclear building structures subjected to an aircraft crash, the structures are required to prevent scabbing and perforation. NEI 07-13 provided the formulas to predict the minimum reinforced concrete (RC wall thickness to prevent the local damage caused by aircraft engine impact. However, these formulas may not be suitable for predicting the thickness of the ultra-high performance fiber reinforced concrete (UHPFRC wall. In this study, the local damage of a UHPFRC wall caused by the impact of aircraft engine missile is investigated using a finite element program LS-DYNA. The structural components of the UHPFRC panel, aircraft engine model, and their contacts are fully modeled. The analysis results are verified with the test results. A parametric study with varying panel thickness, fiber type and content, and impact velocity is performed to investigate the local damage of the UHPFRC panel. Based on a comparison with the given formulas, the modified equations of Chang and Degen are proposed to predict the minimum wall thickness to prevent scabbing and perforation in the case in which the UHPFRC structure is used.

  1. Research on the Corrosion Behavior of Simulated Samples with Coating for the Corrosion Critical Component on a Certain Type of Aircraft%某型飞机腐蚀关键结构含涂层模拟件腐蚀行为研究

    Institute of Scientific and Technical Information of China (English)

    张蕾; 陈群志; 王逾涯; 吴志超


    目的:研究某型飞机腐蚀关键结构防护涂层体系的腐蚀失效行为,评估涂层的防护性能,为整机日历寿命体系评定和飞机大修提供试验依据。方法在编制加速环境谱的基础上,对模拟件进行环境谱作用下的加速腐蚀试验。结果在经过修理前后两个阶段的加速腐蚀后,模拟件在铆钉连接区域表面涂层均出现不同程度的鼓包、开裂、剥落等老化现象。结论腐蚀关键结构表面防护涂层体系总体上能够满足首翻期和翻修间隔期内结构的表面防腐要求,但在外场使用维护中应针对铆钉、螺钉连接件周围等腐蚀敏感部位加强防护,一旦出现涂层老化、破损等损伤需要及时进行局部修复。在科学、合理的外场使用维护条件下,可以适当延长飞机的进厂大修时间。%ABSTRACT:Objective To study the corrosion failure behavior and evaluate the protection property of the coating for the corrosion critical component on a certain type of aircraft, and to provide test proofs for determining the calendar life of air-plane and formulating maintenance compendium. Methods On the basis of compiling accelerated corrosion environment spectrum, accelerated corrosion experiments in typical accelerated corrosion environment were carried out. Results After accelerated corrosion for the two stages before and after repairing, there were bumps, cracks and exfoliation on the coating surface. Corrosion damage crowded at the joint section with rivets mainly. Conclusion Overall, the protective coating sys-tem on the surface of corrosion critical structure could meet the surface anti-corrosion requirements of the structure during the first restoring and the restoring interval periods. However, it would be necessary to enhance the coating protection for the corrosion critical joint section with rivets when used in field. And if corrosion damage was found on the coating of these areas during service, local

  2. MATE. Multi Aircraft Training Environment

    DEFF Research Database (Denmark)

    Hauland, G.; Bove, T.; Andersen, Henning Boje


    . The cockpit switches and instruments in MATE are computer-generated graphics. The graphics are back projected onto semi-transparent touch screen panels in a hybrid cockpit mock-up. Thus, the MATE is relativelycheap, it is always available, it is reconfigurable (e.g. between types of aircraft...

  3. Aircraft Lightning Electromagnetic Environment Measurement (United States)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.


    This paper outlines a NASA project plan for demonstrating a prototype lightning strike measurement system that is suitable for installation onto research aircraft that already operate in thunderstorms. This work builds upon past data from the NASA F106, FAA CV-580, and Transall C-180 flight projects, SAE ARP5412, and the European ILDAS Program. The primary focus is to capture airframe current waveforms during attachment, but may also consider pre and post-attachment current, electric field, and radiated field phenomena. New sensor technologies are being developed for this system, including a fiber-optic Faraday polarization sensor that measures lightning current waveforms from DC to over several Megahertz, and has dynamic range covering hundreds-of-volts to tens-of-thousands-of-volts. A study of the electromagnetic emission spectrum of lightning (including radio wave, microwave, optical, X-Rays and Gamma-Rays), and a compilation of aircraft transfer-function data (including composite aircraft) are included, to aid in the development of other new lightning environment sensors, their placement on-board research aircraft, and triggering of the onboard instrumentation system. The instrumentation system will leverage recent advances in high-speed, high dynamic range, deep memory data acquisition equipment, and fiber-optic interconnect.

  4. Human Response to Aircraft Noise

    NARCIS (Netherlands)

    Kroesen, M.


    How can it be that one person is extremely annoyed by the sounds of aircrafts, while his neighbour claims not to be bothered at all? The present thesis attempts to explain this observation by applying a range of quantitative methods to field data gathered among residents living near large airports.

  5. Aircraft Natural/Artificial Icing (United States)


    axial vibration is caused by an oscillator driving a coil in the probe to create a magnetostrictive force. A sensing coil within the probe senses the...Consequence TOP 7-3-537 12 February 2009 C-1 APPENDIX C. ICING TEST SITE SELECTION 1. INTRODUCTION Unlike large fixed-wing aircraft, helicopters

  6. Aircraft Simulators and Pilot Training. (United States)

    Caro, Paul W.

    Flight simulators are built as realistically as possible, presumably to enhance their training value. Yet, their training value is determined by the way they are used. Traditionally, simulators have been less important for training than have aircraft, but they are currently emerging as primary pilot training vehicles. This new emphasis is an…

  7. Factors influencing aircraft ground handling performance (United States)

    Yager, T. J.


    Problems associated with aircraft ground handling operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from tests with instrumented ground vehicles and aircraft, and aircraft wet runway accident investigation are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.

  8. Hydrogen Storage for Aircraft Applications Overview (United States)

    Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)


    Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.

  9. NASA Electric Aircraft Test Bed (NEAT) Development Plan - Design, Fabrication, Installation (United States)

    Dyson, Rodger W.


    As large airline companies compete to reduce emissions, fuel, noise, and maintenance costs, it is expected that more of their aircraft systems will shift from using turbofan propulsion, pneumatic bleed power, and hydraulic actuation, to instead using electrical motor propulsion, generator power, and electrical actuation. This requires new flight-weight and flight-efficient powertrain components, fault tolerant power management, and electromagnetic interference mitigation technologies. Moreover, initial studies indicate some combination of ambient and cryogenic thermal management and relatively high bus voltages when compared to state of practice will be required to achieve a net system benefit. Developing all these powertrain technologies within a realistic aircraft architectural geometry and under realistic operational conditions requires a unique electric aircraft testbed. This report will summarize existing testbed capabilities located in the U.S. and details the development of a unique complementary testbed that industry and government can utilize to further mature electric aircraft technologies.

  10. Optimal PID Controller Tuning for Multivariable Aircraft Longitudinal Autopilot Based on Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Mostafa Lotfi Forushani


    Full Text Available This paper presents an optimized controller around the longitudinal axis of multivariable system in one of the aircraft flight conditions. The controller is introduced in order to control the angle of attack from the pitch attitude angle independently (that is required for designing a set of direct force-modes for the longitudinal axis based on particle swarm optimization (PSO algorithm. The autopilot system for military or civil aircraft is an essential component and in this paper, the autopilot system via 6 degree of freedom model for the control and guidance of aircraft in which the autopilot design will perform based on defining the longitudinal and the lateral-directional axes are supposed. The effectiveness of the proposed controller is illustrated by considering HIMAT aircraft. The simulation results verify merits of the proposed controller.

  11. Aircraft systems design methodology and dispatch reliability prediction


    Bineid, Mansour


    Aircraft despatch reliability was the main subject of this research in the wider content of aircraft reliability. The factors effecting dispatch reliability, aircraft delay, causes of aircraft delays, and aircraft delay costs and magnitudes were examined. Delay cost elements and aircraft delay scenarios were also studied. It concluded that aircraft dispatch reliability is affected by technical and non-technical factors, and that the former are under the designer's control. It showed that ...

  12. An artificial intelligence-based structural health monitoring system for aging aircraft (United States)

    Grady, Joseph E.; Tang, Stanley S.; Chen, K. L.


    To reduce operating expenses, airlines are now using the existing fleets of commercial aircraft well beyond their originally anticipated service lives. The repair and maintenance of these 'aging aircraft' has therefore become a critical safety issue, both to the airlines and the Federal Aviation Administration. This paper presents the results of an innovative research program to develop a structural monitoring system that will be used to evaluate the integrity of in-service aerospace structural components. Currently in the final phase of its development, this monitoring system will indicate when repair or maintenance of a damaged structural component is necessary.

  13. Automatic detection of aircraft emergency landing sites (United States)

    Shen, Yu-Fei; Rahman, Zia-ur; Krusienski, Dean; Li, Jiang


    An automatic landing site detection algorithm is proposed for aircraft emergency landing. Emergency landing is an unplanned event in response to emergency situations. If, as is unfortunately usually the case, there is no airstrip or airfield that can be reached by the un-powered aircraft, a crash landing or ditching has to be carried out. Identifying a safe landing site is critical to the survival of passengers and crew. Conventionally, the pilot chooses the landing site visually by looking at the terrain through the cockpit. The success of this vital decision greatly depends on the external environmental factors that can impair human vision, and on the pilot's flight experience that can vary significantly among pilots. Therefore, we propose a robust, reliable and efficient algorithm that is expected to alleviate the negative impact of these factors. We present only the detection mechanism of the proposed algorithm and assume that the image enhancement for increased visibility, and image stitching for a larger field-of-view have already been performed on the images acquired by aircraftmounted cameras. Specifically, we describe an elastic bound detection method which is designed to position the horizon. The terrain image is divided into non-overlapping blocks which are then clustered according to a "roughness" measure. Adjacent smooth blocks are merged to form potential landing sites whose dimensions are measured with principal component analysis and geometric transformations. If the dimensions of the candidate region exceed the minimum requirement for safe landing, the potential landing site is considered a safe candidate and highlighted on the human machine interface. At the end, the pilot makes the final decision by confirming one of the candidates, also considering other factors such as wind speed and wind direction, etc. Preliminary results show the feasibility of the proposed algorithm.

  14. Aircraft Conceptual Design Using Vehicle Sketch Pad (United States)

    Fredericks, William J.; Antcliff, Kevin R.; Costa, Guillermo; Deshpande, Nachiket; Moore, Mark D.; Miguel, Edric A. San; Snyder, Alison N.


    Vehicle Sketch Pad (VSP) is a parametric geometry modeling tool that is intended for use in the conceptual design of aircraft. The intent of this software is to rapidly model aircraft configurations without expending the expertise and time that is typically required for modeling with traditional Computer Aided Design (CAD) packages. VSP accomplishes this by using parametrically defined components, such as a wing that is defined by span, area, sweep, taper ratio, thickness to cord, and so on. During this phase of frequent design builds, changes to the model can be rapidly visualized along with the internal volumetric layout. Using this geometry-based approach, parameters such as wetted areas and cord lengths can be easily extracted for rapid external performance analyses, such as a parasite drag buildup. At the completion of the conceptual design phase, VSP can export its geometry to higher fidelity tools. This geometry tool was developed by NASA and is freely available to U.S. companies and universities. It has become integral to conceptual design in the Aeronautics Systems Analysis Branch (ASAB) here at NASA Langley Research Center and is currently being used at over 100 universities, aerospace companies, and other government agencies. This paper focuses on the use of VSP in recent NASA conceptual design studies to facilitate geometry-centered design methodology. Such a process is shown to promote greater levels of creativity, more rapid assessment of critical design issues, and improved ability to quickly interact with higher order analyses. A number of VSP vehicle model examples are compared to CAD-based conceptual design, from a designer perspective; comparisons are also made of the time and expertise required to build the geometry representations as well.

  15. Flight dynamics simulation modeling and control of a large flexible tiltrotor aircraft (United States)

    Juhasz, Ondrej

    A high order rotorcraft mathematical model is developed and validated against the XV-15 and a Large Civil Tiltrotor (LCTR) concept. The mathematical model is generic and allows for any rotorcraft configuration, from single main rotor helicopters to coaxial and tiltrotor aircraft. Rigid-body and inflow states, as well as flexible wing and blade states are used in the analysis. The separate modeling of each rotorcraft component allows for structural flexibility to be included, which is important when modeling large aircraft where structural modes affect the flight dynamics frequency ranges of interest, generally 1 to 20 rad/sec. Details of the formulation of the mathematical model are given, including derivations of structural, aerodynamic, and inertial loads. The linking of the components of the aircraft is developed using an approach similar to multibody analyses by exploiting a tree topology, but without equations of constraints. Assessments of the effects of wing flexibility are given. Flexibility effects are evaluated by looking at the nature of the couplings between rigid-body modes and wing structural modes and vice versa. The effects of various different forms of structural feedback on aircraft dynamics are analyzed. A proportional-integral feedback on the structural acceleration is deemed to be most effective at both improving the damping and reducing the overall excitation of a structural mode. A model following control architecture is then implemented on full order flexible LCTR models. For this aircraft, the four lowest frequency structural modes are below 20 rad/sec, and are thus needed for control law development and analysis. The impact of structural feedback on both Attitude-Command, Attitude-Hold (ACAH) and Translational Rate Command (TRC) response types are investigated. A rigid aircraft model has optimistic performance characteristics, and a control system designed for a rigid aircraft could potentially destabilize a flexible one. The various

  16. Development of Probabilistic Risk Assessment Procedure of Nuclear Power Plant under Aircraft Impact Loadings

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Daegi; Shin, Sangshup; Park, Jin Hee; Choi, Inkil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    In this paper, the total technical roadmap and the procedure to assess the aircraft impact risk will be introduced. In the first year of the research project, 2012, we developed aircraft impact accident scenario and performed preliminary fragility analysis of the local failure of the targeted wall by aircraft impact. An aircraft impact event can be characterized by the appropriate load parameters (i. e., aircraft type, mass, velocity, angle of crash, etc.). Therefore, the reference parameter should be selected to represent each load effect in order to evaluate the capacity/fragility of SSCs using deterministic or probabilistic methods. This is similar to the use of the peak ground acceleration (PGA) to represent the ground motion spectrum of the earthquake in the seismic probabilistic risk assessment (SPRA) approach. We developed the methodology to decide on the reference parameter for the aircraft impact risk quantification among some reasonable candidates, which can represent many uncertain loading parameters. To detect the response and the damage of the target structure, missile-target interaction method and Riera's time-history analysis method have been used primarily in the aircraft impact research area. To define the reference loading parameter, we need to perform repetitive simulations for many analysis cases. Thus, we applied a revised version of Riera's method, which is appropriate for a simplified impact simulation. The target NPP to determine the reference parameter and evaluate the preliminary assessment of aircraft impact risk was selected among the typical Korean PWR NPPs. The response has been calculated for pre-stressed concrete containment buildings subjected to aircraft impact loading, and the responses according to each reference parameter have been analyzed. Recently, we also evaluated the floor response spectra for the locations of important components for the estimation of the failure probabilities and fragility functions of

  17. Perception of aircraft Deviation Cues (United States)

    Martin, Lynne; Azuma, Ronald; Fox, Jason; Verma, Savita; Lozito, Sandra


    To begin to address the need for new displays, required by a future airspace concept to support new roles that will be assigned to flight crews, a study of potentially informative display cues was undertaken. Two cues were tested on a simple plan display - aircraft trajectory and flight corridor. Of particular interest was the speed and accuracy with which participants could detect an aircraft deviating outside its flight corridor. Presence of the trajectory cue significantly reduced participant reaction time to a deviation while the flight corridor cue did not. Although non-significant, the flight corridor cue seemed to have a relationship with the accuracy of participants judgments rather than their speed. As this is the second of a series of studies, these issues will be addressed further in future studies.

  18. CID Aircraft slap-down (United States)


    In this photograph the B-720 is seen during the moments of initial impact. The left wing is digging into the lakebed while the aircraft continues sliding towards wing openers. In 1984 NASA Dryden Flight Research Facility and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID). The test involved crashing a Boeing 720 aircraft with four JT3C-7 engines burning a mixture of standard fuel with an additive, Anti-misting Kerosene (AMK), designed to supress fire. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1

  19. Aircraft Derived Data Validation Algorithms (United States)


    to be equipped with Flight Management Systems (FMSs) that use sophisticated digital computers to assist pilots, allowing them to fly more fuel...some basic data is prepared. These include calculations of aircraft position projeted on a three-dimensional Cartesian coordinate system, and...Administration FMS Flight Management System GA General Aviation NextGen Next Generation Air Transportation System NGA National Geospatial-Intelligence

  20. Stochastic Methods for Aircraft Design (United States)

    Pelz, Richard B.; Ogot, Madara


    The global stochastic optimization method, simulated annealing (SA), was adapted and applied to various problems in aircraft design. The research was aimed at overcoming the problem of finding an optimal design in a space with multiple minima and roughness ubiquitous to numerically generated nonlinear objective functions. SA was modified to reduce the number of objective function evaluations for an optimal design, historically the main criticism of stochastic methods. SA was applied to many CFD/MDO problems including: low sonic-boom bodies, minimum drag on supersonic fore-bodies, minimum drag on supersonic aeroelastic fore-bodies, minimum drag on HSCT aeroelastic wings, FLOPS preliminary design code, another preliminary aircraft design study with vortex lattice aerodynamics, HSR complete aircraft aerodynamics. In every case, SA provided a simple, robust and reliable optimization method which found optimal designs in order 100 objective function evaluations. Perhaps most importantly, from this academic/industrial project, technology has been successfully transferred; this method is the method of choice for optimization problems at Northrop Grumman.

  1. Floor Response Evaluation for Auxiliary Building Subjected to Aircraft Impact Loading

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sang Shup; Hahm, Daegi; Choi, Inkil [Korea Atomic Energy Research institute, Daejeon (Korea, Republic of)


    These studies have been aimed to verify and ensure the safety of the targeted walls and structures especially in the viewpoint of the deterministic approach. However, a probabilistic safety assessment as well as deterministic approach for the damage of the internal component in the nuclear power plants (NPPs) subjected to aircraft crash is also needed. A probabilistic safety assessment for aircraft crash includes many uncertainties such as impact velocity, mass, impact location, shape, size, material etc. of aircraft. In this paper, an impact location was selected among the various parameters. This paper found the acceleration floor response spectra at specified locations (safety related components) on the target structure that assumed to be impact velocity 150m/s and maximum fuel for the specified aircraft model. In order to obtain the floor response in case of the crash with a various locations, the analyses for the auxiliary building subjected to aircraft impact were performed using Riera force history method and missile-target interaction method. The difference between responses in case of the building floor subjected to impact was occurred. Thus, in order to obtain the more accurate results, missile-target interaction method was used. This paper found the response at the selected point (node point No. 51). In order to probabilistic assessment for the safety related components, the assessment for a various parameters (velocity, mass, materials etc.) as well as impact locations should be needed.

  2. AIRTV: Broadband Direct to Aircraft (United States)

    Sorbello, R.; Stone, R.; Bennett, S. B.; Bertenyi, E.


    Airlines have been continuously upgrading their wide-body, long-haul aircraft with IFE (in-flight entertainment) systems that can support from 12 to 24 channels of video entertainment as well as provide the infrastructure to enable in-seat delivery of email and internet services. This is a direct consequence of increased passenger demands for improved in-flight services along with the expectations that broadband delivery systems capable of providing live entertainment (news, sports, financial information, etc.) and high speed data delivery will soon be available. The recent events of Sept. 11 have slowed the airline's upgrade of their IFE systems, but have also highlighted the compelling need for broadband aeronautical delivery systems to include operational and safety information. Despite the impact of these events, it is estimated that by 2005 more than 3000 long haul aircraft (servicing approximately 1 billion passengers annually) will be fully equipped with modern IFE systems. Current aircraft data delivery systems, which use either Inmarsat or NATS, are lacking in bandwidth and consequently are unsuitable to satisfy passenger demands for broadband email/internet services or the airlines' burgeoning data requirements. Present live video delivery services are limited to regional coverage and are not readily expandable to global or multiregional service. Faced with a compelling market demand for high data transport to aircraft, AirTV has been developing a broadband delivery system that will meet both passengers' and airlines' needs. AirTV is a global content delivery system designed to provide a range of video programming and data services to commercial airlines. When AirTV is operational in 2004, it will provide a broadband connection directly to the aircraft, delivering live video entertainment, internet/email service and essential operational and safety data. The system has been designed to provide seamless global service to all airline routes except for those

  3. Design Methods and Optimization for Morphing Aircraft (United States)

    Crossley, William A.


    This report provides a summary of accomplishments made during this research effort. The major accomplishments are in three areas. The first is the use of a multiobjective optimization strategy to help identify potential morphing features that uses an existing aircraft sizing code to predict the weight, size and performance of several fixed-geometry aircraft that are Pareto-optimal based upon on two competing aircraft performance objectives. The second area has been titled morphing as an independent variable and formulates the sizing of a morphing aircraft as an optimization problem in which the amount of geometric morphing for various aircraft parameters are included as design variables. This second effort consumed most of the overall effort on the project. The third area involved a more detailed sizing study of a commercial transport aircraft that would incorporate a morphing wing to possibly enable transatlantic point-to-point passenger service.

  4. 78 FR 65554 - Exhaust Emission Standards for New Aircraft Turbine Engines and Identification Plate for Aircraft... (United States)


    ... Aircraft Turbine Engines and Identification Plate for Aircraft Engines Correction In rule document 2013... for Subsonic Engines'', in the third column, in the last row, the entry ``rO > 26.7'' is corrected...

  5. A Qualitative Analysis of SAC Aircraft Maintenance. (United States)



  6. Visualization of Aircraft Longitudinal-Axis Motion


    Peter Kvasnica


    In this paper, the use of continuous mathematical models of an aircraft in an aircraft simulator is described. The models are of lower degree and less time-consuming for calculation. Computer implementation of the models capable to work faster and more accurately and efficiently is also described. The suggested approach allows to achieve the required precision at accelerated simulation speed using the continuous mathematical models of an aircraft. Frequency of the computation of continuous ma...

  7. Advanced Aerostructural Optimization Techniques for Aircraft Design


    Yingtao Zuo; Pingjian Chen; Lin Fu; Zhenghong Gao; Gang Chen


    Traditional coupled aerostructural design optimization (ASDO) of aircraft based on high-fidelity models is computationally expensive and inefficient. To improve the efficiency, the key is to predict aerostructural performance of the aircraft efficiently. The cruise shape of the aircraft is parameterized and optimized in this paper, and a methodology named reverse iteration of structural model (RISM) is adopted to get the aerostructural performance of cruise shape efficiently. A new mathematic...

  8. Aircraft Survivability. Susceptibility Reduction. Fall 2010 (United States)


    to determine the degree of control available with manual manipulation of engine throttles for various transport aircraft. Simulations included...Boeing 727, 737, 747, 757, 767, 777, MD-11, MD-90, C-17, and Airbus A320 and A300 transport aircraft. Preliminary missile impact effects were...shown, for most aircraft tested, that using only manual TOC it is very difficult to make a safe runway landing due to difficulty in controlling the

  9. `Research and Development of Technology for Controlling the Structure of Multiple-Function Component,` local research and development of important technology for fiscal 1997. 2. Technological development of advanced surface treatment for methane-powered aircraft engine components (Laser-aided advanced treatment system (technology)); 1997 nendo juyo chiiki gijutsu kenkyu kaihatsu `fukugo kino buzai kozo seigyo gijutsu no kenkyu kaihatsu`. 2. Methane nenryo kokukiyo engine buzai no kodo hyomen kako gijutsu kaihatsu (laser oyo senshin kako system gijutsu)

    Energy Technology Data Exchange (ETDEWEB)



    Surface reforming technologies, such as laser-aided Ti alloying, are studied for developing erosion-resistant materials for the fore section of a methane-fueled aircraft engine. In the formation of intermetallic compound film, the laser plasma hybrid spraying is applied for the formation of a film which is 100-400 times higher than Ti6Al4V in terms of resistance to erosion. For the quantitative evaluation of bond strength, a boundary shear testing jig is built. When the laser irradiating conditions are optimized, the boundary shear strength is elevated to 150-230MPa. NiAl film is studied for realizing resistance to high-temperature oxidation, and then a perfect NiAl film is obtained, which is done by use of a mechanical alloying powder mixed on the atomic level. In the manufacture of ceramic cermet film, a powder is studied, in which powder SiC and Al2O3, excellent in high-temperature oxidation characteristics and fracture toughness, are the parent materials which are coated by NiCr. It is found that an excellent oxidation-resistant film will be manufactured by use of this powder. 40 refs., 132 figs., 12 tabs.

  10. On Noise Assessment for Blended Wing Body Aircraft (United States)

    Guo, Yueping; Burley, Casey L; Thomas, Russell H.


    A system noise study is presented for the blended-wing-body (BWB) aircraft configured with advanced technologies that are projected to be available in the 2025 timeframe of the NASA N+2 definition. This system noise assessment shows that the noise levels of the baseline configuration, measured by the cumulative Effective Perceived Noise Level (EPNL), have a large margin of 34 dB to the aircraft noise regulation of Stage 4. This confirms the acoustic benefits of the BWB shielding of engine noise, as well as other projected noise reduction technologies, but the noise margins are less than previously published assessments and are short of meeting the NASA N+2 noise goal. In establishing the relevance of the acoustic assessment framework, the design of the BWB configuration, the technical approach of the noise analysis, the databases and prediction tools used in the assessment are first described and discussed. The predicted noise levels and the component decomposition are then analyzed to identify the ranking order of importance of various noise components, revealing the prominence of airframe noise, which holds up the levels at all three noise certification locations and renders engine noise reduction technologies less effective. When projected airframe component noise reduction is added to the HWB configuration, it is shown that the cumulative noise margin to Stage 4 can reach 41.6 dB, nearly at the NASA goal. These results are compared with a previous NASA assessment with a different study framework. The approaches that yield projections of such low noise levels are discussed including aggressive assumptions on future technologies, assumptions on flight profile management, engine installation, and component noise reduction technologies. It is shown that reliable predictions of component noise also play an important role in the system noise assessment. The comparisons and discussions illustrate the importance of practical feasibilities and constraints in aircraft

  11. Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL) (United States)

    Federal Laboratory Consortium — Purpose:The Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL) provides a variety of research, design engineering and prototype fabrication services...

  12. Research on Emerging and Descending Aircraft Noise

    Directory of Open Access Journals (Sweden)

    Monika Bartkevičiūtė


    Full Text Available Along with an increase in the aircraft engine power and growth in air traffic, noise level at airports and their surrounding environs significantly increases. Aircraft noise is high level noise spreading within large radius and intensively irritating the human body. Air transport is one of the main sources of noise having a particularly strong negative impact on the environment. The article deals with activities and noises taking place in the largest nationwide Vilnius International Airport.The level of noise and its dispersion was evaluated conducting research on the noise generated by emerging and descending aircrafts in National Vilnius Airport. Investigation was carried out at 2 measuring points located in a residential area. There are different types of aircrafts causing different sound levels. It has been estimated the largest exceedances that occur when an aircraft is approaching. In this case, the noisiest types of aircrafts are B733, B738 and AT72. The sound level varies from 70 to 85 dBA. The quietest aircrafts are RJ1H and F70. When taking off, the equivalent of the maximum sound level value of these aircrafts does not exceed the authorized limits. The paper describes the causes of noise in aircrafts, the sources of origin and the impact of noise on humans and the environment.Article in Lithuanian

  13. Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL) (United States)

    Federal Laboratory Consortium — Purpose: The Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL) provides a variety of research, design engineering and prototype fabrication services...


    Directory of Open Access Journals (Sweden)

    Matei POPA


    Full Text Available In accordance with Air Force requirements, the comparative analysis of short/medium transport aircraft comes to sustain procurement decision of short/medium transport aircraft. This paper presents, in short, the principles and the results of the comparative analysis for short/medium military transport aircraft.

  15. 75 FR 50865 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines (United States)


    ... Equipped With Rotax Aircraft Engines 912 A Series Engines AGENCY: Federal Aviation Administration (FAA... 912 A series engine installed in various aircraft does not have an engine type certificate; instead, the engine is part of the aircraft type design. Comments We gave the public the opportunity...

  16. 75 FR 32315 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines (United States)


    ... Equipped With Rotax Aircraft Engines 912 A Series Engines AGENCY: Federal Aviation Administration (FAA... certificated in the United States. However, the Model 912 A series engine installed in various aircraft does not have an engine type certificate; instead, the engine is part of the aircraft type design. You...

  17. 76 FR 40219 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine (United States)


    ... Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration (FAA), DOT... Rotax Aircraft Engines Mandatory Service Bulletin SB-912-058 SB-914-041, dated April 15, 2011, listed in... 601 0; fax: +43 7246 601 9130; Internet: . You may review...

  18. U.S. Geological Survey Unmanned Aircraft Systems (UAS) Roadmap 2014 (United States)

    Cress, Jill J.; Hutt, Michael E.; Sloan, Jeff L.; Bauer, Mark A.; Feller, Mark R.; Goplen, Susan E.


    The U.S. Department of the Interior (DOI) is responsible for protecting the natural resources and heritage contained on almost 20 percent of the land in the United States. This responsibility requires acquisition of remotely sensed data throughout vast lands, including areas that are remote and potentially dangerous to access. One promising new technology for data collection is unmanned aircraft systems (UAS), which may be better suited (achieving superior science, safety, and savings) than traditional methods. UAS, regardless of their size, have the same operational components: aircraft, payloads, communications unit, and operator control unit. The aircraft is the platform that flies and carries any required payloads. For Department of the Interior missions these payloads will be either a sensor or set of sensors that can acquire the specific type of remotely sensed data that is needed. The aircraft will also carry the payload that is responsible for transmitting live airborne video images, compass headings, and location information to the operator control unit. The communications unit, which transfers information between the aircraft and the operator control unit, consists of the hardware and software required to establish both uplink and downlink communications. Finally, the operator control unit both controls and monitors the aircraft and can be operated either by a pilot on the ground or autonomously.

  19. LCC-OPS: Life Cycle Cost Application in Aircraft Operations

    NARCIS (Netherlands)

    Suwondo, E.


    Observation of current practices in aircraft operations and maintenance shows limited consideration of cost savings applied by aircraft modifications, maintenance program optimisation and aircraft selection. This is due to hidden (maintenance dependent) costs and difficulties in quantifying the util

  20. 77 FR 58301 - Technical Amendment; Airworthiness Standards: Aircraft Engines; Correction (United States)


    ... Technical Amendment entitled, ``Airworthiness Standards: Aircraft Engine'' (77 FR 39623). In that technical... Administration 14 CFR Part 33 RIN 2120-AF57 Technical Amendment; Airworthiness Standards: Aircraft Engines... technical amendment, the FAA clarified aircraft engine vibration test requirements in the...

  1. 77 FR 39623 - Airworthiness Standards: Aircraft Engines; Technical Amendment (United States)


    ... Federal Aviation Administration 14 CFR Part 33 Airworthiness Standards: Aircraft Engines; Technical.... SUMMARY: This amendment clarifies aircraft engine vibration test requirements in the airworthiness... 33--AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES 0 1. The authority citation for part 33 continues...

  2. Exergetic analysis of an aircraft turbojet engine with an afterburner

    Directory of Open Access Journals (Sweden)

    Ehyaei M.A.


    Full Text Available An exergy analysis is reported of a J85-GE-21 turbojet engine and its components for two altitudes: sea level and 11,000 meters. The turbojet engine with afterburning operates on the Brayton cycle and includes six main parts: diffuser, compressor, combustion chamber, turbine, afterburner and nozzle. Aircraft data are utilized in the analysis with simulation data. The highest component exergy efficiency at sea level is observed to be for the compressor, at 96.7%, followed by the nozzle and turbine with exergy efficiencies of 93.7 and 92.3%, respectively. At both considered heights, reducing of engine intake air speed leads to a reduction in the exergy efficiencies of all engine components and overall engine. The exergy efficiency of the turbojet engine is found to decrease by 0.45% for every 1°C increase in inlet air temperature.

  3. Aircraft type influence on contrail properties

    Directory of Open Access Journals (Sweden)

    P. Jeßberger


    Full Text Available The investigation of the impact of aircraft parameters on contrail properties helps to better understand the climate impact from aviation. Yet, in observations, it is a challenge to separate aircraft and meteorological influences on contrail formation. During the CONCERT campaign in November 2008, contrails from 3 Airbus passenger aircraft of type A319-111, A340-311 and A380-841 were probed at cruise under similar meteorological conditions with in-situ instruments on board the DLR research aircraft Falcon. Within the 2 min old contrails detected near ice saturation, we find similar effective diameters Deff (5.2–5.9 μm, but differences in particle number densities nice (162–235 cm−3 and in vertical contrail extensions (120–290 m, resulting in large differences in contrail optical depths τ (0.25–0.94. Hence larger aircraft produce optically thicker contrails. Based on the observations, we apply the EULAG-LCM model with explicit ice microphysics and in addition the Contrail and Cirrus Prediction model CoCiP to calculate the aircraft type impact on young contrails under identical meteorological conditions. The observed increase in τ for heavier aircraft is confirmed by the models, yet for generally smaller τ. An aircraft dependence of climate relevant contrail properties persists during contrail lifetime, adding importance to aircraft dependent model initialization. We finally derive an analytical relationship between contrail, aircraft and meteorological parameters. Near ice saturation, contrail width × τ scales linearly with fuel flow rate as confirmed by observations. For higher saturation ratios approximations from theory suggest a non-linear increase in the form (RHI–12/3. Summarized our combined results could help to more accurately assess the climate impact from aviation using an aircraft dependent contrail parameterization.

  4. Airframe Noise from a Hybrid Wing Body Aircraft Configuration (United States)

    Hutcheson, Florence V.; Spalt, Taylor B.; Brooks, Thomas F.; Plassman, Gerald E.


    A high fidelity aeroacoustic test was conducted in the NASA Langley 14- by 22-Foot Subsonic Tunnel to establish a detailed database of component noise for a 5.8% scale HWB aircraft configuration. The model has a modular design, which includes a drooped and a stowed wing leading edge, deflectable elevons, twin verticals, and a landing gear system with geometrically scaled wheel-wells. The model is mounted inverted in the test section and noise measurements are acquired at different streamwise stations from an overhead microphone phased array and from overhead and sideline microphones. Noise source distribution maps and component noise spectra are presented for airframe configurations representing two different approach flight conditions. Array measurements performed along the aircraft flyover line show the main landing gear to be the dominant contributor to the total airframe noise, followed by the nose gear, the inboard side-edges of the LE droop, the wing tip/LE droop outboard side-edges, and the side-edges of deployed elevons. Velocity dependence and flyover directivity are presented for the main noise components. Decorrelation effects from turbulence scattering on spectral levels measured with the microphone phased array are discussed. Finally, noise directivity maps obtained from the overhead and sideline microphone measurements for the landing gear system are provided for a broad range of observer locations.

  5. The effects of aircraft certification rules on general aviation accidents (United States)

    Anderson, Carolina Lenz

    The purpose of this study was to analyze the frequency of general aviation airplane accidents and accident rates on the basis of aircraft certification to determine whether or not differences in aircraft certification rules had an influence on accidents. In addition, the narrative cause descriptions contained within the accident reports were analyzed to determine whether there were differences in the qualitative data for the different certification categories. The certification categories examined were: Federal Aviation Regulations Part 23, Civil Air Regulations 3, Light Sport Aircraft, and Experimental-Amateur Built. The accident causes examined were those classified as: Loss of Control, Controlled Flight into Terrain, Engine Failure, and Structural Failure. Airworthiness certification categories represent a wide diversity of government oversight. Part 23 rules have evolved from the initial set of simpler design standards and have progressed into a comprehensive and strict set of rules to address the safety issues of the more complex airplanes within the category. Experimental-Amateur Built airplanes have the least amount of government oversight and are the fastest growing segment. The Light Sport Aircraft category is a more recent certification category that utilizes consensus standards in the approval process. Civil Air Regulations 3 airplanes were designed and manufactured under simpler rules but modifying these airplanes has become lengthy and expensive. The study was conducted using a mixed methods methodology which involves both quantitative and qualitative elements. A Chi-Square test was used for a quantitative analysis of the accident frequency among aircraft certification categories. Accident rate analysis of the accidents among aircraft certification categories involved an ANCOVA test. The qualitative component involved the use of text mining techniques for the analysis of the narrative cause descriptions contained within the accident reports. The Chi

  6. KC-46 Tanker Aircraft: Program Generally on Track, but Upcoming Schedule Remains Challenging (United States)


    10 Currently, Air Force fixed- wing aircraft refuel with the “flying boom.” The boom is a rigid, telescoping tube that an operator on the tanker...related to aerial refueling—the centerline drogue system and wing aerial refueling pod. Boeing still considers the instability of these components to be

  7. Human Systems Integration: Unmanned Aircraft Control Station Certification Plan Guidance (United States)


    This document provides guidance to the FAA on important human factors considerations that can be used to support the certification of a UAS Aircraft Control Station (ACS). This document provides a synopsis of the human factors analysis, design and test activities to be performed to provide a basis for FAA certification. The data from these analyses, design activities, and tests, along with data from certification/qualification tests of other key components should be used to establish the ACS certification basis. It is expected that this information will be useful to manufacturers in developing the ACS Certification Plan,, and in supporting the design of their ACS.

  8. A Turbo-Brayton Cryocooler for Aircraft Superconducting Systems Project (United States)

    National Aeronautics and Space Administration — Hybrid turboelectric aircraft with gas turbines driving electric generators connected to electric propulsion motors have the potential to transform the aircraft...

  9. An Instrument to Measure Aircraft Sulfate Particle Emissions Project (United States)

    National Aeronautics and Space Administration — Aircraft particle emissions contribute a modest, but growing, portion of the overall particle emissions budget. Characterizing aircraft particle emissions is...

  10. Investigation of Wake-Vortex Aircraft Encounters (United States)

    Smith, Sonya T.


    The National Aeronautics and Space Administration is addressing airport capacity enhancements during instrument meteorological conditions though the Terminal Area Productivity (TAP) program. The major goal of the TAP program is to develop the technology that will allow air traffic levels during instrument meteorological condition to approach those achieved during visual operations. The Reduced Spacing Operations (RSO) subelement of TAP at the NASA Langley Research Center (LaRC) will develop the Aircraft Vortex Spacing System (AVOSS). The purpose of the AVOSS is to integrate current and predicted weather conditions, wake vortex transport and decay knowledge, wake vortex sensor data, and operational definitions of acceptable strengths for vortex encounters to produce dynamic wake vortex separation criteria. The proposed research is in support of the wake vortex hazard definition component of the LaRC AVOSS development research. The research program described in the next section provided an analysis of the static test data and uses this data to evaluate the accuracy vortex/wake-encounter models. The accuracy of these models has not before been evaluated using experimental data. The research results also presented the first analysis of the forces and moments imparted on an airplane during a wake vortex encounter using actual flight test data.

  11. 14 CFR 91.209 - Aircraft lights. (United States)


    ...; or (iii) is in an area that is marked by obstruction lights; (3) Anchor an aircraft unless the aircraft— (i) Has lighted anchor lights; or (ii) Is in an area where anchor lights are not required on vessels; or (b) Operate an aircraft that is equipped with an anticollision light system, unless it...

  12. The longitudinal static stability of tailless aircraft


    de Castro, Helena V.


    This paper describes the development of a simple theory of the longitudinal controls fixed static stability of tailless aeroplanes. The classical theory, as developed for the conventional aircraft, is modified to accommodate the particular features of the tailless aeroplanes. The theory was then applied to a particular blended-wing-body tailless civil transport aircraft, BWB-98. Cranfield University

  13. A Wind Tunnel Captive Aircraft Testing Technique (United States)


    Flight/Wind Tunnel Correlation of Aircraft Longitudinal Motion ....................................... 14 10. Fright/Wind Tunnel Correlation of...I 2 3 4 5 6 T IME, s e c Figure 9. Flight/wind tunnel correla- tion of aircraft longitudinal motion. ’ D A n ~ v i i i | ~ 0 0 - 4 0

  14. Maintenance of air worthiness of aircrafts

    Directory of Open Access Journals (Sweden)

    В. А. Горячев


    Full Text Available Described are modem conditions of operation of Russian civil aviation, state of aircraft stock, the main principles of maintaining air worthiness of airplanes and helicopters. Considered is a stage by stage prolongation of the service life of each specimen of aircraft with certification being obligatory

  15. Intraocular lens in a fighter aircraft pilot.


    Loewenstein, A; Geyer, O; Biger, Y; Bracha, R; Shochat, I; Lazar, M.


    A pseudophakic pilot of the Israeli air force flying an F-15 (Eagle) aircraft was followed up for three years. He experienced about 100 flying hours, 5% of the time under high g stress. The intraocular lens did not dislocate and no complications were observed. It seems that flying high performance fighter aircraft is not contraindicated in pseudophakic pilots.

  16. Noise Control in Propeller-Driven Aircraft (United States)

    Rennison, D. C.; Wilby, J. F.


    Analytical model predicts noise levels inside propeller-driven aircraft during cruise at mach 0.8. Double wall sidewalls minimize interior noise and weight. Model applied to three aircraft with fuselages of different size (wide-body, narrow-body, and small-diameter) to determine noise reductions required to achieve A-weighted sound level not to exceed 80 dB.

  17. Study on Impedance Characteristics of Aircraft Cables

    Directory of Open Access Journals (Sweden)

    Weilin Li


    Full Text Available Voltage decrease and power loss in distribution lines of aircraft electric power system are harmful to the normal operation of electrical equipment and may even threaten the safety of aircraft. This study investigates how the gap distance (the distance between aircraft cables and aircraft skin and voltage frequency (variable frequency power supply will be adopted for next generation aircraft will affect the impedance of aircraft cables. To be more precise, the forming mechanism of cable resistance and inductance is illustrated in detail and their changing trends with frequency and gap distance are analyzed with the help of electromagnetic theoretical analysis. An aircraft cable simulation model is built with Maxwell 2D and the simulation results are consistent with the conclusions drawn from the theoretical analysis. The changing trends of the four core parameters of interest are analyzed: resistance, inductance, reactance, and impedance. The research results can be used as reference for the applications in Variable Speed Variable Frequency (VSVF aircraft electric power system.

  18. Lift augmentation for highly swept wing aircraft (United States)

    Rao, Dhanvada M. (Inventor)


    A pair of spaced slots, disposed on each side of an aircraft centerline and spaced well inboard of the wing leading edges, are provided in the wing upper surfaces and directed tangentially spanwise toward thin sharp leading wing edges of a highly swept, delta wing aircraft. The slots are individually connected through separate plenum chambers to separate compressed air tanks and serve, collectively, as a system for providing aircraft lift augmentation. A compressed air supply is tapped from the aircraft turbojet power plant. Suitable valves, under the control of the aircraft pilot, serve to selective provide jet blowing from the individual slots to provide spanwise sheets of jet air closely adjacent to the upper surfaces and across the aircraft wing span to thereby create artificial vortices whose suction generate additional lift on the aircraft. When desired, or found necessary, unequal or one-side wing blowing is employed to generate rolling moments for augmented lateral control. Trailing flaps are provided that may be deflected differentially, individually, or in unison, as needed for assistance in take-off or landing of the aircraft.

  19. 14 CFR 121.538 - Aircraft security. (United States)


    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft security. 121.538 Section 121.538..., FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.538 Aircraft security. Certificate holders conducting operations under this part must comply with the applicable security requirements in 49 CFR...

  20. 14 CFR 135.125 - Aircraft security. (United States)


    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft security. 135.125 Section 135.125....125 Aircraft security. Certificate holders conducting operators conducting operations under this part must comply with the applicable security requirements in 49 CFR chapter XII....

  1. 19 CFR 122.42 - Aircraft entry. (United States)


    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Aircraft entry. 122.42 Section 122.42 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Entry and Entry Documents; Electronic Manifest Requirements...

  2. Unmanned aircraft systems as wingmen (United States)

    Garcia, Richard; Barnes, Laura; Fields, MaryAnne


    This paper introduces a concept towards integrating manned and Unmanned Aircraft Systems (UASs) into a highly functional team though the design and implementation of 3-D distributed formation/flight control algorithms with the goal to act as wingmen for a manned aircraft. This method is designed to minimize user input for team control, dynamically modify formations as required, utilize standard operating formations to reduce pilot resistance to integration, and support splinter groups for surveillance and/or as safeguards between potential threats and manned vehicles. The proposed work coordinates UAS members by utilizing artificial potential functions whose values are based on the state of the unmanned and manned assets including the desired formation, obstacles, task assignments, and perceived intentions. The overall unmanned team geometry is controlled using weighted potential fields. Individual UAS utilize fuzzy logic controllers for stability and navigation as well as a fuzzy reasoning engine for flight path intention prediction. Approaches are demonstrated in simulation using the commercial simulator X-Plane and controllers designed in Matlab/Simulink. Experiments include trail and right echelon formations as well as splinter group surveillance.

  3. Multispectral imaging of aircraft exhaust (United States)

    Berkson, Emily E.; Messinger, David W.


    Aircraft pollutants emitted during the landing-takeoff (LTO) cycle have significant effects on the local air quality surrounding airports. There are currently no inexpensive, portable, and unobtrusive sensors to quantify the amount of pollutants emitted from aircraft engines throughout the LTO cycle or to monitor the spatial-temporal extent of the exhaust plume. We seek to thoroughly characterize the unburned hydrocarbon (UHC) emissions from jet engine plumes and to design a portable imaging system to remotely quantify the emitted UHCs and temporally track the distribution of the plume. This paper shows results from the radiometric modeling of a jet engine exhaust plume and describes a prototype long-wave infrared imaging system capable of meeting the above requirements. The plume was modeled with vegetation and sky backgrounds, and filters were selected to maximize the detectivity of the plume. Initial calculations yield a look-up chart, which relates the minimum amount of emitted UHCs required to detect the presence of a plume to the noise-equivalent radiance of a system. Future work will aim to deploy the prototype imaging system at the Greater Rochester International Airport to assess the applicability of the system on a national scale. This project will help monitor the local pollution surrounding airports and allow better-informed decision-making regarding emission caps and pollution bylaws.

  4. Subsonic Ultra Green Aircraft Research (United States)

    Bradley, Marty K.; Droney, Christopher K.


    This Final Report summarizes the work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team in Phase 1, which includes the time period of October 2008 through March 2010. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. The team completed the development of a comprehensive future scenario for world-wide commercial aviation, selected baseline and advanced configurations for detailed study, generated technology suites for each configuration, conducted detailed performance analysis, calculated noise and emissions, assessed technology risks, and developed technology roadmaps. Five concepts were evaluated in detail: 2008 baseline, N+3 reference, N+3 high span strut braced wing, N+3 gas turbine battery electric concept, and N+3 hybrid wing body. A wide portfolio of technologies was identified to address the NASA N+3 goals. Significant improvements in air traffic management, aerodynamics, materials and structures, aircraft systems, propulsion, and acoustics are needed. Recommendations for Phase 2 concept and technology projects have been identified.

  5. Flux Sampling Errors for Aircraft and Towers (United States)

    Mahrt, Larry


    Various errors and influences leading to differences between tower- and aircraft-measured fluxes are surveyed. This survey is motivated by reports in the literature that aircraft fluxes are sometimes smaller than tower-measured fluxes. Both tower and aircraft flux errors are larger with surface heterogeneity due to several independent effects. Surface heterogeneity may cause tower flux errors to increase with decreasing wind speed. Techniques to assess flux sampling error are reviewed. Such error estimates suffer various degrees of inapplicability in real geophysical time series due to nonstationarity of tower time series (or inhomogeneity of aircraft data). A new measure for nonstationarity is developed that eliminates assumptions on the form of the nonstationarity inherent in previous methods. When this nonstationarity measure becomes large, the surface energy imbalance increases sharply. Finally, strategies for obtaining adequate flux sampling using repeated aircraft passes and grid patterns are outlined.

  6. Scorpion: Close Air Support (CAS) aircraft (United States)

    Allen, Chris; Cheng, Rendy; Koehler, Grant; Lyon, Sean; Paguio, Cecilia


    The objective is to outline the results of the preliminary design of the Scorpion, a proposed close air support aircraft. The results obtained include complete preliminary analysis of the aircraft in the areas of aerodynamics, structures, avionics and electronics, stability and control, weight and balance, propulsion systems, and costs. A conventional wing, twin jet, twin-tail aircraft was chosen to maximize the desirable characteristics. The Scorpion will feature low speed maneuverability, high survivability, low cost, and low maintenance. The life cycle cost per aircraft will be 17.5 million dollars. The maximum takeoff weight will be 52,760 pounds. Wing loading will be 90 psf. The thrust to weight will be 0.6 lbs/lb. This aircraft meets the specified mission requirements. Some modifications have been suggested to further optimize the design.

  7. 76 FR 6525 - Airworthiness Directives; Cessna Aircraft Company (Type Certificate Previously Held by Columbia... (United States)


    ... Company (Type Certificate Previously Held by Columbia Aircraft Manufacturing (Previously the Lancair... Aircraft Company (Type Certificate Previously Held by Columbia Aircraft Manufacturing (Previously The... Aircraft Company (type certificate previously held by Columbia Aircraft Manufacturing (previously...

  8. Damage monitoring of aircraft structures made of composite materials using wavelet transforms (United States)

    Molchanov, D.; Safin, A.; Luhyna, N.


    The present article is dedicated to the study of the acoustic properties of composite materials and the application of non-destructive testing methods to aircraft components. A mathematical model of a wavelet transformed signal is presented. The main acoustic (vibration) properties of different composite material structures were researched. Multiple vibration parameter dependencies on the noise reduction factor were derived. The main steps of a research procedure and new method algorithm are presented. The data obtained was compared with the data from a three dimensional laser-Doppler scanning vibrometer, to validate the results. The new technique was tested in the laboratory and on civil aircraft at a training airfield.

  9. Turboprop aircraft against terrorism: a SWOT analysis of turboprop aircraft in CAS operations (United States)

    Yavuz, Murat; Akkas, Ali; Aslan, Yavuz


    Today, the threat perception is changing. Not only for countries but also for defence organisations like NATO, new threat perception is pointing terrorism. Many countries' air forces become responsible of fighting against terorism or Counter-Insurgency (COIN) Operations. Different from conventional warfare, alternative weapon or weapon systems are required for such operatioins. In counter-terrorism operations modern fighter jets are used as well as helicopters, subsonic jets, Unmanned Aircraft Systems (UAS), turboprop aircraft, baloons and similar platforms. Succes and efficiency of the use of these platforms can be determined by evaluating the conditions, the threats and the area together. Obviously, each platform has advantages and disadvantages for different cases. In this research, examples of turboprop aircraft usage against terrorism and with a more general approach, turboprop aircraft for Close Air Support (CAS) missions from all around the world are reviewed. In this effort, a closer look is taken at the countries using turboprop aircraft in CAS missions while observing the fields these aircraft are used in, type of operations, specifications of the aircraft, cost and the maintenance factors. Thus, an idea about the convenience of using these aircraft in such operations can be obtained. A SWOT analysis of turboprop aircraft in CAS operations is performed. This study shows that turboprop aircraft are suitable to be used in counter-terrorism and COIN operations in low threat environment and is cost benefical compared to jets.

  10. Propeller aircraft interior noise model (United States)

    Pope, L. D.; Wilby, E. G.; Wilby, J. F.


    An analytical model was developed to predict the interior noise of propeller-driven aircraft. The fuselage model is that of a cylinder with a structurally-integral floor. The cabin sidewall is stiffened by stringers and ring frames, and the floor by longitudinal beams. The cabin interior is covered with a sidewall treatments consisting of layers of porous material and an impervious trim septum. Representation of the propeller pressure field is utilized as input data in the form of the propeller noise signature at a series of locations on a grid over the fuselage structure. Results obtained from the analytical model are compared with test data measured by NASA in a scale model cylindrical fuselage excited by a model propeller.

  11. Aircraft measurements of wave cloud

    Directory of Open Access Journals (Sweden)

    Z. Cui


    Full Text Available In this paper, aircraft measurements are presented of liquid phase (ice-free wave clouds made at temperatures greater than −5 °C that formed over Scotland, UK. The horizontal variations of the vertical velocity across wave clouds display a distinct pattern. The maximum updraughts occur at the upshear flanks of the clouds and the strong downdraughts at the downshear flanks. The cloud droplet concentrations were a couple of hundreds per cubic centimetres, and the drops generally had a mean diameter between 15–45 μm. A small proportion of the drops were drizzle. A new definition of a mountain-wave cloud is given, based on the measurements presented here and previous studies. The results in this paper provide a case for future numerical simulation of wave cloud and the interaction between wave and clouds.


    Bach, R.


    The computer program SMACK (SMoothing for AirCraft Kinematics) is designed to provide flightpath reconstruction of aircraft forces and motions from measurements that are noisy or incomplete. Additionally, SMACK provides a check on instrument accuracy and data consistency. The program can be used to analyze data from flight-test experiments prior to their use in performance, stability and control, or aerodynamic modeling calculations. It can also be used in the analysis of aircraft accidents, where the actual forces and motions may have to be determined from a very limited data set. Application of a state-estimation method for flightpath reconstruction is possible because aircraft forces and motions are related by well-known equations of motion. The task of postflight state estimation is known as a nonlinear, fixed-interval smoothing problem. SMACK utilizes a backward-filter, forward-smoother algorithm to solve the problem. The equations of motion are used to produce estimates that are compared with their corresponding measurement time histories. The procedure is iterative, providing improved state estimates until a minimum squared-error measure is achieved. In the SMACK program, the state and measurement models together represent a finite-difference approximation for the six-degree-of-freedom dynamics of a rigid body. The models are used to generate time histories which are likely to be found in a flight-test measurement set. These include onboard variables such as Euler angles, angular rates, and linear accelerations as well as tracking variables such as slant range, bearing, and elevation. Any bias or scale-factor errors associated with the state or measurement models are appended to the state vector and treated as constant but unknown parameters. The SMACK documentation covers the derivation of the solution algorithm, describes the state and measurement models, and presents several application examples that should help the analyst recognize the potential

  13. Performance Evaluation Method for Dissimilar Aircraft Designs (United States)

    Walker, H. J.


    A rationale is presented for using the square of the wingspan rather than the wing reference area as a basis for nondimensional comparisons of the aerodynamic and performance characteristics of aircraft that differ substantially in planform and loading. Working relationships are developed and illustrated through application to several categories of aircraft covering a range of Mach numbers from 0.60 to 2.00. For each application, direct comparisons of drag polars, lift-to-drag ratios, and maneuverability are shown for both nondimensional systems. The inaccuracies that may arise in the determination of aerodynamic efficiency based on reference area are noted. Span loading is introduced independently in comparing the combined effects of loading and aerodynamic efficiency on overall performance. Performance comparisons are made for the NACA research aircraft, lifting bodies, century-series fighter aircraft, F-111A aircraft with conventional and supercritical wings, and a group of supersonic aircraft including the B-58 and XB-70 bomber aircraft. An idealized configuration is included in each category to serve as a standard for comparing overall efficiency.

  14. Exergy as a useful tool for the performance assessment of aircraft gas turbine engines: A key review (United States)

    Şöhret, Yasin; Ekici, Selcuk; Altuntaş, Önder; Hepbasli, Arif; Karakoç, T. Hikmet


    It is known that aircraft gas turbine engines operate according to thermodynamic principles. Exergy is considered a very useful tool for assessing machines working on the basis of thermodynamics. In the current study, exergy-based assessment methodologies are initially explained in detail. A literature overview is then presented. According to the literature overview, turbofans may be described as the most investigated type of aircraft gas turbine engines. The combustion chamber is found to be the most irreversible component, and the gas turbine component needs less exergetic improvement compared to all other components of an aircraft gas turbine engine. Finally, the need for analyses of exergy, exergo-economic, exergo-environmental and exergo-sustainability for aircraft gas turbine engines is emphasized. A lack of agreement on exergy analysis paradigms and assumptions is noted by the authors. Exergy analyses of aircraft gas turbine engines, fed with conventional fuel as well as alternative fuel using advanced exergy analysis methodology to understand the interaction among components, are suggested to those interested in thermal engineering, aerospace engineering and environmental sciences.

  15. BOREAS AFM-2 Wyoming King Air 1994 Aircraft Sounding Data (United States)

    Kelly, Robert D.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)


    The BOREAS AFM-2 team used the University of Wyoming King Air aircraft during IFCs 1, 2, and 3 in 1994 to collected pass-by-pass fluxes (and many other statistics) for the large number of level (constant altitude), straight-line passes used in a variety of flight patterns over the SSA and NSA and areas along the transect between these study areas. The data described here form a second set, namely soundings that were incorporated into nearly every research flight by the King Air in 1994. These soundings generally went from near the surface to above the inversion layer. Most were flown immediately after takeoff or immediately after finishing the last flux pattern of that particular day's flights. The parameters that were measured include wind direction, wind speed, west wind component (u), south wind component (v), static pressure, air dry bulb temperature, potential temperature, dewpoint, temperature, water vapor mixing ratio, and CO2 concentration. Data on the aircraft's location, attitude, and altitude during data collection are also provided. These data are stored in tabular ASCH files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  16. Aircraft emission research within ISTC project

    Energy Technology Data Exchange (ETDEWEB)

    Dedesh, V.; Leut, A.; Boris, S. [Scientific Research Center at the Gromov Flight, Research Institute (Russian Federation)


    This research is aimed at obtaining experimental data on contamination of the atmosphere by emissions from aircraft engines in cruise flight conditions, to establish and improve models of the physical and chemical processes which take place in the aircraft wake and in the general zone of air traffic corridors. An Su-24 'sounder' aircraft equipped with an air sampling and collection system has been established to obtain the necessary atmospheric samples in flight, and procedures have been developed for performing the research flights. Techniques have also been developed for chemical analysis of the samples. (authors)

  17. Moving towards a more electric aircraft


    Rosero García, Javier Alveiro; Ortega Redondo, Juan Antonio; Aldabas Rubira, Emiliano; Romeral Martínez, José Luis


    Harry Rowe Mimno Award for the March 2007 AESS Magazine Paper: “Moving Towards A More Electric Aircraft” The latest advances in electric and electronic aircraft technologies from the point of view of an "all-electric" aircraft are presented herein. Specifically, we describe the concept of a "more electric aircraft" (MEA), which involves removing the need for on-engine hydraulic power generation and bleed air off-takes, and the increasing use of power electronics in the starter/generation s...

  18. Research related to variable sweep aircraft development (United States)

    Polhamus, E. C.; Toll, T. A.


    Development in high speed, variable sweep aircraft research is reviewed. The 1946 Langley wind tunnel studies related to variable oblique and variable sweep wings and results from the X-5 and the XF1OF variable sweep aircraft are discussed. A joint program with the British, evaluation of the British "Swallow", development of the outboard pivot wing/aft tail configuration concept by Langley, and the applied research program that followed and which provided the technology for the current, variable sweep military aircraft is outlined. The relative state of variable sweep as a design option is also covered.

  19. Multidisciplinary Techniques and Novel Aircraft Control Systems (United States)

    Padula, Sharon L.; Rogers, James L.; Raney, David L.


    The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shape-change devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.

  20. 14 CFR 91.1109 - Aircraft maintenance: Inspection program. (United States)


    ... currently recommended by the manufacturer of the aircraft, aircraft engines, propellers, appliances, and... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aircraft maintenance: Inspection program... Ownership Operations Program Management § 91.1109 Aircraft maintenance: Inspection program. Each...

  1. 77 FR 42455 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes (United States)


    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Piper Aircraft, Inc... directive (AD) for all Piper Aircraft, Inc. (type certificate previously held by The New Piper Aircraft Inc... receive about this proposed AD. Discussion Three forced landings of Piper Aircraft, Inc. Model...

  2. A mathematical model of aircraft for evaluating the effects of shielding structure on aircrew exposure. (United States)

    Ferrari, A; Pelliccioni, M; Villari, R


    To investigate the influence of the aircraft structures and contents on the exposure of aircrew to the galactic component of cosmic rays, a mathematical model of an aeroplane has been developed. The irradiation of the mathematical model in the cosmic ray environment has been simulated using the Monte Carlo transport code FLUKA. Effective dose andambient dose-equivalent rates have been determined inside the aircraft at several locations along the fuselage at a typicaI civil aviation altitude. A significant effect of the shielding of aircraft structures has been observed on the ambient dose-equivalent rates, while the impact on the effective dose rates seems to be minor. Care should be taken in positioning the detectors onboard when the measurements are aimed at validating the codes.

  3. A Study on External Fire Damage of Structures subjected to Aircraft Impact

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sang Shup [Hanyang University, Seoul (Korea, Republic of); Hahm, Daegi; Kim, Min Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    A large commercial aircraft consists of various components as fuselage, wings, fuel tank, engine etc. During a collision of the aircraft, the fuel tank with a large amount of jet fuel have a significant effect on the total load of the aircraft as well as causing explosive fire and smoke which affect the safety of the structure and equipment. US Sandia National Laboratories and Finland VTT etc. performed the test and simulation studies to evaluate the dispersion range of the fluid after the crash of liquid filled cylinder missiles. The test condition and results have been referred in this paper. The fluid modeling approach using SPH is applied to evaluate the dispersing range of the fluid, and is compared with the Brown's results. The jet fuel is idealized as particles contained in an aluminum cylinder missile, where those particles can be dispersed to the surrounding area after the missile crashes into a rigid target. The fluid model using the SPH method is briefly verified through comparison with test results, and then the modelling method is applied to a jet fuel model in an aircraft model. The dispersion analysis of jet fuel caused by aircraft impact is performed using an aircraft model for the determination of fire duration and fire affected zone in a nuclear power plant. Finally, the structural integrity of the roof of the structure during a jet fuel fire is evaluated. In this study, the filled jet fuel was modeled by using smooth particle hydrodynamics technique; jet fuel spread area following an aircraft crash was analyzed.

  4. Impact of Advanced Propeller Technology on Aircraft/Mission Characteristics of Several General Aviation Aircraft (United States)

    Keiter, I. D.


    Studies of several General Aviation aircraft indicated that the application of advanced technologies to General Aviation propellers can reduce fuel consumption in future aircraft by a significant amount. Propeller blade weight reductions achieved through the use of composites, propeller efficiency and noise improvements achieved through the use of advanced concepts and improved propeller analytical design methods result in aircraft with lower operating cost, acquisition cost and gross weight.

  5. Innovative Aircraft Design – Options for a New Medium Range Aircraft


    Scholz, Dieter


    Task was to find an innovative aircraft design for a new medium range aircraft. The aircraft design methodology is based on equations (in contrast to numeric methods) and formal optimization with a genetic algorithm called differential evolution. Airbus has postponed an all-new A320 to 2025 or even 2030. This allows including also unconventional configurations into the search. Economic requirements are extreme: 25 % to 40 % reduction in fuel consumption, 35 % reduction in Cash Operating Costs...

  6. Polymer, metal, and ceramic matrix composites for advanced aircraft engine applications (United States)

    Mcdanels, D. L.; Serafini, T. T.; Dicarlo, J. A.


    Advanced aircraft engine research within NASA Lewis is being focused on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.

  7. Conceptual design and optimization methodology for box wing aircraft


    Jemitola, Paul Olugbeji


    A conceptual design optimization methodology was developed for a medium range box wing aircraft. A baseline conventional cantilever wing aircraft designed for the same mis- sion and payload was also optimized alongside a baseline box wing aircraft. An empirical formula for the mass estimation of the fore and aft wings of the box wing aircraft was derived by relating conventional cantilever wings to box wing aircraft wings. The results indicate that the fore and aft wings would ...

  8. Aircraft Noise and Quality of Life around Frankfurt Airport


    Thomas Eikmann; Christin Peschel; Cara Kahl; Dirk Schreckenberg; Markus Meis


    In a survey of 2,312 residents living near Frankfurt Airport aircraft noise annoyance and disturbances as well as environmental (EQoL) and health-related quality of life (HQoL) were assessed and compared with data on exposure due to aircraft, road traffic, and railway noise. Results indicate higher noise annoyance than predicted from general exposure-response curves. Beside aircraft sound levels source-related attitudes were associated with reactions to aircraft noise. Furthermore, aircraft n...

  9. Modeling and Simulation of Power Distribution System in More Electric Aircraft

    Directory of Open Access Journals (Sweden)

    Zhangang Yang


    Full Text Available The More Electric Aircraft concept is a fast-developing trend in modern aircraft industry. With this new concept, the performance of the aircraft can be further optimized and meanwhile the operating and maintenance cost will be decreased effectively. In order to optimize the power system integrity and have the ability to investigate the performance of the overall system in any possible situations, one accurate simulation model of the aircraft power system will be very helpful and necessary. This paper mainly introduces a method to build a simulation model for the power distribution system, which is based on detailed component models. The power distribution system model consists of power generation unit, transformer rectifier unit, DC-DC converter unit, and DC-AC inverter unit. In order to optimize the performance of the power distribution system and improve the quality of the distributed power, a feedback control network is designed based on the characteristics of the power distribution system. The simulation result indicates that this new simulation model is well designed and it works accurately. Moreover, steady state performance and transient state performance of the model can fulfill the requirements of aircraft power distribution system in the realistic application.

  10. Investigation of aircraft vortex wake structure (United States)

    Baranov, N. A.; Turchak, L. I.


    In this work we analyze the mechanisms of formation of the vortex wake structure of aircraft with different wing shape in the plan flying close to or away from the underlying surface cleaned or released mechanization wing.

  11. Titanium in fatigue critical military aircraft structure

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, F.


    This paper discusses the effect of fatigue requirements on titanium structure in military aircraft applications, specifically, fighter aircraft. The discussion covers how fatigue affects the design and analysis of detail parts, and how manufacturing processes affect the fatigue performance of titanium structure. Criteria for designing fighter aircraft have evolved from simple strength calculations to extremely complex computer generated analyses involving strength, durability, damage tolerance and fatigue. Fatigue life prediction is an important part of these analyses and dramatically affects the design and weight of fighter aircraft. Manufacturing processes affect fatigue performance both in a positive and negative manner. Designers must allow for the effect of these processes on titanium structure and consider the efficiency and economy of adding processes that increase fatigue life.

  12. Aircraft Electronics Maintenance Training Simulator. Curriculum Outlines. (United States)

    Blackhawk Technical Coll., Janesville, WI.

    Instructional materials are provided for nine courses in an aircraft electronics maintenance training program. Courses are as follows: aviation basic electricity, direct current and alternating current electronics, basic avionic installations, analog electronics, digital electronics, microcomputer electronics, radio communications, aircraft…

  13. Aircraft Test & Evaluation Facility (Hush House) (United States)

    Federal Laboratory Consortium — The Aircraft Test and Evaluation Facility (ATEF), or Hush House, is a noise-abated ground test sub-facility. The facility's controlled environment provides 24-hour...

  14. Emerging nondestructive inspection methods for aging aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, A; Dahlke, L; Gieske, J [and others


    This report identifies and describes emerging nondestructive inspection (NDI) methods that can potentially be used to inspect commercial transport and commuter aircraft for structural damage. The nine categories of emerging NDI techniques are: acoustic emission, x-ray computed tomography, backscatter radiation, reverse geometry x-ray, advanced electromagnetics, including magnetooptic imaging and advanced eddy current techniques, coherent optics, advanced ultrasonics, advanced visual, and infrared thermography. The physical principles, generalized performance characteristics, and typical applications associated with each method are described. In addition, aircraft inspection applications are discussed along with the associated technical considerations. Finally, the status of each technique is presented, with a discussion on when it may be available for use in actual aircraft maintenance programs. It should be noted that this is a companion document to DOT/FAA/CT-91/5, Current Nondestructive Inspection Methods for Aging Aircraft.

  15. Thermal Management System for Superconducting Aircraft Project (United States)

    National Aeronautics and Space Administration — Aircraft powered by hydrogen power plants or gas turbines driving electric generators connected to distributed electric motors for propulsion have the potential to...

  16. Aircraft Nodal Data Acquisition System (ANDAS) Project (United States)

    National Aeronautics and Space Administration — Development of an Aircraft Nodal Data Acquisition System (ANDAS) is proposed. The proposed methodology employs the development of a very thin (135m) hybrid...

  17. Aircraft Nodal Data Acquisition System (ANDAS) Project (United States)

    National Aeronautics and Space Administration — Development of an Aircraft Nodal Data Acquisition System (ANDAS) based upon the short haul Zigbee networking standard is proposed. It employs a very thin (135 um)...

  18. Design of heavy lift cargo aircraft (United States)

    National Aeronautics and Space Administration — This is the bird of the skies of the future. The heavy lift cargo aircraft which is currently being developed by me has twice the payload capacity of an Antonov...

  19. Modular Electric Propulsion Test Bed Aircraft Project (United States)

    National Aeronautics and Space Administration — A hybrid electric aircraft simulation system and test bed is proposed to provide a dedicated development environment for the rigorous study and advancement of hybrid...

  20. Nondestructive Evaluation of Aircraft and Spacecraft Wiring (United States)

    White, John E.; Tucholski, Edward J.; Green, Robert E., Jr.


    Spacecraft, and especially aircraft, often fry well past their original design lives and, therefore, the need to develop nondestructive evaluation procedures for inspection of vital structures in these craft is extremely important. One of the more recent problems is the degradation of wiring and wiring insulation. The present paper describes several nondestructive characterization methods which afford the possibility to detect wiring and insulation degradation in-situ prior to major problems with the safety of aircraft and spacecraft.

  1. Aircraft Pitch Attitude Control using Backstepping


    Härkegård, Ola; Glad, Torkel


    A nonlinear approach to the automatic pitch attitude control problem for a generic fighter aircraft is presented. A nonlinear model describing the longitudinal equations of motion in strict feedback form is derived. Backstepping is utilized for the construction of a globally stabilizing controller with a number of free design parameters. Two tuning schemes are proposed based on the desired locally linear controller properties. The controller is evaluated using the HIRM fighter aircraft model.

  2. An Optimization Model for Aircraft Service Logistics

    Institute of Scientific and Technical Information of China (English)

    Angus; Cheung; W; H; Ip; Angel; Lai; Eva; Cheung


    Scheduling is one of the most difficult issues in t he planning and operations of the aircraft services industry. In this paper, t he various scheduling problems in ground support operation of an aircraft mainte nance service company are addressed. The authors developed a set of vehicle rout ings to cover each schedule flights; the objectives pursued are the maximization of vehicle and manpower utilization and minimization of operation time. To obta in the goals, an integer-programming model with geneti...

  3. The Demand for Single Engine Piston Aircraft, (United States)


    composites more quickly because of the absence of certi- ficatjcr: requirements. Less conventional configurations such as carar( wings and winglets are...smooth contours and surfaces. Composites offer much promise and are already in use in winos of a number of aircraft. Winglets reduce vortex drag by...Vore Aviation Corporation in Albuquerque, NM. It is a high-wing, composite , tricycle-gear aircraft designed primarily for the training and personal

  4. Integrated lift/drag controller for aircraft (United States)

    Olcott, J. W.; Seckel, E.; Ellis, D. R. (Inventor)


    A system for altering the lift/drag characteristics of powered aircraft to provide a safe means of glide path control includes a control device integrated for coordination action with the aircraft throttle. Such lift/drag alteration devices as spoilers, dive brakes, and the like are actuated by manual operation of a single lever coupled with the throttle for integrating, blending or coordinating power control. Improper operation of the controller is inhibited by safety mechanisms.

  5. Aircraft Wake Vortex Deformation in Turbulent Atmosphere


    Hennemann, Ingo; Holzaepfel, Frank


    Large-scale distortion of aircraft wake vortices appears to play a crucial role for aircraft safety during approach and landing. Vortex distortion is investigated based on large eddy simulations of wake vortex evolution in a turbulent atmosphere. A vortex identification method is developed that can be adapted to the vortex scales of interest. Based on the identified vortex center tracks, a statistics of vortex curvature radii is established. This statistics constitutes the basis for understan...

  6. Handling Qualities Evaluations of Unmanned Aircraft Systems (United States)


    Control Loop – Manned Platform Ai rc ra ft Pilot Flight Computer Control Surface Deflection Aircraft Response Inertia Measurements Visual Cues Aural...dynamics, ergonomics in the control station, and the control surfaces and actuators in the air- craft. The software may contain displays, with the latency of manned aircraft that exhibit imperceptible time delays, usually less than 5 millisec- onds , which is considered a minimum

  7. 14 CFR 35.42 - Components of the propeller control system. (United States)


    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.42 Components of the propeller control system. The applicant must demonstrate by tests, analysis based on tests, or service... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Components of the propeller control...

  8. Modeling Programs Increase Aircraft Design Safety (United States)


    Flutter may sound like a benign word when associated with a flag in a breeze, a butterfly, or seaweed in an ocean current. When used in the context of aerodynamics, however, it describes a highly dangerous, potentially deadly condition. Consider the case of the Lockheed L-188 Electra Turboprop, an airliner that first took to the skies in 1957. Two years later, an Electra plummeted to the ground en route from Houston to Dallas. Within another year, a second Electra crashed. In both cases, all crew and passengers died. Lockheed engineers were at a loss as to why the planes wings were tearing off in midair. For an answer, the company turned to NASA s Transonic Dynamics Tunnel (TDT) at Langley Research Center. At the time, the newly renovated wind tunnel offered engineers the capability of testing aeroelastic qualities in aircraft flying at transonic speeds near or just below the speed of sound. (Aeroelasticity is the interaction between aerodynamic forces and the structural dynamics of an aircraft or other structure.) Through round-the-clock testing in the TDT, NASA and industry researchers discovered the cause: flutter. Flutter occurs when aerodynamic forces acting on a wing cause it to vibrate. As the aircraft moves faster, certain conditions can cause that vibration to multiply and feed off itself, building to greater amplitudes until the flutter causes severe damage or even the destruction of the aircraft. Flutter can impact other structures as well. Famous film footage of the Tacoma Narrows Bridge in Washington in 1940 shows the main span of the bridge collapsing after strong winds generated powerful flutter forces. In the Electra s case, faulty engine mounts allowed a type of flutter known as whirl flutter, generated by the spinning propellers, to transfer to the wings, causing them to vibrate violently enough to tear off. Thanks to the NASA testing, Lockheed was able to correct the Electra s design flaws that led to the flutter conditions and return the

  9. Variability and component composition

    NARCIS (Netherlands)

    Storm, T. van der


    In component-based product populations, feature models have to be described at the component level to be able to benefit from a product family approach. As a consequence, composition of components becomes very complex. We describe how component-level variability can be managed in the face of compone

  10. Analysis of Control Strategies for Aircraft Flight Upset Recovery (United States)

    Crespo, Luis G.; Kenny, Sean P.; Cox, David E.; Muri, Daniel G.


    This paper proposes a framework for studying the ability of a control strategy, consisting of a control law and a command law, to recover an aircraft from ight conditions that may extend beyond the normal ight envelope. This study was carried out (i) by evaluating time responses of particular ight upsets, (ii) by evaluating local stability over an equilibrium manifold that included stall, and (iii) by bounding the set in the state space from where the vehicle can be safely own to wings-level ight. These states comprise what will be called the safely recoverable ight envelope (SRFE), which is a set containing the aircraft states from where a control strategy can safely stabilize the aircraft. By safe recovery it is implied that the tran- sient response stays between prescribed limits before converging to a steady horizontal ight. The calculation of the SRFE bounds yields the worst-case initial state corresponding to each control strategy. This information is used to compare alternative recovery strategies, determine their strengths and limitations, and identify the most e ective strategy. In regard to the control law, the authors developed feedback feedforward laws based on the gain scheduling of multivariable controllers. In regard to the command law, which is the mechanism governing the exogenous signals driving the feed- forward component of the controller, we developed laws with a feedback structure that combines local stability and transient response considera- tions. The upset recovery of the Generic Transport Model, a sub-scale twin-engine jet vehicle developed by NASA Langley Research Center, is used as a case study.

  11. Conceptual design of high speed supersonic aircraft: A brief review on SR-71 (Blackbird) aircraft (United States)

    Xue, Hui; Khawaja, H.; Moatamedi, M.


    The paper presents the conceptual design of high-speed supersonic aircraft. The study focuses on SR-71 (Blackbird) aircraft. The input to the conceptual design is a mission profile. Mission profile is a flight profile of the aircraft defined by the customer. This paper gives the SR-71 aircraft mission profile specified by US air force. Mission profile helps in defining the attributes the aircraft such as wing profile, vertical tail configuration, propulsion system, etc. Wing profile and vertical tail configurations have direct impact on lift, drag, stability, performance and maneuverability of the aircraft. A propulsion system directly influences the performance of the aircraft. By combining the wing profile and the propulsion system, two important parameters, known as wing loading and thrust to weight ratio can be calculated. In this work, conceptual design procedure given by D. P. Raymer (AIAA Educational Series) is applied to calculate wing loading and thrust to weight ratio. The calculated values are compared against the actual values of the SR-71 aircraft. Results indicates that the values are in agreement with the trend of developments in aviation.

  12. B-52 Launch Aircraft in Flight (United States)


    NASA's venerable B-52 mothership is seen here photographed from a KC-135 Tanker aircraft. The X-43 adapter is visible attached to the right wing. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and is also both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported

  13. An integrated systems engineering approach to aircraft design (United States)

    Price, M.; Raghunathan, S.; Curran, R.


    The challenge in Aerospace Engineering, in the next two decades as set by Vision 2020, is to meet the targets of reduction of nitric oxide emission by 80%, carbon monoxide and carbon dioxide both by 50%, reduce noise by 50% and of course with reduced cost and improved safety. All this must be achieved with expected increase in capacity and demand. Such a challenge has to be in a background where the understanding of physics of flight has changed very little over the years and where industrial growth is driven primarily by cost rather than new technology. The way forward to meet the challenges is to introduce innovative technologies and develop an integrated, effective and efficient process for the life cycle design of aircraft, known as systems engineering (SE). SE is a holistic approach to a product that comprises several components. Customer specifications, conceptual design, risk analysis, functional analysis and architecture, physical architecture, design analysis and synthesis, and trade studies and optimisation, manufacturing, testing validation and verification, delivery, life cycle cost and management. Further, it involves interaction between traditional disciplines such as Aerodynamics, Structures and Flight Mechanics with people- and process-oriented disciplines such as Management, Manufacturing, and Technology Transfer. SE has become the state-of-the-art methodology for organising and managing aerospace production. However, like many well founded methodologies, it is more difficult to embody the core principles into formalised models and tools. The key contribution of the paper will be to review this formalisation and to present the very latest knowledge and technology that facilitates SE theory. Typically, research into SE provides a deeper understanding of the core principles and interactions, and helps one to appreciate the required technical architecture for fully exploiting it as a process, rather than a series of events. There are major issues as

  14. Aircraft Combat Survivability Estimation and Synthetic Tradeoff Methods

    Institute of Scientific and Technical Information of China (English)

    LI Shu-lin; LI Shou-an; LI Wei-ji; LI Dong-xia; FENG Feng


    A new concept is proposed that susceptibility, vulnerability, reliability, maintainability and supportability should be essential factors of aircraft combat survivability. A weight coefficient method and a synthetic method are proposed to estimate aircraft combat survivability based on the essential factors. Considering that it takes cost to enhance aircraft combat survivability, a synthetic tradeoff model between aircraft combat survivability and life cycle cost is built. The aircraft combat survivability estimation methods and synthetic tradeoff with a life cycle cost model will be helpful for aircraft combat survivability design and enhancement.

  15. Improvements in Aircraft Gas Turbine Engines for the 90s

    Directory of Open Access Journals (Sweden)

    Arun Prasad


    Full Text Available The gas turbine propulsion system has been playing the most significant role in the evolution and development of present-day aircraft, and has become the limiting technology for developing most new aircraft. However, the jet engine still remains the preferred propulsion choice. Aircraft gas turbines in one form or the other, viz. turbojet, turbofan, turboprop or turboshaft, have been used in commercial passenger aircraft, high performance military aircraft and in rotary wing aircraft (helicopters. The emphasis in engine development programmes world over seems to be in reducing fuel consumption, increasing thrust and in reducing weight.

  16. Small Autonomous Aircraft Servo Health Monitoring (United States)

    Quintero, Steven


    Small air vehicles offer challenging power, weight, and volume constraints when considering implementation of system health monitoring technologies. In order to develop a testbed for monitoring the health and integrity of control surface servos and linkages, the Autonomous Aircraft Servo Health Monitoring system has been designed for small Uninhabited Aerial Vehicle (UAV) platforms to detect problematic behavior from servos and the air craft structures they control, This system will serve to verify the structural integrity of an aircraft's servos and linkages and thereby, through early detection of a problematic situation, minimize the chances of an aircraft accident. Embry-Riddle Aeronautical University's rotary-winged UAV has an Airborne Power management unit that is responsible for regulating, distributing, and monitoring the power supplied to the UAV's avionics. The current sensing technology utilized by the Airborne Power Management system is also the basis for the Servo Health system. The Servo Health system measures the current draw of the servos while the servos are in Motion in order to quantify the servo health. During a preflight check, deviations from a known baseline behavior can be logged and their causes found upon closer inspection of the aircraft. The erratic behavior nay include binding as a result of dirt buildup or backlash caused by looseness in the mechanical linkages. Moreover, the Servo Health system will allow elusive problems to be identified and preventative measures taken to avoid unnecessary hazardous conditions in small autonomous aircraft.

  17. Dynamics and control of morphing aircraft (United States)

    Seigler, Thomas Michael

    The following work is directed towards an evaluation of aircraft that undergo structural shape change for the purpose of optimized flight and maneuvering control authority. Dynamical equations are derived for a morphing aircraft based on two primary representations; a general non-rigid model and a multi-rigid-body. A simplified model is then proposed by considering the altering structural portions to be composed of a small number of mass particles. The equations are then extended to consider atmospheric flight representations where the longitudinal and lateral equations are derived. Two aspects of morphing control are considered. The first is a regulation problem in which it is desired to maintain stability in the presence of large changes in both aerodynamic and inertial properties. From a baseline aircraft model various wing planform designs were constructed using Datcom to determine the required aerodynamic contributions. Based on nonlinear numerical evaluations adequate stabilization control was demonstrated using a robust linear control design. In maneuvering, divergent characteristics were observed at high structural transition rates. The second aspect considered is the use of structural changes for improved flight performance. A variable span aircraft is then considered in which asymmetric wing extension is used to effect the rolling moment. An evaluation of the variable span aircraft is performed in the context of bank-to-turn guidance in which an input-output control law is implemented.

  18. Longitudinal dynamics of a perching aircraft concept (United States)

    Wickenheiser, Adam; Garcia, Ephrahim; Waszak, Martin


    This paper introduces a morphing aircraft concept whose purpose is to demonstrate a new bio-inspired flight capability: perching. Perching is a maneuver that utilizes primarily aerodynamics -- as opposed to thrust generation -- to achieve a vertical or short landing. The flight vehicle that will accomplish this is described herein with particular emphasis on its addition levels of actuation beyond the traditional aircraft control surfaces. A computer model of the aircraft is developed in order to predict the changes in applied aerodynamic loads as it morphs and transitions through different flight regimes. The analysis of this model is outlined, including a lifting-line-based analytical technique and a trim and stability analysis. These analytical methods -- compared to panel or computational fluid dynamics (CFD) methods -- are considered desirable for the analysis of a large number of vehicle configurations and flight conditions. The longitudinal dynamics of this aircraft are studied, and several interesting results are presented. Of special interest are the changes in vehicle dynamics as the aircraft morphs from a cruise configuration to initiate the perching maneuver. Changes in trim conditions and stability are examined as functions of vehicle geometry. The time response to changes in vehicle configuration is also presented.

  19. Oxygen demand of aircraft and airfield pavement deicers and alternative freezing point depressants (United States)

    Corsi, Steven R.; Mericas, Dean; Bowman, George


    Aircraft and pavement deicing formulations and other potential freezing point depressants were tested for biochemical oxygen demand (BOD) and chemical oxygen demand (COD). Propylene glycol-based aircraft deicers exhibited greater BOD5 than ethylene glycol-based aircraft deicers, and ethylene glycol-based products had lower degradation rates than propylene glycol-based products. Sodium formate pavement deicers had lower COD than acetate-based pavement deicers. The BOD and COD results for acetate-based pavement deicers (PDMs) were consistently lower than those for aircraft deicers, but degradation rates were greater in the acetate-based PDM than in aircraft deicers. In a 40-day testing of aircraft and pavement deicers, BOD results at 20°C (standard) were consistently greater than the results from 5°C (low) tests. The degree of difference between standard and low temperature BOD results varied among tested products. Freshwater BOD test results were not substantially different from marine water tests at 20°C, but glycols degraded slower in marine water than in fresh water for low temperature tests. Acetate-based products had greater percentage degradation than glycols at both temperatures. An additive component of the sodium formate pavement deicer exhibited toxicity to the microorganisms, so BOD testing did not work properly for this formulation. BOD testing of alternative freezing point depressants worked well for some, there was little response for some, and for others there was a lag in response while microorganisms acclimated to the freezing point depressant as a food source. Where the traditional BOD5 test performed adequately, values ranged from 251 to 1,580 g/kg. Where the modified test performed adequately, values of BOD28 ranged from 242 to 1,540 g/kg.

  20. Application of supersonic particle deposition to enhance the structural integrity of aircraft structures (United States)

    Matthews, N.; Jones, R.; Sih, G. C.


    Aircraft metal components and structures are susceptible to environmental degradation throughout their original design life and in many cases their extended lives. This paper summarizes the results of an experimental program to evaluate the ability of Supersonic Particle Deposition (SPD), also known as cold spray, to extend the limit of validity (LOV) of aircraft structural components and to restore the structural integrity of corroded panels. In this study [LU1]the potential for the SPD to seal the mechanically fastened joints and for this seal to remain intact even in the presence of multi-site damage (MSD) has been evaluated. By sealing the joint the onset of corrosion damage in the joint can be significantly retarded, possibly even eliminated, thereby dramatically extending the LOV of mechanically fastened joints. The study also shows that SPD can dramatically increase the damage tolerance of badly corroded wing skins.

  1. Ply Orientation of Carbon Fiber Reinforced Aircraft Wing - A Parametric Study

    Directory of Open Access Journals (Sweden)

    Dr. Alice Mathai


    Full Text Available In the present day scenario, use of carbon fiber composites has been extended to a large number of aircraft components which includes structural and non-structural components. Carbon fiber reinforced polymer (CFRP is a composite material which consists of laminates having reinforcing fibers (carbon of significant strength embedded in a matrix material. Each lamina can have distinct fiber orientations which may vary from the adjoining lamina. The present study focuses on the effect of the ply orientation on the strength of the panels. The wing of a subsonic aircraft was modeled in the ANSYS software. The performance of wing under the application of loads was studied by varying the orientation of fiber layers. From the study, it was observed that the variation in stress occurs with variation in orientation of fiber layers of CFRP composites.

  2. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodies commercial transport aircraft (United States)

    Stone, R. H.


    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 9 years of service. There are six Kevlar-49 panels on each aircraft: a left hand and right hand set of a wing body sandwich fairing; a solid laminate under wing fillet panel; and a 422 K (300 F) service aft engine fairing. The fairings have accumulated a total of 70,000 hours, with one ship set having over 24,000 hours service. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  3. Advanced technology payoffs for future rotorcraft, commuter aircraft, cruise missile, and APU propulsion systems (United States)

    Turk, M. A.; Zeiner, P. K.


    In connection with the significant advances made regarding the performance of larger gas turbines, challenges arise concerning the improvement of small gas turbine engines in the 250 to 1000 horsepower range. In response to these challenges, the NASA/Army-sponsored Small Engine Component Technology (SECT) study was undertaken with the objective to identify the engine cycle, configuration, and component technology requirements for the substantial performance improvements desired in year-2000 small gas turbine engines. In the context of this objective, an American turbine engine company evaluated engines for four year-2000 applications, including a rotorcraft, a commuter aircraft, a supersonic cruise missile, and an auxiliary power unit (APU). Attention is given to reference missions, reference engines, reference aircraft, year-2000 technology projections, cycle studies, advanced engine selections, and a technology evaluation.

  4. Hydraulic Actuators with Autonomous Hydraulic Supply for the Mainline Aircrafts

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov


    pipelines, as well as their increasing reliability. It is also possible, in addition, in addition to increase reliability of the remained pipelines, having applied the last developments, e.g. introduction of one-piece connections (thermo-mechanical ones, high-strength steels for pipelines with σв˃85 кг/мм 2 σ to increase control of residual assembly tension, and so on;- to eliminate essentially all the shortcomings of hydraulic actuators, which constrain their introduction in aircraft industry;- to simplify essentially steering drive structures and designs, which allow to apply the tried and tested components and principles;- to simplify essentially a solution for cooling of working liquid;- to simplify essentially a solution for the steering drive configuration in a zone of control vanes;- to simplify essentially a solution for meeting requirements for dynamic rigidity and dynamic sensitivity of hydraulic actuators;- to simplify essentially a solution for the aircraft fire safety, etc.

  5. Static aeroelastic analysis for generic configuration aircraft (United States)

    Lee, IN; Miura, Hirokazu; Chargin, Mladen K.


    A static aeroelastic analysis capability that can calculate flexible air loads for generic configuration aircraft was developed. It was made possible by integrating a finite element structural analysis code (MSC/NASTRAN) and a panel code of aerodynamic analysis based on linear potential flow theory. The framework already built in MSC/NASTRAN was used and the aerodynamic influence coefficient matrix is computed externally and inserted in the NASTRAN by means of a DMAP program. It was shown that deformation and flexible airloads of an oblique wing aircraft can be calculated reliably by this code both in subsonic and supersonic speeds. Preliminary results indicating importance of flexibility in calculating air loads for this type of aircraft are presented.

  6. The FEM simulation of the thin walled aircraft engine corpus deformation during milling (United States)

    Matras, A.; Plaza, M.


    This paper discusses the results of the experimental research performed with the support of finite element method. The deformation of the thin walled aircraft engine corpus was analyzed based on a geometric model. Then, the boundary of the outer side of the part was loaded by the components of a cutting force during milling. The material model of the part was also defined in the simulation software. The analysis allowed to optimize feed rate in order to decrease the deformation of the part.

  7. Formulations for aircraft and airfield deicing and anti-icing: aquatic toxicity and biochemical oxygen demand (United States)

    Ferguson, Lee; Corsi, Steven R.; Geis, Steven W.; Anderson, Graham; Joback, Kevin; Gold, Harris; Mericas, Dean; Cancilla, Devon A.


    The Airport Cooperative Research Program (ACRP) has sponsored research on environmental characteristics of aircraft and pavement deicers and anti-icers focusing primarily on biochemical oxygen demand (BOD) and aquatic toxicity of formulated products and individual chemical components of formulations. This report presents a background of issues leading to this research, objectives of this document, and a description of the efforts and findings of this research.

  8. Aircraft System Design and Integration

    Directory of Open Access Journals (Sweden)

    D. P. Coldbeck


    Full Text Available In the 1980's the British aircraft industry changed its approach to the management of projects from a system where a project office would manage a project and rely on a series of specialist departments to support them to a more process oriented method, using systems engineering models, whose most outwardly visible signs were the introduction of multidisciplinary product teams. One of the problems with the old method was that the individual departments often had different priorities and projects would get uneven support. The change in the system was only made possible for complex designs by the electronic distribution of data giving instantaneous access to all involved in the project. In 1997 the Defence and Aerospace Foresight Panel emphasised the need for a system engineering approach if British industry was to remain competitive. The Royal Academy of Engineering recognised that the change in working practices also changed what was required of a chartered engineer and redefined their requirements in 1997 [1]. The result of this is that engineering degree courses are now judged against new criteria with more emphasis placed on the relevance to industry rather than on purely academic content. At the University of Glasgow it was realized that the students ought to be made aware of current working practices and that there ought to be a review to ensure that the degrees give students the skills required by industry. It was decided to produce a one week introduction course in systems engineering for Masters of Engineering (MEng students to be taught by both university lecturers and practitioners from a range of companies in the aerospace industry with the hope of expanding the course into a module. The reaction of the students was favourable in terms of the content but it seems ironic that the main criticism was that there was not enough discussion involving the students. This paper briefly describes the individual teaching modules and discusses the

  9. Vibration Characteristics of Aircraft Engine-Bladed-Disk Assembly

    Directory of Open Access Journals (Sweden)

    J. S. Rao


    Full Text Available This paper is concerned with the vibration characteristics of a gas-turbine blade-disk assembly and a third stage of compressor blade-disk assembly of an orpheus aircraft engine. The assembly is analyzed by considering each component individually and then combining them together with a receptance coupling technique by matching forces and displacements at each junction point. The blade is modelled by number of free-free aerofoil section beams staggered at different angles to the plane of the disk, and the non-uniform disk is modelled as numbers of concentric annuli. The natural frequencies and mode shapes for each case have been obtained. Results obtained are verified by testing both the above assemblies on a microprocessor based vibration exciter and real time analyzer. The mode shape corresponding to each natural frequency was obtained by probing with hand held accelerometer.

  10. Two biased estimation techniques in linear regression: Application to aircraft (United States)

    Klein, Vladislav


    Several ways for detection and assessment of collinearity in measured data are discussed. Because data collinearity usually results in poor least squares estimates, two estimation techniques which can limit a damaging effect of collinearity are presented. These two techniques, the principal components regression and mixed estimation, belong to a class of biased estimation techniques. Detection and assessment of data collinearity and the two biased estimation techniques are demonstrated in two examples using flight test data from longitudinal maneuvers of an experimental aircraft. The eigensystem analysis and parameter variance decomposition appeared to be a promising tool for collinearity evaluation. The biased estimators had far better accuracy than the results from the ordinary least squares technique.

  11. Characterization of lubrication oil emissions from aircraft engines. (United States)

    Yu, Zhenhong; Liscinsky, David S; Winstead, Edward L; True, Bruce S; Timko, Michael T; Bhargava, Anuj; Herndon, Scott C; Miake-Lye, Richard C; Anderson, Bruce E


    In this first ever study, particulate matter (PM) emitted from the lubrication system overboard breather vent for two different models of aircraft engines has been systematically characterized. Lubrication oil was confirmed as the predominant component of the emitted particulate matter based upon the characteristic mass spectrum of the pure oil. Total particulate mass and size distributions of the emitted oil are also investigated by several high-sensitivity aerosol characterization instruments. The emission index (EI) of lubrication oil at engine idle is in the range of 2-12 mg kg(-1) and increases with engine power. The chemical composition of the oil droplets is essentially independent of engine thrust, suggesting that engine oil does not undergo thermally driven chemical transformations during the ∼4 h test window. Volumetric mean diameter is around 250-350 nm for all engine power conditions with a slight power dependence.

  12. View of QF-106 aircraft cockpit (United States)


    View of the cockpit and instrument panel of the QF-106 airplane used in the Eclipse project. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  13. Fire Resistant Aircraft Hydraulic System. (United States)


    and compounds based on new experimental elastomers as well as most commercially available elastomers were screened in seeking seals that were both...for hydraulic component testing. All of the available E6.5 stock was purchased for the screening tests. However, DuPont stated that other homologs of...with the lubricity and anti-wear additive olyvan A (molybdenum oxysulphide dithiocarbamate ) added in the quantity of less than one percent by weight

  14. A Turbo-Brayton Cryocooler for Aircraft Superconducting Systems Project (United States)

    National Aeronautics and Space Administration — Hybrid turbo-electric aircraft with gas turbines driving electric generators connected to electric propulsion motors have the potential to transform the aircraft...

  15. Aircraft detection based on probability model of structural elements (United States)

    Chen, Long; Jiang, Zhiguo


    Detecting aircrafts is important in the field of remote sensing. In past decades, researchers used various approaches to detect aircrafts based on classifiers for overall aircrafts. However, with the development of high-resolution images, the internal structures of aircrafts should also be taken into consideration now. To address this issue, a novel aircrafts detection method for satellite images based on probabilistic topic model is presented. We model aircrafts as the connected structural elements rather than features. The proposed method contains two major steps: 1) Use Cascade-Adaboost classier to identify the structural elements of aircraft firstly. 2) Connect these structural elements to aircrafts, where the relationships between elements are estimated by hierarchical topic model. The model places strict spatial constraints on structural elements which can identify differences between similar features. The experimental results demonstrate the effectiveness of the approach.

  16. Distributed Data Mining for Aircraft Health Management Project (United States)

    National Aeronautics and Space Administration — Aircraft Flight Operations Quality Assurance (FOQA) programs are implemented by most of the aircraft operators. Vast amounts of FOQA data are distributed between...

  17. Cosmic Radiation - An Aircraft Manufacturer's View

    Energy Technology Data Exchange (ETDEWEB)

    Hume, C


    The relevance and context of cosmic radiation to an aircraft maker Airbus Industrie are outlined. Some future developments in aircraft and air traffic are described, along with their possible consequences for exposure. (author)

  18. Distributed Data Mining for Aircraft Health Management Project (United States)

    National Aeronautics and Space Administration — NASA, DoD, and commercial aircraft operators need to transform vast amounts of aircraft data accumulated in distributed databases into actionable knowledge. We...

  19. Fault Tolerance, Diagnostics, and Prognostics in Aircraft Flight (United States)

    National Aeronautics and Space Administration — Abstract In modern fighter aircraft with statically unstable airframe designs, the flight control system is considered flight critical, i.e. the aircraft will...

  20. Practical Voice Recognition for the Aircraft Cockpit Project (United States)

    National Aeronautics and Space Administration — This proposal responds to the urgent need for improved pilot interfaces in the modern aircraft cockpit. Recent advances in aircraft equipment bring tremendous...

  1. High performance forward swept wing aircraft (United States)

    Koenig, David G. (Inventor); Aoyagi, Kiyoshi (Inventor); Dudley, Michael R. (Inventor); Schmidt, Susan B. (Inventor)


    A high performance aircraft capable of subsonic, transonic and supersonic speeds employs a forward swept wing planform and at least one first and second solution ejector located on the inboard section of the wing. A high degree of flow control on the inboard sections of the wing is achieved along with improved maneuverability and control of pitch, roll and yaw. Lift loss is delayed to higher angles of attack than in conventional aircraft. In one embodiment the ejectors may be advantageously positioned spanwise on the wing while the ductwork is kept to a minimum.

  2. A computer application for parametric aircraft design (United States)

    Fraqueiro, Filipe R.; Albuquerque, Pedro F.; Gamboa, Pedro V.


    The present work describes the development and final result of a graphical user interface tailored for a mission-based parametric aircraft design optimization code which targets the preliminary design phase of unmanned aerial vehicles. This development was built from the XFLR5 open source platform and further benefits from two-dimensional aerodynamic data obtained from XFOIL. For a better understanding, the most important graphical windows are shown. In order to demonstrate the graphical user interface interaction with the aircraft designer, the results of a case study which maximizes payload are presented.

  3. Titanium alloys Russian aircraft and aerospace applications

    CERN Document Server

    Moiseyev, Valentin N


    This text offers previously elusive information on state-of-the-art Russian metallurgic technology of titanium alloys. It details their physical, mechanical, and technological properties, as well as treatments and applications in various branches of modern industry, particularly aircraft and aerospace construction. Titanium Alloys: Russian Aircraft and Aerospace Applications addresses all facets of titanium alloys in aerospace and aviation technology, including specific applications, fundamentals, composition, and properties of commercial alloys. It is useful for all students and researchers interested in the investigation and applications of titanium.

  4. Small unmanned aircraft ballistic impact speed

    DEFF Research Database (Denmark)

    La Cour-Harbo, Anders


    A study of how smaller unmanned aircraft will fall in case of failure. The aim is to determine the impact speed of a drone givens its general shape and aerodynamic behavior. This will include both CFD simulations and real world test of ballistic drops of smaller drones.......A study of how smaller unmanned aircraft will fall in case of failure. The aim is to determine the impact speed of a drone givens its general shape and aerodynamic behavior. This will include both CFD simulations and real world test of ballistic drops of smaller drones....

  5. High-Speed Propeller for Aircraft (United States)

    Sagerser, D. A.; Gatzen, B. S.


    Engine efficiency increased. Propeller blades required to be quite thin and highly swept to minimize compressibility losses and propeller noise during high-speed cruise. Use of 8 or 10 blades with highpropeller-power loading allows overall propeller diameter to be kept relatively small. Area-ruled spinner and integrated nacelle shape reduce compressibility losses in propeller hub region. Finally, large modern turboshaft engine and gearbox provide power to advanced propeller. Fuel savings of 30 to 50 percent over present systems anticipated. Propfan system adaptable to number of applications, such as highspeed (subsonic) business and general-aviation aircraft, and military aircraft including V/STOL.

  6. A strategic planning methodology for aircraft redesign (United States)

    Romli, Fairuz Izzuddin

    Due to a progressive market shift to a customer-driven environment, the influence of engineering changes on the product's market success is becoming more prominent. This situation affects many long lead-time product industries including aircraft manufacturing. Derivative development has been the key strategy for many aircraft manufacturers to survive the competitive market and this trend is expected to continue in the future. Within this environment of design adaptation and variation, the main market advantages are often gained by the fastest aircraft manufacturers to develop and produce their range of market offerings without any costly mistakes. This realization creates an emphasis on the efficiency of the redesign process, particularly on the handling of engineering changes. However, most activities involved in the redesign process are supported either inefficiently or not at all by the current design methods and tools, primarily because they have been mostly developed to improve original product development. In view of this, the main goal of this research is to propose an aircraft redesign methodology that will act as a decision-making aid for aircraft designers in the change implementation planning of derivative developments. The proposed method, known as Strategic Planning of Engineering Changes (SPEC), combines the key elements of the product redesign planning and change management processes. Its application is aimed at reducing the redesign risks of derivative aircraft development, improving the detection of possible change effects propagation, increasing the efficiency of the change implementation planning and also reducing the costs and the time delays due to the redesign process. To address these challenges, four research areas have been identified: baseline assessment, change propagation prediction, change impact analysis and change implementation planning. Based on the established requirements for the redesign planning process, several methods and

  7. Serial Escape System For Aircraft Crews (United States)

    Wood, Kenneth E.


    Emergency escape system for aircraft and aerospace vehicles ejects up to seven crewmembers, one by one, within 120 s. Intended for emergencies in which disabled craft still in stable flight at no more than 220 kn (113 m/s) equivalent airspeed and sinking no faster than 110 ft/s (33.5 m/s) at altitudes up to 50,000 ft (15.2 km). Ejection rockets load themselves from magazine after each crewmember ejected. Jumpmaster queues other crewmembers and helps them position themselves on egress ramp. Rockets pull crewmembers clear of aircraft structure. Provides orderly, controlled exit and avoids ditching at sea or landing in rough terrain.

  8. Advanced materials for aircraft engine applications. (United States)

    Backman, D G; Williams, J C


    A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time.

  9. Improving transient analysis technology for aircraft structures (United States)

    Melosh, R. J.; Chargin, Mladen


    Aircraft dynamic analyses are demanding of computer simulation capabilities. The modeling complexities of semi-monocoque construction, irregular geometry, high-performance materials, and high-accuracy analysis are present. At issue are the safety of the passengers and the integrity of the structure for a wide variety of flight-operating and emergency conditions. The technology which supports engineering of aircraft structures using computer simulation is examined. Available computer support is briefly described and improvement of accuracy and efficiency are recommended. Improved accuracy of simulation will lead to a more economical structure. Improved efficiency will result in lowering development time and expense.

  10. Conversion of the dual training aircraft (DC into single control advanced training aircraft (SC. Part I

    Directory of Open Access Journals (Sweden)



    Full Text Available Converting the DC school jet aircraft into SC advanced training aircraft - and use them forthe combat training of military pilots from the operational units, has become a necessity due to thebudget cuts for Air Force, with direct implications on reducing the number of hours of flight assignedto operating personnel for preparing and training.The purpose of adopting such a program is to reduce the number of flight hours allocated annuallyfor preparing and training in advanced stages of instruction, for every pilot, by more intensive use ofthis type of aircraft, which has the advantage of lower flight hour costs as compared to a supersoniccombat plane.

  11. Sonic IR crack detection of aircraft turbine engine blades with multi-frequency ultrasound excitations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ding; Han, Xiaoyan [Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202 (United States); Newaz, Golam [Department of Mechanical Engineering, Wayne State University, Detroit, MI 48202 (United States)


    Effectively and accurately detecting cracks or defects in critical engine components, such as turbine engine blades, is very important for aircraft safety. Sonic Infrared (IR) Imaging is such a technology with great potential for these applications. This technology combines ultrasound excitation and IR imaging to identify cracks and flaws in targets. In general, failure of engine components, such as blades, begins with tiny cracks. Since the attenuation of the ultrasound wave propagation in turbine engine blades is small, the efficiency of crack detection in turbine engine blades can be quite high. The authors at Wayne State University have been developing the technology as a reliable tool for the future field use in aircraft engines and engine parts. One part of the development is to use finite element modeling to assist our understanding of effects of different parameters on crack heating while experimentally hard to achieve. The development has been focused with single frequency ultrasound excitation and some results have been presented in a previous conference. We are currently working on multi-frequency excitation models. The study will provide results and insights of the efficiency of different frequency excitation sources to foster the development of the technology for crack detection in aircraft engine components.

  12. Flight Control Design for a Tailless Aircraft Using Eigenstructure Assignment


    Clara Nieto-Wire; Kenneth Sobel


    We apply eigenstructure assignment to the design of a flight control system for a wind tunnel model of a tailless aircraft. The aircraft, known as the innovative control effectors (ICEs) aircraft, has unconventional control surfaces plus pitch and yaw thrust vectoring. We linearize the aircraft in straight and level flight at an altitude of 15,000 feet and Mach number 0.4. Then, we separately design flight control systems for the longitudinal and lateral dynamics. We use a control allocation ...

  13. F-35 Joint Strike Fighter Aircraft (F-35) (United States)


    Joint Strike Fighter Aircraft (F-35) Program will develop and field an affordable, highly common family of next- generation strike aircraft for the...the O&S account, with U.S. Services’ changes in aircraft life expectancy and bed down plans overshadowing real reductions in O&S costs. Business ...aircraft subprogram and engine subprogram (Navy). (Estimating) -44.4 -46.2 Revised estimate for Small Business Innovation Research in FY 2015 (Navy


    Directory of Open Access Journals (Sweden)

    Oleksandr Zaporozhets


    Full Text Available Purpose: The effects of aircraft engine emissions within the planetary boundary layer under the landing/ take-off operations contribute sufficiently to deterioration of air pollution in the vicinity of the airports and nearby residential areas. Currently the primary object of airport air quality are the nitrogen oxides and particle matter (PM10, PM2.5 and ultrafine PM emissions from aircraft engine exhausts as initiators of photochemical smog and regional haze, which may further impact on human health. Analysis of PM emission inventory results at major European airports highlighted on sufficiently high contribution of aircraft engines and APU. The paper aims to summarize the knowledge on particle size distributions, particle effective density, morphology and internal structure of aircraft PM, these properties are critical for understanding of the fate and potential health impact of PM. It also aims to describe the basic methods for calculation of emission and dispersion of PM, produced by aircrafts under the LTO operations. Methods: analytical solution of the atmospheric diffusion equation is used to calculate the maximum PM concentration from point emission source. The PM concentration varies inversely proportional to the wind velocity u1 and directly proportional to the vertical component of the turbulent exchange coefficient k1/u1. The evaluation of non-volatile PM concentration includes the size and shape of PM. PolEmiCa calculates the distributions of PM fractions for aircraft and APU exhausts (height of installation was given H=4,5m like for Tupolev-154. Results: The maximum concentration of PM in exhaust from APU is higher and appropriate distance is less than in case for gas. PM polydispersity leads to the separation of maximums concentration in space for individual fractions on the wind direction and therefore it contributes to the reduction of maximum total concentration. Discussion:But although the APU has contributed significantly to

  15. 76 FR 45011 - Control of Air Pollution From Aircraft and Aircraft Engines; Proposed Emission Standards and Test... (United States)


    ... procedures. EPA actively participated in the United Nation's International Civil Aviation Organization (ICAO... Regulation of Aircraft Engine Emissions E. Brief History of ICAO Regulation of Aircraft Engine Emissions II... under consideration by the United Nation's International Civil Aviation Organization (ICAO)....

  16. Navy’s Advanced Aircraft Armament System Program Concept Objectives (United States)


    growth. For the ground crew, the task complexity growth is even greater and the effects appear in downed aircraft and lower aircraft availabilty . To...aircraft or coaaercial usage . Many suppliers and high annual deaand rate - ; unliaitad opportunity coapetition. 12-15 Table 4 STANDARDIZATION

  17. Northwest to Accelerate Retirement of Dc10 Aircraft

    Institute of Scientific and Technical Information of China (English)


    @@ Northwest Airlines announced that it will accelerate the retirement of its remaining 12DC10-30 aircraft in service. The airline said that during the next seven months,it will replace DC10 aircraft with new Airbus A330s and Boeing 747-400aircraft being returned to service.Currently, seven routes are served with the DC10.

  18. ASDAR (aircraft to satellite data relay) flight test report (United States)

    Domino, E. J.; Lovell, R. R.; Conroy, M. J.; Culp, D. H.


    The aircraft to Satellite Data Relay (ASDAR), an airborne data collection system that gathers meteorological data from existing aircraft instrumentation and relays it to ground user via a geo-synchronous meteorological satellite, is described and the results of the first test flight on a commercial Boeing 747 aircraft are presented. The flight test was successful and verified system performance in the anticipated environment.

  19. 14 CFR 45.31 - Marking of export aircraft. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Marking of export aircraft. 45.31 Section 45.31 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT IDENTIFICATION AND REGISTRATION MARKING Nationality and Registration Marks § 45.31 Marking of export aircraft....

  20. Licencing and Training Reform in the Australian Aircraft Maintenance Industry (United States)

    Hampson, Ian; Fraser, Doug


    The training and licencing of aircraft maintenance engineers fulfils a crucial protective function since it is they who perform and supervise aircraft maintenance and certify that planes are safe afterwards. In Australia, prior to training reform, a trades-based system of aircraft maintenance engineer training existed in an orderly relation with…

  1. 75 FR 70074 - Consensus Standards, Light-Sport Aircraft (United States)


    ... Federal Aviation Administration Consensus Standards, Light-Sport Aircraft AGENCY: Federal Aviation... provisions of the Sport Pilot and Light-Sport Aircraft rule issued July 16, 2004, and effective September 1, 2004. ASTM International Committee F37 on Light Sport Aircraft developed the revised standards...

  2. 76 FR 45647 - Consensus Standards, Light-Sport Aircraft (United States)


    ... Federal Aviation Administration Consensus Standards, Light-Sport Aircraft AGENCY: Federal Aviation... to the provisions of the Sport Pilot and Light-Sport Aircraft rule issued July 16, 2004, and effective September 1, 2004. ASTM International Committee F37 on Light Sport Aircraft developed the...

  3. 14 CFR 135.145 - Aircraft proving and validation tests. (United States)


    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft proving and validation tests. 135... Aircraft and Equipment § 135.145 Aircraft proving and validation tests. (a) No certificate holder may... safely and in compliance with applicable regulatory standards. Validation tests are required for...

  4. 14 CFR 21.128 - Tests: aircraft engines. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tests: aircraft engines. 21.128 Section 21.128 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... engines. (a) Each person manufacturing aircraft engines under a type certificate only shall subject...

  5. 78 FR 7642 - Airworthiness Directives; Piper Aircraft, Inc. (United States)


    ...-020-AD; Amendment 39-17334; AD 2013-02-13] RIN 2120-AA64 Airworthiness Directives; Piper Aircraft, Inc... airworthiness directive (AD) for certain Piper Aircraft, Inc. (type certificate previously held by The New Piper... information identified in this AD, contact Piper Aircraft, Inc., 2926 Piper Drive, Vero Beach, Florida...

  6. 77 FR 31169 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes (United States)


    ...-002-AD; Amendment 39-17058; AD 2012-10-09] RIN 2120-AA64 Airworthiness Directives; Piper Aircraft, Inc... superseding an existing airworthiness directive (AD) for certain Piper Aircraft, Inc. (type certificate previously held by The New Piper Aircraft Inc.) Models PA-31T and PA-31T1 airplanes. That AD...

  7. 78 FR 26556 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes (United States)


    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Piper Aircraft, Inc...: This document withdraws a notice of proposed rulemaking (NPRM) that would have applied to all Piper Aircraft, Inc. (type certificate previously held by The New Piper Aircraft Inc.) Models PA-18 and...

  8. 78 FR 41277 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes (United States)


    ...-018-AD; Amendment 39-17489; AD 2013-13-01] RIN 2120-AA64 Airworthiness Directives; Piper Aircraft, Inc.... SUMMARY: We are adopting a new airworthiness directive (AD) for certain Piper Aircraft, Inc. Models PA-46... information identified in this AD, contact Piper Aircraft, Inc., 2926 Piper Drive, Vero Beach, FL...

  9. 78 FR 35110 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes (United States)


    ...-001-AD; Amendment 39-17457; AD 2013-10-04] RIN 2120-AA64 Airworthiness Directives; Piper Aircraft, Inc... superseding an existing airworthiness directive (AD) for all Piper Aircraft, Inc. Models PA-31, PA-31-325, and.... ADDRESSES: For service information identified in this AD, contact Piper Aircraft, Inc., 2926 Piper...

  10. Exergo-Economic Analysis of an Experimental Aircraft Turboprop Engine Under Low Torque Condition (United States)

    Atilgan, Ramazan; Turan, Onder; Aydin, Hakan

    Exergo-economic analysis is an unique combination of exergy analysis and cost analysis conducted at the component level. In exergo-economic analysis, cost of each exergy stream is determined. Inlet and outlet exergy streams of the each component are associated to a monetary cost. This is essential to detect cost-ineffective processes and identify technical options which could improve the cost effectiveness of the overall energy system. In this study, exergo-economic analysis is applied to an aircraft turboprop engine. Analysis is based on experimental values at low torque condition (240 N m). Main components of investigated turboprop engine are the compressor, the combustor, the gas generator turbine, the free power turbine and the exhaust. Cost balance equations have been formed for all components individually and exergo-economic parameters including cost rates and unit exergy costs have been calculated for each component.

  11. Disinfection of aircraft : Appropriate disinfectants and standard operating procedures for highly infectious diseases. (United States)

    Klaus, Joachim; Gnirs, Peter; Hölterhoff, Sabine; Wirtz, Angela; Jeglitza, Matthias; Gaber, Walter; Gottschalk, Rene


    For infectious diseases caused by highly pathogenic agents (e. g., Ebola/Lassa fever virus, SARS-/MERS-CoV, pandemic influenza virus) which have the potential to spread over several continents within only a few days, international Health Protection Authorities have taken appropriate measures to limit the consequences of a possible spread. A crucial point in this context is the disinfection of an aircraft that had a passenger on board who is suspected of being infected with one of the mentioned diseases. Although, basic advice on hygiene and sanitation on board an aircraft is given by the World Health Organization, these guidelines lack details on available and effective substances as well as standardized operating procedures (SOP). The purpose of this paper is to give guidance on the choice of substances that were tested by a laboratory of Lufthansa Technik and found compatible with aircraft components, as well as to describe procedures which ensure a safe and efficient disinfection of civil aircrafts. This guidance and the additional SOPs are made public and are available as mentioned in this paper.

  12. Reliability Analysis of Aircraft Condition Monitoring Network Using an Enhanced BDD Algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHAO Changxiao; CHEN Yao; WANG Hailiang; XIONG Huagang


    The aircraft condition monitoring network is responsible for collecting the status of each component in aircraft.The reliability of this network has a significant effect on safety of the aircraft.The aircraft condition monitoring network works in a real-time manner that all the data should be transmitted within the deadline to ensure that the control center makes proper decision in time.Only the connectedness between the source node and destination cannot guarantee the data to be transmitted in time.In this paper,we take the time deadline into account and build the task-based reliability model.The binary decision diagram (BDD),which has the merit of efficiency in computing and storage space,is introduced when calculating the reliability of the network and addressing the essential variable.A case is analyzed using the algorithm proposed in this paper.The experimental results show that our method is efficient and proper for the reliability analysis of the real-time network.

  13. Effects of cosmic radiation on devices and embedded systems in aircrafts

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Adriane C.M.; Federico, Claudio A.; Pereira Junior, Evaldo C.F.; Goncalez, Odair L., E-mail:, E-mail:, E-mail:, E-mail: [Instituto de Estudos Avancados (IEAV/DCTA), Sao Jose dos Campos, SP (Brazil)


    Modern avionics systems use new electronic technologies devices that, due to their high degree of sophistication and miniaturization, are more susceptible to the effects of ionizing radiation, particularly the effect called 'Single Event Effect' (SEE) produced by neutron. Studies regarding the effects of radiation on electronic systems for space applications, such as satellites and orbital stations, have already been in progress for several years. However, tolerance requirements and specific studies, focusing on testing dedicated to avionics, have caused concern and gained importance in the last decade as a result of the accidents attributed to SEE in aircraft. Due to the development of a higher ceiling, an increase in airflow and a greater autonomy of certain aircrafts, the problem regarding the control of ionizing radiation dose received by the pilots, the crew and sensitive equipment became important in the areas of occupational health, radiation protection and flight safety. This paper presents an overview of the effects of ionizing radiation on devices and embedded systems in aircrafts, identifying and classifying these effects in relation to their potential risks in each device class. The assessment of these effects in avionics is a very important and emerging issue nowadays, which is being discussed by groups of the international scientific community; however, in South America, groups working in this area are still unknown. Consequently, this work is a great contribution and significantly valuable to the area of aeronautical engineering and flight safety associated to the effects of radiation on electronic components embedded in aircraft. (author)

  14. BOREAS AFM-1 NOAA/ATDD Long-EZ Aircraft Flux data Over the SSA (United States)

    Crawford, Timothy L.; Baldocchi, Dennis; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Gunter, Laureen; Dumas, Ed; Smith, David E. (Technical Monitor)


    This data set contains measurements from the Airborne Flux and Meteorology (AFM)-1 National Oceanographic and Atmospheric Administration/Atmospheric Turbulence and Diffusion Division (NOAA/ATDD) Long-EZ Aircraft collected during the 1994 Intensive Field Campaigns (IFCs) at the southern study area (SSA). These measurements were made from various instruments mounted on the aircraft. The data that were collected include aircraft altitude, wind direction, wind speed, air temperature, potential temperature, water mixing ratio, U and V components of wind velocity, static pressure, surface radiative temperature, downwelling and upwelling total radiation, downwelling and upwelling longwave radiation, net radiation, downwelling and upwelling photosynthectically active radiation (PAR), greenness index, CO2 concentration, O3 concentration, and CH4 concentration. There are also various columns that indicate the standard deviation, skewness, kurtosis, and trend of some of these data. The data are stored in tabular ASCII files. The NOAA/ATDD Long-EZ aircraft flux data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  15. Emergency Landing Planning for Damaged Aircraft (United States)

    Meuleau, Nicolas; Plaunt, Christian John; Smith, David E.


    Considerable progress has been made over the last 15 years on building adaptive control systems to assist pilots in flying damaged aircraft. Once a pilot has regained control of a damaged aircraft, the next problem is to determine the best site for an emergency landing. In general, the decision depends on many factors including the actual control envelope of the aircraft, distance to the site, weather en route, characteristics of the approach path, characteristics of the runway or landing site, and emergency facilities at the site. All of these influence the risk to the aircraft, to the passengers and crew, and to people and property on the ground. We describe an ongoing project to build and demonstrate an emergency landing planner that takes these various factors into consideration and proposes possible routes and landing sites to the pilot, ordering them according to estimated risk. We give an overview of the system architecture and input data, describe our preliminary modeling of risk, and describe how we search the space of landing sites and routes.

  16. Recognition of aircraft using HRR features

    NARCIS (Netherlands)

    Kossen, A.S.


    Automated target recognition (ATR) based on high resolution radar (HRR) features can be used to increase the confidence in aircraft class. Standard radar systems are not designed for performing classification and uses additional identification systems. It is shown that with the use of features the a

  17. Congestion Pricing for Aircraft Pushback Slot Allocation. (United States)

    Liu, Lihua; Zhang, Yaping; Liu, Lan; Xing, Zhiwei


    In order to optimize aircraft pushback management during rush hour, aircraft pushback slot allocation based on congestion pricing is explored while considering monetary compensation based on the quality of the surface operations. First, the concept of the "external cost of surface congestion" is proposed, and a quantitative study on the external cost is performed. Then, an aircraft pushback slot allocation model for minimizing the total surface cost is established. An improved discrete differential evolution algorithm is also designed. Finally, a simulation is performed on Xinzheng International Airport using the proposed model. By comparing the pushback slot control strategy based on congestion pricing with other strategies, the advantages of the proposed model and algorithm are highlighted. In addition to reducing delays and optimizing the delay distribution, the model and algorithm are better suited for use for actual aircraft pushback management during rush hour. Further, it is also observed they do not result in significant increases in the surface cost. These results confirm the effectiveness and suitability of the proposed model and algorithm.

  18. Aircraft Infrared Principles, Signatures, Threats, and Countermeasures (United States)


    aircraft stabilizes at the ambient air temperature plus aerodynamic heating. Aero heating increases as the square of Mach number. The formula below gives...pattern of transparent and opaque segments on the reticle impresses a modulation on the radiation by acting as a kind of shutter . A reticle can be

  19. 36 CFR 327.4 - Aircraft. (United States)


    ... used in emergency rescue in accordance with the directions of the District Commander or aircraft forced... Aeronautical Agency, or the Federal Aviation Administration, including, but not limited to, regulations and... emergencies threatening human life or serious property loss, the air delivery or retrieval of any...

  20. Method of making counterrotating aircraft propeller blades (United States)

    Nelson, Joey L. (Inventor); Elston, III, Sidney B. (Inventor); Tseng, Wu-Yang (Inventor); Hemsworth, Martin C. (Inventor)


    An aircraft propeller blade is constructed by forming two shells of composite material laminates and bonding the two shells to a metallic spar with foam filler pieces interposed between the shells at desired locations. The blade is then balanced radially and chordwise.

  1. Some Microphysical Processes Affecting Aircraft Icing. (United States)


    1978) Messung , Darstellung, and Auswertung meteorologischer Vereisungs parameter, Berich te Fuiden Geophysicalischern Beratungdienst der of the Hot Rod. The aircraft experienced light to moderate rime icing until its slight descent at 09:03. It then continued to experience ...1978) Messung . Darstellung, and Auswertung meteorologischer Vereisungs parameter, Benich te Fuiden Geophysicalischern Beratungydienst der Bundeswehr

  2. Electromagnetic-Repulsion Systems For Deicing Aircraft (United States)

    Smith, Samuel O.; Zieve, Peter


    Improved eddy-current electromagnetic-repulsion deicing systems developed for use on variety of exterior aircraft surfaces like leading edges of wings, engine inlets, propellers, and helicopter rotors. Fit to exterior surfaces, as retrofits or original equipment. Systems light in weight, consume little average power, and capable of protecting against severe icing conditions.

  3. Perspectives of civil aircraft avionics development

    Directory of Open Access Journals (Sweden)

    А. В. Наумов


    Full Text Available Considered are main directions for civil avionics development. General requirements for airborne equipment functions. Analysis of airborne avionics selection per architecture and economical effectiveness in made. Proposed is the necessity of new approach to integrated avionics complex design, first of all, on basis of mathematical method for aircraft equipment and technical characteristics definition

  4. Aircraft Environmental Systems Mechanic. Part 1. (United States)

    Chanute AFB Technical Training Center, IL.

    This packet contains learning modules for a self-paced course in aircraft environmental systems mechanics that was developed for the Air Force. Each learning module consists of some or all of the following: objectives, instructions, equipment, procedures, information sheets, handouts, self-tests with answers, review section, tests, and response…

  5. Aircraft Integral Fuel Tank Corrosion Study (United States)


    biology of Amorphoteca resinae . Materials und Organismen, 6, (3), p. 161, (1971). 8. D. Cabral. Corrosion by microorganisms of jet aircraft integral fuel...the mycelium of the fungus Hormoconis resinae in the MIC of Al alloys. Proc. XI Int. Corrosion Congress, Houston, USA, 5B, p. 3773, (1993). 14. M

  6. Lectures on Composite Materials for Aircraft Structures, (United States)


    lectures are related to structural applications of composites . In Lecture 7, the basic theory that is needed for composite structural analysis is...which composites have been taken up for aeronautical applications. Several specific applications of composites in aircraft structures am described in

  7. Automation tools for flexible aircraft maintenance.

    Energy Technology Data Exchange (ETDEWEB)

    Prentice, William J.; Drotning, William D.; Watterberg, Peter A.; Loucks, Clifford S.; Kozlowski, David M.


    This report summarizes the accomplishments of the Laboratory Directed Research and Development (LDRD) project 26546 at Sandia, during the period FY01 through FY03. The project team visited four DoD depots that support extensive aircraft maintenance in order to understand critical needs for automation, and to identify maintenance processes for potential automation or integration opportunities. From the visits, the team identified technology needs and application issues, as well as non-technical drivers that influence the application of automation in depot maintenance of aircraft. Software tools for automation facility design analysis were developed, improved, extended, and integrated to encompass greater breadth for eventual application as a generalized design tool. The design tools for automated path planning and path generation have been enhanced to incorporate those complex robot systems with redundant joint configurations, which are likely candidate designs for a complex aircraft maintenance facility. A prototype force-controlled actively compliant end-effector was designed and developed based on a parallel kinematic mechanism design. This device was developed for demonstration of surface finishing, one of many in-contact operations performed during aircraft maintenance. This end-effector tool was positioned along the workpiece by a robot manipulator, programmed for operation by the automated planning tools integrated for this project. Together, the hardware and software tools demonstrate many of the technologies required for flexible automation in a maintenance facility.

  8. Incident response monitoring technologies for aircraft cabin

    NARCIS (Netherlands)

    Havermans, J.B.G.A.; Houtzager, M.M.G.; Jacobs, P.


    The Netherlands Organization for Applied Scientific Research (TNO) was granted by ASHRAE (1306-RP) to conduct scientfic review and feasibility analysis of technologies and methods for measuring aircraft power system contaminants in the cabin air during unanticipated adverse incidents. In particular,

  9. Using Synthetic Kerosene in Civil Jet Aircraft

    NARCIS (Netherlands)

    Snijders, T.A.; Melkert, J.A.


    TU Delft in the Netherlands is performing research into the effects of the use of synthetic kerosene in aircraft. The research program consists of both desk research and tests. In the desk research gas turbine simulations will be combined with payload range performance calculations to show engine ef

  10. Aircraft Survivability: Susceptibility Reduction, Summer 2006 (United States)


    Next Frontier (Dr. Joel D. Williamsen and Dr. Jeffery R. Calcaterra) u The Modeling & Simulation Information Analysis Center (Mr. Phil L. Abold) u...Aircraft Safe from MANPADS (Ms. Linda Lou Crosby ) u Fragment-Target Flash Experiments for the Validation of the Fire Protection Model (FPM) (Dr. R. Reed

  11. A Critique of Aircraft Airframe Cost Models. (United States)


    rframes Aircraft Cost Analysis 2C *3Si PACT [’Cor.rinu* an r+vrmm »lam ti omc +mmmfy mr.J tffonUtf t>f Met.* riutnfcor) see reverse side...numbers, however, the ASD Cost Escalation Re- ft port 110-C would give a factor of 1.44.) 6 Historiaal and Forecasted Aeronautical Cost Indices

  12. Nonlinear dynamics of a vectored thrust aircraft

    DEFF Research Database (Denmark)

    Sørensen, C.B; Mosekilde, Erik


    With realistic relations for the aerodynamic coefficients, numerical simulations are applied to study the longitudional dynamics of a thrust vectored aircraft. As function of the thrust magnitude and the thrust vectoring angle the equilibrium state exhibits two saddle-node bifurcations and three ...

  13. Stratospheric aircraft: Impact on the stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, H.


    The steady-state distribution of natural stratospheric ozone is primarily maintained through production by ultraviolet photolysis of molecular oxygen, destruction by a catalytic cycle involving nitrogen oxides (NO{sub x}), and relocation by air motions within the stratosphere. Nitrogen oxides from the exhausts of a commercially viable fleet of supersonic transports would exceed the natural source of stratospheric nitrogen oxides if the t should be equipped with 1990 technology jet engines. This model-free comparison between a vital natural global ingredient and a proposed new industrial product shows that building a large fleet of passenger stratospheric aircraft poses a significant global problem. NASA and aircraft industries have recognized this problem and are studying the redesign of jet aircraft engines in order to reduce the nitrogen oxides emissions. In 1989 atmospheric models identified two other paths by which the ozone destroying effects of stratospheric aircraft might be reduced or eliminated: (1) Use relatively low supersonic Mach numbers and flight altitudes. For a given rate of nitrogen oxides injection into the stratosphere, the calculated reduction of total ozone is a strong function of altitude, and flight altitudes well below 20 kilometers give relatively low calculated ozone reductions. (2) Include heterogeneous chemistry in the two-dimensional model calculations. Necessary conditions for answering the question on the title above are to improve the quality of our understanding of the lower stratosphere and to broaden our knowledge of hetergeneous stratospheric chemistry. This article reviews recently proposed new mechanisms for heterogeneous reactions on the global stratospheric sulfate aerosols.

  14. Stratospheric aircraft: Impact on the stratosphere?

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, H.


    The steady-state distribution of natural stratospheric ozone is primarily maintained through production by ultraviolet photolysis of molecular oxygen, destruction by a catalytic cycle involving nitrogen oxides (NO{sub x}), and relocation by air motions within the stratosphere. Nitrogen oxides from the exhausts of a commercially viable fleet of supersonic transports would exceed the natural source of stratospheric nitrogen oxides if the t should be equipped with 1990 technology jet engines. This model-free comparison between a vital natural global ingredient and a proposed new industrial product shows that building a large fleet of passenger stratospheric aircraft poses a significant global problem. NASA and aircraft industries have recognized this problem and are studying the redesign of jet aircraft engines in order to reduce the nitrogen oxides emissions. In 1989 atmospheric models identified two other paths by which the ozone destroying effects of stratospheric aircraft might be reduced or eliminated: (1) Use relatively low supersonic Mach numbers and flight altitudes. For a given rate of nitrogen oxides injection into the stratosphere, the calculated reduction of total ozone is a strong function of altitude, and flight altitudes well below 20 kilometers give relatively low calculated ozone reductions. (2) Include heterogeneous chemistry in the two-dimensional model calculations. Necessary conditions for answering the question on the title above are to improve the quality of our understanding of the lower stratosphere and to broaden our knowledge of hetergeneous stratospheric chemistry. This article reviews recently proposed new mechanisms for heterogeneous reactions on the global stratospheric sulfate aerosols.

  15. Developing aircraft photonic networks for airplane systems

    DEFF Research Database (Denmark)

    White, Henry J.; Brownjohn, Nick; Baptista, João;


    Achieving affordable high speed fiber optic communication networks for airplane systems has proved to be challenging. In this paper we describe a summary of the EU Framework 7 project DAPHNE (Developing Aircraft Photonic Networks). DAPHNE aimed to exploit photonic technology from terrestrial comm...

  16. Direct effects of lightning on an aircraft during intentional penetrations of thunderstorms. [T-28 aircraft (United States)

    Musil, D. J.; Prodan, J.


    An armored T-28 aircraft was struck by lightning on two different days while participating in the 1979 severe environmental storm and mesoscale experiment in Oklahoma. The T-28, which is specially armored and instrumented, was making intentional penetrations of thunderstorms and was struck twice on 30 May and once on 5 June. Various degrees of damage, mainly in the form of large burn spots and holes, resulted to the aircraft.

  17. Joint Technical Coordinating Group on Aircraft Survivability (JTCG/AS). Bibliography of Joint Aircraft Survivability Reports (United States)


    Repair (EBDR) Study 74 Final Report Volume HI Engine Battle Damage Repair (EBDR) Study 75 Final Report VOLUME II Ablative and Thermal Barriers for... Thermal Barriers for Aircraft Dry Bays Issued: September 1995 Progress - Oct 1992 - June 1995 Report Classification: UNCLASSIFIED Sponsor: JTCG...Shipman, Mr. David O’Brian. Mr. Chris Parmley, P&W; Mr. Les Throndson, NAWCWPNS China Lake (Govt Coordinator) Ablative and Thermal Barriers for Aircraft

  18. Reusable Component Services (United States)

    U.S. Environmental Protection Agency — The Reusable Component Services (RCS) is a super-catalog of components, services, solutions and technologies that facilitates search, discovery and collaboration in...

  19. An Object-Oriented Computer Code for Aircraft Engine Weight Estimation (United States)

    Tong, Michael T.; Naylor, Bret A.


    Reliable engine-weight estimation at the conceptual design stage is critical to the development of new aircraft engines. It helps to identify the best engine concept amongst several candidates. At NASA Glenn Research Center (GRC), the Weight Analysis of Turbine Engines (WATE) computer code, originally developed by Boeing Aircraft, has been used to estimate the engine weight of various conceptual engine designs. The code, written in FORTRAN, was originally developed for NASA in 1979. Since then, substantial improvements have been made to the code to improve the weight calculations for most of the engine components. Most recently, to improve the maintainability and extensibility of WATE, the FORTRAN code has been converted into an object-oriented version. The conversion was done within the NASA's NPSS (Numerical Propulsion System Simulation) framework. This enables WATE to interact seamlessly with the thermodynamic cycle model which provides component flow data such as airflows, temperatures, and pressures, etc., that are required for sizing the components and weight calculations. The tighter integration between the NPSS and WATE would greatly enhance system-level analysis and optimization capabilities. It also would facilitate the enhancement of the WATE code for next-generation aircraft and space propulsion systems. In this paper, the architecture of the object-oriented WATE code (or WATE++) is described. Both the FORTRAN and object-oriented versions of the code are employed to compute the dimensions and weight of a 300-passenger aircraft engine (GE90 class). Both versions of the code produce essentially identical results as should be the case.

  20. Aircraft Design Analysis, CFD And Manufacturing

    Directory of Open Access Journals (Sweden)

    Haifa El-Sadi


    Full Text Available Aircraft design, manufacturing and CFD analysis as part of aerodynamic course, the students achieve sizing from a conceptual sketch, select the airfoil geometry and the tail geometry, calculate thrust to weight ratio and wing loading, use initial sizing and calculate the aerodynamic forces. The students design their aircraft based on the geometrical dimensions resulted from the calculations and use the model to build a prototype, test it in wind tunnel and achieve CFD analysis to be compared with the experimental results. The theory of aerodynamic is taught and applied as a project based. In this paper, the design process, aircraft manufacturing and CFD analysis are presented to show the effect of project based on student’s learning of aerodynamic course. This project based learning has improved and accelerated students understanding of aerodynamic concepts and involved students in a constructive exploration. The analysis of the aircraft resulted in a study that revolved around the lift and drag generation of this particular aircraft. As to determine the lift and drag forces generated by this plane, a model was created in Solidworks a 3-D model-rendering program. After this model was created it was 3-D printed in a reduced scale, and subjected to wind tunnel testing. The results from the wind tunnel lab experiment were recorded. For accuracy, the same 3-D model was then simulated using CFD simulation software within Solidworks and compared with the results from the wind tunnel test. The values derived from both the simulation and the wind tunnel tests were then compared with the theoretical calculations for further proof of accuracy.

  1. Review of factors affecting aircraft wet runway performance (United States)

    Yager, T. J.


    Problems associated with aircraft operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from investigations conducted at the Langley Aircraft Landing Loads and Traction Facility and from tests with instrumented ground vehicles and aircraft are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.

  2. Review of Aircraft Electric Power Systems and Architectures

    DEFF Research Database (Denmark)

    Zhao, Xin; Guerrero, Josep M.; Wu, Xiaohao


    In recent years, the electrical power capacity is increasing rapidly in more electric aircraft (MEA), since the conventional mechanical, hydraulic and pneumatic energy systems are partly replaced by electrical power system. As a consequence, capacity and complexity of aircraft electric power...... systems (EPS) will increase dramatically and more advanced aircraft EPSs need to be developed. This paper gives a brief description of the constant frequency (CF) EPS, variable frequency (VF) EPS and advanced high voltage (HV) EPS. Power electronics in the three EPS is overviewed. Keywords: Aircraft Power...... System, More Electric Aircraft, Constant Frequency, Variable Frequency, High Voltage....

  3. Multi-level systems modeling and optimization for novel aircraft (United States)

    Subramanian, Shreyas Vathul

    best achieved via a large collection of interacting simple systems, or a relatively few highly capable, complex air vehicles). The vastly unexplored area of optimization in evolving design spaces will be studied and incorporated into the SoS optimization framework. We envision a framework that resembles a multi-level, mult-fidelity, multi-disciplinary assemblage of optimization problems. The challenge is not simply one of scaling up to a new level (the SoS), but recognizing that the aircraft sub-systems and the integrated vehicle are now intensely cyber-physical, with hardware and software components interacting in complex ways that give rise to new and improved capabilities. The work presented here is a step closer to modeling the information flow that exists in realistic SoS optimization problems between sub-contractors, contractors and the SoS architect.

  4. Aerodynamic Analysis of the Truss-Braced Wing Aircraft Using Vortex-Lattice Superposition Approach (United States)

    Ting, Eric Bi-Wen; Reynolds, Kevin Wayne; Nguyen, Nhan T.; Totah, Joseph J.


    The SUGAR Truss-BracedWing (TBW) aircraft concept is a Boeing-developed N+3 aircraft configuration funded by NASA ARMD FixedWing Project. This future generation transport aircraft concept is designed to be aerodynamically efficient by employing a high aspect ratio wing design. The aspect ratio of the TBW is on the order of 14 which is significantly greater than those of current generation transport aircraft. This paper presents a recent aerodynamic analysis of the TBW aircraft using a conceptual vortex-lattice aerodynamic tool VORLAX and an aerodynamic superposition approach. Based on the underlying linear potential flow theory, the principle of aerodynamic superposition is leveraged to deal with the complex aerodynamic configuration of the TBW. By decomposing the full configuration of the TBW into individual aerodynamic lifting components, the total aerodynamic characteristics of the full configuration can be estimated from the contributions of the individual components. The aerodynamic superposition approach shows excellent agreement with CFD results computed by FUN3D, USM3D, and STAR-CCM+. XXXXX Demand for green aviation is expected to increase with the need for reduced environmental impact. Most large transports today operate within the best cruise L/D range of 18-20 using the conventional tube-and-wing design. This configuration has led to marginal improvements in aerodynamic efficiency over this past century, as aerodynamic improvements tend to be incremental. A big opportunity has been shown in recent years to significantly reduce structural weight or trim drag, hence improved energy efficiency, with the use of lightweight materials such as composites. The Boeing 787 transport is an example of a modern airframe design that employs lightweight structures. High aspect ratio wing design can provide another opportunity for further improvements in energy efficiency. Historically, the study of high aspect ratio wings has been intimately tied to the study of

  5. Aircraft Noise and Quality of Life around Frankfurt Airport (United States)

    Schreckenberg, Dirk; Meis, Markus; Kahl, Cara; Peschel, Christin; Eikmann, Thomas


    In a survey of 2,312 residents living near Frankfurt Airport aircraft noise annoyance and disturbances as well as environmental (EQoL) and health-related quality of life (HQoL) were assessed and compared with data on exposure due to aircraft, road traffic, and railway noise. Results indicate higher noise annoyance than predicted from general exposure-response curves. Beside aircraft sound levels source-related attitudes were associated with reactions to aircraft noise. Furthermore, aircraft noise affected EQoL in general, although to a much smaller extent. HQoL was associated with aircraft noise annoyance, noise sensitivity and partly with aircraft noise exposure, in particular in the subgroup of multimorbid residents. The results suggest a recursive relationship between noise and health, yet this cannot be tested in cross-sectional studies. Longitudinal studies would be recommendable to get more insight in the causal paths underlying the noise-health relationship. PMID:20948931

  6. Control of Next Generation Aircraft and Wind Turbines (United States)

    Frost, Susan


    The first part of this talk will describe some of the exciting new next generation aircraft that NASA is proposing for the future. These aircraft are being designed to reduce aircraft fuel consumption and environmental impact. Reducing the aircraft weight is one approach that will be used to achieve these goals. A new control framework will be presented that enables lighter, more flexible aircraft to maintain aircraft handling qualities, while preventing the aircraft from exceeding structural load limits. The second part of the talk will give an overview of utility-scale wind turbines and their control. Results of collaboration with Dr. Balas will be presented, including new theory to adaptively control the turbine in the presence of structural modes, with the focus on the application of this theory to a high-fidelity simulation of a wind turbine.

  7. Aircraft Noise and Quality of Life around Frankfurt Airport

    Directory of Open Access Journals (Sweden)

    Thomas Eikmann


    Full Text Available In a survey of 2,312 residents living near Frankfurt Airport aircraft noise annoyance and disturbances as well as environmental (EQoL and health-related quality of life (HQoL were assessed and compared with data on exposure due to aircraft, road traffic, and railway noise. Results indicate higher noise annoyance than predicted from general exposure-response curves. Beside aircraft sound levels source-related attitudes were associated with reactions to aircraft noise. Furthermore, aircraft noise affected EQoL in general, although to a much smaller extent. HQoL was associated with aircraft noise annoyance, noise sensitivity and partly with aircraft noise exposure, in particular in the subgroup of multimorbid residents. The results suggest a recursive relationship between noise and health, yet this cannot be tested in cross-sectional studies. Longitudinal studies would be recommendable to get more insight in the causal paths underlying the noise-health relationship.

  8. Aging analyses of aircraft wire insulation

    Energy Technology Data Exchange (ETDEWEB)



    Over the past two decades, Sandia has developed a variety of specialized analytical techniques for evaluating the long-term aging and stability of cable insulation and other related materials. These techniques have been applied to cable reliability studies involving numerous insulation types and environmental factors. This work has allowed the monitoring of the occurrence and progression of cable material deterioration in application environments, and has provided insights into material degradation mechanisms. It has also allowed development of more reliable lifetime prediction methodologies. As a part of the FAA program for intrusive inspection of aircraft wiring, they are beginning to apply a battery of techniques to assessing the condition of cable specimens removed from retired aircraft. It is anticipated that in a future part of this program, they may employ these techniques in conjunction with accelerated aging methodologies and models that the authros have developed and employed in the past to predict cable lifetimes. The types of materials to be assessed include 5 different wire types: polyimide, PVC/Glass/Nylon, extruded XL-polyalkene/PVDF, Poly-X, and XL-ETFE. This presentation provides a brief overview of the main techniques that will be employed in assessing the state of health of aircraft wire insulation. The discussion will be illustrated with data from their prior cable aging studies, highlighting the methods used and their important conclusions. A few of the techniques that they employ are widely used in aging studies on polymers, but others are unique to Sandia. All of their techniques are non-proprietary, and maybe of interest for use by others in terms of application to aircraft wiring analysis. At the end of this report is a list showing some leading references to papers that have been published in the open literature which provide more detailed information on the analytical techniques for elastomer aging studies. The first step in the

  9. Sizing Power Components of an Electrically Driven Tail Cone Thruster and a Range Extender (United States)

    Jansen, Ralph H.; Bowman, Cheryl; Jankovsky, Amy


    The aeronautics industry has been challenged on many fronts to increase efficiency, reduce emissions, and decrease dependency on carbon-based fuels. This paper provides an overview of the turboelectric and hybrid electric technologies being developed under NASA's Advanced Air Transportation Technology (AATT) Project and discusses how these technologies can impact vehicle design. The discussion includes an overview of key hybrid electric studies and technology investments, the approach to making informed investment decisions based on key performance parameters and mission studies, and the power system architectures for two candidate aircraft. Finally, the power components for a single-aisle turboelectric aircraft with an electrically driven tail cone thruster and for a hybrid-electric nine-passenger aircraft with a range extender are parametrically sized, and the sensitivity of these components to key parameters is presented.

  10. FE Analysis of Dynamic Response of Aircraft Windshield against Bird Impact

    Directory of Open Access Journals (Sweden)

    Uzair Ahmed Dar


    Full Text Available Bird impact poses serious threats to military and civilian aircrafts as they lead to fatal structural damage to critical aircraft components. The exposed aircraft components such as windshields, radomes, leading edges, engine structure, and blades are vulnerable to bird strikes. Windshield is the frontal part of cockpit and more susceptible to bird impact. In the present study, finite element (FE simulations were performed to assess the dynamic response of windshield against high velocity bird impact. Numerical simulations were performed by developing nonlinear FE model in commercially available explicit FE solver AUTODYN. An elastic-plastic material model coupled with maximum principal strain failure criterion was implemented to model the impact response of windshield. Numerical model was validated with published experimental results and further employed to investigate the influence of various parameters on dynamic behavior of windshield. The parameters include the mass, shape, and velocity of bird, angle of impact, and impact location. On the basis of numerical results, the critical bird velocity and failure locations on windshield were also determined. The results show that these parameters have strong influence on impact response of windshield, and bird velocity and impact angle were amongst the most critical factors to be considered in windshield design.

  11. A methodology for the probabilistic assessment of system effectiveness as applied to aircraft survivability and susceptibility (United States)

    Soban, Danielle Suzanne


    Significant advances have been made recently in applying probabilistic methods to aerospace vehicle concepts. Given the explosive changes in today's political, social, and technological climate, it makes practical sense to try and extrapolate these methods to the campaign analysis level. This would allow the assessment of rapidly changing threat environments as well as technological advancements, aiding today's decision makers. These decision makers use this information in three primary ways: resource allocation, requirements definition, and trade studies between system components. In effect, these decision makers are looking for a way to quantify system effectiveness. Using traditional definitions, one can categorize an aerospace concept, such as an aircraft, as the system. Design and analysis conducted on the aircraft will result in system level Measures of Effectiveness. System effectiveness, therefore, becomes a function of only that aircraft's design variables and parameters. While this method of analysis can result in the design of a vehicle that is optimized to its own mission and performance requirements, the vehicle remains independent of its role for which it was created: the warfighting environment. It is therefore proposed that the system be redefined as the warfighting environment (campaign analysis) and the problem be considered to have a system of systems formulation. A methodology for the assessment of military system effectiveness is proposed. Called POSSEM (PrObabilisitic System of System Effectiveness Methodology), the methodology describes the creation of an analysis pathway that links engineering level changes to campaign level measures of effectiveness. The methodology includes probabilistic analysis techniques in order to manage the inherent uncertainties in the problem, which are functions of human decision making, rapidly changing threats, and the incorporation of new technologies. An example problem is presented, in which aircraft

  12. Structural analysis at aircraft conceptual design stage (United States)

    Mansouri, Reza

    In the past 50 years, computers have helped by augmenting human efforts with tremendous pace. The aircraft industry is not an exception. Aircraft industry is more than ever dependent on computing because of a high level of complexity and the increasing need for excellence to survive a highly competitive marketplace. Designers choose computers to perform almost every analysis task. But while doing so, existing effective, accurate and easy to use classical analytical methods are often forgotten, which can be very useful especially in the early phases of the aircraft design where concept generation and evaluation demands physical visibility of design parameters to make decisions [39, 2004]. Structural analysis methods have been used by human beings since the very early civilization. Centuries before computers were invented; the pyramids were designed and constructed by Egyptians around 2000 B.C, the Parthenon was built by the Greeks, around 240 B.C, Dujiangyan was built by the Chinese. Persepolis, Hagia Sophia, Taj Mahal, Eiffel tower are only few more examples of historical buildings, bridges and monuments that were constructed before we had any advancement made in computer aided engineering. Aircraft industry is no exception either. In the first half of the 20th century, engineers used classical method and designed civil transport aircraft such as Ford Tri Motor (1926), Lockheed Vega (1927), Lockheed 9 Orion (1931), Douglas DC-3 (1935), Douglas DC-4/C-54 Skymaster (1938), Boeing 307 (1938) and Boeing 314 Clipper (1939) and managed to become airborne without difficulty. Evidencing, while advanced numerical methods such as the finite element analysis is one of the most effective structural analysis methods; classical structural analysis methods can also be as useful especially during the early phase of a fixed wing aircraft design where major decisions are made and concept generation and evaluation demands physical visibility of design parameters to make decisions

  13. Exploratory flight investigation of aircraft response to the wing vortex wake generated by the augmentor wing jet STOL research aircraft (United States)

    Jacobsen, R. A.; Drinkwater, F. J., III


    A brief exploratory flight program was conducted at Ames Research Center to investigate the vortex wake hazard of a powered-lift STOL aircraft. The study was made by flying an instrumented Cessna 210 aircraft into the wake of the augmentor wing jet STOL research aircraft at separation distances from 1 to 4 n.mi. Characteristics of the wake were evaluated in terms of the magnitude of the upset of the probing aircraft. Results indicated that within 1 n.mi. separation the wake could cause rolling moments in excess of roll control power and yawing moments equivalent to rudder control power of the probe aircraft. Subjective evaluations by the pilots of the Cessna 210 aircraft, supported by response measurements, indicated that the upset caused by the wake of the STOL aircraft was comparable to that of a DC-9 in the landing configuration.

  14. Grid generation and inviscid flow computation about aircraft geometries (United States)

    Smith, Robert E.


    Grid generation and Euler flow about fighter aircraft are described. A fighter aircraft geometry is specified by an area ruled fuselage with an internal duct, cranked delta wing or strake/wing combinations, canard and/or horizontal tail surfaces, and vertical tail surfaces. The initial step before grid generation and flow computation is the determination of a suitable grid topology. The external grid topology that has been applied is called a dual-block topology which is a patched C (exp 1) continuous multiple-block system where inner blocks cover the highly-swept part of a cranked wing or strake, rearward inner-part of the wing, and tail components. Outer-blocks cover the remainder of the fuselage, outer-part of the wing, canards and extend to the far field boundaries. The grid generation is based on transfinite interpolation with Lagrangian blending functions. This procedure has been applied to the Langley experimental fighter configuration and a modified F-18 configuration. Supersonic flow between Mach 1.3 and 2.5 and angles of attack between 0 degrees and 10 degrees have been computed with associated Euler solvers based on the finite-volume approach. When coupling geometric details such as boundary layer diverter regions, duct regions with inlets and outlets, or slots with the general external grid, imposing C (exp 1) continuity can be extremely tedious. The approach taken here is to patch blocks together at common interfaces where there is no grid continuity, but enforce conservation in the finite-volume solution. The key to this technique is how to obtain the information required for a conservative interface. The Ramshaw technique which automates the computation of proportional areas of two overlapping grids on a planar surface and is suitable for coding was used. Researchers generated internal duct grids for the Langley experimental fighter configuration independent of the external grid topology, with a conservative interface at the inlet and outlet.

  15. Aircraft Abnormal Conditions Detection, Identification, and Evaluation Using Innate and Adaptive Immune Systems Interaction (United States)

    Al Azzawi, Dia

    Abnormal flight conditions play a major role in aircraft accidents frequently causing loss of control. To ensure aircraft operation safety in all situations, intelligent system monitoring and adaptation must rely on accurately detecting the presence of abnormal conditions as soon as they take place, identifying their root cause(s), estimating their nature and severity, and predicting their impact on the flight envelope. Due to the complexity and multidimensionality of the aircraft system under abnormal conditions, these requirements are extremely difficult to satisfy using existing analytical and/or statistical approaches. Moreover, current methodologies have addressed only isolated classes of abnormal conditions and a reduced number of aircraft dynamic parameters within a limited region of the flight envelope. This research effort aims at developing an integrated and comprehensive framework for the aircraft abnormal conditions detection, identification, and evaluation based on the artificial immune systems paradigm, which has the capability to address the complexity and multidimensionality issues related to aircraft systems. Within the proposed framework, a novel algorithm was developed for the abnormal conditions detection problem and extended to the abnormal conditions identification and evaluation. The algorithm and its extensions were inspired from the functionality of the biological dendritic cells (an important part of the innate immune system) and their interaction with the different components of the adaptive immune system. Immunity-based methodologies for re-assessing the flight envelope at post-failure and predicting the impact of the abnormal conditions on the performance and handling qualities are also proposed and investigated in this study. The generality of the approach makes it applicable to any system. Data for artificial immune system development were collected from flight tests of a supersonic research aircraft within a motion-based flight

  16. Dichotomic Structure of DAEs Solutions for the Aircraft Control

    Directory of Open Access Journals (Sweden)

    Sorin Ştefan RADNEF


    Full Text Available The paper has its roots in earlier studies focused on DAEs solutions, for the aircraft flight control and intends to be a synthesis of them. The main goal is to structure the solution for the control laws so as to derive its components, which control any significant mechanical phenomenon for the controlled flight. The basic method used becomes from a unified manner of finding the solution of DAEs using a rigorous guideline stated as “necessary and sufficient condition” in an algebraic equation form that is used in an algorithmic procedure and for statement of the equations, which emphasises the dichotomic structure. The viewpoint considers an extended DAE system, including the differential equations of control variables, that allows to formulate this question as an inverse problem and to regard the algebraic equation, for constraints, as a singular implicit solution of the differential subsystem. Stating the necessary and sufficient condition for an implicit equation be a singular implicit solution of the extended differential system, we use it to approach the solution for flight control and for its dichotomic structure with additive components.

  17. A miniature powerplant for very small, very long range autonomous aircraft. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tad McGeer


    The authors have developed a new piston engine offering unprecedented efficiency for a new generation of miniature robotic aircraft. Following Phase 1 preliminary design in 1996--97, they have gone forward in Phase 2 to complete detail design, and are nearing completion of a first batch of ten engines. A small-engine dynamometer facility has been built in preparation for the test program. Provisions have been included for supercharging, which will allow operation at ceilings in the 10,000 m range. Component tests and detailed analysis indicate that the engine will achieve brake-specific fuel consumption well below 300 gm/kWh at power levels of several hundred watts. This level of performance opens the door to development of tabletop-sized aircraft having transpacific range and multi-day endurance, which will offer extraordinary new capabilities for meteorology, geomagnetic, and a variety of applications in environmental monitoring and military operations.

  18. Numerical modelling of the internal mixing by coagulation of black carbon particles in aircraft exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Ohlsson, S.; Stroem, J. [Stockholm Univ. (Sweden). Dept. of Meteorology


    When exhaust gases from an aircraft engine mix with ambient air the humidity may reach water saturation and water droplets will form on the available cloud condensation nuclei (CCN). It is still not resolved if the CCN, on which the cloud droplets form, are mainly particles present in the ambient air or particles emitted by the aircraft. It the exhaust from a jet engine the particles are believed to consist mainly of black carbon (BC) and sulfate. The aim is to study, with the help of a numerical model, how a two-component aerosol (i.e. BC and sulfate) in an exhaust trail may be transformed in terms of hygroscopicity by coagulation mixing and how this may depend on the sulfur content in the fuel. (R.P.) 15 refs.

  19. A Heading and Flight-Path Angle Control of Aircraft Based on Required Acceleration Vector (United States)

    Yoshitani, Naoharu

    This paper describes a control of heading and flight-path angles of aircraft to time-varying command angles. The controller first calculates an acceleration command vector (acV), which is vertical to the velocity vector. acV consists of two components; the one is feedforward acceleration obtained from the rates of command angles, and the other is feedback acceleration obtained from angle deviations by using PID control law. A bank angle command around the velocity vector and commands of pitch and yaw rates are then obtained to generate the required acceleration. A roll rate command is calculated from bank angle deviation. Roll, pitch and yaw rate commands are put into the attitude controller, which can be composed of any suitable control laws such as PID control. The control requires neither aerodynamic coefficients nor online calculation of the inverse dynamics of the aircraft. A numerical simulation illustrates the effects of the control.

  20. Artificial Intelligence for Controlling Robotic Aircraft (United States)

    Krishnakumar, Kalmanje


    A document consisting mostly of lecture slides presents overviews of artificial-intelligence-based control methods now under development for application to robotic aircraft [called Unmanned Aerial Vehicles (UAVs) in the paper] and spacecraft and to the next generation of flight controllers for piloted aircraft. Following brief introductory remarks, the paper presents background information on intelligent control, including basic characteristics defining intelligent systems and intelligent control and the concept of levels of intelligent control. Next, the paper addresses several concepts in intelligent flight control. The document ends with some concluding remarks, including statements to the effect that (1) intelligent control architectures can guarantee stability of inner control loops and (2) for UAVs, intelligent control provides a robust way to accommodate an outer-loop control architecture for planning and/or related purposes.

  1. Fundamentals of aircraft and rocket propulsion

    CERN Document Server

    El-Sayed, Ahmed F


    This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in th...

  2. Nonlinear feedback control of highly manoeuvrable aircraft (United States)

    Garrard, William L.; Enns, Dale F.; Snell, S. A.


    This paper describes the application of nonlinear quadratic regulator (NLQR) theory to the design of control laws for a typical high-performance aircraft. The NLQR controller design is performed using truncated solutions of the Hamilton-Jacobi-Bellman equation of optimal control theory. The performance of the NLQR controller is compared with the performance of a conventional P + I gain scheduled controller designed by applying standard frequency response techniques to the equations of motion of the aircraft linearized at various angles of attack. Both techniques result in control laws which are very similar in structure to one another and which yield similar performance. The results of applying both control laws to a high-g vertical turn are illustrated by nonlinear simulation.

  3. Analysis of aircraft longitudinal handling qualities (United States)

    Hess, R. A.


    The optimal control model (OCM) of the human pilot is applied to the study of aircraft handling qualities. Attention is focused primarily on longitudinal tasks. The modeling technique differs from previous applications of the OCM in that considerable effort is expended in simplifying the pilot/vehicle analysis. After briefly reviewing the OCM, a technique for modeling the pilot controlling higher order systems is introduced. Following this, a simple criterion for determining the susceptibility of an aircraft to pilot induced oscillations (PIO) is formulated. Finally, a model-based metric for pilot rating prediction is discussed. The resulting modeling procedure provides a relatively simple, yet unified approach to the study of a variety of handling qualities problems.

  4. Supply chain components

    Directory of Open Access Journals (Sweden)

    Vieraşu, T.


    Full Text Available In this article I will go through three main logistics components, which are represented by: transportation, inventory and facilities, and the three secondary logistical components: information, production location, price and how they determine performance of any supply chain. I will discuss then how these components are used in the design, planning and operation of a supply chain. I will also talk about some obstacles a supply chain manager may encounter.

  5. Military Airlift: C-17 Aircraft Program (United States)


    out such a mission led Congress to ask DOD to conduct a study of the entire long- For more information on MRS-05, see CRS Report RS20915 . 22 Jonathan...many should be retired. Rising maintenance costs have led some to argue that more C-5s should be retired sooner, and the savings be applied to...34lighter-than-air" aircraft . Also known as airships, blimps, dirigibles, or zeppelins , these potentially large, helium-filled balloons offer many

  6. Project ADIOS: Aircraft Deployable Ice Observation System (United States)

    Gudmundsson, G. H.


    Regions of the Antarctic that are of scientific interest are often too heavily crevassed to enable a plane to land, or permit safe access from a field camp. We have developed an alternative strategy for instrumenting these regions: a sensor that can be dropped from an overflying aircraft. Existing aircraft deployable sensors are not suitable for long term operations in areas where snow accumulates, as they are quickly buried. We have overcome this problem by shaping the sensor like an aerodynamic mast with fins and a small parachute. After being released from the aircraft, the sensor accelerates to 42m/s and stabilizes during a 10s descent. On impact with the snow surface the sensor package buries itself to a depth of 1m then uses the large surface area of the fins to stop it burying further. This leaves a 1.5m mast protruding high above the snow surface to ensure a long operating life. The high impact kinetic energy and robust fin braking mechanism ensure that the design works in both soft and hard snow. Over the past two years we have developed and tested our design with a series of aircraft and wind tunnel tests. Last season we used this deployment strategy to successfully install a network of 31 single band GPS sensors in regions where crevassing has previously prevented science operations: Pine Island Glacier, West Antarctica, and Scar Inlet, Antarctic Peninsula. This season we intend to expand on this network by deploying a further 25 single and dual band GPS sensors on Thwaites Glacier, West Antarctica.

  7. Optimizing Aircraft Utilization for Retrograde Operations (United States)


    project possible, particularly Jerome Goodin, Rick Turcotte , Maj Darren Loftin, and Karen Skoog. Thanks to the staff of the USAF EC, especially...airplanes ( Turcotte , 2011). Cyintech did a regression analysis based on data derived from the Aircraft Communications Addressing and Reporting System...logistics-forum/12-mlf-2008-volume-2- issue-4/72-answering-the-call.html Turcotte ,F.N. (2011). Analyst, HQ AMC Fuel Efficiency Office, Scott AFB

  8. Airvolt Aircraft Electric Propulsion Test Stand (United States)

    Samuel, Aamod; Lin, Yohan


    Development of an electric propulsion test stand that collects high-fidelity data of motor, inverter, and battery system efficiencies; thermal dynamics; and acoustics independent of manufacturer reported values will improve understanding of electric propulsion systems to be used in future aircraft. A buildup approach to this development reveals new areas of research and best practices in testing, and attempts to establish a standard for testing these systems.

  9. Fuel consumption and exhaust emissions of aircrafts

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, R. [Institute of Flightmechanics, Braunschweig (Germany)


    The reduction of contamination of sensitive atmospheric layers by improved flight planning steps, is investigated. Calculated results have shown, that a further development of flight track planning allows considerable improvements on fuel consumption and exhaust emissions. Even if air traffic will further increase, optimistic investigations forecast a reduction of the environmental damage by aircraft exhausts, if the effects of improved flight track arrangement and engine innovations will be combined. (R.P.) 4 refs.

  10. The Sale of FX Aircraft to Taiwan, (United States)


    September 3, 1981. Sterba , James P., "Peking Says Force Might Be Used to Reunite Taiwan and Mainland," New York Times, July 4, 1981. Szulc, Tad...will decide it can commit the forces necessary to launch an invasion of 13 Edwin K. Snyder, A. James Gregor, and Maria Hsia Chang, The...Jane’s All the World’s Aircraft 1980-1981, Jane’s Publishing Co., Ltd., 1980. Snyder, Edwin K., A. James Gregor, and Maria Hsia Chang

  11. Topology Optimization of an Aircraft Wing (United States)


    constraint is met. Optimizations were performed on a general aviation experi- mental aircraft wing subject to pressure loading simulating maximum...compared to traditional means. Additionally, a fuel tank was integrated into the wing structure as a proof-of-concept for the potential benefits of AM...topology and sizing optimization of the wing integrated with the fuel tank , spars, and skin. This resulted in a total wing mass reduction of 10.8

  12. Analysis of Aircraft Fuels and Related Materials (United States)


    electrical charges can be generated when fuel is added to aircraft fuel tanks containing reticulated polyurethane foam. On several occasions be a mixture of cellulose and synthetic fibers plus pieces of fuel tank foam. These materials, however, were not specifically characterized. The...oxides. The presence of inorganic carbonate is also suggested by a weak band at approxi- mately 7 microns. The presence of some cellulose from scraping

  13. Ride quality systems for commuter aircraft (United States)

    Downing, D. R.; Hammond, T. A.; Amin, S. P.


    The state-of-the-art in Active Ride Augmentation, specifically in terms of its feasibility for commuter aircraft applications. A literature survey was done, and the principal results are presented here through discussion of different Ride Quality Augmentation System (RQAS) designs and advances in related technologies. Recommended follow-on research areas are discussed, and a preliminary RQAS configuration for detailed design and development is proposed.

  14. Digital adaptive control laws for VTOL aircraft (United States)

    Hartmann, G. L.; Stein, G.


    Honeywell has designed a digital self-adaptive flight control system for flight test in the VALT Research Aircraft (a modified CH-47). The final design resulted from a comparison of two different adaptive concepts: one based on explicit parameter estimates from a real-time maximum likelihood estimation algorithm and the other based on an implicit model reference adaptive system. The two designs are compared on the basis of performance and complexity.

  15. Prediction of anthropometric accommodation in aircraft cockpits (United States)

    Zehner, Gregory Franklin

    Designing aircraft cockpits to accommodate the wide range of body sizes existing in the U.S. population has always been a difficult problem for Crewstation Engineers. The approach taken in the design of military aircraft has been to restrict the range of body sizes allowed into flight training, and then to develop standards and specifications to ensure that the majority of the pilots are accommodated. Accommodation in this instance is defined as the ability to: (1) Adequately see, reach, and actuate controls; (2) Have external visual fields so that the pilot can see to land, clear for other aircraft, and perform a wide variety of missions (ground support/attack or air to air combat); and (3) Finally, if problems arise, the pilot has to be able to escape safely. Each of these areas is directly affected by the body size of the pilot. Unfortunately, accommodation problems persist and may get worse. Currently the USAF is considering relaxing body size entrance requirements so that smaller and larger people could become pilots. This will make existing accommodation problems much worse. This dissertation describes a methodology for correcting this problem and demonstrates the method by predicting pilot fit and performance in the USAF T-38A aircraft based on anthropometric data. The methods described can be applied to a variety of design applications where fitting the human operator into a system is a major concern. A systematic approach is described which includes: defining the user population, setting functional requirements that operators must be able to perform, testing the ability of the user population to perform the functional requirements, and developing predictive equations for selecting future users of the system. Also described is a process for the development of new anthropometric design criteria and cockpit design methods that assure body size accommodation is improved in the future.

  16. Psychological Component of Infertility (United States)

    ... Home FAQs Frequently Asked Questions Quick Facts About Infertility FAQs About Infertility FAQs About the Psychological Component of Infertility FAQs About Cloning and Stem Cell Research SART's ...

  17. Emergency Control Aircraft System Using Thrust Modulation (United States)

    Burken, John J. (Inventor); Burcham, Frank W., Jr. (Inventor)


    A digital longitudinal Aircraft Propulsion Control (APC system of a multiengine aircraft is provided by engine thrust modulation in response to comparing an input flightpath angle signal (gamma)c from a pilot thumbwheel. or an ILS system with a sensed flightpath angle y to produce an error signal (gamma)e that is then integrated (with reasonable limits) to generate a drift correction signal to be added to the error signal (gamma)e after first subtracting a lowpass filtered velocity signal Vel(sub f) for phugoid damping. The output error signal is multiplied by a constant to produce an aircraft thrust control signal ATC of suitable amplitude to drive a throttle servo for all engines. each of which includes its own full-authority digital engine control (FADEC) computer. An alternative APC system omits sensed flightpath angle feedback and instead controls the flightpath angle by feedback of the lowpass filtered velocity signal Vel(sub f) which also inherently provides phugoid damping. The feature of drift compensation is retained.

  18. Cosmic radiation exposure at aircraft crew workplaces

    Energy Technology Data Exchange (ETDEWEB)

    Latocha, M.; Beck, P.; Rollet, S. [ARC Seibersdorf Research, Seibersdorf (Austria); Latocha, M. [Institute of Nuclear Physics Polish Academy of Sciences, Krakow (Poland)


    E.U.R.A.D.O.S. working group W.G.5. on air crew dosimetry coordinated research of some 24 international institutes to exchange experimental data and results of calculations of the radiation exposure in aircraft altitudes due to cosmic radiation. The purpose was to provide a data-set for all European Union Member States for the assessment of individual doses, the validity of different approaches, and to provide an input to technical recommendations by the Article 31 group of experts and the European Commission. The results of this work have been recently published and are available for the international community. The radiation protection quantity of interest is effective dose, E (ISO), but the comparison of measurement results and the results of calculations, is done in terms of the operational quantity ambient dose equivalent, H{sup *}(10). This paper gives an overview of the E.U.R.A.D.O.S. Aircraft Crew In-Flight Database which was implemented under the responsibility of A.R.C. Seibersdorf research. It discusses calculation models for air crew dose assessment comparing them with measurements contained in this database. Further it presents current developments using updated information of galactic cosmic radiation proton spectra and new results of the recently finalized European research project D.O.S.M.A.X. on dosimetry of aircraft crew at solar maximum. (authors)

  19. 50 years of transonic aircraft design (United States)

    Jameson, Antony; Ou, Kui


    This article traces the evolution of long range jet transport aircraft over the 50 years since Kuechemann founded the journal Progress in Aerospace Sciences. The article is particularly focused on transonic aerodynamics. During Kuechemann's life time a good qualitative understanding had been achieved of transonic flow and swept wing design, but transonic flow remained intractable to quantitative prediction. During the last 50 years this situation has been completely transformed by the introduction of sophisticated numerical algorithms and an astonishing increase in the available computational power, with the consequence that aerodynamic design is now carried out largely by computer simulation. Moreover developments in aerodynamic shape optimization based on control theory enable a competitive swept wing to be designed in just two simulations, as illustrated in the article. While the external appearance of long range jet aircraft has not changed much, advances in information technology have actually transformed the entire design and manufacturing process through parallel advances in computer aided design (CAD), computational structural mechanics (CSM) and multidisciplinary optimization (MDO). They have also transformed aircraft operations through the adoption of digital fly-by-wire and advanced navigational techniques.

  20. Advanced Aerostructural Optimization Techniques for Aircraft Design

    Directory of Open Access Journals (Sweden)

    Yingtao Zuo


    Full Text Available Traditional coupled aerostructural design optimization (ASDO of aircraft based on high-fidelity models is computationally expensive and inefficient. To improve the efficiency, the key is to predict aerostructural performance of the aircraft efficiently. The cruise shape of the aircraft is parameterized and optimized in this paper, and a methodology named reverse iteration of structural model (RISM is adopted to get the aerostructural performance of cruise shape efficiently. A new mathematical explanation of RISM is presented in this paper. The efficiency of RISM can be improved by four times compared with traditional static aeroelastic analysis. General purpose computing on graphical processing units (GPGPU is adopted to accelerate the RISM further, and GPU-accelerated RISM is constructed. The efficiency of GPU-accelerated RISM can be raised by about 239 times compared with that of the loosely coupled aeroelastic analysis. Test shows that the fidelity of GPU-accelerated RISM is high enough for optimization. Optimization framework based on Kriging model is constructed. The efficiency of the proposed optimization system can be improved greatly with the aid of GPU-accelerated RISM. An unmanned aerial vehicle (UAV is optimized using this framework and the range is improved by 4.67% after optimization, which shows effectiveness and efficiency of this framework.

  1. Aircraft noise and its nearfield propagation computations

    Institute of Scientific and Technical Information of China (English)

    Xin Zhang


    Noise generated by civil transport aircraft during take-off and approach-to-land phases of operation is an environmental problem.The aircraft noise problem is firstly reviewed in this article.The review is followed by a description and assessment of a number of sound propagation methods suitable for applications with a background mean flow field pertinent to aircraft noise.Of the three main areas of the noise problem,i.e.generation,propagation,and radiation,propagation provides a vital link between near-field noise generation and far-field radiation.Its accurate assessment ensures the overall validity of a prediction model.Of the various classes of propagation equations,linearised Euler equations are often casted in either time domain or frequency domain.The equations are often solved numerically by computational aeroacoustics techniques,bur are subject to the onset of Kelvin-Helmholtz (K-H) instability modes which may ruin the solutions. Other forms of linearised equations,e.g.acoustic perturbation equations have been proposed,with differing degrees of success.

  2. PMI Foam Cored Sandwich Components Produced by Means of Different Manufacturing Methods

    Institute of Scientific and Technical Information of China (English)

    Leonhard Maier; HU Pei; Herman Seibert


    The paper introduced the structural applications with PMI (Polymethacrylimide) foams in sandwich components for rotor craft, launching vehicle and civil aircraft and discuss some typically used manufacturing methods, such as e. pressing, autoclave curing and resin infusion. The advantages of foam-cored sandwich design versus honeycombcored design will be discussed, focussing on manufacturing costs.

  3. V/STOL tilt rotor aircraft study. Volume 2: Preliminary design of research aircraft (United States)


    A preliminary design study was conducted to establish a minimum sized, low cost V/STOL tilt-rotor research aircraft with the capability of performing proof-of-concept flight research investigations applicable to a wide range of useful military and commercial configurations. The analysis and design approach was based on state-of-the-art methods and maximum use of off-the-shelf hardware and systems to reduce development risk, procurement cost and schedules impact. The rotors to be used are of 26 foot diameter and are the same as currently under construction and test as part of NASA Tilt-Rotor Contract NAS2-6505. The aircraft has a design gross weight of 12,000 lbs. The proposed engines to be used are Lycoming T53-L-13B rated at 1550 shaft horsepower which are fully qualified. A flight test investigation is recommended which will determine the capabilities and limitations of the research aircraft.

  4. Robustness of mission plans for unmanned aircraft (United States)

    Niendorf, Moritz

    This thesis studies the robustness of optimal mission plans for unmanned aircraft. Mission planning typically involves tactical planning and path planning. Tactical planning refers to task scheduling and in multi aircraft scenarios also includes establishing a communication topology. Path planning refers to computing a feasible and collision-free trajectory. For a prototypical mission planning problem, the traveling salesman problem on a weighted graph, the robustness of an optimal tour is analyzed with respect to changes to the edge costs. Specifically, the stability region of an optimal tour is obtained, i.e., the set of all edge cost perturbations for which that tour is optimal. The exact stability region of solutions to variants of the traveling salesman problems is obtained from a linear programming relaxation of an auxiliary problem. Edge cost tolerances and edge criticalities are derived from the stability region. For Euclidean traveling salesman problems, robustness with respect to perturbations to vertex locations is considered and safe radii and vertex criticalities are introduced. For weighted-sum multi-objective problems, stability regions with respect to changes in the objectives, weights, and simultaneous changes are given. Most critical weight perturbations are derived. Computing exact stability regions is intractable for large instances. Therefore, tractable approximations are desirable. The stability region of solutions to relaxations of the traveling salesman problem give under approximations and sets of tours give over approximations. The application of these results to the two-neighborhood and the minimum 1-tree relaxation are discussed. Bounds on edge cost tolerances and approximate criticalities are obtainable likewise. A minimum spanning tree is an optimal communication topology for minimizing the cumulative transmission power in multi aircraft missions. The stability region of a minimum spanning tree is given and tolerances, stability balls

  5. Multi-Domain Modeling and Simulation of an Aircraft System for Advanced Vehicle-Level Reasoning Research and Development

    Directory of Open Access Journals (Sweden)

    : F. Khan


    Full Text Available In this paper, we describe a simulation based health monitoring system test-bed for aircraft systems. The purpose of the test-bed is to provide a technology neutral basis for implementing and evaluation of reasoning systems on vehicle level and software architecture in support of the safety and maintenance process. This simulation test-bed will provide the sub-system level results and data which can be fed to the VLRS to generate vehicle level reasoning to achieve broader level diagnoses. This paper describes real-time system architecture and concept of operations for the aircraft major sub-systems. The four main components in the real-time test-bed are the aircraft sub-systems (e.g. battery, fuel, engine, generator, heating and lighting system simulation model, fault insertion unit, health monitoring data processing and user interface. In this paper, we adopted a component based modelling paradigm for the implementation of the virtual aircraft systems. All of the fault injections are currently implemented via software. The fault insertion unit allows for the repeatable injection of faults into the system. The simulation test-bed has been tested with many different faults which were undetected on system level to process and detect on the vehicle level reasoning. This article also shows how one system fault can affect the overall health of the vehicle.

  6. Design of Critical Components (United States)

    Hendricks, Robert C.; Zaretsky, Erwin V.


    Critical component design is based on minimizing product failures that results in loss of life. Potential catastrophic failures are reduced to secondary failures where components removed for cause or operating time in the system. Issues of liability and cost of component removal become of paramount importance. Deterministic design with factors of safety and probabilistic design address but lack the essential characteristics for the design of critical components. In deterministic design and fabrication there are heuristic rules and safety factors developed over time for large sets of structural/material components. These factors did not come without cost. Many designs failed and many rules (codes) have standing committees to oversee their proper usage and enforcement. In probabilistic design, not only are failures a given, the failures are calculated; an element of risk is assumed based on empirical failure data for large classes of component operations. Failure of a class of components can be predicted, yet one can not predict when a specific component will fail. The analogy is to the life insurance industry where very careful statistics are book-kept on classes of individuals. For a specific class, life span can be predicted within statistical limits, yet life-span of a specific element of that class can not be predicted.

  7. Multilevel component analysis

    NARCIS (Netherlands)

    Timmerman, M.E.


    A general framework for the exploratory component analysis of multilevel data (MLCA) is proposed. In this framework, a separate component model is specified for each group of objects at a certain level. The similarities between the groups of objects at a given level can be expressed by imposing cons

  8. 19 CFR 122.23 - Certain aircraft arriving from areas south of the U.S. (United States)


    ... SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Private Aircraft § 122.23 Certain aircraft... from Puerto Rico, must furnish a notice of intended arrival. Private aircraft must transmit an advance notice of arrival as set forth in § 122.22 of this part. Other than private aircraft, all aircraft...

  9. Aligning component upgrades

    Directory of Open Access Journals (Sweden)

    Roberto Di Cosmo


    Full Text Available Modern software systems, like GNU/Linux distributions or Eclipse-based development environment, are often deployed by selecting components out of large component repositories. Maintaining such software systems by performing component upgrades is a complex task, and the users need to have an expressive preferences language at their disposal to specify the kind of upgrades they are interested in. Recent research has shown that it is possible to develop solvers that handle preferences expressed as a combination of a few basic criteria used in the MISC competition, ranging from the number of new components to the freshness of the final configuration. In this work we introduce a set of new criteria that allow the users to specify their preferences for solutions with components aligned to the same upstream sources, provide an efficient encoding and report on the experimental results that prove that optimising these alignment criteria is a tractable problem in practice.

  10. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft (United States)

    Misra, Ajay


    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  11. Aircraft Anomaly Detection Using Performance Models Trained on Fleet Data (United States)

    Gorinevsky, Dimitry; Matthews, Bryan L.; Martin, Rodney


    This paper describes an application of data mining technology called Distributed Fleet Monitoring (DFM) to Flight Operational Quality Assurance (FOQA) data collected from a fleet of commercial aircraft. DFM transforms the data into aircraft performance models, flight-to-flight trends, and individual flight anomalies by fitting a multi-level regression model to the data. The model represents aircraft flight performance and takes into account fixed effects: flight-to-flight and vehicle-to-vehicle variability. The regression parameters include aerodynamic coefficients and other aircraft performance parameters that are usually identified by aircraft manufacturers in flight tests. Using DFM, the multi-terabyte FOQA data set with half-million flights was processed in a few hours. The anomalies found include wrong values of competed variables, (e.g., aircraft weight), sensor failures and baises, failures, biases, and trends in flight actuators. These anomalies were missed by the existing airline monitoring of FOQA data exceedances.

  12. Fault Diagnosis and Fault Handling for Autonomous Aircraft

    DEFF Research Database (Denmark)

    Hansen, Søren

    Unmanned Aerial vehicles (UAVs) or drones are used increasingly for missions where piloted aircraft are unsuitable. The unmanned aircraft has a number of advantages with respect to size, weight and manoeuvrability that makes it possible for them to solve tasks that an aircraft previously has been...... that the fault is discovered in time such that appropriate actions can be taken. That could either be the aircraft controlling computer taking the fault into account or a human operator that intervenes. Detection of faults that occur during flight is exactly the subject of this thesis. Safety towards faults...... to another type of aircraft with different parameters. Amongst the main findings of this research project is a method to handle faults on the UAV’s pitot tube, which measures the aircraft speed. A set of software redundancies based on GPS velocity information and engine thrust are used to detect abnormal...

  13. Development of a Nonlinear Cumulative Fatigue Damage Methodology for Aircraft Engine Components under Multiaxial Loadings (United States)


    fatigue damage accumulation under a variety of loading conditions. These models are, for the most part, empirical approaches that have relied little on...elastic-plastic stresses listed in this table represent the surface stresses at maximum and minimum loads as determined by an elastic-plastic finite...Torsion,Load Control • R=-1 .Torsion.Strain Control © R-0,Torsion,Strain Control ■ Proportional • R=-1 .Torsion,Load Control A Runout ■ \\ n 0 X

  14. Variability of Major Organic Components in Aircraft Fuels. Volume 1. Technical Discussion (United States)


    yield an unequi- vocal definition of a GC/FID or GC/MS feature due to mass spectra similarities. TQ better define GC/FID and GC/MS features, additional...Reference Fuel. In this GC/MS quntitative analy- sis, each of the GC/FID features above 4 mg/ml was identifie using retention time and up to three

  15. Advanced Manufacturing of an Aircraft Component (Fish-Head: A Technology Review on the Fabrication

    Directory of Open Access Journals (Sweden)

    M. Minhat


    Full Text Available The Airbus fish-head is machined using a 5-axis Computerized Numerical Control (CNC milling machine, which consists of many complex shapes that are built into it. A conventional CNC machining requires tremendous effort in programming and investment due to the increasing in features complexity of the fish-head to be machined. An alternative method through advanced manufacturing processes namely vacuum casting, Fused Deposition Modelling (FDM and three dimensional printing (3DP is reviewed. The fish-head prototypes are manufactured through the concept of reverse engineering and rapid prototyping. The fish-head master pattern is digitized using a three dimensional laser scanner and edited using a surface modelling software to generate the Standard Triangulation Language (STL, which is common to most rapid prototyping (RP machines. The fish-head prototypes are fabricated through FDM and 3DP using the STL data files, whereas the master pattern is used to fabricated silicone mould for vacuum casting. The quality of the prototypes is accessed in terms of dimensional accuracy and time to produce a single prototype. The dimensional accuracy is analysed using coordinate measuring machine (CMM. The dimensional accuracy error is found to be less than 5%. However, all prototypes require secondary surface treatment processing in order to achieve the desired surface roughness quality. All three prototypes can be manufactured less than 24 hours per prototype. The advanced manufacturing processes allows parts to be fabricated similar to parts manufactured through CNC but at a lower cost and faster.

  16. Chem-Braze Abradable Seal Attachment to Aircraft Gas Turbine Compressor Components. (United States)


    fI) (pM) (cmT/GM) (in fib ) Btu-It/hr-ft F (oem) (CO$ Roya) FM 1100 A-s 40 0.125 2.08 13.5 7.27 6,000 160 39,000 0.24 700 3,100 Table B-4. Fiber Alloy...James E. Knott , General Manager General Electric Company, 10449 St. Charles Rock Road, St. Ann, MO 63074 2 ATTN: Mr. H. Franzen AVCO-Lycoming Corporation

  17. Examining the Relationship Between Passenger Airline Aircraft Maintenance Outsourcing and Aircraft Safety (United States)

    Monaghan, Kari L.

    The problem addressed was the concern for aircraft safety rates as they relate to the rate of maintenance outsourcing. Data gathered from 14 passenger airlines: AirTran, Alaska, America West, American, Continental, Delta, Frontier, Hawaiian, JetBlue, Midwest, Northwest, Southwest, United, and USAir covered the years 1996 through 2008. A quantitative correlational design, utilizing Pearson's correlation coefficient, and the coefficient of determination were used in the present study to measure the correlation between variables. Elements of passenger airline aircraft maintenance outsourcing and aircraft accidents, incidents, and pilot deviations within domestic passenger airline operations were analyzed, examined, and evaluated. Rates of maintenance outsourcing were analyzed to determine the association with accident, incident, and pilot deviation rates. Maintenance outsourcing rates used in the evaluation were the yearly dollar expenditure of passenger airlines for aircraft maintenance outsourcing as they relate to the total airline aircraft maintenance expenditures. Aircraft accident, incident, and pilot deviation rates used in the evaluation were the yearly number of accidents, incidents, and pilot deviations per miles flown. The Pearson r-values were calculated to measure the linear relationship strength between the variables. There were no statistically significant correlation findings for accidents, r(174)=0.065, p=0.393, and incidents, r(174)=0.020, p=0.793. However, there was a statistically significant correlation for pilot deviation rates, r(174)=0.204, p=0.007 thus indicating a statistically significant correlation between maintenance outsourcing rates and pilot deviation rates. The calculated R square value of 0.042 represents the variance that can be accounted for in aircraft pilot deviation rates by examining the variance in aircraft maintenance outsourcing rates; accordingly, 95.8% of the variance is unexplained. Suggestions for future research include

  18. Immunity-based detection, identification, and evaluation of aircraft sub-system failures (United States)

    Moncayo, Hever Y.

    This thesis describes the design, development, and flight-simulation testing of an integrated Artificial Immune System (AIS) for detection, identification, and evaluation of a wide variety of sensor, actuator, propulsion, and structural failures/damages including the prediction of the achievable states and other limitations on performance and handling qualities. The AIS scheme achieves high detection rate and low number of false alarms for all the failure categories considered. Data collected using a motion-based flight simulator are used to define the self for an extended sub-region of the flight envelope. The NASA IFCS F-15 research aircraft model is used and represents a supersonic fighter which include model following adaptive control laws based on non-linear dynamic inversion and artificial neural network augmentation. The flight simulation tests are designed to analyze and demonstrate the performance of the immunity-based aircraft failure detection, identification and evaluation (FDIE) scheme. A general robustness analysis is also presented by determining the achievable limits for a desired performance in the presence of atmospheric perturbations. For the purpose of this work, the integrated AIS scheme is implemented based on three main components. The first component performs the detection when one of the considered failures is present in the system. The second component consists in the identification of the failure category and the classification according to the failed element. During the third phase a general evaluation of the failure is performed with the estimation of the magnitude/severity of the failure and the prediction of its effect on reducing the flight envelope of the aircraft system. Solutions and alternatives to specific design issues of the AIS scheme, such as data clustering and empty space optimization, data fusion and duplication removal, definition of features, dimensionality reduction, and selection of cluster/detector shape are also

  19. Aircraft conceptual design modelling incorporating reliability and maintainability predictions


    Vaziry-Zanjany , Mohammad Ali (F)


    A computer assisted conceptual aircraft design program has been developed (CACAD). It has an optimisation capability, with extensive break-down in maintenance costs. CACAD's aim is to optimise the size, and configurations of turbofan-powered transport aircraft. A methodology was developed to enhance the reliability of current aircraft systems, and was applied to avionics systems. R&M models of thermal management were developed and linked with avionics failure rate and its ma...

  20. Adaptive output feedback control of aircraft flexible modes


    Ponnusamy, Sangeeth Saagar; Bordeneuve-Guibé, Joël


    The application of adaptive output feedback augmentative control to the flexible aircraft problem is presented. Experimental validation of control scheme was carried out using a three disk torsional pendulum. In the reference model adaptive control scheme, the rigid aircraft reference model and neural network adaptation is used to control structural flexible modes and compensate for the effects unmodeled dynamics and parametric variations of a classical high order large passenger aircraft. Th...

  1. Using doppler radar images to estimate aircraft navigational heading error (United States)

    Doerry, Armin W [Albuquerque, NM; Jordan, Jay D [Albuquerque, NM; Kim, Theodore J [Albuquerque, NM


    A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.

  2. A historical perspective of aircrew systems effects on aircraft design


    Bauer, David O.


    Approved for public release; distribution in unlimited. The design of the aircrew workstation often has not been an orderly part of the overall aircraft design process but rather of much lower priority than the integration of the airframe and powerplant. However, the true test of the aircraft is how well the aircrew can use the aircraft for mission performance. NAVAIR has been seeking the establishment of an Aircrew Centered System Design discipline, to be addressed as an integral part of ...

  3. Numerical simulation and experimental validation of aircraft ground deicing model



    Aircraft ground deicing plays an important role of guaranteeing the aircraft safety. In practice, most airports generally use as many deicing fluids as possible to remove the ice, which causes the waste of the deicing fluids and the pollution of the environment. Therefore, the model of aircraft ground deicing should be built to establish the foundation for the subsequent research, such as the optimization of the deicing fluid consumption. In this article, the heat balance of the deicing proce...

  4. Ergonomic analysis for a regional aircraft interior design.


    Flavia Renata Dantas Alves Silva


    The purpose of this work is to develop a preliminary interior design of a regional aircraft considering ergonomic and cost aspects. The use of virtual humans provides a better interpretation of the aircraft interior environment, making possible to simulate movements and passenger comfort aspects. The importance of this study becomes evident through the necessity of the aircraft manufacturer of predicting human behavior during all the flight phases. This text also aims to present the difficult...

  5. Reliability and optimization, application to safety of aircraft structures


    Chu, Liu


    Tremendous struggles of researchers in the field of aerodynamic design and aircraft production were made to improve wing airfoil by optimization techniques. The development of computational fluid dynamic (CFD) in computer simulation cuts the expense of aerodynamic experiment while provides convincing results to simulate complicated situation of aircraft. In our work, we chose a special and important part of aircraft, namely, the structure of wing.Reliability based optimization is one of the m...

  6. Influence of environmental factors on corrosion damage of aircraft structure

    Institute of Scientific and Technical Information of China (English)


    Corrosion is one of the important structural integrity concerns of aging aircraft, and it is estimated that a significant portion of airframe maintenance budgets is directed towards corrosion-related problems for both military and commercial aircraft. In order to better understand how environmental factors influence the corrosion damage initiation and propagation on aircraft structure and to predict pre-corrosion test pieces of fatigue life and structural integrity of an effective approach, this paper uses ...

  7. Disruption Management for an Airline - Rescheduling of aircraft

    DEFF Research Database (Denmark)

    Larsen, Jesper; Løve, Michael; Sørensen, Kim Riis


    The Aircraft Recovery Problem (ARP) involves decisions concerning aircraft to flight assignments in situations where unforseen events have disrupted the existing flight schedule, e.g. bad weather causing flight delays. The aircraft recovery problem aims to recover these flight schedules through a...... is a product of the DESCARTES project, a project funded by the European Union between the Technical University of Denmark, British Airways and Carmen....

  8. Aircraft Structural Analysis, Design Optimization, and Manufacturing Tool Integration Project (United States)

    National Aeronautics and Space Administration — Innovative research is proposed in integrating fundamental aircraft design processes with an emphasis on composite structures. Efficient, lightweight composite...

  9. Enabling Use of Unmanned Aircraft Systems for Arctic Environmental Monitoring

    DEFF Research Database (Denmark)

    Storvold, Rune; la Cour-Harbo, Anders; Mulac, Brenda;

    , satellites and manned aircraft are the traditional platforms on which scientists gather data of the atmosphere, sea ice, glaciers, fauna and vegetation. However, significant data gaps still exist over much of the Arctic because there are few research stations, satellites are often hindered by cloud cover......, poor resolution, and the complicated surface of snow and ice. Measurements made from manned aircraft are also limited because of range and endurance, as well as the danger and costs presented by operating manned aircraft in harsh and remote environments like the Arctic. Unmanned aircraft systems (UAS...

  10. Using heuristics to solve the dedicated aircraft recovery problem

    DEFF Research Database (Denmark)

    Løve, Michael; Sørensen, Kim Riis; Larsen, Jesper;


    The Dedicated Aircraft Recovery Problem (DARP) involves decisions concerning aircraft to flight assignments in situations where unforeseen events have disrupted the existing flight schedule, e.g. bad weather causing flight delays. The dedicated aircraft recovery problem aims to recover these flight...... schedules through a series of reassignments of aircraft to flights, delaying of flights and cancellations of flights. This article describes an effective method to solve DARP. A heuristic is implemented, which is able to generate feasible revised flight schedules of good quality in less than 10 seconds when...

  11. Research on aircraft emissions. Need for future work

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, A. [German Aerospace Establishment, Cologne (Germany). Transport Research Div.


    Reflecting the present status of the research on aircraft emissions and their impacts upon the atmosphere, task-fields for a work programme for the research on aircraft emissions can be derived. Most important measures are to support the efforts to define adequate reduction measures, and (with highest priority) scenario-writing for the long-term development in aircraft emissions, to be able to include into the decision making process the aspect of in-time-reaction against unwanted future. Besides that, a steady monitoring of global aircraft emissions will be necessary. (author) 5 refs.

  12. Analysis of Virtual Sensors for Predicting Aircraft Fuel Consumption (United States)

    National Aeronautics and Space Administration — Previous research described the use of machine learning algorithms to predict aircraft fuel consumption. This technique, known as Virtual Sensors, models fuel...

  13. Integrated Network of Optimizations for Aircraft Systems Project (United States)

    National Aeronautics and Space Administration — Aircraft design is a complex process requiring interactions and exchange of information among multiple disciplines such as aerodynamics, strength, fatigue, controls,...

  14. Model Updating in Online Aircraft Prognosis Systems Project (United States)

    National Aeronautics and Space Administration — Diagnostic and prognostic algorithms for many aircraft subsystems are steadily maturing. Unfortunately there is little experience integrating these technologies into...

  15. Escorting commercial aircraft to reduce the MANPAD threat (United States)

    Hock, Nicholas; Richardson, M. A.; Butters, B.; Walmsley, R.; Ayling, R.; Taylor, B.


    This paper studies the Man-Portable Air Defence System (MANPADS) threat against large commercial aircraft using flight profile analysis, engagement modelling and simulation. Non-countermeasure equipped commercial aircraft are at risk during approach and departure due to the large areas around airports that would need to be secured to prevent the use of highly portable and concealable MANPADs. A software model (CounterSim) has been developed and was used to simulate an SA-7b and large commercial aircraft engagement. The results of this simulation have found that the threat was lessened when a escort fighter aircraft is flown in the 'Centreline Low' position, or 25 m rearward from the large aircraft and 15 m lower, similar to the Air-to-Air refuelling position. In the model a large aircraft on approach had a 50% chance of being hit or having a near miss (within 20m) whereas escorted by a countermeasure equipped F-16 in the 'Centerline Low' position, this was reduced to only 14%. Departure is a particularly vulnerable time for large aircraft due to slow climb rates and the inability to fly evasive manoeuvres. The 'Centreline Low' escorted departure greatly reduced the threat to 16% hit or near miss from 62% for an unescorted heavy aircraft. Overall the CounterSim modelling has showed that escorting a civilian aircraft on approach and departure can reduce the MANPAD threat by 3 to 4 times.

  16. Discriminant Incoherent Component Analysis. (United States)

    Georgakis, Christos; Panagakis, Yannis; Pantic, Maja


    Face images convey rich information which can be perceived as a superposition of low-complexity components associated with attributes, such as facial identity, expressions, and activation of facial action units (AUs). For instance, low-rank components characterizing neutral facial images are associated with identity, while sparse components capturing non-rigid deformations occurring in certain face regions reveal expressions and AU activations. In this paper, the discriminant incoherent component analysis (DICA) is proposed in order to extract low-complexity components, corresponding to facial attributes, which are mutually incoherent among different classes (e.g., identity, expression, and AU activation) from training data, even in the presence of gross sparse errors. To this end, a suitable optimization problem, involving the minimization of nuclear-and l1 -norm, is solved. Having found an ensemble of class-specific incoherent components by the DICA, an unseen (test) image is expressed as a group-sparse linear combination of these components, where the non-zero coefficients reveal the class(es) of the respective facial attribute(s) that it belongs to. The performance of the DICA is experimentally assessed on both synthetic and real-world data. Emphasis is placed on face analysis tasks, namely, joint face and expression recognition, face recognition under varying percentages of training data corruption, subject-independent expression recognition, and AU detection by conducting experiments on four data sets. The proposed method outperforms all the methods that are compared with all the tasks and experimental settings.

  17. Robust Principal Component Analysis?

    CERN Document Server

    Candes, Emmanuel J; Ma, Yi; Wright, John


    This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the L1 norm. This suggests the possibility of a principled approach to robust principal component analysis since our methodology and results assert that one can recover the principal components of a data matrix even though a positive fraction of its entries are arbitrarily corrupted. This extends to the situation where a fraction of the entries are missing as well. We discuss an algorithm for solving this optimization problem, and present applications in the area of video surveillance, where our methodology allows for th...

  18. GCS component development cycle (United States)

    Rodríguez, Jose A.; Macias, Rosa; Molgo, Jordi; Guerra, Dailos; Pi, Marti


    The GTC1 is an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). First light was at 13/07/2007 and since them it is in the operation phase. The GTC control system (GCS) is a distributed object & component oriented system based on RT-CORBA8 and it is responsible for the management and operation of the telescope, including its instrumentation. GCS has used the Rational Unified process (RUP9) in its development. RUP is an iterative software development process framework. After analysing (use cases) and designing (UML10) any of GCS subsystems, an initial component description of its interface is obtained and from that information a component specification is written. In order to improve the code productivity, GCS has adopted the code generation to transform this component specification into the skeleton of component classes based on a software framework, called Device Component Framework. Using the GCS development tools, based on javadoc and gcc, in only one step, the component is generated, compiled and deployed to be tested for the first time through our GUI inspector. The main advantages of this approach are the following: It reduces the learning curve of new developers and the development error rate, allows a systematic use of design patterns in the development and software reuse, speeds up the deliverables of the software product and massively increase the timescale, design consistency and design quality, and eliminates the future refactoring process required for the code.

  19. Scientific Software Component Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, S.; Dykman, N.; Kumfert, G.; Smolinski, B.


    We are developing new software component technology for high-performance parallel scientific computing to address issues of complexity, re-use, and interoperability for laboratory software. Component technology enables cross-project code re-use, reduces software development costs, and provides additional simulation capabilities for massively parallel laboratory application codes. The success of our approach will be measured by its impact on DOE mathematical and scientific software efforts. Thus, we are collaborating closely with library developers and application scientists in the Common Component Architecture forum, the Equation Solver Interface forum, and other DOE mathematical software groups to gather requirements, write and adopt a variety of design specifications, and develop demonstration projects to validate our approach. Numerical simulation is essential to the science mission at the laboratory. However, it is becoming increasingly difficult to manage the complexity of modern simulation software. Computational scientists develop complex, three-dimensional, massively parallel, full-physics simulations that require the integration of diverse software packages written by outside development teams. Currently, the integration of a new software package, such as a new linear solver library, can require several months of effort. Current industry component technologies such as CORBA, JavaBeans, and COM have all been used successfully in the business domain to reduce software development costs and increase software quality. However, these existing industry component infrastructures will not scale to support massively parallel applications in science and engineering. In particular, they do not address issues related to high-performance parallel computing on ASCI-class machines, such as fast in-process connections between components, language interoperability for scientific languages such as Fortran, parallel data redistribution between components, and massively

  20. Emotional Components of Pain

    Directory of Open Access Journals (Sweden)

    Carla J Hale


    Full Text Available BACKGROUND: Current definitions of pain suggest that emotion is an essential component of pain, however, the presumed relationship between emotion and pain, and the specific emotions that are involved in pain experiences have yet to be clarified.

  1. Explosive Components Facility (United States)

    Federal Laboratory Consortium — The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis...

  2. Component fragility research program

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, N.C.; Mochizuki, G.L.; Holman, G.S. (NCT Engineering, Inc., Lafayette, CA (USA); Lawrence Livermore National Lab., CA (USA))


    To demonstrate how high-level'' qualification test data can be used to estimate the ultimate seismic capacity of nuclear power plant equipment, we assessed in detail various electrical components tested by the Pacific Gas Electric Company for its Diablo Canyon plant. As part of our Phase I Component Fragility Research Program, we evaluated seismic fragility for five Diablo Canyon components: medium-voltage (4kV) switchgear; safeguard relay board; emergency light battery pack; potential transformer; and station battery and racks. This report discusses our Phase II fragility evaluation of a single Westinghouse Type W motor control center column, a fan cooler motor controller, and three local starters at the Diablo Canyon nuclear power plant. These components were seismically qualified by means of biaxial random motion tests on a shaker table, and the test response spectra formed the basis for the estimate of the seismic capacity of the components. The seismic capacity of each component is referenced to the zero period acceleration (ZPA) and, in our Phase II study only, to the average spectral acceleration (ASA) of the motion at its base. For the motor control center, the seismic capacity was compared to the capacity of a Westinghouse Five-Star MCC subjected to actual fragility tests by LLNL during the Phase I Component Fragility Research Program, and to generic capacities developed by the Brookhaven National Laboratory for motor control center. Except for the medium-voltage switchgear, all of the components considered in both our Phase I and Phase II evaluations were qualified in their standard commercial configurations or with only relatively minor modifications such as top bracing of cabinets. 8 refs., 67 figs., 7 tabs.

  3. Develop a Model Component (United States)

    Ensey, Tyler S.


    During my internship at NASA, I was a model developer for Ground Support Equipment (GSE). The purpose of a model developer is to develop and unit test model component libraries (fluid, electrical, gas, etc.). The models are designed to simulate software for GSE (Ground Special Power, Crew Access Arm, Cryo, Fire and Leak Detection System, Environmental Control System (ECS), etc. .) before they are implemented into hardware. These models support verifying local control and remote software for End-Item Software Under Test (SUT). The model simulates the physical behavior (function, state, limits and 110) of each end-item and it's dependencies as defined in the Subsystem Interface Table, Software Requirements & Design Specification (SRDS), Ground Integrated Schematic (GIS), and System Mechanical Schematic.(SMS). The software of each specific model component is simulated through MATLAB's Simulink program. The intensiv model development life cycle is a.s follows: Identify source documents; identify model scope; update schedule; preliminary design review; develop model requirements; update model.. scope; update schedule; detailed design review; create/modify library component; implement library components reference; implement subsystem components; develop a test script; run the test script; develop users guide; send model out for peer review; the model is sent out for verifictionlvalidation; if there is empirical data, a validation data package is generated; if there is not empirical data, a verification package is generated; the test results are then reviewed; and finally, the user. requests accreditation, and a statement of accreditation is prepared. Once each component model is reviewed and approved, they are intertwined together into one integrated model. This integrated model is then tested itself, through a test script and autotest, so that it can be concluded that all models work conjointly, for a single purpose. The component I was assigned, specifically, was a

  4. A NASA study of the impact of technology on future multimission aircraft (United States)

    Samuels, Jeffrey J.


    A conceptual aircraft design study was recently completed which compared three supersonic multimission tactical aircraft. The aircraft were evaluated in two technology timeframes and were sized with consistent methods and technology assumptions so that the aircraft could be compared in operational utility or cost analysis trends. The three aircraft are a carrier-based Fighter/Attack aircraft, a land-based Multirole Fighter, and a Short Takeoff/Vertical Landing (STOVL) aircraft. This paper describes the design study ground rules used and the aircraft designed. The aircraft descriptions include weights, dimensions and layout, design mission and maneuver performance, and fallout mission performance. The effect of changing technology and mission requirements on the STOVL aircraft and the impact of aircraft navalization are discussed. Also discussed are the effects on the STOVL aircraft of both Thrust/Weight required in hover and design mission radius.

  5. 78 FR 26103 - Proposed Standard Operating Procedure (SOP) of the Aircraft Certification Service (AIR) Project... (United States)


    ... Federal Aviation Administration Proposed Standard Operating Procedure (SOP) of the Aircraft Certification... comments on, the Aircraft Certification Service (AIR) standard operating procedure (SOP) describing the... comments on the SOP to: Federal Aviation Administration (FAA) Aircraft Certification Service,...

  6. An Investigation of Two-Propeller Tilt Wing V/STOL Aircraft Flight Characteristics (United States)


    aerodynamic input files or using manual input data. The output provides static aircraft longitudinal parameters for determining performance...wing aircraft so configured, the NASA Ames computer code TWANG is used for simulation of aircraft longitudinal stability and performance characteristics

  7. 75 FR 51953 - Notification and Reporting of Aircraft Accidents or Incidents and Overdue Aircraft, and... (United States)


    ... Organization (ICAO) amendment 13 to Annex 13, Aircraft Accident and Incident Investigation, defines unmanned... safety. If the NTSB implemented the ICAO standard, it would likely receive many reports that would not be... safety recommendations. In addition, the proposed ICAO standard would not address the concerns of...

  8. The Effects of Employing HVM on C-130 Aircraft at WR-ALC to Aircraft Availability (United States)


    information system capability 16 enables the synchronized planning, scheduling, data collection, and analysis required to implement a highly choreographed requirements such as standard work through visual workcards, choreographed tasks, and required material through POU kits to ensure accomplished on the aircraft. If daily work is standardized in terms of work performed and choreographed in sequence; the condition of the

  9. Unified Theory for Aircraft Handling Qualities and Adverse Aircraft-Pilot Coupling (United States)

    Hess, R. A.


    A unified theory for aircraft handling qualities and adverse aircraft-pilot coupling or pilot-induced oscillations is introduced. The theory is based on a structural model of the human pilot. A methodology is presented for the prediction of (1) handling qualities levels; (2) pilot-induced oscillation rating levels; and (3) a frequency range in which pilot-induced oscillations are likely to occur. Although the dynamics of the force-feel system of the cockpit inceptor is included, the methodology will not account for effects attributable to control sensitivity and is limited to single-axis tasks and, at present, to linear vehicle models. The theory is derived from the feedback topology of the structural model and an examination of flight test results for 32 aircraft configurations simulated by the U.S. Air Force/CALSPAN NT-33A and Total In-Flight Simulator variable stability aircraft. An extension to nonlinear vehicle dynamics such as that encountered with actuator saturation is discussed.

  10. Forecasting for a Lagrangian aircraft campaign

    Directory of Open Access Journals (Sweden)

    A. Stohl


    Full Text Available A forecast system has been developed in preparation for an upcoming aircraft measurement campaign, where the same air parcels polluted by emissions over North America shall be sampled repeatedly as they leave the continent, during transport over the Atlantic, and upon their arrival over Europe. This paper describes the model system in advance of the campaign, in order to make the flight planners familiar with the novel model output. The aim of a Lagrangian strategy is to infer changes in the chemical composition and aerosol distribution occurring en route by measured upwind/downwind differences. However, guiding aircraft repeatedly into the same polluted air parcels requires careful forecasting, for which no suitable model system exists to date. This paper describes a procedure using both Eulerian-type (i.e. concentration fields and Lagrangian-type (i.e. trajectories model output from the Lagrangian particle dispersion model FLEXPART to predict the best opportunities for a Lagrangian experiment. The best opportunities are defined as being highly polluted air parcels which receive little or no emission input after the first measurement, which experience relatively little mixing, and which are reachable by as many aircraft as possible. For validation the system was applied to the period of the NARE 97 campaign where approximately the same air masses were sampled on different flights. Measured upwind/downwind differences in carbon monoxide (CO and ozone (O3 decreased significantly as the threshold values used for accepting cases as Lagrangian were tightened. This proves that the model system can successfully identify Lagrangian opportunities.

  11. The ARCTAS aircraft mission: design and execution

    Directory of Open Access Journals (Sweden)

    D. J. Jacob


    Full Text Available The NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS mission was conducted in two 3-week deployments based in Alaska (April 2008 and western Canada (June–July 2008. The goal of ARCTAS was to better understand the factors driving current changes in Arctic atmospheric composition and climate, including (1 transport of mid-latitude pollution, (2 boreal forest fires, (3 aerosol radiative forcing, and (4 chemical processes. ARCTAS involved three aircraft: a DC-8 with detailed chemical payload, a P-3 with extensive aerosol payload, and a B-200 with aerosol remote sensing instrumentation. The aircraft augmented satellite observations of Arctic atmospheric composition, in particular from the NASA A-Train, by (1 validating the data, (2 improving constraints on retrievals, (3 making correlated observations, and (4 characterizing chemical and aerosol processes. The April flights (ARCTAS-A sampled pollution plumes from all three mid-latitude continents, fire plumes from Siberia and Southeast Asia, and halogen radical events. The June-July flights (ARCTAS-B focused on boreal forest fire influences and sampled fresh fire plumes from northern Saskatchewan as well as older fire plumes from Canada, Siberia, and California. The June–July deployment was preceded by one week of flights over California sponsored by the California Air Resources Board (ARCTAS-CARB. The ARCTAS-CARB goals were to (1 improve state emission inventories for greenhouse gases and aerosols, (2 provide observations to test and improve models of ozone and aerosol pollution. Extensive sampling across southern California and the Central Valley characterized emissions from urban centers, offshore shipping lanes, agricultural crops, feedlots, industrial sources, and wildfires.

  12. Forecasting for a Lagrangian aircraft campaign

    Directory of Open Access Journals (Sweden)

    A. Stohl


    Full Text Available A forecast system has been developed in preparation for an upcoming aircraft measurement campaign, where the same air parcels polluted by emissions over North America shall be sampled repeatedly as they leave the continent, during transport over the Atlantic, and upon their arrival over Europe. This paper describes the model system in advance of the campaign, in order to make the flight planners familiar with the novel model output. The aim of a Lagrangian strategy is to infer changes in the chemical composition and aerosol distribution occurring en route by measured upwind/downwind differences. However, guiding aircraft repeatedly into the same polluted air parcels requires careful forecasting, for which no suitable model system exists to date. This paper describes a procedure using both Eulerian-type (i.e. concentration fields and Lagrangian-type (i.e. trajectories model output from the Lagrangian particle dispersion model FLEXPART to predict the best opportunities for a Lagrangian experiment. The best opportunities are defined as being highly polluted air parcels which receive little or no emission input after the first measurement, which experience relatively little mixing, and which are reachable by as many aircraft as possible. For validation the system was applied to the period of the NARE 97 campaign where approximately the same air masses were sampled on different flights. Measured upwind/downwind differences in carbon monoxide (CO and ozone (O3 decreased significantly as the threshold values used for accepting cases as Lagrangian were tightened. This proves that the model system can successfully identify Lagrangian opportunities.

  13. Aircraft Simulator Data Requirements Study. Volume II (United States)


    23143 ( Wep ), "Data, Technical Aircraft; for the Design of Aviation Training Devices," was to be used as a guide for the preparation of the new standard. 2...made, displays, etc., utilizing the "hot mockup ." The really useful data can only result from flight tests and can be obtained at any time after tile... mockup " and the preliminary tactical tape used in the tests. It will represent the best system data that will generally be obtained. k The last data

  14. Radiant Energy Power Source for Jet Aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Doellner, O.L.


    This report beings with a historical overview on the origin and early beginnings of Radiant Energy Power Source for Jet Aircraft. The report reviews the work done in Phase I (Grant DE-FG01-82CE-15144) and then gives a discussion of Phase II (Grant DE-FG01-86CE-15301). Included is a reasonably detailed discussion of photovoltaic cells and the research and development needed in this area. The report closes with a historical perspective and summary related to situations historically encountered on projects of this nature. 15 refs.

  15. Robust control of an aircraft model

    Energy Technology Data Exchange (ETDEWEB)

    Werner, H. [Bochum Univ. (Germany). Fakultaet fuer Elektrotechnik


    A new multimodel approach to robust controller design is illustrated by a practical application: for a laboratory aircraft model, a robust controller is designed simultaneously for normal operating conditions and for propeller failure. Based on a linear model for each operating mode, an LMI formulation of the problem and convex programming are used to search for a state feedback controller which achieves the objective. This state feedback design is then realized simultaneously in both operating modes by a controller which is based on fast output sampling. Robust performance is demonstrated by experimental results. (orig.)

  16. Robust control of an aircraft model

    Energy Technology Data Exchange (ETDEWEB)

    Werner, H. (Bochum Univ. (Germany). Fakultaet fuer Elektrotechnik)


    A new multimodel approach to robust controller design is illustrated by a practical application: for a laboratory aircraft model, a robust controller is designed simultaneously for normal operating conditions and for propeller failure. Based on a linear model for each operating mode, an LMI formulation of the problem and convex programming are used to search for a state feedback controller which achieves the objective. This state feedback design is then realized simultaneously in both operating modes by a controller which is based on fast output sampling. Robust performance is demonstrated by experimental results. (orig.)

  17. Squeeze Film Damping for Aircraft Gas Turbines

    Directory of Open Access Journals (Sweden)

    R. W. Shende


    Full Text Available Modern aircraft gas turbine engines depend heavily on squeeze film damper supports at the bearings for abatement of vibrations caused by a number of probable excitation sources. This design ultimately results in light-weight construction together with higher efficiency and reliability of engines. Many investigations have been reported during past two decades concerning the functioning of the squeeze film damper, which is simple in construction yet complex in behaviour with its non-linearity and multiplicity of variables. These are reviewed in this article to throw light on the considerations involved in the design of rotor-bearing-casing systems incorporating squeeze film dampers.

  18. Extreme Loading of Aircraft Fan Blade

    CERN Document Server

    Datta, Dibakar


    The response of an aircraft fan blade manufactured by composites under the action of static and impact load has been studied in this report. The modeling and analysis of the geometry has been done using CASTEM 2007 version. For the quasi static analysis, the pressure has been incrementally applied until it satisfies the failure criteria. The deformed configuration, strain, Von-Mises stress, and the deflection of the blade have been studied. The response of the system e.g. deformation time history due to the impact of the projectile has been studied where the Newmark method for the dynamic problem has been implemented.

  19. Climatic impact of aircraft induced ozone changes

    Energy Technology Data Exchange (ETDEWEB)

    Sausen, R.; Feneberg, B.; Ponater, M. [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere


    The effect of aircraft induced ozone changes on the global climate is studied by means of the general circulation model ECHAM4. The zonal mean temperature signal is considered. In order to estimate the statistical significance of the climatic impact a multivariate statistical test hierarchy combined with the fingerprint method has been applied. Sensitivity experiments show a significant coherent temperature response pattern in the northern extra-tropics for mid-latitude summer conditions. It consists of a tropospheric warming of about 0.2 K with a corresponding stratospheric cooling of the same magnitude. (author) 16 refs.

  20. Portable catapult launcher for small aircraft (United States)

    Rosenbaum, Bernard J. (Inventor); Petter, George E. (Inventor); Gessler, Joseph A. (Inventor); Hughes, Michael G. (Inventor)


    An apparatus for launching an aircraft having a multiplicity of interconnected elongated tracks of rigid material forming a track system and wherein each elongated track has a predetermined elongated track cross-sectional design, a winch system connected to the track system wherein the winch system has a variable mechanical advantage, one or more elongated elastic members wherein one end of each of the one or more elongated elastic members is adjustably connected to the track system, and a carrier slidably mounted to the track system wherein the carrier is connected to the winch system and to the other end of each of the one or more elongated elastic members.

  1. An Overview of Aircraft Integrated Control Technology (United States)


    and stability augmentation, high hf’ system, steering and brak - ing 22 ’ . An F-15B research aircraft, modified with all-moving canard control...0.2 0.4 0.6 0.8 1.0 1.2 1.4 MACH NUMBER The IFPC system responds to pilot inputs with an automatic blend of aerodynamic control surfaces and thrust...decoupling airframe translation and rotation movements). In general, it was found that a blended combination of direct force and conventional control

  2. The Glass Ceiling for Remotely Piloted Aircraft (United States)


    Views July–August 2013 Air & Space Power Journal | 101 The Glass Ceiling for Remotely Piloted Aircraft Lt Col Lawrence Spinetta, PhD, USAF Those...number. 1. REPORT DATE AUG 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE The Glass Ceiling for Remotely...promotion to flag rank. By design or effect, a bottleneck exists that guarantees a glass ceiling (i.e., a barrier to advancement) for RPA officers. This

  3. Predicted electrothermal deicing of aircraft blades (United States)

    Keith, T. G., Jr.; Masiulaniec, K. C.; Dewitt, K. J.; Chao, D. F.


    A finite difference method is presented for the transient two-dimensional simulation of an electrothermal de-icer pad of an aircraft wing or blade. The irregular geometry of the composite ice laden blade is handled by use of a body fitted coordinate transformation. By this approach the various blade layers are mapped into a set of stacked rectangular strips in which the numerical solution takes place. Several heat conduction examples are presented in order to demonstrate the accuracy of the numerical procedure. Ice melting time predictions are made and compared to earlier predictions where possible. Finally, a new graphical presentation of thermal results is shown.

  4. Sensor Technology and Futuristic Of Fighter Aircraft

    Directory of Open Access Journals (Sweden)

    Emmanuel Rugambage Ndayishimiye


    Full Text Available The Next Generation fighter Aircraft seeks a fighter with higher abilities in areas such as reach, persistence, survivability, net-centricity, situation awareness, human system integration and weapons effects. The future system will have to counter foe armed with next generation advanced electronic attack, sophisticated integrated air defense systems, directed energy weapons, passive detection, integrated self-protection and cyber-attack capabilities. It must be capable to operate in the anti-access area-denial (A2/AD environment that will exist in the next coming years.

  5. Composite Axial Flow Propulsor for Small Aircraft



    This work focuses on the design of an axial flow ducted fan driven by a reciprocating engine. The solution minimizes the turbulization of the flow around the aircraft. The fan has a rotor - stator configuration. Due to the need for low weight of the fan, a carbon/epoxy composite material was chosen for the blades and the driving shaft.The fan is designed for optimal isentropic efficiency and free vortex flow. A stress analysis of the rotor blade was performed using the Finite Element  Method....

  6. Evaluation of the Relative Contribution of Observing Systems in Reanalyses: Aircraft Temperature Bias and Analysis Innovations (United States)

    Bosilovich, Michael G.; Dasilva, Arindo M.


    Reanalyses have become important sources of data in weather and climate research. While observations are the most crucial component of the systems, few research projects consider carefully the multitudes of assimilated observations and their impact on the results. This is partly due to the diversity of observations and their individual complexity, but also due to the unfriendly nature of the data formats. Here, we discuss the NASA Modern-Era Retrospective analysis for Research and Applications (MERRA) and a companion dataset, the Gridded Innovations and Observations (GIO). GIO is simply a post-processing of the assimilated observations and their innovations (forecast error and analysis error) to a common spatio-temporal grid, following that of the MERRA analysis fields. This data includes in situ, retrieved and radiance observations that are assimilated and used in the reanalysis. While all these disparate observations and statistics are in a uniform easily accessible format, there are some limitations. Similar observations are binned to the grid, so that multiple observations are combined in the gridding process. The data is then implicitly thinned. Some details in the meta data may also be lost (e.g. aircraft or station ID). Nonetheless, the gridded observations should provide easy access to all the observations input to the reanalysis. To provide an example of the GIO data, a case study evaluating observing systems over the United States and statistics is presented, and demonstrates the evaluation of the observations and the data assimilation. The GIO data is used to collocate 200mb Radiosonde and Aircraft temperature measurements from 1979-2009. A known warm bias of the aircraft measurements is apparent compared to the radiosonde data. However, when larger quantities of aircraft data are available, they dominate the analysis and the radiosonde data become biased against the forecast. When AMSU radiances become available the radiosonde and aircraft analysis and

  7. A survey on electromagnetic interferences on aircraft avionics systems and a GSM on board system overview (United States)

    Vinto, Natale; Tropea, Mauro; Fazio, Peppino; Voznak, Miroslav


    Recent years have been characterized by an increase in the air traffic. More attention over micro-economic and macroeconomic indexes would be strategic to gather and enhance the safety of a flight and customer needing, for communicating by wireless handhelds on-board aircrafts. Thus, European Telecommunications Standards Institute (ETSI) proposed a GSM On Board (GSMOBA) system as a possible solution, allowing mobile terminals to communicate through GSM system on aircraft, avoiding electromagnetic interferences with radio components aboard. The main issues are directly related with interferences that could spring-out when mobile terminals attempt to connect to ground BTS, from the airplane. This kind of system is able to resolve the problem in terms of conformance of Effective Isotropic Radiated Power (EIRP) limits, defined outside the aircraft, by using an On board BTS (OBTS) and modeling the relevant key RF parameters on the air. The main purpose of this work is to illustrate the state-of-the-art of literature and previous studies about the problem, giving also a good detail of technical and normative references.

  8. An information theoretic approach for generating an aircraft avoidance Markov Decision Process (United States)

    Weinert, Andrew J.

    Developing a collision avoidance system that can meet safety standards required of commercial aviation is challenging. A dynamic programming approach to collision avoidance has been developed to optimize and generate logics that are robust to the complex dynamics of the national airspace. The current approach represents the aircraft avoidance problem as Markov Decision Processes and independently optimizes a horizontal and vertical maneuver avoidance logics. This is a result of the current memory requirements for each logic, simply combining the logics will result in a significantly larger representation. The "curse of dimensionality" makes it computationally inefficient and unfeasible to optimize this larger representation. However, existing and future collision avoidance systems have mostly defined the decision process by hand. In response, a simulation-based framework was built to better understand how each potential state quantifies the aircraft avoidance problem with regards to safety and operational components. The framework leverages recent advances in signals processing and database, while enabling the highest fidelity analysis of Monte Carlo aircraft encounter simulations to date. This framework enabled the calculation of how well each state of the decision process quantifies the collision risk and the associated memory requirements. Using this analysis, a collision avoidance logic that leverages both horizontal and vertical actions was built and optimized using this simulation based approach.

  9. Mission Analysis and Aircraft Sizing of a Hybrid-Electric Regional Aircraft (United States)

    Antcliff, Kevin R.; Guynn, Mark D.; Marien, Ty V.; Wells, Douglas P.; Schneider, Steven J.; Tong, Michael T.


    The purpose of this study was to explore advanced airframe and propulsion technologies for a small regional transport aircraft concept (approximately 50 passengers), with the goal of creating a conceptual design that delivers significant cost and performance advantages over current aircraft in that class. In turn, this could encourage airlines to open up new markets, reestablish service at smaller airports, and increase mobility and connectivity for all passengers. To meet these study goals, hybrid-electric propulsion was analyzed as the primary enabling technology. The advanced regional aircraft is analyzed with four levels of electrification, 0 percent electric with 100 percent conventional, 25 percent electric with 75 percent conventional, 50 percent electric with 50 percent conventional, and 75 percent electric with 25 percent conventional for comparison purposes. Engine models were developed to represent projected future turboprop engine performance with advanced technology and estimates of the engine weights and flowpath dimensions were developed. A low-order multi-disciplinary optimization (MDO) environment was created that could capture the unique features of parallel hybrid-electric aircraft. It is determined that at the size and range of the advanced turboprop: The battery specific energy must be 750 watt-hours per kilogram or greater for the total energy to be less than for a conventional aircraft. A hybrid vehicle would likely not be economically feasible with a battery specific energy of 500 or 750 watt-hours per kilogram based on the higher gross weight, operating empty weight, and energy costs compared to a conventional turboprop. The battery specific energy would need to reach 1000 watt-hours per kilogram by 2030 to make the electrification of its propulsion an economically feasible option. A shorter range and/or an altered propulsion-airframe integration could provide more favorable results.

  10. Department of the Navy Justification of Estimates for Fiscal Year 1984 Submitted to Congress January 1983. Procurement. Aircraft Procurement, Navy (United States)


    increase in the survivability for Navy tactical aircraft 1gainst radar directed air detcnse system. Development Stitis: Northroo Corporation is under...9H and AIM-9L iiterfaee comnatibility ; (5) deleting the visual target icquisition svstem (VTAS) back up power supply to make room for a new shop...5, 16$5,162 Unstallation Data: Component modification will be accoamplished via an avionics change (AVc) 3ubmitte from anhe aircra ft Corporation and

  11. Variable pitch fan system for NASA/Navy research and technology aircraft (United States)

    Ryan, W. P.; Black, D. M.; Yates, A. F.


    Preliminary design of a shaft driven, variable-pitch lift fan and lift-cruise fan was conducted for a V/STOL Research and Technology Aircraft. The lift fan and lift-cruise fan employed a common rotor of 157.5 cm diameter, 1.18 pressure ratio variable-pitch fan designed to operate at a rotor-tip speed of 284 mps. Fan performance maps were prepared and detailed aerodynamic characteristics were established. Cost/weight/risk trade studies were conducted for the blade and fan case. Structural sizing was conducted for major components and weights determined for both the lift and lift-cruise fans.

  12. Remote gas analysis of aircraft exhausts using FTIR-emission-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heland, J.; Schaefer, K. [Fraunhofer Inst. for Atmospheric Environmental Research, Garmisch-Partenkirchen (Germany)


    FITR emission spectroscopy as a remote sensing multi-component analyzing technique was investigated to determine the composition of aircraft exhausts at ground level. A multi-layer radiative transfer interpretation software based on a line-by-line computer algorithm using the HITRAN data base was developed. Measurements were carried out with different engine types to determine the traceable gas species and their detection limits. Finally validation measurements were made to compare the results of the system to those of conventional equipment. (author) 8 refs.

  13. Cost benefit study of advanced materials technology for aircraft turbine engines (United States)

    Hillery, R. V.; Johnston, R. P.


    The cost/benefits of eight advanced materials technologies were evaluated for two aircraft missions. The overall study was based on a time frame of commercial engine use of the advanced material technologies by 1985. The material technologies evaluated were eutectic turbine blades, titanium aluminide components, ceramic vanes, shrouds and combustor liners, tungsten composite FeCrAly blades, gamma prime oxide dispersion strengthened (ODS) alloy blades, and no coat ODS alloy combustor liners. They were evaluated in two conventional takeoff and landing missions, one transcontinental and one intercontinental.

  14. Coast Guard Aircraft: Transfer of Fixed-Wing C-27J Aircraft Is Complex and Further Fleet Purchases Should Coincide with Study Results (United States)


    propellers to be serviced by the original manufacturer and these items are now properly stored. In October 2014, we observed the aircraft at L-3...COAST GUARD AIRCRAFT Transfer of Fixed- Wing C-27J Aircraft Is Complex and Further Fleet Purchases Should Coincide...00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Coast Guard Aircraft : Transfer of Fixed-Wing C-27J Aircraft Is Complex and Further Fleet Purchases

  15. Current components, physical, ocean circulation, wind circulation, and other data from moored buoys, CTD casts, drifting buoys, and in situ wind recorders from AIRCRAFT and other platforms from the North Atlantic Ocean and other locations as part of the Seasonal Response of the Equatorial Atlantic Experiment/Francais Ocean Et Climat Dans L'Atlantique Equatorial (SEQUAL/FOCAL) project from 25 January 1980 to 18 December 1985 (NODC Accession 8700111) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current components, physical, ocean circulation, wind circulation, and other data were collected from moored buoys, CTD casts, drifting buoys, and in situ wind...

  16. Chemical Characterization of the Aerosol During the CLAMS Experiment Using Aircraft and Ground Stations (United States)

    Castanho, A. D.; Martins, J.; Artaxo, P.; Hobbs, P. V.; Remer, L.; Yamasoe, M.; Fattori, A.


    During the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) Experiment Nuclepore filters were collected in two ground stations and aboard the University of Wasghington's Convair 580 Reserarch Aircraft. The two ground stations were chosen in strategic positions to characterize the chemical composition, the mass concentration, black carbon (BC) content, and the absorption properties of the aerosol particles at the surface level. One of the stations was located at the Cheasapeake lighthouse (25 km from the coast) and the other one was located at the Wallops Island. Aerosol particles where collected in two stages, fine (d2.5um) and coarse mode (2.5Aircraft. The aircraft samples where used to characterize the elemental composition, mass concentration, BC content, and absorption properties of the aerosol in the atmospheric column in the CLAMS Experiment area. Some of the filters were also submitted to Scanning Electron Microscopy analysis. The particulate matter mass for all the samples were obtained gravimetrically. The concentration of black carbon in the fine filters was optically determined by a broadband reflectance technique. The spectral (from UV to near IR) reflectance in the fine and coarse mode filter were also obtained with a FieldSpec ASD spectrometer. Aerosol elemental characterization (Na through Pb) was obtained by the PIXE (Particle induced X ray emission) analyses of the nuclepore filters. The sources of the aerosol measured at the ground stations were estimated by principal component analyses mainly in the Wallops Island, where a longer time series was collected. One of the main urban components identified in the aerosol during the experiment was sulfate. Black carbon

  17. Carrier Analysis Lab (CAL) – Aircraft/Weapons/Ship Compatibility Lab (United States)

    Federal Laboratory Consortium — Purpose: The Carrier Analysis Lab (CAL) - Aircraft/Weapons/Ship Compatibility Lab located at the Naval Air Warfare Center Aircraft Division, Lakehurst, NJ provides...

  18. Damage criticality and inspection concerns of composite-metallic aircraft structures under blunt impact (United States)

    Zou, D.; Haack, C.; Bishop, P.; Bezabeh, A.


    Composite aircraft structures such as fuselage and wings are subject to impact from many sources. Ground service equipment (GSE) vehicles are regarded as realistic sources of blunt impact damage, where the protective soft rubber is used. With the use of composite materials, blunt impact damage is of special interest, since potential significant structural damage may be barely visible or invisible on the structure's outer surface. Such impact can result in local or non-local damage, in terms of internal delamination in skin, interfacial delamination between stiffeners and skin, and fracture of internal reinforced component such as stringers and frames. The consequences of these events result in aircraft damage, delays, and financial cost to the industry. Therefore, it is necessary to understand the criticality of damage under this impact and provide reliable recommendations for safety and inspection technologies. This investigation concerns a composite-metallic 4-hat-stiffened and 5-frame panel, designed to represent a fuselage structure panel generic to the new generation of composite aircraft. The test fixtures were developed based on the correlation between finite element analyses of the panel model and the barrel model. Three static tests at certain amount of impact energy were performed, in order to improve the understanding of the influence of the variation in shear ties, and the added rotational stiffness. The results of this research demonstrated low velocity high mass impacts on composite aircraft fuselages beyond 82.1 kN of impact load, which may cause extensive internal structural damage without clear visual detectability on the external skin surface.

  19. Self Diagnostic Accelerometer Ground Testing on a C-17 Aircraft Engine (United States)

    Tokars, Roger P.; Lekki, John D.


    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.

  20. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines (United States)

    DeLaat, John C.


    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.