WorldWideScience

Sample records for aircraft by speed

  1. 14 CFR 91.117 - Aircraft speed.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aircraft speed. 91.117 Section 91.117... speed. (a) Unless otherwise authorized by the Administrator, no person may operate an aircraft below 10... than the maximum speed prescribed in this section, the aircraft may be operated at that minimum speed....

  2. Speed stress and the aircraft pilot

    Directory of Open Access Journals (Sweden)

    W.T.V. Adiseshiah

    1958-07-01

    Full Text Available When the human component in a man-machine system of pushed beyond the limits of human capacity in grasping information presented to senses or in executing a series of actions correctly, a condition of "speed stress" may be said to occur. Conditions encountered by aircraft at high speeds, make a consideration of the forms of speed stress, and of the measures to alleviate them, extremely important.

  3. Cooling system for high speed aircraft

    Science.gov (United States)

    Lawing, P. L.; Pagel, L. L. (Inventor)

    1981-01-01

    The system eliminates the necessity of shielding an aircraft airframe constructed of material such as aluminum. Cooling is accomplished by passing a coolant through the aircraft airframe, the coolant acting as a carrier to remove heat from the airframe. The coolant is circulated through a heat pump and a heat exchanger which together extract essentially all of the added heat from the coolant. The heat is transferred to the aircraft fuel system via the heat exchanger and the heat pump. The heat extracted from the coolant is utilized to power the heat pump. The heat pump has associated therewith power turbine mechanism which is also driven by the extracted heat. The power turbines are utilized to drive various aircraft subsystems, the compressor of the heat pump, and provide engine cooling.

  4. Conceptual design of high speed supersonic aircraft: A brief review on SR-71 (Blackbird) aircraft

    Science.gov (United States)

    Xue, Hui; Khawaja, H.; Moatamedi, M.

    2014-12-01

    The paper presents the conceptual design of high-speed supersonic aircraft. The study focuses on SR-71 (Blackbird) aircraft. The input to the conceptual design is a mission profile. Mission profile is a flight profile of the aircraft defined by the customer. This paper gives the SR-71 aircraft mission profile specified by US air force. Mission profile helps in defining the attributes the aircraft such as wing profile, vertical tail configuration, propulsion system, etc. Wing profile and vertical tail configurations have direct impact on lift, drag, stability, performance and maneuverability of the aircraft. A propulsion system directly influences the performance of the aircraft. By combining the wing profile and the propulsion system, two important parameters, known as wing loading and thrust to weight ratio can be calculated. In this work, conceptual design procedure given by D. P. Raymer (AIAA Educational Series) is applied to calculate wing loading and thrust to weight ratio. The calculated values are compared against the actual values of the SR-71 aircraft. Results indicates that the values are in agreement with the trend of developments in aviation.

  5. Titanium Alloys and Processing for High Speed Aircraft

    Science.gov (United States)

    Brewer, William D.; Bird, R. Keith; Wallace, Terryl A.

    1996-01-01

    Commercially available titanium alloys as well as emerging titanium alloys with limited or no production experience are being considered for a variety of applications to high speed commercial aircraft structures. A number of government and industry programs are underway to improve the performance of promising alloys by chemistry and/or processing modifications and to identify appropriate alloys and processes for specific aircraft structural applications. This paper discusses some of the results on the effects of heat treatment, service temperatures from - 54 C to +177 C, and selected processing on the mechanical properties of several candidate beta and alpha-beta titanium alloys. Included are beta alloys Timetal 21S, LCB, Beta C, Beta CEZ, and Ti-10-2-3 and alpha-beta alloys Ti-62222, Ti-6242S, Timetal 550, Ti-62S, SP-700, and Corona-X. The emphasis is on properties of rolled sheet product form and on the superplastic properties and processing of the materials.

  6. Determining the approach speed envelope of carrier aircraft

    Institute of Scientific and Technical Information of China (English)

    Geng Jianzhong; Yao Hailin; Duan Zhuoyi

    2013-01-01

    Many factors,such as deck motion and air wave,influence the determination of the approach speed which has an important effect on landing safety. Until recently,there are no design criteria about approach speed of carrier aircraft in the current standards and available publications. Therefore,the requirements of stall margin, longitudinal acceleration ability,altitude correction and field-of-view on approach speed were researched. Based on the flight dynamics model,the flight simulations were conducted to study the effect of the response time of en-gine,wave off requirements,elevator efficiency and deflection rate on the approach speed. The results presented that the approach longitudinal acceleration and altitude correction ability had crucial influence on the approach speed envelope of the aircraft. The limitations of the control requirements,field-of-view requirements and gear were also given through the simulation and analysis. Based on the above results,the approach speed envelope were determined.

  7. Analysis and design technology for high-speed aircraft structures

    Science.gov (United States)

    Starnes, James H., Jr.; Camarda, Charles J.

    1992-01-01

    Recent high-speed aircraft structures research activities at NASA Langley Research Center are described. The following topics are covered: the development of analytical and numerical solutions to global and local thermal and structural problems, experimental verification of analysis methods, identification of failure mechanisms, and the incorporation of analysis methods into design and optimization strategies. The paper describes recent NASA Langley advances in analysis and design methods, structural and thermal concepts, and test methods.

  8. Aircraft and avionic related research required to develop an effective high-speed runway exit system

    Science.gov (United States)

    Schoen, M. L.; Hosford, J. E.; Graham, J. M., Jr.; Preston, O. W.; Frankel, R. S.; Erickson, J. B.

    1979-01-01

    Research was conducted to increase airport capacity by studying the feasibility of the longitudinal separation between aircraft sequences on final approach. The multidisciplinary factors which include the utility of high speed exits for efficient runway operations were described along with recommendations and highlights of these studies.

  9. Temperature distribution in an aircraft tire at low ground speeds

    Science.gov (United States)

    Mccarty, J. L.; Tanner, J. A.

    1983-01-01

    An experimental study was conducted to define temperature profiles of 22 x 5.5, type 7, bias ply aircraft tires subjected to freely rolling, yawed rolling, and light braking conditions. Temperatures along the inner wall of freely rolling tires were greater than those near the outer surface. The effect of increasing tire deflection was to increase the temperature within the shoulder and sidewall areas of the tire carcass. The effect of cornering and braking was to increase the treat temperature. For taxi operations at fixed yaw angles, temperature profiles were not symmetric. Increasing the ground speed produced only moderate increases in tread temperature, whereas temperatures in the carcass shoulder and sidewall were essentially unaffected.

  10. A study of instability in a miniature flying-wing aircraft in high-speed taxi

    Directory of Open Access Journals (Sweden)

    Song Lei

    2015-06-01

    Full Text Available This study investigates an instability that was observed during high-speed taxi tests of an experimental flying-wing aircraft. In order to resolve the reason of instability and probable solution of it, the instability was reproduced in simulations. An analysis revealed the unique stability characteristics of this aircraft. This aircraft has a rigid connection between the nose wheel steering mechanism and an electric servo, which is different from aircraft with a conventional tricycle landing gear system. The analysis based on simulation results suggests that there are two reasons for the instability. The first reason is a reversal of the lateral velocity of the nose wheel. The second reason is that the moment about the center of gravity created by the lateral friction force from the nose wheel is larger than that from the lateral friction force from the main wheels. These problems were corrected by changing the ground pitch angle. Simulations show that reducing the ground pitch angle can eliminate the instability in high-speed taxi.

  11. High Speed Civil Transport Aircraft Simulation: Reference-H Cycle 1, MATLAB Implementation

    Science.gov (United States)

    Sotack, Robert A.; Chowdhry, Rajiv S.; Buttrill, Carey S.

    1999-01-01

    The mathematical model and associated code to simulate a high speed civil transport aircraft - the Boeing Reference H configuration - are described. The simulation was constructed in support of advanced control law research. In addition to providing time histories of the dynamic response, the code includes the capabilities for calculating trim solutions and for generating linear models. The simulation relies on the nonlinear, six-degree-of-freedom equations which govern the motion of a rigid aircraft in atmospheric flight. The 1962 Standard Atmosphere Tables are used along with a turbulence model to simulate the Earth atmosphere. The aircraft model has three parts - an aerodynamic model, an engine model, and a mass model. These models use the data from the Boeing Reference H cycle 1 simulation data base. Models for the actuator dynamics, landing gear, and flight control system are not included in this aircraft model. Dynamic responses generated by the nonlinear simulation are presented and compared with results generated from alternate simulations at Boeing Commercial Aircraft Company and NASA Langley Research Center. Also, dynamic responses generated using linear models are presented and compared with dynamic responses generated using the nonlinear simulation.

  12. 基于航空噪声指标的高速列车观光区噪声评价%Noise Evaluation in the Tourist Cabin of High-speed Train by Using Aircraft Noise Criterion

    Institute of Scientific and Technical Information of China (English)

    张捷; 肖新标; 张玉梅; 王瑞乾; 王谛; 金学松

    2013-01-01

    Based on field measurements,the noise characteristics in the tourist cabin of a high-speed train are analyzed at a high running speed between 300 to 400 km/h.So far,there is still no a unified criterion in the word to evaluate the noise level in the carriage of high-speed train reasonably,while A-weighted sound level has a shortcoming in the noise evaluation.In order to further clear the shortcoming,A-weighted sound level is discussed through the detailed contrast to white noise combined with increasing sound level in different frequency bands.An aircraft noise evaluation index is used to evaluate the interior noise of the high-speed train.The obtained results indicate that:the noise in the tourist cabin of the high-speed train is dominated by the components of low and middle frequencies.Such a noise would be underestimated when A-weighted sound level is used.There is high similarity of frequency characteristics between interior noise of high-speed train and it of aircraft.The aircraft noise evaluation index is more suitable for the characteristic evaluation of interior noise of high-speed train.This paper could provide evidence for framing new proper noise evaluation criterion for high-speed train.%基于现场测试结果,对300~400 km/h速度下高速列车观光区噪声进行分析,明确车内噪声动态特性.由于国内外还没有统一的高速列车车内噪声评价标准,传统的A计权声压级又在噪声评价中存在不足之处.为研究A计权声压级是否适合高速列车车内噪声评价,通过白噪声对比、分频段声压级比例增加等方法,讨论使用A计权声压级评价车内噪声时的不足之处.运用航空噪声评价指标对高速列车车内噪声进行评价研究.研究结果表明,300 km/h以上高速列车车内噪声具有显著的中低频特性,使用A计权声压级评价会低估车内噪声水平.高速列车观光区噪声频谱特性和飞机舱内噪声频谱特性具有很高的相似性,选择

  13. Study of the impact of cruise speed on scheduling and productivity of commercial transport aircraft

    Science.gov (United States)

    Bond, E. Q.; Carroll, E. A.; Flume, R. A.

    1977-01-01

    A comparison is made between airplane productivity and utilization levels derived from commercial airline type schedules which were developed for two subsonic and four supersonic cruise speed aircraft. The cruise speed component is the only difference between the schedules which are based on 1995 passenger demand forecasts. Productivity-to-speed relationships were determined for the three discrete route systems: North Atlantic, Trans-Pacific, and North-South America. Selected combinations of these route systems were also studied. Other areas affecting the productivity-to-speed relationship such as aircraft design range and scheduled turn time were examined.

  14. Aircraft

    Science.gov (United States)

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  15. Variable-Speed Induction Motor Drives for Aircraft Environmental Control Compressors

    Science.gov (United States)

    Mildice, J. W.; Hansen, I. G.; Schreiner, K. E.; Roth, M. E.

    1996-01-01

    New, more-efficient designs for aircraft jet engines are not capable of supplying the large quantities of bleed air necessary to provide pressurization and air conditioning for the environmental control systems (ECS) of the next generation of large passenger aircraft. System analysis and engineering have determined that electrically-driven ECS can help to maintain the improved fuel efficiencies; and electronic controllers and induction motors are now being developed in a NASA/NPD SBIR Program to drive both types of ECS compressors. Previous variable-speed induction motor/controller system developments and publications have primarily focused on field-oriented control, with large transient reserve power, for maximum acceleration and optimum response in actuator and robotics systems. The application area addressed herein is characterized by slowly-changing inputs and outputs, small reserve power capability for acceleration, and optimization for maximum efficiency. This paper therefore focuses on the differences between this case and the optimum response case, and shows the development of this new motor/controller approach. It starts with the creation of a new set of controller requirements. In response to those requirements, new control algorithms are being developed and implemented in an embedded computer, which is integrated into the motor controller closed loop. Buffered logic outputs are used to drive the power switches in a resonant-technology, power processor/motor-controller, at switching/resonant frequencies high enough to support efficient high-frequency induction motor operation at speeds up to 50,000-RPA

  16. Thermal Analysis of a High-Speed Aircraft Wing Using p-Version Finite Elements

    Science.gov (United States)

    Gould, Dana C.

    2001-01-01

    This paper presents the results of conceptual level thermal analyses of a High Speed Civil Transport (HSCT) wing using p-version finite elements. The work was motivated by a thermal analysis of a HSCT wing structure which showed the importance of radiation heat transfer throughout the structure. The analysis also showed that refining a traditional finite element mesh to accurately capture the temperature distribution on the internal structure led to very large meshes with unacceptably long execution times. Further study indicated using p-version finite elements might improve computation performance for this class of problem. Methods for determining internal radiation heat transfer were then developed and demonstrated on test problems representative of the geometry found in an aircraft wing structure. This paper presents the results of the application of these new methods to the analysis of a high speed aircraft wing. Results for both a wing box model as well as a full wing model are presented. 'Me reduced wing box model allows for a comparison of the traditional finite element method with mesh refinement (h-refinement) to the new p-version finite elements while the full wing model demonstrates the applicability and efficiency of p-version finite elements for large models.

  17. Nonlinear dynamics approach of modeling the bifurcation for aircraft wing flutter in transonic speed

    DEFF Research Database (Denmark)

    Matsushita, Hiroshi; Miyata, T.; Christiansen, Lasse Engbo;

    2002-01-01

    The procedure of obtaining the two-degrees-of-freedom, finite dimensional. nonlinear mathematical model. which models the nonlinear features of aircraft flutter in transonic speed is reported. The model enables to explain every feature of the transonic flutter data of the wind tunnel tests...

  18. Nonlinear dynamics approach of modeling the bifurcation for aircraft wing flutter in transonic speed

    DEFF Research Database (Denmark)

    Matsushita, Hiroshi; Miyata, T.; Christiansen, Lasse Engbo; Lehn-Schiøler, Tue; Mosekilde, Erik

    The procedure of obtaining the two-degrees-of-freedom, finite dimensional. nonlinear mathematical model. which models the nonlinear features of aircraft flutter in transonic speed is reported. The model enables to explain every feature of the transonic flutter data of the wind tunnel tests...

  19. NASA-UVa light aerospace alloy and structures technology program supplement: Aluminum-based materials for high speed aircraft

    Science.gov (United States)

    Starke, E. A., Jr. (Editor)

    1995-01-01

    This report on the NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from July 1, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) Ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) Powder metallurgy 2XXX alloys, (3) Rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) Discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  20. High-speed rail with emerging automobiles and aircraft can reduce environmental impacts in California’s future

    Science.gov (United States)

    Chester, Mikhail; Horvath, Arpad

    2012-09-01

    Sustainable mobility policy for long-distance transportation services should consider emerging automobiles and aircraft as well as infrastructure and supply chain life-cycle effects in the assessment of new high-speed rail systems. Using the California corridor, future automobiles, high-speed rail and aircraft long-distance travel are evaluated, considering emerging fuel-efficient vehicles, new train designs and the possibility that the region will meet renewable electricity goals. An attributional per passenger-kilometer-traveled life-cycle inventory is first developed including vehicle, infrastructure and energy production components. A consequential life-cycle impact assessment is then established to evaluate existing infrastructure expansion against the construction of a new high-speed rail system. The results show that when using the life-cycle assessment framework, greenhouse gas footprints increase significantly and human health and environmental damage potentials may be dominated by indirect and supply chain components. The environmental payback is most sensitive to the number of automobile trips shifted to high-speed rail, and for greenhouse gases is likely to occur in 20-30 years. A high-speed rail system that is deployed with state-of-the-art trains, electricity that has met renewable goals, and in a configuration that endorses high ridership will provide significant environmental benefits over existing modes. Opportunities exist for reducing the long-distance transportation footprint by incentivizing large automobile trip shifts, meeting clean electricity goals and reducing material production effects.

  1. High-speed rail with emerging automobiles and aircraft can reduce environmental impacts in California’s future

    International Nuclear Information System (INIS)

    Sustainable mobility policy for long-distance transportation services should consider emerging automobiles and aircraft as well as infrastructure and supply chain life-cycle effects in the assessment of new high-speed rail systems. Using the California corridor, future automobiles, high-speed rail and aircraft long-distance travel are evaluated, considering emerging fuel-efficient vehicles, new train designs and the possibility that the region will meet renewable electricity goals. An attributional per passenger-kilometer-traveled life-cycle inventory is first developed including vehicle, infrastructure and energy production components. A consequential life-cycle impact assessment is then established to evaluate existing infrastructure expansion against the construction of a new high-speed rail system. The results show that when using the life-cycle assessment framework, greenhouse gas footprints increase significantly and human health and environmental damage potentials may be dominated by indirect and supply chain components. The environmental payback is most sensitive to the number of automobile trips shifted to high-speed rail, and for greenhouse gases is likely to occur in 20–30 years. A high-speed rail system that is deployed with state-of-the-art trains, electricity that has met renewable goals, and in a configuration that endorses high ridership will provide significant environmental benefits over existing modes. Opportunities exist for reducing the long-distance transportation footprint by incentivizing large automobile trip shifts, meeting clean electricity goals and reducing material production effects. (letter)

  2. System Analyses of Pneumatic Technology for High Speed Civil Transport Aircraft

    Science.gov (United States)

    Mavris, Dimitri N.; Tai, Jimmy C.; Kirby, Michelle M.; Roth, Bryce A.

    1999-01-01

    The primary aspiration of this study was to objectively assess the feasibility of the application of a low speed pneumatic technology, in particular Circulation Control (CC) to an HSCT concept. Circulation Control has been chosen as an enabling technology to be applied on a generic High Speed Civil Transport (HSCT). This technology has been proven for various subsonic vehicles including flight tests on a Navy A-6 and computational application on a Boeing 737. Yet, CC has not been widely accepted for general commercial fixed-wing use but its potential has been extensively investigated for decades in wind tunnels across the globe for application to rotorcraft. More recently, an experimental investigation was performed at Georgia Tech Research Institute (GTRI) with application to an HSCT-type configuration. The data from those experiments was to be applied to a full-scale vehicle to assess the impact from a system level point of view. Hence, this study attempted to quantitatively assess the impact of this technology to an HSCT. The study objective was achieved in three primary steps: 1) Defining the need for CC technology; 2) Wind tunnel data reduction; 3) Detailed takeoff/landing performance assessment. Defining the need for the CC technology application to an HSCT encompassed a preliminary system level analysis. This was accomplished through the utilization of recent developments in modern aircraft design theory at Aerospace Systems Design Laboratory (ASDL). These developments include the creation of techniques and methods needed for the identification of technical feasibility show stoppers. These techniques and methods allow the designer to rapidly assess a design space and disciplinary metric enhancements to enlarge or improve the design space. The takeoff and landing field lengths were identified as the concept "show-stoppers". Once the need for CC was established, the actual application of data and trends was assessed. This assessment entailed a reduction of the

  3. Speeding chemical reactions by focusing

    Science.gov (United States)

    Lacasta, A. M.; Ramírez-Piscina, L.; Sancho, J. M.; Lindenberg, K.

    2013-04-01

    We present numerical results for a chemical reaction of colloidal particles which are transported by a laminar fluid and are focused by periodic obstacles in such a way that the two components are well mixed and consequently the chemical reaction is speeded up. The roles of the various system parameters (diffusion coefficients, reaction rate, and obstacles sizes) are studied. We show that focusing speeds up the reaction from the diffusion limited rate ˜t-1/2 to very close to the perfect mixing rate, ˜t-1.

  4. Speeding chemical reactions by focusing

    CERN Document Server

    Lacasta, A M; Sancho, J M; Lindenberg, K

    2012-01-01

    We present numerical results for a chemical reaction of colloidal particles which are transported by a laminar fluid and are focused by periodic obstacles in such a way that the two components are well mixed and consequently the chemical reaction is speeded up. The roles of the various system parameters (diffusion coefficients, reaction rate, obstacles sizes) are studied. We show that focusing speeds up the reaction from the diffusion limited rate (t to the power -1/2) to very close to the perfect mixing rate, (t to the power -1).

  5. The dynamics of the HSCT environment. [air pollution from High Speed Civil Transport Aircraft

    Science.gov (United States)

    Douglass, Anne R.; Rood, Richard B.

    1991-01-01

    Assessments of the impact of aircraft engine exhausts on stratospheric ozone levels are currently limited to 2D zonally-averaged models which, while completely representing chemistry, involve high parameterization of transport processes. Prospective 3D models under development by NASA-Goddard will use winds from a data-assimilation procedure; the upper troposphere/lower stratosphere behavior of one such model has been verified by direct comparison of model simulations with satellite, balloon, and sonde measurements. Attention is presently given to the stratosphere/troposphere exchange and nonzonal distribution of aircraft engine exhaust.

  6. 1.5 μm lidar anemometer for true air speed, angle of sideslip, and angle of attack measurements on-board Piaggio P180 aircraft

    Science.gov (United States)

    Augere, B.; Besson, B.; Fleury, D.; Goular, D.; Planchat, C.; Valla, M.

    2016-05-01

    Lidar (light detection and ranging) is a well-established measurement method for the prediction of atmospheric motions through velocity measurements. Recent advances in 1.5 μm Lidars show that the technology is mature, offers great ease of use, and is reliable and compact. A 1.5 μm airborne Lidar appears to be a good candidate for airborne in-flight measurement systems. It allows measurements remotely, outside aircraft aerodynamic disturbance, and absolute air speed (no need for calibration) with great precision in all aircraft flight domains. In the framework of the EU AIM2 project, the ONERA task has consisted of developing and testing a 1.5 μm anemometer sensor for in-flight airspeed measurements. The objective of this work is to demonstrate that the 1.5 μm Lidar sensor can increase the quality of the data acquisition procedure for aircraft flight test certification. This article presents the 1.5 μm anemometer sensor dedicated to in-flight airspeed measurements and describes the flight tests performed successfully on-board the Piaggio P180 aircraft. Lidar air data have been graphically compared to the air data provided by the aircraft flight test instrumentation (FTI) in the reference frame of the Lidar sensor head. Very good agreement of true air speed (TAS) by a fraction of ms‑1, angle of sideslip (AOS), and angle of attack (AOA) by a fraction of degree were observed.

  7. NASA-UVa Light Aerospace Alloy and Structures Technology Program: Aluminum-Based Materials for High Speed Aircraft

    Science.gov (United States)

    Starke, E. A., Jr. (Editor)

    1996-01-01

    This report is concerned with 'Aluminum-Based Materials for High Speed Aircraft' which was initiated to identify the technology needs associated with advanced, low-cost aluminum base materials for use as primary structural materials. Using a reference baseline aircraft, these materials concept will be further developed and evaluated both technically and economically to determine the most attractive combinations of designs, materials, and manufacturing techniques for major structural sections of an HSCT. Once this has been accomplished, the baseline aircraft will be resized, if applicable, and performance objectives and economic evaluations made to determine aircraft operating costs. The two primary objectives of this study are: (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials, and (2) to assess these materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT.

  8. A comparison of aircraft tire skid with initial wheel rotational speed using ANSYS transient simulation

    OpenAIRE

    Alroqi, Abdurrhman A; Wang, Weiji

    2016-01-01

    Based on heavy aircraft main landing gear tires touchdown skidding process, patents have been registered since the 1940s to improve tire safety, decrease the substantial wear and smoke that results from every landing by spinning the rear wheels before touchdown. A single wheel has been modeled as a mass-spring-damper system using ANSYS mechanical transient simulation to analyze static and pre-rotating wheels behavior during a short period between touchdown and skidding, to spin-up to reach th...

  9. Low-speed airspeed calibration data for a single-engine research-support aircraft

    Science.gov (United States)

    Holmes, B. J.

    1980-01-01

    A standard service airspeed system on a single engine research support airplane was calibrated by the trailing anemometer method. The effects of flaps, power, sideslip, and lag were evaluated. The factory supplied airspeed calibrations were not sufficiently accurate for high accuracy flight research applications. The trailing anemometer airspeed calibration was conducted to provide the capability to use the research support airplane to perform pace aircraft airspeed calibrations.

  10. Additional Development and Systems Analyses of Pneumatic Technology for High Speed Civil Transport Aircraft

    Science.gov (United States)

    Englar, Robert J.; Willie, F. Scott; Lee, Warren J.

    1999-01-01

    In the Task I portion of this NASA research grant, configuration development and experimental investigations have been conducted on a series of pneumatic high-lift and control surface devices applied to a generic High Speed Civil Transport (HSCT) model configuration to determine their potential for improved aerodynamic performance, plus stability and control of higher performance aircraft. These investigations were intended to optimize pneumatic lift and drag performance; provide adequate control and longitudinal stability; reduce separation flowfields at high angle of attack; increase takeoff/climbout lift-to-drag ratios; and reduce system complexity and weight. Experimental aerodynamic evaluations were performed on a semi-span HSCT generic model with improved fuselage fineness ratio and with interchangeable plain flaps, blown flaps, pneumatic Circulation Control Wing (CCW) high-lift configurations, plain and blown canards, a novel Circulation Control (CC) cylinder blown canard, and a clean cruise wing for reference. Conventional tail power was also investigated for longitudinal trim capability. Also evaluated was unsteady pulsed blowing of the wing high-lift system to determine if reduced pulsed mass flow rates and blowing requirements could be made to yield the same lift as that resulting from steady-state blowing. Depending on the pulsing frequency applied, reduced mass flow rates were indeed found able to provide lift augmentation at lesser blowing values than for the steady conditions. Significant improvements in the aerodynamic characteristics leading to improved performance and stability/control were identified, and the various components were compared to evaluate the pneumatic potential of each. Aerodynamic results were provided to the Georgia Tech Aerospace System Design Lab. to conduct the companion system analyses and feasibility study (Task 2) of theses concepts applied to an operational advanced HSCT aircraft. Results and conclusions from these

  11. Effectiveness of Motorcycle speed controlled by speed hump

    Directory of Open Access Journals (Sweden)

    Pornsiri Urapa

    2014-09-01

    Full Text Available Speed humps are one of the traffic calming measures widely accepted to control vehicle speed in the local road. Humps standards from the western countries are designed mainly for the passenger car. This study, therefore, aims to reveal the effectiveness of speed hump to control the motorcycle speed. This study observes the free-flow speed of the riders at the total of 20 speed bumps and humps. They are 0.3-14.8 meter in width and 5-18 centimeter in height. The results reveal that the 85th percentile speeds reduce 15-65 percent when crossing the speed bumps and speed humps. Besides, this study develops the speed model to predict the motorcycle mean speed and 85th percentile speed. It is found that speed humps follow the ITE standard can control motorcycle crossing speeds to be 25-30 Kph which are suitable to travel on the local road.

  12. Preliminary Design of the Low Speed Propulsion Air Intake of the LAPCAT-MR2 Aircraft

    Science.gov (United States)

    Meerts, C.; Steelant, J.; Hendrick, P.

    2011-08-01

    A supersonic air intake has been designed for the low speed propulsion system of the LAPCAT-MR2 aircraft. Development has been based on the XB-70 aircraft air intake which achieves extremely high performances over a wide operation range through the combined use of variable geometry and porous wall suction for boundary layer control. Design of the LAPCAT-MR2 intake has been operated through CFD simulations using DLR TAU-Code (perfect gas model - Menter SST turbulence model). First, a new boundary condition has been validated into the DLR TAU-Code (perfect gas model) for porous wall suction modelling. Standard test cases have shown surprisingly good agreement with both theoretical predictions and experimental results. Based upon this validation, XB-70 air intake performances have been assessed through CFD simulations over the subsonic, transonic and supersonic operation regions and compared to available flight data. A new simulation strategy was deployed avoiding numerical instabilities when initiating the flow in both transonic and supersonic operation modes. First, the flow must be initiated with a far field Mach number higher than the target flight Mach number. Additionally, the inlet backpressure may only be increased to its target value once the oblique shock pattern downstream the intake compression ramps is converged. Simulations using that strategy have shown excellent agreement with in-flight measurements for both total pressure recovery ratio and variable geometry schedule prediction. The demarcation between stable and unstable operation could be well reproduced. Finally, a modified version of the XB-70 air intake has been integrated in the elliptical intake on the LAPCAT vehicle. Operation of this intake in the LAPCAT-MR2 environment is under evaluation using the same simulation strategy as the one developed for the XB-70. Performances are assessed at several key operation points to assess viability of this design. This information will allow in a next

  13. 1.5 μm lidar anemometer for true air speed, angle of sideslip, and angle of attack measurements on-board Piaggio P180 aircraft

    International Nuclear Information System (INIS)

    Lidar (light detection and ranging) is a well-established measurement method for the prediction of atmospheric motions through velocity measurements. Recent advances in 1.5 μm Lidars show that the technology is mature, offers great ease of use, and is reliable and compact. A 1.5 μm airborne Lidar appears to be a good candidate for airborne in-flight measurement systems. It allows measurements remotely, outside aircraft aerodynamic disturbance, and absolute air speed (no need for calibration) with great precision in all aircraft flight domains. In the framework of the EU AIM2 project, the ONERA task has consisted of developing and testing a 1.5 μm anemometer sensor for in-flight airspeed measurements. The objective of this work is to demonstrate that the 1.5 μm Lidar sensor can increase the quality of the data acquisition procedure for aircraft flight test certification. This article presents the 1.5 μm anemometer sensor dedicated to in-flight airspeed measurements and describes the flight tests performed successfully on-board the Piaggio P180 aircraft. Lidar air data have been graphically compared to the air data provided by the aircraft flight test instrumentation (FTI) in the reference frame of the Lidar sensor head. Very good agreement of true air speed (TAS) by a fraction of ms−1, angle of sideslip (AOS), and angle of attack (AOA) by a fraction of degree were observed. (special issue article)

  14. Force Measurement on Aircraft Model with and without Winglet using Low Speed Wind Tunnel

    Directory of Open Access Journals (Sweden)

    N.Muthusamy

    2014-12-01

    Full Text Available The objective of the research is to conduct experiment by fabricating a standard aircraft model and retrofit winglets with cant angles 0 degree (vertical,30 degree and 60 degree. The experiments were conducted in a subsonic wind tunnel of size (feet 3x4x6.The experiment was conducted both for basic model and the model modified with winglets. The model with winglet has exhibited substantial reduction of coefficient of drag. The stall characteristics of the winglet were analyzed by plotting suitable graph. A calibrated three component balance was used for measuring the forces. Automated turntable mounted in the test section of the wind tunnel and therecording systems were used efficiently. The results were compared and discussed.

  15. Thermodynamic correction of particle concentrations measured by underwing probes on fast flying aircraft

    Science.gov (United States)

    Weigel, R.; Spichtinger, P.; Mahnke, C.; Klingebiel, M.; Afchine, A.; Petzold, A.; Krämer, M.; Costa, A.; Molleker, S.; Jurkat, T.; Minikin, A.; Borrmann, S.

    2015-12-01

    Particle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable for different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain distance away from the aircraft. Conventional procedures for scaling the measured number densities to ambient conditions presume that the particle penetration speed through the instruments' detection area equals the aircraft speed (True Air Speed, TAS). However, particle imaging instruments equipped with pitot-tubes measuring the Probe Air Speed (PAS) of each underwing probe reveal PAS values systematically below those of the TAS. We conclude that the deviation between PAS and TAS is mainly caused by the compression of the probed air sample. From measurements during two missions in 2014 with the German Gulfstream G-550 (HALO - High Altitude LOng range) research aircraft we develop a procedure to correct the measured particle concentration to ambient conditions using a thermodynamic approach. With the provided equation the corresponding concentration correction factor ξ is applicable to the high frequency measurements of each underwing probe which is equipped with its own air speed sensor (e.g. a pitot-tube). ξ-values of 1 to 0.85 are calculated for air speeds (i.e. TAS) between 60 and 260 m s-1. From HALO data it is found that ξ does not significantly vary between the different deployed instruments. Thus, for the current HALO underwing probe configuration a parameterisation of

  16. Monitoring Aircraft Motion at Airports by LIDAR

    Science.gov (United States)

    Toth, C.; Jozkow, G.; Koppanyi, Z.; Young, S.; Grejner-Brzezinska, D.

    2016-06-01

    Improving sensor performance, combined with better affordability, provides better object space observability, resulting in new applications. Remote sensing systems are primarily concerned with acquiring data of the static components of our environment, such as the topographic surface of the earth, transportation infrastructure, city models, etc. Observing the dynamic component of the object space is still rather rare in the geospatial application field; vehicle extraction and traffic flow monitoring are a few examples of using remote sensing to detect and model moving objects. Deploying a network of inexpensive LiDAR sensors along taxiways and runways can provide both geometrically and temporally rich geospatial data that aircraft body can be extracted from the point cloud, and then, based on consecutive point clouds motion parameters can be estimated. Acquiring accurate aircraft trajectory data is essential to improve aviation safety at airports. This paper reports about the initial experiences obtained by using a network of four Velodyne VLP- 16 sensors to acquire data along a runway segment.

  17. Movement speed is biased by prior experience

    Science.gov (United States)

    Yousif, Nada; Greenwood, Richard; Rothwell, John C.; Diedrichsen, Jörn

    2013-01-01

    How does the motor system choose the speed for any given movement? Many current models assume a process that finds the optimal balance between the costs of moving fast and the rewards of achieving the goal. Here, we show that such models also need to take into account a prior representation of preferred movement speed, which can be changed by prolonged practice. In a time-constrained reaching task, human participants made 25-cm reaching movements within 300, 500, 700, or 900 ms. They were then trained for 3 days to execute the movement at either the slowest (900-ms) or fastest (300-ms) speed. When retested on the 4th day, movements executed under all four time constraints were biased toward the speed of the trained movement. In addition, trial-to-trial variation in speed of the trained movement was significantly reduced. These findings are indicative of a use-dependent mechanism that biases the selection of speed. Reduced speed variability was also associated with reduced errors in movement amplitude for the fast training group, which generalized nearly fully to a new movement direction. In contrast, changes in perpendicular error were specific to the trained direction. In sum, our results suggest the existence of a relatively stable but modifiable prior of preferred movement speed that influences the choice of movement speed under a range of task constraints. PMID:24133220

  18. Perceived visual speed constrained by image segmentation

    Science.gov (United States)

    Verghese, P.; Stone, L. S.

    1996-01-01

    Little is known about how or where the visual system parses the visual scene into objects or surfaces. However, it is generally assumed that the segmentation and grouping of pieces of the image into discrete entities is due to 'later' processing stages, after the 'early' processing of the visual image by local mechanisms selective for attributes such as colour, orientation, depth, and motion. Speed perception is also thought to be mediated by early mechanisms tuned for speed. Here we show that manipulating the way in which an image is parsed changes the way in which local speed information is processed. Manipulations that cause multiple stimuli to appear as parts of a single patch degrade speed discrimination, whereas manipulations that perceptually divide a single large stimulus into parts improve discrimination. These results indicate that processes as early as speed perception may be constrained by the parsing of the visual image into discrete entities.

  19. NASA-UVA Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft

    Science.gov (United States)

    Starke, E. A., Jr.

    1997-01-01

    This is the final report of the study "Aluminum-Based Materials for High Speed Aircraft" which had the objectives (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials and (2) to assess the materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT. The research team consisted of ALCOA, Allied-Signal, Boeing, McDonnell Douglas, Reynolds Metals and the University of Virginia. Four classes of aluminum alloys were investigated: (1) I/M 2XXX containing Li and I/M 2XXX without Li, (2) I/M 6XXX, (3) two P/M 2XXX alloys, and (4) two different aluminum-based metal matrix composites (MMC). The I/M alloys were targeted for a Mach 2.0 aircraft and the P/M and MMC alloys were targeted for a Mach 2.4 aircraft. Design studies were conducted using several different concepts including skin/stiffener (baseline), honeycomb sandwich, integrally stiffened and hybrid adaptations (conventionally stiffened thin-sandwich skins). Alloy development included fundamental studies of coarsening behavior, the effect of stress on nucleation and growth of precipitates, and fracture toughness as a function of temperature were an integral part of this program. The details of all phases of the research are described in this final report.

  20. Mode Transition Variable Geometry for High Speed Inlets for Hypersonic Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hypersonic propulsion research has been a focus of the NASA aeronautics program for years. Previous high-speed cruise and space access programs have examined the...

  1. Modern trends of aircraft fly-by-wire systems

    Directory of Open Access Journals (Sweden)

    С. С. Юцкевич

    2013-07-01

    Full Text Available Specifics of civil aviation modern transport aircraft fly-by-wire control systems are described. A comparison of the systems-level hardware and software, expressed through modes of guidance, provision of aircraft Airbus A-320, Boeing B-777, Tupolev Tu-214, Sukhoi Superjet SSJ-100 are carried out. The possibility of transition from mechanical control wiring to control through fly-by-wire system in the backup channel is shown.

  2. Ocean Surface Wind Speed of Hurricane Helene Observed by SAR

    DEFF Research Database (Denmark)

    Xu, Qing; Cheng, Yongcun; Li, Xiaofeng;

    2011-01-01

    The hurricanes can be detected by many remote sensors, but synthetic aperture radar (SAR) can yield high-resolution (sub-kilometer) and low-level wind information that cannot be seen below the cloud by other sensors. In this paper, an assessment of SAR capability of monitoring high-resolution hur......The hurricanes can be detected by many remote sensors, but synthetic aperture radar (SAR) can yield high-resolution (sub-kilometer) and low-level wind information that cannot be seen below the cloud by other sensors. In this paper, an assessment of SAR capability of monitoring high......-resolution hurricane was conducted. A case study was carried out to retrieve ocean surface wind field from C-band RADARSAT-1 SAR image which captured the structure of hurricane Helene over the Atlantic Ocean on 20 September, 2006. With wind direction from the outputs of U.S. Navy Operational Global Atmospheric...... CIWRAP models have been tested to extract wind speed from SAR data. The SAR retrieved ocean surface winds were compared to the aircraft wind speed observations from stepped frequency microwave radiometer (SFMR). The results show the capability of hurricane wind monitoring by SAR....

  3. Design, testing and demonstration of a small unmanned aircraft system (sUAS) and payload for measuring wind speed and particulate matter in the atmospheric boundary layer

    Science.gov (United States)

    Riddell, Kevin Donald Alexander

    The atmospheric boundary layer (ABL) is the layer of air directly influenced by the Earth's surface and is the layer of the atmosphere most important to humans as this is the air we live in. Methods for measuring the properties of the ABL include three general approaches: satellite based, ground based and airborne. A major research challenge is that many contemporary methods provide a restricted spatial resolution or coverage of variations of ABL properties such as how wind speed varies across a landscape with complex topography. To enhance our capacity to measure the properties of the ABL, this thesis presents a new technique that involves a small unmanned aircraft system (sUAS) equipped with a customized payload for measuring wind speed and particulate matter. The research presented herein outlines two key phases in establishing the proof of concept of the payload and its integration on the sUAS: (1) design and testing and (2) field demonstration. The first project focuses on measuring wind speed, which has been measured with fixed wing sUASs in previous research. but not with a helicopter sUAS. The second project focuses on the measurement of particulate matter, which is a major air pollutant typically measured with ground-based sensors. Results from both proof of concept projects suggest that ABL research could benefit from the proposed techniques. .

  4. Fuel dispersal in high-speed aircraft/soil impact scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Tieszen, S.R.; Attaway, S.W. [Sandia National Labs., Albuquerque, NM (United States). Engineering Sciences Center

    1996-01-01

    The objective of this study is to determine how the jet fuel contained in aircraft wing tanks disperses on impact with a soft terrain, i.e., soils, at high impact velocities. The approach used in this study is to combine experimental and numerical methods. Tests were conducted with an approximately 1/42 linear-scale mass-model of a 1/4 span section of a C-141 wing impacting a sand/clay mixture. The test results showed that within the uncertainty of the data, the percentage of incident liquid mass remaining in the crater is the same as that qualitatively described in earlier napalm bomb development studies. Namely, the percentage of fuel in the crater ranges from near zero for grazing impacts to 25%--50% for high angles of impact. To support a weapons system safety assessment (WSSA), the data from the current study have been reduced to correlations. The numerical model used in the current study is a unique coupling of a Smooth Particle Hydrodynamics (SPH) method with the transient dynamics finite element code PRONTO. Qualitatively, the splash, erosion, and soil compression phenomena are all numerically predicted. Quantitatively, the numerical method predicted a smaller crater cross section than was observed in the tests.

  5. Fuel dispersal in high-speed aircraft/soil impact scenarios

    International Nuclear Information System (INIS)

    The objective of this study is to determine how the jet fuel contained in aircraft wing tanks disperses on impact with a soft terrain, i.e., soils, at high impact velocities. The approach used in this study is to combine experimental and numerical methods. Tests were conducted with an approximately 1/42 linear-scale mass-model of a 1/4 span section of a C-141 wing impacting a sand/clay mixture. The test results showed that within the uncertainty of the data, the percentage of incident liquid mass remaining in the crater is the same as that qualitatively described in earlier napalm bomb development studies. Namely, the percentage of fuel in the crater ranges from near zero for grazing impacts to 25%--50% for high angles of impact. To support a weapons system safety assessment (WSSA), the data from the current study have been reduced to correlations. The numerical model used in the current study is a unique coupling of a Smooth Particle Hydrodynamics (SPH) method with the transient dynamics finite element code PRONTO. Qualitatively, the splash, erosion, and soil compression phenomena are all numerically predicted. Quantitatively, the numerical method predicted a smaller crater cross section than was observed in the tests

  6. Improving homogeneity by dynamic speed limit systems.

    NARCIS (Netherlands)

    Nes, N. van Brandenberg, S. & Twisk, D.A.M.

    2010-01-01

    Homogeneity of driving speeds is an important variable in determining road safety; more homogeneous driving speeds increase road safety. This study investigates the effect of introducing dynamic speed limit systems on homogeneity of driving speeds. A total of 46 subjects twice drove a route along 12

  7. Preliminary Study on Effect of Aviation Fuel in the Safety Evaluation of Nuclear Power Plant Crashed by Aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Byeong Moo; Jeon, Se Jin; Lee, Yun Seok; Kim, Young Jin [Daewoo E and C Co., Suwon (Korea, Republic of)

    2011-10-15

    As the safety assessments of nuclear power plants for the hypothetical large civil aircraft crash should be made mandatory, studies on large aircraft-nuclear power plant impact analyses and assessments are actively in progress. The large civil aircraft are being operated with a large amount of fuel and the fuel can be assumed to contribute to the impact loads at the impact. The fuel, i.e., the internal liquid can be considered as added masses classically in the evaluation of the impact load. According to the recent experimental research, it has been shown that the impact load of high speed impacting body with internal liquid is much higher than that of the mass-equivalent impacting body. In this study, the impact loads according to the existence of the internal liquid are computed by numerical methods and the safety assessment of nuclear power plant crashed by large civil aircraft are performed as an application

  8. 32 CFR 256.6 - Runway classification by aircraft type.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Runway classification by aircraft type. 256.6 Section 256.6 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS AIR INSTALLATIONS COMPATIBLE USE ZONES § 256.6 Runway classification by...

  9. Acoustic Surveys of a Scaled-Model CESTOL Transport Aircraft in Static and Forward Speed Conditions

    Science.gov (United States)

    Burnside, Nathan; Horne, Clifton

    2012-01-01

    An 11% scale-model of a Cruise-Efficient Short Take-off and Landing (CESTOL) scalemodel test was recently completed. The test was conducted in the AEDC National Full-Scale Aerodynamic Complex (NFAC) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. The model included two over-wing pod-mounted turbine propulsion simulators (TPS). The hybrid blended wing-body used a circulation control wing (CCW) with leadingand trailing-edge blowing. The bulk of the test matrix included three forward velocities (40 kts, 60 kts, and 100kts), angle-of-attack variation between -5 and 25 , and CCW mass flow variation. Seven strut-mounted microphones outboard of the left wing provided source directivity. A phased microphone array was mounted outboard of the right wing for source location. The goal of this paper is to provide a preliminary look at the acoustic data acquired during the Advanced Model for Extreme Lift and Improved Aeroacoustics (AMELIA) test for 0 angle-of-attack and 0 sideslip conditions. Data presented provides a good overview of the test conditions and the signal-to-noise quality of the data. TPS height variation showed a difference of 2 dB to 3 dB due to wing shielding. Variation of slot mass flow showed increases of 12 dB to 26 dB above the airframe noise and the TPS increased the overall levels an additional 5 dB to 10 dB.

  10. Radiative forcing from particle emissions by future supersonic aircraft

    Directory of Open Access Journals (Sweden)

    G. Pitari

    2008-03-01

    Full Text Available In this work we focus on the direct radiative forcing (RF of black carbon (BC and sulphuric acid particles emitted by future supersonic aircraft, as well as on the ozone RF due to changes produced by emissions of both gas species (NOx, H2O and aerosol particles capable of affecting stratospheric ozone chemistry. Heterogeneous chemical reactions on the surface of sulphuric acid stratospheric particles (SSA-SAD are the main link between ozone chemistry and supersonic aircraft emissions of sulphur precursors (SO2 and particles (H2O-H2SO4. Photochemical O3 changes are compared from four independent 3-D atmosphere-chemistry models (ACMs, using as input the perturbation of SSA-SAD calculated in the University of L'Aquila model, which includes on-line a microphysics code for aerosol formation and growth. The ACMs in this study use aircraft emission scenarios for the year 2050 developed by AIRBUS as a part of the EU project SCENIC, assessing options for fleet size, engine technology (NOx emission index, Mach number, range and cruising altitude. From our baseline modelling simulation, the impact of supersonic aircraft on sulphuric acid aerosol and BC mass burdens is 53 and 1.5 μg/m2, respectively, with a direct RF of −11.4 and 4.6 mW/m2 (net RF=−6.8 mW/m2. This paper discusses the similarities and differences amongst the participating models in terms of O3 precursors changes due to aircraft emissions (NOx, HOx,Clx,Brx and stratospheric ozone sensitivity to them. In the baseline case, the calculated global ozone change is −0.4±0.3 DU, with a net radiative forcing (IR+UV of −2.5±2 mW/m2. The fraction of this O3-RF attributable to SSA-SAD changes is, however, highly variable among the models, depending on the NOx removal efficiency from

  11. Radiative forcing from particle emissions by future supersonic aircraft

    Directory of Open Access Journals (Sweden)

    G. Pitari

    2008-07-01

    Full Text Available In this work we focus on the direct radiative forcing (RF of black carbon (BC and sulphuric acid particles emitted by future supersonic aircraft, as well as on the ozone RF due to changes produced by emissions of both gas species (NOx, H2O and aerosol particles capable of affecting stratospheric ozone chemistry. Heterogeneous chemical reactions on the surface of sulphuric acid stratospheric particles (SSA-SAD are the main link between ozone chemistry and supersonic aircraft emissions of sulphur precursors (SO2 and particles (H2O–H2SO4. Photochemical O3 changes are compared from four independent 3-D atmosphere-chemistry models (ACMs, using as input the perturbation of SSA-SAD calculated in the University of L'Aquila model, which includes on-line a microphysics code for aerosol formation and growth. The ACMs in this study use aircraft emission scenarios for the year 2050 developed by AIRBUS as a part of the EU project SCENIC, assessing options for fleet size, engine technology (NOx emission index, Mach number, range and cruising altitude. From our baseline modeling simulation, the impact of supersonic aircraft on sulphuric acid aerosol and BC mass burdens is 53 and 1.5 μg/m2, respectively, with a direct RF of −11.4 and 4.6 mW/m2 (net RF=−6.8 mW/m2. This paper discusses the similarities and differences amongst the participating models in terms of changes to O3 precursors due to aircraft emissions (NOx, HOx,Clx,Brx and the stratospheric ozone sensitivity to them. In the baseline case, the calculated global ozone change is −0.4 ±0.3 DU, with a net radiative forcing (IR+UV of −2.5± 2 mW/m2. The fraction of this O3-RF attributable to SSA-SAD changes is, however, highly variable among the models, depending on the NOx removal

  12. 9- by 15-Foot Low Speed Wind Tunnel Acoustic Improvements Expanded Overview

    Science.gov (United States)

    Stephens, David

    2016-01-01

    The 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) at NASA Glenn Research Center was built in 1969 in the return leg of the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). The 8x6 SWT was completed in 1949 and acoustically treated to mitigate community noise issues in 1950. This treatment included the addition of a large muffler downstream of the 8x6 SWT test section and diffuser. The 9x15 LSWT was designed for performance testing of V/STOL aircraft models, but with the addition of the current acoustic treatment in 1986 the tunnel been used principally for acoustic and performance testing of aircraft propulsion systems. The present document describes an anticipated acoustic upgrade to be completed in 2017.

  13. Flicker Mitigation by Speed Control of Permanent Magnet Synchronous Generator Variable-Speed Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yanting Hu

    2013-07-01

    Full Text Available Grid-connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a full-scale back-to-back power converter and permanent magnet synchronous generator (PMSG developed in the simulation tool of PSCAD/EMTDC. Flicker emission of this system is investigated. The 3p (three times per revolution power oscillation due to wind shear and tower shadow effects is the significant part in the flicker emission of variable speed wind turbines with PMSG during continuous operation. A new method of flicker mitigation by controlling the rotational speed is proposed. It smoothes the 3p active power oscillations from wind shear and tower shadow effects of the wind turbine by varying the rotational speed of the PMSG. Simulation results show that damping the 3p active power oscillation by using the flicker mitigation speed controller is an effective means for flicker mitigation of variable speed wind turbines with full-scale back-to-back power converters and PMSG during continuous operation.

  14. The Acoustic Environment of the NASA Glenn 9- by 15-foot Low-Speed Wind Tunnel

    Science.gov (United States)

    Stephens, David B.

    2015-01-01

    The 9- by 15-Foot Low Speed Wind Tunnel is an acoustic testing facility with a long history of aircraft propulsion noise research. Due to interest in renovating the facility to support future testing of advanced quiet engine designs, a study was conducted to document the background noise level in the facility and investigate the sources of contaminating noise. The anechoic quality of the facility was also investigated using an interrupted noise method. The present report discusses these aspects of the noise environment in this facility.

  15. Analysis of Height Affect on Average Wind Speed by Ann

    OpenAIRE

    Ata, Raşit; Çetin, Numan

    2011-01-01

    The power generated by wind turbines depends on several factors. Two of them are the wind speed and the tower height of wind turbine. In this study, the annual average wind speed based on the tower height is predicted using Artificial Neural Networks (ANN) and comparisons made with conventional model approach. The backpropagation multi layer ANNs were used to estimate annual average wind speed for three locations in Turkey. The Model has been developed with the help of neural network methodol...

  16. Analysis of Height Affect on Average Wind Speed by ANN

    OpenAIRE

    Ata, Raşit; Çetin, Numan

    2011-01-01

    The power generated by wind turbines depends on several factors. Two of them are the wind speed and the tower height of wind turbine. In this study, the annual average wind speed based on the tower height is predicted using Artificial Neural Networks (ANN) and comparisons made with conventional model approach. The backpropagation multi layer ANNs were used to estimate annual average wind speed for three locations in Turkey. The Model has been developed with the help of neural network methodol...

  17. Atmospheric ozone levels encountered by commercial aircraft on transatlantic routes

    International Nuclear Information System (INIS)

    Temporal and spatial patterns in northern midlatitude atmospheric ozone levels measured outside the cabin by MOZAIC aircraft are investigated to consider trends in human exposure to ozone during commercial flights. Average and 1 h peak ozone levels for flights during 2000 to 2005 range from 50 to 500 ppb, and 90 to 900 ppb, respectively, for flights between Munich and New York (N = 318), or Chicago (N = 372), or Los Angeles (N = 175). Ozone levels vary through the year as expected on the basis of known trends in tropopause height. Timing and amplitude of the mean annual cycle are consistent across routes. A linear regression model predicts flight average and 1 h peak levels that are, respectively, 180 ppb and 360 ppb higher in April than during October–November. High ozone outliers to the model occur in January–March in the western North Atlantic region and may be linked to episodic stratosphere-to-troposphere exchanges. No systematic variation in atmospheric ozone is observed with latitude for the routes surveyed. On average, ozone levels increase by 70 ppb per km increase in flight altitude, although the relationship between altitude and ozone level is highly variable. In US domestic airspace, ozone levels greater than 100 ppb are routinely encountered outside the aircraft cabin. (letter)

  18. Generalised Model for Aircraft Vulnerability by Different Weapon Systems

    Directory of Open Access Journals (Sweden)

    V.P. Singh

    2000-01-01

    Full Text Available The authors earlier model for the vulnerability of aircraft where aircraft was considered as a combination of cylinder, cones and wedges has been extended to the case when structural data of aircraft as well as its vital parts are given in the form of three-dimensional curvilinear triangles. In the case of VT -fused ammunition, spherical normal distribution has been used to estimate the landing probability of the shell in a cylindrical vicinity region around the aircraft. Kill criteria of vital parts have been redefined.

  19. Intensive probing of clear air convective fields by radar and instrumented drone aircraft.

    Science.gov (United States)

    Rowland, J. R.

    1972-01-01

    Clear air convective fields were probed in three summer experiments (1969, 1970, and 1971) on an S-band monopulse tracking radar at Wallops Island, Virginia, and a drone aircraft with a takeoff weight of 5.2 kg, wingspan of 2.5 m, and cruising glide speed of 10.3 m/sec. The drone was flown 23.2 km north of the radar and carried temperature, pressure/altitude, humidity, and vertical and airspeed velocity sensors. Extensive time-space convective field data were obtained by taking a large number of RHI and PPI pictures at short intervals of time. The rapidly changing overall convective field data obtained from the radar could be related to the meteorological information telemetered from the drone at a reasonably low cost by this combined technique.

  20. Planning of aircraft departure trajectories by using fuzzy logic and lexocographic optimization

    OpenAIRE

    Prats Menéndez, Xavier; Quevedo Casín, Joseba Jokin; Puig Cayuela, Vicenç; Nejjari Akhi-Elarab, Fatiha

    2007-01-01

    In this paper a strategy for planning aircraft departure trajectories for a given airport is presented. Noise annoyance produced by overflying aircraft is modelled by using fuzzy logic in function of the received noise level during the trajectory, the type and specific sensibility of the areas being overflyed and the time of the day when the aircraft departure takes place. Hence, an annoyance figure is obtained at different locations in the vicinity of the airport in function of a given traje...

  1. Specification and testing for power by wire aircraft

    Science.gov (United States)

    Hansen, Irving G.; Kenney, Barbara H.

    1993-01-01

    A power by wire aircraft is one in which all active functions other than propulsion are implemented electrically. Other nomenclature are 'all electric airplane,' or 'more electric airplane.' What is involved is the task of developing and certifying electrical equipment to replace existing hydraulics and pneumatics. When such functions, however, are primary flight controls which are implemented electrically, new requirements are imposed that were not anticipated by existing power system designs. Standards of particular impact are the requirements of ultra-high reliability, high peak transient bi-directional power flow, and immunity to electromagnetic interference and lightning. Not only must the electromagnetic immunity of the total system be verifiable, but box level tests and meaningful system models must be established to allow system evaluation. This paper discusses some of the problems, the system modifications involved, and early results in establishing wiring harness and interface susceptibility requirements.

  2. Specification and testing for power by wire aircraft

    Science.gov (United States)

    Hansen, Irving G.; Kenney, Barbara H.

    1993-08-01

    A power by wire aircraft is one in which all active functions other than propulsion are implemented electrically. Other nomenclature are 'all electric airplane,' or 'more electric airplane.' What is involved is the task of developing and certifying electrical equipment to replace existing hydraulics and pneumatics. When such functions, however, are primary flight controls which are implemented electrically, new requirements are imposed that were not anticipated by existing power system designs. Standards of particular impact are the requirements of ultra-high reliability, high peak transient bi-directional power flow, and immunity to electromagnetic interference and lightning. Not only must the electromagnetic immunity of the total system be verifiable, but box level tests and meaningful system models must be established to allow system evaluation. This paper discusses some of the problems, the system modifications involved, and early results in establishing wiring harness and interface susceptibility requirements.

  3. Modeling aircraft emmisions by flight [paper in Portuguese

    Directory of Open Access Journals (Sweden)

    Gabriel de Sá Meira de Araújo

    2008-07-01

    Full Text Available The following paper intends to develop a translog model of the pollutants emission in Brazilian air transportation according to the flight stages characteristics (flight distance, aircraft type, etc. The model will focus on the segment of passenger transportation in civil aviation and the statistical model of fuel consumption will be based in a historical Brazilian database from 1997 to 2004. The assessment is performed in two stages. In the first, the translog consumption model is defined and estiamted; in the second, the pollutants emission coefficients are calculated through FAA’s (Federal Aviation Administration spreadsheets. The developed model can be easily processed by computers and through the creation of an user interface can produce a brand new pollutants emission calculator.

  4. A Stochastic Model of Congestion caused by Speed Differences

    OpenAIRE

    Rouwendal, Jan; Verhoef, Erik T.; Rietveld, Piet; Zwart, Bert

    2000-01-01

    We study interaction between the trips of two types of drivers on a two-lane road who differ by their desired speeds. The difference in desired speeds causes congestion, because slow drivers force fast drivers to reduce their speed. An interesting aspect of this type of congestion is that results with respect to tolling are very different from those of the classical Pigou-Knight model where the marginal external costs are an increasing function of the number of road users. In our model we fin...

  5. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    OpenAIRE

    Jamaliah Idris; Chukwuekezie Christian; Eyu Gaius

    2013-01-01

    Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC) and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis par...

  6. Pneumatic motor speed control by trajectory tracking fuzzy logic controller

    Indian Academy of Sciences (India)

    Cengiz Safak; Vedat Topuz; A Fevzi Baba

    2010-02-01

    In this study, trajectory tracking fuzzy logic controller (TTFLC) is proposed for the speed control of a pneumatic motor (PM). A third order trajectory is defined to determine the trajectory function that has to be tracked by the PM speed. Genetic algorithm (GA) is used to find the TTFLC boundary values of membership functions (MF) and weights of control rules. In addition, artificial neural networks (ANN) modelled dynamic behaviour of PM is given. This ANN model is used to find the optimal TTFLC parameters by offline GA approach. The experimental results show that designed TTFLC successfully enables the PM speed track the given trajectory under various working conditions. The proposed approach is superior to PID controller. It also provides simple and easy design procedure for the PM speed control problem.

  7. 14 CFR 119.53 - Wet leasing of aircraft and other arrangements for transportation by air.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Wet leasing of aircraft and other arrangements for transportation by air. 119.53 Section 119.53 Aeronautics and Space FEDERAL AVIATION... Chapter § 119.53 Wet leasing of aircraft and other arrangements for transportation by air. (a)...

  8. Administrative regulations concerning the carriage of dangerous substances by civil aircraft

    International Nuclear Information System (INIS)

    The Regulations, which entered into force on the date they were adopted, apply to the transport of dangerous substances by civil aircraft in Norway and by aircraft registered in Norway for transport outside Norwegian territory. They provide that such substances, including radioactive materials, must be carried in accordance with the IATA Restricted Articles Regulations

  9. 49 CFR 1560.107 - Use of watch list matching results by covered aircraft operators.

    Science.gov (United States)

    2010-10-01

    ... SECURE FLIGHT PROGRAM Collection and Transmission of Secure Flight Passenger Data for Watch List Matching § 1560.107 Use of watch list matching results by covered aircraft operators. A covered aircraft operator... 49 Transportation 9 2010-10-01 2010-10-01 false Use of watch list matching results by...

  10. Focusing of Rayleigh waves generated by high-speed trains under the condition of ground vibration boom

    CERN Document Server

    Krylov, Victor V

    2015-01-01

    In the present paper, the effects of focusing of Rayleigh waves generated by high speed trains in the supporting ground under the condition of ground vibration boom are considered theoretically. These effects are similar to the effects of focusing of sound waves radiated by aircraft under the condition of sonic boom. In particular, if a railway track has a bend to provide the possibility of changing direction of train movement, the Rayleigh surface waves generated by high-speed trains under the condition of ground vibration boom may become focused. This results in concentration of their energy along a simple caustic line at one side of the track and in the corresponding increase in ground vibration amplitudes. The effect of focusing of Rayleigh waves may occur also if a train moves along a straight line with acceleration and its current speed is higher than Rayleigh wave velocity in the ground. The obtained results are illustrated by numerical calculations.

  11. Experimental Assessment of the Emissions Control Potential of a Rich/Quench/Lean Combustor for High Speed Civil Transport Aircraft Engines

    Science.gov (United States)

    Rosfjord, T. J.; Padget, F. C.; Tacina, Robert R. (Technical Monitor)

    2001-01-01

    In support of Pratt & Whitney efforts to define the Rich burn/Quick mix/Lean burn (RQL) combustor for the High Speed Civil Transport (HSCT) aircraft engine, UTRC conducted a flametube-scale study of the RQL concept. Extensive combustor testing was performed at the Supersonic Cruise (SSC) condition of a HSCT engine cycle, Data obtained from probe traverses near the exit of the mixing section confirmed that the mixing section was the critical component in controlling combustor emissions. Circular-hole configurations, which produced rapidly-, highly-penetrating jets, were most effective in limiting NOx. The spatial profiles of NOx and CO at the mixer exit were not directly interpretable using a simple flow model based on jet penetration, and a greater understanding of the flow and chemical processes in this section are required to optimize it. Neither the rich-combustor equivalence ratio nor its residence time was a direct contributor to the exit NOx. Based on this study, it was also concluded that (1) While NOx formation in both the mixing section and the lean combustor contribute to the overall emission, the NOx formation in the mixing section dominates. The gas composition exiting the rich combustor can be reasonably represented by the equilibrium composition corresponding to the rich combustor operating condition. Negligible NOx exits the rich combustor. (2) At the SSC condition, the oxidation processes occurring in the mixing section consume 99 percent of the CO exiting the rich combustor. Soot formed in the rich combustor is also highly oxidized, with combustor exit SAE Smoke Number emissions control at SSC also performed better at part-power conditions. Data from mixer exit traverses reflected the expected mixing behavior for off-design jet to crossflow momentum-flux ratios. (4) Low power operating conditions require that the RQL combustor operate as a lean-lean combustor to achieve low CO and high efficiency. (5) A RQL combustor can achieve the emissions goal

  12. Impact of Aircraft Performance Characteristics on Air Traffic Delays

    OpenAIRE

    Aydan CAVCAR; CAVCAR, Mustafa

    2004-01-01

    Air transportation has been suffering for decades from delays caused by air traffic congestion. This paper presents the effect of aircraft performance differences on air traffic delays. Rate of climb and cruising speeds of 70 different aircraft types are compared to demonstrate performance differences in the current transport aircraft fleet. The effect of these performance differences on air traffic delays is proved by a deterministic calculation of delays for a departure queue cons...

  13. Corrosion detection in aircraft by X-ray backscatter methods

    International Nuclear Information System (INIS)

    A limited-scan backscatter technique for detecting hidden corrosion and other flaws in aircraft has been demonstrated. Both simulation and experimental results indicate that as little as 5% material loss at depths up to 0.508 cm (0.200 in.) and 10% material loss at depths up to 0.635 cm (0.250 in.) beneath aircraft skin surfaces can be realiably detected. The technology involves analysis of backscattered photon data to yield a figure-of-merit whose value as a function of position indicates with high probability of detection whether or not flaws - such as corrosion, disbonding, macro-cracks, or voids - exist within scanned samples

  14. Lunar Roving Vehicle gets speed workout by Astronaut John Young

    Science.gov (United States)

    1972-01-01

    The Lunar Roving Vehicle (LRV) gets a speed workout by Astronaut John W. Young in the 'Grand Prix' run during the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. This view is a frame from motion picture film exposed by a 16mm Maurer camera held by Astronaut Charels M. Duke Jr.

  15. High-speed deformation of aluminum by cold rolling

    International Nuclear Information System (INIS)

    High-speed deformation of aluminum was carried out by use of a high-speed rolling machine, and the results were compared with those of impact compression. The rolled specimens were electro-polished and observed under an electron microscope. As compared with the microstructures observed in the impact compression specimens, the microstructures observed in the rolled specimens showed almost the same tendency as impact compression for vacancy loop formation, but a different tendency for dislocation cell formations. The difference in the results is explained by the variation in strain rate during deformation in rolling. The results indicate that in high-speed rolling, vacancies and dislocations are produced independently during different periods. Specifically, in the high-strain period, during which dislocations are not generated, deformation proceeds without dislocations

  16. Speed Control of PMSM Drives by Generalized Predictive Algorithms

    Czech Academy of Sciences Publication Activity Database

    Belda, Květoslav; Vošmik, D.

    Montral : IEEE Industrial Electronics Society, 2012, s. 2002-2007. ISBN 978-1-4673-2419-9. [38th Annual Conference of the IEEE Industrial Electronics Society. Montreal (CA), 25.10.2012-28.10.2012] R&D Projects: GA ČR(CZ) GAP102/11/0437 Institutional support: RVO:67985556 Keywords : Generalized Predictive Control * PMSM Drives * Speed Control Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2012/AS/belda-speed control of pmsm drives by generalized predictive algorithms.pdf

  17. Emission of ions and charged soot particles by aircraft engines

    OpenAIRE

    Sorokin, A.; Vancassel, X.; P. Mirabel

    2003-01-01

    In this article, a model which examines the formation and evolution of chemiions in an aircraft engine is proposed. This model which includes chemiionisation, electron thermo-emission, electron attachment to soot particles and to neutral molecules, electron-ion and ion-ion recombination, ion-soot interaction, allows the determination of the ion concentration at the exit of the combustor and at the nozzle exit of the engine. It also allows the determination ...

  18. Onboard space - and aircraft dosimetry by means of different methods

    Czech Academy of Sciences Publication Activity Database

    Spurný, František; Jadrníčková, Iva

    Buenos Aires: SAR, 2008. s. 478-478. [International Congress of the International Radiation Protection Association /12./. 19.10.2008-24.10.2008, Buenos Aires] Grant ostatní: Evropské společenství(XE) ILSRA - 2004 - 248 Institutional research plan: CEZ:AV0Z10480505 Keywords : dosimetry onboard spacecraft * aircraft crew exposure * detectors Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  19. Speeding Up Simulations By Slowing Down Particles: Speed-Limited Particle-In-Cell Simulation

    CERN Document Server

    Werner, Gregory R

    2015-01-01

    Particle-in-cell (PIC) simulation is often impractical for the same reason that it is powerful: it includes too much physics. Sometimes the mere ability to simulate physics on small length or time scales requires those scales to be resolved (by the cell size and timestep) to avoid instability, even when the effects at those scales contribute negligibly to the phenomenon motivating the simulation. For example, a timestep larger than the inverse plasma frequency will often result in unphysical growth of plasma oscillations, even in simulations where plasma oscillations should not arise at all. Larger timesteps are possible in simulations based on reduced physics models, such as MHD or gyrokinetics, or in simulations with implicit time-advances. A new method, speed-limited PIC (SLPIC) simulation, allows larger timesteps without reduced physics and with an explicit time-advance. The SLPIC method slows down fast particles while still accurately representing the particle distribution. SLPIC is valid when fields and...

  20. Flying qualities and flight control system design for a fly-by-wire transport aircraft

    OpenAIRE

    Gautrey, Jim

    1998-01-01

    Fly-by-wire flight control systems are becoming more common in both civil and military aircraft. These systems give many benefits, but also present a new set of problems due to their increased complexity compared to conventional systems and the larger choice of options that they provide. The work presented here considers the application of fly-by-wire to a generic regional transport aircraft. The flying qualities criteria used for typical flying qualities evaluations are described...

  1. Hail on demand. Load test for aircrafts and helicopters: Test and simulation of the high speed collision; Hagel auf Bestellung.. Belastungsprobe fuer Flugzeuge und Hubschrauber: Versuch und Simulation des Hochgeschwindigkeitsaufpralls

    Energy Technology Data Exchange (ETDEWEB)

    Ritt, S.; Toso-Pentecote, N. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Stuttgart (Germany). Inst. fuer Bauweisen- und Konstruktionsforschung; Pandl, H.

    2007-06-15

    Lighter, less noise, cleaner: This is the direction of the technology trend of today in the field of aircraft construction. A key role play lightweight structures made of composite materials. The aircraft of the next generation is re-modelled in an experiment carried out at the DLR (German Centre for Air and Space) in Stuttgart. The aircraft is submitted to several load tests. Since a short time load tests are also carried out on a new high-speed bombardment plant. Regardless if hail balls or bird impact, tyre parts, concrete or metal pieces on the runway - the modern lightweight constructions must be able to resist the so-called Foreign Object Damage. (orig.)

  2. Monitoring Disasters by Use of Instrumented Robotic Aircraft

    Science.gov (United States)

    Wegener, Steven S.; Sullivan, Donald V.; Dunagan, Steven E.; Brass, James A.; Ambrosia, Vincent G.; Buechel, Sally W.; Stoneburner, Jay; Schoenung, Susan M.

    2009-01-01

    Efforts are under way to develop data-acquisition, data-processing, and data-communication systems for monitoring disasters over large geographic areas by use of uninhabited aerial systems (UAS) robotic aircraft that are typically piloted by remote control. As integral parts of advanced, comprehensive disaster- management programs, these systems would provide (1) real-time data that would be used to coordinate responses to current disasters and (2) recorded data that would be used to model disasters for the purpose of mitigating the effects of future disasters and planning responses to them. The basic idea is to equip UAS with sensors (e.g., conventional video cameras and/or multispectral imaging instruments) and to fly them over disaster areas, where they could transmit data by radio to command centers. Transmission could occur along direct line-of-sight paths and/or along over-the-horizon paths by relay via spacecraft in orbit around the Earth. The initial focus is on demonstrating systems for monitoring wildfires; other disasters to which these developments are expected to be applicable include floods, hurricanes, tornadoes, earthquakes, volcanic eruptions, leaks of toxic chemicals, and military attacks. The figure depicts a typical system for monitoring a wildfire. In this case, instruments aboard a UAS would generate calibrated thermal-infrared digital image data of terrain affected by a wildfire. The data would be sent by radio via satellite to a data-archive server and image-processing computers. In the image-processing computers, the data would be rapidly geo-rectified for processing by one or more of a large variety of geographic-information- system (GIS) and/or image-analysis software packages. After processing by this software, the data would be both stored in the archive and distributed through standard Internet connections to a disaster-mitigation center, an investigator, and/or command center at the scene of the fire. Ground assets (in this case

  3. How genealogies are affected by the speed of evolution

    OpenAIRE

    Brunet, Éric; Derrida, Bernard

    2011-01-01

    In a series of recent works it has been shown that a class of simple models of evolving populations under selection leads to genealogical trees whose statistics are given by the Bolthausen-Sznitman coalescent rather than by the well known Kingman coalescent in the case of neutral evolution. Here we show that when conditioning the genealogies on the speed of evolution, one finds a one parameter family of tree statistics which interpolates between the Bolthausen-Sznitman and Kingman's coalescen...

  4. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    Directory of Open Access Journals (Sweden)

    Jamaliah Idris

    2013-01-01

    Full Text Available Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis parameters, such as cathodic current density and temperature at constant pH, on electrodeposition and microstructure of Ni-Co alloys were examined. A homogeneous surface morphology was obtained at all current densities of the plated samples, and it was evident that the current density and temperature affect the coating thickness of Ni-Co alloy coatings.

  5. Aircraft optical cable plant: the physical layer for fly-by-light control networks

    Science.gov (United States)

    Weaver, Thomas L.

    1996-10-01

    A program was completed with joint industry and government funding to apply fiber optic technologies to aircraft. The technology offers many potential benefits. Among them are increased electromagnetic interference immunity and the possibility of reduced weight, increased reliability, and enlarged capability by redesigning architectures to use the large bandwidth of fiber optics. Those benefits can be realized if fiber optics meets the unique requirements of aircraft networks. Many independent efforts have been made in the development of the systems, known as cable plants, to link opto-electronic components. The FLASH program built on that work. Over the last two years, FLASH expanded on the cable plant efforts by building components based on a cohesive aircraft plant system concept. The concept was rooted in not just optical performance, but also cost, manufacturing, installation, maintenance, and support. To do that, the FLASH team evaluated requirements, delineated environmental and use conditions, designed, built, and tested components, such as cables, connectors, splices and backplanes for transport aircraft, tactical aircraft, and helicopters. In addition, the FLASH team developed installation and test methods, and support equipment for aircraft optical cable plants. The results of that design, development, and test effort are reported here.

  6. Nitrous oxide pollution from aircraft to increase by 2050

    Science.gov (United States)

    Bhattacharya, Atreyee

    2012-09-01

    The transportation industry is not only one of the biggest sources of air pollution and a significant player in greenhouse gas-induced global warming, but, as a new study shows, the industry could also be responsible for episodes of ozone (O3 ) pollution, particularly over the United States and northern Europe. Combustion of fuel in cars, shipping vessels, and low-flying aircraft produce nitrogen oxides (NOx), which not only decrease the lifetime of greenhouse gases such as methane but also react with other molecules in the atmosphere to form tropospheric O3, another, more lethal, air pollutant. Hauglustaine and Koff used a global three-dimensional chemistry-climate model to investigate how different components of the transportation industry—cars, ships, and low-flying aircraft—would contribute to NOx pollution over the next few decades under several projected emission scenarios. They found that as road transportation stagnates or even declines due to stricter regulations and congestion, NOx emissions from cars will decrease over time. However, aircraft will increase in number and could contribute between 25% and 48% of NOx emissions, which will be most severe over the United States and Europe—two regions with the highest growth rate in commercial aviation.

  7. Emission of ions and charged soot particles by aircraft engines

    Directory of Open Access Journals (Sweden)

    A. Sorokin

    2003-01-01

    Full Text Available In this article, a model which examines the formation and evolution of chemiions in an aircraft engine is proposed. This model which includes chemiionisation, electron thermo-emission, electron attachment to soot particles and to neutral molecules, electron-ion and ion-ion recombination, ion-soot interaction, allows the determination of the ion concentration at the exit of the combustor and at the nozzle exit of the engine. It also allows the determination of the charge of the soot particles. For the engine considered, the upper limit for the ion emission index EIi is of the order of (2-5 x1016 ions/kg-fuel if ion-soot interactions are ignored and the introduction of ion-soot interactions lead about to a 50% reduction. The results also show that most of the soot particles are either positively or negatively charged, the remaining neutral particles representing approximately 20% of the total particles. A comparison of the model results with the available ground-based experimental data obtained on the ATTAS research aircraft engines during the SULFUR experiments (Schumann, 2002 shows an excellent agreement.

  8. High speed DC brushless motor controlled by microntroller

    International Nuclear Information System (INIS)

    The paper presents an example of DC Brushless motor used to rotate high vacuum turbo molecular pumps. Both the motor and the electronic drive system, controlled by microcontroller PIC16F877, are designed and made in our institute. DC Brushless motors are one of the motor types which have had the fastest development. This type of motor is especially used in industries such as Industrial Automation Equipment and Instrumentation, Medical, Automotive etc. DC Brushless motors do not use brushes for commutation of the current. The phase of the motor are electronically commutated. Comparative with DC Brushed motors and induction motors, DC Brushless motors have the followings advantages: -high speed ranges; - long operating life; - high efficiency; -better speed versus torque characteristics; - high dynamic response; - noiseless operation; Also, the ratio of torque provided to the size of the motor is higher, making it useful in applications where space and weight are limited. (authors)

  9. Modulation of walking speed by changing optic flow in persons with stroke

    OpenAIRE

    Lamontagne Anouk; Fung Joyce; McFadyen Bradford J; Faubert Jocelyn

    2007-01-01

    Abstract Background Walking speed, which is often reduced after stroke, can be influenced by the perception of optic flow (OF) speed. The present study aims to: 1) compare the modulation of walking speed in response to OF speed changes between persons with stroke and healthy controls and 2) investigate whether virtual environments (VE) manipulating OF speed can be used to promote volitional changes in walking speed post stroke. Methods Twelve persons with stroke and 12 healthy individuals wal...

  10. Stratospheric ozone destruction by aircraft-induced nitrogen oxides

    Science.gov (United States)

    Alyea, F. N.; Cunnold, D. M.; Prinn, R. G.

    1975-01-01

    The preliminary results from a three-dimensional dynamic-chemical model applied to the SST-NOx (NO + NO2) problem are reported. Simulations indicate that a depletion of about 12 per cent in total stratospheric O3 would be realized for a continuous NOx injection rate of 1.8 x 10 to the sixth power metric tons per year from a hypothetical fleet of SST's flying at an altitude of 20 km in the midlatitudes of the Northern Hemisphere. Sixteen per cent of the existing O3 would be destroyed on an annual basis. The model assumes a fleet of about 500 aircraft of the now-canceled American Boeing 2707 type; if only present Anglo-French and Russian SST models, which fly at lower, less harmful altitudes, are built, it will take a fleet of a few thousand such craft to attain an effective injection rate equal to the one above.

  11. Flicker Mitigation by Speed Control of Permanent Magnet Synchronous Generator Variable-Speed Wind Turbines

    DEFF Research Database (Denmark)

    Hu, Weihao; Zhang, Yunqian; Chen, Zhe;

    2013-01-01

    Grid-connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a full-scale back-to-back power converter and permanent magnet synchronous generator (PMSG...

  12. Modal analysis by holographic interferometry of a turbine blade for aircraft engines

    Science.gov (United States)

    Caponero, Michele A.; De Angelis, Alberto; Filetti, V. R.; Gammella, S.

    1994-11-01

    Within the planning stage devoted to realize an innovative turbine for an aircraft engine, an experimental prototype has been made. Several measurements have been carried out to experimentally verify the expected structural and dynamic features of such a prototype. Expected properties were worked out by finite elements method, using the well-known Nastran software package. Natural frequencies and vibration modes of the designed prototype were computed assuming the turbine being in both `dynamic condition' (rotating turbine at running speed and temperature), and in `static condition' (still turbine at room temperature). We present the experimental modal analysis carried out by time average holographic interferometry, being the prototype in `static condition;' results show the modal behavior of the prototype. Experimental and computed modal features are compared to evaluate the reliability of the finite elements model of the turbine used for computation by the Nastran package; reliability of the finite elements model must be checked to validate results computed assuming the turbine blade is in hostile environments, such as `dynamic condition,' which could hardly be tested by experimental measurements. A piezoelectric transducer was used to excite the turbine blade by sine variable pressure. To better estimate the natural vibration modes, two holographic interferograms have been made for each identified natural frequency, being the sensitivity vector directions of the two interferograms perpendicular to each other. The first ten lower natural frequencies and vibration modes of the blade have been analyzed; experimental and computed results are compared and discussed. Experimental and computed values of natural frequencies are in good agrement between each other. Several differences are present between experimental and computed modal patterns; a possible cause of such discrepancies is identified in wrong structural constraints imposed at nodes of the finite elements

  13. Improved road traffic emission inventories by adding mean speed distributions

    NARCIS (Netherlands)

    Smit, R.; Poelman, M.; Schrijver, J.

    2008-01-01

    Does consideration of average speed distributions on roads-as compared to single mean speed-lead to different results in emission modelling of large road networks? To address this question, a post-processing method is developed to predict mean speed distributions using available traffic data from a

  14. Tropospheric Ozone Variability during the East Asian Summer Monsoon as Observed by Satellite (IASI), Aircraft (MOZAIC) and Ground Stations

    Science.gov (United States)

    Safieddine, S.; Boynard, A.; Hao, N.; Huang, F.; Wang, L.; Ji, D.; Barret, B.; Ghude, S. D.; Coheur, P.-F.; Hurtmans, D.; Clerbaux, C.

    2015-11-01

    Satellite measurements from the thermal Infrared Atmospheric Sounding Interferometer (IASI), the Measurements of OZone and water vapor by in-service AIrbus airCraft (MOZAIC), as well as observations from ground based stations, are used to assess the tropospheric ozone (O3) variability during the East Asian Summer Monsoon (EASM). Six years [2008-2013] of IASI data analysis reveals the ability of the instrument to detect the onset and the progression of the monsoon reflected by a decrease in the tropospheric [0-6] km O3 column due to the EASM, and to reproduce this decrease from one year to the other. Focusing on the period of May-August 2011, taken as an example year, IASI data show clear inverse relationship between tropospheric [0-6] km O3 on one hand and meteorological parameters such as cloud cover, relative humidity and wind speed, on the other hand. Aircraft data from the MOZAIC project at Hyderabad, Nanjing and Guangzhou are used to validate the IASI data and to assess the effect of the monsoon on the vertical distribution of the tropospheric O3 at different locations. Results show good agreement with a correlation coefficient of 0.74 between the [0-6] km O3 column derived from IASI and MOZAIC. The aircraft data show a decrease in the tropospheric O3 that is more important in the free troposphere than in the boundary layer and at Hyderabad than at the other two Chinese cities. Ground station data at different locations in India and China show a spatiotemporal dependence on meteorology during the monsoon, with decrease up to 22 ppbv in Hyderabad, and up to 5 ppbv in the North China Plain.

  15. Modeling Disk Cracks in Rotors by Utilizing Speed Dependent Eccentricity

    Science.gov (United States)

    Gyekenyesi, Andrew L.; Sawicki, Jerzy T.; Haase, Wayne C.

    2010-03-01

    This paper discusses the feasibility of vibration-based structural health monitoring for detecting disk cracks in rotor systems. The approach of interest assumes that a crack located on a rotating disk causes a minute change in the system’s center of mass due to the centrifugal force induced opening of the crack. The center of mass shift is expected to reveal itself in the vibration vector (i.e., whirl response; plotted as amplitude and phase versus speed) gathered during a spin-up and/or spin-down test. Here, analysis is accomplished by modeling a Jeffcott rotor that is characterized by analytical, numerical, and experimental data. The model, which has speed dependent eccentricity, is employed in order to better understand the sensitivity of the approach. For the experimental set-up emulated here (i.e., a single disk located mid-span on a flexible shaft), it appears that a rather sizable flaw in the form of a through-thickness notch could be detected by monitoring the damage-induced shift in center of mass. Although, identifying actual disk cracks in complex “real world” environments, where noncritical crack lengths are small and excessive mechanical and/or electrical noise are present, would prove to be rather challenging. Further research is needed in this regard.

  16. Perception of aircraft Deviation Cues

    Science.gov (United States)

    Martin, Lynne; Azuma, Ronald; Fox, Jason; Verma, Savita; Lozito, Sandra

    2005-01-01

    To begin to address the need for new displays, required by a future airspace concept to support new roles that will be assigned to flight crews, a study of potentially informative display cues was undertaken. Two cues were tested on a simple plan display - aircraft trajectory and flight corridor. Of particular interest was the speed and accuracy with which participants could detect an aircraft deviating outside its flight corridor. Presence of the trajectory cue significantly reduced participant reaction time to a deviation while the flight corridor cue did not. Although non-significant, the flight corridor cue seemed to have a relationship with the accuracy of participants judgments rather than their speed. As this is the second of a series of studies, these issues will be addressed further in future studies.

  17. Short-term variation of cosmic radiation measured by aircraft under constant flight conditions

    Science.gov (United States)

    Lee, Jaejin; Nam, Uk-Won; Pyo, Jeonghyun; Kim, Sunghwan; Kwon, Yong-Jun; Lee, Jaewon; Park, Inchun; Kim, Myung-Hee Y.; Dachev, Tsventan P.

    2015-11-01

    The temporal variations in cosmic radiation on aircraft under constant flight conditions were measured by a Liulin detector. Rather than a commercial long-distance aircraft, we used a military reconnaissance aircraft performing a circular flight at a constant altitude over the Korean Peninsula. At 9144 m (30,000 ft), the mean and standard deviation of the radiation dose rate (among 35 measurements) was 2.3 and 0.17 μSv/h, respectively. The experiment yielded two observational results. First, the dose rate changed over a flight time of 5-7 h; second, no strong correlation was revealed between the cosmic rays observed from the ground-based neutron monitor and the radiation doses at aircraft altitude. These observations can provide insight into the short-term variation of cosmic radiation at aviation altitudes. When discarding various negligible factors, it is postulated that the changes in the geomagnetic field and the air density still could affect the variation of cosmic radiation at aircraft altitude. However, various factors are less known about the dependence on the cosmic radiation. Therefore, investigations of possible factors are also warranted at the monitoring points of space weather.

  18. Propulsion controlled aircraft computer

    Science.gov (United States)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  19. Aircraft-on-ground path following control by dynamical adaptive backstepping

    Institute of Scientific and Technical Information of China (English)

    Chen Bihua; Jiao Zongxia; Shuzhi Sam Ge

    2013-01-01

    The necessity of improving the air traffic and reducing the aviation emissions drives to investigate automatic steering for aircraft to effectively roll on the ground.This paper addresses the path following control problem of aircraft-on-ground and focuses on the task that the aircraft is required to follow the desired path on the runway by nose wheel automatic steering.The proposed approach is based on dynamical adaptive backstepping so that the system model does not have to be transformed into a canonical triangular form which is necessary in conventional backstepping design.This adaptive controller performs well despite the lack of information on the aerodynamic load and the tire cornering stiffness parameters.Simulation results clearly demonstrate the advantages and effectiveness of the proposed approach.

  20. Flicker Mitigation by Speed Control of Permanent Magnet Synchronous Generator Variable-Speed Wind Turbines

    OpenAIRE

    Yanting Hu; Zhe Chen; Yunqian Zhang; Weihao Hu

    2013-01-01

    Grid-connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a full-scale back-to-back power converter and permanent magnet synchronous generator (PMSG) developed in the simulation tool of PSCAD/EMTDC. Flicker emission of this system is investigated. The 3p (three times per revolution) power oscillation due to wind shear and tower shadow effects is the sign...

  1. Combined Effect of Aircraft Noise and Pollutant Emissions by using ANN Model to Determine Healthy Risk Level

    OpenAIRE

    SETIA KURNIAWAN, Jermanto; KATILI, Irwan; MOERSIDIK, Setyo Sarwanto; Khardi, Salah

    2013-01-01

    Aircraft noise and pollutant emissions are an important part of the sources of pollution around airport that directly or indirectly will affect harmful to human health and ecosystems. The effects of aircraft noise and emissions on the populations around airport are deal with annoying and sometimes dangerous. In order to address this issue, the research propose an integrating model of aircraft noise and pollutant emissions by combining effects of both noise and pollutant emissions using Artifi...

  2. Gas and hydrogen isotopic analyses of volcanic eruption clouds in Guatemala sampled by aircraft

    Science.gov (United States)

    Rose, W.I., Jr.; Cadle, R.D.; Heidt, L.E.; Friedman, I.; Lazrus, A.L.; Huebert, B.J.

    1980-01-01

    Gas samples were collected by aircraft entering volcanic eruption clouds of three Guatemalan volcanoes. Gas chromatographic analyses show higher H2 and S gas contents in ash eruption clouds and lower H2 and S gases in vaporous gas plumes. H isotopic data demonstrate lighter isotopic distribution of water vapor in ash eruption clouds than in vaporous gas plumes. Most of the H2O in the vaporous plumes is probably meteoric. The data are the first direct gas analyses of explosive eruptive clouds, and demonstrate that, in spite of atmospheric admixture, useful compositional information on eruptive gases can be obtained using aircraft. ?? 1980.

  3. Hydrodynamic characteristics of high speed settling clarifiers by radiotracer method

    International Nuclear Information System (INIS)

    Results achieved in the evaluation of two high-speed settling cane juice Clarifiers, one denominated ICINAZ The Express and the other one with Low Residence Time (BTR), both located at the sugar factory Orlando Gonzalez employing the well established radiotracer method (Tc-99m) are presented. Several trials performed at the two Clarifiers demonstrated that the one identified as BTR was capable to assimilate the whole flow capacity of the factory with adequate characteristic of the pattern flux and residence time in the environment of 1 hour. In the other side, ICINAZ The Express Clarifier could only work at relative low flow capacity of the factory with residence time closely to the two hours and achieving occasionally a pattern flux seriously affected by fluctuations in the milling process. The radiotracer method was able to detect certain differences between the two clear juice outlet of the BTR Clarifier, probably due some problems in the construction of this equipment

  4. Database on aircraft accidents

    International Nuclear Information System (INIS)

    The Reactor Safety Subcommittee in the Nuclear Safety and Preservation Committee published the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' as the standard method for evaluating probability of aircraft crash into nuclear reactor facilities in July 2002. In response to the report, Japan Nuclear Energy Safety Organization has been collecting open information on aircraft accidents of commercial airplanes, self-defense force (SDF) airplanes and US force airplanes every year since 2003, sorting out them and developing the database of aircraft accidents for latest 20 years to evaluate probability of aircraft crash into nuclear reactor facilities. This year, the database was revised by adding aircraft accidents in 2010 to the existing database and deleting aircraft accidents in 1991 from it, resulting in development of the revised 2011 database for latest 20 years from 1991 to 2010. Furthermore, the flight information on commercial aircrafts was also collected to develop the flight database for latest 20 years from 1991 to 2010 to evaluate probability of aircraft crash into reactor facilities. The method for developing the database of aircraft accidents to evaluate probability of aircraft crash into reactor facilities is based on the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' described above. The 2011 revised database for latest 20 years from 1991 to 2010 shows the followings. The trend of the 2011 database changes little as compared to the last year's one. (1) The data of commercial aircraft accidents is based on 'Aircraft accident investigation reports of Japan transport safety board' of Ministry of Land, Infrastructure, Transport and Tourism. 4 large fixed-wing aircraft accidents, 58 small fixed-wing aircraft accidents, 5 large bladed aircraft accidents and 114 small bladed aircraft accidents occurred. The relevant accidents for evaluating

  5. Size speed bias or size arrival effect-How judgments of vehicles' approach speed and time to arrival are influenced by the vehicles' size.

    Science.gov (United States)

    Petzoldt, Tibor

    2016-10-01

    Crashes at railway level crossings are a key problem for railway operations. It has been suggested that a potential explanation for such crashes might lie in a so-called size speed bias, which describes the phenomenon that observers underestimate the speed of larger objects, such as aircraft or trains. While there is some evidence that this size speed bias indeed exists, it is somewhat at odds with another well researched phenomenon, the size arrival effect. When asked to judge the time it takes an approaching object to arrive at a predefined position (time to arrival, TTA), observers tend to provide lower estimates for larger objects. In that case, road users' crossing decisions when confronted with larger vehicles should be rather conservative, which has been confirmed in multiple studies on gap acceptance. The aim of the experiment reported in this paper was to clarify the relationship between size speed bias and size arrival effect. Employing a relative judgment task, both speed and TTA estimates were assessed for virtual depictions of a train and a truck, using a car as a reference to compare against. The results confirmed the size speed bias for the speed judgments, with both train and truck being perceived as travelling slower than the car. A comparable bias was also present in the TTA estimates for the truck. In contrast, no size arrival effect could be found for the train or the truck, neither in the speed nor the TTA judgments. This finding is inconsistent with the fact that crossing behaviour when confronted with larger vehicles appears to be consistently more conservative. This discrepancy might be interpreted as an indication that factors other than perceived speed or TTA play an important role for the differences in gap acceptance between different types of vehicles. PMID:27428866

  6. Speed Control of Bldc Motor Drive By Using Pid Controllers

    Directory of Open Access Journals (Sweden)

    Y.Narendra Kumar,

    2014-04-01

    Full Text Available This paper mainly deals with the Brushless DC (BLDC motor speed driving systems have sprouted in various small scale and large scale applications like automobile industries, domestic appliances etc. This leads to the development in Brushless DC motor (BLDCM. The usage of BLDC Motor enhances various performance factors ranging from higher efficiency, higher torque in low-speed range, high power density ,low maintenance and less noise than other motors. The BLDC Motor can act as an alternative for traditional motors like induction and switched reluctance motors. In this paper PID controller is implemented with speed feedback loop and it is observe that torque ripples are minimized. Simulation is carried out using MATLAB / SIMULINK. The results show that the performance of BLDC Motor is quite satisfactory for various loading conditions. Brushless DC motor drives are typically employed in speed controlled applications.

  7. Speed of light as measured by two terrestrial stable clocks

    International Nuclear Information System (INIS)

    It is shown that despite the recent criticism within the special theory of relativity there exists an arrangement of stable clocks rotating with the earth which predicts diurnal variations of the one-way speed of light, as suggested previously

  8. Speed of light as measured by two terrestrial stable clocks

    Science.gov (United States)

    Hsu, J. P.; Sherry, T. N.; Chiu, C. B.

    1977-01-01

    Despite the recent criticism within the special theory of relativity, there exists an arrangement of stable clocks rotating with the earth which predicts diurnal variations of the one-way speed of light, as suggested previously.

  9. Speed Control of Bldc Motor Drive By Using Pid Controllers

    OpenAIRE

    Y.Narendra Kumar,; P.Eswara Rao

    2014-01-01

    This paper mainly deals with the Brushless DC (BLDC) motor speed driving systems have sprouted in various small scale and large scale applications like automobile industries, domestic appliances etc. This leads to the development in Brushless DC motor (BLDCM). The usage of BLDC Motor enhances various performance factors ranging from higher efficiency, higher torque in low-speed range, high power density ,low maintenance and less noise than other motors. The BLDC Motor can act ...

  10. Standard Test Method to Determine Color Change and Staining Caused by Aircraft Maintenance Chemicals upon Aircraft Cabin Interior Hard Surfaces

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This test method covers the determination of color change and staining from liquid solutions, such as cleaning or disinfecting chemicals or both, on painted metallic surfaces and nonmetallic surfaces of materials being used inside the aircraft cabin. The effects upon the exposed specimens are measured with the AATCC Gray Scale for Color Change and AATCC Gray Color Scale for Staining. Note 1—This test method is applicable to any colored nonmetallic hard surface in contact with liquids. The selected test specimens are chosen because these materials are present in the majority of aircraft cabin interiors. 1.2This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  11. Monitoring and forecasting of great radiation hazards for spacecraft and aircrafts by online cosmic ray data

    International Nuclear Information System (INIS)

    We show that an exact forecast of great radiation hazard in space, in the magnetosphere, in the atmosphere and on the ground can be make by using high-energy particles (few GeV/nucleon and higher) whose transportation from the Sun is characterized by a much bigger diffusion coefficient then for small and middle energy particles. Therefore, high energy particles come from the Sun much earlier (8-20 min after acceleration and escaping onto solar wind) than the main part of smaller energy particles (more than 30-60min later), causing radiation hazard for electronics and personal health, as well as spacecraft and aircrafts. We describe here principles of an automatic set of programs that begin with ''FEP-Search'', used to determine the beginning of a large FEP event. After a positive signal from ''FEP-Research/Spectrum'', and then ''FEP-Research/Time of Ejection'', ''FEP-Research /Source'' and ''FEP-Research/Diffusion'', which online determine properties of FEP generation and propagation. On the basis of the Obtained information, the next set of programs immediately start to work: ''FEP-Forecasting/Spacecrafts'', ''FEP-Forecasting/Aircrafts'', ''FEP-Forecasting/Aircrafts'', ''FEP-Forecasting/Ground'', which determine the expected differential and integral fluxes and total fluency for spacecraft on different orbits, aircrafts on different airline, and on the ground, depending on altitude and cutoff rigidity. If the level of radiation hazard is expected to be dangerous for high level technology or/and personal health, the following programs will be used ''FEP=Alert/Spacecrafts'', ''FEP-Alert/Aircrafts'', ''FEP-Alert/Ground''. (orig.)

  12. ENFICA-FC: Design of transport aircraft powered by fuel cell & flight test of zero emission 2-seater aircraft powered by fuel cells fueled by hydrogen

    OpenAIRE

    Cestino, Enrico; Borello, Fabio; Romeo, Giulio

    2013-01-01

    Fuel cells could become the main power source for small general aviation aircraft or could replace APU and internal sub-systems on larger aircraft, to obtain all-electric or more-electric air vehicles. There are several potential advantages of using such a power source, that range from environmental and economic issues to performance and operability aspects. A preliminary design is reported. Also, the paper contains a description of testing activities related to experimental flights of an all...

  13. Hydrodynamic characteristics of high speed settling clarifiers by radiotracer method

    International Nuclear Information System (INIS)

    Results achieved in the evaluation of two high-speed settling cane juice Clarifiers, one denominated ICINAZ The Express and the other one a modified SRI, both located at the sugar factory Orlando Gonzalez employing the well established radiotracer method (Tc-99m) are presented Several trials performed simultaneously at the two Clarifiers demonstrated that the modified SRI was capable to assimilate the whole flow capacity of the factory with adequate characteristic of the pattern flux and residence time in the environment of 1 hour. In the other side, ICINAZ The Express Clarifier could only work at relative low flow capacity of the factory with residence time closely to the two hours and achieving occasionally a pattern flux seriously affected by fluctuations in the milling process. The non-availability of a flow meter did not allow to extract more information related to some pattern flux anomalies, nevertheless, the radiotracer method was able to detect certain differences between the two clear juice outlet of the modified SRI Clarifier, probably due some problems in the construction of this equipment. This fact so as other goals achieved in this work, show once more the potentiality of the radiotracer method for this type of study related to the hydrodynamic characteristics of industrial facilities. (Author)

  14. Words Correct per Minute: The Variance in Standardized Reading Scores Accounted for by Reading Speed

    Science.gov (United States)

    Williams, Jacqueline L.; Skinner, Christopher H.; Floyd, Randy G.; Hale, Andrea D.; Neddenriep, Christine; Kirk, Emily P.

    2011-01-01

    The measure words correct per minute (WC/M) incorporates a measure of accurate aloud word reading and a measure of reading speed. The current article describes two studies designed to parse the variance in global reading scores accounted for by reading speed. In Study I, reading speed accounted for more than 40% of the reading composite score…

  15. Mathematical Models for Aircraft Trajectory Design : A Survey

    OpenAIRE

    Delahaye, Daniel; Puechmorel, Stéphane; Tsiotras, Panagiotis; Féron, Éric

    2014-01-01

    Air traffic management ensures the safety of flight by optimizing flows and maintaining separation between aircraft. After giving some definitions, some typical feature of aircraft trajectories are presented. Trajectories are objects belonging to spaces with infinite dimensions. The naive way to address such problem is to sample trajectories at some regular points and to create a big vector of positions (and or speeds). In order to manipulate such objects with algorithms, one must reduce the ...

  16. Treatment of multiple fractures in a patient wounded by aircraft bombing

    OpenAIRE

    Golubović Zoran; Stojiljković Predrag; Mitković Milorad; Trenkić Srbobran; Vukašinović Zoran; Lešić Aleksandar; Košutić Milomir; Milić Dragan; Najman Stevo; Golubović Ivan; Višnjić Aleksandar

    2010-01-01

    Introduction Aircraft cluster bombs can cause severe fractures characterized by extensive destruction of affected tissues and organs. Case Outline We present the methods and results of treatment of multiple fractures (left supracondilar humeral fracture, comminuted fracture of the distal right tibia, fracture of right trochanter major without dislocation and fracture of the right second metacarpal bone) in a 24-year old soldier after multiple wounding by a cluster bomb. After short pre-operat...

  17. MONITORING AND MODELLING OF AIR POLLUTION PRODUCED BY AIRCRAFT ENGINE EMISSION INSIDE THE ATHENS INTERNATIONAL AIRPORT

    Directory of Open Access Journals (Sweden)

    Oleksander I. Zaporozhets

    2009-04-01

    Full Text Available  Experimental measuring of air pollution inside the airport, produced by aircraft engine emission during accelaration and take-off on the runway. Measurement data were used for verification of modelling results according to complex model «PolEmiCa». It consists of the following basic components: engine emission inventory calculation; transport of the contaminants by engine jets, dispersion of the contaminants in atmosphere due to wind and atmospheric turbulence.

  18. Numerical modelling of the internal mixing by coagulation of black carbon particles in aircraft exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Ohlsson, S.; Stroem, J. [Stockholm Univ. (Sweden). Dept. of Meteorology

    1997-12-31

    When exhaust gases from an aircraft engine mix with ambient air the humidity may reach water saturation and water droplets will form on the available cloud condensation nuclei (CCN). It is still not resolved if the CCN, on which the cloud droplets form, are mainly particles present in the ambient air or particles emitted by the aircraft. It the exhaust from a jet engine the particles are believed to consist mainly of black carbon (BC) and sulfate. The aim is to study, with the help of a numerical model, how a two-component aerosol (i.e. BC and sulfate) in an exhaust trail may be transformed in terms of hygroscopicity by coagulation mixing and how this may depend on the sulfur content in the fuel. (R.P.) 15 refs.

  19. Modulation of walking speed by changing optic flow in persons with stroke

    Directory of Open Access Journals (Sweden)

    Lamontagne Anouk

    2007-06-01

    Full Text Available Abstract Background Walking speed, which is often reduced after stroke, can be influenced by the perception of optic flow (OF speed. The present study aims to: 1 compare the modulation of walking speed in response to OF speed changes between persons with stroke and healthy controls and 2 investigate whether virtual environments (VE manipulating OF speed can be used to promote volitional changes in walking speed post stroke. Methods Twelve persons with stroke and 12 healthy individuals walked on a self-paced treadmill while viewing a virtual corridor in a helmet-mounted display. Two experiments were carried out on the same day. In experiment 1, the speed of an expanding OF was varied sinusoidally at 0.017 Hz (sine duration = 60 s, from 0 to 2 times the subject's comfortable walking speed, for a total duration of 5 minutes. In experiment 2, subjects were exposed to expanding OFs at discrete speeds that ranged from 0.25 to 2 times their comfortable speed. Each test trial was paired with a control trial performed at comfortable speed with matching OF. For each of the test trials, subjects were instructed to walk the distance within the same time as during the immediately preceding control trial. VEs were controlled by the CAREN-2 system (Motek. Instantaneous changes in gait speed (experiment 1 and the ratio of speed changes in the test trial over the control trial (experiment 2 were contrasted between the two groups of subjects. Results When OF speed was changing continuously (experiment 1, an out-of-phase modulation was observed in the gait speed of healthy subjects, such that slower OFs induced faster walking speeds, and vice versa. Persons with stroke displayed weaker (p 0.05, T-test. Conclusion Stroke affects the modulation of gait speed in response to changes in the perception of movement through different OF speeds. Nevertheless, the preservation of even a modest modulation enabled the persons with stroke to increase walking speed when

  20. Determination of standards for transportation of radioactive material by aircrafts

    International Nuclear Information System (INIS)

    The notification is defined under the provisions of the regulations for execution of the aviation law. Terms of exclusive loading and container are explained. Transportable radioactive materials hereunder exclude naturally igniting fluid materials, substances necessary to be contained in vessels which filtrate interior gas with filters or refrigerate contents with cooling devices, etc., or BM loads necessary to be continuously ventilated. Radioactive materials to be conveyed as radioactive loads and L loads are prescribed with tables attached. Technical standards for radioactive loads are stipulated for L, A, BM and BU loads respectively. Confirmation of safety of radioactive loads may be made by examiniation of documents prepared by persons acknowledged proper by the Minister of Transportation. Radioactive materials are uranium 233 and 235, plutonium 238, 239 and 241, their compounds and those materials which include one or more than two of such substances. Materials whose quantities or quantities of components are less than 15 grams and natural or depleted uranium are excluded. The maximum doses of containers with radioactive loads shall not exceed for an hour 200 mili-rem on the surface and 10 mili-rem at a distance of 1 meter from the surface. Confirmation of safety of transport, method of loading, prevention of criticality, restriction of mixed shipment, transport index, signals and others are provided for in detail. (Okada, K.)

  1. Jet Noise Shielding Provided by a Hybrid Wing Body Aircraft

    Science.gov (United States)

    Doty, Michael J.; Brooks, Thomas F.; Burley, Casey L.; Bahr, Christopher J.; Pope, Dennis S.

    2014-01-01

    One approach toward achieving NASA's aggressive N+2 noise goal of 42 EPNdB cumulative margin below Stage 4 is through the use of novel vehicle configurations like the Hybrid Wing Body (HWB). Jet noise measurements from an HWB acoustic test in NASA Langley's 14- by 22-Foot Subsonic Tunnel are described. Two dual-stream, heated Compact Jet Engine Simulator (CJES) units are mounted underneath the inverted HWB model on a traversable support to permit measurement of varying levels of shielding provided by the fuselage. Both an axisymmetric and low noise chevron nozzle set are investigated in the context of shielding. The unshielded chevron nozzle set shows 1 to 2 dB of source noise reduction (relative to the unshielded axisymmetric nozzle set) with some penalties at higher frequencies. Shielding of the axisymmetric nozzles shows up to 6.5 dB of reduction at high frequency. The combination of shielding and low noise chevrons shows benefits beyond the expected additive benefits of the two, up to 10 dB, due to the effective migration of the jet source peak noise location upstream for increased shielding effectiveness. Jet noise source maps from phased array results processed with the Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) algorithm reinforce these observations.

  2. Friction Wear Property of Brake Materials by Copper-based Powder Metallurgy With Various Brake Speeds

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-xiu; GAO Hong-xia; WEI Xiu-lan

    2004-01-01

    The experiment is conducted on MM-1000 friction test machine, which tests friction wear property of copper-based brake materials by powder metallurgy at different brake speeds. It shows that the coefficient of friction and wear volume are greatly influenced by brake speed. When the brake speed is 4000 r/min, which is a bit higher, the material still has a higher coefficient of friction with 0.47. When the brake speed is over 4000r/min, the coefficient of friction decreased rapidly. When the brake speed is 3000r/min, the material's wear is in its minimum. That is to say no matter how higher or lower the brake speed is the wear volume is bigger relatively. With the brake speed of the lower one it mainly refers to fatigue wear; while of higher one it mainly refers to abradant and oxidation wear.

  3. Estimation Methods for Determination of Drag Characteristics of Fly-by-Wire Aircraft

    Directory of Open Access Journals (Sweden)

    G. Girija

    2001-01-01

    Full Text Available "In this paper, several parameter/state estimation approaches for the determination of drag polars from flight data are described and evaluated for a fly-by-wire (FBW aircraft. Both model-based approaches (MBAs and non-model-based approaches (NMBAs are considered. Dynamic response data from roller coaster and wind- up-turn manoeuvres are generated in a FBW aircraft flight simulator at different flight conditions and the typical performance results are presented. A novel approach to estimate the drag polar has been evaluated. It has been found that the NMBAs perform better than the MBAs. Classically, the MBAs have been used for the determination of drag polars. The merits of an NMBA are that it does not require specification of the detailed model of the aerodynamic coefficients and it can be suitably used for online estimation of drag polars from the flight data of aerospace vehicles

  4. 14 CFR 39.23 - May I fly my aircraft to a repair facility to do the work required by an airworthiness directive?

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false May I fly my aircraft to a repair facility... May I fly my aircraft to a repair facility to do the work required by an airworthiness directive? Yes... allow them to fly their aircraft to a repair facility to do the work required by an...

  5. Annual variations in sea surface wind speed around Japan observed by ASCAT

    Science.gov (United States)

    Takeyama, Y.; Shimada, S.; Ohsawa, T.; Kozai, K.; Kogaki, T.

    2015-12-01

    Sea surface wind speeds and these statistics can be applied for many marine industrial activities. For example, the averaged wind speed is crucial information for a site selection of an offshore wind farm. It has widely been recognized that a total amount of the offshore wind generation is strongly depended on the annual average wind speeds. A advanced scatterometer (ASCAT), which is a kind of scatterometer aboard METOP-A and B, has observed sea surface wind speeds at the height of 10 m above the sea surface approximately twice a day using active microwaves. The annual average wind speed can be calculated from the observed wind speed. For an actual use of the annual average wind speed, generalities and representativeness of the wind speed must be clarified. To investigate annual variations in sea surface wind speed around Japan (120°E to 165°E, 19°N to 49°N), the annual average wind speeds and these standard deviations are calculated from 5 years of ASCAT observations from 2010 through 2014. It is found that there are some sea areas where standard deviations are relatively higher than their surroundings. Annual average wind speed maps indicate that the high standard deviation is caused by strong winds from Eurasia in the winter of 2011 in part of North Pacific Ocean and Sea of Okhotsk. Additionally standard deviations for only winter are also higher than for summer in those sea areas. Therefore the strong wind speed in the winter of a particular year can easily affect to the annual average wind speed. Meanwhile off the coast of Niigata and Hokkaido, there are also higher standard deviation areas than their surroundings. Differences between monthly maximum wind speeds for the winter and minimum wind speeds for the summer in these areas are larger and the large differences seem to be a cause of the high standard deviations.

  6. Monitoring and forecasting of great radiation hazards for spacecraft and aircrafts by online cosmic ray data

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2005-11-01

    Full Text Available We show that an exact forecast of great radiation hazard in space, in the magnetosphere, in the atmosphere and on the ground can be made by using high-energy particles (few GeV/nucleon and higher whose transportation from the Sun is characterized by a much bigger diffusion coefficient than for small and middle energy particles. Therefore, high energy particles come from the Sun much earlier (8-20 min after acceleration and escaping into solar wind than the main part of smaller energy particles (more than 30-60 min later, causing radiation hazard for electronics and personal health, as well as spacecraft and aircrafts. We describe here principles of an automatic set of programs that begin with "FEP-Search", used to determine the beginning of a large FEP event. After a positive signal from "FEP-Search", the following programs start working: "FEP-Research/Spectrum", and then "FEP-Research/Time of Ejection", "FEP-Research /Source" and "FEP-Research/Diffusion", which online determine properties of FEP generation and propagation. On the basis of the obtained information, the next set of programs immediately start to work: "FEP-Forecasting/Spacecrafts", "FEP-Forecasting/Aircrafts", "FEP-Forecasting/Ground", which determine the expected differential and integral fluxes and total fluency for spacecraft on different orbits, aircrafts on different airlines, and on the ground, depending on altitude and cutoff rigidity. If the level of radiation hazard is expected to be dangerous for high level technology or/and personal health, the following programs will be used "FEP-Alert/Spacecrafts", "FEP-Alert/ Aircrafts", "FEP-Alert/Ground".

  7. Cosmic radiation and airline pilots. Exposure patterns of Norwegian pilots flying aircraft not used by SAS

    Energy Technology Data Exchange (ETDEWEB)

    Tveten, U.

    1997-05-01

    The work which is presented in this report is part of a Norwegian epidemiological project, carried out in cooperation between Institutt for Energiteknikk (IFE), the Norwegian Cancer Registry (NCR) and the Norwegian Radiation Protection Authority (NRPA). The project has been partially financed by the Norwegian Research Council. Originating from the Norwegian project, a number of similar projects have been started or are in the planning stage in a number of European countries. The present report lays the ground for estimation of individual exposure histories to cosmic radiation of pilots flying a great diversity of different aircrafts. Aircrafts that appear in the time-tables of the Scandinavian Airline System (SAS) have been treated in an earlier report. The results presented in this report (radiation doserates for the different types of aircrafts in the different years) will, in a later stage of the project be utilized to estimate the individual radiation exposure histories. The major sources of information used as basis for the work in this report is information provided by several active pilots, members of the Pilots Associations, along with calculations performed using US Federal Aviation Administration`s computer code CARI-3N. 2 refs.

  8. Cosmic radiation and airline pilots. Exposure patterns of Norwegian pilots flying aircraft not used by SAS

    International Nuclear Information System (INIS)

    The work which is presented in this report is part of a Norwegian epidemiological project, carried out in cooperation between Institutt for Energiteknikk (IFE), the Norwegian Cancer Registry (NCR) and the Norwegian Radiation Protection Authority (NRPA). The project has been partially financed by the Norwegian Research Council. Originating from the Norwegian project, a number of similar projects have been started or are in the planning stage in a number of European countries. The present report lays the ground for estimation of individual exposure histories to cosmic radiation of pilots flying a great diversity of different aircrafts. Aircrafts that appear in the time-tables of the Scandinavian Airline System (SAS) have been treated in an earlier report. The results presented in this report (radiation doserates for the different types of aircrafts in the different years) will, in a later stage of the project be utilized to estimate the individual radiation exposure histories. The major sources of information used as basis for the work in this report is information provided by several active pilots, members of the Pilots Associations, along with calculations performed using US Federal Aviation Administration's computer code CARI-3N. 2 refs

  9. Sonic booms produced by US Air Force and US Navy aircraft: Measured data

    Science.gov (United States)

    Lee, R. A.; Downing, J. M.

    1991-01-01

    A sonic measurement program was conducted at Edwards Air Force Base. Sonic boom signatures, produced by F-4, F-14, F-15, F-16, F-18, F-111, SR-71, and T-38 aircraft, were obtained under the flight track and at various lateral sites which were located up to 18 miles off-track. Thirteen monitors developed by Det 1 AL/BBE were used to collect full sonic boom waveforms, and nine modified dosimeters were used to collect supplemental peak overpressures and the C-weighted Sound Exposure Levels (CSEL) for 43 near steady supersonic flights of the above United States Air Force and United States Navy aircraft. This report describes the measured database (BOOMFILE) that contains sonic boom signatures and overpressures, aircraft tracking, and local weather data. These measured data highlight the major influences on sonic boom propagation and generation. The data from this study show that a constant offset of 26 from the peak overpressure expressed in dB gives a good estimate of the CSEL of a sonic boom.

  10. Workpiece structure deformation caused by high speed cutting

    OpenAIRE

    Kopač, Janez

    2015-01-01

    The hard turning and grinding of High Speed Steel (HSS) materials with hardness of 61 HRC significantly changes structural properties. Estimators of the cutting conditions are surface roughness, dimensions, tolerances and required structure of the surface layer. Vacuum heat treatment of HSS for cold working applications was used as yielded material with greater toughness, while the hardness was maintained constant or even increased. HSS-BRM2 material that was vacuum quenched and tempered was ...

  11. Effects of damping on the speed of increase and amplitude of limit cycle for an aircraft braking system subjected to mode-coupling instability

    OpenAIRE

    Chevillot, Fabrice; Sinou, Jean-Jacques; Hardouin, Nicolas; Jezequel, Louis

    2010-01-01

    International audience A nonlinear model of an aircraft braking system is presented and used to investigate the effects of damping on the stability in Chevillot et al. (Arch Appl Mech 78(12):949-963, 2008). It has been shown that the addition of damping into the equations of motion does not lead systematically to the stabilization of the system. In the case of a mode-coupling instability, there is indeed an optimal ratio between the modal damping coefficients of the two modes in coalescenc...

  12. A Simple Two Aircraft Conflict Resolution Algorithm

    Science.gov (United States)

    Chatterji, Gano B.

    2006-01-01

    Conflict detection and resolution methods are crucial for distributed air-ground traffic management in which the crew in, the cockpit, dispatchers in operation control centers sad and traffic controllers in the ground-based air traffic management facilities share information and participate in the traffic flow and traffic control functions. This paper describes a conflict detection, and a conflict resolution method. The conflict detection method predicts the minimum separation and the time-to-go to the closest point of approach by assuming that both the aircraft will continue to fly at their current speeds along their current headings. The conflict resolution method described here is motivated by the proportional navigation algorithm, which is often used for missile guidance during the terminal phase. It generates speed and heading commands to rotate the line-of-sight either clockwise or counter-clockwise for conflict resolution. Once the aircraft achieve a positive range-rate and no further conflict is predicted, the algorithm generates heading commands to turn back the aircraft to their nominal trajectories. The speed commands are set to the optimal pre-resolution speeds. Six numerical examples are presented to demonstrate the conflict detection, and the conflict resolution methods.

  13. 3D pressure imaging of an aircraft propeller blade-tip flow by phase-locked stereoscopic PIV

    Energy Technology Data Exchange (ETDEWEB)

    Ragni, D.; Oudheusden, B.W. van; Scarano, F. [Delft University of Technology, Faculty of Aerospace Engineering, Delft (Netherlands)

    2012-02-15

    The flow field at the tip region of a scaled DHC Beaver aircraft propeller, running at transonic speed, has been investigated by means of a multi-plane stereoscopic particle image velocimetry setup. Velocity fields, phase-locked with the blade rotational motion, are acquired across several planes perpendicular to the blade axis and merged to form a 3D measurement volume. Transonic conditions have been reached at the tip region, with a revolution frequency of 19,800 rpm and a relative free-stream Mach number of 0.73 at the tip. The pressure field and the surface pressure distribution are inferred from the 3D velocity data through integration of the momentum Navier-Stokes equation in differential form, allowing for the simultaneous flow visualization and the aerodynamic loads computation, with respect to a reference frame moving with the blade. The momentum and pressure data are further integrated by means of a contour-approach to yield the aerodynamic sectional force components as well as the blade torsional moment. A steady Reynolds averaged Navier-Stokes numerical simulation of the entire propeller model has been used for comparison to the measurement data. (orig.)

  14. Fuzzy Q learning algorithm for dual-aircraft path planning to cooperatively detect targets by passive radars

    Institute of Scientific and Technical Information of China (English)

    Xiang Gao; Yangwang Fang; Youli Wu

    2013-01-01

    The problem of passive detection discussed in this paper involves searching and locating an aerial emitter by dual-aircraft using passive radars. In order to improve the detection probability and accuracy, a fuzzy Q learning algorithm for dual-aircraft flight path planning is proposed. The passive detection task model of the dual-aircraft is set up based on the partition of the target active radar’s radiation area. The problem is formulated as a Markov decision process (MDP) by using the fuzzy theory to make a generalization of the state space and defining the transition functions, action space and reward function properly. Details of the path planning algorithm are presented. Simulation results indicate that the algorithm can provide adaptive strategies for dual-aircraft to control their flight paths to detect a non-maneuvering or maneu-vering target.

  15. Variable speed pumped storage system fed by large-scale cycloconverter

    Energy Technology Data Exchange (ETDEWEB)

    T, Taguchi. (The Tokyo Electric Power Co. Inc., Tokyo (Japan)); Mukai, K.; Yanagisawa, T.; Kanai, T. (Toshiba Corp., Tokyo (Japan))

    1992-01-01

    The world{prime}s first variable speed pumped storage system fed by large-scale cycloconverter was brought into operation at the Yagisawa power station Unit 2 of Tokyo Electric Power Co. in December, 1990. The present paper introduces an outline and operation results of this system. This remarkable system incorporates the latest large-scale, large-capacity power electronics technology, ultrahigh-speed digital control technology, and large-scale, large-capacity generator-motor technology. From the actual machine tests conducted at the Yagisawa power station, various functions of the variable speed pumped storage system were verified. The variable speed system enabled to regulate the input of the pump within the range of about 50 to 85MW. Additionally, in the turbine operation, vibration of the pump-turbine was improved by operating with the optimum rotating speed. Furthermore, the variable speed system did not cause unstable condition of power swing. 4 refs., 16 figs., 2 tabs.

  16. Fly-by-light flight control system architectures for tactical military aircraft

    Science.gov (United States)

    Corrigan, Jack; Jones, Jack E.; Shaw, Brad

    1995-05-01

    Requirements for future advanced tactical aircraft identify the need for flight control system architectures that provide a higher degree of performance with regard to electromagnetic interference immunity, communication bus data rate, propulsion/utility subsystem integration, and affordability. Evolution of highly centralized, digital, fly-by-wire flight/propulsion/utility control system is achieved as modular functions are implemented and integrated by serial, digital, fiber optics communication links. These adaptable architectures allow the user to configure the fly-by-light system to meet unique safety requirements, system performance, and design to cost targets.

  17. Penetrating injury of the lungs and multiple injuries of lower extremities caused by aircraft bombs splinters

    Directory of Open Access Journals (Sweden)

    Golubović Zoran

    2010-01-01

    Full Text Available Introduction. Injuries caused by aircraft bombs cause severe damages to the human body. They are characterized by massive destruction of injured tissues and organs, primary contamination by polymorph bacterial flora and modified reactivity of the body. Upon being wounded by aircraft bombs projectiles a victim simultaneously sustains severe damages of many organs and organ systems due to the fact that a large number of projectiles at the same time injure the chest, stomach, head and extremities. Case report. We presented a patient, 41 years of age, injured by aircraft bomb with hemo-pneumothorax and destruction of the bone and soft tissue structures of the foot, as well as the treatment result of such heavy injuries. After receiving thoracocentesis and short reanimation, the patient underwent surgical procedure. The team performed thoracotomy, primary treatment of the wound and atypical resection of the left lung. Thoracic drains were placed. The wounds on the lower leg and feet were treated primarily. Due to massive destruction of bone tissue of the right foot by cluster bomb splinters, and impossibility of reconstruction of the foot, guillotine amputation of the right lower leg was performed. Twelve days after the wounding caused by cluster bomb splinters, soft tissue of the left lower leg was covered by Tirsch free transplantant and the defect in the area of the left foot was covered by dorsalis pedis flap. The transplant and flap were accepted and the donor sites were epithelized. Twenty-six days following the wounding reamputation was performed and amputation stump of the right lower leg was closed. The patient was given a lower leg prosthesis with which he could move. Conclusion. Upon being wounded by aircraft bomb splinters, the injured person sustains severe wounds of multiple organs and organ systems due to simultaneous injuries caused by a large number of projectiles. It is necessary to take care of the vital organs first because they

  18. Enhanced riboflavin production by recombinant Bacillus subtilis RF1 through the optimization of agitation speed.

    Science.gov (United States)

    Man, Zai-wei; Rao, Zhi-ming; Cheng, Yi-peng; Yang, Tao-wei; Zhang, Xian; Xu, Mei-juan; Xu, Zheng-hong

    2014-02-01

    Dissolved oxygen is one of the most important bioprocess parameters that could affect cell growth and product formation, and it is easy to control by changing agitation speed. In this work, the effects of agitation speed on the performance of riboflavin production by recombinant Bacillus subtilis RF1 was investigated in fed-batch fermentation. The lower agitation speed (600 rpm) was beneficial for cell growth and riboflavin biosynthesis in the initial phase of fermentation process. While, during the later phase, higher agitation speed (900 rpm) was favor for cell growth and riboflavin biosynthesis. Thus, a two-stage agitation speed control strategy was proposed based on kinetic analysis, in which the agitation speed was controlled at 600 rpm in the first 26 h and then switched to 900 rpm to maintain high μ for cell growth and high q(p) for riboflavin production during the entire fermentation process. However, it was observed that a sharp increase of agitation speed resulted in an adverse effect on cell growth and riboflavin synthesis within a short time. To avoid this phenomenon, a multi-stage agitation speed control strategy was set up based on the two-stage control strategy, the maximum concentration of riboflavin reached 9.4 g l(-1) in 48 h with the yield of 0.051 g g(-1) by applying this strategy, which were 20.5 and 21.4% over the best results controlled by constant agitation speeds. PMID:24068533

  19. 19 CFR 122.64 - Other aircraft.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Other aircraft. 122.64 Section 122.64 Customs... AIR COMMERCE REGULATIONS Clearance of Aircraft and Permission To Depart § 122.64 Other aircraft. Clearance or permission to depart shall be requested by the aircraft commander or agent for aircraft...

  20. Lightning effects on aircraft

    Science.gov (United States)

    1977-01-01

    Direct and indirect effects of lightning on aircraft were examined in relation to aircraft design. Specific trends in design leading to more frequent lightning strikes were individually investigated. These trends included the increasing use of miniaturized, solid state components in aircraft electronics and electric power systems. A second trend studied was the increasing use of reinforced plastics and other nonconducting materials in place of aluminum skins, a practice that reduces the electromagnetic shielding furnished by a conductive skin.

  1. Speed And Power Control Of An Engine By Modulation Of The Load Torque

    Energy Technology Data Exchange (ETDEWEB)

    Ziph, Benjamin (Ann Arbor, MI); Strodtman, Scott (Ypsilanti, MI); Rose, Thomas K (Chelsea, MI)

    1999-01-26

    A system and method of speed and power control for an engine in which speed and power of the engine is controlled by modulation of the load torque. The load torque is manipulated in order to cause engine speed, and hence power to be changed. To accomplish such control, the load torque undergoes a temporary excursion in the opposite direction of the desired speed and power change. The engine and the driven equipment will accelerate or decelerate accordingly as the load torque is decreased or increased, relative to the essentially fixed or constant engine torque. As the engine accelerates or decelerates, its power increases or decreases in proportion.

  2. Internal Flow Measurement of a Very Low Specific-Speed Centrifugal Pump by PIV

    OpenAIRE

    Choi, Y.-D.; Kurokawa, Junichi; Nishino, K; Matsui, J.; Imamura, H.

    2002-01-01

    As the performance characteristics of a very low specific-speed centrifugal pump are much different from those of a normal specific-speed pump, there is strong demand of full understanding for the internal flow of the very low specific-speed centrifugal pump in order to improve the pump performance. The purpose of this study is to establish a method of visualization by PIV for a very low specific-speed centrifugal pump and to make clear the internal flow characteristics of the pump. Test pump...

  3. Aircraft optical cable plant program plan: the approach for the physical layer for fly-by-light control networks

    Science.gov (United States)

    Weaver, Thomas L.; Murdock, John K.

    1995-05-01

    A program was created with joint industry and government funding to apply fiber optic technologies to aircraft. The technology offers many potential benefits. Among them are increased electromagnetic interference immunity and the possibility of reduced weight, increased reliability, and enlarged capability by redesigning architectures to use the large bandwidth of fiber optics. Those benefits will only be realized if fiber optics meets the unique requirements of aircraft networks. Over the past two decades, considerable effort has been expended on applying photonic technologies to aircraft. Great successes have occurred in optoelectronic components development. In the development of these systems to link those components, known as the cable plant, progress has also been made, but only recently has it been organized in a coordinated, systems-oriented fashion. The FLASH program will expand on the nascent cable plant systems efforts by building upon recent work in individual components, and integrating that work into a cohesive aircraft cable plant. Therefore, the FLASH program will develop the low cost, reliable cables, connectors, splices, backplanes, manufacturing and installation methods, test methods, support equipment, and training systems needed to form a true optical cable plant for transport aircraft, tactical aircraft, and helicopters.

  4. Simulation of Hydrodynamic RAM of Aircraft Fuel Tank by Ballistic Penetration and Detonation

    Science.gov (United States)

    Kim, Jong H.; Jun, Seung M.

    Airframe survivability and hydrodynamic ram effect of aircraft are investigated. Penetration and internal detonation of a simple tank and ICW(Intermediate Complexity Wing) are simulated by nonlinear explicit calculation. Structural rupture and fluid burst are analytically realized using general coupling of FSI(Fluid-Structure Interaction) and adaptive master-slave contact. Besides, multi-material Eulerian solver and porosity algorithm are employed to model explosive inside fuel and tank bays which are defined in multi-coupling surfaces. Structure and fluid results are animated on the same viewport for enhanced visualization.

  5. Local damage to Ultra High Performance Concrete structures caused by an impact of aircraft engine missiles

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, Werner [Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institute, Eckerstrasse 4, D-79104 Freiburg (Germany); Noeldgen, Markus, E-mail: mnoeldgen@schuessler-plan.d [Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institute, Eckerstrasse 4, D-79104 Freiburg (Germany); Schuessler-Plan Engineering Ltd., St.-Franziskus-Str. 148, D-40470 Duesseldorf (Germany); Strassburger, Elmar; Thoma, Klaus [Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institute, Eckerstrasse 4, D-79104 Freiburg (Germany); Fehling, Ekkehard [University of Kassel, Chair of Structural Concrete, Kurt-Wolters Str. 3, D-34109 Kassel (Germany)

    2010-10-15

    Research highlights: {yields} Experimental series on UHPC panels subjected to aircraft engine impact. {yields} Improved ballistic limit of fiber reinforced UHPC in comparison to conventional R/C. {yields} Detailed investigation of failure mechanisms of fiber reinforced UHPC panel. - Abstract: The impact of an aircraft engine missile causes high stresses, deformations and a severe local damage to conventional reinforced concrete. As a consequence the design of R/C protective structural elements results in components with rather large dimensions. Fiber reinforced Ultra High Performance Concrete (UHPC) is a concrete based material which combines ultra high strength, high packing density and an improved ductility with a significantly increased energy dissipation capacity due to the addition of fiber reinforcement. With those attributes the material is potentially suitable for improved protective structural elements with a reduced need for material resources. The presented paper reports on an experimental series of scaled aircraft engine impact tests with reinforced UHPC panels. The investigations are focused on the material behavior and the damage intensity in comparison to conventional concrete. The fundamental work of is taken as reference for the evaluation of the results. The impactor model of a Phantom F4 GE-J79 engine developed and validated by Sugano et al. is used as defined in the original work. In order to achieve best comparability, the experimental configuration and method are adapted for the UHPC experiments. With 'penetration', 'scabbing' and 'perforation' all relevant damage modes defined in are investigated so that a full set of results are provided for a representative UHPC structural configuration.

  6. Local damage to Ultra High Performance Concrete structures caused by an impact of aircraft engine missiles

    International Nuclear Information System (INIS)

    Research highlights: → Experimental series on UHPC panels subjected to aircraft engine impact. → Improved ballistic limit of fiber reinforced UHPC in comparison to conventional R/C. → Detailed investigation of failure mechanisms of fiber reinforced UHPC panel. - Abstract: The impact of an aircraft engine missile causes high stresses, deformations and a severe local damage to conventional reinforced concrete. As a consequence the design of R/C protective structural elements results in components with rather large dimensions. Fiber reinforced Ultra High Performance Concrete (UHPC) is a concrete based material which combines ultra high strength, high packing density and an improved ductility with a significantly increased energy dissipation capacity due to the addition of fiber reinforcement. With those attributes the material is potentially suitable for improved protective structural elements with a reduced need for material resources. The presented paper reports on an experimental series of scaled aircraft engine impact tests with reinforced UHPC panels. The investigations are focused on the material behavior and the damage intensity in comparison to conventional concrete. The fundamental work of is taken as reference for the evaluation of the results. The impactor model of a Phantom F4 GE-J79 engine developed and validated by Sugano et al. is used as defined in the original work. In order to achieve best comparability, the experimental configuration and method are adapted for the UHPC experiments. With 'penetration', 'scabbing' and 'perforation' all relevant damage modes defined in are investigated so that a full set of results are provided for a representative UHPC structural configuration.

  7. The development of a personal dosemeter for use by aircraft crew

    International Nuclear Information System (INIS)

    This paper describes preliminary work to develop a cosmic-radiation dosemeter for use by military aircraft crew. The dosemeter is based on a combination of CR-39 etched-track detectors and TLD-700 thermoluminescent detectors. It is intended that the CR-39 be used to assess the neutron dose, while the TLD-700 is used to assess the photon and charged particle dose. The sensitivity of CR-39 to the neutron component of cosmic radiation was estimated by irradiating samples of the plastic at the CERN-CEC High Energy Reference Field Facility. This facility produced a radiation field with a neutron spectrum resembling that of the neutron component of cosmic radiation a typical airflight altitudes. The response of the CR-39 was linear over the range of doses studied (0.2-6.0 mSv) and there was no significant fading in the six-month period after irradiation. The TLD-700 component of the dosemeter was calibrated using 137Cs gamma rays. The response of the TLD-700 was linear over the range of doses studied (0-1.1 mSv) with no significant fade in the six-month period after irradiation. It was concluded that a combination of CR-39 and TLD-700 detectors would provide an effective cosmic-radiation dosemeter for use by military aircraft crew. (author)

  8. Chemistry characterization of jet aircraft engine particulate matter by XPS: Results from APEX III

    Science.gov (United States)

    Vander Wal, Randy L.; Bryg, Victoria M.; Huang, Chung-Hsuan

    2016-09-01

    This paper reports X-ray photoelectron spectroscopy (XPS) analysis of jet exhaust particulate matter (PM) from a B737, Lear, ERJ and A300 aircraft during the APEX III NASA led field campaign. Carbon hybridization and bonding chemistry are identified by high-resolution scans about the C1s core-shell region. Significant organic content as gauged by the sp3/sp2 ratio is found across engines and powers. Polar oxygen functional groups include carboxylic, carbonyl and phenol with combined content of 20% or more. By survey scans various elements including transition metals are identified along with lighter elements such as S, N and O in the form of oxides. Additives within lubricants are probable sources of Na, Ba, Ca, Zn, P and possibly Sn. Elements present and their percentages varied significantly across all engines, not revealing any trend or identifiable cause for the differences, though the origin is likely the same for the same element when observed. This finding suggests that their collective presence could serve as an environmental tracer for identifying PM originating from aircraft engines and serving as a diagnostic for engine performance and wear.

  9. Chemistry Characterization of Jet Aircraft Engine Particulate by XPS: Results from APEX III

    Science.gov (United States)

    Vander Wal, Randy L.; Bryg, Victoria M.

    2014-01-01

    This paper reports XPS analysis of jet exhaust particulate from a B737, Lear, ERJ, and A300 aircraft during the APEX III NASA led field campaign. Carbon hybridization and bonding chemistry are identified by high-resolution scans about the C1s core-shell region. Significant organic content as gauged by the sp3/sp2 ratio is found across engines and platforms. Polar oxygen functional groups include carboxylic, carbonyl and phenol with combined content of 20 percent or more. By lower resolution survey scans various elements including transition metals are identified along with lighter elements such as S, N, and O in the form of oxides. Burning additives within lubricants are probable sources of Na, Ba, Ca, Zn, P and possibly Sn. Elements present and their percentages varied significantly across all engines, not revealing any trend or identifiable cause for the differences, though the origin is likely the same for the same element when observed. This finding suggests that their presence can be used as a tracer for identifying soots from aircraft engines as well as diagnostic for monitoring engine performance and wear.

  10. Hot gas ingestion testing of an advanced STOVL concept in the NASA Lewis 9- by 15-foot low speed wind tunnel with flow visualization

    Science.gov (United States)

    Johns, Albert L.; Flood, Joseph D.; Strock, Thomas W.; Amuedo, Kurt C.

    1988-01-01

    Advanced Short Takeoff/Vertical Landing (STOVL) aircraft capable of operating from remote sites, damaged runways, and small air capable ships are being pursued for deployment around the turn of the century. To achieve this goal, it is important that the technologies critical to this unique class of aircraft be developed. Recognizing this need, NASA Lewis Research Center, McDonnell Douglas Aircraft, and DARPA defined a cooperative program for testing in the NASA Lewis 9- by 15-Foot Low Speed Wind Tunnel (LSWT) to establish a database for hot gas ingestion, one of the technologies critical to STOVL. Results from a test program are presented along with a discussion of the facility modifications allowing this type of testing at model scale. These modifications to the tunnel include a novel ground plane, an elaborate model support which included 4 degrees of freedom, heated high pressure air for nozzle flow, a suction system exhaust for inlet flow, and tunnel sidewall modifications. Several flow visualization techniques were employed including water mist in the nozzle flows and tufts on the ground plane. Headwind (free-stream) velocity was varied from 8 to 23 knots.

  11. Improving the Response of a Wheel Speed Sensor by Using a RLS Lattice Algorithm

    Directory of Open Access Journals (Sweden)

    Wilmar Hernandez

    2006-02-01

    Full Text Available Among the complete family of sensors for automotive safety, consumer andindustrial application, speed sensors stand out as one of the most important. Actually, speedsensors have the diversity to be used in a broad range of applications. In today’s automotiveindustry, such sensors are used in the antilock braking system, the traction control systemand the electronic stability program. Also, typical applications are cam and crank shaftposition/speed and wheel and turbo shaft speed measurement. In addition, they are used tocontrol a variety of functions, including fuel injection, ignition timing in engines, and so on.However, some types of speed sensors cannot respond to very low speeds for differentreasons. What is more, the main reason why such sensors are not good at detecting very lowspeeds is that they are more susceptible to noise when the speed of the target is low. In short,they suffer from noise and generally only work at medium to high speeds. This is one of thedrawbacks of the inductive (magnetic reluctance speed sensors and is the case under study.Furthermore, there are other speed sensors like the differential Hall Effect sensors that arerelatively immune to interference and noise, but they cannot detect static fields. This limitstheir operations to speeds which give a switching frequency greater than a minimumoperating frequency. In short, this research is focused on improving the performance of avariable reluctance speed sensor placed in a car under performance tests by using arecursive least-squares (RLS lattice algorithm. Such an algorithm is situated in an adaptivenoise canceller and carries out an optimal estimation of the relevant signal coming from thesensor, which is buried in a broad-band noise background where we have little knowledgeof the noise characteristics. The experimental results are satisfactory and show a significantimprovement in the signal-to-noise ratio at the system output.

  12. UNCOVERING THE ORIGINS OF SPIRAL STRUCTURE BY MEASURING RADIAL VARIATION IN PATTERN SPEEDS

    International Nuclear Information System (INIS)

    Current theories of spiral and bar structure predict a variety of pattern speed behaviors, calling for detailed, direct measurement of the radial variation of pattern speeds. Our recently developed Radial Tremaine-Weinberg (TWR) method allows this goal to be achieved for the first time. Here, we present TWR spiral pattern speed estimates for M101, IC 342, NGC 3938, and NGC 3344 in order to investigate whether spiral structure is steady or winding, whether spirals are described by multiple pattern speeds, and the relation between bar and spiral speeds. Where possible, we interpret our pattern speeds estimates according to the resonance radii associated with each (established with the disk angular rotation), and compare these to previous determinations. By analyzing the high-quality H I and CO data cubes available for these galaxies, we show that it is possible to determine directly multiple pattern speeds within these systems, and hence identify the characteristic signatures of the processes that drive the spiral structure. Even this small sample of galaxies reveals a surprisingly complex taxonomy, with the first direct evidence for the presence of resonant coupling of multiple patterns found in some systems, and the measurement of a simple single-pattern speed in others. Overall, this study demonstrates that we are now in a position to uncover more of the apparently complex physics that lies behind spiral structure.

  13. Intensive probing of a clear air convective field by radar and instrumental drone aircraft.

    Science.gov (United States)

    Rowland, J. R.

    1973-01-01

    An instrumented drone aircraft was used in conjunction with ultrasensitive radar to study the development of a convective field in the clear air. Radar data are presented which show an initial constant growth rate in the height of the convective field of 3.8 m/min, followed by a short period marked by condensation and rapid growth at a rate in excess of 6.1 m/min. Drone aircraft soundings show general features of a convective field including progressive lifting of the inversion at the top of the convection and a cooling of the air at the top of the field. Calculations of vertical heat flux as a function of time and altitude during the early stages of convection show a linear decrease in heat flux with altitude to near the top of the convective field and a negative heat flux at the top. Evidence is presented which supports previous observations that convective cells overshoot their neutral buoyancy level into a region where they are cool and moist compared to their surroundings. Furthermore, only that portion of the convective cell that has overshot its neutral buoyancy level is generally visible to the radar.

  14. ZnS thin film deposited with chemical bath deposition process directed by different stirring speeds

    International Nuclear Information System (INIS)

    In this combined film thickness, scanning electron microscopy (SEM), X-ray diffraction and optical properties study, we explore the effects of different stirring speeds on the growth and optical properties of ZnS film deposited by CBD method. From the disclosed changes of thickness of ZnS film, we conclude that film thickness is independent of the stirring speeds in the heterogeneous process (deposition time less than 40 min), but increases with the stirring speeds and/or deposition time increasing in the homogeneous process. Grazing incident X-ray diffraction (GIXRD) and the study of optical properties disclosed that the ZnS films grown with different stirring speeds show partially crystallized film and exhibit good transmittance (70-88% in the visible region), but the stirring speeds cannot give much effects on the structure and optical properties in the homogeneous process.

  15. Demonstration results of fly-by-light flight control system architectures for tactical military aircraft

    Science.gov (United States)

    Corrigan, Jack; Shaw, Brad; Jones, Jack E.

    1996-10-01

    Requirements for future advanced tactical aircraft identify the need for flight control system architectures that provide a higher degree of performance with regard to electromagnetic interference immunity, communication bus data rate, propulsion/utility subsystem integration, and affordability. Evolution for highly centralized, digital, fly-by-light flight/propulsion/utility control system is achieved as modular functions are implemented and integrated by serial digital fiberoptic communication links. These adaptable architectures allow the user to configure the fly- by-light system to meet unique safety requirements, system performance, and design-to-cost targets. This paper presents results of the open and closed loop system demonstrations of Fly-By-Light Advanced System Hardware architecture building blocks integrated with SAE AS-1773 communication bus at MDA.

  16. Amphibious Aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — A brief self composed research article on Amphibious Aircrafts discussing their use, origin and modern day applications along with their advantages and...

  17. Support for Public Research Spin-offs by the Parent Organizations and the Speed of Commercialization

    OpenAIRE

    Viktor Slavtchev; D. Göktepe-Hultén

    2015-01-01

    We empirically analyze whether support by the parent organization in the early (nascent and seed) stage speeds up the process of commercialization and helps spin-offs from public research organizations generate first revenues sooner. To identify the impact of support by the parent organization, we apply multivariate regression techniques as well as an instrumental variable approach. Our results show that support in the early stage by the parent organization can speed up commercialization. Mor...

  18. Support for public research spin-offs by the parent organizations and the speed of commercialization

    OpenAIRE

    Slavtchev, Viktor; Göktepe-Hultén, Devrim

    2015-01-01

    We empirically analyze whether support by the parent organization in the early (nascent and seed) stage speeds up the process of commercialization and helps spin-offs from public research organizations generate first revenues sooner. To identify the impact of support by the parent organization, we apply multivariate regression techniques as well as an instrumental variable approach. Our results show that support in the early stage by the parent organization can speed up commercialization. Mor...

  19. The stable isotopic composition of molecular hydrogen in the tropopause region probed by the CARIBIC aircraft

    Science.gov (United States)

    Batenburg, A. M.; Schuck, T. J.; Baker, A. K.; Zahn, A.; Brenninkmeijer, C. A. M.; Röckmann, T.

    2012-05-01

    More than 450 air samples that were collected in the upper troposphere - lower stratosphere (UTLS) region by the CARIBIC aircraft (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) have been analyzed for molecular hydrogen (H2) mixing ratios (χ(H2)) and H2 isotopic composition (deuterium content, δD). More than 120 of the analyzed samples contained air from the lowermost stratosphere (LMS). These show that χ(H2) does not vary appreciably with O3-derived height above the thermal tropopause (TP), whereas δD does increase with height. The isotope enrichment is caused by H2 production and destruction processes that enrich the stratospheric H2 reservoir in deuterium (D); the exact shapes of the profiles are mainly determined by mixing of stratospheric with tropospheric air. Tight negative correlations are found between δD and the mixing ratios of methane (χ(CH4)) and nitrous oxide (χ(N2O)), as a result of the relatively long lifetimes of these three species. The correlations are described by δD[‰]=-0.35 · χ(CH4)[ppb]+768 and δD[‰]=-1.90· χ(N2O)[ppb]+745. These correlations are similar to previously published results and likely hold globally for the LMS. Samples that were collected from the Indian subcontinent up to 40° N before, during and after the summer monsoon season show no significant seasonal change in χ(H2), but δD is up to 12.3‰ lower in the July, August and September monsoon samples. This δD decrease is correlated with the χ(CH4) increase in these samples. The significant correlation with χ(CH4) and the absence of a perceptible χ(H2) increase that accompanies the δD decrease indicates that microbial production of very D-depleted H2 in the wet season may contribute to this phenomenon. Some of the samples have very high χ(H2) and very low δD values, which indicates a pollution effect. Aircraft engine exhaust plumes are a suspected cause, since the effect mostly occurs in samples

  20. Auralization of novel aircraft configurations

    OpenAIRE

    Arntzen, M.; Bertsch, E.L.; Simons, D.G.

    2015-01-01

    A joint initiative of NLR, DLR, and TU Delft has been initiated to streamline the process of generating audible impressions of novel aircraft configurations. The integrated approach adds to the value of the individual tools and allows predicting the sound of future aircraft before they actually fly. Hence, an existing process for the aircraft design and system noise prediction at DLR has been upgraded to generate the required input data for an aircraft auralization framework developed by NLR ...

  1. Optical communications for transport aircraft

    Science.gov (United States)

    Stengel, Robert

    1994-01-01

    Optical communications for transport aircraft are discussed. The problem involves: increasing demand for radio-frequency bands from an enlarging pool of users (aircraft, ground and sea vehicles, fleet operators, traffic control centers, and commercial radio and television); desirability of providing high-bandwidth dedicated communications to and from every aircraft in the National Airspace System; need to support communications, navigation, and surveillance for a growing number of aircraft; and improved meteorological observations by use of probe aircraft. The solution involves: optical signal transmission support very high data rates; optical transmission of signals between aircraft, orbiting satellites, and ground stations, where unobstructed line-of-sight is available; conventional radio transmissions of signals between aircraft and ground stations, where optical line-of-sight is unavailable; and radio priority given to aircraft in weather.

  2. Determine an effective golf swing by swing speed and impact precision tests

    Institute of Scientific and Technical Information of China (English)

    Jiann-Jyh Wang; Pei-Feng Yang; Wei-Hua Ho; Tzyy-Yuang Shiang

    2015-01-01

    Background:To understand an effective golf swing, both swing speed and impact precision must be thoroughly and simultaneously examined. The aim of this study was to perform both swing speed test and impact precision test to ascertain what swing type determines an effective impact. Methods:Seven golfers from a college team (handicap:0-12) were recruited to complete a swing speed test and impact precision test using a 5-iron club. A force plate and electromyography (EMG) system were used to collect data in the swing speed test to compare the difference between two motion sequences. High speed video cameras were used to determine the displacement of rotation center for impact precision test. Results: The results showed a significant difference ( p < 0.01) in clubhead speed with different motion sequences and muscle contraction patterns. In the impact precision test, the displacement of the rotation center which defined as the inner center point of the C7 was significantly different ( p<0.05) between different ball impacted marks on club face. Conclusion:The vertical peak ground reaction force on left foot occurring before impact and the left latissimus dorsi contracting prior to the right pectoralis major represent a superior skill by allowing the club to strike the ball with normal collision at a faster speed.

  3. The influence of air duct geometry on air jet direction in aircraft cabin ventilated by mixing ventilation.

    Science.gov (United States)

    Fišer, J.; Jícha, M.

    2013-04-01

    The paper deals with instigation of influence of air duct geometry on air jet direction in aircraft cabin ventilated by mixing ventilation. CFD approach was used for investigation and model geometry was based on small aircraft cabin mock-up geometry. Model was also equipped by nine seats and five manikins that represent passengers. The air jet direction was observed for selected ambient environment parameters and several types of air duct geometry and influence of main air duct geometry on jets direction is discussed. The model was created in StarCCM+ ver. 6.04.014 software and polyhedral mesh was used.

  4. The influence of air duct geometry on air jet direction in aircraft cabin ventilated by mixing ventilation.

    Directory of Open Access Journals (Sweden)

    Jícha M.

    2013-04-01

    Full Text Available The paper deals with instigation of influence of air duct geometry on air jet direction in aircraft cabin ventilated by mixing ventilation. CFD approach was used for investigation and model geometry was based on small aircraft cabin mock-up geometry. Model was also equipped by nine seats and five manikins that represent passengers. The air jet direction was observed for selected ambient environment parameters and several types of air duct geometry and influence of main air duct geometry on jets direction is discussed. The model was created in StarCCM+ ver. 6.04.014 software and polyhedral mesh was used.

  5. Aircraft Design

    Science.gov (United States)

    Bowers, Albion H. (Inventor); Uden, Edward (Inventor)

    2016-01-01

    The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.

  6. Aircraft Noise

    Science.gov (United States)

    Michel, Ulf; Dobrzynski, Werner; Splettstoesser, Wolf; Delfs, Jan; Isermann, Ullrich; Obermeier, Frank

    Aircraft industry is exposed to increasing public pressure aiming at a continuing reduction of aircraft noise levels. This is necessary to both compensate for the detrimental effect on noise of the expected increase in air traffic and improve the quality of living in residential areas around airports.

  7. Topological structures of vortex flow on a flying wing aircraft, controlled by a nanosecond pulse discharge plasma actuator

    Science.gov (United States)

    Du, Hai; Shi, Zhiwei; Cheng, Keming; Wei, Dechen; Li, Zheng; Zhou, Danjie; He, Haibo; Yao, Junkai; He, Chengjun

    2016-06-01

    Vortex control is a thriving research area, particularly in relation to flying wing or delta wing aircraft. This paper presents the topological structures of vortex flow on a flying wing aircraft controlled by a nanosecond plasma dielectric barrier discharge actuator. Experiments, including oil flow visualization and two-dimensional particle image velocimetry (PIV), were conducted in a wind tunnel with a Reynolds number of 0.5 × 106. Both oil and PIV results show that the vortex can be controlled. Oil topological structures on the aircraft surface coincide with spatial PIV flow structures. Both indicate vortex convergence and enhancement when the plasma discharge is switched on, leading to a reduced region of separated flow.

  8. Noise simulation of aircraft engine fans by the boundary element method

    Science.gov (United States)

    Pyatunin, K. R.; Arkharova, N. V.; Remizov, A. E.

    2016-07-01

    Numerical simulation results of the civil aircraft engine fan stage noise in the far field are presented. Non-steady-state rotor-stator interaction is calculated the commercial software that solves the Navier-Stokes equations using differentturbulence models. Noise propagation to the far acoustic field is calculated by the boundary element method using acoustic Lighthill analogies without taking into account the mean current in the air inlet duct. The calculated sound pressure levels at points 50 m from the engine are presented, and the directional patterns of the acoustic radiation are shown. The use of the eddy resolving turbulence model to calculate rotor-stator interaction increases the accuracy in predicting fan stage noise.

  9. Standard Test Method for Stress-Corrosion of Titanium Alloys by Aircraft Engine Cleaning Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This test method establishes a test procedure for determining the propensity of aircraft turbine engine cleaning and maintenance materials for causing stress corrosion cracking of titanium alloy parts. 1.2 The evaluation is conducted on representative titanium alloys by determining the effect of contact with cleaning and maintenance materials on tendency of prestressed titanium alloys to crack when subsequently heated to elevated temperatures. 1.3 Test conditions are based upon manufacturer's maximum recommended operating solution concentration. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see and .

  10. Effective density measurements of fresh particulate matter emitted by an aircraft engine

    Science.gov (United States)

    Abegglen, Manuel; Durdina, Lukas; Mensah, Amewu; Brem, Benjamin; Corbin, Joel; Rindlisbacher, Theo; Wang, Jing; Lohmann, Ulrike; Sierau, Berko

    2014-05-01

    Introduction Carbonaceous particulate matter (commonly referred to as soot), once emitted into the atmosphere affects the global radiation budget by absorbing and scattering solar radiation. Furthermore, it can alter the formation, lifetime and distribution of clouds by acting as cloud condensation nuclei (CCN) or ice nuclei (IN). The ability of soot particles to act as CCN and IN depends on their size, morphology and chemical composition. Soot particles are known to consist of spherical, primary particles that tend to arrange in chain-like structures. The structure of soot particles typically changes in the atmosphere when the particles are coated with secondary material, thus changing their radiative and cloud microphysical properties. Bond et al. (Journal of Geophysical Research, 2013: Bounding the Role of Black Carbon in the Climate System.) estimated the total industrial-era (1750 to 2005) climate forcing of black carbon to be 1.1 W/m2 ranging from the uncertainty bonds of 0.17 W/m2 to 2.1 W/m2. Facing the large uncertainty range, there is a need for a better characterization of soot particles abundant in the atmosphere. We provide experimental data on physical properties such as size, mass, density and morphology of freshly produced soot particles from a regularly used aircraft engine and from four laboratory generated soot types. This was done using a Differential Mobility Analyzer (DMA) and a Centrifugal Particle Mass Analyzer (CPMA), a relatively new instrument that records mass distributions of aerosol particles. Experimental Aircraft engine exhaust particles were collected and analysed during the Aviation Particle Regulatory Instrumentation Demonstration Experiments (A-PRIDE) campaigns in a test facility at the Zurich airport in November 2012 and August 2013. The engines were operated at different relative thrust levels spanning 7 % to 100 %. The sample was led into a heated line in order to prevent condensation of water and evolution of secondary

  11. Speeding up SAT solver by exploring CNF symmetries : Revisited

    CERN Document Server

    Ghosh, Arup Kumar

    2011-01-01

    Boolean Satisfiability solvers have gone through dramatic improvements in their performances and scalability over the last few years by considering symmetries. It has been shown that by using graph symmetries and generating symmetry breaking predicates (SBPs) it is possible to break symmetries in Conjunctive Normal Form (CNF). The SBPs cut down the search space to the nonsymmetric regions of the space without affecting the satisfiability of the CNF formula. The symmetry breaking predicates are created by representing the formula as a graph, finding the graph symmetries and using some symmetry extraction mechanism (Crawford et al.). Here in this paper we take one non-trivial CNF and explore its symmetries. Finally, we generate the SBPs and adding it to CNF we show how it helps to prune the search tree, so that SAT solver would take short time. Here we present the pruning procedure of the search tree from scratch, starting from the CNF and its graph representation. As we explore the whole mechanism by a non-tri...

  12. Pitch link loads reduction of variable speed rotors by variable tuning frequency fluidlastic isolators

    Institute of Scientific and Technical Information of China (English)

    Han Dong

    2015-01-01

    To reduce the pitch link loads of variable speed rotors, variable tuning frequency fluid-lastic isolators are proposed. This isolator utilizes the variation of centrifugal force due to the change of rotor speed to change the tuning port area ratio, which can change the tuning frequency of the isolator. A rotor model including the model of fluidlastic isolator is coupled with a fuselage model to predict the steady responses of the rotor system in forward flight. The aeroelastic analyses indicate that distinct performance improvement in pitch link load control can be achieved by the utilization of variable frequency isolators compared with the constant tuning frequency isolators. The 4/rev (per revolution) pitch link load is observed to be reduced by 87.6%compared with the increase of 56.3%by the constant frequency isolator, when the rotor speed is reduced by 16.7%. The isolation ability at different rotor speeds in different flight states is investigated. To achieve overall load reduction within the whole range of rotor speed, the strategy of the variation of tuning frequency is adjusted. The results indicate that the 4/rev pitch link load within the whole rotor speed range is decreased.

  13. Pitch link loads reduction of variable speed rotors by variable tuning frequency fluidlastic isolators

    Directory of Open Access Journals (Sweden)

    Han Dong

    2015-10-01

    Full Text Available To reduce the pitch link loads of variable speed rotors, variable tuning frequency fluidlastic isolators are proposed. This isolator utilizes the variation of centrifugal force due to the change of rotor speed to change the tuning port area ratio, which can change the tuning frequency of the isolator. A rotor model including the model of fluidlastic isolator is coupled with a fuselage model to predict the steady responses of the rotor system in forward flight. The aeroelastic analyses indicate that distinct performance improvement in pitch link load control can be achieved by the utilization of variable frequency isolators compared with the constant tuning frequency isolators. The 4/rev (per revolution pitch link load is observed to be reduced by 87.6% compared with the increase of 56.3% by the constant frequency isolator, when the rotor speed is reduced by 16.7%. The isolation ability at different rotor speeds in different flight states is investigated. To achieve overall load reduction within the whole range of rotor speed, the strategy of the variation of tuning frequency is adjusted. The results indicate that the 4/rev pitch link load within the whole rotor speed range is decreased.

  14. Protection by Face Masks against H1N1 Virus on Trans-Pacific Passenger Aircraft, 2009

    Centers for Disease Control (CDC) Podcasts

    2013-07-10

    Dr. Mike Miller reads an abridged version of the Emerging Infectious Diseases’ article, Protection by Face Masks against H1N1 Virus on Trans-Pacific Passenger Aircraft, 2009.  Created: 7/10/2013 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 7/11/2013.

  15. Children's Brain Responses to Optic Flow Vary by Pattern Type and Motion Speed.

    Directory of Open Access Journals (Sweden)

    Rick O Gilmore

    Full Text Available Structured patterns of global visual motion called optic flow provide crucial information about an observer's speed and direction of self-motion and about the geometry of the environment. Brain and behavioral responses to optic flow undergo considerable postnatal maturation, but relatively little brain imaging evidence describes the time course of development in motion processing systems in early to middle childhood, a time when psychophysical data suggest that there are changes in sensitivity. To fill this gap, electroencephalographic (EEG responses were recorded in 4- to 8-year-old children who viewed three time-varying optic flow patterns (translation, rotation, and radial expansion/contraction at three different speeds (2, 4, and 8 deg/s. Modulations of global motion coherence evoked coherent EEG responses at the first harmonic that differed by flow pattern and responses at the third harmonic and dot update rate that varied by speed. Pattern-related responses clustered over right lateral channels while speed-related responses clustered over midline channels. Both children and adults show widespread responses to modulations of motion coherence at the second harmonic that are not selective for pattern or speed. The results suggest that the developing brain segregates the processing of optic flow pattern from speed and that an adult-like pattern of neural responses to optic flow has begun to emerge by early to middle childhood.

  16. Children's Brain Responses to Optic Flow Vary by Pattern Type and Motion Speed.

    Science.gov (United States)

    Gilmore, Rick O; Thomas, Amanda L; Fesi, Jeremy

    2016-01-01

    Structured patterns of global visual motion called optic flow provide crucial information about an observer's speed and direction of self-motion and about the geometry of the environment. Brain and behavioral responses to optic flow undergo considerable postnatal maturation, but relatively little brain imaging evidence describes the time course of development in motion processing systems in early to middle childhood, a time when psychophysical data suggest that there are changes in sensitivity. To fill this gap, electroencephalographic (EEG) responses were recorded in 4- to 8-year-old children who viewed three time-varying optic flow patterns (translation, rotation, and radial expansion/contraction) at three different speeds (2, 4, and 8 deg/s). Modulations of global motion coherence evoked coherent EEG responses at the first harmonic that differed by flow pattern and responses at the third harmonic and dot update rate that varied by speed. Pattern-related responses clustered over right lateral channels while speed-related responses clustered over midline channels. Both children and adults show widespread responses to modulations of motion coherence at the second harmonic that are not selective for pattern or speed. The results suggest that the developing brain segregates the processing of optic flow pattern from speed and that an adult-like pattern of neural responses to optic flow has begun to emerge by early to middle childhood. PMID:27326860

  17. Variable Geometry Aircraft Wing Supported by Struts And/Or Trusses

    Science.gov (United States)

    Melton, John E. (Inventor); Dudley, Michael R. (Inventor)

    2016-01-01

    The present invention provides an aircraft having variable airframe geometry for accommodating efficient flight. The aircraft includes an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, and a brace operably connected between said oblique wing and said fuselage. The present invention also provides an aircraft having an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, a propulsion system pivotally connected with said oblique wing, and a brace operably connected between said propulsion system and said fuselage.

  18. Flicker Mitigation by Individual Pitch Control of Variable Speed Wind Turbines With DFIG

    DEFF Research Database (Denmark)

    Zhang, Yunqian; Chen, Zhe; Hu, Weihao; Cheng, Ming

    2014-01-01

    Due to the wind speed variation, wind shear and tower shadow effects, grid connected wind turbines are the sources of power fluctuations which may produce flicker during continuous operation. This paper presents a model of an MW-level variable-speed wind turbine with a doubly fed induction...... generatorto investigate the flicker emission and mitigation issues. An individual pitch control (IPC) strategy is proposed to reduce the flicker emission at different wind speed conditions. The IPC scheme is proposed and the individual pitch controller is designed according to the generator active power and...... the azimuth angle of the wind turbine. The simulations are performed on the NREL (National Renewable Energy Laboratory) 1.5-MW upwind reference wind turbine model. Simulation results show that damping the generator active power by IPC is an effective means for flicker mitigation of variable speed wind...

  19. Evaluation of eye tissue elasticity by means of sound propagation speed measuring in vivo

    Science.gov (United States)

    Crispim, Joao; Bogar, Adriano; Allemann, Norma; Neto, Jarbas C. C.; Chamon, Wallace

    2015-06-01

    Introduction: To date, it has never been demonstrated the propagation sound speed in human corneas and lens in vivo. With the advent of Optical Coherence Tomography (OCT), it became possible to determine the dimensions of the ocular tissues without the interference of sound propagation speed and to use this information to define the real propagation sound speed for each patient and individualized structure. Aim: To determine the sound propagation speed in the cornea and lens from patients that theoretically exhibits differences in tissue elasticity (normal corneas and keratoconus, corneas of young and elderly patients, in addition to clear crystalline lens from young and elderly patients with cataract). Then, relate the determined velocity in each group with the expected tissue elasticity of the cornea and lens. Methods: We studied 100 eyes from 50 patients: 50 with keratoconus and no cataract and 50 with cataract and no corneal changes. All patients measured corneal and lens thickness by ultrasound methods (Ultrasonic Biomicroscopy - UBM and Ultrasonic Pachymetry - USP) and by OCT (RTVue®, Lenstar® and Visante®), then were divided into 2 groups: Group 1 (Cornea) analyzed the central corneal thickness (UBM, USP, RTVue®, Visante®, Lenstar®); Group 2 (Lens) analyzed the axial thickness of the lens (UBM and Lenstar®). Based on standard ultrasonic speed from USP (1640 m/s) and UBM (1548 m/s), we calculated the real sound propagation speed in each tissue. Results: Based on USP, the corneal sound speed on control group (1616 m/s) was faster than on keratoconus group (1547 m/s) (P lens sound speed on cataract group (1664 m/s) was faster that on control group (1605 m/s) (P lens (lower elasticity) was faster than normal corneas and lens in vivo.

  20. A second-generation high speed civil transport: Stingray

    Science.gov (United States)

    Engdahl, Sean; Lopes, Kevin; Ngan, Angelen; Perrin, Joseph; Phipps, Marcus; Westman, Blake; Yeo, Urn

    1992-01-01

    The Stingray is the second-generation High Speed Civil Transport (HSCT) designed for the 21st Century. This aircraft is designed to be economically viable and environmentally sound transportation competitive in markets currently dominated by subsonic aircraft such as the Boeing 747 and upcoming McDonnell Douglas MD-12. With the Stringray coming into service in 2005, a ticket price of 21 percent over current subsonic airlines will cover operational costs with a 10 percent return on investment. The cost per aircraft will be $202 million with the Direct Operating Cost equal to $0.072 per mile per seat. This aircraft has been designed to be a realistic aircraft that can be built within the next ten to fifteen years. There was only one main technological improvement factor used in the design, that being for the engine specific fuel consumption. The Stingray, therefore, does not rely on technology that does not exist. The Stingray will be powered by four mixed flow turbofans that meet both nitrous oxide emissions and FAR 36 Stage 3 noise regulations. It will carry 250 passengers a distance of 5200 nautical miles at a speed of Mach 2.4. The shape of the Stingray, while optimized for supersonic flight, is compatible with all current airline facilities in airports around the world. As the demand for economical, high-speed flight increases, the Stingray will be ready and able to meet those demands.

  1. 41 CFR 102-33.275 - Are there restrictions on replacing aircraft by exchange or sale?

    Science.gov (United States)

    2010-07-01

    ...). In your letter of request to GSA, you must include the full details of your situation and the... request and justify a waiver from GSA, Aircraft Management Policy Division (MTA), 1800 F Street,...

  2. Winter temperature, salinity, oxygen, nutrients and isotopes data sampled by aircraft, April 2003 (NODC Accession 0059129)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Winter sampling was performed in the eastern area of the Shelf-Basin Interactions Project using aircraft. Flights began on 1 April 2003 and finished on 15 April....

  3. Jet aircraft engine exhaust emissions database development: Year 1990 and 2015 scenarios

    Science.gov (United States)

    Landau, Z. Harry; Metwally, Munir; Vanalstyne, Richard; Ward, Clay A.

    1994-01-01

    Studies relating to environmental emissions associated with the High Speed Civil Transport (HSCT) military jet and charter jet aircraft were conducted by McDonnell Douglas Aerospace Transport Aircraft. The report includes engine emission results for baseline 1990 charter and military scenario and the projected jet engine emissions results for a 2015 scenario for a Mach 1.6 HSCT charter and military fleet. Discussions of the methodology used in formulating these databases are provided.

  4. Speed control of synchronous machine by changing duty cycle of DC/DC buck converter

    Directory of Open Access Journals (Sweden)

    Rashid Al Badwawi

    2015-11-01

    Full Text Available Renewable energies such as wind or solar energy are naturally intermittent and can create technical challenges to interconnected grid in particular with high integration amounts. In addition, if wind or solar is used to supply power to a stand-alone system, continuous power supply will be met only if sufficient energy storage system is available. The global penetration of renewable energy in power systems is increasing rapidly especially wind and solar photovoltaic (PV systems. Hybrid wind and solar PV generation system becomes very attractive solution in particular for stand-alone applications. It can provide better reliability since the weakness of one system could be complemented by the strength of the other one. When wind energy is integrated into grid, maximum power point tracking control could be used to optimize the output of wind turbine. In variable speed wind turbine, the turbine speed is varied according to the wind speed. This paper presents a comparison between two methods of controlling the speed of a wind turbine in a microgrid namely; Proportional-Integral (PI control of the tip speed ratio and stored power curve. The PI method provides more controllability, but it requires an anemometer to measure the wind speed. The stored power curve method, however, is easier to implement, but the amount of energy extracted can be less. The system has been modelled using Matlab/Simulink.

  5. 31 CFR 500.585 - Payments for services rendered by North Korea to United States aircraft authorized.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Payments for services rendered by North Korea to United States aircraft authorized. 500.585 Section 500.585 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY FOREIGN ASSETS CONTROL...

  6. Nuisance Caused by Aircraft Noise in the Vicinity of Tehran International Airport

    OpenAIRE

    Stan Frost; Khodabakhsh Karami

    1999-01-01

    Noise measurement and social questionnaire surveys in three residential areas around Mehrabad International Airport (Tehran, Iran) were based upon randomly selected dwellings in each area. A total of 193 individuals responded and many are annoyed and dissatisfied with aircraft noise and in consequence they would like to move. Aircraft noise is the strongest negative environmental factor affecting the residents in the vicinity of Mehrabad Airport and it could be a hazard for their health.

  7. Nuisance Caused by Aircraft Noise in the Vicinity of Tehran International Airport

    Directory of Open Access Journals (Sweden)

    Stan Frost

    1999-03-01

    Full Text Available Noise measurement and social questionnaire surveys in three residential areas around Mehrabad International Airport (Tehran, Iran were based upon randomly selected dwellings in each area. A total of 193 individuals responded and many are annoyed and dissatisfied with aircraft noise and in consequence they would like to move. Aircraft noise is the strongest negative environmental factor affecting the residents in the vicinity of Mehrabad Airport and it could be a hazard for their health.

  8. A low cost maritime control aircraft-ship-weapons system. [antiship missile defense

    Science.gov (United States)

    Fluk, H.

    1981-01-01

    It is pointed out that the long-range antiship standoff missile is emerging as the foremost threat on the seas. Delivered by high speed bombers, surface ships, and submarines, a missile attack can be mounted against selected targets from any point on the compass. An investigation is conducted regarding the configuration of a system which could most efficiently identify and destroy standoff threats before they launch their weapons. It is found that by using ships for carrying and launching missiles, and employing aircraft with a powerful radar only for search and missile directing operations, aircraft cost and weight can be greatly reduced. The employment of V/STOL aircraft in preference to other types of aircraft makes it possible to use ships of smaller size for carrying the aircraft. However, in order to obtain an all-weather operational capability for the system, ships are selected which are still big enough to display the required stability in heavy seas.

  9. Development and testing of advanced redundancy management methods for the F-8 DFBW aircraft. [failure detection for Digital Fly By Wire systems

    Science.gov (United States)

    Deyst, J.; Deckert, J.; Desai, M.; Willsky, A.

    1977-01-01

    A reliable aircraft sensor failure detection and identification (FDI) technique is presented. The technique exploits the kinematic and dynamic relationships that exist between variables measured by dissimilar sensors to identify failures in the sensors. The method is applied to management of dual redundant sensors on the NASA F-8 digital fly-by-wire (DFBW) research aircraft.

  10. A high precision instrument to measure angular and binocular deviation introduced by aircraft windscreens by using a shadow casting technique

    International Nuclear Information System (INIS)

    Objects viewed through transparent sheets with residual non-parallelism and irregularity appear shifted and distorted. This distortion is measured in terms of angular and binocular deviation of an object viewed through the transparent sheet. The angular and binocular deviations introduced are particularly important in the context of aircraft windscreens and canopies as they can interfere with decision making of pilots especially while landing, leading to accidents. In this work, we have developed an instrument to measure both the angular and binocular deviations introduced by transparent sheets. This instrument is especially useful in the qualification of aircraft windscreens and canopies. It measures the deviation in the geometrical shadow cast by a periodic dot pattern trans-illuminated by the distorted light beam from the transparent test specimen compared to the reference pattern. Accurate quantification of the shift in the pattern is obtained by cross-correlating the reference shadow pattern with the specimen shadow pattern and measuring the location of the correlation peak. The developed instrument is handy to use and computes both angular and binocular deviation with an accuracy of less than ±0.1 mrad (≈0.036 mrad) and has an excellent repeatability with an error of less than 2%.

  11. 14 CFR 141.39 - Aircraft.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft. 141.39 Section 141.39 Aeronautics... CERTIFICATED AGENCIES PILOT SCHOOLS Personnel, Aircraft, and Facilities Requirements § 141.39 Aircraft. (a... certificate or provisional pilot school certificate must show that each aircraft used by the school for...

  12. Using Fly-By-Wire Technology in Future Models of the UH-60 and Other Rotary Wing Aircraft

    Science.gov (United States)

    Solem, Courtney K.

    2011-01-01

    Several fixed-winged airplanes have successfully used fly-by-wire (FBW) technology for the last 40 years. This technology is now beginning to be incorporated into rotary wing aircraft. By using FBW technology, manufacturers are expecting to improve upon the weight, maintenance time and costs, handling and reliability of the aircraft. Before mass production of this new system begins in new models such as the UH-60MU, testing must be conducted to insure the safety of this technology as well as to reassure others it will be worth the time and money to make such a dramatic change to a perfectly functional machine. The RASCAL JUH-60A has been modified for these purposes. This Black Hawk helicopter has already been equipped with the FBW technology and can be configured as a near perfect representation of the UH-60MU. Because both machines have very similar qualities, the data collected from the RASCAL can be used to make future decisions about the UH-60MU. The U.S. Army AFDD Flight Project Office oversees all the design modifications for every hardware system used in the RASCAL aircraft. This project deals with specific designs and analyses of unique RASCAL aircraft subsystems and their modifications to conduct flight mechanics research.

  13. Aircraft Carriers

    DEFF Research Database (Denmark)

    Nødskov, Kim; Kværnø, Ole

    the majority of its foreign trade, as well as its oil imports, upon which the country is totally dependent. China therefore has good reasons for acquiring an aircraft carrier to enable it to protect its national interests. An aircraft carrier would also be a prominent symbol of China’s future status...... information is pieced together, then a picture is created of a Chinese aircraft carrier program, where Varyag will be made operational for training purposes. With this as the model, China will build a similar sized carrier themselves. If this project does become a reality, then it will take many years for...... Kuznetsov carrier. The SU-33 is, in its modernized version, technologically at the same level as western combat aircraft in both the offensive as well as the defensive roles. But Russia and China currently have an arms trade 6 dispute that is likely to prevent a deal, unless the dispute is resolved. As an...

  14. Solar thermal aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Charles L. (Livermore, CA)

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  15. The stable isotopic composition of molecular hydrogen in the tropopause region probed by the CARIBIC aircraft

    Directory of Open Access Journals (Sweden)

    A. M. Batenburg

    2012-05-01

    Full Text Available More than 450 air samples that were collected in the upper troposphere – lower stratosphere (UTLS region by the CARIBIC aircraft (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container have been analyzed for molecular hydrogen (H2 mixing ratios (χ(H2 and H2 isotopic composition (deuterium content, δD.

    More than 120 of the analyzed samples contained air from the lowermost stratosphere (LMS. These show that χ(H2 does not vary appreciably with O3-derived height above the thermal tropopause (TP, whereas δD does increase with height. The isotope enrichment is caused by H2 production and destruction processes that enrich the stratospheric H2 reservoir in deuterium (D; the exact shapes of the profiles are mainly determined by mixing of stratospheric with tropospheric air. Tight negative correlations are found between δD and the mixing ratios of methane (χ(CH4 and nitrous oxide (χ(N2O, as a result of the relatively long lifetimes of these three species. The correlations are described by δD[‰]=−0.35 · χ(CH4[ppb]+768 and δD[‰]=−1.90· χ(N2O[ppb]+745. These correlations are similar to previously published results and likely hold globally for the LMS.

    Samples that were collected from the Indian subcontinent up to 40° N before, during and after the summer monsoon season show no significant seasonal change in χ(H2, but δD is up to 12.3‰ lower in the July, August and September monsoon samples. This δD decrease is correlated with the χ(CH4 increase in these samples. The significant correlation with χ(CH4 and the absence of a perceptible χ(H2 increase that accompanies the δD decrease indicates that microbial production of

  16. The stable isotopic composition of molecular hydrogen in the tropopause region probed by the CARIBIC aircraft

    Directory of Open Access Journals (Sweden)

    A. M. Batenburg

    2012-01-01

    Full Text Available More than 450 air samples that were collected in the upper troposphere – lower stratosphere (UTLS region around the tropopause (TP by the CARIBIC aircraft (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container have been analyzed for molecular hydrogen (H2 mixing ratios (m(H2 and H2 isotopic composition (deuterium content, δD.

    More than 120 of the analysed samples consisted of air from the lowermost stratosphere (LMS. These show that m(H2 does not vary appreciably with O3-derived height above the thermal TP, whereas δD does increase with height. The isotope enrichment is caused by competing H2 production and destruction processes that enrich the stratospheric H2 reservoir in deuterium (D; the exact shapes of the profiles are mainly determined by mixing of stratospheric with tropospheric air. Tight negative correlations are found between δD and the mixing ratios of methane (CH4 and nitrous oxide (N2O, as a result of the relatively long lifetimes of these three species. The correlations are described by δ D [‰]=-0.35 · m(CH4[ppb]+768 and δD [‰]=-1.90 · m(N2O[ppb]+745. These correlations are similar to previously published results and likely hold globally.

    Samples that were collected from the Indian subcontinent up to 40° N before, during and after the summer monsoon season show no significant seasonal change in m(H2, but δD is up to 15‰ lower in the July, August and September monsoon samples. This δD lowering is correlated with m(CH4 increase. The significant correlation with m(CH4 and the absence of a perceptible m(H2 increase that accompanies the δD lowering indicates that microbial production

  17. Optimal Sizing of a Photovoltaic-Hydrogen Power System for HALE Aircraft by means of Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Victor M. Sanchez

    2015-01-01

    Full Text Available Over the last decade there has been a growing interest in the research of feasibility to use high altitude long endurance (HALE aircrafts in order to provide mobile communications. The use of HALEs for telecommunication networks has the potential to deliver a wide range of communication services (from high-quality voice to high-definition videos, as well as high-data-rate wireless channels cost effectively. One of the main challenges of this technology is to design its power supply system, which must provide the enough energy for long time flights in a reliable way. In this paper a photovoltaic/hydrogen system is proposed as power system for a HALE aircraft due its high power density characteristic. In order to obtain the optimal sizing for photovoltaic/hydrogen system a particle swarm optimizer (PSO is used. As a case study, theoretical design of the photovoltaic/hydrogen power system for three different HALE aircrafts located at 18° latitude is presented. At this latitude, the range of solar radiation intensity was from 310 to 450 Wh/sq·m/day. The results obtained show that the photovoltaic/hydrogen systems calculated by PSO can operate during one year with efficacies ranging between 45.82% and 47.81%. The obtained sizing result ensures that the photovoltaic/hydrogen system supplies adequate energy for HALE aircrafts.

  18. Atmospheric/climatic effects of aircraft emissions

    International Nuclear Information System (INIS)

    Exhaust emissions from aircraft include oxides of nitrogen (NOx), water vapor (H2O), sulfur dioxide (SO2), carbon dioxide (CO2), carbon monoxide (CO), hydrocarbons (HC) and particles (soot and sulfates). These emissions are small compared to industrial/urban surface emissions. However, because (1) atmospheric residence times of exhaust constituents are longer at altitude, particularly in the stratosphere, than they are in the boundary layer, (2) their background concentrations at altitude are lower than those near the surface, (3) the radiation balance is the more sensitive to atmospheric trace constituents the colder the temperature aloft and (4) inter-hemispheric mixing of aircraft effluents is inhibited, aircraft emissions near and above the tropopause and polewards of 40 degrees latitude can be environmentally critical. That's why atmospheric/climatic effects of aircraft emissions have again received scientific, economic and political scrutiny in the last few years, motivated by growth of subsonic traffic at about 5% per year over the past two decades and the advent of a technologically feasible operation of a supersonic high speed commercial transport (HSCT) fleet

  19. Reduction of high-speed impulsive noise by blade planform modification of a model helicopter rotor

    Science.gov (United States)

    Conner, D. A.; Hoad, D. R.

    1982-01-01

    The reduction of high speed impulsive noise for the UH-1H helicopter was investigated by using an advanced main rotor system. The advanced rotor system had a tapered blade planform compared with the rectangular planform of the standard rotor system. Models of both the advanced main rotor system and the UH-1H standard main rotor system were tested at 1/4 scale in the 4 by 7 Meter Tunnel. In plane acoustic measurements of the high speed impulsive noise demonstrated that the advanced rotor system on the UH-1H helicopter reduced the high speed impulsive noise by up to 20 dB, with a reduction in overall sound pressure level of up to 5 dB.

  20. Wind Speed Forecasting Based on FEEMD and LSSVM Optimized by the Bat Algorithm

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-06-01

    Full Text Available Affected by various environmental factors, wind speed presents high fluctuation, nonlinear and non-stationary characteristics. To evaluate wind energy properly and efficiently, this paper proposes a modified fast ensemble empirical model decomposition (FEEMD-bat algorithm (BA-least support vector machines (LSSVM (FEEMD-BA-LSSVM model combined with input selected by deep quantitative analysis. The original wind speed series are first decomposed into a limited number of intrinsic mode functions (IMFs with one residual series. Then a LSSVM is built to forecast these sub-series. In order to select input from environment variables, Cointegration and Granger causality tests are proposed to check the influence of temperature with different leading lengths. Partial correlation is applied to analyze the inner relationships between the historical speeds thus to select the LSSVM input. The parameters in LSSVM are fine-tuned by BA to ensure the generalization of LSSVM. The forecasting results suggest the hybrid approach outperforms the compared models.

  1. Improvement of Torque Response and Reduction of Error Speed in Direct Torque Control of Induction Motor by Fuzzy Logic

    OpenAIRE

    HamidReza Fakharizadeh

    2009-01-01

    In this paper, the direct torque control (DTC) technique is used for the speed control of induction motors, and then fuzzy logic is used for designing the speed controller, the improvement of torque response and the reduction of the speed error. The DTC method is utilized due to its quick torque response and robustness against sudden load variations. Also, by applying fuzzy logic unpredicted problems can be solved. The fuzzy logic also can improve the work of the speed control in induction mo...

  2. Treatment of multiple fractures in a patient wounded by aircraft bombing

    Directory of Open Access Journals (Sweden)

    Golubović Zoran

    2010-01-01

    Full Text Available Introduction Aircraft cluster bombs can cause severe fractures characterized by extensive destruction of affected tissues and organs. Case Outline We present the methods and results of treatment of multiple fractures (left supracondilar humeral fracture, comminuted fracture of the distal right tibia, fracture of right trochanter major without dislocation and fracture of the right second metacarpal bone in a 24-year old soldier after multiple wounding by a cluster bomb. After short pre-operative preparation a surgical debridement of all wounds was done in general anesthesia and the fractures of the humerus and tibia were stabilized with the Mitkovic-type external fixator after adequate reposition. For the reconstruction of bone defect of the tibia we used the method of bone transport using the Ilizarov external fixator. Conclusion Radical wound debridement, abundant rinsing, leaving the wound open, administration of antibiotics and antitetanus immunization, external fixation and early reconstruction of soft tissue and bone defects are the basic elements of the treatment of serious fractures caused by war injuries and aimed at saving the extremities. .

  3. Annoyance and acceptability judgements of noise produced by three types of aircraft by residents living near JFK Airport

    Science.gov (United States)

    Borsky, P. N.

    1974-01-01

    A random sample of selected communities near JFK Airport were interviewed. Subsamples, with differing feelings of fear of aircraft crashes and different locations of residence were invited to participate in a laboratory experiment. The subjects were exposed to tape recordings of simulated flyovers of aircraft in approach and departure operations at nominal distances from the airport. The subjects judged the extent of noise annoyance and acceptability of the aircraft noises. Results indicate that level of noise is most significant in affecting annoyance judgements. Subjects with feelings of high fear report significantly more annoyance and less acceptability of aircraft noise than subjects with feelings of low fear.

  4. a New Method to Detect Regions Endangered by High Wind Speeds

    Science.gov (United States)

    Fischer, P.; Ehrensperger, S.; Krauß, T.

    2016-06-01

    In this study we evaluate whether the methodology of Boosted Regression Trees (BRT) suits for accurately predicting maximum wind speeds. As predictors a broad set of parameters derived from a Digital Elevation Model (DEM) acquired within the Shuttle Radar Topography Mission (SRTM) is used. The derived parameters describe the surface by means of quantities (e.g. slope, aspect) and quality (landform classification). Furthermore land cover data from the CORINE dataset is added. The response variable is maximum wind speed, measurements are provided by a network of weather stations. The area of interest is Switzerland, a country which suits perfectly for this study because of its highly dynamic orography and various landforms.

  5. PREDICTION OF AIRCRAFT NOISE LEVELS

    Science.gov (United States)

    Clark, B. J.

    1994-01-01

    Methods developed at the NASA Lewis Research Center for predicting the noise contributions from various aircraft noise sources have been incorporated into a computer program for predicting aircraft noise levels either in flight or in ground test. The noise sources accounted for include fan inlet and exhaust, jet, flap (for powered lift), core (combustor), turbine, and airframe. Noise propagation corrections are available in the program for atmospheric attenuation, ground reflections, extra ground attenuation, and shielding. The capacity to solve the geometrical relationships between an aircraft in flight and an observer on the ground has been included in the program to make it useful in evaluating noise estimates and footprints for various proposed engine installations. The program contains two main routines for employing the noise prediction routines. The first main routine consists of a procedure to calculate at various observer stations the time history of the noise from an aircraft flying at a specified set of speeds, orientations, and space coordinates. The various components of the noise are computed by the program. For each individual source, the noise levels are free field with no corrections for propagation losses other than spherical divergence. The total spectra may then be corrected for the usual effects of atmospheric attenuation, extra ground attenuation, ground reflection, and aircraft shielding. Next, the corresponding values of overall sound pressure level, perceived noise level, and tone-weighted perceived noise level are calculated. From the time history at each point, true effective perceived noise levels are calculated. Thus, values of effective perceived noise levels, maximum perceived noise levels, and tone-weighted perceived noise levels are found for a grid of specified points on the ground. The second main routine is designed to give the usual format of one-third octave sound pressure level values at a fixed radius for a number of user

  6. Acoustic Performance of the GEAE UPS Research Fan in the NASA Glenn 9- by 15-Foot Low-Speed Wind Tunnel

    Science.gov (United States)

    Woodward, Richard P.; Hughes, Christopher E.

    2012-01-01

    A model advanced turbofan was acoustically tested in the NASA Glenn 9- by 15-Foot Low-Speed Wind Tunnel in 1994. The Universal Propulsion Simulator fan was designed and manufactured by General Electric Aircraft Engines, and included an active core, as well as bypass, flow paths. The fan was tested with several rotors featuring unswept, forward-swept and aft-swept designs of both metal and composite construction. Sideline acoustic data were taken with both hard and acoustically treated walls in the flow passages. The fan was tested within an airflow at a Mach number of 0.20, which is representative of aircraft takeoff/approach conditions. All rotors showed similar aerodynamic performance. However, the composite rotors typically showed higher noise levels than did corresponding metal rotors. Aft and forward rotor sweep showed at most modest reductions of transonic multiple pure tone levels. However, rotor sweep often introduced increased rotor-stator interaction tone levels. Broadband noise was typically higher for the composite rotors and also for the aft-swept metal rotor. Transonic MPT generation was reduced with increasing fan axis angle of attack (AOA); however, higher downstream noise levels did increase with AOA resulting in higher overall Effective Perceived Noise Level.

  7. Aircraft Configuration and Flight Crew Compliance with Procedures While Conducting Flight Deck Based Interval Management (FIM) Operations

    Science.gov (United States)

    Shay, Rick; Swieringa, Kurt A.; Baxley, Brian T.

    2012-01-01

    Flight deck based Interval Management (FIM) applications using ADS-B are being developed to improve both the safety and capacity of the National Airspace System (NAS). FIM is expected to improve the safety and efficiency of the NAS by giving pilots the technology and procedures to precisely achieve an interval behind the preceding aircraft by a specific point. Concurrently but independently, Optimized Profile Descents (OPD) are being developed to help reduce fuel consumption and noise, however, the range of speeds available when flying an OPD results in a decrease in the delivery precision of aircraft to the runway. This requires the addition of a spacing buffer between aircraft, reducing system throughput. FIM addresses this problem by providing pilots with speed guidance to achieve a precise interval behind another aircraft, even while flying optimized descents. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR) human-in-the-loop experiment employed 24 commercial pilots to explore the use of FIM equipment to conduct spacing operations behind two aircraft arriving to parallel runways, while flying an OPD during high-density operations. This paper describes the impact of variations in pilot operations; in particular configuring the aircraft, their compliance with FIM operating procedures, and their response to changes of the FIM speed. An example of the displayed FIM speeds used incorrectly by a pilot is also discussed. Finally, this paper examines the relationship between achieving airline operational goals for individual aircraft and the need for ATC to deliver aircraft to the runway with greater precision. The results show that aircraft can fly an OPD and conduct FIM operations to dependent parallel runways, enabling operational goals to be achieved efficiently while maintaining system throughput.

  8. Rotation speed measurement for turbine governor: torsion filtering by using Kalman filter

    International Nuclear Information System (INIS)

    The rotation speed of a turbogenerator is disturbed by its shaft torsion. Obtaining a filtered measure of this speed is a problem of a great practical importance for turbine governor. A good filtering of this speed must meet two requirements: it must cut frequencies of the shaft torsion oscillation and it must not reduce or delay the signal in the pass-band, i.e. at lower frequencies. At Electricite de France, the speed measure is used to set in motion the fast valving system as quickly as possible, after a short circuit close to the unit or rather an islanding. It is difficult to satisfy these two requirements by using conventional filtering methods. The standard solution consists in a first order filter: at Electricite de France, its time constant is equal to 80 ms. We have decided to improve this filtering by designing a new filter which cuts the frequencies of the shaft torsion oscillation without reducing the bandwidth to the speed measure. If one uses conventional methods to obtain a band stop filter, it is easy to obtain the desired magnitude but not a phase near zero in the whole pass-band. Therefore, we have chosen to design the filter by using Kalman'a theory. The measurement noise is modeled as a colored one, generated by a very lightly damped system driven by a while noise. The resulting Kalman filter is an effective band stop filter, whose phase nicely remains near zero in the whole pass-band. The digital simulations we made and the tests we carried out with the Electricite de France Micro Network laboratory show the advantages of the rotation speed filter we designed using Kalman's theory. With the proposed filter, the speed measure filtering is better in terms of reduction and phase shift. the result is that there are less untimely solicitations of the fast valving system. Consequently, this device improves the power systems stability by minimizing the risks of deep perturbations due to a temporary lack of generation and the risks of under-speed loss

  9. High speed roll casting of Mg alloy strip by a vertical type twin roll caster

    Directory of Open Access Journals (Sweden)

    H. Watari

    2006-02-01

    Full Text Available Purpose: The possibility of high speed roll casting of AZ31, AM60 and AZ91 was investigated. Warm deep drawing of roll cast magnesium alloy was operated. and formability of roll cast magnesium strip was cleared.Design/methodology/approach: A vertical type high speed twin roll caster was used. The roll casting was operated in the air atmosphere. The casting speed was from 60 m/min up to 180 m/min. Low temperature casting was adopted to realize high speed casting.Findings: Strip thinner 3 mm with 100 width could be cast continuously. The casting ability became better with increasing content of Al. Roll cast Mg alloy strips could be hot-rolled down to 0.5 mm. AZ31 as-cast strip could be thinner down to 0.5 mm only by three times of hot rolling. Deep drawing was operated with three kinds of Mg alloy at 250°C, and LDR value was larger than 2.0. It was shown that deep drawing of AZ91 alloy for casting was possible.Research limitations/implications: There was tendency that cracks occurred at the center in the thickness direction as Al content increased.Practical implications: Sheet metal forming of magnesium alloy with high content Al can be realized.Originality/value: It was shown that possibility of high speed roll casting of magnesium alloy, and warm deep drawing of roll cast AZ91 strip.

  10. Aircraft Data Acquisition

    Directory of Open Access Journals (Sweden)

    Elena BALMUS

    2016-03-01

    Full Text Available The introduction of digital systems instead of analog ones has created a major separation in the aviation technology. Although the digital equipment made possible that the increasingly faster controllers take over, we should say that the real world remains essentially analogue [4]. Fly-by-wire designers attempting to control and measure the real feedback of an aircraft were forced to find a way to connect the analogue environment to their digital equipment. In order to manage the implications of this division in aviation, data optimization and comparison has been quite an important task. The interest in using data acquisition boards is being driven by the technology and design standards in the new generation of aircraft and the ongoing efforts of reducing weight and, in some cases addressing the safety risks. This paper presents a sum of technical report data from post processing and diversification of data acquisition from Arinc 429 interface on a research aircraft platform. Arinc 429 is by far the most common data bus in use on civil transport aircraft, regional jets and executive business jets today. Since its introduction on the Boeing 757/767 and Airbus aircraft in the early 1980s hardly any aircraft has been produced without the use of this data bus. It was used widely by the air transport indu

  11. Pitch Motion Stabilization by Propeller Speed Control Using Statistical Controller Design

    DEFF Research Database (Denmark)

    Nakatani, Toshihiko; Blanke, Mogens; Galeazzi, Roberto

    2006-01-01

    This paper describes dynamics analysis of a small training boat and a possibility of ship pitch stabilization by control of propeller speed. After upgrading the navigational system of an actual small training boat, in order to identify the model of the ship, the real data collected by sea trials...

  12. Aircraft systems design methodology and dispatch reliability prediction

    OpenAIRE

    Bineid, Mansour

    2005-01-01

    Aircraft despatch reliability was the main subject of this research in the wider content of aircraft reliability. The factors effecting dispatch reliability, aircraft delay, causes of aircraft delays, and aircraft delay costs and magnitudes were examined. Delay cost elements and aircraft delay scenarios were also studied. It concluded that aircraft dispatch reliability is affected by technical and non-technical factors, and that the former are under the designer's control. It showed that ...

  13. Effect of electromagnetic interference by neonatal transport equipment on aircraft operation.

    Science.gov (United States)

    Nish, W A; Walsh, W F; Land, P; Swedenburg, M

    1989-06-01

    The number of civilian air ambulance services operating in the United States has been steadily increasing. The quantity and sophistication of electronic equipment used during neonatal transport have also increased. All medical equipment generates some electromagnetic interference (EMI). Excessive EMI can interfere with any of an aircraft's electrical systems, including navigation and communications. The United States military has strict standards for maximum EMI in transport equipment. Over the past 15 years, approximately 70% of neonatal transport monitors, ventilators, and incubators have failed testing due to excessive EMI. As neonatal transport equipment becomes more sophisticated, EMI is increased, and there is greater potential for aircraft malfunction. The Federal Aviation Administration should develop civilian standards for acceptable EMI, civilian aircraft operators must be aware of the possible dangers of excessive EMI, and equipment which does not meet future FAA standards should not be purchased. PMID:2751593

  14. Flux measurements by the NRC Twin Otter atmospheric research aircraft: 1987-2011

    Science.gov (United States)

    Desjardins, Raymond L.; Worth, Devon E.; MacPherson, J. Ian; Bastian, Matthew; Srinivasan, Ramesh

    2016-03-01

    Over the past 30 years, the Canadian Twin Otter research group has operated an aircraft platform for the study of atmospheric greenhouse gas fluxes (carbon dioxide, ozone, nitrous oxide and methane) and energy exchange (latent and sensible heat) over a wide range of terrestrial ecosystems in North America. Some of the acquired data from these projects have now been archived at the Flight Research Laboratory and Agriculture and Agri-Food Canada. The dataset, which contains the measurements obtained in eight projects from 1987 to 2011 are now publicly available. All these projects were carried out in order to improve our understanding of the biophysical controls acting on land-surface atmosphere fluxes. Some of the projects also attempted to quantify the impacts of agroecosystems on the environment. To provide information on the data available, we briefly describe each project and some of the key findings by referring to previously published relevant work. As new flux analysis techniques are being developed, we are confident that much additional information can be extracted from this unique data set.

  15. Greenhouse effects of aircraft emissions as calculated by a radiative transfer model

    Directory of Open Access Journals (Sweden)

    J. P. F. Fortuin

    Full Text Available With a radiative transfer model, assessments are made of the radiative forcing in northern mid-latitudes due to aircraft emissions up to 1990. Considered are the direct climate effects from the major combustion products carbon dioxide, nitrogen dioxide, water vapor and sulphur dioxide, as well as the indirect effect of ozone production from NOx emissions. Our study indicates a local radiative forcing at the tropopause which should be negative in summer (–0.5 to 0.0 W/m2 and either negative or positive in winter (–0.3 to 0.2 W/m2. To these values the indirect effect of contrails has to be added, which for the North Atlantic Flight Corridor covers the range –0.2 to 0.3 W/m2 in summer and 0.0 to 0.3 W/m2 in winter. Apart from optically dense non-aged contrails during summer, negative forcings are due to solar screening by sulphate aerosols. The major positive contributions come from contrails, stratospheric water vapor in winter and ozone in summer. The direct effect of NO2 is negligible and the contribution of CO2 is relatively small.

  16. Measurement of metal vapor cooling speed during nanoparticle formation by pulsed wire discharge

    Institute of Scientific and Technical Information of China (English)

    Yuu SHIKODA; Yoshinori TOKOI; Koji SUWA; Satoru ISHIHARA; Tsuneo SUZUKI; Tadachika NAKAYAMA; Hisayuki SUEMATSU; Koichi NIIHARA

    2009-01-01

    Pulsed wire discharge(PWD) is one of nano-sized powder production methods. The object of this work is to study influence of the plasma/vapor/particle density using computer simulation and to establish temperature measurement method using a high-speed infrared thermometer in the PWD process. The temperature correction coefficient was obtained from geometric computer simulation results. Obtained correction coefficient was applied to the temperature measuring results. It was found from this result that obtained correction coefficient was appropriate. A temperature measurement method was established by using the high-speed infrared thermometer in PWD.

  17. Rotation speed measurement for turbine governor: Torsion filtering by using Kalman filter

    International Nuclear Information System (INIS)

    The rotation speed of a turbogenerator is disturbed by its shaft torsion. Obtaining a filtered measure of this speed is a problem of a great practical importance for turbine governor. A solution to this problem is explained using Kalman's theory. The principles of the design, simulations and tests on the Electricite de France Micro-Network laboratory are presented showing several improvements over the current filter. Moreover, the described solution could be used profitably in all applications where it is necessary to substantially reduce a signal at given frequencies without causing too great a phase shift in the pass-band

  18. Genetic Analysis of Daily Maximum Milking Speed by a Random Walk Model in Dairy Cows

    DEFF Research Database (Denmark)

    Karacaören, Burak; Janss, Luc; Kadarmideen, Haja

    Data were obtained from dairy cows stationed at research farm ETH Zurich for maximum milking speed. The main aims of this paper are a) to evaluate if the Wood curve is suitable to model mean lactation curve b) to predict longitudinal breeding values by random regression and random walk models of...... maximum milking speed. Wood curve did not provide a good fit to the data set. Quadratic random regressions gave better predictions compared with the random walk model. However random walk model does not need to be evaluated for different orders of regression coefficients. In addition with the Kalman...

  19. Studies of factors for speeding up mellowness of yellow rice wine by irradiation

    International Nuclear Information System (INIS)

    The paper described the research result of the factors for speeding up mellowness of yellow rice wine by irradiation of low dosage. The effect of speeding up its mellowness was gained through the research of different dosage, irradiated temperature, different container, space of container and storing temperature etc.. The experiment indicated that the best dosage was 100-600 Gy with 30-40 deg C tempreature; the pottery container for wraping wine was better than the glass one; the better space was 100 ml empty of one container and the storing time of irradiated wine covered 5-6 months

  20. Estimation of extreme wind speed in SCS and NWP by a non-stationary model

    Directory of Open Access Journals (Sweden)

    Lizhen Wang

    2016-05-01

    Full Text Available In offshore engineering design, it is considerably significant to have an adequately accurate estimation of marine environmental parameters, in particular, the extreme wind speed of tropical cyclone (TC with different return periods to guarantee the safety in projected operating life period. Based on the 71-year (1945–2015 TC data in the Northwest Pacific (NWP by the Joint Typhoon Warning Center (JTWC of US, a notable growth of the TC intensity is observed in the context of climate change. The fact implies that the traditional stationary model might be incapable of predicting parameters in the extreme events. Therefore, a non-stationary model is proposed in this study to estimate extreme wind speed in the South China Sea (SCS and NWP. We find that the extreme wind speeds of different return periods exhibit an evident enhancement trend, for instance, the extreme wind speeds with different return periods by non-stationary model are 4.1%–4.4% higher than stationary ones in SCS. Also, the spatial distribution of extreme wind speed in NWP has been examined with the same methodology by dividing the west sea areas of the NWP 0°–45°N, 105°E–130°E into 45 subareas of 5°×5°, where oil and gas resources are abundant. Similarly, remarkable spacial in-homogeneity in the extreme wind speed is seen in this area: the extreme wind speed with 50-year return period in the subarea (15°N–20°N, 115°E–120°E of Zhongsha and Dongsha Islands is 73.8 m/s, while that in the subarea of Yellow Sea (30°N–35°N, 120°E–125°E is only 47.1 m/s. As a result, the present study demonstrates that non-stationary and in-homogeneous effects should be taken into consideration in the estimation of extreme wind speed.

  1. Improvement of Torque Response and Reduction of Error Speed in Direct Torque Control of Induction Motor by Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    HamidReza Fakharizadeh

    2009-09-01

    Full Text Available In this paper, the direct torque control (DTC technique is used for the speed control of induction motors, and then fuzzy logic is used for designing the speed controller, the improvement of torque response and the reduction of the speed error. The DTC method is utilized due to its quick torque response and robustness against sudden load variations. Also, by applying fuzzy logic unpredicted problems can be solved. The fuzzy logic also can improve the work of the speed control in induction motors. The results indicate that this approach improves the torque response significantly and reduces speed error.

  2. Determine an effective golf swing by swing speed and impact precision tests

    Directory of Open Access Journals (Sweden)

    Jiann-Jyh Wang

    2015-09-01

    Conclusion: The vertical peak ground reaction force on left foot occurring before impact and the left latissimus dorsi contracting prior to the right pectoralis major represent a superior skill by allowing the club to strike the ball with normal collision at a faster speed.

  3. Increased room temperature formability of Mg AZ31 by high speed Friction Stir Processing

    International Nuclear Information System (INIS)

    Highlights: • High speed FSP was performed on Mg AZ31 at processing speeds between 1 and 10 m/min. • Process zone EBSD analysis revealed deformation prone microstructure and texture. • The TMAZ featured low aspect ratio grains, with high mounts of HAB. • Formability tests revealed increases of up to 100% over the base material. • Local anisotropy was most present in the tensile regime of the FLD. - Abstract: The aim of this work is to investigate the formability at room temperature of the Mg alloy AZ31 by Friction Stir Processing. Defect-free process zones were created using process speeds of up to 10 m/min, the resulting microstructure and grain size were analyzed. Microstructural zones with varying texture were identified by electron backscatter diffraction. Tensile tests supported by digital image correlation analysis revealed different deformation behavior and enhanced ductility in the thermo mechanically affected zone which was associated with the variation in grain size and texture. Finally, the sheet forming behavior of the processed material was investigated, using the Nakajima test method with Hasek specimen geometries. Forming limit diagrams for several process conditions reveal a continuous increase in formability with increasing processing speed. Additionally, the local anisotropy was analyzed by comparison of the R values at the point of highest strain, to quantify the impact of processing on formability

  4. GeoTrack: bio-inspired global video tracking by networks of unmanned aircraft systems

    Science.gov (United States)

    Barooah, Prabir; Collins, Gaemus E.; Hespanha, João P.

    2009-05-01

    Research from the Institute for Collaborative Biotechnologies (ICB) at the University of California at Santa Barbara (UCSB) has identified swarming algorithms used by flocks of birds and schools of fish that enable these animals to move in tight formation and cooperatively track prey with minimal estimation errors, while relying solely on local communication between the animals. This paper describes ongoing work by UCSB, the University of Florida (UF), and the Toyon Research Corporation on the utilization of these algorithms to dramatically improve the capabilities of small unmanned aircraft systems (UAS) to cooperatively locate and track ground targets. Our goal is to construct an electronic system, called GeoTrack, through which a network of hand-launched UAS use dedicated on-board processors to perform multi-sensor data fusion. The nominal sensors employed by the system will EO/IR video cameras on the UAS. When GMTI or other wide-area sensors are available, as in a layered sensing architecture, data from the standoff sensors will also be fused into the GeoTrack system. The output of the system will be position and orientation information on stationary or mobile targets in a global geo-stationary coordinate system. The design of the GeoTrack system requires significant advances beyond the current state-of-the-art in distributed control for a swarm of UAS to accomplish autonomous coordinated tracking; target geo-location using distributed sensor fusion by a network of UAS, communicating over an unreliable channel; and unsupervised real-time image-plane video tracking in low-powered computing platforms.

  5. Short-Term Wind Speed Forecasting Using Support Vector Regression Optimized by Cuckoo Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Jianzhou Wang

    2015-01-01

    Full Text Available This paper develops an effectively intelligent model to forecast short-term wind speed series. A hybrid forecasting technique is proposed based on recurrence plot (RP and optimized support vector regression (SVR. Wind caused by the interaction of meteorological systems makes itself extremely unsteady and difficult to forecast. To understand the wind system, the wind speed series is analyzed using RP. Then, the SVR model is employed to forecast wind speed, in which the input variables are selected by RP, and two crucial parameters, including the penalties factor and gamma of the kernel function RBF, are optimized by various optimization algorithms. Those optimized algorithms are genetic algorithm (GA, particle swarm optimization algorithm (PSO, and cuckoo optimization algorithm (COA. Finally, the optimized SVR models, including COA-SVR, PSO-SVR, and GA-SVR, are evaluated based on some criteria and a hypothesis test. The experimental results show that (1 analysis of RP reveals that wind speed has short-term predictability on a short-term time scale, (2 the performance of the COA-SVR model is superior to that of the PSO-SVR and GA-SVR methods, especially for the jumping samplings, and (3 the COA-SVR method is statistically robust in multi-step-ahead prediction and can be applied to practical wind farm applications.

  6. UAS in the NAS: Survey Responses by ATC, Manned Aircraft Pilots, and UAS Pilots

    Science.gov (United States)

    Comstock, James R., Jr.; McAdaragh, Raymon; Ghatas, Rania W.; Burdette, Daniel W.; Trujillo, Anna C.

    2014-01-01

    NASA currently is working with industry and the Federal Aviation Administration (FAA) to establish future requirements for Unmanned Aircraft Systems (UAS) flying in the National Airspace System (NAS). To work these issues NASA has established a multi-center "UAS Integration in the NAS" project. In order to establish Ground Control Station requirements for UAS, the perspective of each of the major players in NAS operations was desired. Three on-line surveys were administered that focused on Air Traffic Controllers (ATC), pilots of manned aircraft, and pilots of UAS. Follow-up telephone interviews were conducted with some survey respondents. The survey questions addressed UAS control, navigation, and communications from the perspective of small and large unmanned aircraft. Questions also addressed issues of UAS equipage, especially with regard to sense and avoid capabilities. From the civilian ATC and military ATC perspectives, of particular interest are how mixed operations (manned / UAS) have worked in the past and the role of aircraft equipage. Knowledge gained from this information is expected to assist the NASA UAS Integration in the NAS project in directing research foci thus assisting the FAA in the development of rules, regulations, and policies related to UAS in the NAS.

  7. Decontamination of radioactive P32 and I131 from aircraft and car surfaces by detergent compositions

    International Nuclear Information System (INIS)

    Sheets from aircrafts and cars having the same surfaces were contaminated with solutions of radioactive phosphorus salts and solutions of radioactive iodine salts. Different compositions from synthetic detergents and locally available complexing salts were prepared and their efficiencies in decontaminating the sheets were measured under the same conditions. The most effective compositions were those in which 'Berol Lanco' and 'Nestabon' were used. (orig.)

  8. Near surface spatially averaged air temperature and wind speed determined by acoustic travel time tomography

    Directory of Open Access Journals (Sweden)

    Armin Raabe

    2001-03-01

    Full Text Available Acoustic travel time tomography is presented as a possibility for remote monitoring of near surface airtemperature and wind fields. This technique provides line-averaged effective sound speeds changing with temporally and spatially variable air temperature and wind vector. The effective sound speed is derived from the travel times of sound signals which propagate at defined paths between different acoustic sources and receivers. Starting with the travel time data a tomographic algorithm (Simultaneous Iterative Reconstruction Technique, SIRT is used to calculate area-averaged air temperature and wind speed. The accuracy of the experimental method and the tomographic inversion algorithm is exemplarily demonstrated for one day without remarkable differences in the horizontal temperature field, determined by independent in situ measurements at different points within the measuring field. The differences between the conventionally determined air temperature (point measurement and the air temperature determined by tomography (area-averaged measurement representative for the area of the measuring field 200m x 260m were below 0.5 K for an average of 10 minutes. The differences obtained between the wind speed measured at a meteorological mast and calculated from acoustic measurements are not higher than 0.5 ms-1 for the same averaging time. The tomographically determined area-averaged distribution of air temperature (resolution 50 m x 50 m can be used to estimate the horizontal gradient of air temperature as a pre-condition to detect horizontal turbulent fluxes of sensible heat.

  9. Pilot-scale synthesis of metal nanoparticles by high-speed pulsed laser ablation in liquids

    Science.gov (United States)

    Streubel, René; Bendt, Georg; Gökce, Bilal

    2016-05-01

    The synthesis of catalysis-relevant nanoparticles such as platinum and gold is demonstrated with productivities of 4 g h‑1 for pulsed laser ablation in liquids (PLAL). The major drawback of low productivity of PLAL is overcome by utilizing a novel ultrafast high-repetition rate laser system combined with a polygon scanner that reaches scanning speeds up to 500 m s‑1. This high scanning speed is exploited to spatially bypass the laser-induced cavitation bubbles at MHz-repetition rates resulting in an increase of the applicable, ablation-effective, repetition rate for PLAL by two orders of magnitude. The particle size, morphology and oxidation state of fully automated synthesized colloids are analyzed while the ablation mechanisms are studied for different laser fluences, repetition rates, interpulse distances, ablation times, volumetric flow rates and focus positions. It is found that at high scanning speeds and high repetition rate PLAL the ablation process is stable in crystallite size and decoupled from shielding and liquid effects that conventionally occur during low-speed PLAL.

  10. Determination of correlation functions of turbulent velocity and sound speed fluctuations by means of ultrasonic technique

    Science.gov (United States)

    Andreeva, Tatiana A.; Durgin, William W.

    2011-12-01

    An experimental study of the propagation of high-frequency acoustic waves through grid-generated turbulence by means of an ultrasound technique is discussed. Experimental data were obtained for ultrasonic wave propagation downstream of heated and non-heated grids in a wind tunnel. A semi-analytical acoustic propagation model that allows the determination of the spatial correlation functions of the flow field is developed based on the classical flowmeter equation and the statistics of the travel time of acoustic waves traveling through the kinematic and thermal turbulence. The basic flowmeter equation is reconsidered in order to take into account sound speed fluctuations and turbulent velocity fluctuations. It allows deriving an integral equation that relates the correlation functions of travel time, sound speed fluctuations and turbulent velocity fluctuations. Experimentally measured travel time statistics of data with and without grid heating are approximated by an exponential function and used to analytically solve the integral equation. The reconstructed correlation functions of the turbulent velocity and sound speed fluctuations are presented. The power spectral density of the turbulent velocity and sound speed fluctuations are calculated.

  11. Determination of correlation functions of turbulent velocity and sound speed fluctuations by means of ultrasonic technique

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, Tatiana A. [Saint-Petersburg State Polytechnic University, Department of Mathematical Sciences, Saint-Petersburg (Russian Federation); Durgin, William W. [California Polytechnic State University, Department of Mechanical Engineering, San Luis Obispo, CA (United States)

    2011-12-15

    An experimental study of the propagation of high-frequency acoustic waves through grid-generated turbulence by means of an ultrasound technique is discussed. Experimental data were obtained for ultrasonic wave propagation downstream of heated and non-heated grids in a wind tunnel. A semi-analytical acoustic propagation model that allows the determination of the spatial correlation functions of the flow field is developed based on the classical flowmeter equation and the statistics of the travel time of acoustic waves traveling through the kinematic and thermal turbulence. The basic flowmeter equation is reconsidered in order to take into account sound speed fluctuations and turbulent velocity fluctuations. It allows deriving an integral equation that relates the correlation functions of travel time, sound speed fluctuations and turbulent velocity fluctuations. Experimentally measured travel time statistics of data with and without grid heating are approximated by an exponential function and used to analytically solve the integral equation. The reconstructed correlation functions of the turbulent velocity and sound speed fluctuations are presented. The power spectral density of the turbulent velocity and sound speed fluctuations are calculated. (orig.)

  12. On the experimental prediction of the stability threshold speed caused by rotating damping

    Science.gov (United States)

    Vervisch, B.; Derammelaere, S.; Stockman, K.; De Baets, P.; Loccufier, M.

    2016-08-01

    An ever increasing demand for lighter rotating machinery and higher operating speeds results in a raised probability of instabilities. Rotating damping is one of the reasons, instability occurs. Rotating damping, or rotor internal damping, is the damping related to all rotating parts while non-rotating damping appearing in the non-rotating parts. The present study describes a rotating setup, designed to investigate rotating damping experimentally. An efficient experimental procedure is presented to predict the stability threshold of a rotating machine. The setup consists of a long thin shaft with a disk in the middle and clamped boundary conditions. The goal is to extract the system poles as a function of the rotating speed. The real parts of these poles are used to construct the decay rate plot, which is an indication for the stability. The efficiency of the experimental procedure relies on the model chosen for the rotating shaft. It is shown that the shaft behavior can be approximated by a single degree of freedom model that incorporates a speed dependent damping. As such low measurement effort and only one randomly chosen measurement location are needed to construct the decay rate plot. As an excitation, an automated impact hammer is used and the response is measured by eddy current probes. The proposed method yields a reliable prediction of the stability threshold speed which is validated through measurements.

  13. Treatment of open tibial shaft fracture with soft tissue and bone defect caused by aircraft bomb: Case report

    Directory of Open Access Journals (Sweden)

    Golubović Zoran

    2010-01-01

    Full Text Available Introduction. Aircraft bombs can cause severe orthopaedic injuries. Tibia shaft fractures caused by aircraft bombs are mostly comminuted and followed by bone defects, which makes the healing process extremely difficult and prone to numerous complications. The goal of this paper is to present the method of treatment and the end results of treatment of a serious open tibial fracture with soft and bone tissue defects resulting from aircraft bomb shrapnel wounds. Case Outline. A 26-year-old patient presented with a tibial fracture as the result of a cluster bomb shrapnel wound. He was treated applying the method of external bone fixation done two days after wounding, as well as of early coverage of the lower leg soft tissue defects done on the tenth day after the external fixation of the fracture. The external fixator was removed after five months, whereas the treatment was continued by means of functional plaster cast for another two months. The final functional result was good. Conclusion. Radical wound debridement, external bone fixation of the fracture, and early reconstruction of any soft tissue and bone defects are the main elements of the treatment of serious fractures.

  14. Improvements on computations of high speed propeller unsteady aerodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bousquet, J.M.; Gardarein, P. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    2003-09-01

    This paper presents the application of the CANARI flow solver to the computation of unsteady effects in the aerodynamic interaction of a high speed propeller with the aircraft. The method is first validated on the APIAN isolated propeller test case by comparison with experiment at M = 0.7. The method is then applied to the time accurate 3D Euler computation of a generic transport aircraft at M = 0.68. Analysis of the results shows significant unsteady effects both on the propeller forces and on the wing aerodynamic flows, by comparison with steady computations. (authors)

  15. Diagnosis of power generator sets by analyzing the crank shaft angular speed

    International Nuclear Information System (INIS)

    This thesis deals with the diagnosis of a powerful 20-cylinder diesel engine which runs a generator set in a nuclear plant. The objective is to make a diagnosis by analyzing the crank shaft angular speed variations. Only combustion related faults are investigated. As the engine is very large, the first crank shaft natural modes are in the low frequencies. Torsional vibrations of the flexible crank shaft strongly complicate the analysis of the angular speed variations. Little attention has been paid to such large engines in the literature. First, a dynamical model with the assumption of a flexible crank shaft is established. The parameters of the model are optimized with the help of actual data. Then, an original automated diagnosis based on pattern recognition of the angular speed waveforms is proposed. Indeed, any faulty cylinder in combustion stroke will distort the angular speed waveform in a specific way which depends on its location with respect to nodes and anti-nodes of the modes. Reference patterns, representative of the engine conditions, are computed with the model constituting the main originality of this work. Promising results are obtained in operational phase. An experimental fuel leakage fault was correctly diagnosed, including detection and localization of the faulty cylinder and an indication of the severity of the fault. (author)

  16. Intra-limb coordination while walking is affected by cognitive load and walking speed.

    Science.gov (United States)

    Ghanavati, Tabassom; Salavati, Mahyar; Karimi, Noureddin; Negahban, Hossein; Ebrahimi Takamjani, Ismail; Mehravar, Mohammad; Hessam, Masumeh

    2014-07-18

    Knowledge about intra-limb coordination (ILC) during challenging walking conditions provides insight into the adaptability of central nervous system (CNS) for controlling human gait. We assessed the effects of cognitive load and speed on the pattern and variability of the ILC in young people during walking. Thirty healthy young people (19 female and 11 male) participated in this study. They were asked to perform 9 walking trials on a treadmill, including walking at three paces (preferred, slower and faster) either without a cognitive task (single-task walking) or while subtracting 1׳s or 3׳s from a random three-digit number (simple and complex dual-task walking, respectively). Deviation phase (DP) and mean absolute relative phase (MARP) values-indicators of variability and phase dynamic of ILC, respectively-were calculated using the data collected by a motion capture system. We used a two-way repeated measure analysis of variance for statistical analysis. The results showed that cognitive load had a significant main effect on DP of right shank-foot and thigh-shank, left shank-foot and pelvis-thigh (peffect of walking speed was significant on DP of all segments in each side and MARP of both thigh-shank and pelvis-thigh segments (pcognitive load and walking speed was only significant for MARP values of left shank-foot and right pelvis-thigh (pcognitive load and speed could significantly affect the ILC and variability and phase dynamic during walking. PMID:24861632

  17. 19 CFR 122.132 - Sealing of aircraft liquor kits.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Sealing of aircraft liquor kits. 122.132 Section... OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Liquor Kits § 122.132 Sealing of aircraft liquor kits. (a) Sealing required. Aircraft liquor kits shall be sealed on board the aircraft by...

  18. Seat Capacity Selection for an Advanced Short-Haul Aircraft Design

    Science.gov (United States)

    Marien, Ty V.

    2016-01-01

    A study was performed to determine the target seat capacity for a proposed advanced short-haul aircraft concept projected to enter the fleet by 2030. This analysis projected the potential demand in the U.S. for a short-haul aircraft using a transportation theory approach, rather than selecting a target seat capacity based on recent industry trends or current market demand. A transportation systems model was used to create a point-to-point network of short-haul trips and then predict the number of annual origin-destination trips on this network. Aircraft of varying seat capacities were used to meet the demand on this network, assuming a single aircraft type for the entire short-haul fleet. For each aircraft size, the ticket revenue and operational costs were used to calculate a total market profitability metric for all feasible flights. The different aircraft sizes were compared, based on this market profitability metric and also the total number of annual round trips and markets served. Sensitivity studies were also performed to determine the effect of changing the aircraft cruise speed and maximum trip length. Using this analysis, the advanced short-haul aircraft design team was able to select a target seat capacity for their design.

  19. Characterization of non-methane hydrocarbons in Asian summer monsoon outflow observed by the CARIBIC aircraft

    Directory of Open Access Journals (Sweden)

    A. K. Baker

    2010-07-01

    Full Text Available Between April and December 2008 the CARIBIC commercial aircraft conducted monthly measurement flights between Frankfurt, Germany and Chennai, India. These flights covered the period of the Asian summer monsoon (June–September, during which enhancements in a number of atmospheric species were observed in monsoon outflow. In addition to in situ measurements of trace gases and aerosols, whole air samples were collected during the flights, and these were subsequently analyzed for a suite of trace gases that included the non-methane hydrocarbons. Non-methane hydrocarbons are relatively short-lived compounds and the large enhancements in their mixing ratios in the upper troposphere over Southwest Asia between June and September, sometimes more than double their spring and fall means, provides qualitative evidence for the influence of convectively uplifted boundary layer air. The particularly large enhancements of the combustion tracers benzene and ethyne, along with the similarity of their ratios to carbon monoxide and emission ratios from the burning of household biofuels, indicate a strong influence of biofuel burning to NMHC emissions in this region. Conversely, the ratios of ethane and propane to carbon monoxide, along with the ratio between i-butane and n-butane, indicate a significant source of these compounds from the use of LPG and natural gas, and comparison to previous campaigns suggests that this source could be increasing. Photochemical aging patterns of NMHCs showed that the CARIBIC samples were collected in two distinctly different regions of the monsoon circulation: a southern region where air masses had been recently influenced by low level contact and a northern region, where air parcels had spent substantial time in transit in the upper troposphere before being probed. Estimates of age using ratios of individual NMHCs have ranges of 3–6 d in the south and 9–12 d in the north.

  20. Aircraft cybernetics

    Science.gov (United States)

    1977-01-01

    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  1. Insights Into Precipitation Processes As Revealed By Profiling Radar, Disdrometer and Aircraft Observations During The MC3E Campaign.

    Science.gov (United States)

    Giangrande, S. E.; Toto, T.; Mishra, S.; Ryzhkov, A.; Bansemer, A.; Kumjian, M.

    2014-12-01

    The Midlatitude Continental Convective Clouds Experiment (MC3E) was a collaborative campaign led by the National Aeronautic and Space Administration's (NASA's) Global Precipitation Measurement (GPM) mission and the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program. This campaign was held at the DOE ARM Southern Great Plains (SGP) Central Facility (CF) in north-central Oklahoma, with the programs joining forces to deploy an extensive array of airborne, radiosonde and ground-based instrumentation towards an unprecedented set of deep convective environment and cloud property observations. An overarching motivation was to capitalize on the wealth of aircraft observations and new multi-frequency dual-polarization radars to provide insights for improving the treatments of cloud processes in convective models. This study considers a coupled aircraft, radar and surface disdrometer approach for identifying key cloud processes and linking those to possible radar-based microphysical fingerprints and/or cloud properties. Our emphasis is on the MC3E observations collected during aircraft spirals over the column of the ARM CF. We focus on those spirals associated with radar 'bright band' signatures and Doppler spectral anomalies observed within trailing stratifrom precipitation. Two cases are highlighted, one following a weaker convective event, and one following a stronger squall line. For each event, we investigate the usefulness of radar to inform on processes including aggregation and riming as viewed by the vertically-pointing ARM wind profiler (915 MHz) and cloud radar Doppler spectral observations (35 GHz). Matching dual-polarization radar signatures from nearby cm-wavelength radar are also consulted for complementary insights. For one event, the successive Citation II aircraft spirals through the melting layer and associated ground observations indicate a fortunate capture of the transition from a region of riming to one favoring aggregation

  2. Implementation of the perfect state transfer speeded up by three- spin interactions using nuclear magnetic resonance

    CERN Document Server

    Zhang, J; Suter, D; Peng, Xinhua; Suter, Dieter; Zhang, Jingfu

    2005-01-01

    The speed of perfect state transfer (PST) can be increased by the three- spin interactions in the spin XY chain. By decomposing the evolution of the spin XY chain with three- spin interactions into a series of single- spin rotations and the J- coupling evolutions between the neighboring spins, we simulate such a chain and implement the stepped-up PST using a nuclear magnetic resonance (NMR) quantum computer.

  3. Brain white matter lesions detected by magnetic resosnance imaging are associated with balance and gait speed

    OpenAIRE

    John M Starr; Leaper, S A; Murray, A D; Lemmon, H A; Staff, R T; Deary, Ian J.; Whalley, Lawrence J.

    2003-01-01

    Objective: To investigate the relations between premorbid and current mental ability, mood, and white matter signal abnormalities detected by T2 weighted brain magnetic resonance imaging (MRI) and impairment of balance and mobility in older adults. Methods: 97 subjects from the Aberdeen 1921 birth cohort underwent brain MRI, evaluation of balance, and measurement of gait speed. White matter hyperintensities detected on T2 weighted MRI scans were rated by three independent raters on three ...

  4. High-speed monodisperse droplet generation by ultrasonically controlled micro-jet breakup

    Science.gov (United States)

    Frommhold, Philipp Erhard; Lippert, Alexander; Holsteyns, Frank Ludwig; Mettin, Robert

    2014-04-01

    A liquid jet that is ejected from a nozzle into air will disintegrate into drops via the well-known Plateau-Rayleigh instability within a certain range of Ohnesorge and Reynolds numbers. With the focus on the micrometer scale, we investigate the control of this process by superimposing a suitable ultrasonic signal, which causes the jet to break up into a very precise train of monodisperse droplets. The jet leaves a pressurized container of liquid via a small orifice of about 20 μm diameter. The break-up process and the emerging droplets are recorded via high-speed imaging. An extended parameter study of exit speed and ultrasonic frequency is carried out for deionized water to evaluate the jet's state and the subsequent generation of monodisperse droplets. Maximum exit velocities obtained reach almost 120 m s-1, and frequencies have been applied up to 1.8 MHz. Functionality of the method is confirmed for five additional liquids for moderate jet velocities 38 m s-1. For the uncontrolled jet disintegration, the drop size spectra revealed broad distributions and downstream drop growth by collision, while the acoustic control generated monodisperse droplets with a standard deviation less than 0.5 %. By adjustment of the acoustic excitation frequency, drop diameters could be tuned continuously from about 30 to 50 μm for all exit speeds. Good agreement to former experiments and theoretical approaches is found for the relation of overpressure and jet exit speed, and for the observed stability regions of monodisperse droplet generation in the parameter plane of jet speed and acoustic excitation frequency. Fitting of two free parameters of the general theory to the liquids and nozzles used is found to yield an even higher precision. Furthermore, the high-velocity instability limit of regular jet breakup described by von Ohnesorge has been superseded by more than a factor of two without entering the wind-induced instability regime, and monodisperse droplet generation was

  5. Direct Measurement of Light Speed Reduction in a Rubidium Vapour Medium Coherently Prepared by Electromagnetically Induced Transparency

    Institute of Scientific and Technical Information of China (English)

    涂鲜花; 王谨; 江开军; 何明; 李可; 仲嘉琪; 詹明生

    2003-01-01

    We have experimentally observed the reduction of light speed in a rubidium vapour medium coherently prepared by electromagnetically induced transparency.The light speed reduction was deduced by directly measuring the time delay of a probe light when it passed through the medium.The time delay varies with the intensity of the coupling laser,and the typical time delay we recorded was 1.8 μs,corresponding to a light speed of 56000m/s.

  6. Non-intrusive measurement of emission indices. A new approach to the evaluation of infrared spectra emitted by aircraft engine exhaust gases

    Energy Technology Data Exchange (ETDEWEB)

    Lindermeir, E.; Haschberger, P.; Tank, V. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Optoelektronik

    1997-12-31

    A non-intrusive method is used to determine the emission indices of a research aircraft`s engine in-flight. The principle is based on the Fourier Transform Infrared Spectrometer MIROR which was specifically designed and built for operation aboard aircrafts. This device measures the spectrum of the infrared radiation emitted by the hot exhaust gas under cruise conditions. From these spectra mixing ratios and emission indices can be derived. An extension to previously applied evaluation schemes is proposed: Whereas formerly the plume was assumed a homogeneous layer of gas, temperature and concentration profiles are now introduced to the evaluation procedure. (author) 5 refs.

  7. Evaluation of Travelling Vortex Speed by Means of Dynamic Mode Decomposition and Residual Vorticity

    Science.gov (United States)

    Hyhlík, Tomáš; Netřebská, Hana

    2016-03-01

    The article deals with the analysis of synthetic jet flow field by means of dynamic mode decomposition (DMD) method. The speed of travelling vortex ring which is connected with synthetic jet creation is evaluated using the wavelength identified from DMD modes. Vortices are identified in the DMD modes by using residual vorticity which allows to identify regions in the flow field where fluid particles perform rotational motion. The analysis is based on the data from the numerical simulation of synthetic jet into quiescent air by using ANSYS Fluent code. The regime of synthetic jet with Re = 329 and Stk = 19.7 is chosen. An increase in the vortex speed close to the orifice and then the decrease is observed with maximum reaching almost one and half of averaged blowing orifice centerline velocity.

  8. Propagation speed in a strip bounded by a line with different diffusion

    Science.gov (United States)

    Tellini, Andrea

    2016-04-01

    In this paper we consider a model for the diffusion of a population in a strip-shaped field, where the growth of the species is governed by a Fisher-KPP equation and which is bounded on one side by a road where the species can have a different diffusion coefficient. Dirichlet homogeneous boundary conditions are imposed on the other side of the strip. We prove the existence of an asymptotic speed of propagation which is greater than the one of the case without road and study its behavior for small and large diffusions on the road. Finally we prove that, when the width of the strip goes to infinity, the asymptotic speed of propagation approaches the one of a half-plane bounded by a road, case that has been recently studied in [2,3].

  9. Modelling of the automatic stabilization system of the aircraft course by a fuzzy logic method

    Science.gov (United States)

    Mamonova, T.; Syryamkin, V.; Vasilyeva, T.

    2016-04-01

    The problem of the present paper concerns the development of a fuzzy model of the system of an aircraft course stabilization. In this work modelling of the aircraft course stabilization system with the application of fuzzy logic is specified. Thus the authors have used the data taken for an ordinary passenger plane. As a result of the study the stabilization system models were realised in the environment of Matlab package Simulink on the basis of the PID-regulator and fuzzy logic. The authors of the paper have shown that the use of the method of artificial intelligence allows reducing the time of regulation to 1, which is 50 times faster than the time when standard receptions of the management theory are used. This fact demonstrates a positive influence of the use of fuzzy regulation.

  10. Innovative production technology in aircraft construction: CIAM Forming 'made by MBB' - A highly productive example

    Science.gov (United States)

    A novel production technology in aircraft construction was developed for manufacturing parts of shapes and dimensions that involve only small quantities for one machine. The process, called computerized integrated and automated manufacturing (CIAM), makes it possible to make ready-to-install sheet-metal parts for all types of aircraft. All of the system's job sequences, which include milling the flat sheet-metal parts in stacks, deburring, heat treatment, and forming under the high-pressure rubber-pad press, are automated. The CIAM production center, called SIAM Forming, fulfills the prerequisites for the cost-effective production of sheet-metal parts made of aluminum alloys, titanium, or steel. The SIAM procedure results in negligible material loss through computerizing both component-contour nesting of the sheet-metal parts and contour milling.

  11. Greenhouse effects of aircraft emissions as calculated by a radiative transfer model

    OpenAIRE

    Fortuin, J.P.F.; Dorland, R.; Wauben, W. M. F.; Kelder, H.

    1995-01-01

    With a radiative transfer model, assessments are made of the radiative forcing in northern mid-latitudes due to aircraft emissions up to 1990. Considered are the direct climate effects from the major combustion products carbon dioxide, nitrogen dioxide, water vapor and sulphur dioxide, as well as the indirect effect of ozone production from NOx emissions. Our study indicates a local radiative forcing at the tropopause which should be negative in summe...

  12. Rotation speed measurement for turbine governor: torsion filtering by using Kalman filter

    International Nuclear Information System (INIS)

    The rotation speed of a turbogenerator is disturbed by its shaft torsion. Obtaining a filtered measure of this sped a problem of a great practical importance for turbine governor. A good filtering of this speed must meet two requirements: it must cut frequencies of the shaft torsion oscillation and it must not reduce or delay the signal in the pass-band. i.e. at lower frequencies. At Electricite de France, the speed measure is used to set in motion the fast valving system as quickly as possible, after a short circuit close to the unit (to contribute to the stability) or after an islanding (to quickly reach a balance with the house load). It is difficult to satisfy these two requirements by using conventional filtering methods. The standard solution consists in a first order filter: at Electricite de France, its time constant is equal to 80 ms; We have decided to improve this filtering by designing a new filter which cuts the frequencies of the shaft torsion oscillation without reducing the bandwidth of the speed measure. If one uses conventional methods to obtain a band-stop filter (for instance a Butterworth, a Chebyshev or an elliptic band-stop filter),it is easy to obtain the desired magnitude but not a phase near zero in the whole pass-band. Therefore, we have chosen to design the filter by using Kalman's theory. The measurement noise is modeled as a colored one, generated by a very lightly damped system driven by a white noise. The resulting Kalman filter is an effective band-stop filter, whose phase nicely remains near zero in the whole pass-band. (authors). 13 refs., 12 figs

  13. Optimization of cold rolling process parameters in order to increasing rolling speed limited by chatter vibrations

    Directory of Open Access Journals (Sweden)

    Ali Heidari

    2013-01-01

    Full Text Available Chatter has been recognized as major restriction for the increase in productivity of cold rolling processes, limiting the rolling speed for thin steel strips. It is shown that chatter has close relation with rolling conditions. So the main aim of this paper is to attain the optimum set points of rolling to achieve maximum rolling speed, preventing chatter to occur. Two combination methods were used for optimization. First method is done in four steps: providing a simulation program for chatter analysis, preparing data from simulation program based on central composite design of experiment, developing a statistical model to relate system tendency to chatter and rolling parameters by response surface methodology, and finally optimizing the process by genetic algorithm. Second method has analogous stages. But central composite design of experiment is replaced by Taguchi method and response surface methodology is replaced by neural network method. Also a study on the influence of the rolling parameters on system stability has been carried out. By using these combination methods, new set points were determined and significant improvement achieved in rolling speed.

  14. AIRTV: Broadband Direct to Aircraft

    Science.gov (United States)

    Sorbello, R.; Stone, R.; Bennett, S. B.; Bertenyi, E.

    2002-01-01

    Airlines have been continuously upgrading their wide-body, long-haul aircraft with IFE (in-flight entertainment) systems that can support from 12 to 24 channels of video entertainment as well as provide the infrastructure to enable in-seat delivery of email and internet services. This is a direct consequence of increased passenger demands for improved in-flight services along with the expectations that broadband delivery systems capable of providing live entertainment (news, sports, financial information, etc.) and high speed data delivery will soon be available. The recent events of Sept. 11 have slowed the airline's upgrade of their IFE systems, but have also highlighted the compelling need for broadband aeronautical delivery systems to include operational and safety information. Despite the impact of these events, it is estimated that by 2005 more than 3000 long haul aircraft (servicing approximately 1 billion passengers annually) will be fully equipped with modern IFE systems. Current aircraft data delivery systems, which use either Inmarsat or NATS, are lacking in bandwidth and consequently are unsuitable to satisfy passenger demands for broadband email/internet services or the airlines' burgeoning data requirements. Present live video delivery services are limited to regional coverage and are not readily expandable to global or multiregional service. Faced with a compelling market demand for high data transport to aircraft, AirTV has been developing a broadband delivery system that will meet both passengers' and airlines' needs. AirTV is a global content delivery system designed to provide a range of video programming and data services to commercial airlines. When AirTV is operational in 2004, it will provide a broadband connection directly to the aircraft, delivering live video entertainment, internet/email service and essential operational and safety data. The system has been designed to provide seamless global service to all airline routes except for those

  15. Time series and correlation of pulsations observed simultaneously by two aircraft

    International Nuclear Information System (INIS)

    Geomagnetic pulsations are an interesting and ubiquitous component of the geomagnetic field and they have been studied extensively for several decades. Numerous comparisons have been made of pulsations at a variety of sites for various objectives. However, conductivity anomalies introduce a number of complexities into the interpretations of pulsations at ground sites through the action of the primary fields on the electrical properties of the local geologic structure. To avoid the difficulties associated with conductivity irregularities, Ochadlick et al. [1985] described an aeromagnetic approach using two aircraft for studying the relationship between pulsations observed over a deep ocean area. Relative to land regions, a deep sea is presumably a more uniform conductor. Using the dual aeromagnetic results, Ochadlick found that the correlation coefficient of pulsations remained relatively constant for observation points spaced apart from a few to about 150 km. Beyond 150 km the correlation coefficient was found to decrease. This letter summarizes the time series records of pulsations, totaling about 9 h, acquired during several dual aircraft flights performed between 20 May and 15 Aug 1985 and presents the associated correlation coefficient between the dual aircraft data sets. Apparently, those measurements show for the first time that a strong similarity of pulsations weakens quickly at a distance of ∼150 km which is remarkably close to the ionospheric height and is thus suggestive of a strong ionospheric control on the spatial coherence of pulsations

  16. Orientational fluctuation study in nematic liquid crystals by high speed micrograph

    Science.gov (United States)

    Yoon, Beom-Jin; Park, Min Sang; Park, Jung O.; Srinivasarao, Mohan

    2009-03-01

    The orientational fluctuations in uniaxial and biaxial nematic liquid crystals were investigated with a polarized microscope and a high speed TV camera. Liquid crystals usually have fluctuations with respect to their director, even when the molecular axes tend to be aligned to each other. These fluctuations are sufficiently slow and large, have long wave length and increase with temperature. Herein, we describe our study on fluctuation dynamics by direct observations in real space, while it has been typically done by the photon scattering in reciprocal space. The twinkling of liquid crystals due to orientational fluctuations was observed with a high speed camera up to 500 frames/sec. The time correlation function of the intensity was computed via 2D spatial Fourier transform of each image and then the relaxation frequency was estimated from it. The elastic constant to the viscosity ratio was computed from the relaxation frequency. This approach provides facile route to analyze fluctuation dynamics in liquid crystals.

  17. A NEW METHOD TO DETECT REGIONS ENDANGERED BY HIGH WIND SPEEDS

    Directory of Open Access Journals (Sweden)

    P. Fischer

    2016-06-01

    Full Text Available In this study we evaluate whether the methodology of Boosted Regression Trees (BRT suits for accurately predicting maximum wind speeds. As predictors a broad set of parameters derived from a Digital Elevation Model (DEM acquired within the Shuttle Radar Topography Mission (SRTM is used. The derived parameters describe the surface by means of quantities (e.g. slope, aspect and quality (landform classification. Furthermore land cover data from the CORINE dataset is added. The response variable is maximum wind speed, measurements are provided by a network of weather stations. The area of interest is Switzerland, a country which suits perfectly for this study because of its highly dynamic orography and various landforms.

  18. Estimation of extreme wind speed in SCS and NWP by a non-stationary model

    OpenAIRE

    Lizhen Wang; Jiachun Li

    2016-01-01

    In offshore engineering design, it is considerably significant to have an adequately accurate estimation of marine environmental parameters, in particular, the extreme wind speed of tropical cyclone (TC) with different return periods to guarantee the safety in projected operating life period. Based on the 71-year (1945–2015) TC data in the Northwest Pacific (NWP) by the Joint Typhoon Warning Center (JTWC) of US, a notable growth of the TC intensity is observed in the context of climate change...

  19. Rail temperature rise characteristics caused by linear eddy current brake of high-speed train

    OpenAIRE

    Xiaoshan Lu; Yunfeng Li; Mengling Wu; Jianyong Zuo; Wei Hu

    2014-01-01

    The rail temperature rises when the linear eddy current brake of high-speed train is working, which may lead to a change of rail physical characteristics or an effect on train operations. Therefore, a study concerning the characteristics of rail temperature rise caused by eddy current has its practical necessity. In the research, the working principle of a linear eddy current brake is introduced and its FEA model is established. According to the generation mechanism of eddy current, the theor...

  20. Aerobic and anaerobic swimming speeds of spermatozoa investigated by twin beam laser velocimetry.

    OpenAIRE

    Wilson, M C; Harvey, J D; Shannon, P.

    1987-01-01

    The motility of bovine and ovine spermatozoa has been studied under aerobic and anaerobic conditions, using a dual beam laser velocimeter. Cells swimming under aerobic conditions were found to be characterized by a translational swimming speed and a rotation rate that were approximately double those of cells swimming in an anaerobic environment. Both types of spermatozoa have been found to exhibit a sudden coordinated transition between fast and slow swimming states when the available oxygen ...

  1. Rail temperature rise characteristics caused by linear eddy current brake of high-speed train

    Directory of Open Access Journals (Sweden)

    Xiaoshan Lu

    2014-12-01

    Full Text Available The rail temperature rises when the linear eddy current brake of high-speed train is working, which may lead to a change of rail physical characteristics or an effect on train operations. Therefore, a study concerning the characteristics of rail temperature rise caused by eddy current has its practical necessity. In the research, the working principle of a linear eddy current brake is introduced and its FEA model is established. According to the generation mechanism of eddy current, the theoretical formula of the internal energy which is produced by the eddy current is deduced and the thermal load on the rail is obtained. ANSYS is used to simulate the rail temperature changes under different conditions of thermal loads. The research result shows the main factors which contribute to the rising of rail temperature are the train speed, brake gap and exciting current. The rail temperature rises non-linearly with the increase of train speed. The rail temperature rise curve is more sensitive to the exciting current than the air gap. Moreover, the difference stimulated by temperature rising between rails of 60 kg/m and 75 kg/m is presented as well.

  2. Front Speed Enhancement by Incompressible Flows in Three or Higher Dimensions

    Science.gov (United States)

    El Smaily, Mohammad; Kirsch, Stéphane

    2014-07-01

    We study, in dimensions N ≥ 3, the family of first integrals of an incompressible flow: these are functions whose level surfaces are tangential to the streamlines of the advective incompressible field. One main motivation for this study comes from earlier results proving that the existence of nontrivial first integrals of an incompressible flow q is the main key that leads to a "linear speed up" by a large advection of pulsating traveling fronts solving a reaction-advection-diffusion equation in a periodic heterogeneous framework. The family of first integrals is not well understood in dimensions N ≥ 3 due to the randomness of the trajectories of q and this is in contrast with the case N = 2. By looking at the domain of propagation as a union of different components produced by the advective field, we provide more information about first integrals and we give a class of incompressible flows which exhibit "ergodic components" of positive Lebesgue measure (and hence are not shear flows) and which, under certain sharp geometric conditions, speed up the KPP fronts linearly with respect to the large amplitude. In the proofs, we establish a link between incompressibility, ergodicity, first integrals and the dimension to give a sharp condition about the asymptotic behavior of the minimal KPP speed in terms of the configuration of ergodic components.

  3. Speeding or not speeding? When subjective assessment of safe, pleasurable and risky speeds determines speeding behaviour

    Directory of Open Access Journals (Sweden)

    Florent Lheureux

    2012-01-01

    Full Text Available It is hypothesized that in a given situation speeding behaviour is determined by three subjective speed assessments: the speed perceived as the riskiest, the speed perceived as the safest, and the speed perceived as the most pleasurable. Specifically, if these assessments are high, drivers are expected to circulate faster. Such speed perceptions are also viewed as influenced by attitudes towards speed and speed limits. 177 car drivers, included 102 men and 75 women between 18 and 72 years (M = 43, SD = 21 and with a mean driving experience of 22 years (SD = 19, answered to a questionnaire about their attitudes towards speed and speed limits, the speeds they considered as the riskiest, the safest, and the most pleasurable in three different contexts, as well as their usual speed. Data analyses (ANOVA and path analyses confirmed the influence of the three types of speed assessment on the usual speed and that the influence of attitudes on this behaviour is mediated by these three assessments. Results suggest that not only a change in attitudes and beliefs is desirable, but a concrete specification (e.g., 100 Km/h of speeds perceived as safe, pleasurable and risky is also needed in order to reduce speeding behaviour.

  4. MISSILES AND AIRCRAFT (PART1

    Directory of Open Access Journals (Sweden)

    C.M. Meyer

    2012-02-01

    Full Text Available Many sources maintain that the role played by air power in the 1973 Yom Kippur War was important. Other interpretations state that control of air space over the battlefield areas, (either by aircraft or anti-aircraft defences, was vital.

  5. Characterization of energetic devices for thermal battery applications by high-speed photography

    Energy Technology Data Exchange (ETDEWEB)

    Dosser, L.R. [EG and G Mound Applied Technologies, Miamisburg, OH (United States); Guidotti, R. [Sandia National Labs., Albuquerque, NM (United States)

    1993-12-31

    High-speed photography at rates of up to 20,000 images per second was used to measure these properties in thermal battery igniters and also the ignition of thermal battery itself. By synchronizing a copper vapor laser to the high-speed camera, laser-illuminated images recorded details of the performance of a component. Output characteristics of several types of hermetically-sealed igniters using a TiH{chi}/KCIO{sub 4} pyrotechnic blend were measured as a function of the particle size of the pyrotechnic fuel and the closure disc thickness. The igniters were filmed under both ambient (i.e., unconfined) and confined conditions. Recently, the function of the igniter in a cut-away section of a ``mock`` thermal battery has been filmed. Partial details of these films are discussed in this paper, and selected examples of the films will be displayed via video tape during the presentation of the paper.

  6. Interplay between path and speed in decision making by high-dimensional stochastic gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Nuno R Nené

    Full Text Available Induction of a specific transcriptional program by external signaling inputs is a crucial aspect of intracellular network functioning. The theoretical concept of coexisting attractors representing particular genetic programs is reasonably adapted to experimental observations of "genome-wide" expression profiles or phenotypes. Attractors can be associated either with developmental outcomes such as differentiation into specific types of cells, or maintenance of cell functioning such as proliferation or apoptosis. Here we review a mechanism known as speed-dependent cellular decision making (SdCDM in a small epigenetic switch and generalize the concept to high-dimensional space. We demonstrate that high-dimensional network clustering capacity is dependent on the level of intrinsic noise and the speed at which external signals operate on the transcriptional landscape.

  7. Dynamic response of arch bridges traversed by high-speed trains

    Science.gov (United States)

    Lacarbonara, Walter; Colone, Valerio

    2007-07-01

    A mechanical model describing the planar elasto-dynamics of arch bridges with general arch profiles is presented. The model is amenable to analytical or semi-analytical treatments and is effective for parametric studies, design of control systems or structural optimizations. The Ritz's energy approach is employed to calculate the solutions of the vibration eigenvalue problem—natural frequencies and mode shapes—and the forced responses to external excitations, namely those induced by the passage of trains. A closed-form solution of the bridge dynamic response to the transit of trains with arbitrary load distributions and running speeds is found and the train-induced resonances are accordingly discussed. In particular, three European high-speed trains—the French TGV, the Italian ETR 500, and the German ICE—traversing a lower-deck steel arch bridge are considered and the ensuing responses are investigated.

  8. Variable speed wind turbine control by discrete-time sliding mode approach.

    Science.gov (United States)

    Torchani, Borhen; Sellami, Anis; Garcia, Germain

    2016-05-01

    The aim of this paper is to propose a new design variable speed wind turbine control by discrete-time sliding mode approach. This methodology is designed for linear saturated system. The saturation constraint is reported on inputs vector. To this end, the back stepping design procedure is followed to construct a suitable sliding manifold that guarantees the attainment of a stabilization control objective. It is well known that the mechanisms are investigated in term of the most proposed assumptions to deal with the damping, shaft stiffness and inertia effect of the gear. The objectives are to synthesize robust controllers that maximize the energy extracted from wind, while reducing mechanical loads and rotor speed tracking combined with an electromagnetic torque. Simulation results of the proposed scheme are presented. PMID:26804750

  9. Pulsed-Magnetic Processing and Its Application in the Aircraft Industry in Russia

    Institute of Scientific and Technical Information of China (English)

    V.A.Glushchenkov

    2007-01-01

      Pulse-magnetic technology occupies one of technological fields in up-to-day aircraft manufacturing.This method of processing belongs to high-speed dynamical methods of processing,which are characterized by parameters providing high quality of finished products and save on material and labour costs.……

  10. National General Aviation Roadmap Definition for a Small Aircraft Transportation System Concept

    Science.gov (United States)

    Holmes, Bruce J.

    2000-01-01

    This paper presents trends and forces that shape 21 st century demand for higher-speed personal air transportation and outlines guidance developed by NASA in partnership with other federal and state government and industry partners, for Small Aircraft Transportation System (SATS) investment and partnership planning.

  11. High-speed camera analysis for nanoparticles produced by using a pulsed wire-discharge method

    Science.gov (United States)

    Kim, Jong Hwan; Kim, Dae Sung; Ryu, Bong Ki; Suematsu, Hisayuki; Tanaka, Kenta

    2016-07-01

    We investigated the performance of a high-speed camera and the nanoparticle size distribution to quantify the mechanism of synthesized nanoparticle formation in a pulsed wire discharge (PWD) experiment. The Sn-58Bi alloy wire was 0.5 mm in diameter and 32 mm long; it was prepared in the PWD chamber, and the evaporation explosion process was observed by using a high-speed camera. In order to vary the conditions and analyze the mechanisms of nanoparticle synthesis in the PWD, we changed the pressure of the N2 gas in the chamber from 25 to 75 kPa. To synthesize nanoparticles on a nano-scale, we fixed the charging voltage at 6 kV, and the high-speed camera captured pictures at 22,500 frames per second. The experimental results show that the electronic explosion process at different N2 gas pressures can be characterized by using the explosion's duration and the explosion's intensity. The experiments at the lowest pressure exhibited a longer explosion duration and a greater intensity. Also, at low pressure, very small nanoparticles with a good dispersion were produced.

  12. Vision-based measurement for rotational speed by improving Lucas-Kanade template tracking algorithm.

    Science.gov (United States)

    Guo, Jie; Zhu, Chang'an; Lu, Siliang; Zhang, Dashan; Zhang, Chunyu

    2016-09-01

    Rotational angle and speed are important parameters for condition monitoring and fault diagnosis of rotating machineries, and their measurement is useful in precision machining and early warning of faults. In this study, a novel vision-based measurement algorithm is proposed to complete this task. A high-speed camera is first used to capture the video of the rotational object. To extract the rotational angle, the template-based Lucas-Kanade algorithm is introduced to complete motion tracking by aligning the template image in the video sequence. Given the special case of nonplanar surface of the cylinder object, a nonlinear transformation is designed for modeling the rotation tracking. In spite of the unconventional and complex form, the transformation can realize angle extraction concisely with only one parameter. A simulation is then conducted to verify the tracking effect, and a practical tracking strategy is further proposed to track consecutively the video sequence. Based on the proposed algorithm, instantaneous rotational speed (IRS) can be measured accurately and efficiently. Finally, the effectiveness of the proposed algorithm is verified on a brushless direct current motor test rig through the comparison with results obtained by the microphone. Experimental results demonstrate that the proposed algorithm can extract accurately rotational angles and can measure IRS with the advantage of noncontact and effectiveness. PMID:27607300

  13. Phase Error Caused by Speed Mismatch Analysis in the Line-Scan Defect Detection by Using Fourier Transform Technique

    Directory of Open Access Journals (Sweden)

    Eryi Hu

    2015-01-01

    Full Text Available The phase error caused by the speed mismatch issue is researched in the line-scan images capturing 3D profile measurement. The experimental system is constructed by a line-scan CCD camera, an object moving device, a digital fringe pattern projector, and a personal computer. In the experiment procedure, the detected object is moving relative to the image capturing system by using a motorized translation stage in a stable velocity. The digital fringe pattern is projected onto the detected object, and then the deformed patterns are captured and recorded in the computer. The object surface profile can be calculated by the Fourier transform profilometry. However, the moving speed mismatch error will still exist in most of the engineering application occasion even after an image system calibration. When the moving speed of the detected object is faster than the expected value, the captured image will be compressed in the moving direction of the detected object. In order to overcome this kind of measurement error, an image recovering algorithm is proposed to reconstruct the original compressed image. Thus, the phase values can be extracted much more accurately by the reconstructed images. And then, the phase error distribution caused by the speed mismatch is analyzed by the simulation and experimental methods.

  14. Experiments on liquid droplet impingement erosion by high-speed spray

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, Nobuyuki, E-mail: fujisawa@eng.niigata-u.ac.jp [Visualization Research Center, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata, Niigata, 950-2181 (Japan); Yamagata, Takayuki, E-mail: yamagata@eng.niigata-u.ac.jp [Visualization Research Center, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata, Niigata, 950-2181 (Japan); Hayashi, Kanto [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata, Niigata, 950-2181 (Japan); Takano, Tsuyoshi [Visualization Research Center, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata, Niigata, 950-2181 (Japan)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer The liquid droplet impingement erosion is studied experimentally. Black-Right-Pointing-Pointer Droplets have a diameter of tens of micrometers in the high-speed spray. Black-Right-Pointing-Pointer Droplet velocity, diameter, number are measured by optical techniques. Black-Right-Pointing-Pointer The erosion rate depends on the droplet velocity to the power of 7. - Abstract: In the present paper, liquid droplet impingement erosion is studied by using a high-speed spray. This experiment allows the evaluation of erosion rate of solid materials due to the impingement of liquid droplets having an order of tens of micrometer in diameter, which corresponds to those of actual conditions in nuclear power plants. The droplet properties are characterized by measuring the droplet velocity by particle image velocimetry, the diameter by shadowgraph and the number of impinging droplets in a unit area by sampling probe. The erosion rate of aluminum material by water droplets is tested by the high-speed spray in some combinations of the distances from the nozzle and droplet velocities. Although the experimental erosion rate in the far field of the nozzle is reproduced by the theoretical erosion model, the erosion rate in the near field does not. This suggests the damping effect of liquid film over the test specimen in the near field. The experimental result also indicates that the erosion rate increases in proportional to the power of 7.0 of droplet velocity in the maximum rate stage. The result indicates a certain degree of deviation from the previous experiment in literature, which may suggest the influence of the droplet diameter and the liquid film on the liquid droplet impingement erosion.

  15. Wind Information Uplink to Aircraft Performing Interval Management Operations

    Science.gov (United States)

    Ahmad, Nashat N.; Barmore, Bryan E.; Swieringa, Kurt A.

    2016-01-01

    Interval Management (IM) is an ADS-B-enabled suite of applications that use ground and flight deck capabilities and procedures designed to support the relative spacing of aircraft (Barmore et al., 2004, Murdoch et al. 2009, Barmore 2009, Swieringa et al. 2011; Weitz et al. 2012). Relative spacing refers to managing the position of one aircraft to a time or distance relative to another aircraft, as opposed to a static reference point such as a point over the ground or clock time. This results in improved inter-aircraft spacing precision and is expected to allow aircraft to be spaced closer to the applicable separation standard than current operations. Consequently, if the reduced spacing is used in scheduling, IM can reduce the time interval between the first and last aircraft in an overall arrival flow, resulting in increased throughput. Because IM relies on speed changes to achieve precise spacing, it can reduce costly, low-altitude, vectoring, which increases both efficiency and throughput in capacity-constrained airspace without negatively impacting controller workload and task complexity. This is expected to increase overall system efficiency. The Flight Deck Interval Management (FIM) equipment provides speeds to the flight crew that will deliver them to the achieve-by point at the controller-specified time, i.e., assigned spacing goal, after the target aircraft crosses the achieve-by point (Figure 1.1). Since the IM and target aircraft may not be on the same arrival procedure, the FIM equipment predicts the estimated times of arrival (ETA) for both the IM and target aircraft to the achieve-by point. This involves generating an approximate four-dimensional trajectory for each aircraft. The accuracy of the wind data used to generate those trajectories is critical to the success of the IM operation. There are two main forms of uncertainty in the wind information used by the FIM equipment. The first is the accuracy of the forecast modeling done by the weather

  16. AIRTV: Broadband Direct to Aircraft

    Science.gov (United States)

    Sorbello, R.; Stone, R.; Bennett, S. B.; Bertenyi, E.

    2002-01-01

    Airlines have been continuously upgrading their wide-body, long-haul aircraft with IFE (in-flight entertainment) systems that can support from 12 to 24 channels of video entertainment as well as provide the infrastructure to enable in-seat delivery of email and internet services. This is a direct consequence of increased passenger demands for improved in-flight services along with the expectations that broadband delivery systems capable of providing live entertainment (news, sports, financial information, etc.) and high speed data delivery will soon be available. The recent events of Sept. 11 have slowed the airline's upgrade of their IFE systems, but have also highlighted the compelling need for broadband aeronautical delivery systems to include operational and safety information. Despite the impact of these events, it is estimated that by 2005 more than 3000 long haul aircraft (servicing approximately 1 billion passengers annually) will be fully equipped with modern IFE systems. Current aircraft data delivery systems, which use either Inmarsat or NATS, are lacking in bandwidth and consequently are unsuitable to satisfy passenger demands for broadband email/internet services or the airlines' burgeoning data requirements. Present live video delivery services are limited to regional coverage and are not readily expandable to global or multiregional service. Faced with a compelling market demand for high data transport to aircraft, AirTV has been developing a broadband delivery system that will meet both passengers' and airlines' needs. AirTV is a global content delivery system designed to provide a range of video programming and data services to commercial airlines. When AirTV is operational in 2004, it will provide a broadband connection directly to the aircraft, delivering live video entertainment, internet/email service and essential operational and safety data. The system has been designed to provide seamless global service to all airline routes except for those

  17. The simulation of the transport of aircraft emissions by a three-dimensional global model

    OpenAIRE

    Velders, G.J.M.; Heijboer, L. C.; Kelder, H.

    1994-01-01

    A three-dimensional off-line tracer transport model coupled to the ECMWF analyses has been used to study the transport of trace gases in the atmosphere. The model gives a reasonable description of their general transport in the atmosphere. The simulation of the transport of aircraft emissions (as NOx) has been studied as well as the transport of passive tracers injected at different altitudes in the North Atlantic flight corridor. A large zonal variation in the NO

  18. A Survey of Jet Aircraft PM by TEM in APEX III

    Science.gov (United States)

    VanderWal, Randy L.; Bryg, Victoria M.

    2014-01-01

    Based upon field testing during the NASA led APEX III campaign conducted in November 2005 at the NASA Glenn Research Center in coordination with Continental Airlines and Cleveland Hopkins International Airport. This paper reports observations of particulate emissions collected from a suite of jet engine aircraft to assess differences and similarities in soot macro- micro- and nanostructure using transmission electron microscopy (TEM). Aggregates are compact, primary particle sizes varied and nanostructure mixed. Comparisons are made to more familiar laboratory flame-generated soot as a well-studied point of reference. Results are interpreted in terms of turbulence interacting with the different stages of particle formation and growth.

  19. Assessment of aircraft structural integrity by detecting disbonds through ultrasonic scanning

    Science.gov (United States)

    Abedin, M. N.; Prabhu, D. R.; Winfree, W. P.

    1992-01-01

    A study of nondestructive evaluation of aircraft bonded joints using the contact scanning technique is presented. Reflected signals acquired through the contacting transducer characterize the test region as being bonded or disbonded. Ultrasonic signals are attenuated more rapidly in the bonded regions when compared to disbonded regions. A peak amplitude based method and an artificial neural network are used to classify the signals. Results obtained using an artificial neural network exhibited significant insensitivity to signal variation when compared to the peak amplitude. Very good agreement is observed between results obtained using the present technique and those obtained using immersion scanning.

  20. A High-Speed Thermoelectric Infrared Sensor Fabricated by CMOS Technology and Micromachining

    Science.gov (United States)

    Hirota, Masaki

    A high-speed thermoelectric infrared sensor has been fabricated by the CMOS process and micromachining. The time constant of the sensor has been reduced by means of a reduction of sensor size and a thin Si3N4 membrane structure. The sensitivity has been improved with a precisely patterned Au black infrared absorption layer formed by a PSG lift-off process. The characteristics of the sensor have been simulated using a thermal equivalent circuit model. A time constant of 270 μsec and sensitivity of 60 V/W at atmospheric pressure have been achieved. This time constant is smaller than any other reported value of thermopiles.

  1. Study of dual implantation into high speed steel by Ti+ and C+ ions

    International Nuclear Information System (INIS)

    The implantation of titanium plus carbon ion into W9Mo3Cr4V high speed steel was conducted in order to improve tribological properties of the steel. Meanwhile the influence of altering Ti and C implantation order on improvements of surface properties of the steel was also investigated. The hardness of implanted surface was evaluated by an ultramicrohardness test and unlubricated friction and wear tests were performed in a reciprocating ball-on-disk-test. It is shown that titanium plus carbon dual implantation increase the microhardness by 25-50 % and decrease the friction coefficient by a factor of 3 over the unimplanted sample

  2. APPLICATION FOR AIRCRAFT TRACKING

    OpenAIRE

    Ostroumov, Ivan; Kuz’menko, Natalia

    2011-01-01

    Abstract. In the article the important problems of software development for aircraft tracking have beendiscussed. Position reports of ACARS have been used for aircraft tracking around the world.An algorithm of aircraft coordinates decoding and visualization of aircraft position on the map has beenrepresented.Keywords: ACARS, aircraft, internet, position, software, tracking.

  3. Multi-body dynamic system simulation of carrier-based aircraft ski-jump takeoff

    Institute of Scientific and Technical Information of China (English)

    Wang Yangang; Wang Weijun; Qu Xiangju

    2013-01-01

    The flight safety is threatened by the special flight conditions and the low speed of carrier-based aircraft ski-jump takeoff.The aircraft carrier motion,aircraft dynamics,landing gears and wind field of sea state are comprehensively considered to dispose this multidiscipline intersection problem.According to the particular naval operating environment of the carrier-based aircraft ski-jump takeoff,the integrated dynamic simulation models of multi-body system are developed,which involves the movement entities of the carrier,the aircraft and the landing gears,and involves takeoff instruction,control system and the deck wind disturbance.Based on Matlab/Simulink environment,the multi-body system simulation is realized.The validity of the model and the rationality of the result are verified by an example simulation of carrier-based aircraft ski-jump takeoff.The simulation model and the software are suitable for the study of the multidiscipline intersection problems which are involved in the performance,flight quality and safety of carrier-based aircraft takeoff,the effects of landing gear loads,parameters of carrier deck,etc.

  4. Variance in Broad Reading Accounted for by Measures of Reading Speed Embedded within Maze and Comprehension Rate Measures

    Science.gov (United States)

    Hale, Andrea D.; Skinner, Christopher H.; Wilhoit, Brian; Ciancio, Dennis; Morrow, Jennifer A.

    2012-01-01

    Maze and reading comprehension rate measures are calculated by using measures of reading speed and measures of accuracy (i.e., correctly selected words or answers). In sixth- and seventh-grade samples, we found that the measures of reading speed embedded within our Maze measures accounted for 50% and 39% of broad reading score (BRS) variance,…

  5. Measurement of ozone and water vapor by Airbus in-service aircraft: The MOZAIC airborne program, An overview

    Science.gov (United States)

    Marenco, Alain; Thouret, ValéRie; NéDéLec, Philippe; Smit, Herman; Helten, Manfred; Kley, Dieter; Karcher, Fernand; Simon, Pascal; Law, Kathy; Pyle, John; Poschmann, Georg; von Wrede, Rainer; Hume, Chris; Cook, Tim

    1998-10-01

    Tentative estimates, using three-dimensional chemistry and transport models, have suggested small ozone increases in the upper troposphere resulting from current aircraft emissions, but have also concluded to significant deficiencies in today's models and to the need to improve them through comparison with extended data sets. The Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) program was initiated in 1993 by European scientists, aircraft manufacturers, and airlines to collect experimental data. Its goal is to help understand the atmosphere and how it is changing under the influence of human activity, with particular interest in the effects of aircraft. MOZAIC consists of automatic and regular measurements of ozone and water vapor by five long range passenger airliners flying all over the world. The aim is not to detect direct effects of aircraft emissions on the ozone budget inside the air traffic corridors but to build a large database of measurements to allow studies of chemical and physical processes in the atmosphere, and hence to validate global chemistry transport models. MOZAIC data provide, in particular, detailed ozone and water vapor climatologies at 9-12 km where subsonic aircraft emit most of their exhaust and which is a very critical domain (e.g., radiatively and stratosphere/troposphere exchanges) still imperfectly described in existing models. This will be valuable to improve knowledge about the processes occuring in the upper troposphere and the lowermost stratosphere, and the model treatment of near tropopause chemistry and transport. During MOZAIC I (January 1993-September 1996), fully automatic devices were developed, installed aboard five commercial Airbus A340s, and flown in normal airline service. A second phase, MOZAIC II, started in October 1996 with the aim of continuing the O3 and H2O measurements and doing a feasibility study of new airborne devices (CO, NOy). Between September 1994 and December 1997, 7500

  6. The European Research Infrastructure IAGOS - From dedicated field studies to routine observations of the atmosphere by instrumented passenger aircraft

    Science.gov (United States)

    Petzold, Andreas; Volz-Thomas, Andreas; Gerbig, Christoph; Thouret, Valerie; Cammas, Jean-Pierre; Brenninkmeijer, Carl A. M.; Iagos Team

    2013-04-01

    The global distribution of trace species is controlled by a complex interplay between natural and anthropogenic sources and sinks, atmospheric short- to long-range transport, and in future by diverse, largely not yet quantified feedback mechanisms such as enhanced evaporation of water vapour in a warming climate or possibly the release of methane from melting marine clathrates. Improving global trace gas budgets and reducing the uncertainty of climate predictions crucially requires representative data from routine long-term observations as independent constraint for the evaluation and improvement of model parameterizations. IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) is a new European Research Infrastructure which operates a unique global observing system by deploying autonomous instruments aboard a fleet of passenger aircraft. IAGOS consists of two complementary building blocks: IAGOS-CORE deploys newly developed high-tech instrumentation for regular in-situ measurements of atmospheric chemical species (O3, CO, CO2, NOx, NOy, H2O, CH4), aerosols and cloud particles. Involved airlines ensure global operation of the network. In IAGOS-CARIBIC a cargo container is operated as a flying laboratory aboard one passenger aircraft. IAGOS aims at the provision of long-term, frequent, regular, accurate, and spatially resolved in-situ observations of the atmospheric chemical composition in the UTLS and the extra tropical troposphere and on vertical profiles of greenhouse gases, reactive trace gases and aerosols throughout the troposphere. It builds on almost 20 years of scientific and technological expertise gained in the research projects MOZAIC (Measurement of Ozone and Water Vapour on Airbus In-service Aircraft) and CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container). The European consortium includes research centres, universities, national weather services, airline operators and aviation

  7. Model-based aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements

    Science.gov (United States)

    Fu, Guangliang; Heemink, Arnold; Lu, Sha; Segers, Arjo; Weber, Konradin; Lin, Hai-Xiang

    2016-07-01

    The forecast accuracy of distal volcanic ash clouds is important for providing valid aviation advice during volcanic ash eruption. However, because the distal part of volcanic ash plume is far from the volcano, the influence of eruption information on this part becomes rather indirect and uncertain, resulting in inaccurate volcanic ash forecasts in these distal areas. In our approach, we use real-life aircraft in situ observations, measured in the northwestern part of Germany during the 2010 Eyjafjallajökull eruption, in an ensemble-based data assimilation system combined with a volcanic ash transport model to investigate the potential improvement on the forecast accuracy with regard to the distal volcanic ash plume. We show that the error of the analyzed volcanic ash state can be significantly reduced through assimilating real-life in situ measurements. After a continuous assimilation, it is shown that the aviation advice for Germany, the Netherlands and Luxembourg can be significantly improved. We suggest that with suitable aircrafts measuring once per day across the distal volcanic ash plume, the description and prediction of volcanic ash clouds in these areas can be greatly improved.

  8. Arousal from sleep by noises from aircraft with and without acoustically treated nacelles

    Science.gov (United States)

    Lukas, J. S.; Peeler, D. J.; Dobbs, M. E.

    1973-01-01

    The electroencephalographic and behavioral responses during sleep of four subjects, aged 46 to 58 years, to three types of noises were tested over 14 consecutive nights. The stimuli were two DC-8 jet landing noises (each 30 seconds in duration and coming from DC-8 aircraft with and without acoustical treatment on the engine nacelles) and a 4-second burst of pink noise. Each of the noises was tested at nominal intensities of 61 and 79 dBA. Other physical descriptors of the noises were measured or computed. The results indicate that for an equivalent degree of sleep disruption, noise form the jet aircraft with untreated nacelles must be about 6 dBA less intense than the jet with acoustically treated nacelles. Predictions of the effects of noise on sleep appear, tentatively, to attain the highest accuracy when the physical descriptor of noise intensity includes information about the impulsive characteristics of that noise as well as its long-term spectral content.

  9. On the relationship of radar backscatter to wind speed and fetch. [ocean wave generation

    Science.gov (United States)

    Ross, D.; Jones, W. L.

    1978-01-01

    The physics of the interaction of electromagnetic waves with the ocean surface has been an active area of research for a number of years. This paper contains the results of satellite and aircraft experiments to investigate the ability of active microwave radars to infer surface wind speeds remotely. Data obtained from the recent National Aeronautics and Space Administration (NASA) Skylab experiment are compared with surface wind speeds measured by low-flying aircraft and ships-of-opportunity and found to give useful estimates of the ocean wind field. Also investigated was the influence of varying wave height on radar measurements of wind speed by measuring the backscattering cross-section for constant wind speed but variable wave conditions. It is found that this effect is of little importance.

  10. Impedance seen by Distance Relays on Lines Fed from Fixed Speed Wind Turbines

    Science.gov (United States)

    Srivastava, Sachin; Shenoy, U. J.; Chandra Biswal, Abhinna; Sethuraman, Ganesan

    2013-05-01

    This paper deals with line protection challenges experienced in a system having substantial wind generation penetration. Two types of generators, thermal synchronous generators and fixed speed wind turbines based on squirrel-cage induction generators, are simulated as thevenin equivalent model, connected to grid with single-circuit transmission line. The paper gives comparative discussion and summarizes analytical investigations carried out on the impedance seen by distance relays by varying fault resistances and grid short circuit MVA, for the protection of such transmission lines during faults.

  11. Thermal effects on human performance in office environment measured by integrating task speed and accuracy

    DEFF Research Database (Denmark)

    Lan, Li; Wargocki, Pawel; Lian, Zhiwei

    2014-01-01

    We have proposed a method in which the speed and accuracy can be integrated into one metric of human performance. This was achieved by designing a performance task in which the subjects receive feedback on their performance by informing them whether they have committed errors, and if did, they can......, 12 subjects performed tasks under two thermal conditions (neutral & warm) repeatedly. The tasks were presented with and without feedback on errors committed, as outlined above. The results indicate that there was a greater decrease in task performance due to thermal discomfort when feedback was given......, compared to the performance of tasks presented without feedback....

  12. A perspective on 15 years of proof-of-concept aircraft development and flight research at Ames-Moffett by the Rotorcraft and Powered-Lift Flight Projects Division, 1970-1985

    Science.gov (United States)

    Few, David D.

    1987-01-01

    A proof-of-concept (POC) aircraft is defined and the concept of interest described for each of the six aircraft developed by the Ames-Moffet Rotorcraft and Powered-Lift Flight Projects Division from 1970 through 1985; namely, the OV-10, the C-8A Augmentor Wing, the Quiet Short-Haul Research Aircraft (QSRA), the XV-15 Tilt Rotor Research Aircraft (TRRA), the Rotor Systems Research Aircraft (RSRA)-compound, and the yet-to-fly RSRA/X-Wing Aircraft. The program/project chronology and most noteworthy features of the concepts are reviewed. The paper discusses the significance of each concept and the project demonstrating it; it briefly looks at what concepts are on the horizon as potential POC research aircraft and emphasizes that no significant advanced concept in aviation technology has ever been accepted by civilian or military users without first completing a demonstration through flight testing.

  13. One-way-coupling simulation of cavitation accompanied by high-speed droplet impact

    Science.gov (United States)

    Kondo, Tomoki; Ando, Keita

    2016-03-01

    Erosion due to high-speed droplet impact is a crucial issue in industrial applications. The erosion is caused by the water-hammer loading on material surfaces and possibly by the reloading from collapsing cavitation bubbles that appear within the droplet. Here, we simulate the dynamics of cavitation bubbles accompanied by high-speed droplet impact against a deformable wall in order to see whether the bubble collapse is violent enough to give rise to cavitation erosion on the wall. The evolution of pressure waves in a single water (or gelatin) droplet to collide with a deformable wall at speed up to 110 m/s is inferred from simulations of multicomponent Euler flow where phase changes are not permitted. Then, we examine the dynamics of cavitation bubbles nucleated from micron/submicron-sized gas bubble nuclei that are supposed to exist inside the droplet. For simplicity, we perform Rayleigh-Plesset-type calculations in a one-way-coupling manner, namely, the bubble dynamics are determined according to the pressure variation obtained from the Euler flow simulation. In the simulation, the preexisting bubble nuclei whose size is either micron or submicron show large growth to submillimeters because tension inside the droplet is obtained through interaction of the pressure waves and the droplet interface; this supports the possibility of having cavitation due to the droplet impact. It is also found, in particular, for the case of cavitation arising from very small nuclei such as nanobubbles, that radiated pressure from the cavitation bubble collapse can overwhelm the water-hammer pressure directly created by the impact. Hence, cavitation may need to be accounted for when it comes to discussing erosion in the droplet impact problem.

  14. Residents' Annoyance Responses to Aircraft Noise Events

    OpenAIRE

    United States, National Aeronautics and Space Administration

    1983-01-01

    In a study conducted in the vicinity of Salt Lake City International Airport, community residents reported their annoyance with individual aircraft flyovers during rating sessions conducted in their homes. Annoyance ratings were obtained at different times of the day. Aircraft noise levels were measured, and other characteristics of the aircraft were noted by trained observers. Metrics commonly used for assessing aircraft noise were compared, but none performed significantly better than A-...

  15. Computations of two passing-by high-speed trains by a relaxation overset-grid algorithm

    Science.gov (United States)

    Liu, Jenn-Long

    2004-04-01

    This paper presents a relaxation algorithm, which is based on the overset grid technology, an unsteady three-dimensional Navier-Stokes flow solver, and an inner- and outer-relaxation method, for simulation of the unsteady flows of moving high-speed trains. The flow solutions on the overlapped grids can be accurately updated by introducing a grid tracking technique and the inner- and outer-relaxation method. To evaluate the capability and solution accuracy of the present algorithm, the computational static pressure distribution of a single stationary TGV high-speed train inside a long tunnel is investigated numerically, and is compared with the experimental data from low-speed wind tunnel test. Further, the unsteady flows of two TGV high-speed trains passing by each other inside a long tunnel and at the tunnel entrance are simulated. A series of time histories of pressure distributions and aerodynamic loads acting on the train and tunnel surfaces are depicted for detailed discussions.

  16. Integration of noise control into the product design process : a case study : the Silent Aircraft Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Faszer, A. [Noise Solutions Inc., Calgary, AB (Canada)

    2007-07-01

    The Silent Aircraft Initiative (SAI) is a study being conducted by the Cambridge-MIT Institute to discover ways to significantly reduce aircraft noise. Part of the study focuses on developing aircraft and engine designs that meet the SAI objectives. This presentation included several illustrations of the favoured configuration of a blended wing design, with 4 engines located on the upper surface of a shallow wing which shields engine noise. This presentation described various engine parts such as the low specific thrust turbofan, the variable area nozzle and the acoustic treatment in the intake and exhaust turbomachinery that minimizes noise. The requirements for market viability of the aircraft were discussed as well as the technical challenges in terms of its propulsion systems; structural analysis; mechanical design; low speed aerodynamic performance; cabin layout; and maintenance considerations. It was concluded that the SAI has achieved a credible conceptual aircraft design given the high risk of the technologies used. The project has met objectives of a functionally silent and fuel efficient aircraft. The new conceptual aircraft has potential for fuel burn of 149 pax-miles per imperial gallon and noise of 63 dBA near the perimeter of airports. 1 tab., 48 figs.

  17. Speeding Up

    Institute of Scientific and Technical Information of China (English)

    YU SHUJUN

    2010-01-01

    In the wake of the global financial crisis, China has amazed the world with the speed of its economic recovery. But what has been even more surprising is the speed of its railway evolution. The unveiling of the 1,069-km Wuhan-Guangzhou High-speed Railway on December 26, 2009 pushed China's high-speed rail sys-tem-the total mileage, the average speed and the technology-to rank first in the world almost overnight.

  18. Scorpion: Close Air Support (CAS) aircraft

    Science.gov (United States)

    Allen, Chris; Cheng, Rendy; Koehler, Grant; Lyon, Sean; Paguio, Cecilia

    1991-01-01

    The objective is to outline the results of the preliminary design of the Scorpion, a proposed close air support aircraft. The results obtained include complete preliminary analysis of the aircraft in the areas of aerodynamics, structures, avionics and electronics, stability and control, weight and balance, propulsion systems, and costs. A conventional wing, twin jet, twin-tail aircraft was chosen to maximize the desirable characteristics. The Scorpion will feature low speed maneuverability, high survivability, low cost, and low maintenance. The life cycle cost per aircraft will be 17.5 million dollars. The maximum takeoff weight will be 52,760 pounds. Wing loading will be 90 psf. The thrust to weight will be 0.6 lbs/lb. This aircraft meets the specified mission requirements. Some modifications have been suggested to further optimize the design.

  19. Policy and the evaluation of aircraft noise

    NARCIS (Netherlands)

    Kroesen, M.; Molin, E.J.E.; Van Wee, G.P.

    2010-01-01

    In this paper, we hypothesize and test the ideas that (1) people’s subjectivity in relation to aircraft noise is shaped by the policy discourse, (2) this results in a limited number of frames towards aircraft noise, (3) the frames inform people how to think and feel about aircraft noise and (4) the

  20. HUMAN FACTOR IMPACT IN MILITARY AIRCRAFT MAINTENANCE

    OpenAIRE

    MARINKOVIC SRBOLJUB J.; DRENOVAC ALEKSANDAR Z.

    2015-01-01

    Aircraft maintenance, as a specific field of military materiel maintenance, is characterized by high reliability standards, based on regulations and technical standards. A system approach to maintenance represents the key element of maintenance quality, while aircraft maintenance staff has a crucial influence on the final outcome of aircraft maintenance.

  1. Direct observation of high-speed plasma outflows produced by magnetic reconnection in solar impulsive events

    CERN Document Server

    Wang, Tongjiang; Qiu, Jiong

    2007-01-01

    Spectroscopic observations of a solar limb flare recorded by SUMER on SOHO reveal, for the first time, hot fast magnetic reconnection outflows in the corona. As the reconnection site rises across the SUMER spectrometer slit, significant blue- and red-shift signatures are observed in sequence in the Fe XIX line, reflecting upflows and downflows of hot plasma jets, respectively. With the projection effect corrected, the measured outflow speed is between 900-3500 km/s, consistent with theoretical predictions of the Alfvenic outflows in magnetic reconnection region in solar impulsive events. Based on theoretic models, the magnetic field strength near the reconnection region is estimated to be 19-37 Gauss.

  2. Motor equivalence and self-motion induced by different movement speeds

    OpenAIRE

    Scholz, J. P.; Dwight-Higgin, T.; Lynch, J. E.; Tseng, Y. W.; Martin, V.; Schöner, G.

    2011-01-01

    This study investigated pointing movements in 3D asking two questions: (1) Is goal-directed reaching accompanied by self-motion, a component of the joint velocity vector that leaves the hand’s movement unaffected? (2) Are differences in the terminal joint configurations among different speeds of reaching motor equivalent (i.e., terminal joint configurations differ more in directions of joint space that do not produce different pointer-tip positions than in directions that do) or non-motor equ...

  3. NASA Lewis 9- by 15-foot low-speed wind tunnel user manual

    Science.gov (United States)

    Soeder, Ronald H.

    1993-01-01

    This manual describes the 9- by 15-Foot Low-Speed Wind Tunnel at the Lewis Research Center and provides information for users who wish to conduct experiments in this atmospheric facility. Tunnel variables such as pressures, temperatures, available tests section area, and Mach number ranges (0.05 to 0.20) are discussed. In addition, general support systems such as air systems, hydraulic system, hydrogen system, laser system, flow visualization system, and model support systems are described. Instrumentation and data processing and acquisition systems are also discussed.

  4. Annealing Characteristics of Ultrafine Grained Low-Carbon Steel Processed by Differential Speed Rolling Method

    Science.gov (United States)

    Hamad, Kotiba; Ko, Young Gun

    2016-05-01

    The annealing behavior of ultrafine grained ferrite in low-carbon steel (0.18 wt pct C) fabricated using a differential speed rolling (DSR) process was examined by observing the microstructural changes by electron backscatter diffraction and transmission electron microscopy. For this purpose, the samples processed by 4-pass DSR at a roll speed ratio of 1:4 for the lower and upper rolls, respectively, were annealed isochronally at temperatures ranging from 698 K to 898 K (425 °C to 625 °C) for 1 hour. The deformed samples exhibited a complex microstructure in the ferrite phase consisting of an equiaxed structure with a mean grain size of ~0.4 µm and a lamellar structure with a mean lamellar width of ~0.35 µm. The texture evolved during deformation was characterized by the rolling and shear components with specific orientations. After annealing at temperatures lower than 798 K (525 °C), the aspect ratio of the deformed grains tended to shift toward a unit corresponding to the equiaxed shape, whereas the grain size remained unchanged as the annealing temperature increased. At temperatures above 798 K (525 °C), however, some grains with a low dislocation density began to appear, suggesting that the starting temperature of static recrystallization in the severely deformed ferrite grains was 798 K (525 °C). The annealing texture of the present sample after heat treatment showed a uniform fiber texture consisting of α- and γ-components.

  5. The simulation of the transport of aircraft emissions by a three-dimensional global model

    Directory of Open Access Journals (Sweden)

    G. J. M. Velders

    Full Text Available A three-dimensional off-line tracer transport model coupled to the ECMWF analyses has been used to study the transport of trace gases in the atmosphere. The model gives a reasonable description of their general transport in the atmosphere. The simulation of the transport of aircraft emissions (as NOx has been studied as well as the transport of passive tracers injected at different altitudes in the North Atlantic flight corridor. A large zonal variation in the NOx concentrations as well as large seasonal and yearly variations was found. The altitude of the flight corridor influences the amount of tracers transported into the troposphere and stratosphere to a great extent.

  6. Bullet Retarding Forces in Ballistic Gelatin by Analysis of High Speed Video

    CERN Document Server

    Gaylord, Steven; Courtney, Michael; Courtney, Amy

    2013-01-01

    Though three distinct wounding mechanisms (permanent cavity, temporary cavity, and ballistic pressure wave) are described in the wound ballistics literature, they all have their physical origin in the retarding force between bullet and tissue as the bullet penetrates. If the bullet path is the same, larger retarding forces produce larger wounding effects and a greater probability of rapid incapacitation. By Newton's third law, the force of the bullet on the tissue is equal in magnitude and opposite in direction to the force of the tissue on the bullet. For bullets penetrating with constant mass, the retarding force on the bullet can be determined by frame by frame analysis of high speed video of the bullet penetrating a suitable tissue simulant such as calibrated 10% ballistic gelatin. Here the technique is demonstrated with 9mm NATO bullets, 32 cm long blocks of gelatin, and a high speed video camera operating at 20,000 frames per second. It is found that different 9mm NATO bullets have a wide variety of pot...

  7. Optimization of 3D laser scanning speed by use of combined variable step

    Science.gov (United States)

    Garcia-Cruz, X. M.; Sergiyenko, O. Yu.; Tyrsa, Vera; Rivas-Lopez, M.; Hernandez-Balbuena, D.; Rodriguez-Quiñonez, J. C.; Basaca-Preciado, L. C.; Mercorelli, P.

    2014-03-01

    The problem of 3D TVS slow functioning caused by constant small scanning step becomes its solution in the presented research. It can be achieved by combined scanning step application for the fast search of n obstacles in unknown surroundings. Such a problem is of keynote importance in automatic robot navigation. To maintain a reasonable speed robots must detect dangerous obstacles as soon as possible, but all known scanners able to measure distances with sufficient accuracy are unable to do it in real time. So, the related technical task of the scanning with variable speed and precise digital mapping only for selected spatial sectors is under consideration. A wide range of simulations in MATLAB 7.12.0 of several variants of hypothetic scenes with variable n obstacles in each scene (including variation of shapes and sizes) and scanning with incremented angle value (0.6° up to 15°) is provided. The aim of such simulation was to detect which angular values of interval still permit getting the maximal information about obstacles without undesired time losses. Three of such local maximums were obtained in simulations and then rectified by application of neuronal network formalism (Levenberg-Marquradt Algorithm). The obtained results in its turn were applied to MET (Micro-Electro-mechanical Transmission) design for practical realization of variable combined step scanning on an experimental prototype of our previously known laser scanner.

  8. Forward Looking Radar Imaging by Truncated Singular Value Decomposition and Its Application for Adverse Weather Aircraft Landing

    OpenAIRE

    Yulin Huang; Yuebo Zha; Yue Wang; Jianyu Yang

    2015-01-01

    The forward looking radar imaging task is a practical and challenging problem for adverse weather aircraft landing industry. Deconvolution method can realize the forward looking imaging but it often leads to the noise amplification in the radar image. In this paper, a forward looking radar imaging based on deconvolution method is presented for adverse weather aircraft landing. We first present the theoretical background of forward looking radar imaging task and its application for aircraft la...

  9. Full-scale high-speed schlieren imaging of explosions and gunshots

    Science.gov (United States)

    Settles, Gary S.; Grumstrup, Torben P.; Dodson, Lori J.; Miller, J. D.; Gatto, Joseph A.

    2005-03-01

    High-speed imaging and cinematography are important in research on explosions, firearms, and homeland security. Much can be learned from imaging the motion of shock waves generated by such explosive events. However, the required optical equipment is generally not available for such research due to the small aperture and delicacy of the optics and the expense and expertise required to implement high-speed optical methods. For example, previous aircraft hardening experiments involving explosions aboard full-scale aircraft lacked optical shock imaging, even though such imaging is the principal tool of explosion and shock wave research. Here, experiments are reported using the Penn State Full-Scale Schlieren System, a lens-and-grid-type optical system with a very large field-of-view. High-speed images are captured by photography using an electronic flash and by a new high-speed digital video camera. These experiments cover a field-of-view of 2x3 m at frame rates up to 30 kHz. Our previous high-speed schlieren cinematography experiments on aircraft hardening used a traditional drum camera and photographic film. A stark contrast in utility is found between that technology and the all-digital high-speed videography featured in this paper.

  10. Fatigue Behavior of High Speed Steel Roll Materials for Hot Rolling by Laser Impacting

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li; SUN Da-le; LIU Chang-sheng; WU Qiong

    2006-01-01

    The fatigue behavior of high speed steel (HSS) roll materials for hot rolling was researched under water-cooling conditions by laser impacting. The microstructure of HSS sample and the morphologies of fatigue samples were observed by scanning electron microscope. The phase structure was detected by XRD. The morphology of situ oxide scale was observed by optical microscope, and the expansion coefficient was measured by TGA. The experiment results indicate that the cracks come into being at the carbide-matrix interface, but there are no cracks in the matrix after many times of laser impacting treatment, for the situ sample taken from the fractured roll surface, big carbides are more sensitive to the fatigue, and peel off prior to small ones. The relevant fatigue mechanisms are also discussed.

  11. Preparative separation of grape skin polyphenols by high-speed counter-current chromatography.

    Science.gov (United States)

    Luo, Lanxin; Cui, Yan; Zhang, Shuting; Li, Lingxi; Li, Yuanyuan; Zhou, Peiyu; Sun, Baoshan

    2016-12-01

    To develop an efficient method for large preparation of various individual polyphenols from white grape skins (Fernão Pires; Vitis vinifera) by preparative high-speed counter-current chromatography (HSCCC) and preparative-HPLC, an optimized preparative HSCCC condition with two-phase solvent system composed of Hex-EtOAc-H2O (1:50:50, v/v) was used to separate grape skin polyphenols into various fractions. Both the tail-head and head-tail elution modes were used with a flow rate of 3.0ml/min and a rotary speed of 950rpm. Afterwards, a preparative-HPLC separation was applied to isolate individual polyphenols in each of the fractions from HSCCC. Total of 7 fractions (Fraction A to G) were obtained from grape skin extract by HSCCC. After preparative-HPLC isolation, fifteen individual compounds were obtained, most of which presented high yields and purity (all over 90%). The HSCCC method followed with preparative-HPLC appeared to be convenient and economical, constituting an efficient strategy for the isolation of grape skin polyphenols. PMID:27374588

  12. Speed up linear scan in high-dimensions by sorting one-dimensional projections

    Directory of Open Access Journals (Sweden)

    Jiangtao Cui

    2011-06-01

    Full Text Available High-dimensional indexing is a pervasive challenge faced in multimedia retrieval. Existing indexing methods applying linear scan strategy, such as VA-file and its variations, are still efficient when the dimensionality is high. In this paper, we propose a new access idea implemented on linear scan based methods to speed up the nearest-neighbor queries. The idea is to map high-dimensional points into two kinds of one-dimensional values using projection and distance computation. The projection values on the line determined by the first Principal Component are sorted and indexed using a B+-tree, and the distances of each point to a reference point are also embedded into leaf node of the B+-tree. When performing nearest neighbor search, the Partial Distortion Searching and triangular inequality are employed to prune search space. In the new search algorithm, only a small portion of data points need to be linearly accessed by computing the bounded distance on the one-dimensional line, which can reduce the I/O and processor time dramatically. Experiment results on large image databases show that the new access method provides a faster search speed than existing high-dimensional index methods.

  13. Accumulative deformation in railway track induced by high-speed traffic loading of the trains

    Institute of Scientific and Technical Information of China (English)

    Bian Xuecheng; Jiang Hongguang; Chen Yunmin

    2010-01-01

    Prediction and control of the permanent settlement of a track caused by traffic loading from trains is crucial to high-speed railway design and maintenance. In this study, a unified prediction model of accumulative deformation of geomaterials used in railway construction subjected to cyclic loadings is introduced and calibrated using physical model testing. Based on this versatile model, a calculation approach to determine the track structure settlement under repeated loadings caused by the movement of the wheel axle of the train is proposed. Regression analysis on the physical model testing is adopted to determine the parameters involved in the computational approach. Comparison of model test data and computed results shows that the parameters obtained from the back-analysis are consistent throughout the various testing conditions, and the proposed calculation approach is capable of satisfactorily predicting the accumulative settlement of the railway roadbed and subgrade soil for various axle loads and loading cycles. A case study of a high-speed railway is performed to demonstrate the feasibility of the proposed approach in realistic engineering applications. The computation results from the settlement development of a roadbed and subgrade soil are presented and discussed.

  14. Quality evaluation of energy consumed in flow regulation method by speed variation in centrifugal pumps

    Science.gov (United States)

    Morales, S.; Culman, M.; Acevedo, C.; Rey, C.

    2014-06-01

    Nowadays, energy efficiency and the Electric Power Quality are two inseparable issues in the evaluation of three-phase induction motors, framed within the program of Rational and Efficient Use of Energy (RUE).The use of efficient energy saving devices has been increasing significantly in RUE programs, for example the use of variable frequency drives (VFD) in pumping systems.The overall objective of the project was to evaluate the impact on power quality and energy efficiency in a centrifugal pump driven by an induction three-phase motor, using the flow control method of speed variation by VFD. The fundamental purpose was to test the opinions continuously heard about the use of flow control methods in centrifugal pumps, analyzing the advantages and disadvantages that have been formulated deliberately in order to offer support to the industry in taking correct decisions. The VFD changes the speed of the motor-pump system increasing efficiency compared to the classical methods of regulation. However, the VFD originates conditions that degrade the quality of the electric power supplied to the system and therefore its efficiency, due to the nonlinearity and presence of harmonic currents. It was possible to analyze the power quality, ensuring that the information that comes to the industry is generally biased.

  15. Friction characteristics of three 30 by 11.5-14.5, type 8, aircraft tires with various tread groove patterns and rubber compounds

    Science.gov (United States)

    Yager, T. J.; Mccarty, J. L.

    1977-01-01

    A test program was conducted to evaluate friction performance and wear characteristics on wet runways of three 30 x 11.5-14.5, type, aircraft tires having two different tread patterns and natural rubber contents. All test tires had the standard three circumferential groove tread, but two had molded transverse grooves which extended from shoulder to shoulder. The tread rubber content of the two tires with transverse grooves differed in that one had a 100 percent natural rubber tread and the other had a rubber tread composition that was 30 percent synthetic and 70 percent natural. The third test tire had the conventional 100 percent natural rubber tread. Results indicate that the differences in tire tread design and rubber composition do not significantly affect braking and cornering friction capability on wet or dry surfaces. Braking performance of the tires decreases with increased speed, with increased yaw angle and, at higher speeds, with increased wetness of the surface.

  16. Preparative Isolation of Three Anthraquinones from Rumex japonicus by High-Speed Counter-Current Chromatography

    Directory of Open Access Journals (Sweden)

    Shuying Guo

    2011-01-01

    Full Text Available Three anthraquinones—emodin, chrysophanol, and physcion—were successfully purified from the dichloromethane extract of the Chinese medicinal herb Rumex japonicus by high-speed counter-current chromatography (HSCCC. The extract was separated with n-hexane–ethanol–water (18:22:3, v/v/v as the two-phase solvent system and yielded 3.4 mg of emodin, 24.1 mg of chrysophanol, and 2.0 mg of physcion from 500 mg of sample with purities of 99.2 %, 98.8% and 98.2%, respectively. The HSCCC fractions were analyzed by high-performance liquid chromatography (HPLC and the chemical structures of the three anthraquinones were confirmed by 1H-NMR and 13C-NMR analysis. This is the first time these anthraquinones have been obtained from R. japonicus by HSCCC.

  17. High-speed photography of the bubble generated by an airgun

    Energy Technology Data Exchange (ETDEWEB)

    Langhammer, J.; Landroe, M. [IKU Petroleum Research, Trondheim (Norway)

    1996-01-01

    High-speed photography has been used visually to study the shape, surface, turbulence and behavior of an underwater oscillating bubble generated by an airgun. The source wa a BOLT airgun with a chamber volume of 1.6 cu.in., placed in a 0.85 m{sup 3} tank at 0.5 m depth. Near-field signatures were also recorded in order to compare the instant photographs of the oscillating bubble with the pressure field recorded about 25 cm from the gun. Estimations of the bubble-wall velocity and bubble radius estimated from high-speed film sequences are also presented, and are compared with modeled results. The deviation between the modeled and measured bubble radii was at most 9%. In order to check the capacity for transmission of light through the bubble, a concentrated laser beam was used as illumination. The authors found that the air bubble is a strong scattering medium of laser light, hence the bubble is opaque.

  18. The response of collision speed caused by the large bus to new flexible barrier

    Institute of Scientific and Technical Information of China (English)

    Lei Zhengbao; Wang Rui

    2014-01-01

    In order to study the response of collision speed caused by the large bus to new flexible barrier,in this paper,with the large bus as the carrier,the full-scale impact tests between flexible barrier and vehicle with the impact velocities of 40 km/h and 60 km/h were carried out separately,following the procedures of the test preparation,test processing,data acquisition, etc,which were based on the test platform of the Large Structure Crash Testing Laboratory of Changsha University of Science and Technology. The important test results which contain the damage of vehicles and barrier,the moving locus of vehicle,the occupant risk index,the maxi-mum dynamic deformation, etc,were obtained through the analysis under the different collision speeds. These provide the necessary reference basis for the further research on the structure topology optimization and im-prove the comprehensive constraint performance to the flexible barrier.

  19. High speed intelligent classifier of tomatoes by colour, size and weight

    Energy Technology Data Exchange (ETDEWEB)

    Cement, J.; Novas, N.; Gazquez, J. A.; Manzano-Agugliaro, F.

    2012-11-01

    At present most horticultural products are classified and marketed according to quality standards, which provide a common language for growers, packers, buyers and consumers. The standardisation of both product and packaging enables greater speed and efficiency in management and marketing. Of all the vegetables grown in greenhouses, tomatoes are predominant in both surface area and tons produced. This paper will present the development and evaluation of a low investment classification system of tomatoes with these objectives: to put it at the service of producing farms and to classify for trading standards. An intelligent classifier of tomatoes has been developed by weight, diameter and colour. This system has optimised the necessary algorithms for data processing in the case of tomatoes, so that productivity is greatly increased, with the use of less expensive and lower performance electronics. The prototype is able to achieve very high speed classification, 12.5 ratings per second, using accessible and low cost commercial equipment for this. It decreases fourfold the manual sorting time and is not sensitive to the variety of tomato classified. This system facilitates the processes of standardisation and quality control, increases the competitiveness of tomato farms and impacts positively on profitability. The automatic classification system described in this work represents a contribution from the economic point of view, as it is profitable for a farm in the short term (less than six months), while the existing systems, can only be used in large trading centers. (Author) 36 refs.

  20. Speeding up Monte Carlo molecular simulation by a non-conservative early rejection scheme

    KAUST Repository

    Kadoura, Ahmad Salim

    2015-04-23

    Monte Carlo (MC) molecular simulation describes fluid systems with rich information, and it is capable of predicting many fluid properties of engineering interest. In general, it is more accurate and representative than equations of state. On the other hand, it requires much more computational effort and simulation time. For that purpose, several techniques have been developed in order to speed up MC molecular simulations while preserving their precision. In particular, early rejection schemes are capable of reducing computational cost by reaching the rejection decision for the undesired MC trials at an earlier stage in comparison to the conventional scheme. In a recent work, we have introduced a ‘conservative’ early rejection scheme as a method to accelerate MC simulations while producing exactly the same results as the conventional algorithm. In this paper, we introduce a ‘non-conservative’ early rejection scheme, which is much faster than the conservative scheme, yet it preserves the precision of the method. The proposed scheme is tested for systems of structureless Lennard-Jones particles in both canonical and NVT-Gibbs ensembles. Numerical experiments were conducted at several thermodynamic conditions for different number of particles. Results show that at certain thermodynamic conditions, the non-conservative method is capable of doubling the speed of the MC molecular simulations in both canonical and NVT-Gibbs ensembles. © 2015 Taylor & Francis

  1. Trading speed and accuracy by coding time: a coupled-circuit cortical model.

    Directory of Open Access Journals (Sweden)

    Dominic Standage

    2013-04-01

    Full Text Available Our actions take place in space and time, but despite the role of time in decision theory and the growing acknowledgement that the encoding of time is crucial to behaviour, few studies have considered the interactions between neural codes for objects in space and for elapsed time during perceptual decisions. The speed-accuracy trade-off (SAT provides a window into spatiotemporal interactions. Our hypothesis is that temporal coding determines the rate at which spatial evidence is integrated, controlling the SAT by gain modulation. Here, we propose that local cortical circuits are inherently suited to the relevant spatial and temporal coding. In simulations of an interval estimation task, we use a generic local-circuit model to encode time by 'climbing' activity, seen in cortex during tasks with a timing requirement. The model is a network of simulated pyramidal cells and inhibitory interneurons, connected by conductance synapses. A simple learning rule enables the network to quickly produce new interval estimates, which show signature characteristics of estimates by experimental subjects. Analysis of network dynamics formally characterizes this generic, local-circuit timing mechanism. In simulations of a perceptual decision task, we couple two such networks. Network function is determined only by spatial selectivity and NMDA receptor conductance strength; all other parameters are identical. To trade speed and accuracy, the timing network simply learns longer or shorter intervals, driving the rate of downstream decision processing by spatially non-selective input, an established form of gain modulation. Like the timing network's interval estimates, decision times show signature characteristics of those by experimental subjects. Overall, we propose, demonstrate and analyse a generic mechanism for timing, a generic mechanism for modulation of decision processing by temporal codes, and we make predictions for experimental verification.

  2. Determine an effective golf swing by swing speed and impact precision tests

    OpenAIRE

    Jiann-Jyh Wang; Pei-Feng Yang; Wei-Hua Ho; Tzyy-Yuang Shiang

    2015-01-01

    Background: To understand an effective golf swing, both swing speed and impact precision must be thoroughly and simultaneously examined. The aim of this study was to perform both swing speed test and impact precision test to ascertain what swing type determines an effective impact. Methods: Seven golfers from a college team (handicap: 0–12) were recruited to complete a swing speed test and impact precision test using a 5-iron club. A force plate and electromyography (EMG) system were used ...

  3. Numerical simulation of slow spheromak formation: Flux control by formation speed

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T.; Todd, A.M.M.; Okuda, H.

    1983-03-01

    Two-dimensional magnetohydrodynamic simulations of the Princeton S-1 Spheromak have been carried out for several formation speeds. It is found that the spheromak size and shape, and hence the confined poloidal and toroidal fluxes, are largely dependent upon the formation speed, provided this is moderately slow. Specifically, the total toroidal and poloidal fluxes in a spheromak increase as the formation speed is reduced. The role of externally driven reconnection as a cause for this dependence is discussed.

  4. TRENDS IN THE DEVELOPMENT OF DETONATION ENGINES FOR HIGH-SPEED AEROSPACE AIRCRAFTS AND THE PROBLEM OF TRIPLE CONFIGURATIONS OF SHOCK WAVES. Part II - Research of counterpropagating shock waves and triple shock wave configurations

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2016-03-01

    Full Text Available The paper deals with current issues of the interference theory development of gas-dynamic discontinuities as applied to a problem of propulsion refinement for the air-spacecrafts, designed for hypersonic flight speeds. In the first part of the review we have presented the history of detonation study and different concepts of detonation engines, as well as air intakes designed for hypersonic flight speeds. The second part provides an overview of works on the interference theory development for gas-dynamic discontinuities. We report about classification of the gas-dynamic discontinuities, shock wave propagation, shock-wave structures and triple configurations of shock waves. We have shown that many of these processes are accompanied by a hysteresis phenomenon, there are areas of ambiguity; therefore, in the design of engines and air intakes optimal shock-wave structures should be provided and their sustainability should be ensured. Much attention has recently been given to the use of the air intakes in the shock-wave structures with the rereflection of shock waves and the interference of shock waves in the opposite directions. This review provides increased focus on it, contains references to landmark works, the last calculated and experimental results. Unfortunately, foreign surveys missed many landmark works of the Soviet and Russian researchers, as they were not published in English. At the same time, it was the Soviet school of gas dynamics that has formulated the interference theory of gas-dynamic discontinuities in its present form. To fill this gap is one of this review scopes. The review may be recommended for professionals, engineers and scientists working in the field of aerospace engineering.

  5. Upwind scheme for acoustic disturbances generated by low-speed flows

    DEFF Research Database (Denmark)

    Ekaterinaris, J.A.

    1997-01-01

    Computation of acoustic disturbances generated by unsteady, low-speed flows, such as flows including vortices and shear layers, can be obtained by a recently proposed two-step method. This method requires a hydrodynamic field solution and obtains the acoustic field from the perturbed, inviscid...... computational domain. Solutions are obtained for the acoustic field generated by a pair of corotating point vortices. Computed results are compared with the existing analytic solution for the sound field......., compressible how equations, A numerical method for the solution of the equations governing the acoustic field is presented. The primitive variable form of the governing equations is used for the numerical solution. Time integration is performed with a fourth-order, Runge-Kutta method, Discretization of the...

  6. Breaking and Characteristics of Ganoderma Lucidum Spores by High Speed Entrifugal Shearing Pulverizer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The spores of Ganoderma lucidum were ground and broken to ultrafine particles by high speed centrifugal shearing(HSCS) pulverizer. The characteristics of Ganoderma lucidum spores were analyzed by scanning electron microscope (SEM), Fourier transform infrared spectrophotometry (FTIR). Ultraviolet-visible pectrophotometer was used to determine the extraction ratio of aqueous solubility polysaccharide between the raw and broken spores. The immunological function on the mice before and after the breaking of spores was investigated. The experimental results show that after being ground, the sporoderm-broken ratio reachs 100%,the original active ingredients of ganoderma lucidum spores do not change, and the extraction ratio of aqueous solubility polysaccharide is greatly increased by 40.08%. The broken spores show much higher immunological activity comparing with original spores of Ganoderma lucidum.

  7. Study on Impedance Characteristics of Aircraft Cables

    Directory of Open Access Journals (Sweden)

    Weilin Li

    2016-01-01

    Full Text Available Voltage decrease and power loss in distribution lines of aircraft electric power system are harmful to the normal operation of electrical equipment and may even threaten the safety of aircraft. This study investigates how the gap distance (the distance between aircraft cables and aircraft skin and voltage frequency (variable frequency power supply will be adopted for next generation aircraft will affect the impedance of aircraft cables. To be more precise, the forming mechanism of cable resistance and inductance is illustrated in detail and their changing trends with frequency and gap distance are analyzed with the help of electromagnetic theoretical analysis. An aircraft cable simulation model is built with Maxwell 2D and the simulation results are consistent with the conclusions drawn from the theoretical analysis. The changing trends of the four core parameters of interest are analyzed: resistance, inductance, reactance, and impedance. The research results can be used as reference for the applications in Variable Speed Variable Frequency (VSVF aircraft electric power system.

  8. Shrinkage of magnetosphere observed by TC-1 satellite during the high-speed solar wind stream

    Institute of Scientific and Technical Information of China (English)

    H.; RME; I.; DANDOURAS; C.; M.; CARR

    2008-01-01

    During the interval 06:14―07:30 UT on August 24, 2005, since the Earth’s magneto- pause was suddenly compressed by the persistent high-speed solar wind stream with the southward component of the interplanetary magnetic field (IMF), the magnetopause moved inward for about 3.1 RE. Meanwhile, TC-1 satellite shifted from northern plasma sheet to the northern lobe/mantle region, although it kept inward flying during the interval 06:00―07:30UT. The shift of TC-1 from the plasma sheet to the lobe/mantle is caused by the simultaneous inward displacements of the plasma sheet and near-Earth lobe/mantle region, and their inward movement velocity is larger than the inward motion velocity of TC-1. The joint inward dis-placements of the magnetopause, the lobe/mantle region and the plasma sheet indicate that the whole magnetosphere shrinks inward due to the magnetospheric compression by the high-speed solar wind stream, and the magnetospheric ions are attached to the magnetic field lines (i.e. ‘frozen’ in magnetic field) and move inward in the shrinking process of magnetosphere. The large shrinkage of magne-tosphere indicates that the near-Earth magnetotail compression caused by the strong solar wind dynamic pressure is much larger than its thickening caused by the southward component of the IMF, and the locations of magnetospheric regions with different plasmas vary remarkably with the variation of the solar wind dynamic pressure.

  9. Mitigation of Wind Power Fluctuation by Active Current Control of Variable Speed Wind Turbines

    DEFF Research Database (Denmark)

    Zhang, Yunqian; Chen, Zhe; Hu, Weihao; Cheng, Ming

    2013-01-01

    Wind shear and tower shadow are the sources of power fluctuation of grid connected wind turbines during continuous operation. This paper presents a simulation model of a MW-level doubly fed induction generator (DFIG) based variable speed wind turbine with a partial-scale back-to-back power...... converter in Simulink. A simple and effective method of wind power fluctuations mitigation by active current control of DFIG is proposed. It smoothes the generator output active power oscillations by adjusting the active current of the DFIG, such that the power oscillation is stored as the kinetic energy of...... the wind turbine. The simulations are performed on the NREL 1.5MW upwind reference wind turbine model. The simulation results are presented and discussed to demonstrate the validity of the proposed control method....

  10. High-speed quantum-random number generation by continuous measurement of arrival time of photons

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Qiurong, E-mail: yanqiurong@ncu.edu.cn [Department of Electronic Information Engineering, Nanchang University, Nanchang 330031 (China); State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119 (China); Zhao, Baosheng [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119 (China); Hua, Zhang; Liao, Qinghong [Department of Electronic Information Engineering, Nanchang University, Nanchang 330031 (China); Yang, Hao [Shannxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072 (China)

    2015-07-15

    We demonstrate a novel high speed and multi-bit optical quantum random number generator by continuously measuring arrival time of photons with a common starting point. To obtain the unbiased and post-processing free random bits, the measured photon arrival time is converted into the sum of integral multiple of a fixed period and a phase time. Theoretical and experimental results show that the phase time is an independent and uniform random variable. A random bit extraction method by encoding the phase time is proposed. An experimental setup has been built and the unbiased random bit generation rate could reach 128 Mb/s, with random bit generation efficiency of 8 bits per detected photon. The random numbers passed all tests in the statistical test suite.

  11. Video imaging of walking myosin V by high-speed atomic force microscopy.

    Science.gov (United States)

    Kodera, Noriyuki; Yamamoto, Daisuke; Ishikawa, Ryoki; Ando, Toshio

    2010-11-01

    The dynamic behaviour of myosin V molecules translocating along actin filaments has been mainly studied by optical microscopy. The processive hand-over-hand movement coupled with hydrolysis of adenosine triphosphate was thereby demonstrated. However, the protein molecules themselves are invisible in the observations and have therefore been visualized by electron microscopy in the stationary states. The concomitant assessment of structure and dynamics has been unfeasible, a situation prevailing throughout biological research. Here we directly visualize myosin V molecules walking along actin tracks, using high-speed atomic force microscopy. The high-resolution movies not only provide corroborative 'visual evidence' for previously speculated or demonstrated molecular behaviours, including lever-arm swing, but also reveal more detailed behaviours of the molecules, leading to a comprehensive understanding of the motor mechanism. Our direct and dynamic high-resolution visualization is a powerful new approach to studying the structure and dynamics of biomolecules in action. PMID:20935627

  12. High-speed quantum-random number generation by continuous measurement of arrival time of photons

    International Nuclear Information System (INIS)

    We demonstrate a novel high speed and multi-bit optical quantum random number generator by continuously measuring arrival time of photons with a common starting point. To obtain the unbiased and post-processing free random bits, the measured photon arrival time is converted into the sum of integral multiple of a fixed period and a phase time. Theoretical and experimental results show that the phase time is an independent and uniform random variable. A random bit extraction method by encoding the phase time is proposed. An experimental setup has been built and the unbiased random bit generation rate could reach 128 Mb/s, with random bit generation efficiency of 8 bits per detected photon. The random numbers passed all tests in the statistical test suite

  13. Accuracy and speed of response to different voice types in a cockpit voice warning system

    Science.gov (United States)

    Freedman, J.; Rumbaugh, W. A.

    1983-09-01

    Voice warning systems (VWS) in aircraft cockpits provide a valuable means of warning identification. Improvements in technology have made the VWS a viable addition to aircraft warning systems. This thesis was an experiment to determine the best voice type (male, female, or neutral machine) for use in a VWS for military aircraft. Different levels of engine background noise, signal to noise ratio of the warning message, and precursor delivery formats were used. The experiment had ten subjects performing a primary tracking task; at random intervals a voice warning was interjected, requiring that the subjects respond by pushing the correct button. The results of this experiment contradict some previous beliefs and findings. The male voice was associated with more accurate responses for voice warning systems in the military aircraft environment. For speed of response the results were more complicated; the male voice was generally more closely associated with faster response times for accurate responses.

  14. Fly in Atmosphere by Drag Force - Easy Thrust Generation Aircraft Engine Based Physics

    Science.gov (United States)

    Pierre Celestin, Mwizerwa

    2013-11-01

    This paper aims to present to the science community another way to fly in atmosphere, a way which is much more cheaper, efficient, safe and easy. Over the years scientists have been trying to find a way to built the vertically taking off vehicles but there have been no satisfactory success(what have been found was very expensive), Even aircrafts we know now need very sophisticated and expensive engines and not efficient enough. This way of flying may help our governments to spend less money on technologies and will help people to travel at very low prices so that, it may be a solution to the crisis which the world faces nowadays. In other words, it is my proposal to the next generation technologies we was looking for for years because everything can fly from the car to the trucks, the spaceships and even the hotels maybe constructed and fly as we construct the ships which sail in the oceans. My way of flying will have many applications in all the aspect of travel as it is going to be explained.

  15. The Role of Aircraft Motion in Airborne Gravity Data Quality

    Science.gov (United States)

    Childers, V. A.; Damiani, T.; Weil, C.; Preaux, S. A.

    2015-12-01

    Many factors contribute to the quality of airborne gravity data measured with LaCoste and Romberg-type sensors, such as the Micro-g LaCoste Turnkey Airborne Gravity System used by the National Geodetic Survey's GRAV-D (Gravity for the Redefinition of the American Vertical Datum) Project. For example, it is well documented that turbulence is a big factor in the overall noise level of the measurement. Turbulence is best controlled by avoidance; thus flights in the GRAV-D Project are only undertaken when the predicted wind speeds at flight level are ≤ 40 kts. Tail winds are known to be particularly problematic. The GRAV-D survey operates on a number of aircraft in a variety of wind conditions and geographic locations, and an obvious conclusion from our work to date is that the aircraft itself plays an enormous role in the quality of the airborne gravity measurement. We have identified a number of features of the various aircraft which can be determined to play a role: the autopilot, the size and speed of the aircraft, inherent motion characteristics of the airframe, tip tanks and other modifications to the airframe to reduce motion, to name the most important. This study evaluates the motion of a number of the GRAV-D aircraft and looks at the correlation between this motion and the noise characteristics of the gravity data. The GRAV-D Project spans 7 years and 42 surveys, so we have a significant body of data for this evaluation. Throughout the project, the sensor suite has included an inertial measurement unit (IMU), first the Applanix POSAv, and then later the Honeywell MicroIRS IMU as a part of a NovAtel SPAN GPS/IMU system. We compare the noise characteristics of the data with measures of aircraft motion (via pitch, roll, and yaw captured by the IMU) using a variety of statistical tools. It is expected that this comparison will support the conclusion that certain aircraft tend to work well with this type of gravity sensor while others tend to be problematic in

  16. Aircraft recognition and pose estimation

    Science.gov (United States)

    Hmam, Hatem; Kim, Jijoong

    2000-05-01

    This work presents a geometry based vision system for aircraft recognition and pose estimation using single images. Pose estimation improves the tracking performance of guided weapons with imaging seekers, and is useful in estimating target manoeuvres and aim-point selection required in the terminal phase of missile engagements. After edge detection and straight-line extraction, a hierarchy of geometric reasoning algorithms is applied to form line clusters (or groupings) for image interpretation. Assuming a scaled orthographic projection and coplanar wings, lateral symmetry inherent in the airframe provides additional constraints to further reject spurious line clusters. Clusters that accidentally pass all previous tests are checked against the original image and are discarded. Valid line clusters are then used to deduce aircraft viewing angles. By observing that the leading edges of wings of a number of aircraft of interest are within 45 to 65 degrees from the symmetry axis, a bounded range of aircraft viewing angles can be found. This generic property offers the advantage of not requiring the storage of complete aircraft models viewed from all aspects, and can handle aircraft with flexible wings (e.g. F111). Several aircraft images associated with various spectral bands (i.e. visible and infra-red) are finally used to evaluate the system's performance.

  17. Study on Application of T-S Fuzzy Observer in Speed Switching Control of AUVs Driven by States

    Directory of Open Access Journals (Sweden)

    Xun Zhang

    2014-01-01

    Full Text Available Considering the inherent strongly nonlinear and coupling performance of autonomous underwater vehicles (AUVs, the speed switching control method for AUV driven by states is presented. By using T-S fuzzy observer to estimate the states of AUV, the speed control strategies in lever plane, vertical plane, and speed kept are established, respectively. Then the adaptive switching law is introduced to switch the speed control strategies designed in real time. In the simulation, acoustic Doppler current profile/side scan sonar (ADCP/SSS observation case is employed to demonstrate the effectiveness of the proposed method. The results show that the efficiency of AUV was improved, the trajectory tracking error was reduced, and the steady-state ability was enhanced.

  18. Are the force characteristics of synchronous handcycling affected by speed and the method to impose power?

    NARCIS (Netherlands)

    Arnet, Ursina; van Drongelen, Stefan; Veeger, DirkJan H. E. J.; van der Woude, Lucas H. V.

    2012-01-01

    Objective: To investigate the influence of exercise conditions (speed and method to impose power) on the applied force, force effectiveness and distribution of work during handcycling. Method: Ten able-bodied men performed handcycling on a treadmill. To test the effect of speed, subjects propelled a

  19. A High Revolution Speed Noncontact Ultrasonic Motor Driven by a Non-Symmetrical Electrode

    Institute of Scientific and Technical Information of China (English)

    YANG Bin; LIU Jing-Quan; CHEN Di; CAI Bing-Chu

    2005-01-01

    @@ A noncontact ultrasonic motor based on a non-symmetrical electrode is proposed. This motor has the advantages of using a simple driving electrode and having a high revolution speed. The revolution speed of its three-blade rotor can reach 5100rpm under a driving voltage of 20 V. A method operated easily is proposed to measure the output torque.

  20. Design for CMAC Neural Network Speed Controller of DC Motor by Digital Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kwang Ho [Keon-A Information Technology Co., Ltd. (Korea); Cho, Yong Beom [Konkuk University (Korea)

    2001-06-01

    In this paper, we propose a CMAC(Cerebellar Model Articulation Controller) neural network for controlling a non-linear system. CMAC is a neural network that model the human cerebellum. CMAC uses a table look-up method to resolve the complex non-linear system instead of numerical calculation method. It is very fast learn compared with other neural networks. It does not need a calculation time to generation time to generate control signals. The simulation results show that the proposed CMAC controllers for a simple non-linear function and a DC Motor speed control reduce tracking errors and improve the stability of its learning controllers. The validity of the proposed CMAC controller is also proved by the real-time tension control. (author). 10 refs., 15 figs., 3 tabs.

  1. Experimenting from a distance-determination of speed of light by a remotely controlled laboratory (RCL)

    International Nuclear Information System (INIS)

    The speed of light is an essential topic in the teaching of physics at school and at university, either with respect to the type of experiment or of course with respect to its genuine inherent importance. In reality, the various available experiments are hardly ever performed in class for many reasons. Therefore, we offer this experiment as a remotely controlled laboratory (RCL). An RCL is a real experiment setup at location A which can be controlled via the Internet by a user at a distant location B. It allows several actions like in the hands-on experiment and delivers convincing results. Finally, we present experiences of the use of the RCL, describe the added value of this experiment as an RCL and give hints for implementing the RCL in teaching.

  2. Fabrication of TiB2 composite powders coated with BN by high speed airflow impact

    Institute of Scientific and Technical Information of China (English)

    FENG Cai-mei; WANG Wei-min; FU Zheng-yi

    2005-01-01

    TiB2 powders coated with BN were prepared by Hybridization System making use of dry impact blending method to achieve powder surface modification. Parameters of coating were analyzed and the most appropriate condition was summarized. Scan electron microscope of JSM-5610LV and transmission electron microscope of H600STEM/EDS were used to observe the microstructure of coated powders. Results show that treatment time, rotation speed, granularity ratio of TiB2 to BN, pretreatment of materials etc influence the coating results evidently.Mixing raw materials and coating with BN under the appropriate condition can get round TiB2/BN composite powder with smooth surface and compact coating layer.

  3. Simultaneous visual acquisition of melt jet breakup in water by high speed videography and radiography

    International Nuclear Information System (INIS)

    Motivated to understand molten corium jet falling in a water pool and fragmenting into droplets in the coolant during a hypothetical severe accident in a light water reactor (LWR), this paper presents insights on the dynamics of a coherent molten material jet and its breakup as a function of molten jet initial conditions (jet initial velocity, diameter, etc.) and material thermo-physical properties, with several corium simulant materials from low-melting temperature metallic melt (woods metal) to medium-melting temperature binary oxide melts (e.g., WO3-Bi2O3, WO3-ZrO2). A visualization system of Simultaneous High-speed Acquisition of Radiography and Photography (SHARP) is employed to quantify the characteristics of the melt jet breakup in a water pool. The experiment features well-controlled conditions and small-scale jets which can be visualized by X-ray, and therefore enables a better scrutiny of the jet breakup. (author)

  4. Performance Enhancement of PID Controllers by Modern Optimization Techniques for Speed Control of PMBL DC Motor

    Directory of Open Access Journals (Sweden)

    M. Antony Freeda Rani

    2015-08-01

    Full Text Available Permanent Magnet Brushless DC motor (PMBL DC is used in a large number of industrial and automotive applications because of their high efficiency, compactness and excellent reliability. However to design an efficient PMBL DC motor, it is necessary to provide an effective controller that has to reduce the overshoot, settling and rise time. In this study, an improved PID controller has been designed by optimizing the parameters of PID controller based on two advanced optimization techniques ANFIS and Cuckoo Search optimization for speed control of a PMBL DC motor. The proposed approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency. The PMBL DC motor is modeled in SIMULINK implementing the algorithms in MATLAB and the performance evaluation has been studied.

  5. Adaptable System Increasing the Transmission Speed and Reliability in Packet Network by Optimizing Delay

    Directory of Open Access Journals (Sweden)

    Zbynek Kocur

    2014-01-01

    Full Text Available There is a great diversity in the transmission technologies in current data networks. Individual technologies are in most cases incompatible at physical and partially also at the link layer of the reference ISO/OSI model. Network compatibility, as the ability to transmit data, is realizable through the third layer, which is able to guarantee the operation of the different devices across their technological differences. The proposed inverse packet multiplexer addresses increase of the speed and reliability of packet transmission to the third layer, and at the same time it increases the stability of the data communication by the regulation of the delay value during the transmission. This article presents implementation of a communication system and its verification in real conditions. The conclusion compares the strengths and weaknesses of the proposed control system.

  6. Nano-strip grating lines self-organized by a high speed scanning CW laser

    International Nuclear Information System (INIS)

    After a laser annealing experiment on Si wafer, we found an asymmetric sheet resistance on the surface of the wafer. Periodic nano-strip grating lines (nano-SGLs) were self-organized along the trace of one-time scanning of the continuous wave (CW) laser. Depending on laser power, the nano-trench formed with a period ranging from 500 to 800 nm with a flat trough between trench structures. This simple method of combining the scanning laser with high scanning speed of 300 m min-1 promises a large area of nanostructure fabrication with a high output. As a demonstration of the versatile method, concentric circles were drawn on silicon substrate rotated by a personal computer (PC) cooling fan. Even with such a simple system, the nano-SGL showed iridescence from the concentric circles.

  7. High-speed dynamic atomic force microscopy by using a Q-controlled cantilever eigenmode as an actuator

    International Nuclear Information System (INIS)

    We present a high-speed operating method with feedback to be used in dynamic atomic force microscope (AFM) systems. In this method we do not use an actuator that has to be employed to move the tip or the sample as in conventional AFM setups. Instead, we utilize a Q-controlled eigenmode of an AFM cantilever to perform the function of the actuator. Simulations show that even with an ordinary tapping-mode cantilever, imaging speed can be increased by about 2 orders of magnitude compared to conventional dynamic AFM imaging. - Highlights: • A high-speed imaging method is developed for dynamic-AFM systems. • An eigenmode of an AFM cantilever is utilized to perform fast actuation. • Simulations show 2 orders of magnitude increase in scan speed. • The time spent for dynamic-AFM imaging experiments will be minimized

  8. Reduction of aircraft noise in civil air transport by optimization of flight tracks and takeoff and approach procedures

    Science.gov (United States)

    Rottmann, Uwe

    1988-08-01

    Noise optimized design of operational flight procedures for effective noise pollution reduction is analyzed. Power cutback during certain stages of approach and takeoff, extension of distance between sound source and sound receiver, as well as diminution of sound impact time are optimized for specific flight procedures and routings. Five takeoff and three landing procedures are analyzed in acoustic effects. Sound immission is computed by NOISIMSIS (NOISe IMpact SImulation System), a simulation system especially created for this task, under consideration of aircraft type specified sound emission characteristics and performance data as well as different meteorological conditions. The investigations for the example of Frankfurt airport result in formulating a planning guideline with notes and impulses for activities in operational noise abatement.

  9. Study on Size Distributions of Airborne Particles by Aircraft Observation in Spring over Eastern Coastal Areas of China

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; LIU Hongjie; YUE Xin; LI Hong; CHEN Jianhua; TANG Dagang

    2005-01-01

    The authors studied the size distributions of particles at an altitude of 2000 m by aircraft observation over eastern costal areas of China from Zhuhai, Guangdong to Dalian, Liaoning (0.47-30 μm, 57 channels,including number concentration distribution, surface area concentration distribution and mass concentration distribution). In these cities, the average daily concentrations of PM10 are very high. They are among the most heavily polluted cities in China. The main pollution sources are anthropogenic activities such as wood, coal and oil burning. The observed size distributions show a broad spectrum and unique multi-peak characteristics, indicating no significant impacts of individual sources from urban areas. These results are far different from the distribution type at ground level. It may reflect the comprehensive effect of the regional pollution characteristics. Monitoring results over big cities could to some extent reflect their pollution characteristics.

  10. Aircraft Lightning Electromagnetic Environment Measurement

    Science.gov (United States)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.

    2011-01-01

    This paper outlines a NASA project plan for demonstrating a prototype lightning strike measurement system that is suitable for installation onto research aircraft that already operate in thunderstorms. This work builds upon past data from the NASA F106, FAA CV-580, and Transall C-180 flight projects, SAE ARP5412, and the European ILDAS Program. The primary focus is to capture airframe current waveforms during attachment, but may also consider pre and post-attachment current, electric field, and radiated field phenomena. New sensor technologies are being developed for this system, including a fiber-optic Faraday polarization sensor that measures lightning current waveforms from DC to over several Megahertz, and has dynamic range covering hundreds-of-volts to tens-of-thousands-of-volts. A study of the electromagnetic emission spectrum of lightning (including radio wave, microwave, optical, X-Rays and Gamma-Rays), and a compilation of aircraft transfer-function data (including composite aircraft) are included, to aid in the development of other new lightning environment sensors, their placement on-board research aircraft, and triggering of the onboard instrumentation system. The instrumentation system will leverage recent advances in high-speed, high dynamic range, deep memory data acquisition equipment, and fiber-optic interconnect.

  11. An appraisal of wind speed distribution prediction by soft computing methodologies: A comparative study

    International Nuclear Information System (INIS)

    Highlights: • Probabilistic distribution functions of wind speed. • Two parameter Weibull probability distribution. • To build an effective prediction model of distribution of wind speed. • Support vector regression application as probability function for wind speed. - Abstract: The probabilistic distribution of wind speed is among the more significant wind characteristics in examining wind energy potential and the performance of wind energy conversion systems. When the wind speed probability distribution is known, the wind energy distribution can be easily obtained. Therefore, the probability distribution of wind speed is a very important piece of information required in assessing wind energy potential. For this reason, a large number of studies have been established concerning the use of a variety of probability density functions to describe wind speed frequency distributions. Although the two-parameter Weibull distribution comprises a widely used and accepted method, solving the function is very challenging. In this study, the polynomial and radial basis functions (RBF) are applied as the kernel function of support vector regression (SVR) to estimate two parameters of the Weibull distribution function according to previously established analytical methods. Rather than minimizing the observed training error, SVRpoly and SVRrbf attempt to minimize the generalization error bound, so as to achieve generalized performance. According to the experimental results, enhanced predictive accuracy and capability of generalization can be achieved using the SVR approach compared to other soft computing methodologies

  12. 75 FR 51953 - Notification and Reporting of Aircraft Accidents or Incidents and Overdue Aircraft, and...

    Science.gov (United States)

    2010-08-24

    ... applicability of these regulations to unmanned aircraft systems (UAS). The proposed definition stated... unmanned aircraft system that takes place between the time that the system is activated with the purpose of... notification and reporting of aircraft accidents or incidents by adding a definition of ``unmanned......

  13. Evaluation on the structural soundness of the transport package for low-level radioactive waste for subsurface disposal against aircraft impact by finite element method

    International Nuclear Information System (INIS)

    The structural analysis of aircraft crush on the transport package for low-level radioactive waste was performed using the impact force which was already used for the evaluation of the high-level waste transport package by LSDYNA code. The transport package was deformed, and stresses due to the crush exceeded elastic range. However, plastic strains yieled in the package were far than the elongation of the materials and the body of the package did not contact the disposal packages due to the deformation of the package. Therefore, it was confirmed that the package keeps its integrity against aircraft crush. (author)

  14. Speed and path control for conflict-free flight in high air traffic demand in terminal airspace

    Science.gov (United States)

    Rezaei, Ali

    To accommodate the growing air traffic demand, flights will need to be planned and navigated with a much higher level of precision than today's aircraft flight path. The Next Generation Air Transportation System (NextGen) stands to benefit significantly in safety and efficiency from such movement of aircraft along precisely defined paths. Air Traffic Operations (ATO) relying on such precision--the Precision Air Traffic Operations or PATO--are the foundation of high throughput capacity envisioned for the future airports. In PATO, the preferred method is to manage the air traffic by assigning a speed profile to each aircraft in a given fleet in a given airspace (in practice known as (speed control). In this research, an algorithm has been developed, set in the context of a Hybrid Control System (HCS) model, that determines whether a speed control solution exists for a given fleet of aircraft in a given airspace and if so, computes this solution as a collective speed profile that assures separation if executed without deviation. Uncertainties such as weather are not considered but the algorithm can be modified to include uncertainties. The algorithm first computes all feasible sequences (i.e., all sequences that allow the given fleet of aircraft to reach destinations without violating the FAA's separation requirement) by looking at all pairs of aircraft. Then, the most likely sequence is determined and the speed control solution is constructed by a backward trajectory generation, starting with the aircraft last out and proceeds to the first out. This computation can be done for different sequences in parallel which helps to reduce the computation time. If such a solution does not exist, then the algorithm calculates a minimal path modification (known as path control) that will allow separation-compliance speed control. We will also prove that the algorithm will modify the path without creating a new separation violation. The new path will be generated by adding new

  15. Predictive control of wind turbines by considering wind speed forecasting techniques

    OpenAIRE

    Narayana, Mahinsasa; Putrus, Ghanim; Jovanovic, Milutin; Lung, P. S.

    2009-01-01

    A wind turbine system is operated such that the points of wind rotor curve and electrical generator curve coincide. In order to obtain maximum power output of a wind turbine generator system, it is necessary to drive the wind turbine at an optimal rotor speed for a particular wind speed. A Maximum Power Point Tracking (MPPT) controller is used for this purpose. In fixed-pitch variable-speed wind turbines, wind-rotor parameters are fixed and the restoring torque of the generator needs to be ad...

  16. NACA Aircraft on Lakebed - D-558-2, X-1B, and X-1E

    Science.gov (United States)

    1955-01-01

    Early NACA research aircraft on the lakebed at the High Speed Research Station in 1955: Left to right: X-1E, D-558-2, X-1B There were four versions of the original Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Supersonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on January 25, 1946. Powered flights began in December 1946. On October 14, 1947, the X-1-1, piloted by Air Force Captain Charles 'Chuck' Yeager, became the first aircraft to exceed the speed of sound, reaching about 700 miles per hour (Mach 1.06) and an altitude of 43,000 feet. The number 2 X-1 was modified and redesignated the X-1E. The modifications included adding a conventional canopy, an ejection seat, a low-pressure fuel system

  17. Solidification microstructure of M2 high speed steel by different casting technologies

    Directory of Open Access Journals (Sweden)

    Zhou Xuefeng

    2011-08-01

    Full Text Available The present work investigated the solidification microstructure of AISI M2 high speed steel manufactured by different casting technologies, namely iron mould casting and continuous casting. The results revealed that the as-cast structure of the steel was composed of the iron matrix and the M2C eutectic carbide networks, which were greatly refined in the ingot made by continuous casting process, compared with that by the iron mould casting process. M2C eutectic carbides presented variation in their morphologies and growth characteristics in the ingots by both casting methods. In the ingot by iron mould casting, they have a plate-like morphology and grow anisotropically. However, in the ingot made by continuous casting, the carbides evolved into the fiber-like shape that exhibited little characteristics of anisotropic growth. It was noticed that the fiber-like M2C was much easier to decompose and spheroidize after heated, as a result, the carbides refined remarkably, compared with the case of plate-like carbides in the iron mould casting ingot.

  18. A Brief Study of the Speed Reduction of Overtaking Airplanes by Means of Air Brakes, Special Report

    Science.gov (United States)

    Pearson, H. A.; Amderspm. R. F.

    1942-01-01

    As an aid to airplane designers interested in providing pursuit airplanes with decelerating devices intended to increase the firing time when overtaking another airplane, formulas are given relating the pertinent distances and speeds in horizontal flight to the drag increase required. Charts are given for a representative parasite-drag coefficient from which the drag increase, the time gained, and the closing distance may be found. The charts are made up for three values of the ratio of the final speed of the pursuing airplane to the speed of the pursued airplane and for several values of the ratio of the speed of the pursued airplane to the initial speed of the pursuing airplane. Charts are also given indicating the drag increases obtainable with double split flaps and with conventional propellers. The use of the charts is illustrated by an example in which it is indicated that either double split flaps or, under certain ideal conditions, reversible propellers should provide the speed reductions required.

  19. Single step high-speed printing of continuous silver lines by laser-induced forward transfer

    Science.gov (United States)

    Puerto, D.; Biver, E.; Alloncle, A.-P.; Delaporte, Ph.

    2016-06-01

    The development of high-speed ink printing process by Laser-Induced Forward Transfer (LIFT) is of great interest for the printing community. To address the problems and the limitations of this process that have been previously identified, we have performed an experimental study on laser micro-printing of silver nanoparticle inks by LIFT and demonstrated for the first time the printing of continuous conductive lines in a single pass at velocities of 17 m/s using a 1 MHz repetition rate laser. We investigated the printing process by means of a time-resolved imaging technique to visualize the ejection dynamics of single and adjacent jets. The control of the donor film properties is of prime importance to achieve single step printing of continuous lines at high velocities. We use a 30 ps pulse duration laser with a wavelength of 343 nm and a repetition rate from 0.2 to 1 MHz. A galvanometric mirror head controls the distance between two consecutives jets by scanning the focused beam along an ink-coated donor substrate at different velocities. Droplets and lines of silver inks are laser-printed on glass and PET flexible substrates and we characterized their morphological quality by atomic force microscope (AFM) and optical microscope.

  20. Challenges in Aircraft Noise Prediction

    OpenAIRE

    Filippone A

    2014-01-01

    This contribution addresses the problem of aircraft noise prediction using theoretical methods. The problem is set in context with the needs at several levels to produce noise characterisation from commercial aircraft powered by gas turbine engines. We describe very briefly the computational model (whilst referring the reader to the appropriate literature), and provide examples of noise predictions and comparisons with measured data, where possible. We focus on the issue of stochastic analysi...

  1. Fractional order PID controller for improvement of PMSM speed control in aerospace applications

    Energy Technology Data Exchange (ETDEWEB)

    Saraji, Ali Motalebi [Young Researchers and Elite Club, AliAbad Katoul Branch, Islamic Azad University, AliAbad Katoul (Iran, Islamic Republic of); Ghanbari, Mahmood [Department of Electrical Engineering, AliAbad Katoul Branch, Islamic Azad University, AliAbad Katoul (Iran, Islamic Republic of)

    2014-12-10

    Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loop of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.

  2. Fractional order PID controller for improvement of PMSM speed control in aerospace applications

    Science.gov (United States)

    Saraji, Ali Motalebi; Ghanbari, Mahmood

    2014-12-01

    Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loop of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.

  3. Fractional order PID controller for improvement of PMSM speed control in aerospace applications

    International Nuclear Information System (INIS)

    Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loop of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear

  4. Retrofit device to improve vapor compression cooling system performance by dynamic blower speed modulation

    Science.gov (United States)

    Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.

    2015-12-08

    A device and method are provided to improve performance of a vapor compression system using a retrofittable control board to start up the vapor compression system with the evaporator blower initially set to a high speed. A baseline evaporator operating temperature with the evaporator blower operating at the high speed is recorded, and then the device detects if a predetermined acceptable change in evaporator temperature has occurred. The evaporator blower speed is reduced from the initially set high speed as long as there is only a negligible change in the measured evaporator temperature and therefore a negligible difference in the compressor's power consumption so as to obtain a net increase in the Coefficient of Performance.

  5. Ram speed profile design for isothermal extrusion of AZ31 magnesium alloy by using FEM simulation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In the conventional hot extrusion of metallic materials,the temperature of the workpiece varies during the whole extrusion process,leading to the non-uniformity of the product dimension,microstructure and properties.In the present research,a simulation model based on the principle of PID control was developed to establish ram speed profiles that can suppress the temperature evolution during the process to allow for isothermaI extrusion.With this simulation model,the real-time extrusion ram speed was adjusted according to the simulated exit temperature.The results show that temperature homogeneity is significantly improved not only along the extrudate length but also on its cross section in the case of extrusion in the isothermal mode with a designed ram speed profile in the extrusion process of AZ31 magnesium.In addition,die temperature varies over a more narrow range in comparison with extrusion in the conventional iso-speed mode.

  6. Preparative separation of minor saponins from Platycodi Radix by high-speed counter-current chromatography.

    Science.gov (United States)

    Ha, In J; Kang, Minseok; Na, Yun C; Park, Youmie; Kim, Yeong S

    2011-10-01

    Platycosides (PSs), the saponins found in the root of Platycodon grandiflorum (Jacq.) A. DC. (Platycodi Radix), are typically composed of oleanene backbones with two side chains; one is a 3-O-glucose linked by a glycosidic bond, and the other is a 28-O-arabinose-rhamnose-xylose-apiose linked by an ester bond. Minor saponins, acetylated isomers of the major saponin on either the 2'' or 3'' position of rhamnose, were isolated from Platycodi Radix using a multi-step process including high-speed counter-current chromatography (HSCCC) and preparative reversed-phase high-performance liquid chromatography (RP-HPLC). After the separation of the major components, the enriched minor saponin fraction was used for this study. A two-phase solvent system consisting of chloroform-methanol-isopropanol-water (3:2:2:3, v/v) was used for HSCCC. HSCCC separation of the enriched minor saponin fraction yielded 2''-O-acetylplatycodin D, 3''-O-acetylpolygalacin D, 2''-O-acetylpolygalacin and a mixture of 3''-O-acetylplatycodin D and polygalacin D. The mixture fraction from HSCCC separation was further purified by preparative RP-HPLC, giving 3''-O-acetylplatycodin D and polygalacin D at a purity of over 98.9%. The developed method provides the preparative and rapid separation of minor saponins in the crude extract of Platycodi Radix. To the best of our knowledge, this is the first on the separation of acetylated PSs by HSCCC. PMID:21812112

  7. Temperature and Light Control of Three phase Induction Motor Speed Drive by PIC

    Science.gov (United States)

    Barsoum, Nader

    2010-06-01

    PIC is a family of Harvard architecture microcontrollers made by Microchip Technology, derived from the PIC1640 originally developed by General Instrument's Microelectronics Division. The name PIC initially referred to "Peripheral Interface Controller". PICs are popular with the developers and the hobbyists due to their low cost, wide availability, large user base, extensive collection of application notes, free development tools, and serial programming (and re-programming with flash memory) capability. In modern days, PIC microcontrollers are used in the industrial world to control many types of equipment, ranging from consumer to specialized devices. They have replaced older types of controllers, including microprocessors. Also, there is a growing need for off-line support of a computer's main processor. The demand is going to grow with more equipment uses more intelligence. In the engineering field for instance, PIC has brought a very positive impact in designing an automation control system and controlling industrial machineries. Accordingly, this paper shows the change in the motor speed by the use of PIC in accordance to the light and level of temperature. The project focuses on programming the PIC by embedded software that detects the temperature and light signals and send it to 3 phase induction motor of 240 volt. A theoretical analysis and the practical approach in achieving this work goal have proved that PIC plays an important role in the field of electronics control.

  8. Solidification Microstructure of AISI M2 High Speed Steel Manufactured by the Horizontal Continuous Casting Process

    Science.gov (United States)

    Zhou, X. F.; Fang, F.; Jiang, J. Q.

    2011-01-01

    In the present work, AISI M2 high speed steel is produced by the horizontal continuous casting process. The difference of solidification microstructure in ingots by mould casting and continuous casting has been examined by means of scanning electron microscope (SEM), electron back-scatter diffraction (EBSD), transmission electron microscope (TEM) and high resolution electron microscope (HREM). The results show that the as-cast structure consists of iron matrix and networks of M2C eutectic carbides, which are greatly refined in the continuous casting ingot compared to the case of ingot by mould casting. Meanwhile, the morphology of M2C eutectic carbides changes from the plate-like shape into the fibrous one. Micro-twining and stacking faults are observed in the plate-like M2C, whereas they are rarely identified in the fibrous M2C. Based on the characteristic of morphology and microstructure, it is expected that the plate-like M2C is a faceted phase while the fibrous M2C is a non-faceted phase.

  9. Changes in thermospheric temperature induced by high-speed solar wind streams

    OpenAIRE

    Gardner, Larry; Sojka, Jan J.; Schunk, Robert W.; Heelis, Rod

    2012-01-01

    During high-speed stream (HSS) events the solar wind speed increases, and the cross polar cap potential increases, leading to increased Joule heating at high latitudes. The heat input at high latitudes heats the polar regions, which then conducts to lower latitudes, producing global heating. The heating occurs during the risetime of the cross polar cap potential and throughout the period of high cross polar cap potential as seen in our simulation. These simulations are performed using the Uta...

  10. Developing aircraft photonic networks for airplane systems

    DEFF Research Database (Denmark)

    White, Henry J.; Brownjohn, Nick; Baptista, João;

    2013-01-01

    Achieving affordable high speed fiber optic communication networks for airplane systems has proved to be challenging. In this paper we describe a summary of the EU Framework 7 project DAPHNE (Developing Aircraft Photonic Networks). DAPHNE aimed to exploit photonic technology from terrestrial...

  11. Structural health monitoring and impact detection for primary aircraft structures

    Science.gov (United States)

    Kosters, Eric; van Els, Thomas J.

    2010-04-01

    The increasing use of thermoplastic carbon fiber-reinforced plastic (CFRP) materials in the aerospace industry for primary aircraft structures, such as wing leading-edge surfaces and fuselage sections, has led to rapid growth in the field of structural health monitoring (SHM). Impact, vibration, and load can all cause failure, such as delamination and matrix cracking, in composite materials. Moreover, the internal material damage can occur without being visible to the human eye, making inspection of and clear insight into structural integrity difficult using currently available evaluation methods. Here, we describe the detection of impact and its localization in materials and structures by high-speed interrogation of multiple-fiber Bragg grating (FBG) sensors mounted on a composite aircraft component.

  12. Smart Materials Technology for High Speed Adaptive Inlet/Nozzle Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Enabling a new generation of high speed civil aircraft will require breakthrough developments in propulsion design, including novel techniques to optimize inlet...

  13. Machining tools in AISI M2 high-speed steel obtained by spray forming process

    International Nuclear Information System (INIS)

    The aim of the present work was the obtention of AISI M2 high-speed steel by spray forming technique and the material evaluation when used as machining tool. The obtained material was hot rolled at 50% and 72% reduction ratios, and from which it was manufactured inserts for machining tests. The performance of inserts made of the spray formed material was compared to inserts obtained from conventional and powder metallurgy (MP) processed materials. The spray formed material was chemical, physical, mechanical and microstructural characterised. For further characterisation, the materials were submitted to machining tests for performance evaluation under real work condition. The results of material characterisation highlight the potential of the spray forming technique, in the obtention of materials with good characteristics and properties. Under the current processing, hot rolling and heat treatments condition, the analysis of the results of the machining tests revealed a very similar behaviour among the tested materials. Proceeding a criterious analysis of the machining results tests, it was verified that the performance presented by the powder metallurgy material (MP) was slight superior, followed by conventional obtained material (MConv), which presented a insignificant advantage over the spray formed and hot rolled (72% reduction ratio) material. The worst result was encountered for the spray forming and hot rolled (50% reduction ratio) material that presented the highest wear values. (author)

  14. Temperature measurement of mineral melt by means of a high-speed camera.

    Science.gov (United States)

    Bizjan, Benjamin; Širok, Brane; Drnovšek, Janko; Pušnik, Igor

    2015-09-10

    This paper presents a temperature evaluation method by means of high-speed, visible light digital camera visualization and its application to the mineral wool production process. The proposed method adequately resolves the temperature-related requirements in mineral wool production and significantly improves the spatial and temporal resolution of measured temperature fields. Additionally, it is very cost effective in comparison with other non-contact temperature field measurement methods, such as infrared thermometry. Using the proposed method for temperatures between 800°C and 1500°C, the available temperature measurement range is approximately 300 K with a single temperature calibration point and without the need for camera setting adjustments. In the case of a stationary blackbody, the proposed method is able to produce deviations of less than 5 K from the reference (thermocouple-measured) temperature in a measurement range within 100 K from the calibration temperature. The method was also tested by visualization of rotating melt film in the rock wool production process. The resulting temperature fields are characterized by a very good temporal and spatial resolution (18,700 frames per second at 128  pixels×328  pixels and 8000 frames per second at 416  pixels×298  pixels). PMID:26368973

  15. High-speed organocatalytic polymerization of a renewable methylene butyrolactone by a phosphazene superbase

    KAUST Repository

    Schmitt, Meghan L.

    2014-01-01

    The organic phosphazene superbase, 1-tert-butyl-4,4,4-tris(dimethylamino)- 2,2-bis[tris(dimethylamino)phosphoranylid-enamino]-2λ5, 4λ5-catenadi(phosphazene) (t-Bu-P4), is found to directly initiate high-speed polymerization of the biomass-derived renewable γ-methyl-α-methylene-γ-butyrolactone (MMBL), in contrast to other polymerization systems using t-Bu-P4 which typically require addition of an organic acid or a nucleophile as a co-initiating component. This MMBL polymerization by t-Bu-P4 alone is extremely rapid; even with a low t-Bu-P4 loading of 0.1 mol% or 0.02 mol%, quantitative monomer conversion is achieved in 20 s or 1 min, respectively, affording medium to high molecular weight PMMBL bioplastics in a catalytic fashion. The combined experimental and theoretical/computational studies have yielded mechanisms of chain initiation through abstraction of a proton from a monomer by t-Bu-P 4, essentially barrier-less chain propagation through rapid conjugate addition of the enolate anion stabilized by the nano-size cation [t-Bu-P 4H]+ to the monomer, and chain termination through chain transfer to the monomer which generates a saturated termination chain end and the [t-Bu-P4H]+-stabilized anionic active species that starts a new chain. This journal is © the Partner Organisations 2014.

  16. Positron annihilation lifetime in Fe-Rh alloys deformed by high-speed compression

    Energy Technology Data Exchange (ETDEWEB)

    Fukuzumi, M. [Graduate School of Engineering, Osaka Prefecture Univ., Sakai (Japan); Hori, F.; Oshima, R. [Research Inst. for Advanced Science and Technology, Osaka Prefecture Univ., Sakai (Japan); Komatsu, M.; Kiritani, M. [Research Center for Ultra-High-Speed Plastic Deformation, Hiroshima Inst. of Tech., Saekiku (Japan)

    2001-07-01

    In order to examine the role of structural vacancies in the stress-induced phase transitions of B2-type FeRh alloys, Fe-40, 45 and 50 at%Rh specimens were deformed at room temperature with a high-speed compression machine and were studied by X-ray diffractometry (XRD) and positron annihilation measurements. It was found from the positron lifetime results that vacancies or vacancy clusters were introduced into the alloy by deformation. The longer lifetime ({tau}{sub 2}) components were changed with the deformation momenta and Rh concentrations. In the case of Fe-50 at%Rh, they were 188 ps and 254 ps after deformation with small or large momenta, respectively. Taking the X-ray results into consideration, it is concluded that an atom movement mechanism forming large vacancy clusters is associated with the B2-A1 transition. The short lifetime ({tau}{sub 1}) of the alloy is accounted for by bulk annihilation in the transformed phases and a high density of dislocations. (orig.)

  17. Removal of focal atheromatous lesions by angioscopically guided high-speed rotary atherectomy. Preliminary experimental observations

    International Nuclear Information System (INIS)

    A new high-speed rotary atherectomy device, inserted over a guide wire and directed with an angioscope, offers the potential of restoring patency of outflow vessels by boring out the atheromatous lesion of the orifices of runoff vessels. The device was tested on 68 cadaver arteries with atheromatous lesions involving the superficial femoral, popliteal, and tibial arteries. This was performed with either free segments or in situ with the device placed through a popliteal arteriotomy. The gross results of rotary atherectomy were assessed by angioscopy, angiography, or both. The luminal surfaces were studied with scanning electron microscopy and transverse sections of vessels were studied with light microscopy. The pulverized atheroma, in colloidal suspension, was analyzed for particle size by Coulter counter. The effect of a colloidal suspension of atheromatous particles on distal capillary circulation was measured in animal experiments. Obstructive lesions were successfully removed in 36 of 37 stenotic arteries (97%) and 18 of 31 completely occluded arteries (58%), an overall efficacy of 54 of 68 (79%). In successfully atherectomized arteries, angioscopy and angiography demonstrated a widely patent, smooth, polished surface. Light microscopy demonstrated removal of the diseased intima with maintenance of the outer media and adventitia. The pulverized atheroma particles were generally smaller than red blood cells and injection of the colloidal atheroma into canine femoral arteries failed to produce local tissue injury. We conclude that in the human cadaver this atherectomy device effectively enlarges and recanalizes obstructed superficial femoral, popliteal, and tibial arteries

  18. Special analysis of community annoyance with aircraft noise reported by residents in the vicinity of JFK Airport, 1972

    Science.gov (United States)

    Borsky, P. N.

    1975-01-01

    During the summer of 1972, about 1500 residents were interviewed twice in 11 communities near JFK airport. Detailed aircraft operations reports were also collected for this period, and an effort has been made to analyze recorded human response data in relation to a number of physical exposure parameters. A series of exposure indexes, based on an arithmetic integration of aircraft operations, were correlated with summated aircraft noise annoyance responses. None of these correlations were as good as the CNR index which assumes a logrithmetic integration of numbers of aircraft exposures and includes a day-night differential weighting of 10:1. There were substantial variations in average annoyance responses among communities with similar CNR exposures, substantiating previous findings that attitudinal and other personal variables also play an important role in determining annoyance differences.

  19. Boulders moved by the 29 September 2009 Tsunami: Flow-Speed Estimates at Taga, Samoa

    Science.gov (United States)

    Weiss, Robert; Fritz, Hermann

    2010-05-01

    On September 29, 2009 at 17:48:10 UTC (local time: UTC-11), an Mw ≈8.1 earthquake struck about 200 km S of the main Samoan Islands chain and 200 km E of Tonga's Niua Group. This is the most significant earthquake on the northern bend of the Tonga trench since 1917. At Taga, boulders of different sizes were observed; their distribution on the surface did not shore any recognizable pattern. It should be noted that the term 'boulder' in here is not applied to an indicated grain size, but to describe particles that have a size that cannot be neglected compared to the water depth. Taga village is located on south-central Savai'i Island, Samoa. The tsunami flooding reached about 180 m inundation and about 6m maximum runup . The tsunami waves were able to turn a empty water tank upside down and destroyed a house attached to a swimming pool. The flow depth reached 4 m marked by roof damage. In order to achieve estimates of the flow speed from the boulders on the surface, a few assumptions need to be made. Even though these assumptions simplify the physical problem almost to the level of the spherical cow, and yet they do not violate basic physics. Also, the initiation of motion is not considered, which is complex due to the necessary three-dimensional description of the turbulent flow field and shear-stress distribution around the boulder. Furthermore, the bedding and roughness in vicinity of the boulder is of pivotal importance for the initiation of motion. The first assumption is that the Froude number can be used to scale between the flow depth and the flow speed. The Froude number is the ratio of the flow speed and square root of gravity times the flow depth. It is classically used to evaluate the influence of inertia on a flow system and for scaling of gravity driven flows. The second assumption is that the boulders are spherical with varying bulk density. The last assumption is that the Rouse number can be employed to retrieve information on the transport mode. The

  20. Antenna induced hot restrike of a ceramic metal halide lamp recorded by high-speed photography

    Science.gov (United States)

    Hermanns, P.; Hoebing, T.; Bergner, A.; Ruhrmann, C.; Awakowicz, P.; Mentel, J.

    2016-03-01

    The hot restrike is one of the biggest challenges in operating ceramic metal halide lamps with mercury as buffer gas. Compared to a cold lamp, the pressure within a ceramic burner is two orders of magnitude higher during steady state operation due to the high temperature of the ceramic tube and the resulting high mercury vapour pressure. Room temperature conditions are achieved after 300 s of cooling down in a commercial burner, enclosed in an evacuated outer bulb. At the beginning of the cooling down, ignition voltage rises up to more than 14 kV. A significant reduction of the hot-restrike voltage can be achieved by using a so called active antenna. It is realized by a conductive sleeve surrounding the burner at the capillary of the upper electrode. The antenna is connected to the lower electrode of the lamp, so that its potential is extended to the vicinity of the upper electrode. An increased electric field in front of the upper electrode is induced, when an ignition pulse is applied to the lamp electrodes. A symmetrically shaped ignition pulse is applied with an amplitude, which is just sufficient to re-ignite the hot lamp. The re-ignition, 60 s after switching off the lamp, when the mercury pressure starts to be saturated, is recorded for both polarities of the ignition pulse with a high-speed camera, which records four pictures within the symmetrically shaped ignition pulse with exposure times of 100 ns and throws of 100 ns. The pictures show that the high electric field and its temporal variation establish a local dielectric barrier discharge in front of the upper electrode inside the burner, which covers the inner wall of the burner with a surface charge. It forms a starting point of streamers, which may induce the lamp ignition predominantly within the second half cycle of the ignition pulse. It is found out that an active antenna is more effective when the starting point of the surface streamer in front of the sleeve is a negative surface charge on the

  1. Fetal lung volume measurement by MRI with high-speed imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Osada, Hisao; Kaku, Kenshi [Chiba Univ. (Japan). Hospital

    2002-08-01

    Although ultrasonography is widely used for fetal morphologic observation, magnetic resonance imaging (MRI) has gained popularity as a new prenatal diagnostic method with recent introduction of high-speed imaging systems. Infants with lung hypoplasia affecting respiratory function require intensive management starting immediately after birth. Therefore, accurate prenatal differential diagnosis and severity evaluation are extremely important for these fetuses. The aim of this study is to measure fetal lung volume using a computer-based, three-dimensional MRI imaging system and to evaluate the possibility of clinical applications of this procedure. A total of 96 fetuses were evaluated, all were morphologically abnormal, and MRI was done for advanced assessment from 24 to 39 weeks gestation. Three-directional views of fetal chest were imaged by Signa Horizon, 1.5 Tesla, version 5.6 (General Electronics) with the following conditions; coil: TORSO coil, sequence: SSFSE (single shot fast spin echo), slice thickness: 5 mm, and imaging speed: 2 seconds/slice. To calculate the lung volume and create three-dimensional image, the lung area in each slice was traced out, then multiplied using computer image processing. Simultaneously, the volumes of all slices were summed to give the volume of each lung. Linear regression analysis and analysis of covariance (ANCOVA) were used for statistical analyses. In all cases, clear images were obtained, and were adequate for three-dimensional evaluation of the fetal lung. Thirty-five fetuses had poor outcomes, such as intrauterine fetal death, neonatal death, and intensive respiratory care. Regression lines of lung volume versus gestational week were calculated for these fetuses with poor outcome and 61 other fetuses with good outcome. ANCOVA, with gestational week as a covariant, revealed a significant intergroup difference in the lung volume (p<0.001). Similarly, regression lines of lung volume versus fetal body weight estimated by

  2. Fetal lung volume measurement by MRI with high-speed imaging systems

    International Nuclear Information System (INIS)

    Although ultrasonography is widely used for fetal morphologic observation, magnetic resonance imaging (MRI) has gained popularity as a new prenatal diagnostic method with recent introduction of high-speed imaging systems. Infants with lung hypoplasia affecting respiratory function require intensive management starting immediately after birth. Therefore, accurate prenatal differential diagnosis and severity evaluation are extremely important for these fetuses. The aim of this study is to measure fetal lung volume using a computer-based, three-dimensional MRI imaging system and to evaluate the possibility of clinical applications of this procedure. A total of 96 fetuses were evaluated, all were morphologically abnormal, and MRI was done for advanced assessment from 24 to 39 weeks gestation. Three-directional views of fetal chest were imaged by Signa Horizon, 1.5 Tesla, version 5.6 (General Electronics) with the following conditions; coil: TORSO coil, sequence: SSFSE (single shot fast spin echo), slice thickness: 5 mm, and imaging speed: 2 seconds/slice. To calculate the lung volume and create three-dimensional image, the lung area in each slice was traced out, then multiplied using computer image processing. Simultaneously, the volumes of all slices were summed to give the volume of each lung. Linear regression analysis and analysis of covariance (ANCOVA) were used for statistical analyses. In all cases, clear images were obtained, and were adequate for three-dimensional evaluation of the fetal lung. Thirty-five fetuses had poor outcomes, such as intrauterine fetal death, neonatal death, and intensive respiratory care. Regression lines of lung volume versus gestational week were calculated for these fetuses with poor outcome and 61 other fetuses with good outcome. ANCOVA, with gestational week as a covariant, revealed a significant intergroup difference in the lung volume (p<0.001). Similarly, regression lines of lung volume versus fetal body weight estimated by

  3. Turboelectric Distributed Propulsion in a Hybrid Wing Body Aircraft

    Science.gov (United States)

    Felder, James L.; Brown, Gerald V.; DaeKim, Hyun; Chu, Julio

    2011-01-01

    The performance of the N3-X, a 300 passenger hybrid wing body (HWB) aircraft with turboelectric distributed propulsion (TeDP), has been analyzed to see if it can meet the 70% fuel burn reduction goal of the NASA Subsonic Fixed Wing project for N+3 generation aircraft. The TeDP system utilizes superconducting electric generators, motors and transmission lines to allow the power producing and thrust producing portions of the system to be widely separated. It also allows a small number of large turboshaft engines to drive any number of propulsors. On the N3-X these new degrees of freedom were used to (1) place two large turboshaft engines driving generators in freestream conditions to maximize thermal efficiency and (2) to embed a broad continuous array of 15 motor driven propulsors on the upper surface of the aircraft near the trailing edge. That location maximizes the amount of the boundary layer ingested and thus maximizes propulsive efficiency. The Boeing B777-200LR flying 7500 nm (13890 km) with a cruise speed of Mach 0.84 and an 118100 lb payload was selected as the reference aircraft and mission for this study. In order to distinguish between improvements due to technology and aircraft configuration changes from those due to the propulsion configuration changes, an intermediate configuration was included in this study. In this configuration a pylon mounted, ultra high bypass (UHB) geared turbofan engine with identical propulsion technology was integrated into the same hybrid wing body airframe. That aircraft achieved a 52% reduction in mission fuel burn relative to the reference aircraft. The N3-X was able to achieve a reduction of 70% and 72% (depending on the cooling system) relative to the reference aircraft. The additional 18% - 20% reduction in the mission fuel burn can therefore be attributed to the additional degrees of freedom in the propulsion system configuration afforded by the TeDP system that eliminates nacelle and pylon drag, maximizes boundary

  4. 14 CFR 25.1513 - Minimum control speed.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum control speed. 25.1513 Section 25.1513 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Limitations § 25.1513 Minimum control speed. The minimum control speed V MC determined under § 25.149 must...

  5. 14 CFR 23.1513 - Minimum control speed.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum control speed. 23.1513 Section 23.1513 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Information § 23.1513 Minimum control speed. The minimum control speed V MC, determined under § 23.149,...

  6. 14 CFR 23.1511 - Flap extended speed.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flap extended speed. 23.1511 Section 23.1511 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Information § 23.1511 Flap extended speed. (a) The flap extended speed V FE must be established so that it...

  7. 14 CFR 25.33 - Propeller speed and pitch limits.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller speed and pitch limits. 25.33 Section 25.33 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.33 Propeller speed and pitch limits. (a) The propeller speed and...

  8. Flying and handling qualities of a fly-by-wire blended-wing-body civil transport aircraft

    OpenAIRE

    de Castro, Helena V.

    2003-01-01

    The blended-wing-body (BWB) configuration appears as a promising contender for the next generation of large transport aircraft. The idea of blending the wing with the fuselage and eliminating the tail is not new, it has long been known that tailless aircraft can suffer from stability and control problems that must be addressed early in the design. This thesis is concerned with identifying and then evaluating the flight dynamics, stability, flight controls and handling qualities of a generic B...

  9. High Speed Size Sorting of Subcellular Organelles by Flow Field-Flow Fractionation.

    Science.gov (United States)

    Yang, Joon Seon; Lee, Ju Yong; Moon, Myeong Hee

    2015-06-16

    Separation/isolation of subcellular species, such as mitochondria, lysosomes, peroxisomes, Golgi apparatus, and others, from cells is important for gaining an understanding of the cellular functions performed by specific organelles. This study introduces a high speed, semipreparative scale, biocompatible size sorting method for the isolation of subcellular organelle species from homogenate mixtures of HEK 293T cells using flow field-flow fractionation (FlFFF). Separation of organelles was achieved using asymmetrical FlFFF (AF4) channel system at the steric/hyperlayer mode in which nuclei, lysosomes, mitochondria, and peroxisomes were separated in a decreasing order of hydrodynamic diameter without complicated preprocessing steps. Fractions in which organelles were not clearly separated were reinjected to AF4 for a finer separation using the normal mode, in which smaller sized species can be well fractionated by an increasing order of diameter. The subcellular species contained in collected AF4 fractions were examined with scanning electron microscopy to evaluate their size and morphology, Western blot analysis using organelle specific markers was used for organelle confirmation, and proteomic analysis was performed with nanoflow liquid chromatography-tandem mass spectrometry (nLC-ESI-MS/MS). Since FlFFF operates with biocompatible buffer solutions, it offers great flexibility in handling subcellular components without relying on a high concentration sucrose solution for centrifugation or affinity- or fluorescence tag-based sorting methods. Consequently, the current study provides an alternative, competitive method for the isolation/purification of subcellular organelle species in their intact states. PMID:26005782

  10. Controlling and Reducing of Speed for Vehicles Automatically By Using Rf Technology.

    Directory of Open Access Journals (Sweden)

    Y. Ravindra Babu,

    2014-11-01

    Full Text Available For vehicle safety and safety for passengers in vehicle is an important parameter. Most of the vehicles get accident because no proper safety measures are taken especially at curves and hair pin bends humps and any obstacles in front of the vehicle. This system can be used for the prevention of such a problem by indicating a pre indication and also reducing the speed of vehicles by reducing the fuel rate of vehicle. As the action is in terms of fuel rate so the vehicle automatically goes to control and avoids the accidents. At curves and hair pin bends the line of sight is not possible for the drivers so the special kind of transmitter which is tuned at a frequency of 433MHZ are mounted as these transmitters continuously radiate a RF signal for some particular area. As the vehicle come within this radiation the receiver in the vehicle gets activate. The transmitter used here is a coded transmitter which is encoded with encoder. The encoder provides a 4 bit binary data which is serially transmitted to transmitter. The transmitter used here is ASK type (amplitude shift keying which emits the RF radiation.

  11. Enhancement of switching speed of BiFeO3 capacitors by magnetic fields

    Directory of Open Access Journals (Sweden)

    E. J. Guo

    2014-09-01

    Full Text Available The effect of a magnetic field on the ferroelectric switching kinetics of BiFeO3 (BFO capacitors with La0.8Ca0.2MnO3 (LCMO bottom electrode and Pt top contact has been investigated. We find a strong dependence of the remnant polarization and coercive field on the magnetic field. The switching time can be systematically tuned by magnetic field and reaches a tenfold reduction around the Curie temperature of LCMO at 4 T. We attribute this behavior to the splitting of the voltage drops across the BFO film and the LCMO bottom electrode, which can be strongly influenced by an external magnetic field due to the magnetoresistance. Further experiments on the BFO capacitors with SrRuO3 bottom electrodes show little magnetic field dependence of ferroelectric switching confirming our interpretation. Our results provide an efficient route to control the ferroelectric switching speed through the magnetic field, implying potential application in multifunctional devices.

  12. High speed production of YBCO precursor films by advanced TFA-MOD process

    International Nuclear Information System (INIS)

    YBa2Cu3O7-y (YBCO) long tapes derived from the metal-organic deposition (MOD) method using the starting solution containing trifluoroacetate (TFA) have been developed with high critical currents (Ic) over 200 A/cm-width. However, high speed production of YBCO films is simultaneously necessary to satisfy the requirements of electric power device applications in terms of cost and the amounts of the tapes. In this work, we developed a new TFA-MOD starting solution using F-free salt of Y, TFA salt of Ba and Cu-Octylate for application to the coating/calcination process and discussed several issues by using the Multi-turn (MT) Reel-to-Reel (RTR) system calcination furnace for the purpose of high throughput without degradation of the properties. The coating system was improved for uniform deposition qualities in both longitudinal and transversal directions. YBCO films using the new starting solution at the traveling rate of 10 m/h in coating/calcination by the MT-RTR calcination furnace showed the values of the critical current density of 1.6 MA/cm2 as thick as 1.5 μm at 77 K under the self fields after firing at the high heating rate in the crystallization.

  13. High-speed DNA-based rolling motors powered by RNase H

    Science.gov (United States)

    Yehl, Kevin; Mugler, Andrew; Vivek, Skanda; Liu, Yang; Zhang, Yun; Fan, Mengzhen; Weeks, Eric R.; Salaita, Khalid

    2016-02-01

    DNA-based machines that walk by converting chemical energy into controlled motion could be of use in applications such as next-generation sensors, drug-delivery platforms and biological computing. Despite their exquisite programmability, DNA-based walkers are challenging to work with because of their low fidelity and slow rates (˜1 nm min-1). Here we report DNA-based machines that roll rather than walk, and consequently have a maximum speed and processivity that is three orders of magnitude greater than the maximum for conventional DNA motors. The motors are made from DNA-coated spherical particles that hybridize to a surface modified with complementary RNA; the motion is achieved through the addition of RNase H, which selectively hydrolyses the hybridized RNA. The spherical motors can move in a self-avoiding manner, and anisotropic particles, such as dimerized or rod-shaped particles, can travel linearly without a track or external force. We also show that the motors can be used to detect single nucleotide polymorphism by measuring particle displacement using a smartphone camera.

  14. Numerical Study of Unsteady Flowfield Around High Speed Trains Passing by Each Other

    Science.gov (United States)

    Hwang, Jaeho; Yoon, Tae-Seok; Lee, Dong-Ho; Lee, Soo-Gab

    In order to study unsteady flowfield around high speed trains passing by each other, a three-dimensional inviscid numerical method based on three types of domain decomposition techniques is developed. Roe’s FDS scheme is used for the space discretization, and LU-SGS method is adopted for the time integration. After validation of the code to a single track train/tunnel interaction problems with three dimensional tunnel configuration, the numerical simulations of the trains passing by on the double-track are performed for the 5 different cases using 3 basic parameters; e.g. nose shape, existence of tunnel, and train length. After the parametric study, variational parametric studies are carried out to understand the effects of the velocity of the train, the gap between the train and the blockage ratio. Firstly, train/tunnel interaction problems for double track railway system are investigated and aerodynamics loads histories during the crossing events—train/train interaction problem—are presented and discussed.

  15. Investigation on liquid droplet impinging erosion. Evaluation of erosion rate by high-speed spray

    International Nuclear Information System (INIS)

    The liquid droplet impinging erosion has been a topic of interests related to the maintenance of highly-aged nuclear power plant. However, there exists very few erosion data for small liquid droplets having an order of tens of micrometer in diameter, which is often encountered in prototype pipelines for nuclear power plant. In the present paper, the liquid droplet impinging erosion is investigated by high-speed spray to study the erosion rate of aluminum material with respect to droplet parameters, such as velocity, diameter and number density of droplets, which are measured by optical imaging techniques. It is found that the erosion rate increases in proportional to the power of droplet velocity, which ranges from 6.5 in the maximum rate stage to 4.5 in the terminal stage of erosion. The present measurement also indicates that the erosion does not occur at velocity lower than the critical velocity 95 m/s. These results indicate a certain degree of deviation from the previous results, which suggests the influence of droplet diameter on the erosion rate and the critical velocity. (author)

  16. 从飞机与高铁的瑜亮之争看交通工具的替代品威胁%Discussion on Threats of Substitute for Transportation Viewed from the Competition between Aircraft and High-speed Railway

    Institute of Scientific and Technical Information of China (English)

    李雪萍

    2016-01-01

    Toward the impact of high-speed railway transportation to aviation market in China, especially in the same routes, this paper analyzed the substitute competition between the two transportations from consumers’ point. 10 indicators including price, speed, passenger capacity, number of runs or flights per day, safety, punctuality rate, environment & service of airports/stations, environment & service in the aircraft/train, booking & refund mode (online or offline), convenience of access to airport/station, were chosen to evaluate the two transportations, with different weights according to its importance. As the result, the high-speed railway showed a relatively high score, with the example of the route Beijing-Shanghai. And the author drew a conclusion that within a 5 to 6 hours distance, the high-speed railway possesses the superiority on the ratio of performance to price to aircraft. Finally, the author gave some suggestions to the aviation such as pioneering islands air routes and expanding inland routes in China.%针对高速铁路开通后对相应飞机航线产生冲击,导致航线萎缩、停飞的现象,本文从消费者角度出发,选择了价格、速度、载客量、每日开行班次、安全性、准点率、机场/车站环境与服务、机/车内环境与服务、购退票方式、机场/车站交通接驳便利度等10个指标,并按照重要程度为各指标赋予权重,以京沪线为例,对两种交通工具进行了比较。结果是高铁以相对优势胜出。从而得出结论:在运行时间5-6小时区间内,高铁在性价比上占优,飞机只能立足于更远程的运输市场。同时对飞机运输提出了开辟海岛航线和加大中西部航线等发挥自身优势的建议。

  17. Optimised Cockpit Heat Load Analysis using Skin Temperature Predicted by CFD and Validation by Thermal Mapping to Improve the Performance of Fighter Aircraft

    Directory of Open Access Journals (Sweden)

    Paresh Gupta

    2015-03-01

    Full Text Available Designing of optimum environmental control system (ECS plays a major role for increasing performance of fighter aircraft depending upon requirement of engine bleed air for running of ECS. Accurate estimation of cockpit skin temperature for obtaining optimised cockpit heat load helps in estimation of engine bleed air for ECS. Present research evolved a methodology for comparing the theoretically calculated skin temperature with computational fluid dynamics (CFD analysis to obtain optimum skin temperature. Results are validated by flight tests under critical flight conditions using thermal crayons. Based on which the optimized heat load and bleed air requirements has been computed. Uncertainty analysis of skin temperature measurement for thermal crayons have been undertaken. The results indicate that the theoretical skin temperature is -26.70 per cent as that of CFD estimated skin temperature. Optimized average cockpit heat load at critical flight profiles is 0.74 times the theoretical cockpit heat load, leading to reduction of bleed air requirement by 26 per cent as compared to theoretical. Due to this literature survey has pridicted the increase in performance parameters like increase in bleed air pressure by 78 per cent, increase in thrust by 60 per cent, and decrease in specific fuel consumption (SFC by 40 per cent to improve the endurance of aircraft. The research has generated governing equations for variation of cockpit heat loads w.r.t aircraft skin temperatures.Defence Science Journal, Vol. 65, No. 1, January 2015, pp.12-24, DOI:http://dx.doi.org/10.14429/dsj.65.7200

  18. Atomization of a small-diameter liquid jet by a high-speed gas stream

    Science.gov (United States)

    Varga, Christopher Michael

    The situation of a small-diameter liquid jet exposed to a large-diameter high-speed gas jet is investigated experimentally. Flow visualization and particle-sizing techniques are employed to examine both the initial breakup process and subsequent secondary atomization of the liquid. It is shown that nearly all of the breakup takes place in the near-field and that the bulk of the atomization is completed within the potential cone of the gas jet. The resultant drop size depends primarily on the gas velocity and to a weaker extent on the liquid mass flux. It is argued that the mechanism of primary atomization is similar to that of a liquid drop suddenly exposed to a high-speed gas stream. A phenomenological breakup model is proposed for the initial droplet size, based on the accelerative destabilization of the liquid jet surface by the Rayleigh-Taylor instability. Measurements of droplet sizes and surface wavelengths are shown to be in good agreement with the model predictions. The downstream evolution of the droplet-size distribution is also investigated, with consideration given to several secondary mechanisms including turbulent breakup, droplet-droplet collisions, and droplet acceleration. It is argued that the relative acceleration of droplets of different size classes, and energetic collisions between droplets, are together responsible for the experimentally observed variation of the mean drop size with downstream distance from the injection plane in the far-field of the spray. The feasibility of coaxial liquid-gas injection for pulse detonation engine (PDE) applications is additionally considered. The performance of coaxial atomizers under transient operating conditions appropriate to PDEs is analyzed along with the capability of this injection scheme to produce sufficiently small droplet sizes within restricted flow regimes. The ability to tailor the radial distributions of both the liquid mass flux and droplet sizes through the addition of swirl to the coaxial

  19. High-speed milling of light metals

    Directory of Open Access Journals (Sweden)

    F. Cus

    2007-01-01

    Full Text Available Purpose: Purpose of this paper: Introduction applicability of high-speed cutting of light metals is presented inthis paper.Design/methodology/approach:HSC is the result of numerous technical advances ensuring that milling hasbecome faster than conventional milling and has gained importance as a cutting process. The advantages ofthe HSC milling are higher productivity owing to the reduction of machining times increase of the flow timeof production, reduction of the number of technological operations, increase of the surface quality and longerservice life of tools. The machining conditions for execution of the HSC (36000min-1 and feeding 20m/minrequire modernly built machine tools to meet those machining conditions.Findings: Continuous development of new materials is more and more dynamical, particularly, in theautomobile, aircraft and electronic industry and in the manufacture of various mechanical parts. Also theachievements in the area of building of machines and tools, ensuring high cutting speeds (highly efficientmachining have contributed to development of the process.Research limitations/implications: High quality of the surfaces, the quality of this so-called HSC milling canbe compared to grinding.Practical implications: High-speed milling of light metals from aluminium and magnesium is more and morefrequently used in practice. This result is high quality of the surface and shorter machining times. In some caseswhen machining by grinding is specified, the latter is omitted.Originality/value: The applicability of high-speed milling has proved to be successful, when aluminum andmagnesium alloying materials are machined.

  20. Measured speed versus true speed

    OpenAIRE

    Perez, Israel

    2010-01-01

    The theoretical predictions, derived from the Lorentz and the Tangherlini transformations, for the one-way speed of any physical entity are confronted with the corresponding expressions for the one-way measured speed obtained from a gedanken experiment. The experiment demonstrates that, for an inertial frame $K'$ in motion relative to an inertial frame $K$ where the one-way speed of light is isotropic, even the special theory of relativity renders the one-way speed of light as function of the...

  1. Optimization in fractional aircraft ownership

    Science.gov (United States)

    Septiani, R. D.; Pasaribu, H. M.; Soewono, E.; Fayalita, R. A.

    2012-05-01

    Fractional Aircraft Ownership is a new concept in flight ownership management system where each individual or corporation may own a fraction of an aircraft. In this system, the owners have privilege to schedule their flight according to their needs. Fractional management companies (FMC) manages all aspects of aircraft operations, including utilization of FMC's aircraft in combination of outsourced aircrafts. This gives the owners the right to enjoy the benefits of private aviations. However, FMC may have complicated business requirements that neither commercial airlines nor charter airlines faces. Here, optimization models are constructed to minimize the number of aircrafts in order to maximize the profit and to minimize the daily operating cost. In this paper, three kinds of demand scenarios are made to represent different flight operations from different types of fractional owners. The problems are formulated as an optimization of profit and a daily operational cost to find the optimum flight assignments satisfying the weekly and daily demand respectively from the owners. Numerical results are obtained by Genetic Algorithm method.

  2. Flame stabilization by a plasma driven radical jet in a high speed flow

    Science.gov (United States)

    Choi, Woong-Sik

    In current afterburners combustion is stabilized by the high temperature, recirculating region behind bluff body flame holders, such as V-gutters. Blocking the high speed flow with bluff bodies causes a significant pressure drop, and heating the flame holder by the hot combustion product causes a thermal signature, which is a critical problem in a military jet. To reduce these problems, ignition methods using a high frequency (HF) spark discharge, or a radical jet generator (RJG) were developed. The HF discharge ignited and stabilized a flame successfully in a premixed methane-air flow. The electrical power consumption was very small compared to the combustion heat release, as long as the operating velocity was relatively low. However, a theoretical study showed that the ratio of the electrical power consumption to the heat generation by the stabilized flame increases rapidly with increasing flow velocity. For flame stabilization in a high velocity flow, the developed RJG showed much better performance than direct exposure to a plasma. The present study investigated the characteristics of a radical jet produced in a RJG and injected into a main combustor. The limits of flame stabilization by this jet was measured experimentally, and compared to those of bluff body flame holders. The flame holding performance of the radical jet was also experimentally compared to that of a thermal jet. The effect of radicals on flame stabilization was examined using CHEMKIN, and the limit of flame stabilization by the radical jet was estimated for a simple flow configuration using an approximate solution. The results suggest that the reduction of local spontaneous ignition delay time by active species in the radical jet and the longer length of a typical radical jet compared to the dimension of the recirculation zone behind a bluff body increases the maximum velocity at which a flame can be stabilized.

  3. A study on the crack control of a high-speed steel roll fabricated by a centrifugal casting technique

    International Nuclear Information System (INIS)

    The effects of roll materials, mould parameter, pouring parameter and cooling parameter on the crack of a high-speed steel (HSS) roll, which is manufactured by means of centrifugal casting, are investigated. The improvement of the HSS roll is effectively achieved through the addition of suitable amounts of potassium and rare earth (RE). The hot tearing force (i.e. the resistance to hot tearing) of the modified HSS roll is increased by 32.77% and reaches 158 N, while the line constriction (i.e. the solidification constriction of the HSS in unit distance) is decreased. In addition, the temperature field and stress field of the roll can be improved by adopting variable-speed centrifugal casting, variable-flux pouring and variable-speed solidification cooling techniques, which help to improve the filling and solidification of the molten steel and eliminate the cracks

  4. SR-71B - in Flight with F-18 Chase Aircraft - View from Air Force Tanker

    Science.gov (United States)

    1996-01-01

    NASA 831, an SR-71B operated by the Dryden Flight Research Center, Edwards, California, cruises over the Mojave Desert with an F/A-18 Hornet flying safety chase. They were photographed on a 1996 mission from an Air Force refueling tanker The F/A-18 Hornet is used primarily as a safety chase and support aircraft at Dryden. As support aircraft, the F-18s are used for safety chase, pilot proficiency and aerial photography. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used

  5. Variations of GHGs from the lower-troposphere to the UT/LS revealed by two Japanese regular aircraft observation programs

    Science.gov (United States)

    Niwa, Yosuke; Machida, Toshinobu; Sawa, Yousuke; Tsuboi, Kazuhiro; Matsueda, Hidekazu; Imasu, Ryoichi

    2014-05-01

    A Japan-centered observation network consisting of two regular aircraft programs have revealed the greenhouse gases variations from the lower-troposphere to the upper-troposphere/lower-stratosphere (UT/LS) regions. In the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project, in-situ continuous measurement equipment (CME) onboard commercial passenger aircraft world-widely observes CO2 profiles in vertical over tens of airports and in horizontal in the UT/LS regions. The CONTRAIL-CME has revealed three-dimensional structure of the global CO2 distribution and has exposed significant inter-hemispheric transport of CO2 through the upper-troposphere. In inverse modeling, the CME data have provided strong constraints on CO2 flux estimation especially for the Asian tropics. Automatic flask air sampling equipment (ASE) is also onboard the CONTRAIL aircraft and has been observing CO2 mixing ratios as well as those of methane, carbon monoxide, nitrous oxide and other trace species in the upper-troposphere between Japan and Australia. The observation period of the ASE has reached 20 years. In recent years, the ASE program has extended to the northern subarctic UT/LS region and has given an insight of transport mechanisms in the UT/LS by observing seasonal GHGs variations. In the other aircraft observation program by Japan Meteorological Agency, variations of GHGs have been observed by flask-sampling onboard a C-130H aircraft horizontally in the mid-troposphere over the western North Pacific as well as vertically over Minamitorishima-Island. The C-130H aircraft has persistently observed high mixing ratios of CH4 in the mid-troposphere, which seems to be originated from fossil fuel combustion throughout the year as well as from biogenic sources during summer in the Asian regions. Those above aircraft observation programs have a significant role for constraining GHGs flux estimates by filling the data gap of the existing surface measurement network

  6. Separation of amaranthine-type betacyanins by ion-pair high-speed countercurrent chromatography.

    Science.gov (United States)

    Jerz, Gerold; Gebers, Nadine; Szot, Dominika; Szaleniec, Maciej; Winterhalter, Peter; Wybraniec, Slawomir

    2014-05-30

    Betacyanins, red-violet plant pigments, were fractionated by ion-pair high-speed countercurrent chromatography (IP-HSCCC) from leaves extract of Iresine lindenii Van Houtte, an ornamental plant of the family Amaranthaceae. An HSCCC solvent system consisting of TBME-1-BuOH-ACN-H2O (1:3:1:5, v/v/v/v) was applied using ion-pair forming heptafluorobutyric acid (HFBA). Significantly different elution profiles of betacyanin diastereomeric pairs (derivatives based on betanidin and isobetanidin) observed in the HSCCC in comparison to HPLC systems indicate a complementarity of both techniques' fractionation capabilities. The numerous diastereomeric pairs can be selectively separated from each other using the HSCCC system simplifying the pigment purification process. Apart from the three well known highly abundant pigments (amaranthine, betanin and iresinin I) together with their isoforms, three new acylated (feruloylated and sinapoylated) betacyanins as well as known pigment hylocerenin (previously isolated from cacti fruits) were characterized in the plant for the first time and they are new for the whole Amaranthaceae family. PMID:24767836

  7. Microstructure simulation of rapidly solidified ASP30 high-speed steel particles by gas atomization

    Science.gov (United States)

    Ma, Jie; Wang, Bo; Yang, Zhi-liang; Wu, Guang-xin; Zhang, Jie-yu; Zhao, Shun-li

    2016-03-01

    In this study, the microstructure evolution of rapidly solidified ASP30 high-speed steel particles was predicted using a simulation method based on the cellular automaton-finite element (CAFE) model. The dendritic growth kinetics, in view of the characteristics of ASP30 steel, were calculated and combined with macro heat transfer calculations by user-defined functions (UDFs) to simulate the microstructure of gas-atomized particles. The relationship among particle diameter, undercooling, and the convection heat transfer coefficient was also investigated to provide cooling conditions for simulations. The simulated results indicated that a columnar grain microstructure was observed in small particles, whereas an equiaxed microstructure was observed in large particles. In addition, the morphologies and microstructures of gas-atomized ASP30 steel particles were also investigated experimentally using scanning electron microscopy (SEM). The experimental results showed that four major types of microstructures were formed: dendritic, equiaxed, mixed, and multi-droplet microstructures. The simulated results and the available experimental data are in good agreement.

  8. IPS observations at 140 MHz to study solar wind speeds and density fluctuations by MEXART

    Science.gov (United States)

    Chang, Oyuki; Gonzalez-Esparza, J. A.; Mejia-Ambriz, J.

    2016-03-01

    The interplanetary scintillation (IPS) technique is a remote-sensing method for monitoring the inner heliosphere. These observations supply information on solar wind conditions covering heliocentric ranges that no other technique can provide. The Mexican Array Radio Telescope (MEXART) is a single-station instrument operating at 140 MHz, fully dedicated to performing solar-wind studies employing the IPS technique. We present solar-wind parameters (scintillation indices and solar-wind speeds), using the initial measurements from this array of four IPS sources (3C273, 3C283, 3C286, 3C298) detected during October-December 2014. We report the transit of an IPS radio source (3C298), observed at 140 MHz, from weak- to strong-scattering regions at around 0.36 AU, and sky projection maps of solar wind conditions associated presumably with the passing of one or more Coronal Mass Ejections (CMEs). These results show the progress to operate the full array in the near future. The MEXART observations will complement the solar wind IPS studies using other frequencies, and the tracking of solar wind disturbances by other stations located at different longitudes. These solar wind measurements, provided in real time, can have space-weather forecasting applications.

  9. Hierarchical Modeling and Verification for High-speed Train Control Center by Time Automation

    Directory of Open Access Journals (Sweden)

    Lei Yuan

    2014-06-01

    Full Text Available Chinese Train Control System level three (CTCS-3 is a major technical system in Chinese high-speed rail and Train Control System (TCC is indispensable component in the CTCS-3. Current researches on TCC are mainly based on the simulation, which cannot ensure that all conditions in TCC are tested. This paper presents a hierarchical modeling method and uses time automation (TA to model the TCC software. We take the design of the active balise telegram editing, a major part in the TCC software, as an example. At first, the process of the active balise telegram editing is analyzed to obtain a hierarchical diagram containing several layers. Then, TA is employed to build one TA model for each layer. Lastly, we use UPPAAL (a model validation tool, developed by Uppsala University and Aalborg University to construct a network of the TA models to verify the active balise telegram editing. The verification results demonstrate that this modeling method is feasible and the model can meet the functional requirements of the TCC software.

  10. Chaotic Dynamics of High Speed Rotating Shaft Supported by Ball Bearings Due to Distributed Defects

    Directory of Open Access Journals (Sweden)

    S. H. Upadhyay ,

    2010-10-01

    Full Text Available This paper presents a mathematical model to investigate the nonlinear dynamic behavior of a high speed rotorbearing system due to varying the number of rolling elements. Two cases one without race defect and one with defect as race waviness have been studied. In the formulation, the contacts between rolling elements and inner/outerraces are considered as nonlinear springs and also used nonlinear damping, which is developed by correlating the contact damping force with the equivalent contact stiffness and contact deformation rate. The equations of motion are formulated using Lagrange’s equation, considering the vibration characteristics of the individual componentssuch as inner race, outer race, rolling elements and rotor. For non-defective bearings, nonlinear dynamic responses are found to be associated with ball passage frequency ( bp  . For defective bearings, nonlinear dynamic responses are found to be associated mainly with wave passage frequency ( wp  and also with the interactive effect of wave passage and ball passage frequencies. The wave-number (Nw of waviness and number of balls (Nb are importantparameters of study because even if these are inevitable, these can be controlled the system nature to a good extent.

  11. Energy supply and its effect on aircraft of the future. II - Liquid-hydrogen-fueled aircraft: Prospects and design issues.

    Science.gov (United States)

    Kirkham, F. S.; Driver, C.

    1973-01-01

    The performance of hydrogen-fueled commercial aircraft is examined in the subsonic, supersonic, and hypersonic speed regime and compared with JP-fueled systems. Hydrogen aircraft are shown to provide substantial improvements in range and payload fraction as well as to minimize or eliminate many environmental problems. The major elements of a development program required to make hydrogen-fueled aircraft a commercial reality are also outlined and the rationale for and characteristics of both a subsonic demonstrator and a high speed research airplane are described.

  12. Microstructure evolution of eutectic Al-Cu strips by high-speed twin-roll strip casting process

    Science.gov (United States)

    Sahoo, Seshadev; Ghosh, Sudipto

    2015-10-01

    In the present investigation, microstructural evolutions of functionally graded eutectic Al-Cu strips prepared by high-speed twin-roll strip caster at different casting speeds and liquid melt superheats were studied. The as-cast sample was subjected to scanning electron microscope to study the evolution of microstructure of the strip at different casting speeds and liquid melt superheats. At different casting speeds, non-equilibrium eutectic structure observed on the Al-Cu eutectic strip consists of lamellar as well as wavy structure with a distinct boundary. The lamellar microstructure consists of alternating layers of well-bonded α-Al phase and θ-Al2Cu phase. The globular flowery structure within the eutectic matrix was observed on the strip at different liquid melt superheats. The microhardness of the as-cast strip was studied by Vickers hardness tester, and it was found that hardness value increases with increasing casting speed and decreases with increasing liquid melt superheat.

  13. Mapping automotive like controls to a general aviation aircraft

    Science.gov (United States)

    Carvalho, Christopher G.

    The purpose of this thesis was to develop fly-by-wire control laws enabling a general aviation aircraft to be flown with automotive controls, i.e. a steering wheel and gas/brake pedals. There was a six speed shifter used to change the flight mode of the aircraft. This essentially allows the pilot to have control over different aspects of the flight profile such as climb/descend or cruise. A highway in the sky was used to aid in the navigation since it is not intuitive to people without flight experience how to navigate from the sky or when to climb and descend. Many believe that general aviation could become as widespread as the automobile. Every person could have a personal aircraft at their disposal and it would be as easy to operate as driving an automobile. The goal of this thesis is to fuse the ease of drivability of a car with flight of a small general aviation aircraft. A standard automotive control hardware setup coupled with variably autonomous control laws will allow new pilots to fly a plane as easily as driving a car. The idea is that new pilots will require very little training to become proficient with these controls. Pilots with little time to stay current can maintain their skills simply by driving a car which is typically a daily activity. A human factors study was conducted to determine the feasibility of the applied control techniques. Pilot performance metrics were developed to compare candidates with no aviation background and experienced pilots. After analyzing the relative performance between pilots and non-pilots, it has been determined that the control system is robust and easy to learn. Candidates with no aviation experience whatsoever can learn to fly an aircraft as safely and efficiently as someone with hundreds of hours of flight experience using these controls.

  14. Increasing the rewriting speed of optical rewritable e-paper by selecting proper liquid crystals

    Institute of Scientific and Technical Information of China (English)

    Geng Yu; Sun Jiatong; Anatoli Murauski; Vladimir Chigrinov; Kwok Hoi Sing

    2012-01-01

    The effect of interaction between liquid crystal (LC) and photoalignment material on the speed of optical rewriting process is investigated.The theoretical analysis shows that a smaller frank elastic constant K22 of liquid crystal corresponds to a larger twist angle,which gives rise to a larger rewriting speed.Six different LC cells with the same boundary conditions (one substrate is covered with rubbed polyimide (PI) and the other with photo sensitive rewritable sulfuric dye 1(SD1)) are tested experimentally under the same illumination intensity (450 nm,80 mW/cm2).The results demonstrate that with a suitable liquid crystal,the LC optical rewriting speed for e-paper application can be obviously improved.For two well known LC materials E7 (K22 is larger) and 5CB (K22 is smaller),they require 11 s and 6 s corresponding to change alignment direction for generating image information.

  15. Increasing the rewriting speed of optical rewritable e-paper by selecting proper liquid crystals

    Science.gov (United States)

    Geng, Yu; Sun, Jiatong; Anatoli, Murauski; Vladimir, Chigrinov; Kwok Hoi, Sing

    2012-08-01

    The effect of interaction between liquid crystal (LC) and photoalignment material on the speed of optical rewriting process is investigated. The theoretical analysis shows that a smaller frank elastic constant K22 of liquid crystal corresponds to a larger twist angle, which gives rise to a larger rewriting speed. Six different LC cells with the same boundary conditions (one substrate is covered with rubbed polyimide (PI) and the other with photo sensitive rewritable sulfuric dye 1(SD1)) are tested experimentally under the same illumination intensity (450 nm, 80 mW/cm2). The results demonstrate that with a suitable liquid crystal, the LC optical rewriting speed for e-paper application can be obviously improved. For two well known LC materials E7 (K22 is larger) and 5CB (K22 is smaller), they require 11 s and 6 s corresponding to change alignment direction for generating image information.

  16. Effect of car speed on amount of air supplied by ventilation system to the space of car cabin

    Science.gov (United States)

    Fišer, Jan; Pokorný, Jan

    2014-03-01

    The amount of air supplied by ventilation system (HVAC system) of a car into a cabin is one of the main parameters for the correct simulation and prediction of a car cabin heat load. This amount is not based only on the current setting of the HVAC system, but also on the actual operating conditions and speed of the car. The authors therefore carried out experiments in the cabin of a passenger car in real traffic, while observing the amount of air on the speed of the car and setting of flap in mixing chamber. In a subsequent analysis the authors defined dependence of the airflow rate supplied by HVAC system on the speed of the car. Obtained empirical formulas were then used as a part of the code which calculates the data for the HVAC boundary conditions in the simulation of the car cabin environment.

  17. Effect of car speed on amount of air supplied by ventilation system to the space of car cabin

    Directory of Open Access Journals (Sweden)

    Fišer Jan

    2014-03-01

    Full Text Available The amount of air supplied by ventilation system (HVAC system of a car into a cabin is one of the main parameters for the correct simulation and prediction of a car cabin heat load. This amount is not based only on the current setting of the HVAC system, but also on the actual operating conditions and speed of the car. The authors therefore carried out experiments in the cabin of a passenger car in real traffic, while observing the amount of air on the speed of the car and setting of flap in mixing chamber. In a subsequent analysis the authors defined dependence of the airflow rate supplied by HVAC system on the speed of the car. Obtained empirical formulas were then used as a part of the code which calculates the data for the HVAC boundary conditions in the simulation of the car cabin environment.

  18. Preparative isolation and purification of flavonoids from the Chinese medicinal herb Belamcanda by high-speed countercurrent chromatography

    OpenAIRE

    Peng, Cuilin; Liang, Yong; Wang, Xiaohong; Xie, Huichun; Zhang, Tianyou; Ito, Yoichiro

    2009-01-01

    High-speed countercurrent chromatography (HSCCC) was applied for separation and purification of flavonoids from the extract of belamcanda. High efficiency of HSCCC separation was achieved on a two-phase solvent system of n-hexane–ethyl acetate–methanol–water (4:5:5:5, v/v) by eluting the lower mobile phase at a flow-rate of 1.2mL/min and a revolution speed of 800 rpm. Three well-separated peaks were obtained in the HSCCC chromatogram and their purities were determined by HPLC-UV absorption sp...

  19. Aircraft noise in the region of the Bucharest-Otopeni Airport. [noise pollution in airport environment

    Science.gov (United States)

    Costescu, M.; Gherghel, C.; Curtoglu, A.

    1974-01-01

    Aircraft noise, especially in the region adjoining airports, constitutes a problem that will be aggravated in the near future because of increasing aircraft traffic and the appearance of new types of large tonnage aircraft with continuously increasing powers and speeds. Criteria for the evaluation of aircraft noise are reported and some results of studies carried out in the region of Bucharest-Otopeni Airport are detailed.

  20. Static and Dynamic Characteristic Simulation of Feed System Driven by Linear Motor in High Speed Computer Numerical Control Lathe

    Directory of Open Access Journals (Sweden)

    Yang Zeqing

    2013-07-01

    Full Text Available In order to design the feed system of high speed Computer Numerical Control (CNC lathe, the static and dynamic characteristics of feed system driven by linear motor in high speed CNC lathe were analyzed. The slide board was taking as the main moving part of the feed system, and the guide rail was the main support component of the linear motor feed system. The mechanical structure static stiffness of feed system is researched through the slide board statics analysis. The simulation results show that the maximum deformation of the slide board occurs in the middle of the slide board where the linear motor is placed. The linear motor feed system control model was established based on analysis of high-speed linear feed system control principle, and the linear motor feed system transfer function was established, and servo dynamic stiffness factors were analyzed. The control parameters of the servo system and actuating mechanism parameters of feed system on the effect of the linear motor servo dynamic stiffness were analyzed using MATLAB software. The simulation results show that the position loop proportional gain, speed loop proportional gain and speed loop integral response time are the biggest influence factors on servo dynamic stiffness. The displacement response is reduced under the cutting interference force step inputting, the servo dynamic stiffness is increased, the number of system oscillation is also reduced, and the system tends to be stable.  

  1. Thickness control and interface quality as functions of slurry formulation and casting speed in side-by-side tape casting

    DEFF Research Database (Denmark)

    Bulatova, Regina; Jabbari, Mirmasoud; Kaiser, Andreas; Della Negra, Michela; Andersen, Kjeld Bøhm; Gurauskis, Jonas; Bahl, Christian R.H.

    2014-01-01

    -controlled. A well-defined steep interface was obtained by co-casting slurries with similar viscosities above 4000mPas at a speed of 40cm/min. The elastic properties of green tapes were proven to be defined by the binder concentration in the recipe formulation. The interfaces in graded tapes were shown to...

  2. Structural Diagnostics of CFRP Composite Aircraft Components by Ultrasonic Guided Waves and Built-In Piezoelectric Transducers

    Energy Technology Data Exchange (ETDEWEB)

    Howard M. Matt

    2007-02-15

    To monitor in-flight damage and reduce life-cycle costs associated with CFRP composite aircraft, an autonomous built-in structural health monitoring (SHM) system is preferred over conventional maintenance routines and schedules. This thesis investigates the use of ultrasonic guided waves and piezoelectric transducers for the identification and localization of damage/defects occurring within critical components of CFRP composite aircraft wings, mainly the wing skin-to-spar joints. The guided wave approach for structural diagnostics was demonstrated by the dual application of active and passive monitoring techniques. For active interrogation, the guided wave propagation problem was initially studied numerically by a semi-analytical finite element method, which accounts for viscoelastic damping, in order to identify ideal mode-frequency combinations sensitive to damage occurring within CFRP bonded joints. Active guided wave tests across three representative wing skin-to-spar joints at ambient temperature were then conducted using attached Macro Fiber Composite (MFC) transducers. Results from these experiments demonstrate the importance of intelligent feature extraction for improving the sensitivity to damage. To address the widely neglected effects of temperature on guided wave base damage identification, analytical and experimental analyses were performed to characterize the influence of temperature on guided wave signal features. In addition, statistically-robust detection of simulated damage in a CFRP bonded joint was successfully achieved under changing temperature conditions through a dimensionally-low, multivariate statistical outlier analysis. The response of piezoceramic patches and MFC transducers to ultrasonic Rayleigh and Lamb wave fields was analytically derived and experimentally validated. This theory is useful for designing sensors which possess optimal sensitivity toward a given mode-frequency combination or for predicting the frequency dependent

  3. A simulation study of the low-speed characteristics of a light twin with an engine-out

    Science.gov (United States)

    Stewart, E. C.; Moul, T. M.; Brown, P. W.

    1983-01-01

    Potential safety advantages provided by the two engines on a light twin aircraft are not realized in practice as evidenced by recent engine-failure accident statistics. These statistics showed twice the fatality rate from engine failure for twins as for single-engine aircraft. The statistics showed also that one-half of the fatal engine-out accidents involved a stall. An improvement of the low-speed engine-out characteristics is, therefore, needed. An investigation of the engine-out characteristics of light twin-engine aircraft is currently being conducted as part of the comprehensive stall/spin program for general aviation aircraft. The present study is concerned with the first phase of this program. The primary objective of this study is to advance the understanding of the basic flight dynamics and piloting problems for an engine-out condition. An all-digital computer system was used in the conducted simulation study.

  4. HALO aircraft measurements of East Asian anthropogenic SO2 import into the lower stratosphere by a warm conveyor belt uplift

    Science.gov (United States)

    Schlager, H.; Arnold, F.; Aufmhoff, H.; Baumann, R.; Pirjola, L.; Roiger, A.; Sailer, T.; Wirth, M.; Schumann, U.

    2012-04-01

    We report on a case study of anthropogenic SO2 pollution transport into the lower stratosphere from East Asian source regions. The pollution layer was observed over Central Europe by measurements from the new German research aircraft HALO. The layer contained enhanced SO2, HNO3 and water vapor and caused increased Lidar backscatter radiation. Meteorological analysis and air mass transport and dispersion model simulations reveal that the detected pollutants were released from ground-based sources in East-China, South-Korea, and Japan. The pollution plume was uplifted by a warm conveyor belt associated with a West-Pacific cyclone and finally injected into the lower stratosphere. Our HALO measurements were performed 5 days after the air mass uplift event, when significant parts of the Northern Hemisphere were already covered by the pollution plume. Accompanying trajectory chemistry and aerosol box model simulations indicate that H2SO4/H2O aerosol droplets were generated in the SO2-rich plume and grew to sizes large enough to explain the observed increased Lidar backscatter signal. Implications of the SO2 transport pathway into the lower stratosphere presented in this study will be discussed.

  5. Detailed stability investigation of amorphous solid dispersions prepared by single-needle and high speed electrospinning.

    Science.gov (United States)

    Démuth, B; Farkas, A; Pataki, H; Balogh, A; Szabó, B; Borbás, E; Sóti, P L; Vigh, T; Kiserdei, É; Farkas, B; Mensch, J; Verreck, G; Van Assche, I; Marosi, G; Nagy, Z K

    2016-02-10

    In this research the long-term stability (one year) of amorphous solid dispersions (ASDs) prepared by high speed electrospinning was investigated at 25 °C/60% relative humidity (RH) (closed conditions) and 40 °C/75% RH (open conditions). Single needle electrospinning and film casting were applied as reference technologies. Itraconazole (ITR) was used as the model API in 40% concentration and the ASDs consisted of either one of the following polymers as a comparison: polyvinylpyrrolidone-vinyl acetate 6:4 copolymer (no hydrogen bonds between API and polymer) and hydroxypropyl methylcellulose (possible hydrogen bonds between oxo or tertiary nitrogen function of API and hydroxyl moiety of polymer). DSC, XRPD and dissolution characteristics of samples at 0, 3 and 12 months were investigated. In addition, Raman maps of certain electrospun ASDs were assessed to investigate crystallinity. A new chemometric method, based on Multivariate Curve Resolution-Alternating Least Squares algorithm, was developed to calculate the spectrum of amorphous ITR in the matrices and to determine the crystalline/amorphous ratio of aged samples. As it was expected ITR in single needle electrospun SDs was totally amorphous at the beginning, in addition hydroxypropyl methylcellulose could keep ITR in this form at 40 °C/75% RH up to one year due to the hydrogen bonds and high glass transition temperature of the SD. In polyvinylpyrrolidone-vinyl acetate matrix ITR remained amorphous at 25 °C/60% RH throughout one year. Materials prepared by scaled-up, high throughput version of electrospinning, which is compatible with pharmaceutical industry, also gained the same quality. Therefore these ASDs are industrially applicable and with an appropriate downstream process it would be possible to bring them to the market. PMID:26705153

  6. Experimental Study on the Dynamic Performance of a New High-Speed Spindle Supported by Water-Lubricated Hybrid Bearings

    OpenAIRE

    Lin Wang; Hua Xu

    2016-01-01

    The dynamic performance of a new high-speed spindle supported by water-lubricated hybrid bearings is experimentally studied on a test rig. The present design allows the speed of the spindle up to 30,000 rpm, with a bearing internal diameter of 40 mm, which makes it possible to simulate many actual machining processes. Some experiments have been presented to study the mechanical and thermal behaviors of the spindle and its supporting hybrid bearings. The maximum temperature rise is less than 1...

  7. Trapping of slow-speed particles in a gas cell by the nonhomogeneous electromagnetic field intensifying with time

    CERN Document Server

    Izmailov, Azad Ch

    2014-01-01

    Author suggests and analyzes new universal trapping method of comparatively slow-speed particles of a rarefied gas medium in the potential well induced by the nonhomogeneous electromagnetic field increasing with time (up to some moment). Given method is especially effective at inelastic collisions of particles with walls of the gas cell when necessary preliminary slowdown of particles is possible for their following capture even to a highly shallow potential depth. Corresponding sufficiently compact and simple electromagnetic traps may be used for capture and accumulation not only slow-speed micro- and nano-particles in the high vacuum but also atoms and molecules of a rarefied gas in a cell.

  8. Concrete damaged by high temperature – possibilities of treatment with high speed water jet

    OpenAIRE

    Bodnárová, L.; Válek, J. (Jan); Sitek, L. (Libor); Foldyna, J.; J. Klich

    2015-01-01

    The paper describes analysis of behavior of cement based composite materials (concrete) exposed to high temperature. Recommendations for minimization of damage of thermally loaded structures are proposed and possibilities of renovation of fire damaged concrete using the technology of high speed water jet to remove damaged layers are given.

  9. Characterization of Diamond Nanoparticles by High-Speed Micro-Thermal Field-Flow Fractionation

    Czech Academy of Sciences Publication Activity Database

    Janča, Josef

    2015-01-01

    Roč. 20, č. 8 (2015), s. 671-680. ISSN 1023-666X R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : diamond nanoparticles * high-speed microfluidic separation * micro-thermal field-flow fractionation, * article size distribution Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.264, year: 2014

  10. Minimum Wave Speed Solution of Fisher's Equation by the Method of Least Squares - A Note

    OpenAIRE

    K. N. Mehta

    1989-01-01

    The paper presents a simple solution of travelling-wave type (corresponding to the minimum speed c=2) of Fisher's equation. which can be readily adapted for modelling neutron density in nuclear reactors, reaction-diffusion processes'in propulsion systems and growth of new advantageous gene in one-dimensional habitat

  11. Minimum Wave Speed Solution of Fisher's Equation by the Method of Least Squares - A Note

    Directory of Open Access Journals (Sweden)

    K. N. Mehta

    1989-04-01

    Full Text Available The paper presents a simple solution of travelling-wave type (corresponding to the minimum speed c=2 of Fisher's equation. which can be readily adapted for modelling neutron density in nuclear reactors, reaction-diffusion processes'in propulsion systems and growth of new advantageous gene in one-dimensional habitat

  12. Experimenting from a Distance--Determination of Speed of Light by a Remotely Controlled Laboratory (RCL)

    Science.gov (United States)

    Grober, S.; Vetter, M.; Eckert, B.; Jodl, H.-J.

    2010-01-01

    The speed of light is an essential topic in the teaching of physics at school and at university, either with respect to the type of experiment or of course with respect to its genuine inherent importance. In reality, the various available experiments are hardly ever performed in class for many reasons. Therefore, we offer this experiment as a…

  13. Disturbance Compensation by Wind Speed Reconstruction based on a Takagi-Sugeno Wind Turbine Model

    International Nuclear Information System (INIS)

    In this work, the nonlinear Tagaki-Sugeno modelling method is utilised to set up an observer-based feed-forward control scheme for wind turbines, which can compensate for the influence of the disturbing wind variation on the rotational speed. The applied scheme leads to a reduced thrust force acting on the rotor

  14. A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting

    International Nuclear Information System (INIS)

    Highlights: • A new hybrid model is developed for wind speed forecasting. • The model is based on the Kalman filter and the ARIMA. • An intelligent optimization method is employed in the hybrid model. • The new hybrid model has good performance in western China. - Abstract: Forecasting the wind speed is indispensable in wind-related engineering studies and is important in the management of wind farms. As a technique essential for the future of clean energy systems, reducing the forecasting errors related to wind speed has always been an important research subject. In this paper, an optimized hybrid method based on the Autoregressive Integrated Moving Average (ARIMA) and Kalman filter is proposed to forecast the daily mean wind speed in western China. This approach employs Particle Swarm Optimization (PSO) as an intelligent optimization algorithm to optimize the parameters of the ARIMA model, which develops a hybrid model that is best adapted to the data set, increasing the fitting accuracy and avoiding over-fitting. The proposed method is subsequently examined on the wind farms of western China, where the proposed hybrid model is shown to perform effectively and steadily

  15. Passenger life-saving in a badly damaged aircraft scenario

    CERN Document Server

    Bolonkin, A

    2007-01-01

    Offered is a new method for saving passenger lives in any catastrofic situation, including total failure of aircraft control, extreme damage and loss aircraft wings, tail, breakdown all propelling engines, etc. It shown here that previous works which have proposed using only parachutes are useless because their proposers failed to consider the likely overload of the parachute jerk stress (at the moment of parachute release) and the impact of aircraft on Earth surface. These jeck and impact destroy aircraft and kill passengers. Offered is a connected series of related technical innovations which overcome these obvious difficalties and allow for a soft, near zero speed landing in any topographically suitable place, allowing potential to save aircraft. This method may be applied to all existing airplanes and increases their weight only about 1.5 - 2.5%. Also, the method may be used for vertically landing the already built aircraft, for example, when any runway is damaged or would become overloaded.

  16. Advanced technology for future regional transport aircraft

    Science.gov (United States)

    Williams, L. J.

    1982-01-01

    In connection with a request for a report coming from a U.S. Senate committee, NASA formed a Small Transport Aircraft Technology (STAT) team in 1978. STAT was to obtain information concerning the technical improvements in commuter aircraft that would likely increase their public acceptance. Another area of study was related to questions regarding the help which could be provided by NASA's aeronautical research and development program to commuter aircraft manufacturers with respect to the solution of technical problems. Attention is given to commuter airline growth, current commuter/region aircraft and new aircraft in development, prospects for advanced technology commuter/regional transports, and potential benefits of advanced technology. A list is provided of a number of particular advances appropriate to small transport aircraft, taking into account small gas turbine engine component technology, propeller technology, three-dimensional wing-design technology, airframe aerodynamics/propulsion integration, and composite structure materials.

  17. Investigation of Flow Instabilities in the Inlet Ducts of DP-1C VTOL Aircraft

    Science.gov (United States)

    Lepicovsky, Jan

    2008-01-01

    An investigation of flow instabilities in the inlet ducts of a two-engine vertical takeoff and landing aircraft DP-1C is described in this report. Recent tests revealed that the engines stall during run ups while the aircraft is operating on the ground. These pop stalls occurred at relatively low power levels, sometimes as low as 60 percent of the engine full speed. Inability to run the engines up to the full speed level is attributed to in-ground effects associated with hot gas ingestion. Such pop stalls were never experienced when the aircraft was tested on a elevated grid platform, which ensured that the aircraft was operating in out-of-the-ground-effect conditions. Based on available information on problems experienced with other vertical takeoff and landing aircraft designs, it was assumed that the engine stalls were caused by partial ingestion of hot gases streaming forward from the main exit nozzle under the aircraft inlets, which are very close to the ground. It was also suggested that the nose wheel undercarriage, located between the inlets, may generate vortices or an unstable wake causing intense mixing of hot exit gases with incoming inlet flow, which would enhance the hot gas ingestion. After running a short three-day series of tests with fully instrumented engine inlets, it is now believed the most probable reason for engine pop stalls are random ingestions of a vortex generated between the two streams moving in opposite directions: outbound hot gas stream from the main nozzle close to the ground and inbound inlet flow above. Originally, the vortex is in a horizontal plane. However, at a certain velocity ratio of these two streams, the vortex attaches either to the ground or the aircraft surface at one end and the other end is swallowed by one of the aircraft inlets. Once the vortex enters the inlet duct, a puff of hot air can be sucked through the vortex core into the engine, which causes a serious inlet flow field distortion followed by an engine

  18. Comparison between AC and MFDC resistance spot welding by using high speed filming

    Directory of Open Access Journals (Sweden)

    S.C.A. Alfaro

    2007-09-01

    Full Text Available Purpose: In this work it will be carried through the filming of the formation and growth of the nugget in resistance spot welding executed in AC and MF. A comparison for same times in both the processes will be carried through to verify which of the used processes offers better conditions, control and results as well as will help for one better understanding of the process aiming at the otimização.Design/methodology/approach: Two different spot welding machine (AC and MF-DC had been used, and a digital high-speed camera. The weld points had been carried through in 3 galvanized steel different plate configurations. The electrodes had been truncated to obtain one better visualization for the weld nugget formation. The comparison of the formation and development between the weld point of each process (AC and MF is shown in 7 pictures in the same values of time.Findings: For currents below 2 kA, no nugget was observed. and the formation of same after 10º cycle for bigger current of 3 kA. The MF-DC welding offers the possibility of obtaining nuggets more uniforms within shorter times (depending on the plate configuration.Research limitations/implications: In this work the AC machine is limited by the values of current of welding and pressure of the electrodes: (2 - 6 kA e (87 - 261 kgf respectively. Other materials: aluminum, stainless steel or material exactly dissimilar could be used following the line of this research. Bigger currents levels can also be used.Originality/value: The idea to compare resulted for the same process of welding under different conditions (equipment, materials and or parameters makes possible the choice of these better conditions used to the otimização of the process.

  19. Evaluation of Streamwise Waveform on a High-Speed Water Jet by Detecting Trajectories of Two Refracted Laser Beams

    Directory of Open Access Journals (Sweden)

    Kazuhiro Itoh

    2011-01-01

    Full Text Available Free surface fluctuations on a high-speed water jet were measured by a laser beam refraction technique. This method can be used to obtain quantitative time-series data on local surface fluctuations. The developed system employs two pulsed laser diodes, and it uses a high-speed optical sensor to detect the instantaneous positions of the laser beams that are refracted at the free surface. Fluctuations in the slope angle are measured at two locations separated by 1.27 mm. The wave speed of each free surface wave, which is determined by the zero-upcrossing method, is experimentally evaluated by the cross-correlation method. A two-dimensional waveform is obtained by integrating the slope angle data. The local mean wavelength and mean wave steepness are evaluated for average jet velocities up to =10 m/s. Streamwise waveforms of the high-speed water jet at several locations exhibit appreciable asymmetry and have steep profiles.

  20. A new control strategy with saturation effect compensation for an autonomous induction generator driven by wide speed range turbines

    International Nuclear Information System (INIS)

    Research highlights: → A novel control strategy for autonomous induction generators with variable rotor speed. → Generator excitation achieved using a current controlled voltage source inverter. → Machine optimized use with stability and saturation effect compensation. → Both saturation and cross-saturation effects discussed upon generator modeling. → Efficient excitation and continuous load voltage control in a wide rotor speed range. -- Abstract: This paper presents a variable speed autonomous squirrel cage generator excited by a current-controlled voltage source inverter to be used in stand-alone micro-hydro power plants. The paper proposes a system control strategy aiming to properly excite the machine as well as to achieve the load voltage control. A feed-forward control sets the appropriate generator flux by taking into account the actual speed and the desired load voltage. A load voltage control loop is used to adjust the generated active power in order to sustain the load voltage at a reference value. The control system is based on a rotor flux oriented vector control technique which takes into account the machine saturation effect. The proposed control strategy and the adopted system models were validated both by numerical simulation and by experimental results obtained from a laboratory prototype. Results covering the prototype start-up, as well as its steady-state and dynamical behavior are presented.

  1. A new control strategy with saturation effect compensation for an autonomous induction generator driven by wide speed range turbines

    Energy Technology Data Exchange (ETDEWEB)

    Margato, Elmano, E-mail: efmargato@isel.ipl.p [Instituto Superior de Engenharia de Lisboa, DEEA, Av. Cons. Emidio Navarro 1, 1950-062 Lisboa (Portugal); Centro de Electrotecnia e Electronica Industrial, Av. Cons. Emidio Navarro 1, 1950-062 Lisboa (Portugal); Center for Inovation in Electrical and Energy Engineering, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Faria, Jose, E-mail: josefaria@netvisao.p [Instituto Superior de Engenharia de Lisboa, DEEA, Av. Cons. Emidio Navarro 1, 1950-062 Lisboa (Portugal); Centro de Electrotecnia e Electronica Industrial, Av. Cons. Emidio Navarro 1, 1950-062 Lisboa (Portugal); Resende, M.J., E-mail: mresende@ist.utl.p [Center for Inovation in Electrical and Energy Engineering, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Instituto Superior Tecnico, DEEC, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Palma, Joao, E-mail: jpalma@lnec.p [Centro de Electrotecnia e Electronica Industrial, Av. Cons. Emidio Navarro 1, 1950-062 Lisboa (Portugal); Laboratorio Nacional de Engenharia Civil, LNEC, Av. Brasil 101, 1700-066 (Portugal)

    2011-05-15

    Research highlights: {yields} A novel control strategy for autonomous induction generators with variable rotor speed. {yields} Generator excitation achieved using a current controlled voltage source inverter. {yields} Machine optimized use with stability and saturation effect compensation. {yields} Both saturation and cross-saturation effects discussed upon generator modeling. {yields} Efficient excitation and continuous load voltage control in a wide rotor speed range. -- Abstract: This paper presents a variable speed autonomous squirrel cage generator excited by a current-controlled voltage source inverter to be used in stand-alone micro-hydro power plants. The paper proposes a system control strategy aiming to properly excite the machine as well as to achieve the load voltage control. A feed-forward control sets the appropriate generator flux by taking into account the actual speed and the desired load voltage. A load voltage control loop is used to adjust the generated active power in order to sustain the load voltage at a reference value. The control system is based on a rotor flux oriented vector control technique which takes into account the machine saturation effect. The proposed control strategy and the adopted system models were validated both by numerical simulation and by experimental results obtained from a laboratory prototype. Results covering the prototype start-up, as well as its steady-state and dynamical behavior are presented.

  2. Forward Looking Radar Imaging by Truncated Singular Value Decomposition and Its Application for Adverse Weather Aircraft Landing

    Directory of Open Access Journals (Sweden)

    Yulin Huang

    2015-06-01

    Full Text Available The forward looking radar imaging task is a practical and challenging problem for adverse weather aircraft landing industry. Deconvolution method can realize the forward looking imaging but it often leads to the noise amplification in the radar image. In this paper, a forward looking radar imaging based on deconvolution method is presented for adverse weather aircraft landing. We first present the theoretical background of forward looking radar imaging task and its application for aircraft landing. Then, we convert the forward looking radar imaging task into a corresponding deconvolution problem, which is solved in the framework of algebraic theory using truncated singular decomposition method. The key issue regarding the selecting of the truncated parameter is addressed using generalized cross validation approach. Simulation and experimental results demonstrate that the proposed method is effective in achieving angular resolution enhancement with suppressing the noise amplification in forward looking radar imaging.

  3. Forward Looking Radar Imaging by Truncated Singular Value Decomposition and Its Application for Adverse Weather Aircraft Landing.

    Science.gov (United States)

    Huang, Yulin; Zha, Yuebo; Wang, Yue; Yang, Jianyu

    2015-01-01

    The forward looking radar imaging task is a practical and challenging problem for adverse weather aircraft landing industry. Deconvolution method can realize the forward looking imaging but it often leads to the noise amplification in the radar image. In this paper, a forward looking radar imaging based on deconvolution method is presented for adverse weather aircraft landing. We first present the theoretical background of forward looking radar imaging task and its application for aircraft landing. Then, we convert the forward looking radar imaging task into a corresponding deconvolution problem, which is solved in the framework of algebraic theory using truncated singular decomposition method. The key issue regarding the selecting of the truncated parameter is addressed using generalized cross validation approach. Simulation and experimental results demonstrate that the proposed method is effective in achieving angular resolution enhancement with suppressing the noise amplification in forward looking radar imaging. PMID:26094627

  4. Modeled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations

    Directory of Open Access Journals (Sweden)

    B. H. Samset

    2014-08-01

    Full Text Available Atmospheric black carbon (BC absorbs solar radiation, and exacerbates global warming through exerting positive radiative forcing (RF. However, the contribution of BC to ongoing changes in global climate is under debate. Anthropogenic BC emissions, and the resulting distribution of BC concentration, are highly uncertain. In particular, long range transport and processes affecting BC atmospheric lifetime are poorly understood. Here we discuss whether recent assessments may have overestimated present day BC radiative forcing in remote regions. We compare vertical profiles of BC concentration from four recent aircraft measurement campaigns to simulations by 13 aerosol models participating in the AeroCom Phase II intercomparision. An atmospheric lifetime of BC of less than 5 days is shown to be essential for reproducing observations in remote ocean regions, in line with other recent studies. Adjusting model results to measurements in remote regions, and at high altitudes, leads to a 25% reduction in AeroCom Phase II median direct BC forcing, from fossil fuel and biofuel burning, over the industrial era. The sensitivity of modeled forcing to BC vertical profile and lifetime highlights an urgent need for further flight campaigns, close to sources and in remote regions, to provide improved quantification of BC effects for use in climate policy.

  5. Impact of the chosen turbulent flow empirical model on the prediction of sound radiation and vibration by aircraft panels

    Science.gov (United States)

    Rocha, Joana

    2016-07-01

    A precise definition of the turbulent boundary layer excitation is required to accurately predict the sound radiation and surface vibration levels, produced by an aircraft panel excited turbulent flow during flight. Hence, any existing inaccuracy on turbulent boundary layer excitation models leads to an inaccurate prediction of the panel response. A number of empirical models have been developed over the years to provide the turbulent boundary layer wall pressure spectral density. However, different empirical models provide dissimilar predictions for the wall pressure spectral density. The objective of the present study is to investigate and quantify the impact of the chosen empirical model on the predicted radiated sound power, and on the predicted panel surface acceleration levels. This study provides a novel approach and a detailed analysis on the use of different turbulent boundary layer wall pressure empirical models, and impact on mathematical predictions. Closed-form mathematical relationships are developed, and recommendations are provided for the level of deviation and uncertainty associated to different models, in relation to a baseline model, both for panel surface acceleration and radiated sound power.

  6. INTEGRATING ANALYTICAL AEROELASTIC INSTABILITY ANALYSIS INTO DESIGN OPTIMIZATION OF AIRCRAFT WING STRUCTURES

    OpenAIRE

    , Pinar Acar

    2011-01-01

    Two analytical flutter solution approaches have been developed to optimize two and three dimensional aircraft wing structures with design criteria based on aeroelastic instabilities. The first approach uses open loop structural dynamics and stability analysis for a two dimensional wing model in order to obtain the critical speeds of flutter, divergence and control reversal for optimization process. The second approach involves a flutter solution for three dimensional wing structures by using ...

  7. Improving aircraft conceptual design - A PHIGS interactive graphics interface for ACSYNT

    Science.gov (United States)

    Wampler, S. G.; Myklebust, A.; Jayaram, S.; Gelhausen, P.

    1988-01-01

    A CAD interface has been created for the 'ACSYNT' aircraft conceptual design code that permits the execution and control of the design process via interactive graphics menus. This CAD interface was coded entirely with the new three-dimensional graphics standard, the Programmer's Hierarchical Interactive Graphics System. The CAD/ACSYNT system is designed for use by state-of-the-art high-speed imaging work stations. Attention is given to the approaches employed in modeling, data storage, and rendering.

  8. Policy and the evaluation of aircraft noise

    OpenAIRE

    Kroesen, M.; Molin, E.J.E.; Van Wee, G.P.

    2010-01-01

    In this paper, we hypothesize and test the ideas that (1) people’s subjectivity in relation to aircraft noise is shaped by the policy discourse, (2) this results in a limited number of frames towards aircraft noise, (3) the frames inform people how to think and feel about aircraft noise and (4) the distribution of the frames in the population is dependent on structural variables related to the individual. To reveal subjects’ frames of aircraft noise a latent class model is estimated based on ...

  9. Challenges for the aircraft structural integrity program

    Science.gov (United States)

    Lincoln, John W.

    1994-01-01

    Thirty-six years ago the United States Air Force established the USAF Aircraft Structural Integrity Program (ASIP) because flight safety had been degraded by fatigue failures of operational aircraft. This initial program evolved, but has been stable since the issuance of MIL-STD-1530A in 1975. Today, the program faces new challenges because of a need to maintain aircraft longer in an environment of reduced funding levels. Also, there is increased pressure to reduce cost of the acquisition of new aircraft. It is the purpose of this paper to discuss the challenges for the ASIP and identify the changes in the program that will meet these challenges in the future.

  10. Aircraft Cabin Environmental Quality Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Gundel, Lara; Kirchstetter, Thomas; Spears, Michael; Sullivan, Douglas

    2010-05-06

    The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Results from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.

  11. Development of an ultrasonic pulse-echo (UPE) technique for aircraft icing studies

    Science.gov (United States)

    Liu, Yang; Chen, Wen-Li; Bond, Leonard J.; Hu, Hui

    2014-02-01

    Aircraft operating in some cold weather conditions face the risk of icing. Icing poses a threat to flight safety and its management is expensive. Removing light frost on a clear day from a medium-size business jet can cost 300, heavy wet snow removal can cost 3,000 and removal of accumulated frozen/freezing rain can cost close to 10,000. Understanding conditions that lead to severe icing events is important and challenging. When an aircraft or rotorcraft flies in a cold climate, some of the super cooled droplets impinging on exposed aircraft surfaces may flow along the surface prior to freezing and give various forms and shapes of ice. The runback behavior of a water film on an aircraft affects the morphology of ice accretion and the rate of formation. In this study, we report the recent progress to develop an Ultrasonic Pulse-Echo (UPE) technique to provide real-time thickness distribution measurements of surface water flows driven by boundary layer airflows for aircraft icing studies. A series of initial experimental investigations are conducted in an ice wind tunnel employing an array of ultrasonic transducers placed underneath the surface of a flat plate. The water runback behavior on the plate is evaluated by measuring the thickness profile variation of the water film along the surface by using the UPE technique under various wind speed and flow rate conditions.

  12. Development of an ultrasonic pulse-echo (UPE) technique for aircraft icing studies

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang; Hu, Hui [Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Room 1200, Ames, IA 50011 (United States); Chen, Wen-Li [Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Room 1200, Ames, IA 50011 (United States); School of Civil Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090 (China); Bond, Leonard J. [Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Room 1200, Ames, IA 50011 (United States); Center for Nondestructive Evaluation, Iowa State University, 1915 Scholl Road, 151 ASC II, Ames, IA 50011 (United States)

    2014-02-18

    Aircraft operating in some cold weather conditions face the risk of icing. Icing poses a threat to flight safety and its management is expensive. Removing light frost on a clear day from a medium-size business jet can cost $300, heavy wet snow removal can cost $3,000 and removal of accumulated frozen/freezing rain can cost close to $10,000. Understanding conditions that lead to severe icing events is important and challenging. When an aircraft or rotorcraft flies in a cold climate, some of the super cooled droplets impinging on exposed aircraft surfaces may flow along the surface prior to freezing and give various forms and shapes of ice. The runback behavior of a water film on an aircraft affects the morphology of ice accretion and the rate of formation. In this study, we report the recent progress to develop an Ultrasonic Pulse-Echo (UPE) technique to provide real-time thickness distribution measurements of surface water flows driven by boundary layer airflows for aircraft icing studies. A series of initial experimental investigations are conducted in an ice wind tunnel employing an array of ultrasonic transducers placed underneath the surface of a flat plate. The water runback behavior on the plate is evaluated by measuring the thickness profile variation of the water film along the surface by using the UPE technique under various wind speed and flow rate conditions.

  13. Development of an ultrasonic pulse-echo (UPE) technique for aircraft icing studies

    International Nuclear Information System (INIS)

    Aircraft operating in some cold weather conditions face the risk of icing. Icing poses a threat to flight safety and its management is expensive. Removing light frost on a clear day from a medium-size business jet can cost $300, heavy wet snow removal can cost $3,000 and removal of accumulated frozen/freezing rain can cost close to $10,000. Understanding conditions that lead to severe icing events is important and challenging. When an aircraft or rotorcraft flies in a cold climate, some of the super cooled droplets impinging on exposed aircraft surfaces may flow along the surface prior to freezing and give various forms and shapes of ice. The runback behavior of a water film on an aircraft affects the morphology of ice accretion and the rate of formation. In this study, we report the recent progress to develop an Ultrasonic Pulse-Echo (UPE) technique to provide real-time thickness distribution measurements of surface water flows driven by boundary layer airflows for aircraft icing studies. A series of initial experimental investigations are conducted in an ice wind tunnel employing an array of ultrasonic transducers placed underneath the surface of a flat plate. The water runback behavior on the plate is evaluated by measuring the thickness profile variation of the water film along the surface by using the UPE technique under various wind speed and flow rate conditions

  14. Advanced control for airbreathing engines, volume 2: General Electric aircraft engines

    Science.gov (United States)

    Bansal, Indar

    1993-01-01

    The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 2 of these reports describes the studies performed by GE Aircraft Engines.

  15. Speed Detection and Diagnosis of Symptoms by Using Color and Shape Information

    Directory of Open Access Journals (Sweden)

    Hamed Hamidi Rad

    2011-10-01

    Full Text Available Color and shape are basic characteristics which are used to recognize traffic signs. In this paper, a new speed limit sign detection method in various conditions is proposed. In this method, color image is segmented based on a thresholding technique in HSI color space. Then, corner features are detected using convolution masks and found the location of sign. The first advantage of this method is high accuracy to detect the location of sign. So, the object can be detected with 30% noise level, 30 meters for distances of signs, and for rotated signs. The second advantage of the proposed method is high speed in sign detection. Utimately, the type of sign can be recognized with eliminate redundant information and match between extracted image and database image. If the illumination conditions be ideal, the recognition rate is obtained to 89%.

  16. Is the scaling of swim speed in sharks driven by metabolism?

    Science.gov (United States)

    Jacoby, David M P; Siriwat, Penthai; Freeman, Robin; Carbone, Chris

    2015-12-01

    The movement rates of sharks are intrinsically linked to foraging ecology, predator-prey dynamics and wider ecosystem functioning in marine systems. During ram ventilation, however, shark movement rates are linked not only to ecological parameters, but also to physiology, as minimum speeds are required to provide sufficient water flow across the gills to maintain metabolism. We develop a geometric model predicting a positive scaling relationship between swim speeds in relation to body size and ultimately shark metabolism, taking into account estimates for the scaling of gill dimensions. Empirical data from 64 studies (26 species) were compiled to test our model while controlling for the influence of phylogenetic similarity between related species. Our model predictions were found to closely resemble the observed relationships from tracked sharks, providing a means to infer mobility in particularly intractable species. PMID:26631246

  17. Limitation of Adjustable-Speed Drive Operation by Unbalanced Voltage Supply

    Czech Academy of Sciences Publication Activity Database

    Chomát, Miroslav; Schreier, Luděk; Bendl, Jiří

    Piscataway : IEEE, 2008, s. 1-6. ISBN 978-1-4244-1736-0. [International Conference on Electrical Machines - ICEM 2008 /18./. Vilamoura (PT), 06.09.2008-09.09.2008] R&D Projects: GA ČR GA102/06/0215 Institutional research plan: CEZ:AV0Z20570509 Keywords : unbalanced voltage supply * DC-link voltage pulsations * variable-speed drive Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering www.apdee.org

  18. Age Differences in Speed of Processing are Partially Mediated by Differences in Axonal Integrity

    OpenAIRE

    Burgmans, S.; Gronenschild, E. H. B. M.; Fandakova, Y.; Shing, Y.L.; van Boxtel, M.P.J.; Vuurman, E.F.P.M.; Uylings, H.B.M.; Jolles, J; Raz, N.

    2011-01-01

    Advanced age is associated with declines in brain structure and in cognitive performance, but it is unclear, which aspects of brain aging mediate cognitive declines. We inquired if individual differences in white matter integrity contribute to age differences in two cognitive domains with established vulnerability to aging: executive functioning and speed of processing. The participants were healthy volunteers age 50–81, some of whom had elevated blood pressure, a known vascular risk factor. ...

  19. High-speed label-free detection by spinning-disk micro-interferometry

    OpenAIRE

    Varma, M. M.; Inerowicz, H. D.; Regnier, F. E.; Nolte, D. D.

    2004-01-01

    Spinning-disk interferometers are a new class of analytic sensors to detect immobilized biomolecules with high speed and high sensitivity. The disks are composed of a large number of surface-normal self-referencing interferometers, analogous to an optical CD, but operating on the principle of microdiffraction quadrature that achieves sensitive linear detection of bound molecules. The surface-normal structures have a small footprint of only 20 mum each, allowing potential integration to over a...

  20. MODELING AND ANALYSIS OF DISTRIBUTION LOAD CURRENTS PRODUCED BY AN AD JUSTABLE SPEED DRIVE HEAT PUMP

    OpenAIRE

    Hoffman, Stephen Paul

    1993-01-01

    A number of demand side management techniques have been proposed for the efficient use of electric power in the commercial and residential sector. The adjustable speed drive heat pump is a technology which has the prospect of decreasing power demands for space heating. This design has the advantage over conventional designs of higher efficiency and, potentially, reduction of peak power demand. Its main disadvantage is higher cost. Further, it has the disadvantage that it produces a load curre...

  1. High-speed Vibrational Imaging and Spectral Analysis of Lipid Bodies by Compound Raman Microscopy

    OpenAIRE

    Slipchenko, Mikhail N.; Le, Thuc T.; Chen, Hongtao; Cheng, Ji-Xin

    2009-01-01

    Cells store excess energy in the form of cytoplasmic lipid droplets. At present, it is unclear how different types of fatty acids contribute to the formation of lipid-droplets. We describe a compound Raman microscope capable of both high-speed chemical imaging and quantitative spectral analysis on the same platform. We use a picosecond laser source to perform coherent Raman scattering imaging of a biological sample and confocal Raman spectral analysis at points of interest. The potential of t...

  2. Flashback investigations in a premixed swirl burner by high-speed laser imaging

    OpenAIRE

    Heeger, Christof

    2012-01-01

    In this thesis flame flashback in a lean premixed swirl burner with central bluff-body was investigated using high speed multi-parameter laser imaging diagnostics. Starting with the fundamentals, the theoretical background of fluid dynamics was presented. This included turbulence, swirl and flows in boundary layers. Regarding the involved chemistry, the oxidation of methane was detailed and six mechanisms of nitric oxides formation together with reduction strategies were pictured. Lean premix...

  3. Research on the measurement of belt speed by video in coal mine based on improved template matching algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHU Ai-chun; HUA Wei; WANG Chun; WANG Yong-xing

    2011-01-01

    In order to improve the intelligence of video monitoring system of belt and make up the deficiency of higher failure rate and bad real-time performance in the traditional systems of measurement of belt speed,according to the fact that the light of coal mine is uneven,the strength of light changes greatly,the direction of belt movement is constant,and the position of camera was fixed,various algorithms of speed measurement by video were studied,and algorithm for template matching based on sum of absolute differences(SAD)and correlation coefficient was proposed and improved,besides,the tracking of feature regions was realized.Then,a camera calibration method using the invariance of the cross-ratio was adopted and the real-time measurement of belt speed by the hardware platform based on DM642 was realized.Finally,experiment results show that this method not only has advantages of high precision and strong anti-jamming capability but also can real-time reflect the changes of belt speed,so it has a comprehensive applicability.

  4. Research on Emerging and Descending Aircraft Noise

    Directory of Open Access Journals (Sweden)

    Monika Bartkevičiūtė

    2013-12-01

    Full Text Available Along with an increase in the aircraft engine power and growth in air traffic, noise level at airports and their surrounding environs significantly increases. Aircraft noise is high level noise spreading within large radius and intensively irritating the human body. Air transport is one of the main sources of noise having a particularly strong negative impact on the environment. The article deals with activities and noises taking place in the largest nationwide Vilnius International Airport.The level of noise and its dispersion was evaluated conducting research on the noise generated by emerging and descending aircrafts in National Vilnius Airport. Investigation was carried out at 2 measuring points located in a residential area. There are different types of aircrafts causing different sound levels. It has been estimated the largest exceedances that occur when an aircraft is approaching. In this case, the noisiest types of aircrafts are B733, B738 and AT72. The sound level varies from 70 to 85 dBA. The quietest aircrafts are RJ1H and F70. When taking off, the equivalent of the maximum sound level value of these aircrafts does not exceed the authorized limits. The paper describes the causes of noise in aircrafts, the sources of origin and the impact of noise on humans and the environment.Article in Lithuanian

  5. Optimal Fuzzy Controller Tuned by TV-PSO for Induction Motor Speed Control

    Directory of Open Access Journals (Sweden)

    KULIC, F.

    2011-02-01

    Full Text Available This paper reports an automated procedure for the design of an optimal fuzzy logic controller to be used as an induction motor speed controller. The procedure consists of selection of a suitable well known fuzzy logic controller and tuning via particle swarm optimization optimal for the selected criteria. In this way the time required for tuning of the controller is significantly reduced in comparison with trial and error methods. As a benchmark a proportional-integral (PI controller is used. The PI controller is tuned via the symmetrical optimum procedure, the standard procedure for tuning a speed controller of an induction motor. Simulation results are obtained via a mathematical model developed in Matlab/Simulink. Experimental verification is carried out with a laboratory model based on the DS1104 digital control card. To minimize iron losses and to provide better motor performance for low loads, flux is reduced from nominal and speed is kept below nominal. Results are presented in tables and graphics. The optimal fuzzy logic controller provides a slight practical advantage.

  6. Controlling DNA Translocation Speed through Solid-State Nanopores by Surface Charge Modulation

    Science.gov (United States)

    Meller, Amit

    2013-03-01

    The Nanopore method is an emerging technique, which extends gel-electrophoresis to the single-molecule level and allows the analysis of DNAs, RNAs and DNA-protein complexes. The strength of the technique stems from two fundamental facts: First, nanopores due to their nanoscale size can be used to uncoil biopolymers, such as DNA or RNA and slide them in a single file manner that allows scanning their properties. Consequently, the method can be used to probe short as well as extremely long biopolymers, such as genomic DNA with high efficiency. Second, electrostatic focusing of charged biopolymers into the nanopore overcomes thermally driven diffusion, thus facilitating an extremely efficient end-threading (or capture) of DNA. Thus, nanopores can be used to detect minute DNA copy numbers, circumventing costly molecular amplification such as Polymerase Chain Reaction. A critical factor, which determines the ability of nanopore to distinguish fine properties within biopolymers, such as the location of bound small-molecules, proteins, or even the nucleic acid's sequence, is the speed at which molecules are translocated through the pore. When the translocation speed is too high the electrical noise masks the desired signal, thus limiting the utility of the method. Here I will discuss new experimental results showing that modulating the surface charge inside the pore can effectively reduce the translocation speed through solid-state nanopores fabricated in thin silicon nitride membranes. I will present a simple physical model to account for these results.

  7. An evaluation of the performance of chemistry transport models by comparison with research aircraft observations. Part 1: Concepts and overall model performance

    OpenAIRE

    Brunner, D.; Staehelin, J; Rogers, H. L.; Köhler, M. O.; Pyle, J.A.; Hauglustaine, D.; Jourdain, L.; Berntsen, T. K.; Gauss, M.; I. S. A. Isaksen; MEIJER E.; Van Velthoven, P.; Pitari, G.; Mancini, E; Grewe, V

    2003-01-01

    A rigorous evaluation of five global Chemistry-Transport and two Chemistry-Climate Models operated by several different groups in Europe was performed by comparing the models with trace gas observations from a number of research aircraft measurement campaigns. Whenever possible the models were run over the four-year period 1995–1998 and at each simulation time step the instantaneous tracer fields were interpolated to all coinciding observation points. This approach allows for a ...

  8. An evaluation of the performance of chemistry transport models by comparison with research aircraft observations. Part 1: Concepts and overall model performance

    OpenAIRE

    Brunner, D.; Staehelin, J; Rogers, H. L.; Köhler, M. O.; Pyle, J.A.; Hauglustaine, D.; Jourdain, L.; Berntsen, T. K.; Gauss, M.; I. S. A. Isaksen; MEIJER E.; Van Velthoven, P.; Pitari, G.; Mancini, E; Grewe, V

    2003-01-01

    International audience A rigorous evaluation of five global Chemistry-Transport and two Chemistry-Climate Models operated by several different groups in Europe was performed by comparing the models with trace gas observations from a number of research aircraft measurement campaigns. Whenever possible the models were run over the four-year period 1995–1998 and at each simulation time step the instantaneous tracer fields were interpolated to all coinciding observation points. This approach a...

  9. Experimental study of high-speed counter-rotation propeller on low speed wind range; Dojiku hantengata kosoku propeller no teisokuiki ni okeru fudo jikken

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Collaborative research was conducted by National Aerospace Laboratory and Japan Aircraft Development Company in the period of fiscal 1988-1992 into methods for testing aircraft with advanced propeller in low-speed wind tunnel. The propulsion efficiency of the currently available high-bypass turbofan engine is approximately 60% in the vicinity of Mach number 0.85. Propeller-driven aircraft, whose propulsion efficiency is as high as 80% in the low Mach number domain, are scarcely in practical use in the domain of Mach number 0.75 or higher. There are studies reported abroad as well as in Japan for the propeller-driven aircraft to enjoy higher propeller propulsion efficiency even in the vicinity of Mach number 0.8 by modifying the propeller diameter, number of blades, and blade sections, etc. This paper describes the experimental research into the high-speed counter-rotation propeller. A counter-rotation propeller 0.3m in diameter and provided with coaxially arranged 8times2 SR-2 blades is evaluated for pitch angles during the takeoff and landing modes, for thrust characteristics at the pitch angle for the cruising mode, and for propeller backwash and noise. 15 refs., 72 figs., 9 tabs.

  10. Experimental Study on the Dynamic Performance of a New High-Speed Spindle Supported by Water-Lubricated Hybrid Bearings

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2016-01-01

    Full Text Available The dynamic performance of a new high-speed spindle supported by water-lubricated hybrid bearings is experimentally studied on a test rig. The present design allows the speed of the spindle up to 30,000 rpm, with a bearing internal diameter of 40 mm, which makes it possible to simulate many actual machining processes. Some experiments have been presented to study the mechanical and thermal behaviors of the spindle and its supporting hybrid bearings. The maximum temperature rise is less than 15°C with a speed of 30,000 rpm and a water supply pressure of 2.5 MPa. The spindle radial run-out of the rotational frequency is about 1 µm. Stability of the spindle system has been improved. The experimental results indicate that water-lubricated hybrid bearings are valuable choices to replace ceramic bearings and air bearings as support for spindles under high-speed, high-precision, and heavy-load machining conditions.

  11. Experimental analysis of buckling in aircraft skin panels by fibre optic sensors

    Science.gov (United States)

    Güemes, J. A.; Menendez, J. M.; Frövel, M.; Fernandez, I.; Pintado, J. M.

    2001-06-01

    Three blade-stiffened CFRP panels with co-cured stiffener webs, manufactured by means of an elastomeric mould, have been tested under compressive load. Several Bragg grating sensors have been surface bonded on two of the stiffened panels and have been embedded into the stiffener webs of the third panel. The Bragg grating sensors measured the strain distribution in the stiffener web and in the skin panels. The bucking onset was clearly detected in every case, the post-buckling behaviour can be tracked, but the information is heavily dependent on the right choice of the sensor position and the buckling mode. To calibrate the system, and to evaluate the influence of different curing pressures, and the use of unidirectional or fabric prepreg material, tensile test specimens were made on flat panels. The strain measurements provided by the optical fibre sensors in tensile tests were compared with the strain measurements provided by conventional clamp extensometers.

  12. Ecological Risk Assessment Framework for Low-Altitude Overflights by Fixed-Wing and Rotary-Wing Military Aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Efroymson, R.A.

    2001-01-12

    This is a companion report to the risk assessment framework proposed by Suter et al. (1998): ''A Framework for Assessment of Risks of Military Training and Testing to Natural Resources,'' hereafter referred to as the ''generic framework.'' The generic framework is an ecological risk assessment methodology for use in environmental assessments on Department of Defense (DoD) installations. In the generic framework, the ecological risk assessment framework of the US Environmental Protection Agency (EPA 1998) is modified for use in the context of (1) multiple and diverse stressors and activities at a military installation and (2) risks resulting from causal chains, e.g., effects on habitat that indirectly impact wildlife. Both modifications are important if the EPA framework is to be used on military installations. In order for the generic risk assessment framework to be useful to DoD environmental staff and contractors, the framework must be applied to specific training and testing activities. Three activity-specific ecological risk assessment frameworks have been written (1) to aid environmental staff in conducting risk assessments that involve these activities and (2) to guide staff in the development of analogous frameworks for other DoD activities. The three activities are: (1) low-altitude overflights by fixed-wing and rotary-wing aircraft (this volume), (2) firing at targets on land, and (3) ocean explosions. The activities were selected as priority training and testing activities by the advisory committee for this project.

  13. Speed mathematics

    CERN Document Server

    Handley, Bill

    2012-01-01

    This new, revised edition of the bestselling Speed Mathematics features new chapters on memorising numbers and general information, calculating statistics and compound interest, square roots, logarithms and easy trig calculations. Written so anyone can understand, this book teaches simple strategies that will enable readers to make lightning-quick calculations. People who excel at mathematics use better strategies than the rest of us; they are not necessarily more intelligent. With Speed Mathematics you'll discover methods to make maths easy and fun. This book is perfect for stud

  14. MODIFICATION OF CARBON STEEL BY LASER SURFACE MELTING: PART I: EFFECT OF LASER BEAM TRAVELLING SPEED ON MICROSTRUCTURAL FEATURES AND SURFACE HARDNESS

    Directory of Open Access Journals (Sweden)

    Hashem F. El-Labban

    2013-01-01

    Full Text Available The present study aims to improve the surface hardness of carbon steel by application of laser surface melting of effective conditions. The travelling speed of laser beam during this treatment is one of the important treatment conditions. This study aims to investigate the effect of laser surface melting with different beam speeds on macro and microstructure as well as the hardness distribution through the thickness of carbon steel. To achieve this target, three different travelling speeds (1500, 1000 and 500 mm min-1 at a constant beam power of 800 W were chosen in this study. The resulted laser treated specimens were investigated in macro and microscopically scale using optical and scanning electron microscope. Hardness measurements were also carried out through the thickness of the laser treated specimens. The laser treated areas with all used travelling speeds results in melted and solidified zone on the surface of the steel. In the same time, Plates of acicular martensite structure were observed within the upper part of the melted and solidified zone in almost all experimental conditions, while some bainite structure in ferrite grains are detected in its lower part. By increasing the travelling speed, the depth of the laser treated zone was decreases, while travelling speed has much less significant effect on the laser treated zone width. The size of the formed martensite plates was increased by decreasing the travelling speed from 1500 to 500 mm min-1. On the other hand, the travelling speed has a straight effect on the length of the acicular martensite; as the travelling speed increases, the acicular martensite became longer, while it shows fine acicular martensite at lower travelling speeds. The depth that full martensite structure can be reached is increased by increasing travelling speed. At lower travelling speed (500 mm min-1, large amount of bainite structure is observed at the center of the treated zone up to its lower end. The

  15. Risk of transmitting meningococcal infection by transient contact on aircraft and other transport

    OpenAIRE

    Rachael, T.; Schubert, K.; Hellenbrand, Wiebke; Krause, Gérard; Stuart, J. M.

    2009-01-01

    Contact tracing of persons with meningococcal disease who have travelled on aeroplanes or other multi-passenger transport is not consistent between countries. We searched the literature for clusters of meningococcal disease linked by transient contact on the same plane, train, bus or boat. We found reports of two clusters in children on the same school bus and one in passengers on the same plane. Cases within each of these three clusters were due to strains that were genetically indistinguish...

  16. The Attenuation of a Detonation Wave by an Aircraft Engine Axial Turbine Stage

    Science.gov (United States)

    VanZante, Dale; Envia, Edmane; Turner, Mark G.

    2007-01-01

    A Constant Volume Combustion Cycle Engine concept consisting of a Pulse Detonation Combustor (PDC) followed by a conventional axial turbine was simulated numerically to determine the attenuation and reflection of a notional PDC pulse by the turbine. The multi-stage, time-accurate, turbomachinery solver TURBO was used to perform the calculation. The solution domain consisted of one notional detonation tube coupled to 5 vane passages and 8 rotor passages representing 1/8th of the annulus. The detonation tube was implemented as an initial value problem with the thermodynamic state of the tube contents, when the detonation wave is about to exit, provided by a 1D code. Pressure time history data from the numerical simulation was compared to experimental data from a similar configuration to verify that the simulation is giving reasonable results. Analysis of the pressure data showed a spectrally averaged attenuation of about 15 dB across the turbine stage. An evaluation of turbine performance is also presented.

  17. Comparisons of cloud ice mass content retrieved from the radar-infrared radiometer method with aircraft data during the second international satellite cloud climatology project regional experiment (FIRE-II)

    Energy Technology Data Exchange (ETDEWEB)

    Matrosov, S.Y. [Univ. of Colorado, Boulder, CO (United States)]|[National Oceanic and Atmospheric Administration Environmental Technology Lab., Boulder, CO (United States); Heymsfield, A.J. [National Center for Atmospheric Research, Boulder, CO (United States); Kropfli, R.A.; Snider, J.B. [National Oceanic and Atmospheric Administration Environmental Technology Lab., Boulder, CO (United States)

    1996-04-01

    Comparisons of remotely sensed meteorological parameters with in situ direct measurements always present a challenge. Matching sampling volumes is one of the main problems for such comparisons. Aircraft usually collect data when flying along a horizontal leg at a speed of about 100 m/sec (or even greater). The usual sampling time of 5 seconds provides an average horizontal resolution of the order of 500 m. Estimations of vertical profiles of cloud microphysical parameters from aircraft measurements are hampered by sampling a cloud at various altitudes at different times. This paper describes the accuracy of aircraft horizontal and vertical coordinates relative to the location of the ground-based instruments.

  18. Speed enforcement in Norway

    DEFF Research Database (Denmark)

    Elvik, Rune

    2015-01-01

    This paper probes the relationship between changes in the risk of apprehension for speeding in Norway and changes in the amount of speeding. The paper is based on a game-theoretic model of how the rate of violations and the amount of enforcement is determined by the interaction between drivers and...

  19. Gain self-scheduled H∞ control for morphing aircraft in the wing transition process based on an LPV model

    Institute of Scientific and Technical Information of China (English)

    Yue Ting; Wang Lixin; Ai Junqiang

    2013-01-01

    This article investigates gain self-scheduled H∞ robust control system design for a tailless folding-wing morphing aircraft in the wing shape varying process.During the wing morphing phase,the aircraft's dynamic response will be governed by time-varying aerodynamic forces and moments.Nonlinear dynamic equations of the morphing aircraft are linearized by using Jacobian linearization approach,and a linear parameter varying (LPV) model of the morphing aircraft in wing folding is obtained.A multi-loop controller for the morphing aircraft is formulated to guarantee stability for the wing shape transition process.The proposed controller uses a set of inner-loop gains to provide stability using classical techniques,whereas a gain self-scheduled H∞ outer-loop controller is devised to guarantee a specific level of robust stability and performance for the time-varying dynamics.The closed-loop simulations show that speed and altitude vary slightly during the whole wing folding process,and they converge rapidly after the process ends.This proves that the gain self-scheduled H∞ robust controller can guarantee a satisfactory dynamic performance for the morphing aircraft during the whole wing shape transition process.Finally,the flight control system's robustness for the wing folding process is verified according to uncertainties of the aerodynamic parameters in the nonlinear model.

  20. Use of multisensor fusion technology to meet the challenges of emerging EO and RF threats to a combat aircraft

    Science.gov (United States)

    Shukla, Arvind K.; Parthasarathy, T.; Rao, P. N. A. P.

    2003-04-01

    The pilot on-board a combat aircraft encounters during any mission a dynamically varying threat environment of diverse EO and RF threats. Different sensors are carried on-board the aircraft to combat these threats. However, these sensors have their own limitations and no single sensor is able to perform in all kinds of situations. In addition, the technological advances in the threat scenario - in terms of higher speeds, small signatures and multimode guidance - and increased complex threats in the battlefield leading to generation of large amount of data input to the pilot make his decision making task very difficult due to increased workload. These challenges can be efficiently handled by deployment of a system on-board the aircraft with a comprehensive goal of autonomous target detection and tracking, situation and threat assessment and decision making based on multi-sensor data fusion techniques. In this paper, major emerging EO and RF threats for a combat aircraft and some important EO and RF sensors on-board the aircraft have been discussed. A design approach for the development of a multi-sensor data fusion system for a combat aircraft to provide better threat assessment than that provided by any single stand alone sensor has also been presented.

  1. An evaluation of the performance of chemistry transport models by comparison with research aircraft observations. Part 1: Concepts and overall model performance

    OpenAIRE

    Brunner, D.; Staehelin, J; Rogers, H. L.; Köhler, M. O.; Pyle, J.A.; Hauglustaine, D.; Jourdain, L.; Berntsen, T. K.; Gauss, M.; I. S. A. Isaksen; MEIJER E.; Van Velthoven, P.; Pitari, G.; Mancini, E; Grewe, G.

    2003-01-01

    A rigorous evaluation of five global Chemistry-Transport and two Chemistry-Climate Models operated by several different groups in Europe, was performed. Comparisons were made of the models with trace gas observations from a number of research aircraft measurement campaigns during the four-year period 1995-1998. Whenever possible the models were run over the same four-year period and at each simulation time step the instantaneous tracer fields were interpolated to all coinciding observati...

  2. An evaluation of the performance of chemistry transport models by comparison with research aircraft observations. Part 1: Concepts and overall model performance

    OpenAIRE

    Brunner, D.; Staehelin, J; Rogers, H. L.; Köhler, M. O.; Pyle, J.A.; Hauglustaine, D.; Jourdain, L.; Berntsen, T. K.; Gauss, M.; I. S. A. Isaksen; MEIJER E.; Van Velthoven, P.; Pitari, G.; Mancini, E; Grewe, G.

    2003-01-01

    International audience A rigorous evaluation of five global Chemistry-Transport and two Chemistry-Climate Models operated by several different groups in Europe, was performed. Comparisons were made of the models with trace gas observations from a number of research aircraft measurement campaigns during the four-year period 1995-1998. Whenever possible the models were run over the same four-year period and at each simulation time step the instantaneous tracer fields were interpolated to all...

  3. An evaluation of the performance of chemistry transport models by comparison with research aircraft observations. Part 1: Concepts and overall model performance

    OpenAIRE

    Brunner, D.; Staehelin, J; Rogers, H. L.; Köhler, M. O.; Pyle, J.A.; Hauglustaine, D.; Jourdain, L.; Berntsen, T. K.; Gauss, M.; I. S. A. Isaksen; MEIJER E.; Van Velthoven, P.; Pitari, G.; Mancini, E; Grewe, G.

    2003-01-01

    A rigorous evaluation of five global Chemistry-Transport and two Chemistry-Climate Models operated by several different groups in Europe, was performed. Comparisons were made of the models with trace gas observations from a number of research aircraft measurement campaigns during the four-year period 1995-1998. Whenever possible the models were run over the same four-year period and at each simulation time step the instantaneous tracer fields were interpol...

  4. Prediction of flow separation from aircraft tails using a RSM turbulence model

    Science.gov (United States)

    Masi, Andrea; Benton, Jeremy; Tucker, Paul G.

    2014-11-01

    Enhancing engineers' capability to predict flow separation would generate important benefits in aircraft design. In this study the attention is focused on the vertical tail plane (VTP), which consists of a fixed part (the fin) and a moveable control surface (the rudder). For standard two-engine aircraft configurations, the size of the VTP is driven by the condition of loss of an engine during takeoff and low speed climb: in this condition the fin and the rudder have to be sufficient in size to balance the aircraft. Due to uncertainties in prediction of VTP effectiveness, aircraft designers keep to a conservative approach, risking specifying a larger size for the VTP than it is probably necessary. Uncertainties come from difficulties in predicting the separation of the flow from the surfaces of the aircraft using current CFD techniques, which are based on the use of RANS equations with eddy viscosity turbulence models. The CFD simulations presented in this study investigate the use of a RSM turbulence model with RANS and URANS. The introduction of a time-dependency gives benefits in the accuracy of the flow solution in presence of massive flow separation. This leads to the investigation of hybrid RANS/LES techniques with the aim of improving the solution of the detached flow. EU FP7 project ANADE (Grant Agreement Number 289428).

  5. Corrosion of aluminum alloy 2024 by microorganisms isolated from aircraft fuel tanks.

    Science.gov (United States)

    McNamara, Christopher J; Perry, Thomas D; Leard, Ryan; Bearce, Ktisten; Dante, James; Mitchell, Ralph

    2005-01-01

    Microorganisms frequently contaminate jet fuel and cause corrosion of fuel tank metals. In the past, jet fuel contaminants included a diverse group of bacteria and fungi. The most common contaminant was the fungus Hormoconis resinae. However, the jet fuel community has been altered by changes in the composition of the fuel and is now dominated by bacterial contaminants. The purpose of this research was to determine the composition of the microbial community found in fuel tanks containing jet propellant-8 (JP-8) and to determine the potential of this community to cause corrosion of aluminum alloy 2024 (AA2024). Isolates cultured from fuel tanks containing JP-8 were closely related to the genus Bacillus and the fungi Aureobasidium and Penicillium. Biocidal activity of the fuel system icing inhibitor diethylene glycol monomethyl ether is the most likely cause of the prevalence of endospore forming bacteria. Electrochemical impedance spectroscopy and metallographic analysis of AA2024 exposed to the fuel tank environment indicated that the isolates caused corrosion of AA2024. Despite the limited taxonomic diversity of microorganisms recovered from jet fuel, the community has the potential to corrode fuel tanks. PMID:16522539

  6. Nondestructive damage characterization of complex aircraft structures by inverse methods: Advances in multiscale models

    Science.gov (United States)

    Murphy, R. Kim; Sabbagh, Harold A.; Sabbagh, Elias H.; Zhou, Liming; Bernacchi, William; Aldrin, John C.; Forsyth, David; Lindgren, Eric

    2016-02-01

    The use of coupled integral equations and anomalous currents allows us to efficiently remove `background effects' in either forward or inverse modeling. This is especially true when computing the change in impedance due to a small flaw in the presence of a larger background anomaly. It is more accurate than simply computing the response with and without the flaw and then subtracting the two nearly equal values to obtain the small difference due to the flaw. The problem that we address in this paper involves a 'SplitD' probe that includes complex, noncircular coils, as well as ferrite cores, inserted within a bolt hole, and exciting both the bolt hole and an adjacent flaw. This introduces three coupled anomalies, each with its on 'scale.' The largest, of course, is the bolt hole, followed (generally) by the probe, and then the flaw. The overall system is represented mathematically by three coupled volume-integral equations. We describe the development of the model and its code, which is a part of the general eddy-current modeling code, VIC-3D®. We present initial validation results, as well as a number of model computations with flaws located at various places within the bolt hole.

  7. Literature study of climate effects of contrails caused by aircraft emissions

    Energy Technology Data Exchange (ETDEWEB)

    Pultau, V.E.

    1998-07-01

    By order of EUROCONTROL, a study of the most recent literature concerning contrails was performed. Attention was paid to the latest research findings concerning the formation, the lifetime, the frequency, the microphysical properties and the radiative forcing of contrails and their climate effects. Contrails form when saturation with respect to water is temporarily reached in the plume and they persist in ice supersaturated air masses. The ambient temperature necessary for contrail formation can be predicted accurately. Contrail particles consist of ice crystals. Young persistent contrails are composed of more, but smaller ice crystals than typical cirrus. Persistent contrails develop towards cirrus clouds in the course of time. The average contrail coverage exhibits a value of around 0.5% over Europe. The mean global contrail cover is estimated to be of order of 0.1%. The net radiation effect of contrails is believed to enhance warming of the troposphere on average. 59 refs.

  8. The structure of the unstable marine boundary layer viewed by lidar and aircraft observations

    Science.gov (United States)

    Atlas, D.; Walter, B.; Chou, S.-H.; Sheu, P. J.

    1986-01-01

    The marine atmospheric boundary layer (MABL) during a cold-air outbreak off the Atlantic coast between New York and Virginia on January 20, 1983 is characterized on the basis of airborne lidar observations, vertical soundings (potential temperature, vapor mixing ratio, relative humidity, and wind), and horizontal (770-m) temperature records. The data are presented in tables and graphs and analyzed in detail. The organization of the MABL is defined by 1-2-km-scale roll vortices with up and downdrafts of 2-4 m/s at 210 m; north-south orientation of the roll axes (parallel to the low-level winds); rising arms coinciding with updrafts rich in moisture, aerosols, and heat; and 150-200-m (peak-to-trough) undulations of the inversion. Consideration is given to problems inherent in the interpretation of lidar data for MABL studies.

  9. Distributed Data Mining for Aircraft Health Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft Flight Operations Quality Assurance (FOQA) programs are implemented by most of the aircraft operators. Vast amounts of FOQA data are distributed between...

  10. Serum induced degradation of 3D DNA box origami observed by high speed atomic force microscope

    DEFF Research Database (Denmark)

    Jiang, Zaixing; Zhang, Shuai; Yang, Chuanxu;

    2015-01-01

    3D DNA origami holds tremendous potential to encapsulate and selectively release therapeutic drugs. Observations of real-time performance of 3D DNA origami structures in physiological environment will contribute much to its further applications. Here, we investigate the degradation kinetics of 3D...... DNA box origami in serum using high-speed atomic force microscope optimized for imaging 3D DNA origami in real time. The time resolution allows characterizing the stages of serum effects on individual 3D DNA box origami with nanometer resolution. Our results indicate that the whole digest process is a...

  11. FINITE ELEMENT ANALYSIS FOR CHIP FORMATION IN HIGH SPEED TURNING OPERATIONS BY ARBITRARY LAGRANGIAN EULERIAN METHOD

    Institute of Scientific and Technical Information of China (English)

    USAMA Umer; XIE Lijing; WANG Xibin

    2006-01-01

    A two-dimensional finite element (FE) model for the high speed turning operations when orthogonally machining AISI H13 tool steel at 49HRC using poly crystalline cubic boron nitride(PCBN) is described. An arbitrary Lagrangian Eulerian (ALE) method has been adopted which does not need any chip separation criteria as opposed to the traditional Lagrangian approach. Through FE simulations temperature and stresses distributions are presented that could be helpful in predicting tool life and improving process parameters. The results show that high temperatures are generated along the tool rake face as compared to the shear zone temperatures due to high thermal conductivity of PCBN tools.

  12. Determination of residual tensions induced by high speed machinery using an indented pairs method

    International Nuclear Information System (INIS)

    An indented pairs method is used to determine the distribution of residual tensions generated in samples of aluminum AA 6082-T6 and AA 7075-T6 milled at high speed. The method is based on measuring the distance between two collinear indents, before and after thermal treatment. In order to carry out the measuring process for the residual displacements, this method does not need any special equipment, just the use of a universal measuring machine. For this work, an indentation device was added to this measuring machine to reduce the absolute error of measurement. Based on the introduction of very straight longitudinal indents these residual displacements were measured with an absolute error of ±0.3m. This indentation device can be coupled to an electronic sensor that can precisely adjust the depth of the indent. The geometry of the tool and the cutting parameters were selected in order to evaluate the sensitivity of the method. The high speed machinery tests were carried out on a numerically controlled milling machine, using a 63 mm diameter frontal cutter. The inserts on this cutter were made of uncapped tungsten carbide to favor the cutting edges. Longitudinal indents were distributed over the surface of each machined sample to determine the residual tensions at different points of the surface's axis of symmetry. The measurement of the distances between indent pairs was done before and after an annealing thermal treatment, with temperature and time parameters of 573 K and 80 minutes, respectively. The residual tensions obtained show specific patterns in both axes of symmetry. Along the parallel axis in the direction of the advancing movement, the residual tension components that were evaluated display a lineal distribution, with a reduced gradient. Meanwhile, along the normal axis in the advancing direction, the distribution is V-shaped. From these patterns it can be inferred that the mechanisms that operate to generate these tensions are very sensitive to the

  13. High-speed micro electrode tool fabrication by a twin-wire EDM system

    International Nuclear Information System (INIS)

    This paper describes a new machining process which combines twin-electro-wire together with two electro discharge circuits to rapidly fabricate micro electrode tools. The results show that transistor electro discharge and RC electro discharge circuits coexist to fabricate micro tools with rough and finish machining both on the same machine. Compared to conventional wire electro discharge grinding (WEDG) technology, a twin-wire EDM system that combines rough and finish machining into one process allows the efficient fabrication of micro tools. This high-speed micro tool fabrication process can be applied not only to micro electrode machining but also to micro punching tool and micro probing tips machining

  14. Maximum Running Speed of Captive Bar-Headed Geese Is Unaffected by Severe Hypoxia

    OpenAIRE

    Hawkes, Lucy A.; Butler, Patrick J.; Frappell, Peter B.; Meir, Jessica U.; Milsom, William K.; Scott, Graham R.; Bishop, Charles M.

    2014-01-01

    While bar-headed geese are renowned for migration at high altitude over the Himalayas, previous work on captive birds suggested that these geese are unable to maintain rates of oxygen consumption while running in severely hypoxic conditions. To investigate this paradox, we re-examined the running performance and heart rates of bar-headed geese and barnacle geese (a low altitude species) during exercise in hypoxia. Bar-headed geese (n = 7) were able to run at maximum speeds (determined in norm...

  15. First pass metabolism of ethanol is strikingly influenced by the speed of gastric emptying

    OpenAIRE

    ONETA, C; Simanowski, U; Martinez, M.; Allali-Hassani, A; Pares, X; Homann, N; Conradt, C; Waldherr, R; Fiehn, W.; Coutelle, C; Seitz, H.

    1998-01-01

    Background—Ethanol undergoes a first pass metabolism (FPM) in the stomach and liver. Gastric FPM of ethanol primarily depends on the activity of gastric alcohol dehydrogenase (ADH). In addition, the speed of gastric emptying (GE) may modulate both gastric and hepatic FPM of ethanol. 
Aims—To study the effect of modulation of GE on FPM of ethanol in the stomach and liver. 
Methods—Sixteen volunteers (eight men and eight women) received ethanol (0.225 g/kg body weight) orally ...

  16. Hierarchical Modeling and Verification for High-speed Train Control Center by Time Automation

    OpenAIRE

    Lei Yuan; Shiying Yang; Dewang Chen; Kaicheng Li

    2014-01-01

    Chinese Train Control System level three (CTCS-3) is a major technical system in Chinese high-speed rail and Train Control System (TCC) is indispensable component in the CTCS-3. Current researches on TCC are mainly based on the simulation, which cannot ensure that all conditions in TCC are tested. This paper presents a hierarchical modeling method and uses time automation (TA) to model the TCC software. We take the design of the active balise telegram editing, a major part in the TCC software...

  17. Altus aircraft on runway

    Science.gov (United States)

    1996-01-01

    The remotely piloted Altus aircraft flew several developmental test flights from Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center, Edwards, Calif., in 1996. The Altus--the word is Latin for 'high'--is a variant of the Predator surveillance drone built by General Atomics/Aeronautical Systems, Inc. It is designed for high-altitude, long-duration scientific sampling missions, and is powered by a turbocharged four-cylinder piston engine. The first Altus was developed under NASA's Environmental Research Aircraft and Sensor Technology program, while a second Altus was built for a Naval Postgraduate School/Department of Energy program. A pilot in a control station on the ground flew the craft by radio signals, using visual cues from a video camera in the nose of the Altus and information from the craft's air data system. Equipped with a single-stage turbocharger during the 1996 test flights, the first Altus reached altitudes in the 37,000-foot range, while the similarly-equipped second Altus reached 43,500 feet during developmental flights at Dryden in the summer of 1997. The NASA Altus also set an endurance record of more than 26 hours while flying a science mission in late 1996 and still had an estimated 10 hours of fuel remaining when it landed. Now equipped with a two-stage turbocharger, the NASA Altus maintained an altitude of 55,000 feet for four hours during flight tests in 1999.

  18. Aircraft type influence on contrail properties

    Directory of Open Access Journals (Sweden)

    P. Jeßberger

    2013-05-01

    Full Text Available The investigation of the impact of aircraft parameters on contrail properties helps to better understand the climate impact from aviation. Yet, in observations, it is a challenge to separate aircraft and meteorological influences on contrail formation. During the CONCERT campaign in November 2008, contrails from 3 Airbus passenger aircraft of type A319-111, A340-311 and A380-841 were probed at cruise under similar meteorological conditions with in-situ instruments on board the DLR research aircraft Falcon. Within the 2 min old contrails detected near ice saturation, we find similar effective diameters Deff (5.2–5.9 μm, but differences in particle number densities nice (162–235 cm−3 and in vertical contrail extensions (120–290 m, resulting in large differences in contrail optical depths τ (0.25–0.94. Hence larger aircraft produce optically thicker contrails. Based on the observations, we apply the EULAG-LCM model with explicit ice microphysics and in addition the Contrail and Cirrus Prediction model CoCiP to calculate the aircraft type impact on young contrails under identical meteorological conditions. The observed increase in τ for heavier aircraft is confirmed by the models, yet for generally smaller τ. An aircraft dependence of climate relevant contrail properties persists during contrail lifetime, adding importance to aircraft dependent model initialization. We finally derive an analytical relationship between contrail, aircraft and meteorological parameters. Near ice saturation, contrail width × τ scales linearly with fuel flow rate as confirmed by observations. For higher saturation ratios approximations from theory suggest a non-linear increase in the form (RHI–12/3. Summarized our combined results could help to more accurately assess the climate impact from aviation using an aircraft dependent contrail parameterization.

  19. Risk of transmitting meningococcal infection by transient contact on aircraft and other transport.

    Science.gov (United States)

    Rachael, T; Schubert, K; Hellenbrand, W; Krause, G; Stuart, J M

    2009-08-01

    Contact tracing of persons with meningococcal disease who have travelled on aeroplane or other multi-passenger transport is not consistent between countries. We searched the literature for clusters of meningococcal disease linked by transient contact on the same plane, train, bus or boat. We found reports of two clusters in children on the same school bus and one in passengers on the same plane. Cases within each of these three clusters were due to strains that were genetically indistinguishable. In the aeroplane cluster the only link between the two cases was through a single travel episode. The onset of illness (2 and 5 days after the flight) is consistent with infection from an unidentified carrier around the time of air travel. In contrast to the established risk of transmission from a case of tuberculosis, it is likely that the risk from a case of meningococcal disease to someone who is not identified as a close contact is exceedingly low. This should be considered in making international recommendations for passenger contact tracing after a case of meningococcal disease on a plane or other multi-passenger transport. PMID:19296869

  20. Turboprop aircraft against terrorism: a SWOT analysis of turboprop aircraft in CAS operations

    Science.gov (United States)

    Yavuz, Murat; Akkas, Ali; Aslan, Yavuz

    2012-06-01

    Today, the threat perception is changing. Not only for countries but also for defence organisations like NATO, new threat perception is pointing terrorism. Many countries' air forces become responsible of fighting against terorism or Counter-Insurgency (COIN) Operations. Different from conventional warfare, alternative weapon or weapon systems are required for such operatioins. In counter-terrorism operations modern fighter jets are used as well as helicopters, subsonic jets, Unmanned Aircraft Systems (UAS), turboprop aircraft, baloons and similar platforms. Succes and efficiency of the use of these platforms can be determined by evaluating the conditions, the threats and the area together. Obviously, each platform has advantages and disadvantages for different cases. In this research, examples of turboprop aircraft usage against terrorism and with a more general approach, turboprop aircraft for Close Air Support (CAS) missions from all around the world are reviewed. In this effort, a closer look is taken at the countries using turboprop aircraft in CAS missions while observing the fields these aircraft are used in, type of operations, specifications of the aircraft, cost and the maintenance factors. Thus, an idea about the convenience of using these aircraft in such operations can be obtained. A SWOT analysis of turboprop aircraft in CAS operations is performed. This study shows that turboprop aircraft are suitable to be used in counter-terrorism and COIN operations in low threat environment and is cost benefical compared to jets.