WorldWideScience

Sample records for airborne research canister

  1. BRIC-100VC Biological Research in Canisters (BRIC)-100VC

    Science.gov (United States)

    Richards, Stephanie E.; Levine, Howard G. (Compiler); Romero, Vergel

    2016-01-01

    The Biological Research in Canisters (BRIC) is an anodized-aluminum cylinder used to provide passive stowage for investigations of the effects of space flight on small specimens. The BRIC 100 mm petri dish vacuum containment unit (BRIC-100VC) has supported Dugesia japonica (flatworm) within spring under normal atmospheric conditions for 29 days in space and Hemerocallis lilioasphodelus L. (daylily) somatic embryo development within a 5% CO2 gaseous environment for 4.5 months in space. BRIC-100VC is a completely sealed, anodized-aluminum cylinder (Fig. 1) providing containment and structural support of the experimental specimens. The top and bottom lids of the canister include rapid disconnect valves for filling the canister with selected gases. These specialized valves allow for specific atmospheric containment within the canister, providing a gaseous environment defined by the investigator. Additionally, the top lid has been designed with a toggle latch and O-ring assembly allowing for prompt sealing and removal of the lid. The outside dimensions of the BRIC-100VC canisters are 16.0 cm (height) x 11.4 cm (outside diameter). The lower portion of the canister has been equipped with sufficient storage space for passive temperature and relative humidity data loggers. The BRIC- 100VC canister has been optimized to accommodate standard 100 mm laboratory petri dishes or 50 mL conical tubes. Depending on storage orientation, up to 6 or 9 canisters have been flown within an International Space Station (ISS) stowage locker.

  2. Airborne forest fire research

    Science.gov (United States)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  3. Biological Research in Canisters (BRIC) - Light Emitting Diode (LED)

    Science.gov (United States)

    Levine, Howard G.; Caron, Allison

    2016-01-01

    The Biological Research in Canisters - LED (BRIC-LED) is a biological research system that is being designed to complement the capabilities of the existing BRIC-Petri Dish Fixation Unit (PDFU) for the Space Life and Physical Sciences (SLPS) Program. A diverse range of organisms can be supported, including plant seedlings, callus cultures, Caenorhabditis elegans, microbes, and others. In the event of a launch scrub, the entire assembly can be replaced with an identical back-up unit containing freshly loaded specimens.

  4. BRIC-60: Biological Research in Canisters (BRIC)-60

    Science.gov (United States)

    Richards, Stephanie E. (Compiler); Levine, Howard G.; Romero, Vergel

    2016-01-01

    The Biological Research in Canisters (BRIC) is an anodized-aluminum cylinder used to provide passive stowage for investigations evaluating the effects of space flight on small organisms. Specimens flown in the BRIC 60 mm petri dish (BRIC-60) hardware include Lycoperscion esculentum (tomato), Arabidopsis thaliana (thale cress), Glycine max (soybean) seedlings, Physarum polycephalum (slime mold) cells, Pothetria dispar (gypsy moth) eggs and Ceratodon purpureus (moss).

  5. Feasibility study for a DOE research and production fuel multipurpose canister

    International Nuclear Information System (INIS)

    This is a report of the feasibility of multipurpose canisters for transporting, storing, and sing of Department of Energy research and production spent nuclear fuel. Six representative Department of Energy fuel assemblies were selected, and preconceptual canister designs were developed to accommodate these assemblies. The study considered physical interface, structural adequacy, criticality safety, shielding capability, thermal performance of the canisters, and fuel storage site infrastructure. The external envelope of the canisters was designed to fit within the overpack casks for commercial canisters being developed for the Department of Energy Office of Civilian Radioactive Waste Management. The budgetary cost of canisters to handle all fuel considered is estimated at $170.8M. One large conceptual boiling water reactor canister design, developed for the Office of Civilian Radioactive Waste Management, and two new canister designs can accommodate at least 85% of the volume of the Department of Energy fuel considered. Canister use minimizes public radiation exposure and is cost effective compared with bare fuel handling. Results suggest the need for additional study of issues affecting canister use and for conceptual design development of the three canisters

  6. NASA Student Airborne Research Program

    Science.gov (United States)

    Schaller, E. L.; Shetter, R. E.

    2012-12-01

    The NASA Student Airborne Research Program (SARP) is a unique summer internship program for advanced undergraduates and early graduate students majoring in the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of an airborne research campaign, including flying onboard an major NASA resource used for studying Earth system processes. In summer 2012, thirty-two participants worked in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assisted in the operation of instruments onboard the NASA P-3B aircraft where they sampled and measured atmospheric gases and imaged land and water surfaces in multiple spectral bands. Along with airborne data collection, students participated in taking measurements at field sites. Mission faculty and research mentors helped to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student developed an individual research project from the data collected and delivered a conference-style final presentation on his/her results. We will discuss the results and effectiveness of the program from the first four summers and discuss plans for the future.

  7. Airborne Research Experience for Educators

    Science.gov (United States)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  8. Airborne Effluent Monitoring System Certification for New Canister Storage Building Ventilation Exhaust Stack

    International Nuclear Information System (INIS)

    Pacific Northwest National Laboratory conducted three of the six tests needed to verify that the effluent monitoring system for the new Canister Storage Building ventilation exhaust stack meets applicable regulatory performance criteria for air sampling systems at nuclear facilities. These performance criteria address both the suitability of the location for the air-sampling probe and the transport of the sample to the collection devices. The criteria covering the location for the air-sampling probe ensure that the contaminants in the stack are well mixed with the airflow at the probe location such that the extracted sample represents the whole. The sample-transport criteria ensure that the sampled contaminants are quantitatively delivered to the collection device. The specific performance criteria are described in detail in this report. The tests reported here cover the contaminant tracer uniformity and particle delivery performance criteria. These criteria were successfully met. The other three tests were conducted by the start-up staff of Duke Engineering and Services Hanford Inc. (DESH) and reported elsewhere. The Canister Storage Building is located in the 200 East Area of the U.S. Department of Energy's Hanford Site near Richland, Washington. The new air-exhaust system was built under the W379 Project. The air sampling system features a probe with a single shrouded sampling nozzle, a sample delivery line, and a filter holder to collect the sample

  9. Use of airborne vehicles as research platforms

    OpenAIRE

    Gratton, GB

    2012-01-01

    This is the accepted version of the following chapter: Gratton, G. 2012. Use of Airborne Vehicles as Research Platforms. Encyclopedia of Aerospace Engineering, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/9780470686652.eae604/full. Copyright @ John Wiley & Sons 2012.

  10. US NRC-Sponsored Research on Stress Corrosion Cracking Susceptibility of Dry Storage Canister Materials in Marine Environments - 13344

    International Nuclear Information System (INIS)

    At a number of locations in the U.S., spent nuclear fuel (SNF) is maintained at independent spent fuel storage installations (ISFSIs). These ISFSIs, which include operating and decommissioned reactor sites, Department of Energy facilities in Idaho, and others, are licensed by the U.S. Nuclear Regulatory Commission (NRC) under Title 10 of the Code of Federal Regulations, Part 72. The SNF is stored in dry cask storage systems, which most commonly consist of a welded austenitic stainless steel canister within a larger concrete vault or overpack vented to the external atmosphere to allow airflow for cooling. Some ISFSIs are located in marine environments where there may be high concentrations of airborne chloride salts. If salts were to deposit on the canisters via the external vents, a chloride-rich brine could form by deliquescence. Austenitic stainless steels are susceptible to chloride-induced stress corrosion cracking (SCC), particularly in the presence of residual tensile stresses from welding or other fabrication processes. SCC could allow helium to leak out of a canister if the wall is breached or otherwise compromise its structural integrity. There is currently limited understanding of the conditions that will affect the SCC susceptibility of austenitic stainless steel exposed to marine salts. NRC previously conducted a scoping study of this phenomenon, reported in NUREG/CR-7030 in 2010. Given apparent conservatisms and limitations in this study, NRC has sponsored a follow-on research program to more systematically investigate various factors that may affect SCC including temperature, humidity, salt concentration, and stress level. The activities within this research program include: (1) measurement of relative humidity (RH) for deliquescence of sea salt, (2) SCC testing within the range of natural absolute humidity, (3) SCC testing at elevated temperatures, (4) SCC testing at high humidity conditions, and (5) SCC testing with various applied stresses. Results

  11. Airborne research in cool regions

    OpenAIRE

    Steinhage, Daniel

    2010-01-01

    The Alfred Wegener Institute uses ski-equipped aircraft to support and to conduct its research activities both polar regions since 1983 and provides access to the aircraft to the German scientific community. Beside logistic support of field groups, the aircraft were utilized in glaciology, geophysics, meteorology, and physics of the atmosphere. At the beginning Dornier aircraft, first POLAR 1, a Do128, and POLAR 2, a Do228, followed by two Dornier aircraft of typ Do228 were used. While one ai...

  12. Mechanical integrity of canisters

    International Nuclear Information System (INIS)

    This document constitutes the final report from 'SKBs reference group for mechanical integrity of canisters for spent nuclear fuel'. A complete list of all reports initiated by the reference group can be found in the summary report in this document. The main task of the reference group has been to advice SKB regarding the choice (ranking of alternatives) of canister type for different types of storage. The choice should be based on requirements of impermeability for a given time period and identification of possible limiting mechanisms. The main conclusions from the work were: From mechanical point of view, low phosphorous oxygen free copper (Cu-OFP) is a preferred canisters material. It exhibits satisfactory ductility both during tensile and creep testing. The residual stresses in the canisters are of such a magnitude that the estimated time to creep rupture with the data obtained for the Cu-OFP material is essentially infinite. Based on the present knowledge of stress corrosion cracking of copper there appears to be a small risk for such to occur in the projected environment. This risk need some further study. Rock shear movements of the size of 10 cm should pose no direct threat to the integrity of the canisters. Considering mechanical integrity, the composite copper/steel canister is an advantageous alternative. The recommendations for further research included continued studies of the creep properties of copper and of stress corrosion cracking. However, the studies should focus more directly on the design and fabrication aspect of the canister

  13. EUFAR – European Facility for Airborne Research: Easy and Open Access to the Airborne Research Facilities and Expert Knowledge

    OpenAIRE

    Holzwarth, Stefanie; Reusen, Ils; Brown, Philip R. A.; Gerard, Elisabeth

    2015-01-01

    The European Facility for Airborne Research, EUFAR, is an Integrating Activity of the 7th Framework Programme (FP7) of the European Commission with funding covering the period 2014-2018. The current EUFAR follows three previous contracts under FP5, FP6 and FP7, and currently represents a consortium of 24 European institutions and organisations involved in airborne research. 18 small and medium size aircraft equipped with a multitude of different sensor systems are available to the European sc...

  14. EUFAR the unique portal for airborne research in Europe

    Science.gov (United States)

    Gérard, Elisabeth; Brown, Philip

    2016-04-01

    Created in 2000 and supported by the EU Framework Programmes since then, EUFAR was born out of the necessity to create a central network and access point for the airborne research community in Europe. With the aim to support researchers by granting them access to research infrastructures, not accessible in their home countries, EUFAR also provides technical support and training in the field of airborne research for the environmental and geo-sciences. Today, EUFAR2 (2014-2018) coordinates and facilitates transnational access to 18 instrumented aircraft and 3 remote-sensing instruments through the 13 operators who are part of EUFAR's current 24-partner European consortium. In addition, the current project supports networking and research activities focused on providing an enabling environment for and promoting airborne research. The EUFAR2 activities cover three objectives, supported by the internet website www.eufar.net: (I - Institutional) improvement of the access to the research infrastructures and development of the future fleet according to the strategic advisory committee (SAC) recommendations; (ii - Innovation) improvement of the scientific knowledge and promotion of innovating instruments, processes and services for the emergence of new industrial technologies, with an identification of industrial needs by the SAC; (iii - Service) optimisation and harmonisation of the use of the research infrastructures through the development of the community of young researches in airborne science, of the standards and protocols and of the airborne central database. With the launch of a brand new website (www.eufar.net) in mid-November 2015, EUFAR aims to improve user experience on the website, which serves as a source of information and a hub where users are able to collaborate, learn, share expertise and best practices, and apply for transnational access, and education and training funded opportunities within the network. With its newly designed eye-catching interface

  15. Assess program: Interactive data management systems for airborne research

    Science.gov (United States)

    Munoz, R. M.; Reller, J. O., Jr.

    1974-01-01

    Two data systems were developed for use in airborne research. Both have distributed intelligence and are programmed for interactive support among computers and with human operators. The C-141 system (ADAMS) performs flight planning and telescope control functions in addition to its primary role of data acquisition; the CV-990 system (ADDAS) performs data management functions in support of many research experiments operating concurrently. Each system is arranged for maximum reliability in the first priority function, precision data acquisition.

  16. NASA's Student Airborne Research Program (2009-2013)

    Science.gov (United States)

    Schaller, E. L.; Shetter, R. E.

    2013-12-01

    The NASA Student Airborne Research Program (SARP) is a unique summer internship program for rising senior undergraduates majoring in any of the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of an airborne research campaign, including flying onboard an major NASA resource used for studying Earth system processes. In summer 2013, thirty-two participants worked in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assisted in the operation of instruments onboard the NASA DC-8 aircraft where they sampled and measured atmospheric gases and imaged land and water surfaces in multiple spectral bands. Along with airborne data collection, students participated in taking measurements at field sites. Mission faculty and research mentors helped to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student developed an individual research project from the data collected and delivered a conference-style final presentation on his/her results. Several students will present the results of their research in science sessions at this meeting. We will discuss the results and effectiveness of the program over the past five summers and plans for the future.

  17. Research Of Airborne Precision Spacing to Improve Airport Arrival Operations

    Science.gov (United States)

    Barmore, Bryan E.; Baxley, Brian T.; Murdoch, Jennifer L.

    2011-01-01

    In September 2004, the European Organization for the Safety of Air Navigation (EUROCONTROL) and the United States Federal Aviation Administration (FAA) signed a Memorandum of Cooperation to mutually develop, modify, test, and evaluate systems, procedures, facilities, and devices to meet the need for safe and efficient air navigation and air traffic control in the future. In the United States and Europe, these efforts are defined within the architectures of the Next Generation Air Transportation System (NextGen) Program and Single European Sky Air Traffic Management Research (SESAR) Program respectively. Both programs have identified Airborne Spacing as a critical component, with Automatic Dependent Surveillance Broadcast (ADS-B) as a key enabler. Increased interest in reducing airport community noise and the escalating cost of aviation fuel has led to the use of Continuous Descent Arrival (CDA) procedures to reduce noise, emissions, and fuel usage compared to current procedures. To provide these operational enhancements, arrival flight paths into terminal areas are planned around continuous vertical descents that are closer to an optimum trajectory than those in use today. The profiles are designed to be near-idle descents from cruise altitude to the Final Approach Fix (FAF) and are typically without any level segments. By staying higher and faster than conventional arrivals, CDAs also save flight time for the aircraft operator. The drawback is that the variation of optimized trajectories for different types and weights of aircraft requires the Air Traffic Controller to provide more airspace around an aircraft on a CDA than on a conventional arrival procedure. This additional space decreases the throughput rate of the destination airport. Airborne self-spacing concepts have been developed to increase the throughput at high-demand airports by managing the inter-arrival spacing to be more precise and consistent using on-board guidance. It has been proposed that the

  18. Research on airborne infrared leakage detection of natural gas pipeline

    Science.gov (United States)

    Tan, Dongjie; Xu, Bin; Xu, Xu; Wang, Hongchao; Yu, Dongliang; Tian, Shengjie

    2011-12-01

    An airborne laser remote sensing technology is proposed to detect natural gas pipeline leakage in helicopter which carrying a detector, and the detector can detect a high spatial resolution of trace of methane on the ground. The principle of the airborne laser remote sensing system is based on tunable diode laser absorption spectroscopy (TDLAS). The system consists of an optical unit containing the laser, camera, helicopter mount, electronic unit with DGPS antenna, a notebook computer and a pilot monitor. And the system is mounted on a helicopter. The principle and the architecture of the airborne laser remote sensing system are presented. Field test experiments are carried out on West-East Natural Gas Pipeline of China, and the results show that airborne detection method is suitable for detecting gas leak of pipeline on plain, desert, hills but unfit for the area with large altitude diversification.

  19. Research on Block Adjustment of Airborne InSAR Images

    International Nuclear Information System (INIS)

    Airborne InSAR system and InSAR data processing algorithm have been one of the hot topics in the international SAR field. Geometric constraint relation of images is set up through airborne InSAR block adjustment, adjustment parameters are adjusted and refined, and the three-dimensional(3D) ground coordinates of tie-points(TPs) are solved according to least squares theory. The number of the ground control points(GCPs) is reduced. The airborne InSAR block adjustment experiment was done using self-developed Airborne InSAR Block Adjustment Software System. The 76 airborne InSAR images which are 0.5 m resolution and cover an area of 472 square kilometers generated a block of 4 strips and 19 rows with approximately 30% overlap between adjacent strips. The study site is located in in Jiangyou Sichuan province and characterized by a hilly topography. The result meets DEM and DOM mapping accuracy requirements at scale of 1:10000

  20. Experimental Advanced Airborne Research Lidar (EAARL) Data Processing Manual

    Science.gov (United States)

    Bonisteel, Jamie M.; Nayegandhi, Amar; Wright, C. Wayne; Brock, John C.; Nagle, David

    2009-01-01

    The Experimental Advanced Airborne Research Lidar (EAARL) is an example of a Light Detection and Ranging (Lidar) system that utilizes a blue-green wavelength (532 nanometers) to determine the distance to an object. The distance is determined by recording the travel time of a transmitted pulse at the speed of light (fig. 1). This system uses raster laser scanning with full-waveform (multi-peak) resolving capabilities to measure submerged topography and adjacent coastal land elevations simultaneously (Nayegandhi and others, 2009). This document reviews procedures for the post-processing of EAARL data using the custom-built Airborne Lidar Processing System (ALPS). ALPS software was developed in an open-source programming environment operated on a Linux platform. It has the ability to combine the laser return backscatter digitized at 1-nanosecond intervals with aircraft positioning information. This solution enables the exploration and processing of the EAARL data in an interactive or batch mode. ALPS also includes modules for the creation of bare earth, canopy-top, and submerged topography Digital Elevation Models (DEMs). The EAARL system uses an Earth-centered coordinate and reference system that removes the necessity to reference submerged topography data relative to water level or tide gages (Nayegandhi and others, 2006). The EAARL system can be mounted in an array of small twin-engine aircraft that operate at 300 meters above ground level (AGL) at a speed of 60 meters per second (117 knots). While other systems strive to maximize operational depth limits, EAARL has a narrow transmit beam and receiver field of view (1.5 to 2 milliradians), which improves the depth-measurement accuracy in shallow, clear water but limits the maximum depth to about 1.5 Secchi disk depth (~20 meters) in clear water. The laser transmitter [Continuum EPO-5000 yttrium aluminum garnet (YAG)] produces up to 5,000 short-duration (1.2 nanosecond), low-power (70 microjoules) pulses each second

  1. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Review of the research work performed in period 1994-2000

    International Nuclear Information System (INIS)

    Research concerned with the inspection of copper canisters for spent nuclear fuel by means of ultrasound carried out at Uppsala University in years 1994-2000 has been summarized in this report. Main goal of the project was demonstrating the feasibly of ultrasonic array technique for the inspection of canister welds and getting know-how needed for the successful application of this method in the future SKB's canister factory. The research work includes both the theoretical tasks, such as modeling of wave propagation, and the experimental tasks, like characterization and calibration of the ultrasonic system ALLIN. Important issues such as, material and grain noise characterization, processing ultrasonic signals, ultrasonic imaging, have also been addressed. The work included both developing new methods (for example, field modeling and transducer characterization) and applying known techniques (for instance, estimation of attenuation and velocity). Looking from the time perspective the whole project has been successful, which means that the main goal or at least its first part has been achieved. The array technique has been successfully used at SKB's Canister Lab and it has provided the users with pertinent information that was especially valuable during start up phase of the electron beam welding equipment. However, the second part of the goal, gathering the know-how, is unlimited by its nature and we intend to continue our efforts in this direction in the future. This means that we aim to develop methods that will refine the existing array technique by improving the detectability of defects and increasing the reliability of detection. This can be achieved through the improving ultrasonic imaging by using such techniques as, harmonic imaging, synthetic aperture focusing technique (SAFT) and deconvolution. Harmonic imaging has been already preliminarily investigated, the results were encouraging and this research will be continued. A preliminary study of SAFT has

  2. Airborne Separation Assurance and Traffic Management: Research of Concepts and Technology

    Science.gov (United States)

    Ballin, Mark G.; Wing, David J.; Hughes, Monica F.; Conway, Sheila R.

    1999-01-01

    To support the need for increased flexibility and capacity in the future National Airspace System, NASA is pursuing an approach that distributes air traffic separation and management tasks to both airborne and ground-based systems. Details of the distributed operations and the benefits and technical challenges of such a system are discussed. Technology requirements and research issues are outlined, and NASA s approach for establishing concept feasibility, which includes development of the airborne automation necessary to support the concept, is described.

  3. The concrete canister program

    International Nuclear Information System (INIS)

    In the spring of 1974, WNRE began development and demonstration of a dry storage concept, called the concrete canister, as a possible alternative to storage of irradiated CANDU fuel in water pools. The canister is a thick-walled concrete monolith containing baskets of fuel in the dry state. The decay heat from the fuel is dissipated to the environment by natural heat transfer. Four canisters were designed and constructed. Two canisters containing electric heaters have been subjected to heat loads of 2.5 times the design, ramp heat-load cycling, and simulated weathering tests. The other two canisters were loaded with irradiated fuel, one containing fuel bundles of uniform decay heat and the other containing bundles of non-uniform decay heat in a non-symmetrical radial and axial array. The collected data were used to verify the analytical tools for prediction of effectiveness of heat transfer and radiation shielding and to verify the design of the basket and canisters. The demonstration canisters have shown that this concept is a viable alternative to water pools for the storage of irradiated CANDU fuel. (author)

  4. Near-field performance of the advanced cold process canister

    International Nuclear Information System (INIS)

    A near-field performance evaluation of an advanced cold process canister for spent fuel disposal has been performed jointly by TVO, Finland and SKB, Sweden. The canister consists of a steel canister as a load bearing element, with an outer corrosion shield of copper. In the analysis, as well internal (ie corrosion processes from the inside of the canister) as external processes (mechanical and chemical) have been considered both prior to and after canister breach. The major conclusions for the evaluation are: Internal processes cannot cause the canister breach under foreseen conditions, ie local-iced corrosion for the steel or copper canisters can be dismissed as a failure mechanism; The evaluation of the effects of processed outside the canister indicate that there is no rapid mechanism to endanger the integrity of the canister. Consequently the service life of the canister will be several million years. For completeness also evaluation of post-failure behaviour was carried out. Analyses were focussed on low probability phenomena from faults in canisters. Some items were identified where further research is justified in order to increase knowledge of the phenomena and thus strengthen the confidence of safety margins. However, it can be concluded that the risks of these scenarios can be judged to be acceptable. This is due to the fact that firstly, the probability of occurrence of most of these scenarios can be controlled to a large extent through technical measures. Secondly, these analyses indicated that the consequences would not be severe

  5. Canister Transfer Facility Criticality Calculations

    Energy Technology Data Exchange (ETDEWEB)

    J.E. Monroe-Rammsy

    2000-10-13

    The objective of this calculation is to evaluate the criticality risk in the surface facility for design basis events (DBE) involving Department of Energy (DOE) Spent Nuclear Fuel (SNF) standardized canisters (Civilian Radioactive Waste Management System [CRWMS] Management and Operating Contractor [M&O] 2000a). Since some of the canisters will be stored in the surface facility before they are loaded in the waste package (WP), this calculation supports the demonstration of concept viability related to the Surface Facility environment. The scope of this calculation is limited to the consideration of three DOE SNF fuels, specifically Enrico Fermi SNF, Training Research Isotope General Atomic (TRIGA) SNF, and Mixed Oxide (MOX) Fast Flux Test Facility (FFTF) SNF.

  6. Improved Air-Treatment Canister

    Science.gov (United States)

    Boehm, A. M.

    1982-01-01

    Proposed air-treatment canister integrates a heater-in-tube water evaporator into canister header. Improved design prevents water from condensing and contaminating chemicals that regenerate the air. Heater is evenly spiraled about the inlet header on the canister. Evaporator is brazed to the header.

  7. Status report, canister fabrication

    International Nuclear Information System (INIS)

    The report gives an account of the development of material and fabrication technology for copper canisters with cast inserts during the period from 2000 until the start of 2004. The engineering design of the canister and the choice of materials in the constituent components described in previous status reports have not been significantly changed. In the reference canister, the thickness of the copper shell is 50 mm. Fabrication of individual components with a thinner copper thickness is done for the purpose of gaining experience and evaluating fabrication and inspection methods for such canisters. As a part of the development of cast inserts, computer simulations of the casting processes and techniques used at the foundries have been performed for the purpose of optimizing the material properties. These properties have been evaluated by extensive tensile testing and metallographic inspection of test material taken from discs cut at different points along the length of the inserts. The testing results exhibit a relatively large spread. Low elongation values in certain tensile test specimens are due to the presence of poorly formed graphite, porosities, slag or other casting defects. It is concluded in the report that it will not be possible to avoid some presence of observed defects in castings of this size. In the deep repository, the inserts will be exposed to compressive loading and the observed defects are not critical for strength. An analysis of the strength of the inserts and formulation of relevant material requirements must be based on a statistical approach with probabilistic calculations. This work has been initiated and will be concluded during 2004. An initial verifying compression test of a canister in an isostatic press has indicated considerable overstrength in the structure. Seamless copper tubes are fabricated by means of three methods: extrusion, pierce and draw processing, and forging. It can be concluded that extrusion tests have revealed a

  8. Status report, canister fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Claes-Goeran; Eriksson, Peter; Westman, Marika [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Emilsson, Goeran [CSM Materialteknik AB, Linkoeping (Sweden)

    2004-06-01

    The report gives an account of the development of material and fabrication technology for copper canisters with cast inserts during the period from 2000 until the start of 2004. The engineering design of the canister and the choice of materials in the constituent components described in previous status reports have not been significantly changed. In the reference canister, the thickness of the copper shell is 50 mm. Fabrication of individual components with a thinner copper thickness is done for the purpose of gaining experience and evaluating fabrication and inspection methods for such canisters. As a part of the development of cast inserts, computer simulations of the casting processes and techniques used at the foundries have been performed for the purpose of optimizing the material properties. These properties have been evaluated by extensive tensile testing and metallographic inspection of test material taken from discs cut at different points along the length of the inserts. The testing results exhibit a relatively large spread. Low elongation values in certain tensile test specimens are due to the presence of poorly formed graphite, porosities, slag or other casting defects. It is concluded in the report that it will not be possible to avoid some presence of observed defects in castings of this size. In the deep repository, the inserts will be exposed to compressive loading and the observed defects are not critical for strength. An analysis of the strength of the inserts and formulation of relevant material requirements must be based on a statistical approach with probabilistic calculations. This work has been initiated and will be concluded during 2004. An initial verifying compression test of a canister in an isostatic press has indicated considerable overstrength in the structure. Seamless copper tubes are fabricated by means of three methods: extrusion, pierce and draw processing, and forging. It can be concluded that extrusion tests have revealed a

  9. K West Basin canister survey

    International Nuclear Information System (INIS)

    A survey was conducted of the K West Basin to determine the distribution of canister types that contain the irradiated N Reactor fuel. An underwater camera was used to conduct the survey during June 1998, and the results were recorded on videotape. A full row-by-row survey of the entire basin was performed, with the distinction between aluminum and stainless steel Mark 1 canisters made by the presence or absence of steel rings on the canister trunions (aluminum canisters have the steel rings). The results of the survey are presented in tables and figures. Grid maps of the three bays show the canister lid ID number and the canister type in each location that contained fuel. The following abbreviations are used in the grid maps for canister type designation: IA = Mark 1 aluminum, IS = Mark 1 stainless steel, and 2 = Mark 2 stainless steel. An overall summary of the canister distribution survey is presented in Table 1. The total number of canisters found to contain fuel was 3842, with 20% being Mark 1 Al, 25% being Mark 1 SS, and 55% being Mark 2 SS. The aluminum canisters were predominantly located in the East and West bays of the basin

  10. Advancement in LIDAR Data Collection: NASA's Experimental Airborne Advanced Research LIDAR

    Science.gov (United States)

    Riordan, Kevin; Wright, C. Wayne; Noronha, Conan

    2003-01-01

    The NASA Experimental Airborne Advanced Research LIDAR (EAARL) is a new developmental LIDAR designed to investigate and advance LIDAR techniques using a adaptive time resolved backscatter information for complex coastal research and monitoring applications. Information derived from such an advanced LIDAR system can potentially improve the ability of resource managers and policy makers to make better informed decisions. While there has been a large amount of research using LIDAR in coastal areas, most are limited in the amount of information captured from each laser pulse. The unique design of the EAARL instrument permits simultaneous acquisition of coastal environments which include subaerial bare earth topography, vegetation biomass, and bare earth beneath vegetated areas.

  11. Aerosol Profile Measurements from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    Science.gov (United States)

    Obland, Michael D.; Hostetler, Chris A.; Ferrare, Richard A.; Hair, John W.; Roers, Raymond R.; Burton, Sharon P.; Cook, Anthony L.; Harper, David B.

    2008-01-01

    Since achieving first light in December of 2005, the NASA Langley Research Center (LaRC) Airborne High Spectral Resolution Lidar (HSRL) has been involved in seven field campaigns, accumulating over 450 hours of science data across more than 120 flights. Data from the instrument have been used in a variety of studies including validation and comparison with the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite mission, aerosol property retrievals combining passive and active instrument measurements, aerosol type identification, aerosol-cloud interactions, and cloud top and planetary boundary layer (PBL) height determinations. Measurements and lessons learned from the HSRL are leading towards next-generation HSRL instrument designs that will enable even further studies of aerosol intensive and extensive parameters and the effects of aerosols on the climate system. This paper will highlight several of the areas in which the NASA Airborne HSRL is making contributions to climate science.

  12. Research on 3-D terrain correction methods of airborne gamma-ray spectrometry survey

    International Nuclear Information System (INIS)

    The general method of height correction is not effectual in complex terrain during the process of explaining airborne gamma-ray spectrometry data, and the 2-D terrain correction method researched in recent years is just available for correction of section measured. A new method of 3-D sector terrain correction is studied. The ground radiator is divided into many small sector radiators by the method, then the irradiation rate is calculated in certain survey distance, and the total value of all small radiate sources is regarded as the irradiation rate of the ground radiator at certain point of aero- survey, and the correction coefficients of every point are calculated which then applied to correct to airborne gamma-ray spectrometry data. The method can achieve the forward calculation, inversion calculation and terrain correction for airborne gamma-ray spectrometry survey in complex topography by dividing the ground radiator into many small sectors. Other factors are considered such as the un- saturated degree of measure scope, uneven-radiator content on ground, and so on. The results of for- ward model and an example analysis show that the 3-D terrain correction method is proper and effectual. (authors)

  13. Moisture insensitive charcoal canisters

    International Nuclear Information System (INIS)

    Continuous monitoring of 222Rn concentrations in the air in houses is the most appropriate approach for the real-time measurements, but this requires complex and expensive instruments and is not practical for large studies. Activated carbon canisters have been used extensively for determining the average concentration over a period of a few days. The ''open face'' charcoal detectors have an integration time constant of about 14 h so that they are sensitive to short-term transient changes in the radon concentration. In addition, water uptake at high relative humidities reduces the radon uptake by the charcoal. The addition of a diffusion barrier and a nylon screen results in a charcoal detector with an integration half-time ranging from 20 to 60 h and a reduced uptake of water at high humidities. Silicone rubber sheeting is relatively permeable to radon and impermeable to water vapor. It was the purpose of this study to evaluate the effect of a silicone barrier on the charcoal canister radon collective device. 3 refs

  14. NASA's Student Airborne Research Program as a model for effective professional development experience in Oceanography

    Science.gov (United States)

    Palacios, S. L.; Kudela, R. M.; Clinton, N. E.; Atkins, N.; Austerberry, D.; Johnson, M.; McGonigle, J.; McIntosh, K.; O'Shea, J. J.; Shirshikova, Z.; Singer, N.; Snow, A.; Woods, R.; Schaller, E.; Shetter, R. E.

    2011-12-01

    With over half of the current earth and space science workforce expected to retire within the next 15 years, NASA has responded by cultivating young minds through programs such as the Student Airborne Research Program (SARP). SARP is a competitive internship that introduces upper-level undergraduates and early graduate students to Earth System Science research and NASA's Airborne Science Program. The program serves as a model for recruitment of very high caliber students into the scientific workforce. Its uniqueness derives from total vertical integration of hands-on experience at every stage of airborne science: aircraft instrumentation, flight planning, mission participation, field-work, analysis, and reporting of results in a competitive environment. At the conclusion of the program, students presented their work to NASA administrators, faculty, mentors, and the other participants with the incentive of being selected as best talk and earning a trip to the fall AGU meeting to present their work at the NASA booth. We hope lessons learned can inform the decisions of scientists at the highest levels seeking to broaden the appeal of research. In 2011, SARP was divided into three disciplinary themes: Oceanography, Land Use, and Atmospheric Chemistry. Each research group was mentored by an upper-level graduate student who was supervised by an expert faculty member. A coordinator managed the program and was supervised by a senior research scientist/administrator. The program is a model of knowledge transfer among the several levels of research: agency administration to the program coordinator, established scientific experts to the research mentors, and the research mentors to the pre-career student participants. The outcomes from this program include mission planning and institutional knowledge transfer from administrators and expert scientists to the coordinator and research mentors; personnel and project management from the coordinator and expert scientists to the

  15. Groundwork for Universal Canister System Development

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gross, Mike [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Prouty, Jeralyn L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Craig, Brian [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Zenghu [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, John Hok [Argonne National Lab. (ANL), Argonne, IL (United States); Liu, Yung [Argonne National Lab. (ANL), Argonne, IL (United States); Pope, Ron [Argonne National Lab. (ANL), Argonne, IL (United States); Connolly, Kevin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feldman, Matt [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jarrell, Josh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Radulescu, Georgeta [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wells, Alan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    . Future work includes collaboration with the Hanford Site to move the cesium and strontium capsules into dry storage, collaboration with the Deep Borehole Field Tes t to develop surface handling and emplacement techniques and to develop the waste package design requirements, developing universal canister system design options and concepts of operations, and developing system analysis tools. Areas in which f urther research and development are needed include material properties and structural integrity, in - package sorbents and fillers, waste form tolerance to heat and postweld stress relief, waste package impact limiters, sensors, cesium mobility under downhol e conditions, and the impact of high pressure and high temperature environment on seals design.

  16. Derivation of Cumulus Cloud Dimensions and Shape from the Airborne Measurements by the Research Scanning Polarimeter

    Science.gov (United States)

    Alexandrov, Mikhail D.; Cairns, Brian; Emde, Claudia; Ackerman, Andrew S.; Ottaviani, Matteo; Wasilewski, Andrzej P.

    2016-01-01

    The Research Scanning Polarimeter (RSP) is an airborne instrument, whose measurements have been extensively used for retrievals of microphysical properties of clouds. In this study we show that for cumulus clouds the information content of the RSP data can be extended by adding the macroscopic parameters of the cloud, such as its geometric shape, dimensions, and height above the ground. This extension is possible by virtue of the high angular resolution and high frequency of the RSP measurements, which allow for geometric constraint of the cloud's 2D cross section between a number of tangent lines of view. The retrieval method is tested on realistic 3D radiative transfer simulations and applied to actual RSP data.

  17. SWUIS-A: a versatile low-cost UV/VIS/IR imaging system for airborne astronomy and aeronomy research

    Science.gov (United States)

    Durda, Daniel D.; Stern, S. Alan; Tomlinson, William; Slater, David C.; Vilas, Faith

    2000-11-01

    We have developed and successfully flight-tested on 14 different airborne missions the hardware and techniques for routinely conducting valuable astronomical and aeronomical observations from high-performance, two-seater military-type aircraft. The SWUIS-A (Southwest Universal Imaging System- Airborne_ system consists of an image-intensified CCD camera with broad band response from the near-UV to the near IR, high-quality foreoptics, a miniaturized video recorder, and aircraft-to-camera power and telemetry interface with associated camera controls, and associated cables, filters, and other minor equipments. SWUIS-A's suite of high-quality foreoptics gives it selectable, variable focal length/variable field-of-view capabilities. The SWUIS-A camera frames at 60Hz video rates, which is a key requirement for both jitter compensation and high time resolution (useful fro occultation, lightning, and auroral studies). Broadband SWUIS-A image coadds can exceed a limiting magnitude of V=10.5 inattribute of SWUIS-A airborne observations is the fact that the astronomer flies with the instrument, thereby providing Space Shuttle-like payload specialist capability to close-the-loop in real-time on the research done on each research mission. Key advantages of the small, high-performance aircraft on which we can fly SWUIS-A include significant cost savings over larger, more conventional airborne platforms, worldwide basing obviating the need for expensive, campaign-style movement of specialized large aircraft and their logistics support teams, and ultimately faster reaction times to transient events. Compared to ground-based instruments, airborne research platforms offer superior atmospheric transmission, the mobility to reach remote and often-times otherwise unreachable locations over the Earth, and virtually- guaranteed good weather for observing the sky. Compared to space-based instruments, airborne platforms typically offer substantial cost advantages and the freedom to fly

  18. NASA COAST and OCEANIA Airborne Missions in Support of Ecosystem and Water Quality Research in the Coastal Zone

    Science.gov (United States)

    Guild, Liane S.; Hooker, Stanford B.; Kudela, Raphael; Morrow, John; Russell, Philip; Myers, Jeffrey; Dunagan, Stephen; Palacios, Sherry; Livingston, John; Negrey, Kendra; Torres-Perez, Juan

    2015-01-01

    ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data were accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Flight operations are presented for the instrument payloads using the CIRPAS Twin Otter flown over Monterey Bay during the seasonal fall algal bloom in 2011 (COAST) and 2013 (OCEANIA) to support bio-optical measurements of phytoplankton for coastal zone research. Further, this airborne capability can be responsive to first flush rain events that deliver higher concentrations of sediments and pollution to coastal waters via watersheds and overland flow.

  19. The ASSESS program documenting and evaluating low cost techniques for conducting research in the flight environment. [Airborne Science/Shuttle Experiment Systems Simulation

    Science.gov (United States)

    Weaver, L. B.

    1974-01-01

    The Airborne Science Office (ASO) of the Ames Research Center has for 10 years operated an airborne scientific research program in infrared astronomy and other disciplines. The Lear Jet, CV-990, and C-141 flying laboratories are flown by ASO crews, while the major responsibility for defining, developing, and operating the experimental equipment is placed on individual researchers, who have included scientists from many countries. The ASSESS (Airborne Science/Shuttle Experiment Systems Simulation) program consists of two phases: Phase A documents the present management and operational practices of the ASO, and Phase B consists of airborne research missions constrained (for example, by crew confinement) to simulate certain aspects of experimental operations on Shuttle/Spacelab missions. Various parallels between the Airborne Science Program and Spacelab are pointed out and their applications to Spacelab planning are discussed.

  20. Mixed Layer Heights Derived from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    Science.gov (United States)

    Scarino, Amy J.; Burton, Sharon P.; Ferrare, Rich A.; Hostetler, Chris A.; Hair, Johnathan W.; Obland, Michael D.; Rogers, Raymond R.; Cook, Anthony L.; Harper, David B.; Fast, Jerome; Dasilva, Arlindo; Benedetti, Angela

    2012-01-01

    The NASA airborne High Spectral Resolution Lidar (HSRL) has been deployed on board the NASA Langley Research Center's B200 aircraft to several locations in North America from 2006 to 2012 to aid in characterizing aerosol properties for over fourteen field missions. Measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) during 349 science flights, many in coordination with other participating research aircraft, satellites, and ground sites, constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, as well as properties and variability of the Mixing Layer (ML) height. We describe the use of the HSRL data collected during these missions for computing ML heights and show how the HSRL data can be used to determine the fraction of aerosol optical thickness within and above the ML, which is important for air quality assessments. We describe the spatial and temporal variations in ML heights found in the diverse locations associated with these experiments. We also describe how the ML heights derived from HSRL have been used to help assess simulations of Planetary Boundary Layer (PBL) derived using various models, including the Weather Research and Forecasting Chemistry (WRF-Chem), NASA GEOS-5 model, and the ECMWF/MACC models.

  1. Evaluation of the Frequencies for Canister Inspections for SCC

    Energy Technology Data Exchange (ETDEWEB)

    Stockman, Christine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-02

    This report fulfills the M3 milestone M3FT-15SN0802042, “Evaluate the Frequencies for Canister Inspections for SCC” under Work Package FT-15SN080204, “ST Field Demonstration Support – SNL”. It reviews the current state of knowledge on the potential for stress corrosion cracking (SCC) of dry storage canisters and evaluates the implications of this state of knowledge on the establishment of an SCC inspection frequency. Models for the prediction of SCC by the Japanese Central Research Institute of Electric Power Industry (CRIEPI), the United States (U.S.) Electric Power Research Institute (EPRI), and Sandia National Laboratories (SNL) are summarized, and their limitations discussed.

  2. Mechanical Integrity of Canisters Using a Fracture Mechanics Approach

    International Nuclear Information System (INIS)

    This report presents the methods and results of a research project about numerical modeling of mechanical integrity of cast-iron canisters for the final disposal of spent nuclear fuel in Sweden, using combined boundary element (BEM) and finite element (FEM) methods. The objectives of the project are: 1) to investigate the possibility of initiation and growth of fractures in the cast-iron canisters under the mechanical loading conditions defined in the premises of canister design by Swedish Nuclear Fuel and Waste Management Co. (SKB); 2) to investigate the maximum bearing capacity of the cast iron canisters under uniformly distributed and gradually increasing boundary pressure until plastic failure. Achievement of the two objectives may provide some quantitative evidence for the mechanical integrity and overall safety of the cast-iron canisters that are needed for the final safety assessment of the geological repository of the radioactive waste repository in Sweden. The geometrical dimension, distribution and magnitudes of loads and Material properties of the canisters and possible fractures were provided by the latest investigations of SKB. The results of the BEM simulations, using the commercial code BEASY, indicate that under the currently defined loading conditions the possibility of initiation of new fractures or growth of existing fractures (defects) are very small, due to the reasons that: 1) the canisters are under mainly compressive stresses; 2) the induced tensile stress regions are too small in both dimension and magnitude to create new fractures or to induce growth of existing fractures, besides the fact that the toughness of the fractures in the cast iron canisters are much higher that the stress intensity factors in the fracture tips. The results of the FEM simulation show a approximately 75 MPa maximum pressure beyond which plastic collapse of the cast-iron canisters may occur, using an elastoplastic Material model. This figure is smaller compared

  3. Corrosion resistance of metal materials for HLW canister

    International Nuclear Information System (INIS)

    In order to verify the materials as an important artificial barrier for canister of vitrified high-level waste from spent fuel reprocessing, data and reports were researched on corrosion resistance of the materials under conditions from glass form production to final disposal. Then, in this report, investigated subjects, improvement methods and future subjects are reviewed. It has become clear that there would be no problem on the inside and outside corrosion of the canister during glass production, but long term corrosion and radiation effect tests and the vitrification methods would be subjects in future on interim storage and final disposal conditions. (author)

  4. Canister compatibility with Carlsbad salt

    International Nuclear Information System (INIS)

    No significant reaction was found when candidate canister alloys were heated with salt from Carlsbad, New Mexico, for up to 5000 hours in sealed capsules and for up to 10,000 hours in unsealed capsules at temperatures (80 to 2250C) that bracket the maximum temperature calculated for reference Savannah River Plant (SRP) waste containers at 20-foot spacings in salt. Additional tests were made at 6000C in sealed capsules to characterize reactions that may occur between candidate canister alloys and any component of the salt that is released when decrepitation occurs. Under these extreme conditions there was no significant attack of Type 304L stainless steel. But, there was up to 20-mils attack of the low-carbon steel

  5. Defining and Verifying Research Grade Airborne Laser Swath Mapping (ALSM) Observations

    Science.gov (United States)

    Carter, W. E.; Shrestha, R. L.; Slatton, C. C.

    2004-12-01

    The first and primary goal of the National Science Foundation (NSF) supported Center for Airborne Laser Mapping (NCALM), operated jointly by the University of Florida and the University of California, Berkeley, is to make "research grade" ALSM data widely available at affordable cost to the national scientific community. Cost aside, researchers need to know what NCALM considers research grade data and how the quality of the data is verified, to be able to determine the likelihood that the data they receive will meet their project specific requirements. Given the current state of the technology it is reasonable to expect a well planned and executed survey to produce surface elevations with uncertainties less than 10 centimeters and horizontal uncertainties of a few decimeters. Various components of the total error are generally associated with the aircraft trajectory, aircraft orientation, or laser vectors. Aircraft trajectory error is dependent largely on the Global Positioning System (GPS) observations, aircraft orientation on Inertial Measurement Unit (IMU) observations, and laser vectors on the scanning and ranging instrumentation. In addition to the issue of the precision or accuracy of the coordinates of the surface points, consideration must also be given to the point-to-point spacing and voids in the coverage. The major sources of error produce distinct artifacts in the data set. For example, aircraft trajectory errors tend to change slowly as the satellite constellation geometry varies, producing slopes within swaths and offsets between swaths. Roll, pitch and yaw biases in the IMU observations tend to persist through whole flights, and created distinctive artifacts in the swath overlap areas. Errors in the zero-point and scale of the laser scanner cause the edges of swaths to turn up or down. Range walk errors cause offsets between bright and dark surfaces, causing paint stripes to float above the dark surfaces of roads. The three keys to producing

  6. 42 CFR 84.1153 - Dust, fume, mist, and smoke tests; canister bench tests; gas masks canisters containing filters...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Dust, fume, mist, and smoke tests; canister bench... RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1153...

  7. Commercial radioactive waste management system feasibility with the universal canister concept. Volume 1

    International Nuclear Information System (INIS)

    A Program Research and Development Announcement (PRDA) was initiated by DOE to solicit from industry new and novel ideas for improvements in the nuclear waste management system. GA Technologies Inc. was contracted to study a system utilizing a universal canister which could be loaded at the reactor and used throughout the waste management system. The proposed canister was developed with the objective of meeting the mission requirements with maximum flexibility and at minimum cost. Canister criteria were selected from a thorough analysis of the spent fuel inventory, and canister concepts were evaluated along with the shipping and storage casks to determine the maximum payload. Engineering analyses were performed on various cask/canister combinations. One important criterion was the interchangeability of the canisters between truck and rail cask systems. A canister was selected which could hold three PWR intact fuel elements or up to eight consolidated PWR fuel elements. One canister could be shipped in an overweight truck cask or six in a rail cask. Economic analysis showed a cost savings of the reference system under consideration at that time

  8. Retrievability of spent nuclear fuel canisters

    International Nuclear Information System (INIS)

    As a part of the designing process of the Finnish spent nuclear fuel repository, a preliminary study has been carried out to investigate how the canisters could technically be retrieved to the ground surface. Possibility of retrieving a canister has been investigated in different phases of the disposal project. Retrievability has not been a design goal for the spent fuel repository. However, design of the repository includes some features that may ease the retrieval of canisters in the future. Spent fuel elements are packaged in massive copper-iron canisters, which are mechanically strong and long-lived. The repository consists of excavated tunnels in hard rock which are supposed to be very long-lived making the removal of the tunnel backfilling technically possible also in the future. As long as the bentonite buffer has not been installed the canister can be returned to the ground surface using the same equipment as was used when the canister was brought down to the repository and lowered into the hole. In the encapsulation station the spent fuel elements can be packaged in the other canister or in the transport cask. After a deposition tunnel has been backfilled and closed, the retrieval consists of tearing down the concrete structure at the entry of the deposition tunnel, removal of the tunnel backfilling, removal of the bentonite from the disposal hole and lifting up of the canister. Various methods, e.g., flushing the bentonite with saline solutions, can be used to detach the canister from a hole with fully saturated bentonite. Recovery will be technically possible also after closing of the disposal facility. Backfilling of the shafts and tunnels will be removed and additional new structures and systems will have to be built in the repository. After that canisters can be transported to the ground surface as described above. In addition, handling of the canisters at the ground surface will require additional facilities. Canisters can be packaged in the

  9. Shielded canister transporter equipment acceptance test operations

    International Nuclear Information System (INIS)

    The defense waste processing facility (DWPF) processes high level waste at the Savannah River Plant (SRP) by vitrifying the waste and placing it in stainless stell canisters for long term storage. The shielded canister transporter (SCT) is a diesel powered mobile rubber tired self-propelled vehicle which transports the canisters from the DWPF processing facility to the on-site waste storage building. The SCT has a system of automatic programmable logic controls (PLC) which provides operational handling control with a shielded transfer cask and associated canister positional equipment

  10. Inspection of disposal canisters components

    International Nuclear Information System (INIS)

    This report presents the inspection techniques of disposal canister components. Manufacturing methods and a description of the defects related to different manufacturing methods are described briefly. The defect types form a basis for the design of non-destructive testing because the defect types, which occur in the inspected components, affect to choice of inspection methods. The canister components are to nodular cast iron insert, steel lid, lid screw, metal gasket, copper tube with integrated or separate bottom, and copper lid. The inspection of copper material is challenging due to the anisotropic properties of the material and local changes in the grain size of the copper material. The cast iron insert has some acoustical material property variation (attenuation, velocity changes, scattering properties), which make the ultrasonic inspection demanding from calibration point of view. Mainly three different methods are used for inspection. Ultrasonic testing technique is used for inspection of volume, eddy current technique, for copper components only, and visual testing technique are used for inspection of the surface and near surface area

  11. The dry storage of used fuel in concrete canisters in Canada

    International Nuclear Information System (INIS)

    The Whiteshell Nuclear Research Establishment (WNRE) initiated a program for dry storage of used CANDU fuel in concrete canisters in 1975. Over the past decade, 17 Mg of fuel have been placed in concrete canister storage at WNRE. In 1985, the WNRE concrete canister design was used for the first time commercially for the interim, on-site storage of 67 Mg of fuel from the Gentilly-1 power reactor at the Gentilly site in the Province of Quebec. This report describes various aspects of this interim storage method. The discussion includes the concept, applications, overall operating experience, licensing aspects, and quality assurance standards and their development

  12. Analysis of K west basin canister gas

    Energy Technology Data Exchange (ETDEWEB)

    Trimble, D.J., Fluor Daniel Hanford

    1997-03-06

    Gas and Liquid samples have been collected from a selection of the approximately 3,820 spent fuel storage canisters in the K West Basin. The samples were taken to characterize the contents of the gas and water in the canisters providing source term information for two subprojects of the Spent Nuclear Fuel Project (SNFP) (Fulton 1994): the K Basins Integrated Water Treatment System Subproject (Ball 1996) and the K Basins Fuel Retrieval System Subproject (Waymire 1996). The barrels of ten canisters were sampled for gas and liquid in 1995, and 50 canisters were sampled in a second campaign in 1996. The analysis results from the first campaign have been reported (Trimble 1995a, 1995b, 1996a, 1996b). The analysis results from the second campaign liquid samples have been documented (Trimble and Welsh 1997; Trimble 1997). This report documents the results for the gas samples from the second campaign and evaluates all gas data in terms of expected releases when opening the canisters for SNFP activities. The fuel storage canisters consist of two closed and sealed barrels, each with a gas trap. The barrels are attached at a trunion to make a canister, but are otherwise independent (Figure 1). Each barrel contains up to seven N Reactor fuel element assemblies. A gas space of nitrogen was established in the top 2.2 to 2.5 inches (5.6 to 6.4 cm) of each barrel. Many of the fuel elements were damaged allowing the metallic uranium fuel to be corroded by the canister water. The corrosion releases fission products and generates hydrogen gas. The released gas mixes with the gas-space gas and excess gas passes through the gas trap into the basin water. The canister design does not allow canister water to be exchanged with basin water.

  13. CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    J.F. Beesley

    2005-04-21

    The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.

  14. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Icing Sensor Performance During the 2003 Alliance Icing Research Study (AIRS II)

    Science.gov (United States)

    Murray, John J.; Schaffner, Philip R.; Minnis, Patrick; Nguyen, Louis; Delnore, Victor E.; Daniels, Taumi S.; Grainger, C. A.; Delene, D.; Wolff, C. A.

    2004-01-01

    The Tropospheric Airborne Meteorological Data Reporting (TAMDAR) sensor was deployed onboard the University of North Dakota Citation II aircraft in the Alliance Icing Research Study (AIRS II) from Nov 19 through December 14, 2003. TAMDAR is designed to measure and report winds, temperature, humidity, turbulence and icing from regional commercial aircraft (Daniels et. al., 2004). TAMDAR icing sensor performance is compared to a) in situ validation data from the Citation II sensor suite, b) Current Icing Potential products developed by the National Center for Atmospheric Research (NCAR) and available operationally on the NOAA Aviation Weather Center s Aviation Digital Data Server (ADDS) and c) NASA Advanced Satellite Aviation-weather Products (ASAP) cloud microphysical products.

  15. Airborne wind energy

    CERN Document Server

    Ahrens, Uwe; Schmehl, Roland

    2013-01-01

    This reference offers an overview of the field of airborne wind energy. As the first book of its kind, it provides a consistent compilation of the fundamental theories, a compendium of current research and development activities as well as economic and regulatory aspects. In five parts, the book demonstrates the relevance of Airborne Wind Energy and the role that this emerging field of technology can play for the transition towards a renewable energy economy. Part I on 'Fundamentals' contains seven general chapters explaining the principles of airborne wind energy and its different variants, o

  16. Microbiology and atmospheric processes: research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate

    Directory of Open Access Journals (Sweden)

    C. E. Morris

    2011-01-01

    Full Text Available For the past 200 years, the field of aerobiology has explored the abundance, diversity, survival and transport of micro-organisms in the atmosphere. Micro-organisms have been explored as passive and severely stressed riders of atmospheric transport systems. Recently, an interest in the active roles of these micro-organisms has emerged along with proposals that the atmosphere is a global biome for microbial metabolic activity and perhaps even multiplication. As part of a series of papers on the sources, distribution and roles in atmospheric processes of biological particles in the atmosphere, here we describe the pertinence of questions relating to the potential roles that air-borne micro-organisms might play in meteorological phenomena. For the upcoming era of research on the role of air-borne micro-organisms in meteorological phenomena, one important challenge is to go beyond descriptions of abundance of micro-organisms in the atmosphere toward an understanding of their dynamics in terms of both biological and physico-chemical properties and of the relevant transport processes at different scales. Another challenge is to develop this understanding under contexts pertinent to their potential role in processes related to atmospheric chemistry, the formation of clouds, precipitation and radiative forcing. This will require truly interdisciplinary approaches involving collaborators from the biological and physical sciences, from disciplines as disparate as agronomy, microbial genetics and atmosphere physics, for example.

  17. Airborne laser scanning of forest resources: An overview of research in Italy as a commentary case study

    Science.gov (United States)

    Montaghi, Alessandro; Corona, Piermaria; Dalponte, Michele; Gianelle, Damiano; Chirici, Gherardo; Olsson, Håkan

    2013-08-01

    This article reviews the recent literature concerning airborne laser scanning for forestry purposes in Italy, and presents the current methodologies used to extract forest characteristics from discrete return ALS (Airborne Laser Scanning) data. Increasing interest in ALS data is currently being shown, especially for remote sensing-based forest inventories in Italy; the driving force for this interest is the possibility of reducing costs and providing more accurate and efficient estimation of forest characteristics. This review covers a period of approximately ten years, from the first application of laser scanning for forestry purposes in 2003 to the present day, and shows that there are numerous ongoing research activities which use these technologies for the assessment of forest attributes (e.g., number of trees, mean tree height, stem volume) and ecological issues (e.g., gap identification, fuel model detection). The basic approaches - such as single tree detection and area-based modeling - have been widely examined and commented in order to explore the trend of methods in these technologies, including their applicability and performance. Finally this paper outlines and comments some of the common problems encountered in operational use of laser scanning in Italy, offering potentially useful guidelines and solutions for other countries with similar conditions, under a rather variable environmental framework comprising Alpine, temperate and Mediterranean forest ecosystems.

  18. Research on Motion Compensation for Airborne Forward Looking Synthetic Aperture Radar with Linear Array Antennas

    Directory of Open Access Journals (Sweden)

    Zhang Ying-jie

    2013-06-01

    Full Text Available Combined with Frequency-Modulated Continuous-Wave (FMCW technology, airborne forward-looking Synthetic Aperture Radar (SAR with linear array antennas can obtain the image in front of the aircraft and also have the advantages of FMCW radar such as small size and lightweight. Moreover, it is suitable to be installed on platform like helicopter and small unmanned aerial vehicle. Motion compensation for forward-looking SAR with linear array antennas is one of the key problems to obtain the image in front of the aircraft in practice. This paper analyses the influence of motion error in aircraft on echo model based on the geometry of forward looking SAR with linear array antennas, and proposes a motion compensation scheme. Moreover, the compensation scheme is applicable to an improved frequency scaling algorithm (FSA for FMCW forward looking SAR with linear array antennas. Finally, the compensation scheme is verified with the simulation.

  19. Pressure tests of two KBS-3 canister mock-ups

    International Nuclear Information System (INIS)

    The Swedish concept for geological disposal of spent nuclear fuel, the so-called KBS-3 concept, relies on a multibarrier system with the copper/cast iron canister as the first barrier. The canister is designed to retain its integrity for at least 100,000 years, which means that future glaciations need to be considered. A 3 km thick ice block together with hydrostatic pressure from groundwater and swelling of the buffer material would produce hydrostatic compressive stresses of maximum 44 MPa (440 bar). Although the canister is loaded globally in compression, tensile stresses develop at fuel channel surface with increasing load. Tensile tests of the insert material in the development phase of the KBS-3 canister indicated a large scatter and relatively low values of the inserts' ductility. An important issue was whether this could lead to mechanical failure of canisters at the 44 MPa iso-static load either by plastic collapse or fracture from the defects in the regions with tensile stresses. SKB therefore initiated a project together with the European commission's Joint Research Centre (JRC) Institute of Energy in Petten and a number of Swedish partners to evaluate the probability of mechanical failure during glaciation. Three inserts manufactured by different Swedish foundries and referred to as 1, 125 and 126 were used in the project. A large statistical test programme was developed to determine statistical distributions of various material parameters and defect distributions. These data were subsequently used in probabilistic analysis to determine the probability for local plastic collapse or fracture. The main conclusion was that the failure probability is extremely low at the design load (44 MPa) provided some basic geometrical requirements are fulfilled. In parallel to the statistical test programme and the associated analysis, the group decided also to perform two pressure tests of canister mock-ups to demonstrate the actual safety margins. The fractographic

  20. Canister storage building natural phenomena design loads

    International Nuclear Information System (INIS)

    This document presents natural phenomena hazard (NPH) loads for use in the design and construction of the Canister Storage Building (CSB), which will be located in the 200 East Area of the Hanford Site

  1. Canister transfer into repository in shaft alternative

    International Nuclear Information System (INIS)

    In this report, a study of lift transportation of a massive canister for spent nuclear fuel is considered. The canister is transferred from ground level to repository, which lies in the depth of 400 to 500 m in the bedrock. The canister is a massive metal vessel, whose weight is 19 to 29 tons, and which is strongly irradiant (gamma and neutrons), and which contains 1.4 to 2.2 tons of very strongly radio-active material, the activity of the fuel should not be spread in the environment even during postulated accidents. The study observes that the lift alternative is possible to be built and through good design practices and good maintenance procedures its safety, reliability and usability can be kept on such high level that canister transport is estimated to be licensable. (orig.)

  2. Challenges in the Management and Stewardship of Airborne Observational Data at the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL)

    Science.gov (United States)

    Aquino, J.; Daniels, M. D.

    2015-12-01

    The National Science Foundation (NSF) provides the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL) funding for the operation, maintenance and upgrade of two research aircraft: the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Gulfstream V and the NSF/NCAR Hercules C-130. A suite of in-situ and remote sensing airborne instruments housed at the EOL Research Aviation Facility (RAF) provide a basic set of measurements that are typically deployed on most airborne field campaigns. In addition, instruments to address more specific research requirements are provided by collaborating participants from universities, industry, NASA, NOAA or other agencies (referred to as Principal Investigator, or PI, instruments). At the 2014 AGU Fall Meeting, a poster (IN13B-3639) was presented outlining the components of Airborne Data Management included field phase data collection, formats, data archival and documentation, version control, storage practices, stewardship and obsolete data formats, and public data access. This talk will cover lessons learned, challenges associated with the above components, and current developments to address these challenges, including: tracking data workflows for aircraft instrumentation to facilitate identification, and correction, of gaps in these workflows; implementation of dataset versioning guidelines; and assignment of Digital Object Identifiers (DOIs) to data and instrumentation to facilitate tracking data and facility use in publications.

  3. Conceptual designs of radioactive canister transporters

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    This report covers conceptual designs of transporters for the vertical, horizontal, and inclined installation of canisters containing spent-fuel elements, high-level waste, cladding waste, and intermediate-level waste (low-level waste is not discussed). Included in the discussion are cask concepts; transporter vehicle designs; concepts for mechanisms for handling and manipulating casks, canisters, and concrete plugs; transporter and repository operating cycles; shielding calculations; operator radiation dosages; radiation-resistant materials; and criteria for future design efforts.

  4. Conceptual designs of radioactive canister transporters

    International Nuclear Information System (INIS)

    This report covers conceptual designs of transporters for the vertical, horizontal, and inclined installation of canisters containing spent-fuel elements, high-level waste, cladding waste, and intermediate-level waste (low-level waste is not discussed). Included in the discussion are cask concepts; transporter vehicle designs; concepts for mechanisms for handling and manipulating casks, canisters, and concrete plugs; transporter and repository operating cycles; shielding calculations; operator radiation dosages; radiation-resistant materials; and criteria for future design efforts

  5. Statistical analysis of DWPF reference canister dimensions

    International Nuclear Information System (INIS)

    Twenty dimensional measurements were conducted on seven empty Defense Waste Processing Facility (DWPF) reference canisters. These measurements were repeated after the canisters were filled with simulated nuclear waste glass. An in-depth statistical analysis of the results indicated that changes do occur as a result of filling the steel canisters with glass poured at 1150 degree C for four of the parameters. While small, these changes were statistically significant. The analysis indicates the maximum dimensional change found to occur after the filling for each variable. Statistical tests were used to determine if canister dimensions do significantly change, and corresponding variance information is presented. The results showed that the four measured parameters affected by filling are bottom diameter, bottom end diameter flange tilt, and lower head mismatch. Significant variability also existed for height, upper weld, ID label, lower head mismatch, and lower head ovality due to the measurements coming from different canisters. Finally, lower head mismatch showed variability caused by the data being taken at different locations on the canister. This location effect did not affect any of the other variables in this way

  6. Am/Cm canister temperature evaluation in CIM5

    International Nuclear Information System (INIS)

    To facilitate the evaluation of alternate canister designs, 2 canisters were outfitted with thermocouples at elevations of 1/2, 3 1/2, and 6 1/2 inches from the canister bottom. The canisters were fabricated from two inch diameter schedule 10 and two inch diameter schedule 40 stainless steel pipe. Each canister was filled with approximately 2 kilograms of 49 wt percent lanthanide (Ln) loaded 25SrABS glass during 5 inch Cylindrical Induction Melter (CIM5) runs for TTR Tasks 3.03 and 4.03. Melter temperature, total mass of glass poured, and the glass pour rates were almost identical in both runs. The schedule 40 canister has a slightly smaller ID compared to the schedule 10 canister and therefore filled to a level of 9.5 inches compared to 8.0 inches for the schedule 40 canister. The schedule 40 canister had an empty mass of 1906 grams compared to 919 grams for the schedule 10 canister. The schedule 10 canister was found to have a higher maximum surface temperature by about 50--100 C (depending on height) during the glass pour compared to the schedule 40 canister. The additional thermal mass of the schedule 40 canister accounts for this difference. Once filled with glass, each of the canisters cooled at about the same rate, taking about an hour to cool below a maximum surface temperature of 200 C. No significant deformation of the either of the canisters was visually observed

  7. Application of the TEMPEST computer code to canister-filling heat transfer problems

    International Nuclear Information System (INIS)

    Pacific Northwest Laboratory (PNL) researchers used the TEMPEST computer code to simulate thermal cooldown behavior of nuclear waste glass after it was poured into steel canisters for long-term storage. The objective of this work was to determine the accuracy and applicability of the TEMPEST code when used to compute canister thermal histories. First, experimental data were obtained to provide the basis for comparing TEMPEST-generated predictions. Five canisters were instrumented with appropriately located radial and axial thermocouples. The canister were filled using the pilot-scale ceramic melter (PSCM) at PNL. Each canister was filled in either a continous or a batch filling mode. One of the canisters was also filled within a turntable simulant (a group of cylindrical shells with heat transfer resistances similar to those in an actual melter turntable). This was necessary to provide a basis for assessing the ability of the TEMPEST code to also model the transient cooling of canisters in a melter turntable. The continous-fill model, Version M, was found to predict temperatures with more accuracy. The turntable simulant experiment demonstrated that TEMPEST can adequately model the asymmetric temperature field caused by the turntable geometry. Further, TEMPEST can acceptably predict the canister cooling history within a turntable, despite code limitations in computing simultaneous radiation and convection heat transfer between shells, along with uncertainty in stainless-steel surface emissivities. Based on the successful performance of TEMPEST Version M, development was initiated to incorporate 1) full viscous glass convection, 2) a dynamically adaptive grid that automatically follows the glass/air interface throughout the transient, and 3) a full enclosure radiation model to allow radiation heat transfer to non-nearest neighbor cells. 5 refs., 47 figs., 17 tabs

  8. Now You See It… Now You Don’t: Understanding Airborne Mapping LiDAR Collection and Data Product Generation for Archaeological Research in Mesoamerica

    Directory of Open Access Journals (Sweden)

    Juan Carlos Fernandez-Diaz

    2014-10-01

    Full Text Available In this paper we provide a description of airborne mapping LiDAR, also known as airborne laser scanning (ALS, technology and its workflow from mission planning to final data product generation, with a specific emphasis on archaeological research. ALS observations are highly customizable, and can be tailored to meet specific research needs. Thus it is important for an archaeologist to fully understand the options available during planning, collection and data product generation before commissioning an ALS survey, to ensure the intended research questions can be answered with the resultant data products. Also this knowledge is of great use for the researcher trying to understand the quality and limitations of existing datasets collected for other purposes. Throughout the paper we use examples from archeological ALS projects to illustrate the key concepts of importance for the archaeology researcher.

  9. CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    International Nuclear Information System (INIS)

    This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the CHF and may not reflect the ongoing design evolution of the facility

  10. Remote controlled mover for disposal canister transfer

    Energy Technology Data Exchange (ETDEWEB)

    Suikki, M. [Optimik Oy, Turku (Finland)

    2013-10-15

    This working report is an update for an earlier automatic guided vehicle design (Pietikaeinen 2003). The short horizontal transfers of disposal canisters manufactured in the encapsulation process are conducted with remote controlled movers both in the encapsulation plant and in the underground areas at the canister loading station of the disposal facility. The canister mover is a remote controlled transfer vehicle mobile on wheels. The handling of canisters is conducted with the assistance of transport platforms (pallets). The very small automatic guided vehicle of the earlier design was replaced with a commercial type mover. The most important reasons for this being the increased loadbearing requirement and the simpler, proven technology of the vehicle. The larger size of the vehicle induced changes to the plant layouts and in the principles for dealing with fault conditions. The selected mover is a vehicle, which is normally operated from alongside. In this application, the vehicle steering technology must be remote controlled. In addition, the area utilization must be as efficient as possible. This is why the vehicle was downsized in its outer dimensions and supplemented with certain auxiliary equipment and structures. This enables both remote controlled operation and improves the vehicle in terms of its failure tolerance. Operation of the vehicle was subjected to a risk analysis (PFMEA) and to a separate additional calculation conserning possible canister toppling risks. The total cost estimate, without value added tax for manufacturing the system amounts to 730 000 euros. (orig.)

  11. Drop Testing Representative Multi-Canister Overpacks

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Spencer D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Morton, Dana K. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    The objective of the work reported herein was to determine the ability of the Multi- Canister Overpack (MCO) canister design to maintain its containment boundary after an accidental drop event. Two test MCO canisters were assembled at Hanford, prepared for testing at the Idaho National Engineering and Environmental Laboratory (INEEL), drop tested at Sandia National Laboratories, and evaluated back at the INEEL. In addition to the actual testing efforts, finite element plastic analysis techniques were used to make both pre-test and post-test predictions of the test MCOs structural deformations. The completed effort has demonstrated that the canister design is capable of maintaining a 50 psig pressure boundary after drop testing. Based on helium leak testing methods, one test MCO was determined to have a leakage rate not greater than 1x10-5 std cc/sec (prior internal helium presence prevented a more rigorous test) and the remaining test MCO had a measured leakage rate less than 1x10-7 std cc/sec (i.e., a leaktight containment) after the drop test. The effort has also demonstrated the capability of finite element methods using plastic analysis techniques to accurately predict the structural deformations of canisters subjected to an accidental drop event.

  12. Remote controlled mover for disposal canister transfer

    International Nuclear Information System (INIS)

    This working report is an update for an earlier automatic guided vehicle design (Pietikaeinen 2003). The short horizontal transfers of disposal canisters manufactured in the encapsulation process are conducted with remote controlled movers both in the encapsulation plant and in the underground areas at the canister loading station of the disposal facility. The canister mover is a remote controlled transfer vehicle mobile on wheels. The handling of canisters is conducted with the assistance of transport platforms (pallets). The very small automatic guided vehicle of the earlier design was replaced with a commercial type mover. The most important reasons for this being the increased loadbearing requirement and the simpler, proven technology of the vehicle. The larger size of the vehicle induced changes to the plant layouts and in the principles for dealing with fault conditions. The selected mover is a vehicle, which is normally operated from alongside. In this application, the vehicle steering technology must be remote controlled. In addition, the area utilization must be as efficient as possible. This is why the vehicle was downsized in its outer dimensions and supplemented with certain auxiliary equipment and structures. This enables both remote controlled operation and improves the vehicle in terms of its failure tolerance. Operation of the vehicle was subjected to a risk analysis (PFMEA) and to a separate additional calculation conserning possible canister toppling risks. The total cost estimate, without value added tax for manufacturing the system amounts to 730 000 euros. (orig.)

  13. Chemical compatibility of DWPF canistered waste forms

    International Nuclear Information System (INIS)

    The Waste Acceptance Preliminary Specifications (WAPS) require that the contents of the canistered waste form are compatible with one another and the stainless steel canister. The canistered waste form is a closed system comprised of a stainless steel vessel containing waste glass, air, and condensate. This system will experience a radiation field and an elevated temperature due to radionuclide decay. This report discusses possible chemical reactions, radiation interactions, and corrosive reactions within this system both under normal storage conditions and after exposure to temperatures up to the normal glass transition temperature, which for DWPF waste glass will be between 440 and 460 degrees C. Specific conclusions regarding reactions and corrosion are provided. This document is based on the assumption that the period of interim storage prior to packaging at the federal repository may be as long as 50 years

  14. Three-Dimensional Thermal Modeling of Dry Spent Nuclear Fuel Storage Canisters

    International Nuclear Information System (INIS)

    One of the interim storage configurations being considered for aluminum-clad foreign research reactor fuel, such as the Material and Testing Reactor (MTR) design, is a dry storage facility. To support design studies of storage options, a computational and experimental program was conducted at the Savannah River Site (SRS). The objective was to develop computational fluid dynamics (CFD) conjugate models which would be benchmarked using data obtained from a full scale heat transfer experiment conducted in the SRS Experimental Thermal Fluids Laboratory. The current work describes the modeling approach and presents comparison of computational results with experimental data. The experimental set up consists of an instrumented fuel canister 16 inches in diameter and 36 inches in height.The canister contains a sealed fuel can which is designed to store four fuel assemblies. The fuel assembly heat generation is simulated by an imbeded electrical heater. Each fuel assembly is separated from the others by a stainless steel grid and the assemblies can communicate thermal-hydraulically only through narrow slot holes located at the top and bottom of the assembly. The flow within an enclosed canister is a buoyancy-induced motion resulting from body force acting on density gradients which arise from fluid temperature gradients. The canister is filled with helium or nitrogen gas. The heated canister is surrounded by five unheated dummy canisters and is located inside a wind tunnel. During the test, data are obtained for the radial and axial heat flux/temperature profiles inside the canister, air velocity outside the canister, and ambient air temperature. CFD approach has been used to model the three-dimensional convective velocity and temperature distributions within a single dry storage canister of MTR fuel elements.The final analysis was made for the cases with internal heat source of 85 to 138 watts per MTR fuel element (equivalent to 22 to 35 kW/m3) using various different

  15. Near-field performance of the advanced cold process canister

    International Nuclear Information System (INIS)

    A near-field performance evaluation of an Advanced Cold Process Canister for spent fuel disposal has been performed jointly by TVO, Finland and SKB, Sweden. The canister consists of a steel canister as a load bearing element, with an outer corrosion shield of copper. The canister design was originally proposed by TVO. In the analysis, as well internal (ie corrosion processes from the inside of the canister) as external processes (mechanical and chemical) have been considered both prior to and after canister breach. Throughout the analysis, present day underground conditions has been assumed to persist during the service life of the canister. The major conclusions for the evaluation are: Internal processes cannot cause the canister breach under foreseen conditions, ie localized corrosion for the steel or copper canisters can be dismissed as a failure mechanism. The evaluation of the effects of processes outside the canister indicate that there is no rapid mechanism to endanger the integrity of the canister. Consequently the service life of the canister will be several million years. This factor will ensure the safety of the concept. (orig.)

  16. Studies of waste-canister compatibility

    International Nuclear Information System (INIS)

    Compatibility studies were conducted between 7 waste forms and 15 potential canister structural materials. The waste forms were Al-Si and Pb-Sn matrix alloys, FUETAP, glass, Synroc D, and waste particles coated with carbon or carbon plus silicon carbide. The canister materials included carbon steel (bare and with chromium or nickel coatings), copper, Monel, Cu-35% Ni, titanium (grades 2 and 12), several Inconels, aluminum alloy 5052, and two stainless steels. Tests of either 6888 or 8821 h were conducted at 100 and 3000C, which bracket the low and high limits expected during storage. Glass and FUETAP evolved sulfur, which reacted preferentially with copper, nickel, and alloys of these metals. The Pb-Sn matrix alloy stuck to all samples and the carbon-coated particles to most samples at 3000C, but the extent of chemical reaction was not determined. Testing for 0.5 h at 8000C was included because it is representative of a transportation accident and is required of casks containing nuclear materials. During these tests (1) glass and FUETAP evolved sulfur, (2) FUETAP evolved large amounts of gas, (3) Synroc stuck to titanium alloys, (4) glass was molten, and (5) both matrix alloys were molten with considerable chemical interactions with many of the canister samples. If this test condition were imposed on waste canisters, it would be design limiting in many waste storage concepts

  17. Rehearsal: Sample Canister in Cleanroom (Animation)

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Click on the image for Rehearsal: Sample Canister in Cleanroom animation This movie shows rehearsal of the initial processing of the sample return capsule when it is taken to a temporary cleanroom at Utah's Test and Training Range.

  18. Techniques for freeing deposited canisters. Final report

    International Nuclear Information System (INIS)

    Four different techniques for removal of the bentonite buffer around a deposited canister have been identified, studied and evaluated: mechanical, hydrodynamical, thermal, and electrical techniques. Different techniques to determine the position of the canister in the buffer have also been studied: mechanical, electromagnetic, thermal and acoustic techniques. The mechanical techniques studied are full-face boring, milling and core-drilling. It is expected that the bentonite can be machined relatively easily. It is assessed that cooling by means of flushing water over the outer surfaces of the tools is not feasible in view of the tendency of bentonite to form a gel. The mechanical techniques are characterized by the potential of damaging the canister, a high degree of complexity, and high requirements of energy/power input. The generated byproduct is solid and cannot be removed by means of flushing. Removal is assessed to be simplest in conjunction with full-face boring and most difficult when coredrilling is applied. The hydrodynamical techniques comprise high-pressure hydrodynamic techniques, where pressures above and below 100 bar, and low pressure hydrodynamical techniques (< 10 bar) are separated. At pressures above 100 bar, a water jet with a diameter of approximately a millimetre cuts through the material. If desired, sand can be added to the jet. At pressures below 100 bar the jet has a diameter of one or a few centimetres. The liquid contains a few percent of salt, which is essential for the efficiency of the process. The flushing is important not only because it removes the modified bentonite but also because it frees previously unaffected bentonite and thereby makes it accessible to chemical modification. All of the hydrodynamical techniques are applicable for freeing the end surface as well as the mantle surface. The degree of complexity and the requirement on energy/power decrease with a decrease in pressure. A significant potential for damaging the

  19. Airborne remote sensing of cloud properties with the German research aircraft HALO

    OpenAIRE

    Van Hagen, Martin; Hirsch, Lutz; Konow, Heike; Mech, Mario; Orlandi, Emiliano; Crewell, Susanne; Groß, Silke; Fix, Andreas; Wirth, Martin

    2014-01-01

    The new German research aircraft HALO (High Altitude Long range) can be equipped with a remote sensing payload to study cloud properties and water vapor profiles of the atmosphere. This package, first flown during the NARVAL (Next‐generation Aircraft Remote sensing for VALidation studies) mission in December 2013 and January 2014, consists of a cloud radar, microwave radiometers and a lidar system. HALO is a for atmospheric measurements modified Gulfstream G550 business jet with a...

  20. Drop Calculations of HLW Canister and Pu Can-in-Canister

    International Nuclear Information System (INIS)

    The objective of this calculation is to determine the structural response of the standard high-level waste (HLW) canister and the canister containing the cans of immobilized plutonium (Pu) (''can-in-canister'' [CIC] throughout this document) subjected to drop DBEs (design basis events) during the handling operation. The evaluated DBE in the former case is 7-m (23-ft) vertical (flat-bottom) drop. In the latter case, two 2-ft (0.61-m) corner (oblique) drops are evaluated in addition to the 7-m vertical drop. These Pu CIC calculations are performed at three different temperatures: room temperature (RT) (20 C), T = 200 F = 93.3 C , and T = 400 F = 204 C ; in addition to these the calculation characterized by the highest maximum stress intensity is performed at T = 750 F = 399 C as well. The scope of the HLW canister calculation is limited to reporting the calculation results in terms of: stress intensity and effective plastic strain in the canister, directional residual strains at the canister outer surface, and change of canister dimensions. The scope of Pu CIC calculation is limited to reporting the calculation results in terms of stress intensity, and effective plastic strain in the canister. The information provided by the sketches from Reference 26 (Attachments 5.3,5.5,5.8, and 5.9) is that of the potential CIC design considered in this calculation, and all obtained results are valid for this design only. This calculation is associated with the Plutonium Immobilization Project and is performed by the Waste Package Design Section in accordance with Reference 24. It should be noted that the 9-m vertical drop DBE, included in Reference 24, is not included in the objective of this calculation since it did not become a waste acceptance requirement. AP-3.124, ''Calculations'', is used to perform the calculation and develop the document

  1. Drop Calculations of HLW Canister and Pu Can-in-Canister

    Energy Technology Data Exchange (ETDEWEB)

    Sreten Mastilovic

    2001-07-31

    The objective of this calculation is to determine the structural response of the standard high-level waste (HLW) canister and the canister containing the cans of immobilized plutonium (Pu) (''can-in-canister'' [CIC] throughout this document) subjected to drop DBEs (design basis events) during the handling operation. The evaluated DBE in the former case is 7-m (23-ft) vertical (flat-bottom) drop. In the latter case, two 2-ft (0.61-m) corner (oblique) drops are evaluated in addition to the 7-m vertical drop. These Pu CIC calculations are performed at three different temperatures: room temperature (RT) (20 C ), T = 200 F = 93.3 C , and T = 400 F = 204 C ; in addition to these the calculation characterized by the highest maximum stress intensity is performed at T = 750 F = 399 C as well. The scope of the HLW canister calculation is limited to reporting the calculation results in terms of: stress intensity and effective plastic strain in the canister, directional residual strains at the canister outer surface, and change of canister dimensions. The scope of Pu CIC calculation is limited to reporting the calculation results in terms of stress intensity, and effective plastic strain in the canister. The information provided by the sketches from Reference 26 (Attachments 5.3,5.5,5.8, and 5.9) is that of the potential CIC design considered in this calculation, and all obtained results are valid for this design only. This calculation is associated with the Plutonium Immobilization Project and is performed by the Waste Package Design Section in accordance with Reference 24. It should be noted that the 9-m vertical drop DBE, included in Reference 24, is not included in the objective of this calculation since it did not become a waste acceptance requirement. AP-3.124, ''Calculations'', is used to perform the calculation and develop the document.

  2. Helmet-Mounted Display Research Capabilities of the NASA/Army Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL)

    Science.gov (United States)

    Jacobsen, R. A.; Bivens, C. C.; Rediess, N. A.; Hindson, W. S.; Aiken, E. W.; Aiken, Edwin W. (Technical Monitor)

    1995-01-01

    The Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) is a UH-60A Black Hawk helicopter that is being modified by the US Army and NASA for flight systems research. The principal systems that are being installed in the aircraft are a Helmet Mounted Display (HMD) and imaging system, and a programmable full authority Research Flight Control System (RFCS). In addition, comprehensive instrumentation of both the rigid body of the helicopter and the rotor system is provided. The paper will describe the capabilities of these systems and their current state of development. A brief description of initial research applications is included. The wide (40 X 60 degree) field-of-view HMD system has been provided by Kaiser Electronics. It can be configured as a monochromatic system for use in bright daylight conditions, a two color system for darker ambients, or a full color system for use in night viewing conditions. Color imagery is achieved using field sequential video and a mechanical color wheel. In addition to the color symbology, high resolution computer-gene rated imagery from an onboard Silicon Graphics Reality Engine Onyx processor is available for research in virtual reality applications. This synthetic imagery can also be merged with real world video from a variety of imaging systems that can be installed easily on the front of the helicopter. These sensors include infrared or tv cameras, or potentially small millimeter wave radars. The Research Flight Control System is being developed for the aircraft by a team of contractors led by Boeing Helicopters. It consists of a full authority high bandwidth fly-by-wire actuators that drive the main rotor swashplate actuators and the tail rotor actuator in parallel. This arrangement allows the basic mechanical flight control system of the Black Hawk to be retained so that the safety pilot can monitor the operation of the system through the action of his own controls. The evaluation pilot will signal the fly

  3. Design report of the canister for nuclear fuel disposal

    International Nuclear Information System (INIS)

    The report provides a summary of the design of the canister for final disposal of nuclear fuel. The canister structure consists of a cylindrical massive nodular graphite cast iron insert covered by a 50 mm thick copper overlay. The capacity of the canister is 11 assemblies of BWR or VVER 440 fuel. The canister shall be tight with a high probability for about 100 000 years. The design basis of the canister is set, the performed analyses are summarised and the results are assessed and discussed in the report. (26 refs.)

  4. Research Progress of Space-Time Adaptive Detection for Airborne Radar

    Directory of Open Access Journals (Sweden)

    Wang Yong-liang

    2014-04-01

    Full Text Available Compared with Space-Time Adaptive Processing (STAP, Space-Time Adaptive Detection (STAD employs the data in the cell under test and those in the training to form reasonable detection statistics and consequently decides whether the target exists or not. The STAD has concise processing procedure and flexible design. Furthermore, the detection statistics usually possess the Constant False Alarm Rate (CFAR property, and hence it needs no additional CFAR processing. More importantly, the STAD usually exhibits improved detection performance than that of the conventional processing, which first suppresses the clutter then adopts other detection strategy. In this paper, we first summarize the key strongpoint of the STAD, then make a classification for the STAD, and finally give some future research tracks.

  5. Numerical Modelling of Mechanical Integrity of the Copper-Cast Iron Canister. A Literature Review

    International Nuclear Information System (INIS)

    This review article presents a summary of the research works on the numerical modelling of the mechanical integrity of the composite copper-cast iron canisters for the final disposal of Swedish nuclear wastes, conducted by SKB and SKI since 1992. The objective of the review is to evaluate the outstanding issues existing today about the basic design concepts and premises, fundamental issues on processes, properties and parameters considered for the functions and requirements of canisters under the conditions of a deep geological repository. The focus is placed on the adequacy of numerical modelling approaches adopted in regards to the overall mechanical integrity of the canisters, especially the initial state of canisters regarding defects and the consequences of their evolution under external and internal loading mechanisms adopted in the design premises. The emphasis is the stress-strain behaviour and failure/strength, with creep and plasticity involved. Corrosion, although one of the major concerns in the field of canister safety, was not included

  6. Design report of the disposal canister for twelve fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, H. [VTT Energy, Espoo (Finland); Salo, J.P. [Posiva Oy, Helsinki (Finland)

    1999-05-01

    The report provides a summary of the design of the canister for final disposal of spent nuclear fuel. The canister structure consists of a cylindrical massive nodular graphite cast iron insert covered by a 50 mm thick copper overlay. The capacity of the canister is 12 assemblies of BWR or VVER 440 fuel. The canister shall be tight with a high probability for about 100 000 years. The good and long lasting tightness requires: (1) The good initial tightness that is achieved by high quality requirements and extensive quality control, (2) The good corrosion resistance, which is obtained by the overpack of oxygen free copper, and (3) Mechanical strength of the canister, that is ensured by analyses (the following loads are considered: hydrostatic pressure, even and uneven swelling pressure of bentonite, thermal effects, and elevated hydrostatic pressure during glaciation. The allowed stresses and strains are set in such a way that reasonable engineering safety factors are obtained in all assessed design base loading cases). The canister shall limit the radiation dose rate outside the canister to minimise the radiolysis of the water in the vicinity of the canister. The canister insert shall keep the fuel assemblies in a subcritical configuration even if the void in the canister is filled with water due to postulated leakage. The design basis of the canister is set, the performed analyses are summarised and the results are assessed and discussed in the report. (orig.) 35 refs.

  7. Design report of the disposal canister for twelve fuel assemblies

    International Nuclear Information System (INIS)

    The report provides a summary of the design of the canister for final disposal of spent nuclear fuel. The canister structure consists of a cylindrical massive nodular graphite cast iron insert covered by a 50 mm thick copper overlay. The capacity of the canister is 12 assemblies of BWR or VVER 440 fuel. The canister shall be tight with a high probability for about 100 000 years. The good and long lasting tightness requires: (1) The good initial tightness that is achieved by high quality requirements and extensive quality control, (2) The good corrosion resistance, which is obtained by the overpack of oxygen free copper, and (3) Mechanical strength of the canister, that is ensured by analyses (the following loads are considered: hydrostatic pressure, even and uneven swelling pressure of bentonite, thermal effects, and elevated hydrostatic pressure during glaciation. The allowed stresses and strains are set in such a way that reasonable engineering safety factors are obtained in all assessed design base loading cases). The canister shall limit the radiation dose rate outside the canister to minimise the radiolysis of the water in the vicinity of the canister. The canister insert shall keep the fuel assemblies in a subcritical configuration even if the void in the canister is filled with water due to postulated leakage. The design basis of the canister is set, the performed analyses are summarised and the results are assessed and discussed in the report. (orig.)

  8. Research on lightweight design of airborne electronic equipments%机载电子装备轻量化设计初步研究

    Institute of Scientific and Technical Information of China (English)

    李雨; 魏强

    2014-01-01

    机载电子装备日益复杂化,飞机平台资源的有限性迫切要求其开展有效的轻量化工作。从系统顶层设计、总体布局、硬件设计、新型材料等方面论述了如何在机载电子装备研制过程中开展轻量化工作,对当前实际工程开展轻量化工作具有一定的指导意义。%With the increasing complication of airborne electronic equipments,the lightweight research is exigent due to the limitation of airborne space resource. The lightweight research in the process of airborne electronic equipment development is discussed in the aspects of system top-design,overall-layout,hardware design and new materials,which has a certain guiding significance for lightweight of the current engineering projects.

  9. Numerical analysis of natural convection heat transfer in the shielded canister for the spent fuel

    International Nuclear Information System (INIS)

    PHOENICS-3.2, a three-dimension CFD code is used to research the natural convection heat transfer characters in the horizontal dry shielded canister for the spent fuel assemblies. The computational results are compared with the published experimental and computational results. The results are satisfactory. The parameters of 200 MW Nuclear Heating Reactor are used in the calculations to study the feasibility of the dry shielded canister's application in Nuclear Heating Reactor. Nitrogen and water are chosen as working fluid. In comparison of the heat transfer results of these two kinds of working fluids, nitrogen and water it is found that water is the better choice for Nuclear Heating Reactor

  10. Pressurization of whole element canister during staging

    International Nuclear Information System (INIS)

    An analytical model was developed to estimate the buildup of gas pressure for a single outer element in a hot cell test container for a post cold vacuum drying staging/storage test. This model considers various sources of gas generation and gas consumption as a function of time. In a canister containing spent nuclear fuel, hydrogen is generated from the reactions of uranium with free water or hydrated water, hydride decomposition, and radiolysis. The canister pressurization model predicts a stable pressure and a peak temperature during staging, with an assumption that a fuel element contains 40 gm of corrosion products and a decay heat of 2.07 or 1.06 Watts. Calculations were also performed on constant temperature tests for fuel elements containing varied amounts of sludge tested at 150, 125, 105, and 85 C. The pressurization model will be used to evaluate test results obtained from post-drying testing on whole fuel elements

  11. Multi-canister overpack: additional NRC requirements

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) established in the K Basin Spent Fuel Project, Regulatory Policy, dated August 4, 1995 (hereafter referred to as the Policy), the requirement for new Spent Nuclear Fuel Project (SNFP) facilities to achieve ''nuclear safety equivalency'' to comparable U.S. Nuclear Regulatory Commission licensed facilities. For activities other than during transport, when the Multi-Canister Overpack (MCO) is used and resides in the Canister Storage Building (CSB), Conditioning Facility or K Basins Path Forward Projects, additional NRC requirements will also apply to the MCO based on the safety functions it performs and its interfaces with the SNFP facilities. An evaluation was performed in consideration of the MCO safety functions to identify any additional NRC requirements, to establish nuclear safety equivalency for the MCO

  12. CANISTER HANDLING FACILITY - VENTILATION CONFINEMENT ZONING ANALYSIS

    International Nuclear Information System (INIS)

    The purpose of this calculation is to calculate the necessary airflow distribution used to size the HVAC equipment for the Canister Handling Facility. These results will be compared to the Heating and Cooling Load Calculation in detailed design. The calculations contained in this document were developed by DandE/Mechanical HVAC and are intended solely for the use of the DandE/Mechanical HVAC department in its work regarding the HVAC system for the Canister Handling Facility. Yucca Mountain Project personnel from the DandE/Mechanical HVAC department should be consulted before use of the calculations for purposes other than those stated herein or used by individuals other than authorized personnel in DandE/Mechanical HVAC department

  13. CANISTER HANDLING FACILITY - VENTILATION AIR CALCULATION

    International Nuclear Information System (INIS)

    The purpose of this analysis is to establish the preliminary Ventilation Confinement Zone for the Canister Handling Facility (CHF). The results of this document will be used to determine the air quantities for each VCZ that will eventually be reflected in the development of the Ventilation Flow Diagrams. The analyses contained in this document are developed by D and E/Mechanical HVAC and are intended solely for the use of the D and E/Mechanical HVAC in its work regarding Confinement Zoning Analysis for the Canister Handling Facility. Yucca Mountain Project personnel from D and E/Mechanical HVAC should be consulted before use of the analyses for purposes other than those stated herein or used by individuals other than authorized personnel in D and E/Mechanical HVAC

  14. COMSOL MULTIPHYSICS MODEL FOR DWPF CANISTER FILLING

    Energy Technology Data Exchange (ETDEWEB)

    Kesterson, M.

    2011-03-31

    The purpose of this work was to develop a model that can be used to predict temperatures of the glass in the Defense Waste Processing Facility (DWPF) canisters during filling and cooldown. Past attempts to model these processes resulted in large (>200K) differences in predicted temperatures compared to experimentally measured temperatures. This work was therefore intended to also generate a model capable of reproducing the experimentally measured trends of the glass/canister temperature during filling and subsequent cooldown of DWPF canisters. To accomplish this, a simplified model was created using the finite element modeling software COMSOL Multiphysics which accepts user defined constants or expressions to describe material properties. The model results were compared to existing experimental data for validation. A COMSOL Multiphysics model was developed to predict temperatures of the glass within DWPF canisters during filling and cooldown. The model simulations and experimental data were in good agreement. The largest temperature deviations were {approx}40 C for the 87inch thermocouple location at 3000 minutes and during the initial cooldown at the 51 inch location occurring at approximately 600 minutes. Additionally, the model described in this report predicts the general trends in temperatures during filling and cooling observed experimentally. However, the model was developed using parameters designed to fit a single set of experimental data. Therefore, Q-loss is not currently a function of pour rate and pour temperature. Future work utilizing the existing model should include modifying the Q-loss term to be variable based on flow rate and pour temperature. Further enhancements could include eliminating the Q-loss term for a user defined convection where Navier-Stokes does not need to be solved in order to have convection heat transfer.

  15. Canister storage building hazard analysis report

    International Nuclear Information System (INIS)

    This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the final CSB safety analysis report (SAR) and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Report, and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report

  16. Canister storage building hazard analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Krahn, D.E.; Garvin, L.J.

    1997-07-01

    This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the final CSB safety analysis report (SAR) and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Report, and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  17. 基于机载LiDAR数据的DEM构建研究%Research on DEM construction based on Airborne LiDAR data

    Institute of Scientific and Technical Information of China (English)

    韩梦竹; 张旭晴; 李毅; 杨国东

    2016-01-01

    基于机载LiDAR(Light Detection And Ranging)数据的DEM快速构建是当前研究的热点内容之一。论文根据机载LiDAR数据的特点,基于最新开发的ENVI软件LiDAR模型,进行了DEM数据的快速构造研究。最后,根据榆树地区的LiDAR数据,通过解算等过程得到了当地的DEM数据。%It is one of the current research hotspots to quickly construct DEM with the airborne Light Detection And Ranging (LiDAR) data. In this paper, the DEM is quickly constructed with LiDAR modular of ENVI software according to the characteristics of the airborne LiDAR data. Finally, the DEM data is obtained quickly with the method for Yushu area of Jilin province with the airborne LiDAR data.

  18. Airborne Cloud Computing Environment (ACCE)

    Science.gov (United States)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  19. Measurements of Fundamental Fluid Physics of SNF Storage Canisters

    Energy Technology Data Exchange (ETDEWEB)

    Condie, Keith Glenn; Mc Creery, Glenn Ernest; McEligot, Donald Marinus

    2001-09-01

    With the University of Idaho, Ohio State University and Clarksean Associates, this research program has the long-term goal to develop reliable predictive techniques for the energy, mass and momentum transfer plus chemical reactions in drying / passivation (surface oxidation) operations in the transfer and storage of spent nuclear fuel (SNF) from wet to dry storage. Such techniques are needed to assist in design of future transfer and storage systems, prediction of the performance of existing and proposed systems and safety (re)evaluation of systems as necessary at later dates. Many fuel element geometries and configurations are accommodated in the storage of spent nuclear fuel. Consequently, there is no one generic fuel element / assembly, storage basket or canister and, therefore, no single generic fuel storage configuration. One can, however, identify generic flow phenomena or processes which may be present during drying or passivation in SNF canisters. The objective of the INEEL tasks was to obtain fundamental measurements of these flow processes in appropriate parameter ranges.

  20. Study of the consequences of secondary water radiolysis within and surrounding a defective canister

    International Nuclear Information System (INIS)

    A model has been developed to study the effects of secondary water radiolysis caused by dispersed radionuclides in a bentonite buffer surrounding a copper canister. The secondary radiolysis is the radiolysis caused by radionuclides that have been released from the spent fuel and are present either as solutes in the pore-water, as sorbed species on the surface of other minerals, or as secondary minerals. The canister is assumed to be initially defective with a hole of a few millimeters on its wall. The small hole will considerably restrict the transport of oxidants through the canister wall and the release of radionuclides to the outside of the canister. The dissolution of the spent fuel is assumed to be controlled by chemical kinetics at rates extrapolated from experimental studies. Two cases have been considered with the purpose to illustrate the behaviors of both conservative and non-conservative nuclides. The nuclides that are most relevant are those expected to be the dominant α-emitters in the long-term (e.g. 239Pu, 240Pu, 241Am). in the first case it is assumed that there is no precipitation of secondary minerals of the relevant radionuclides inside the canister. In the second case it is assumed that the radionuclide concentration within the canister is controlled by its respective solubility limit. The radionuclide released to the surrounding buffer is then predicted using a mass balance model. The modelling results show that in both cases, the spent fuel will not be oxidized at a rate significantly faster compared to the case where secondary radiolysis is completely neglected. In the first case, however, a large domain of the near-field can be oxidized due to a much faster depletion of reducing minerals in the buffer, compared to the case where secondary radiolysis is neglected. In the second case, the effects of the secondary water radiolysis will be quite limited. Copyright (2001) Material Research Society

  1. Stress corrosion cracking of copper canisters

    Energy Technology Data Exchange (ETDEWEB)

    King, Fraser (Integrity Corrosion Consulting Limited (Canada)); Newman, Roger (Univ. of Toronto (Canada))

    2010-12-15

    A critical review is presented of the possibility of stress corrosion cracking (SCC) of copper canisters in a deep geological repository in the Fennoscandian Shield. Each of the four main mechanisms proposed for the SCC of pure copper are reviewed and the required conditions for cracking compared with the expected environmental and mechanical loading conditions within the repository. Other possible mechanisms are also considered, as are recent studies specifically directed towards the SCC of copper canisters. The aim of the review is to determine if and when during the evolution of the repository environment copper canisters might be susceptible to SCC. Mechanisms that require a degree of oxidation or dissolution are only possible whilst oxidant is present in the repository and then only if other environmental and mechanical loading conditions are satisfied. These constraints are found to limit the period during which the canisters could be susceptible to cracking via film rupture (slip dissolution) or tarnish rupture mechanisms to the first few years after deposition of the canisters, at which time there will be insufficient SCC agent (ammonia, acetate, or nitrite) to support cracking. During the anaerobic phase, the supply of sulphide ions to the free surface will be transport limited by diffusion through the highly compacted bentonite. Therefore, no HS. will enter the crack and cracking by either of these mechanisms during the long term anaerobic phase is not feasible. Cracking via the film-induced cleavage mechanism requires a surface film of specific properties, most often associated with a nano porous structure. Slow rates of dissolution characteristic of processes in the repository will tend to coarsen any nano porous layer. Under some circumstances, a cuprous oxide film could support film-induced cleavage, but there is no evidence that this mechanism would operate in the presence of sulphide during the long-term anaerobic period because copper sulphide

  2. Stress corrosion cracking of copper canisters

    International Nuclear Information System (INIS)

    A critical review is presented of the possibility of stress corrosion cracking (SCC) of copper canisters in a deep geological repository in the Fennoscandian Shield. Each of the four main mechanisms proposed for the SCC of pure copper are reviewed and the required conditions for cracking compared with the expected environmental and mechanical loading conditions within the repository. Other possible mechanisms are also considered, as are recent studies specifically directed towards the SCC of copper canisters. The aim of the review is to determine if and when during the evolution of the repository environment copper canisters might be susceptible to SCC. Mechanisms that require a degree of oxidation or dissolution are only possible whilst oxidant is present in the repository and then only if other environmental and mechanical loading conditions are satisfied. These constraints are found to limit the period during which the canisters could be susceptible to cracking via film rupture (slip dissolution) or tarnish rupture mechanisms to the first few years after deposition of the canisters, at which time there will be insufficient SCC agent (ammonia, acetate, or nitrite) to support cracking. During the anaerobic phase, the supply of sulphide ions to the free surface will be transport limited by diffusion through the highly compacted bentonite. Therefore, no HS. will enter the crack and cracking by either of these mechanisms during the long term anaerobic phase is not feasible. Cracking via the film-induced cleavage mechanism requires a surface film of specific properties, most often associated with a nano porous structure. Slow rates of dissolution characteristic of processes in the repository will tend to coarsen any nano porous layer. Under some circumstances, a cuprous oxide film could support film-induced cleavage, but there is no evidence that this mechanism would operate in the presence of sulphide during the long-term anaerobic period because copper sulphide

  3. Analysis for Eccentric Multi Canister Overpack (MCO) Drops at the Canister Storage Building

    International Nuclear Information System (INIS)

    The Spent Nuclear Fuel (SNF) Canister Storage Building (CSB) is the interim storage facility for the K-Basin SNF at the US. Department of Energy (DOE) Hanford Site. The SNF is packaged in multi-canister overpacks (MCOs). The MCOs are placed inside transport casks, then delivered to the service station inside the CSB. At the service station, the MCO handling machine (MHM) moves the MCO from the cask to a storage tube or one of two sample/weld stations. There are 220 standard storage tubes and six overpack storage tubes in a below grade reinforced concrete vault. Each storage tube can hold two MCOs

  4. Application for airborne particulate matter as a demonstration using k0-NAA method in Dalat nuclear research institute of Vietnam

    International Nuclear Information System (INIS)

    The airborne particulate samples have been collected using two types of polycarbonate membrane filter PM2.5 and PM2-5-10 in two typical sites of industrial (Ho Chi Minh City) and rural (Dateh) regions in south of Vietnam. The concentration of trace elements in the samples has been determined by the k0-NAA procedure developed in Dalat NRI. In order to check the developed k0-NAA procedure for the airborne particulate matter, two standard reference materials (SRMs) Urban Particulate NIST-1648 and Vehicle Exhaust Particulates NIES-8 were analyzed and the obtained results have been compared and interpreted in term of deviation between experimental results and the certified values. (author)

  5. Hot isostatic pressing of copper canisters for nuclear waste disposal

    International Nuclear Information System (INIS)

    This paper describes the copper canisters designed by the Swedes for nuclear waste disposal. The canister is a large, plain, cylindrical can into which the spent nuclear fuel elements can be packed and sealed for final disposal. Two canister modifications are shown which have been developed, differing only in the method of packing the fuel elements into the canister. Both design approaches use a heavy-wall copper tube as the main body with forged end pieces machined to fit snugly on the tube. The favored approach today is the use of copper powder to surround the fuel elements, rather than lead. The canisters described were inserted into the chamber of a hot isostatic press machine. The result of subjecting the evacuated canister assembly to the combination of high temperature and pressure is compaction and densification of the entire mass and the conversion of the copper powder into a solid mass of copper. As a result of the hot isostatic pressing, the overall volume of the canister is reduced and the canister takes on a very moderate hourglass shape. These prototype canisters are sectioned and examined. The examination confirms that the process worked and that the result was of high quality

  6. Shaft shock absorber for a spent fuel canister

    International Nuclear Information System (INIS)

    The disposal canister for spent nuclear fuel will be transferred by a lift to the repository which is 500 m deep in the bedrock. Model tests were carried out with an objective to estimate weather feasible shock absorber can be developed against the design accident case where the canister should survive a free fall to the lift shaft. If the velocity of the canister is not controlled by air drag or by any other deceleration means, the impact velocity may reach ultimate speed of 100 m/s. The canister would retain its integrity in impact on water when the bottom pit of the lift well is filled with groundwater. However, the canister would hit the pit bottom with high velocity since the water hardly slows down the canister. The impact to the bottom of the pit should be dampened mechanically. The tests demonstrated that 20 m high filling to the bottom pit of the lift well by Light Expanded Clay Aggregate (LECA), gives fair impact absorption to protect the fuel canister. Presence of ground water is not harmful for impact absorption system provided that the ceramic gravel is not floating too high from the pit bottom. Almost ideal impact absorption conditions are met if the water high level does not exceed two thirds of the height of the gravel. Shaping of the bottom head of the cylindrical canister does not give meaningful advantages to the impact absorption system. The flat nose bottom head of the fuel canister gives adequate deceleration properties. (author)

  7. Thermal Predictions of the Cooling of Waste Glass Canisters

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen

    2014-11-01

    Radioactive liquid waste from five decades of weapons production is slated for vitrification at the Hanford site. The waste will be mixed with glass forming additives and heated to a high temperature, then poured into canisters within a pour cave where the glass will cool and solidify into a stable waste form for disposal. Computer simulations were performed to predict the heat rejected from the canisters and the temperatures within the glass during cooling. Four different waste glass compositions with different thermophysical properties were evaluated. Canister centerline temperatures and the total amount of heat transfer from the canisters to the surrounding air are reported.

  8. Particulate airborne impurities

    OpenAIRE

    Wilkinson, Kai

    2013-01-01

    The cumulative effects of air pollutants are of principal concern in research on environmental protection in Sweden. Post-industrial society has imposed many limits on emitted air pollutants, yet the number of reports on the negative effects from them is increasing, largely due to human activity in the form of industrial emissions and increased traffic flows. Rising concerns over the health effects from airborne particulate matter (PM) stem from in vitro, in vivo, and cohort studies revealing...

  9. Results of Stainless Steel Canister Corrosion Studies and Environmental Sample Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Charles R; Enos, David

    2014-12-01

    This progress report describes work being done at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of used nuclear fuel. The work involves both characterization of the potential physical and chemical environment on the surface of the storage canisters and how it might evolve through time, and testing to evaluate performance of the canister materials under anticipated storage conditions. To evaluate the potential environment on the surface of the canisters, SNL is working with the Electric Power Research Institute (EPRI) to collect and analyze dust samples from the surface of in-service SNF storage canisters. In FY 13, SNL analyzed samples from the Calvert Cliffs Independent Spent Fuel Storage Installation (ISFSI); here, results are presented for samples collected from two additional near-marine ISFSI sites, Hope Creek NJ, and Diablo Canyon CA. The Hope Creek site is located on the shores of the Delaware River within the tidal zone; the water is brackish and wave action is normally minor. The Diablo Canyon site is located on a rocky Pacific Ocean shoreline with breaking waves. Two types of samples were collected: SaltSmart™ samples, which leach the soluble salts from a known surface area of the canister, and dry pad samples, which collected a surface salt and dust using a swipe method with a mildly abrasive ScotchBrite™ pad. The dry samples were used to characterize the mineralogy and texture of the soluble and insoluble components in the dust via microanalytical techniques, including mapping X-ray Fluorescence spectroscopy and Scanning Electron Microscopy. For both Hope Creek and Diablo Canyon canisters, dust loadings were much higher on the flat upper surfaces of the canisters than on the vertical sides. Maximum dust sizes collected at both sites were slightly larger than 20 μm, but Phragmites grass seeds ~1 mm in size, were observed on the tops of the Hope Creek canisters

  10. Pitting corrosion on a copper canister

    International Nuclear Information System (INIS)

    It is demonstrated that normal pitting can occur during oxidizing conditions in the repository. It is also concluded that a new theory for pitting corrosion has to be developed, as the present theory is not in accordance with all practical and experimental observations. A special variant of pitting, based on the growth of sulfide whiskers, is suggested to occur during reducing conditions. However, such a mechanism needs to be demonstrated experimentally. A simple calculational model of canister corrosion was developed based on the results of this study. 69 refs, 3 figs

  11. Canister storage building hazard analysis report

    International Nuclear Information System (INIS)

    This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis was performed in accordance with the DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports'', and meets the intent of HNF-PRO-704, ''Hazard and Accident Analysis Process''. This hazard analysis implements the requirements of DOE Order 5480.23, ''Nuclear Safety Analysis Reports''

  12. CANISTER HANDLING FACILITY WORKER DOSE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    D.T. Dexheimer

    2004-02-27

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Canister Handling Facility (CHF) performing operations to receive transportation casks, transfer wastes, prepare waste packages, perform associated equipment maintenance. The specific scope of work contained in this calculation covers individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation. The results of this calculation will be used to support the design of the CHF and provide occupational dose estimates for the License Application.

  13. Multi-Canister overpack pressure testing

    International Nuclear Information System (INIS)

    The Multi-Canister Overpack (MCO) shield plug closure assembly will be hydrostatically tested at the fabricator's shop to the 150 psig design test requirement in accordance with the ASME Code. Additionally, the MCO shell and collar will be hydrostatically tested at the fabricator's shop to the 450 psig design test requirement. Commercial practice has not required a pressure test of the closure weld after spent fuel is loaded in the containers. Based on this precedent and Code Case N-595-I, the MCO closure weld will not be pressure tested in the field

  14. CANISTER HANDLING FACILITY WORKER DOSE ASSESSMENT

    International Nuclear Information System (INIS)

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Canister Handling Facility (CHF) performing operations to receive transportation casks, transfer wastes, prepare waste packages, perform associated equipment maintenance. The specific scope of work contained in this calculation covers individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation. The results of this calculation will be used to support the design of the CHF and provide occupational dose estimates for the License Application

  15. Canister storage building trade study. Final report

    International Nuclear Information System (INIS)

    This study was performed to evaluate the impact of several technical issues related to the usage of the Canister Storage Building (CSB) to safely stage and store N-Reactor spent fuel currently located at K-Basin 100KW and 100KE. Each technical issue formed the basis for an individual trade study used to develop the ROM cost and schedule estimates. The study used concept 2D from the Fluor prepared ''Staging and Storage Facility (SSF) Feasibility Report'' as the basis for development of the individual trade studies

  16. Choices of canisters and elements for the first fuel and canister sludge shipment from K East Basin

    International Nuclear Information System (INIS)

    The K East Basin contains open-top canisters with up to fourteen N Reactor fuel assemblies distributed between the two barrels of each canister. Each fuel assembly generally consists of inner and outer concentric elements fabricated from uranium metal with zirconium alloy cladding. The canisters also contain varying amounts of accumulated sludge. Retrieval of sample fuel elements and associated sludge for examination is scheduled to occur in the near future. The purpose of this document is to specify particular canisters and elements of interest as candidate sources of fuel and sludge to be shipped to laboratories

  17. EVALUATION OF REQUIREMENTS FOR THE DWPF HIGHER CAPACITY CANISTER

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.; Estochen, E.; Jordan, J.; Kesterson, M.; Mckeel, C.

    2014-08-05

    The Defense Waste Processing Facility (DWPF) is considering the option to increase canister glass capacity by reducing the wall thickness of the current production canister. This design has been designated as the DWPF Higher Capacity Canister (HCC). A significant decrease in the number of canisters processed during the life of the facility would be achieved if the HCC were implemented leading to a reduced overall reduction in life cycle costs. Prior to implementation of the change, Savannah River National Laboratory (SRNL) was requested to conduct an evaluation of the potential impacts. The specific areas of interest included loading and deformation of the canister during the filling process. Additionally, the effect of the reduced wall thickness on corrosion and material compatibility needed to be addressed. Finally the integrity of the canister during decontamination and other handling steps needed to be determined. The initial request regarding canister fabrication was later addressed in an alternate study. A preliminary review of canister requirements and previous testing was conducted prior to determining the testing approach. Thermal and stress models were developed to predict the forces on the canister during the pouring and cooling process. The thermal model shows the HCC increasing and decreasing in temperature at a slightly faster rate than the original. The HCC is shown to have a 3°F ΔT between the internal and outer surfaces versus a 5°F ΔT for the original design. The stress model indicates strain values ranging from 1.9% to 2.9% for the standard canister and 2.5% to 3.1% for the HCC. These values are dependent on the glass level relative to the thickness transition between the top head and the canister wall. This information, along with field readings, was used to set up environmental test conditions for corrosion studies. Small 304-L canisters were filled with glass and subjected to accelerated environmental testing for 3 months. No evidence of

  18. Impact testing of simulated high-level waste glass canisters

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, M.E.; Alzheimer, J.M.; Slate, S.C.

    1985-01-01

    Three Savannah River Laboratory reference high-level waste canisters were subjected to impact tests at the Pacific Northwest Laboratory in Richland, Washington, in June 1983. The purpose of the test was to determine the integrity of the canister, nozzle, and final closure weld and to assess the effects of impacts on the glass. Two of the canisters were fabricated from 304L stainless steel and the third canister from titanium. The titanium canister was subjected to two drops. The first drop was vertical from 9.14 m onto an unyielding surface with the bottom corner of the canister receiving the impact. No failure occurred during this drop. The second drop was vertical from 9.14 m onto an unyielding surface with the corner of the fill nozzle receiving the impact. A large breach in the canister occurred in the region where the fill nozzle joins the dished head. The first stainless steel canister was dropped with the corner of the fill nozzle receiving the impact. The canister showed significant strain with no rupturing in the region where the fill nozzle joins the dished head. The second canister was dropped with the bottom corner receiving the impact and also, dropped horizontally onto an unyielding vertical solid steel cylinder in a puncture test. The bottom drop did not damage the weld and the puncture test did not rupture the canister body. The glass particles in the damaged zone of these canisters were sampled and analyzed for particle size. A comparison was made with control canister in which no impact had occurred. The particle size distribution for the control canisters and the zones of damaged glass were determined down to 1.5 ..mu..m. The quantity of glass fines, smaller than 10 ..mu..m, which must be determined for transportation safety studies, was found to be the largest in the bottom-damaged zone. The total amount of fines smaller than 10 ..mu..m after impact was less than 0.01 wt % of the total amount of glass in the canister.

  19. Gap Analysis to Support Modeling the Long-Term Degradation of Used Nuclear Fuel Canisters

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Philip J.; Sunderland, Dion J.; Ross, Steven B.; Montgomery, Robert O.; Hanson, Brady D.; Devanathan, Ram

    2015-04-01

    Welded stainless steel canisters are being used worldwide for dry storage of used nuclear fuel (UNF) assemblies, and the number of canisters in use is steadily increasing. In support of work currently being pursued at Pacific Northwest National Laboratory to understand the atmospheric corrosion behavior of spent fuel dry storage systems, a gap analysis is underway to assess the state of knowledge for modeling of the long-term degradation of a UNF canister. The fundamental aim of this work is to inform research and development (R&D) efforts to establish a sound technical basis to support the extended dry storage of UNF for 100+ years. The analysis is considering all major components of the atmosphere corrosion degradation processes, ranging from contaminant sources and climatic interactions to regional conditions of particle transport and deposition, to microscale effects leading to stress corrosion cracking. The results of this gap analysis will be used to define the R&D pathway to develop an integrated multi-scale atmospheric corrosion modeling capability for UNF in dry storage canisters that can support the safe and reliable performance of these structures for more than 100 years.

  20. Analysis of grain boundary corrosion in canister material for radioactive waste using transmission electron microscope

    International Nuclear Information System (INIS)

    Canister for the processed waste is sensitive to corrosion. The grain boundary corrosion is a localized corrosion type which probably takes place on AISI 304 stainless steel canister as a result of pouring the waste glass into it. This research was aimed to study AISI 304 stainless steel as candidate material for high level waste canister. A study of Cr23C6 precipitation at the grain boundary as corrosion initiating agent had been done by observation using Transmission Electron Microscope (TEM). The experiment was carried out by heating the samples at temperature of 700oC for 2 hours followed by water quenching. It was found that the Cr23C6 precipitation occurs and the diameter of the precipitates is 0.2 μm, FCC structure with lattice parameter of 10.585 A. The precipitate was separated one another. It could be said that by the treatment mentioned above, the grain boundary corrosion was insignificant. Therefore the use of AISI 304 stainless steel as canister material candidate of high level waste will be safe from grain boundary corrosion. (author)

  1. Design analysis report for the canister

    International Nuclear Information System (INIS)

    The mechanical strength of the canister (BWR and PWR types) has been studied. The loading processes are taken from the design premises report and some of them, especially the uneven bentonite swelling cases, are further developed in this study and in its references. The canister geometry is described in detail including the manufacturing tolerances of the dimensions. The canister material properties are summarised and the wide material testing programmes and model developments are referenced. The combination of various load cases are rationalised and the conservative combinations are defined. Also the probabilities of various load cases and combinations are assessed for setting reasonable safety margins. The safety margins are used according to ASME Code principles for safety class 1 components. The governing load cases are analysed with 2D- or global 3D-finite-element models including large deformation and non-linear material modelling and, in some cases, also creep. The integrity assessments are partly made from the stress and strain results using global models and partly from fracture resistance analyses using the sub-modelling technique. The sub-model analyses utilize the deformations from the global analyses as constraints on the sub-model boundaries and more detailed finite-element meshes are defined with defects included in the models together with elastic-plastic material models. The J-integral is used as the fracture parameter for the postulated defects. The allowable defect sizes are determined using the measured fracture resistance curves of the insert iron as a reference with respective safety factors according to the ASME Pressure Vessel Code requirements. Based on the BWR canister analyses, the following conclusions can be drawn. The 45 MPa isostatic pressure load case shows very robust and distinct results in that the risk for local collapse is vanishingly small. The probabilistic analysis of plastic collapse only considers the initial local collapse

  2. Multi-Canister Overpack (MCO) Topical Report

    International Nuclear Information System (INIS)

    In February 1995, the US Department of Energy (DOE) approved the Spent Nuclear Fuel (SNF) Project's ''Path Forward'' recommendation for resolution of the safety and environmental concerns associated with the deteriorating SNF stored in the Hanford Site's K Basins (Hansen 1995). The recommendation included an aggressive series of projects to design, construct, and operate systems and facilitates to permit the safe retrieval, packaging, transport, conditions, and interim storage of the K Basins' SNF. The facilities are the Cold VAcuum Drying Facility (CVDF) in the 100 K Area of the Hanford Site and the Canister Storage building (CSB) in the 200 East Area. The K Basins' SNF is to be cleaned, repackaged in multi-canister overpacks (MCOs), removed from the K Basins, and transported to the CVDF for initial drying. The MCOs would then be moved to the CSB and weld sealed (Loscoe 1996) for interim storage (about 40 years). One of the major tasks associated with the initial Path Forward activities is the development and maintenance of the safety documentation. In addition to meeting the construction needs for new structures, the safety documentation for each must be generated

  3. West Valley Demonstration Project full-scale canister impact tests

    International Nuclear Information System (INIS)

    Five West Valley Nuclear Services (WVNS) high-level waste (HLW) canisters were impact tested during 1994 to demonstrate compliance with the drop test requirements of the Waste Acceptance Product Specifications. The specifications state that the canistered waste form must be able to survive a 7-m (23 ft) drop unbreached. The 10-gauge (0.125 in. wall thickness) stainless steel canisters were approximately 85% filled with simulated vitrified waste and weighed about 2100 kg (4600 lb). Each canister was dropped vertically from a height of 7 m (23 ft) onto an essentially unyielding surface. The integrity of the canister was determined by the application and analysis of strain circles, dimensional measurements, and helium leak testing. The canisters were also visually inspected before and after the drop for physical damage. The results of the impact test verify that the canisters survived the 7-m drops unbreached. Therefore, these results demonstrate that the reference canister meets the drop test specification of the Waste Acceptance Product Specification

  4. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    International Nuclear Information System (INIS)

    This document provides the detailed accident analysis to support ''HNF-3553, Spent Nuclear Fuel Project Final Safety, Analysis Report, Annex A,'' ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report

  5. Design basis for the copper/steel canister

    Energy Technology Data Exchange (ETDEWEB)

    Bowyer, W.H. [Meadow End Farm, Tilford, Farnham, Surrey (United Kingdom)

    1996-02-01

    The development of the copper/iron canister which has been proposed by SKB for the containment of high level nuclear waste has been studied from the point of view of choice of materials, manufacturing technology and quality assurance. This report describes the observations on progress which have been made between March 1995 and Feb 1996 and the result of further literature studies. A first trial canister has been produced using a fabricated steel liner and an extruded copper tubular, a second one using a fabricated tubular is at an advanced stage. A change from a fabricated steel inner canister to a proposed cast canister has been justified by a criticality argument but the technology for producing a cast canister is at present untried. The microstructure achieved in the extruded copper tubular for the first canister is unacceptable. Similar problems exist with plate used for the fabricated tubular, but some more favourable structures have been achieved already by this route. Seam welding of the first tubular failed through a suspected material problem. The second fabricated tubular welded without difficulty. Welding of lids and bottoms to the copper canister is problematical.There is as yet no satisfactory non destructive test procedures for the parent metal or the welds in the copper canister material, partly due to the coarse grain size which arise in the proposed material processed by the proposed routes. Further studies are also required on crevice corrosion, galvanic attack and stress corrosion cracking in the copper 50 ppm phosphorus alloy. 28 refs.

  6. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    Energy Technology Data Exchange (ETDEWEB)

    CROWE, R.D.; PIEPHO, M.G.

    2000-03-23

    This document provided the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report''. All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.

  7. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    International Nuclear Information System (INIS)

    This document provided the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report''. All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report

  8. Performance assessment of the copper/steel canister

    International Nuclear Information System (INIS)

    A limited performance assessment has been done for a new canister concept. The assessment focuses primarily on a few specific questions. The areas given specific attention are: scenario development methodology, the effect of corrosion products, hydrogen gas transport and the retardation effect of the canister internals

  9. Design basis for the copper/steel canister

    International Nuclear Information System (INIS)

    The development of the copper/iron canister which has been proposed by SKB for the containment of high level nuclear waste has been studied from the point of view of choice of materials, manufacturing technology and quality assurance. This report describes the observations on progress which have been made between March 1995 and Feb 1996 and the result of further literature studies. A first trial canister has been produced using a fabricated steel liner and an extruded copper tubular, a second one using a fabricated tubular is at an advanced stage. A change from a fabricated steel inner canister to a proposed cast canister has been justified by a criticality argument but the technology for producing a cast canister is at present untried. The microstructure achieved in the extruded copper tubular for the first canister is unacceptable. Similar problems exist with plate used for the fabricated tubular, but some more favourable structures have been achieved already by this route. Seam welding of the first tubular failed through a suspected material problem. The second fabricated tubular welded without difficulty. Welding of lids and bottoms to the copper canister is problematical.There is as yet no satisfactory non destructive test procedures for the parent metal or the welds in the copper canister material, partly due to the coarse grain size which arise in the proposed material processed by the proposed routes. Further studies are also required on crevice corrosion, galvanic attack and stress corrosion cracking in the copper 50 ppm phosphorus alloy. 28 refs

  10. Canister storage building design basis accident analysis documentation

    Energy Technology Data Exchange (ETDEWEB)

    KOPELIC, S.D.

    1999-02-25

    This document provides the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.

  11. Canister storage building design basis accident analysis documentation

    International Nuclear Information System (INIS)

    This document provides the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report

  12. Description of DWPF reference waste form and canister

    International Nuclear Information System (INIS)

    This document describes the reference waste form and canister for the Defense Waste Processing Facility (DWPF). The facility is planned for location at the Savannah River Plant in Aiken, SC, and is scheduled for construction authorization during FY-1983. The reference canister is fabricated of 24-in.-OD 304L stainless steel pipe with a dished bottom, domed head, and lifting and welding flanges on the head neck. The overall canister length is 9 ft 10 in., with a wall thickness of 3/8-in. (schedule 20 pipe). The canister length was selected to reduce equipment cell height in the DWPF to a practical size. The canister diameter was selected to ensure that a filled canister with its shipping cask could be accommodated on a legal-weight truck. The overall dimensions and weight appear to be generally compatible with preliminary assessments of repository requireiajps. The rabarajca saspa bkri is bkrksilicapa class cojtaining approximately 28 wt % sludge oxides with the balance glass frit. Borosilicate glass was chosen because of its high resistance to leaching by water, its relatively high solubility for nuclides found in the sludge, and its reasonably low melting temperature. The glass frit contains approximately 58% SiO2 and 15% B2O3. This composition results in a low average leachability in the waste form of approximately 5 x 10-9 g/cm2-day based on 137Cs over 365 days in 250C water. The canister is filled with 3260 lb of glass which occupies about 85% of the free canister volume. The filled canister will generate approximately 425 watts when filled with oxides from 5-year-old sludge and 15-year-old supernate from the Stage 1 and Stage 2 processes. The radionuclide content of the canister is about 150,000 curies, with a radiation level of 2 x 104 rem/hour at 1 cm

  13. Description of DWPF reference waste form and canister

    Energy Technology Data Exchange (ETDEWEB)

    1981-06-01

    This document describes the reference waste form and canister for the Defense Waste Processing Facility (DWPF). The facility is planned for location at the Savannah River Plant in Aiken, SC, and is scheduled for construction authorization during FY-1983. The reference canister is fabricated of 24-in.-OD 304L stainless steel pipe with a dished bottom, domed head, and lifting and welding flanges on the head neck. The overall canister length is 9 ft 10 in., with a wall thickness of 3/8-in. (schedule 20 pipe). The canister length was selected to reduce equipment cell height in the DWPF to a practical size. The canister diameter was selected to ensure that a filled canister with its shipping cask could be accommodated on a legal-weight truck. The overall dimensions and weight appear to be generally compatible with preliminary assessments of repository requirements. The reference waste form is borosilicate glass containing approximately 28 wt % sludge oxides with the balance glass frit. Borosilicate glass was chosen because of its high resistance to leaching by water, its relatively high solubility for nuclides found in the sludge, and its reasonably low melting temperature. The glass frit contains approximately 58% SiO/sub 2/ and 15% B/sub 2/O/sub 3/. This composition results in a low average leachability in the waste form of approximately 5 x 10/sup -9/ g/cm/sup 2/-day based on /sup 137/Cs over 365 days in 25/sup 0/C water. The canister is filled with 3260 lb of glass which occupies about 85% of the free canister volume. The filled canister will generate approximately 425 watts when filled with oxides from 5-year-old sludge and 15-year-old supernate from the Stage 1 and Stage 2 processes. The radionuclide content of the canister is about 150,000 curies, with a radiation level of 2 x 10/sup 4/ rem/hour at 1 cm.

  14. Probabilistic analysis and material characterisation of canister insert for spent nuclear fuel. Summary report

    International Nuclear Information System (INIS)

    The KBS-3 canister for geological disposal of spent nuclear fuel in Sweden consists of a ductile cast iron insert and a copper shielding. The canister should inhibit release of radionuclides for at least 100,000 years. The copper protects the canister from corrosion whereas the ductile cast iron insert provides the mechanical strength. In the repository the hydrostatic pressure from the groundwater and the swelling pressure from the surrounding bentonite, which in total results in a maximum pressure of 14 MPa, will load the canisters in compression. During the extreme time scales, ice ages are expected with a maximum ice thickness of 3,000 m resulting in an additional pressure of 30 MPa. The maximum design pressure for the KBS-3 canisters has therefore been set to be 44 MPa. A relatively large number of canisters have been manufactured as part of SKB's development programme. To verify the strength of the canisters at this stage of development SKB initiated a project in cooperation with the European commissions Joint Research Centre (JRC), Institute of Energy in Petten in the Netherlands, together with a number of other partners. Three inserts manufactured by different Swedish foundries were used in the project. A large statistical test programme was developed to determine statistical distributions of various material parameters and defect distributions. These data together with the results from stress and strain finite element analysis were subsequently used in probabilistic analysis to determine the probability for plastic collapse caused by high pressure or fracture by crack growth in regions with tensile stresses. The main conclusions from the probabilistic analysis are: 1. At the design pressure of 44 MPa, the probability of failure is insignificant (∼2x10-9). This is the case even though several conservative assumptions have been made. 2. The stresses in the insert caused by the outer pressure are mainly compressive. The regions with tensile stresses are

  15. Assessment of a spent fuel disposal canister. Assessment studies for a copper canister with cast steel inner component

    International Nuclear Information System (INIS)

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden, is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in vertical storage holes drilled in a series of caverns excavated from the granite bedrock at a depth of about 500 m. Each canister will be surrounded by compacted bentonite clay. In this report, a simple model of the behaviour of the canister subsequent to a first breach in its copper overpack is developed. This model is used to predict: -the ingress of water to the canister (as a function of the size and the shape of the initial defect, the buffer conductivity, the corrosion rate and the pressure inside the canister); -the build-up of corrosion products in the canister (as a function of the available water in the canister, the corrosion rate and the properties of the corrosion products); -the effect of corrosion on the structural integrity of the canister. A number of different scenarios for the location of the breach in the copper overpack are considered

  16. COMSOL Multiphysics Model for HLW Canister Filling

    Energy Technology Data Exchange (ETDEWEB)

    Kesterson, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-11

    The U.S. Department of Energy (DOE) is building a Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is being temporarily stored in 177 underground tanks. Efforts are being made to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. Wastes containing high concentrations of Al2O3 and Na2O can contribute to nepheline (generally NaAlSiO4) crystallization, which can sharply reduce the chemical durability of high level waste (HLW) glass. Nepheline crystallization can occur during slow cooling of the glass within the stainless steel canister. The purpose of this work was to develop a model that can be used to predict temperatures of the glass in a WTP HLW canister during filling and cooling. The intent of the model is to support scoping work in the laboratory. It is not intended to provide precise predictions of temperature profiles, but rather to provide a simplified representation of glass cooling profiles within a full scale, WTP HLW canister under various glass pouring rates. These data will be used to support laboratory studies for an improved understanding of the mechanisms of nepheline crystallization. The model was created using COMSOL Multiphysics, a commercially available software. The model results were compared to available experimental data, TRR-PLT-080, and were found to yield sufficient results for the scoping nature of the study. The simulated temperatures were within 60 ºC for the centerline, 0.0762m (3 inch) from centerline, and 0.2286m (9 inch) from centerline thermocouples once the thermocouples were covered with glass. The temperature difference between the experimental and simulated values reduced to 40 ºC, 4 hours after the thermocouple was covered, and down to 20 ºC, 6 hours after the thermocouple was covered

  17. Comparison of the behaviour of manufactured and other airborne nanoparticles and the consequences for prioritising research and regulation activities

    International Nuclear Information System (INIS)

    Currently, there are no air quality regulations in force in any part of the world to control number concentrations of airborne atmospheric nanoparticles (ANPs). This is partly due to a lack of reliable information on measurement methods, dispersion characteristics, modelling, health and other environmental impacts. Because of the special characteristics of manufactured (also termed engineered or synthesised) nanomaterials or nanoparticles (MNPs), a substantial increase is forecast for their manufacture and use, despite understanding of safe design and use, and health and environmental implications being in its early stage. This article discusses a number of underlining technical issues by comparing the properties and behaviour of MNPs with anthropogenically produced ANPs. Such a comparison is essential for the judicious treatment of the MNPs in any potential air quality regulatory framework for ANPs.

  18. Structural Sensitivity of Dry Storage Canisters

    Energy Technology Data Exchange (ETDEWEB)

    Klymyshyn, Nicholas A.; Karri, Naveen K.; Adkins, Harold E.; Hanson, Brady D.

    2013-09-27

    This LS-DYNA modeling study evaluated a generic used nuclear fuel vertical dry storage cask system under tip-over, handling drop, and seismic load cases to determine the sensitivity of the canister containment boundary to these loads. The goal was to quantify the expected failure margins to gain insight into what material changes over the extended long-term storage lifetime could have the most influence on the security of the containment boundary. It was determined that the tip-over case offers a strong challenge to the containment boundary, and identifies one significant material knowledge gap, the behavior of welded stainless steel joints under high-strain-rate conditions. High strain rates are expected to increase the material’s effective yield strength and ultimate strength, and may decrease its ductility. Determining and accounting for this behavior could potentially reverse the model prediction of a containment boundary failure at the canister lid weld. It must be emphasized that this predicted containment failure is an artifact of the generic system modeled. Vendor specific designs analyze for cask tip-over and these analyses are reviewed and approved by the Nuclear Regulatory Commission. Another location of sensitivity of the containment boundary is the weld between the base plate and the canister shell. Peak stresses at this location predict plastic strains through the whole thickness of the welded material. This makes the base plate weld an important location for material study. This location is also susceptible to high strain rates, and accurately accounting for the material behavior under these conditions could have a significant effect on the predicted performance of the containment boundary. The handling drop case was largely benign to the containment boundary, with just localized plastic strains predicted on the outer surfaces of wall sections. It would take unusual changes in the handling drop scenario to harm the containment boundary, such as

  19. Criticality safety calculations of storage canisters

    International Nuclear Information System (INIS)

    In the planned Swedish repository for deep disposal of spent nuclear fuel the fuel assemblies will be stored in storage canisters made of cast iron and copper. To assure safe storage of the fuel the requirement is that the normal criticality safety criteria have to be met. The effective neutron multiplication factor must not exceed 0.95 in the most reactive conditions including different kinds of uncertainties. In this report it is shown that the criteria could be met if credit for the reactivity decrease due to the burn up of the fuel is taken into account. The criticality safety criteria are based on the US NRC regulatory requirements for transportation and storage of spent fuel

  20. Multi-Canister overpack internal HEPA filters

    Energy Technology Data Exchange (ETDEWEB)

    SMITH, K.E.

    1998-11-03

    The rationale for locating a filter assembly inside each Multi-Canister Overpack (MCO) rather than include the filter in the Cold Vacuum Drying (CVD) process piping system was to eliminate the potential for contamination to the operators, processing equipment, and the MCO. The internal HEPA filters provide essential protection to facility workers from alpha contamination, both external skin contamination and potential internal depositions. Filters installed in the CVD process piping cannot mitigate potential contamination when breaking the process piping connections. Experience with K-Basin material has shown that even an extremely small release can result in personnel contamination and costly schedule disruptions to perform equipment and facility decontamination. Incorporating the filter function internal to the MCO rather than external is consistent with ALARA requirements of 10 CFR 835. Based on the above, the SNF Project position is to retain the internal HEPA filters in the MCO design.

  1. Canister Storage Building (CSB) Hazard Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    POWERS, T.B.

    2000-03-16

    This report describes the methodology used in conducting the Canister Storage Building (CSB) Hazard Analysis to support the final CSB Safety Analysis Report and documents the results. This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis process identified hazardous conditions and material-at-risk, determined causes for potential accidents, identified preventive and mitigative features, and qualitatively estimated the frequencies and consequences of specific occurrences. The hazard analysis was performed by a team of cognizant CSB operations and design personnel, safety analysts familiar with the CSB, and technical experts in specialty areas. The material included in this report documents the final state of a nearly two-year long process. Attachment A provides two lists of hazard analysis team members and describes the background and experience of each. The first list is a complete list of the hazard analysis team members that have been involved over the two-year long process. The second list is a subset of the first list and consists of those hazard analysis team members that reviewed and agreed to the final hazard analysis documentation. The material included in this report documents the final state of a nearly two-year long process involving formal facilitated group sessions and independent hazard and accident analysis work. The hazard analysis process led to the selection of candidate accidents for further quantitative analysis. New information relative to the hazards, discovered during the accident analysis, was incorporated into the hazard analysis data in order to compile a complete profile of facility hazards. Through this process, the results of the hazard and accident analyses led directly to the identification of safety structures, systems, and components, technical safety requirements, and other

  2. Shippingport Spent Fuel Canister System Description

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON, D.M.

    2000-03-27

    In 1978 and 1979, a total of 72 blanket fuel assemblies (BFAs), irradiated during the operating cycles of the Shippingport Atomic Power Station's Pressurized Water Reactor (PWR) Core 2 from April 1965 to February 1974, were transferred to the Hanford Site and stored in underwater storage racks in Cell 2R at the 221-T Canyon (T-Plant). The initial objective was to recover the produced plutonium in the BFAs, but this never occurred and the fuel assemblies have remained within the water storage pool to the present time. The Shippingport Spent Fuel Canister (SSFC) is a confinement system that provides safe transport functions (in conjunction with the TN-WHC cask) and storage for the BFAs at the Canister Storage Building (CSB). The current plan is for these BFAs to be retrieved from wet storage and loaded into SSFCs for dry storage. The sealed SSFCs containing BFAs will be vacuum dried, internally backfilled with helium, and leak tested to provide suitable confinement for the BFAs during transport and storage. Following completion of the drying and inerting process, the SSFCs are to be delivered to the CSB for closure welding and long-term interim storage. The CSB will provide safe handling and dry storage for the SSFCs containing the BFAs. The purpose of this document is to describe the SSFC system and interface equipment, including the technical basis for the system, design descriptions, and operations requirements. It is intended that this document will be periodically updated as more equipment design and performance specification information becomes available.

  3. Canister Storage Building (CSB) Hazard Analysis Report

    International Nuclear Information System (INIS)

    This report describes the methodology used in conducting the Canister Storage Building (CSB) Hazard Analysis to support the final CSB Safety Analysis Report and documents the results. This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis process identified hazardous conditions and material-at-risk, determined causes for potential accidents, identified preventive and mitigative features, and qualitatively estimated the frequencies and consequences of specific occurrences. The hazard analysis was performed by a team of cognizant CSB operations and design personnel, safety analysts familiar with the CSB, and technical experts in specialty areas. The material included in this report documents the final state of a nearly two-year long process. Attachment A provides two lists of hazard analysis team members and describes the background and experience of each. The first list is a complete list of the hazard analysis team members that have been involved over the two-year long process. The second list is a subset of the first list and consists of those hazard analysis team members that reviewed and agreed to the final hazard analysis documentation. The material included in this report documents the final state of a nearly two-year long process involving formal facilitated group sessions and independent hazard and accident analysis work. The hazard analysis process led to the selection of candidate accidents for further quantitative analysis. New information relative to the hazards, discovered during the accident analysis, was incorporated into the hazard analysis data in order to compile a complete profile of facility hazards. Through this process, the results of the hazard and accident analyses led directly to the identification of safety structures, systems, and components, technical safety requirements, and other

  4. Shippingport Spent Fuel Canister System Description

    International Nuclear Information System (INIS)

    In 1978 and 1979, a total of 72 blanket fuel assemblies (BFAs), irradiated during the operating cycles of the Shippingport Atomic Power Station's Pressurized Water Reactor (PWR) Core 2 from April 1965 to February 1974, were transferred to the Hanford Site and stored in underwater storage racks in Cell 2R at the 221-T Canyon (T-Plant). The initial objective was to recover the produced plutonium in the BFAs, but this never occurred and the fuel assemblies have remained within the water storage pool to the present time. The Shippingport Spent Fuel Canister (SSFC) is a confinement system that provides safe transport functions (in conjunction with the TN-WHC cask) and storage for the BFAs at the Canister Storage Building (CSB). The current plan is for these BFAs to be retrieved from wet storage and loaded into SSFCs for dry storage. The sealed SSFCs containing BFAs will be vacuum dried, internally backfilled with helium, and leak tested to provide suitable confinement for the BFAs during transport and storage. Following completion of the drying and inerting process, the SSFCs are to be delivered to the CSB for closure welding and long-term interim storage. The CSB will provide safe handling and dry storage for the SSFCs containing the BFAs. The purpose of this document is to describe the SSFC system and interface equipment, including the technical basis for the system, design descriptions, and operations requirements. It is intended that this document will be periodically updated as more equipment design and performance specification information becomes available

  5. Study of airborne science experiment management concepts for application to space shuttle, volume 2

    Science.gov (United States)

    Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1973-01-01

    Airborne research management and shuttle sortie planning at the Ames Research Center are reported. Topics discussed include: basic criteria and procedures for the formulation and approval of airborne missions; ASO management structure and procedures; experiment design, development, and testing aircraft characteristics and experiment interfaces; information handling for airborne science missions; mission documentation requirements; and airborne science methods and shuttle sortie planning.

  6. Radon measurements with charcoal canisters temperature and humidity considerations

    Directory of Open Access Journals (Sweden)

    Živanović Miloš Z.

    2016-01-01

    Full Text Available Radon testing by using open-faced charcoal canisters is a cheap and fast screening method. Many laboratories perform the sampling and measurements according to the United States Environmental Protection Agency method - EPA 520. According to this method, no corrections for temperature are applied and corrections for humidity are based on canister mass gain. The EPA method is practiced in the Vinča Institute of Nuclear Sciences with recycled canisters. In the course of measurements, it was established that the mass gain of the recycled canisters differs from mass gain measured by Environmental Protection Agency in an active atmosphere. In order to quantify and correct these discrepancies, in the laboratory, canisters were exposed for periods of 3 and 4 days between February 2015 and December 2015. Temperature and humidity were monitored continuously and mass gain measured. No significant correlation between mass gain and temperature was found. Based on Environmental Protection Agency calibration data, functional dependence of mass gain on humidity was determined, yielding Environmental Protection Agency mass gain curves. The results of mass gain measurements of recycled canisters were plotted against these curves and a discrepancy confirmed. After correcting the independent variable in the curve equation and calculating the corrected mass gain for recycled canisters, the agreement between measured mass gain and Environmental Protection Agency mass gain curves was attained. [Projekat Ministarstva nauke Republike Srbije, br. III43009: New Technologies for Monitoring and Protection of Environment from Harmful Chemical Substances and Radiation Impact

  7. Shaft shock absorber tests for a spent fuel canister

    International Nuclear Information System (INIS)

    The holding canister for spent nuclear fuel will be transferred by a lift to the final disposal tunnels 500m deep in the bedrock. Model tests were carried out with an objective to estimate weather feasible shock absorbing properties can be met in a design accident case where the canister should survive a free fall due to e.g. sabotage. If the velocity of the canister is not controlled by air drag or any other deceleration means, the impact velocity may reach ultimate speed of 100m/s. The canister would retain its integrity when stricken by the surface penetration impact if the bottom pit of the lift well would be filled with groundwater. However the canister would hit the pit bottom with high velocity since the water hardly slows down the canister. The impact to the bottom of the pit should be dampened mechanically. The tests demonstrated that 20m high filling to the bottom pit of the lift well by ceramic gravel, trade mark LECA-sora, gives a fair impact absorption to protect the spent fuel canister. Presence of ground water is not harmful for impact absorption system provided that the ceramic gravel is not floating too high from the pit bottom. Almost ideal impact absorption conditions are met if the water high level does not exceed two thirds of the height of the gravel. Shaping of the bottom head of the cylindrical canister does not give meaningful advantages to the impact absorption system. The flat nose bottom head of the fuel canister gives adequate deceleration properties. (orig.)

  8. Estimate of total effective dose to members of the public due to airborne materials release in the event of a sever accident at the Tehran research reactor

    International Nuclear Information System (INIS)

    In this work, total effective dose to members of the public due to airborne materials release in the event of a severe accident at the Tehran Research Reactor (T R R) has been estimated. The severe accident at the T R R is a loss-of-coolant accident. Dose assessments have been made by using computer developed program AIREMN1. In this program, Pasquill-Gifford atmospheric dispersion model has been used. External gamma and beta exposures by the passing radioactive cloud and by the submerging receptor while the radioactive cloud, is passing internal exposure by inhaled radioactivity have been considered as the exposure pathways. The resulting value for total effective dose has been estimated as 23 mSv occurred in downwind distance equals to 310 meters from the reactor stack. This value has relatively good agreement with respect to the reported value (approximately 30 mSv) in the T.R.R' safety analysis report

  9. Reference commercial high-level waste glass and canister definition

    International Nuclear Information System (INIS)

    This report presents technical data and performance characteristics of a high-level waste glass and canister intended for use in the design of a complete waste encapsulation package suitable for disposal in a geologic repository. The borosilicate glass contained in the stainless steel canister represents the probable type of high-level waste product that will be produced in a commercial nuclear-fuel reprocessing plant. Development history is summarized for high-level liquid waste compositions, waste glass composition and characteristics, and canister design. The decay histories of the fission products and actinides (plus daughters) calculated by the ORIGEN-II code are presented

  10. Evaluation of remote smearing of DWPF canistered waste forms

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) is evaluating the variables of the remote smearing process for monitoring transferable contamination on the waste glass canisters at the Defense Waste Processing Facility (DWPF). Smearing for transferable contamination is typically done by hand, but in this case, due to the nature of the high level waste within the canisters, remote smearing is required. The effectiveness of the smear pad was determined under varying conditions (distance traveled, force applied, and canister surface), as well as the relative importance of these factors. It was concluded that the remote smear is more reliable than the hand smear

  11. Radiolysis Model Sensitivity Analysis for a Used Fuel Storage Canister

    Energy Technology Data Exchange (ETDEWEB)

    Wittman, Richard S.

    2013-09-20

    This report fulfills the M3 milestone (M3FT-13PN0810027) to report on a radiolysis computer model analysis that estimates the generation of radiolytic products for a storage canister. The analysis considers radiolysis outside storage canister walls and within the canister fill gas over a possible 300-year lifetime. Previous work relied on estimates based directly on a water radiolysis G-value. This work also includes that effect with the addition of coupled kinetics for 111 reactions for 40 gas species to account for radiolytic-induced chemistry, which includes water recombination and reactions with air.

  12. Containment canister for capturing hazardous waste debris during piping modifications

    Science.gov (United States)

    Dozier, Stanley B.

    2001-07-24

    The present invention relates to a capture and containment canister which reduces the risk of radiation and other biohazard exposure to workers, the need for a costly containment hut and the need for the extra manpower associated with the hut. The present invention includes the design of a canister having a specially designed magnetic ring that attracts and holds the top of the canister in place during modifications to gloveboxes and other types of radiological and biochemical hoods. The present invention also provides an improved hole saw that eliminates the need for a pilot bit.

  13. Retrievability of spent nuclear fuel canisters; Kaeytetyn ydinpolttoaineen loppusijoituskapseleiden palautettavuus

    Energy Technology Data Exchange (ETDEWEB)

    Saanio, T. [Saanio and Riekkola Oy, Helsinki (Finland); Raiko, H. [VTT Energy, Espoo (Finland)

    1999-03-01

    As a part of the designing process of the Finnish spent nuclear fuel repository, a preliminary study has been carried out to investigate how the canisters could technically be retrieved to the ground surface. Possibility of retrieving a canister has been investigated in different phases of the disposal project. Retrievability has not been a design goal for the spent fuel repository. However, design of the repository includes some features that may ease the retrieval of canisters in the future. Spent fuel elements are packaged in massive copper-iron canisters, which are mechanically strong and long-lived. The repository consists of excavated tunnels in hard rock which are supposed to be very long-lived making the removal of the tunnel backfilling technically possible also in the future. As long as the bentonite buffer has not been installed the canister can be returned to the ground surface using the same equipment as was used when the canister was brought down to the repository and lowered into the hole. In the encapsulation station the spent fuel elements can be packaged in the other canister or in the transport cask. After a deposition tunnel has been backfilled and closed, the retrieval consists of tearing down the concrete structure at the entry of the deposition tunnel, removal of the tunnel backfilling, removal of the bentonite from the disposal hole and lifting up of the canister. Various methods, e.g., flushing the bentonite with saline solutions, can be used to detach the canister from a hole with fully saturated bentonite. Recovery will be technically possible also after closing of the disposal facility. Backfilling of the shafts and tunnels will be removed and additional new structures and systems will have to be built in the repository. After that canisters can be transported to the ground surface as described above. In addition, handling of the canisters at the ground surface will require additional facilities. Canisters can be packaged in the

  14. Design analysis report for the canister

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, Heikki (VTT (Finland)); Sandstroem, Rolf (Materials Science and Engineering, Royal Inst. of Technology, Stockholm (Sweden)); Ryden, Haakan; Johansson, Magnus (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2010-04-15

    The mechanical strength of the canister (BWR and PWR types) has been studied. The loading processes are taken from the design premises report and some of them, especially the uneven bentonite swelling cases, are further developed in this study and in its references. The canister geometry is described in detail including the manufacturing tolerances of the dimensions. The canister material properties are summarised and the wide material testing programmes and model developments are referenced. The combination of various load cases are rationalised and the conservative combinations are defined. Also the probabilities of various load cases and combinations are assessed for setting reasonable safety margins. The safety margins are used according to ASME Code principles for safety class 1 components. The governing load cases are analysed with 2D- or global 3D-finite-element models including large deformation and non-linear material modelling and, in some cases, also creep. The integrity assessments are partly made from the stress and strain results using global models and partly from fracture resistance analyses using the sub-modelling technique. The sub-model analyses utilize the deformations from the global analyses as constraints on the sub-model boundaries and more detailed finite-element meshes are defined with defects included in the models together with elastic-plastic material models. The J-integral is used as the fracture parameter for the postulated defects. The allowable defect sizes are determined using the measured fracture resistance curves of the insert iron as a reference with respective safety factors according to the ASME Pressure Vessel Code requirements. Based on the BWR canister analyses, the following conclusions can be drawn. The 45 MPa isostatic pressure load case shows very robust and distinct results in that the risk for local collapse is vanishingly small. The probabilistic analysis of plastic collapse only considers the initial local collapse

  15. Thermal dimensioning of the deep repository. Influence of canister spacing, canister power, rock thermal properties and nearfield design on the maximum canister surface temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hoekmark, Harald; Faelth, Billy [Clay Technology AB, Lund (Sweden)

    2003-12-01

    The report addresses the problem of the minimum spacing required between neighbouring canisters in the deep repository. That spacing is calculated for a number of assumptions regarding the conditions that govern the temperature in the nearfield and at the surfaces of the canisters. The spacing criterion is that the temperature at the canister surfaces must not exceed 100 deg C .The results are given in the form of nomographic charts, such that it is in principle possible to determine the spacing as soon as site data, i.e. the initial undisturbed rock temperature and the host rock heat transport properties, are available. Results of canister spacing calculations are given for the KBS-3V concept as well as for the KBS-3H concept. A combination of numerical and analytical methods is used for the KBS-3H calculations, while the KBS-3V calculations are purely analytical. Both methods are described in detail. Open gaps are assigned equivalent heat conductivities, calculated such that the conduction across the gaps will include also the heat transferred by radiation. The equivalent heat conductivities are based on the emissivities of the different gap surfaces. For the canister copper surface, the emissivity is determined by back-calculation of temperatures measured in the Prototype experiment at Aespoe HRL. The size of the different gaps and the emissivity values are of great importance for the results and will be investigated further in the future.

  16. Technical note 4. Corrosion of copper canister

    International Nuclear Information System (INIS)

    Objectives of the project: In this review assignment, SKB's treatment of copper corrosion processes or mechanisms in SR-Site shall be reviewed both for the anticipated oxic and anoxic repository environments. The reviewer(s) shall consider if corrosion and corrosion mechanisms of the copper canisters in different possible evolutionary repository environments have been properly described. The objectives of this initial review phase in the area of copper corrosion is to achieve a broad coverage of SR-Site and its supporting references and in particular identify the need for complementary information and clarifications to be delivered by SKB. Summary by the authors: It is expected that the inflow of ground water to the deposition holes and tunnels in the Forsmark repository will be very slow. Thus, it might take some few hundred years up to thousand years before the deposition holes are filled with ground water and it might take 6000 years or more before the bentonite buffer is fully water saturated and pressurized. The copper canisters will therefore meet to two completely different environments: 1. An initial period of several hundreds of years when copper is exposed to gaseous corrosion. 2. And then to aqueous corrosion. From a corrosion point of view the first 1000 years are the most critical for the copper canister since pure, or phosphorus alloyed copper, is not designed to cope with corrosion at elevated temperatures. The outer copper surface temperature is expected to reach 100 deg C within some decades after closure of the repository and then slowly cool down to around 50 deg C after 1000 years. The gaseous corrosion is treated in SKB's safety assessment as being only dependent on oxygen gas and thus easily estimated by an oxygen mass-balance calculation. This simple model has no scientific support since several corrosive trace gases, such as sulphurous and nitrous compounds, operates together with water molecules (moisture) and the corrosion product consists

  17. Criticality Safety Evaluation Report for the Multi-Canister Overpack

    International Nuclear Information System (INIS)

    This criticality evaluation is for Spent N Reactor fuel unloaded from the existing canisters in both KE and KW Basins, and loaded into multiple canister overpack (MCO) containers with specially built baskets containing a maximum of either 54 Mark IV or 48 Mark IA fuel assemblies. The criticality evaluations include loading baskets into the cask-MCO, operation at the Cold Vacuum Drying Facility,a nd storage in the Canister Storage Building. Many conservatisms have been built into this analysis, the primary one being the selection of the Keff = 0.95 criticality safety limit. This revision incorporates the analyses for the sampling/weld station in the Canister Storage Building and additional analysis of the MCO during the draining at CVDF. Additional discussion of the scrap basket model was added to show why the addition of copper divider plates was not included in the models

  18. Multi-canister overpack operations and maintenance manual

    International Nuclear Information System (INIS)

    This manual provides general operating and maintenance instructions for the Multi-Canister Overpack. Procedure outlines included are conceptual in nature and will be modified, expanded, and refined during preparation of detailed operating procedures

  19. Theoretical Basis for the Design of a DWPF Evacuated Canister

    Energy Technology Data Exchange (ETDEWEB)

    Routt, K.R.

    2001-09-17

    This report provides the theoretical bases for use of an evacuated canister for draining a glass melter. Design recommendations are also presented to ensure satisfactory performance in future tests of the concept.

  20. Multi-Canister Overpack (MCO) Design Report

    International Nuclear Information System (INIS)

    The MCO is designed to facilitate the removal, processing and storage of the spent nuclear fuel currently stored in the East and West K-Basins. The MCO is a stainless steel canister approximately 24 inches in diameter and 166 inches long with cover cap installed. The shell and the collar which is welded to the shell are fabricated from 304/304L dual certified stainless steel for the shell and F304/F304L dual certified for the collar. The shell has a nominal thickness of 1/2 inch. The top closure consists of a shield plug with four processing ports and a locking ring with jacking bolts to pre-load a metal seal under the shield plug. The fuel is placed in one of four types of baskets, excluding the SPR fuel baskets, in the fuel retention basin. Each basket is then loaded into the MCO which is inside the transfer cask. Once all of the baskets are loaded into the MCO, the shield plug with a process tube is placed into the open end of the MCO. This shield plug provides shielding for workers when the transfer cask, containing the MCO, is lifted from the pool. After being removed from the pool, the locking ring is installed and the jacking bolts are tightened to pre-load the metal main closure seal. The cask is then sealed and the MCO taken to the Cold Vacuum Drying (CVD) facility for bulk water removal and vacuum drying through the process ports. Covers for the process ports may be installed or removed as needed per operating procedures. The MCO is then transferred to the Canister Storage Building (CSB), in the closed transfer cask. At the CSB, the MCO is then removed from the cask and becomes one of two MCOs stacked in a storage tube. MCOs will have a cover cap welded over the shield plug providing a complete welded closure. A number of MCOs may be stored with just the mechanical seal to allow monitoring of the MCO pressure, temperature, and gas composition

  1. A review of materials and corrosion issues regarding canisters for disposal of spent fuel and high-level waste in Opalinus clay

    International Nuclear Information System (INIS)

    corrosion behavior of canisters, the CMRB distinguished four phases during which the corrosive environment is expected to gradually change from aerobic dry to anoxic wet conditions. Possible damage mechanisms of steel were identified for each phase and critically examined, including effects due to radiation, solid reaction products, microbial activity and the occurrence of stress assisted failures. The expected performance of other canister materials was also considered. The CMRB concludes that NAGRA presents a convincing case that using steel canisters surrounded by bentonite as part of a multi-barrier system using Opalinus clay as the geological barrier is a viable concept for the safe disposal of SF/HLW under the assumption that the maximum acceptable hydrogen production rates given by NAGRA can be confirmed in future. A few issues related to the long term performance of steel canisters need to be further elaborated and clarified by NAGRA, but the CMRB found no major issue that would invalidate the use of steel canisters as part of the NAGRA multi-barrier concept. The CMRB deems that the research program pursued by NAGRA is carefully managed, effective and credible. Within the planning horizon for implementation of a repository for SF/HLW in Switzerland, the time table for canister development presented by NAGRA is realistic. While vigorously pursuing the evaluation of the evolution of the near field environment and its effect on the corrosion of steel, NAGRA should from now on initiate a comprehensive program on the evaluation of technological solutions for fabrication, welding, surface finishing and stress mitigation of thick walled steel canisters. (authors)

  2. Performance of the SKB copper/steel canister

    International Nuclear Information System (INIS)

    The performance of the SKB copper/steel canister has been analyzed. The present knowledge of long-term function of the canister is summarized. Radionuclide release calculations for a reference failure scenario and the effect of some variations on release rates are shown. The Features, Events and Processes (FEPs) that are affecting the studied scenarios have been classified according to the 'Rock Engineering Systems' methodology as defined by SKB for the copper/steel canister. Radionuclide release rate is calculated for a reference failure scenario where a small hole in the weld of the outer copper overpack is assumed to exist at the time of deposition. The hole in the copper overpack is assumed to be of a constant size until the inner steel canister looses its mechanical integrity. The steel is assumed to maintain mechanical stability during 5000 years and after this time period the hole through the copper is assumed to be 0.1 m2, which translate to insignificant transport resistance from the canister wall. The release rates for C-14, Sr-90, I-129, Cs-137, Pu-239 and Am-241 are calculated for the reference failure scenario and for a number of variations. The variations include glaciation, only few of the Zircaloy tubes damaged, different canister filling materials, variations in sorption properties of the bentonite clay and different life-time of the inner steel canister. The performance of the canister and near-field, concerning the release rates of the studied radionuclides, is as expected, comparable to the release rates obtained in SKB 91. 11 refs, figs, tabs

  3. Canister design for deep borehole disposal of nuclear waste

    OpenAIRE

    Hoag, Christopher Ian.

    2006-01-01

    The objective of this thesis was to design a canister for the disposal of spent nuclear fuel and other high-level waste in deep borehole repositories using currently available and proven oil, gas, and geothermal drilling technology. The canister is suitable for disposal of various waste forms, such as fuel assemblies and vitrified waste. The design addresses real and perceived hazards of transporting and placing high-level waste, in the form of spent reactor fuel, into a deep igneous rock env...

  4. Spent nuclear fuel canister storage building conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, C.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-01-01

    This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ``Technical Baseline and Updated Cost Estimate for the Canister Storage Building``, dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995.

  5. Spent nuclear fuel canister storage building conceptual design report

    International Nuclear Information System (INIS)

    This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ''Technical Baseline and Updated Cost Estimate for the Canister Storage Building'', dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995

  6. Warehouse Plan for the Multi Canister Overpacks (MCO) and Baskets

    International Nuclear Information System (INIS)

    The Multi-Canister Overpacks (MCOs) will contain spent nuclear fuel (SNF) removed from the K East and West Basins. The SNF will be placed in fuel storage baskets that will be stacked inside the MCOs. Approximately 400 MCOS and 2170 baskets will fabricated for this purpose. These MCOs, loaded with SNF, will be placed in interim storage in the Canister Storage Building (CSB) located in the 200 Area of the Hanford Site

  7. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    Energy Technology Data Exchange (ETDEWEB)

    CROWE, R.D.

    1999-09-09

    This document provides the detailed accident analysis to support ''HNF-3553, Spent Nuclear Fuel Project Final Safety, Analysis Report, Annex A,'' ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.

  8. Drop tests of the Three Mile Island knockout canister

    International Nuclear Information System (INIS)

    A type of Three Mile Island Unit 2 (TMI-2) defueling canister, called a ''knockout'' canister, was subjected to a series of drop tests at the Oak Ridge National Laboratory's Drop Test Facility. These tests were designed to confirm the structural integrity of internal fixed neutron poisons in support of a request for NRC licensing of this type of canister for the shipment of TMI-2 reactor fuel debris to the Idaho National Engineering Laboratory (INEL) for the Core Examination R and D Program. Work conducted at the Oak Ridge National Laboratory included (1) precise physical measurements of the internal poison rod configuration before assembly, (2) canister assembly and welding, (3) nondestructive examination (an initial hydrostatic pressure test and an x-ray profile of the internals before and after each drop test), (4) addition of a simulated fuel load, (5) instrumentation of the canister for each drop test, (6) fabrication of a cask simulation vessel with a developed and tested foam impact limiter, (7) use of refrigeration facilities to cool the canister to well below freezing prior to three of the drops, (8) recording the drop test with still, high-speed, and normal-speed photography, (9) recording the accelerometer measurements during impact, (10) disassembly and post-test examination with precise physical measurements, and (11) preparation of the final report

  9. Remote Welding, NDE and Repair of DOE Standardized Canisters

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) created the National Spent Nuclear Fuel Program (NSNFP) to manage DOE's spent nuclear fuel (SNF). One of the NSNFP's tasks is to prepare spent nuclear fuel for storage, transportation, and disposal at the national repository. As part of this effort, the NSNFP developed a standardized canister for interim storage and transportation of SNF. These canisters will be built and sealed to American Society of Mechanical Engineers (ASME) Section III, Division 3 requirements. Packaging SNF usually is a three-step process: canister loading, closure welding, and closure weld verification. After loading SNF into the canisters, the canisters must be seal welded and the welds verified using a combination of visual, surface eddy current, and ultrasonic inspection or examination techniques. If unacceptable defects in the weld are detected, the defective sections of weld must be removed, re-welded, and re-inspected. Due to the high contamination and/or radiation fields involved with this process, all of these functions must be performed remotely in a hot cell. The prototype apparatus to perform these functions is a floor-mounted carousel that encircles the loaded canister; three stations perform the functions of welding, inspecting, and repairing the seal welds. A welding operator monitors and controls these functions remotely via a workstation located outside the hot cell. The discussion describes the hardware and software that have been developed and the results of testing that has been done to date

  10. Physical properties of encapsulate spent fuel in canisters

    International Nuclear Information System (INIS)

    Spent fuel and high-level wastes will be permanently stored in a deep geological repository (AGP). Prior to this, they will be encapsulated in canisters. The present report is dedicated to the study of such canisters under the different physical demands that they may undergo, be those in operating or accident conditions. The physical demands of interest include mechanical demands, both static and dynamic, and thermal demands. Consideration is given to the complete file of the canister, from the time when it is empty and without lid to the final conditions expected in the repository. Thermal analyses of canisters containing spent fuel are often carried out in two dimensions, some times with hypotheses of axial symmetry and some times using a plane transverse section through the centre of the canister. The results obtained in both types of analyses are compared here to those of complete three-dimensional analyses. The latter generate more reliable information about the temperatures that may be experienced by the canister and its contents; they also allow calibrating the errors embodied in the two-dimensional calculations. (Author)

  11. Remote Welding, NDE and Repair of DOE Standardized Canisters

    Energy Technology Data Exchange (ETDEWEB)

    Eric Larsen; Art Watkins; Timothy R. McJunkin; Dave Pace; Rodney Bitsoi

    2006-05-01

    The U.S. Department of Energy (DOE) created the National Spent Nuclear Fuel Program (NSNFP) to manage DOE’s spent nuclear fuel (SNF). One of the NSNFP’s tasks is to prepare spent nuclear fuel for storage, transportation, and disposal at the national repository. As part of this effort, the NSNFP developed a standardized canister for interim storage and transportation of SNF. These canisters will be built and sealed to American Society of Mechanical Engineers (ASME) Section III, Division 3 requirements. Packaging SNF usually is a three-step process: canister loading, closure welding, and closure weld verification. After loading SNF into the canisters, the canisters must be seal welded and the welds verified using a combination of visual, surface eddy current, and ultrasonic inspection or examination techniques. If unacceptable defects in the weld are detected, the defective sections of weld must be removed, re-welded, and re-inspected. Due to the high contamination and/or radiation fields involved with this process, all of these functions must be performed remotely in a hot cell. The prototype apparatus to perform these functions is a floor-mounted carousel that encircles the loaded canister; three stations perform the functions of welding, inspecting, and repairing the seal welds. A welding operator monitors and controls these functions remotely via a workstation located outside the hot cell. The discussion describes the hardware and software that have been developed and the results of testing that has been done to date.

  12. Corrosion evaluation of fuel canister crusher rigging

    International Nuclear Information System (INIS)

    A fuel canister crusher with attached rigging is located in the 105 K-East Basin discharge chute. This equipment is slated to be moved as part of seismic mitigation to prevent a major basin leak through a construction joint located in the base of the chute. This corrosion analysis assessed the load-bearing ability of the rigging, which consists of shackles and thimble-spliced wire rope. The K-East Basin demineralized water results in corrosion rates of <2 mil/year (<0.05 mm/year) for carbon, low-alloy carbon, and stainless steels. The galvanized carbon steel shackles (with low-alloy steel anchor pins) have experienced negligible corrosion and are judged to be mechanically unaffected by their water exposure. The carbon steel wire rope and stainless steel thimbles have undergone minimal corrosion. Due to the small amount of corrosion products (as seen from video inspection), the absence of wire breakage, and a Factor of Safety calculation, it is judged that the wire rope and thimbles would withstand the proposed relocation activities

  13. Airborne geoid determination

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Bastos, L.; Gidskehaug, A.; Meyer, U.; Timmen, L.

    2000-01-01

    Airborne geoid mapping techniques may provide the opportunity to improve the geoid over vast areas of the Earth, such as polar areas, tropical jungles and mountainous areas, and provide an accurate "seam-less" geoid model across most coastal regions. Determination of the geoid by airborne methods...... relies on the development of airborne gravimetry, which in turn is dependent on developments in kinematic GPS. Routine accuracy of airborne gravimetry are now at the 2 mGal level, which may translate into 5-10 cm geoid accuracy on regional scales. The error behaviour of airborne gravimetry is well...

  14. Conceptual design study of a concrete canister spent-fuel storage facility

    International Nuclear Information System (INIS)

    This report presents a conceptual design study for the interim storage of CANDU spent fuel in concrete canisters. The canisters will be concrete flasks, which contain fuel prepackaged in double steel containment, and will be cooled by natural air convection. This is one of the methods proposed as a potential alternative to water pool storage. A preliminary study of this concept was done by CAFS (Committee Assessing Fuel Storage), and WNRE (Whiteshell Nuclear Research Establishment) is currently conducting a development and demonstration program. This study of a central facility for the storage of all Canadian spent fuel arisings to the year 2000 was completed in 1975. A brief description of the facilities required and the operations involved, a summary of costs, a survey of the monitoring requirements and a prediction of the personnel exposures associated with this method of storing spent fuel are reported here. The estimated total cost of interim storage in cylindrical canisters at a central site is $6.02/kg U (1975 dollars). Approximately half of this cost is incurred in the shipment of fuel from the reactors to the storage facility. (author)

  15. The Swedish Concept for Disposal of Spent Nuclear Fuel: Differences Between Vertical and Horizontal Waste Canister Emplacement

    International Nuclear Information System (INIS)

    The Swedish Nuclear Power Inspectorate (SKI) is preparing for the review of licence applications related to the disposal of spent nuclear fuel. The Swedish Nuclear Fuel and Waste Management Company (SKB) refers to its proposals for the disposal of spent nuclear fuel as the KBS-3 concept. In the KBS-3 concept, SKB plans that, after 30 to 40 years of interim storage, spent fuel will be disposed of at a depth of about 500 m in crystalline bedrock, surrounded by a system of engineered barriers. The principle barrier to radionuclide release is a cylindrical copper canister. Within the copper canister, the spent fuel is supported by a cast iron insert. Outside the copper canister is a layer of bentonite clay, known as the buffer, which is designed to provide mechanical protection for the canisters and to limit the access of groundwater and corrosive substances to their surfaces. The bentonite buffer is also designed to sorb radionuclides released from the canisters, and to filter any colloids that may form within the waste. SKB is expected to base its forthcoming licence applications on a repository design in which the waste canisters are emplaced in vertical boreholes (KBS-3V). However, SKB has also indicated that it might be possible and, in some respects, beneficial to dispose of the waste canisters in horizontal tunnels (KBS-3H). There are many similarities between the KBS-3V and KBS-3H designs. There are, however, uncertainties associated with both of the designs and, when compared, both possess relative advantages and disadvantages. SKB has identified many of the key factors that will determine the evolution of a KBS-3H repository and has plans for research and development work in many of the areas where the differences between the KBS-3V and KBS-3H designs mean that they could be significant in terms of repository performance. With respect to the KBS-3H design, key technical issues are associated with: 1. The accuracy of deposition drift construction. 2. Water

  16. Canister filling materials -- Design requirements and evaluation of candidate materials

    International Nuclear Information System (INIS)

    SKB has been evaluating a copper/steel canister for use in the disposal of spent nuclear reactor fuel. Once the canister is breached by corrosion, it is possible that the void volume inside the canister might fill with water. Water inside the canister would moderate the energy of the neutrons emitted by spontaneous fission in the fuel. It the space in the canister between and around the fuel pins is occupied by canister filling materials, the potential for criticality is avoided. The authors have developed a set of design requirements for canister filling material for the case where it is to be used alone, with no credit for burnup of the fuel or other measures, such as the use of neutron absorbers. Requirements were divided into three classes: essential requirements, desirable features, and undesirable features. The essential requirements are that the material fill at least 60% of the original void space, that the solubility of the filling material be less than 100 mg/l in pure water or expected repository waters at 50 C, and that the material not compact under its own weight by more than 10%. In this paper they review the reasons for these requirements, the desirable and undesirable features, and evaluate 11 candidate materials with respect to the design requirements and features. The candidate materials are glass beads, lead shot, copper spheres, sand, olivine, hematite, magnetite, crushed rock, bentonite, other clays, and concrete. Emphasis is placed on the determination of whether further work is needed to eliminate uncertainties in the evaluation of the ability of a particular filling material to be successfully used under actual conditions, and on the ability to predict the long-term performance of the material under the repository conditions

  17. Vitrification of high level wastes: a review of the computer thermal analyses for storage canisters

    International Nuclear Information System (INIS)

    CANIST, a two-dimensional (r and THETA) computer program that solves the unsteady-state, heat conduction equation was used to model the thermal behavior of canisters filled with waste glass. CANIST has been found to be a valuable analytical tool for predicting the temperature profile of a waste storage canister as a function of several variables, including the diameter of the canister, the placement of internal fins, the heat generation rate of the waste glass, and the thermophysical properties of the canister and the waste glass. Thus, temperature dependent processes that may affect the integrity of the glass/canister unit, for example cracking, can be investigated using an analytical approach. In the present study, the canister temperature profiles predicted by CANIST were compared to canister temperatures measured during full-scale non-radioactive waste immobilization tests conducted at Pacific Northwest Laboratory. The agreement between experimental and predicted temperatures was good, particularly considering the fact that the thermophysical properties of the waste glass modeled have not yet been accurately determined. Examination of some glass-filled canisters has revealed cracking to have occurred in the glass. However, the comparison between measured and CANIST predicted temperatures suggests that cracking does not significantly influence the heat-transfer process. CANIST was also used to evaluate different ways of reducing the centerline temperature of a canister, and to predict the centerline temperature as a function of the heat generation rate of the waste glass and the type of interim storage, i.e., air or water

  18. High-Performance Airborne Optical Carbon Dioxide Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental species measurement on airborne atmospheric research craft is a demanding application for optical sensing techniques. Yet optical techniques offer...

  19. The 200 l stainless steel canister - remote handling clutch assembly

    International Nuclear Information System (INIS)

    The assembly 200 l stainless steel canister with remote handling clutch is an equipment for conditioning, transport and intermediate storage of solid low- and intermediate level radioactive wastes. Loading the canister with pre-conditioned radioactive wastes is done at Post-Irradiation Examination Laboratory (LEPI) of INR Pitesti either within the transfer cell (CT) or supra-cell (SC). To this goal, lifting and handling means with which the LEPI is equipped, namely, lifting bridge and remote handling clutch are used. Conditioning of waste in view of their removal from LEPI implies their solidification in concrete and placing in stainless steel canister, the operations being effected in adequate rooms correspondingly equipped in the frame of the shop located at +8.40 m height at LEPI. Technical characteristics are: - capacity, 200 l; - external diameter, max. 600 mm; - casing height, 925 mm; casing thickness, 1.5 mm; - bottom thickness, 3 mm; - lid thickness, 3 mm. The canister cross profile of the lower and upper ends is modelled so that pilling is possible without horizontal slipping. The equipment together with remote handling clutch, engaged in a special collar of the upper part of canister, is presented

  20. Design, production and initial state of the canister

    Energy Technology Data Exchange (ETDEWEB)

    Cederqvist, Lars; Johansson, Magnus; Leskinen, Nina; Ronneteg, Ulf

    2010-12-15

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The set of reports is included in the safety report for the KBS-3 repository and repository facility.The report provides input on the initial state of the canisters to the assessment of the long-term safety, SR-Site. The initial state refers to the properties of the engineered barriers once they have been finally placed in the KBS-3 repository and will not be further handled within the repository facility. In addition, the report provides input to the operational safety report, SR-Operation, on how the canisters shall be handled and disposed. The report presents the design premises and reference design of the canister and verifies the conformity of the reference design to the design premises. The production methods and the ability to produce canisters according to the reference design are described. Finally, the initial state of the canisters and their conformity to the reference design and design premises are presented

  1. Design, production and initial state of the canister

    International Nuclear Information System (INIS)

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The set of reports is included in the safety report for the KBS-3 repository and repository facility.The report provides input on the initial state of the canisters to the assessment of the long-term safety, SR-Site. The initial state refers to the properties of the engineered barriers once they have been finally placed in the KBS-3 repository and will not be further handled within the repository facility. In addition, the report provides input to the operational safety report, SR-Operation, on how the canisters shall be handled and disposed. The report presents the design premises and reference design of the canister and verifies the conformity of the reference design to the design premises. The production methods and the ability to produce canisters according to the reference design are described. Finally, the initial state of the canisters and their conformity to the reference design and design premises are presented

  2. Safety Analysis Report for the PWR Spent Fuel Canister

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui Joo; Choi, Jong Won; Cho, Dong Keun; Chun, Kwan Sik; Lee, Jong Youl; Kim, Seong Ki; Kim, Seong Soo; Lee, Yang

    2005-11-15

    This report outlined the results of the safety assessment of the canisters for the PWR spent fuels which will be used in the KRS. All safety analyses including criticality and radiation shielding analyses, mechanical analyses, thermal analyses, and containment analyses were performed. The reference PWR spent fuels were in the 17x17 and determined to have 45,000 MWD/MTU burnup. The canister consists of copper outer shell and nodular cast iron inner structure with diameter of 102 cm and height of 483 cm. Criticality safety was checked for normal and abnormal conditions. It was assumed that the integrity of engineered barriers is preserved and saturated with water of 1.0g/cc for normal condition. For the abnormal condition container and bentonite was assumed to disappear, which allows the spent fuel to be surrounded by water with the most reactive condition. In radiation shielding analysis it was investigated that the absorbed dose at the surface of the canister met the safety limit. The structural analysis was conducted considering three load conditions, normal, extreme, and rock movement condition. Thermal analysis was carried out for the case that the canister with four PWR assemblies was deposited in the repository 500 meter below the surface with 40 m tunnel spacing and 6 m deposition hole spacing. The results of the safety assessment showed that the proposed KDC-1 canister met all the safety limits.

  3. Decontamination of DWPF canisters by glass frit blasting

    International Nuclear Information System (INIS)

    High-level radioactive waste at the Savannah River Plant will be incorporated in borosilicate glass for permanent disposal. The waste glass will be encapsulated in a 304L stainless steel canister. During the filling operation the outside of the canister will become contaminated. This contamination must be reduced to an accepable level before the canister leaves the Defense Waste Processing Facility (DWPF). Tests with contaminated coupons have demonstrated that this decontamination can be accomplished by blasting the surface with glass frit. The contaminated glass frit byproduct of this operation is used as a feedstock for the waste glass process, so no secondary waste is created. Three blasting techniques, using glass frit as the blasting medium, were evaluated. Air-injected slurry blasting was the most promising and was chosen for further development. The optimum parametric values for this process were determined in tests using coupon weight loss as the output parameter. 1 reference, 13 figures, 3 tables

  4. Radiation-field mapping of insect irradiation canisters

    International Nuclear Information System (INIS)

    Dosimetry methods developed at NIST for mapping ionizing radiation fields were applied to canisters used in 137Cs dry-source irradiators designed for insect sterilization. The method of mapping the radiation fields inside of these canisters as they cycled through the gamma-ray irradiators involved the use of radiochromic films, which increase in optical density proportionately to the absorbed dose. A dosimeter film array in a cardboard phantom was designed to simulate the average insect pupae density and to map the dose within the full volume of the canister; the calibrated films were read using a laser scanning densitometer. Previously used dosimetric methods did not allow for the spatial resolution that is possible with these films. Results indicate that this dose-mapping technique is a powerful method of evaluating a variety of radiation fields of commercial radiation sources, with promising applications as a means of dose validation and quality control. (Author)

  5. SNF Interim Storage Canister Corrosion and Surface Environment Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Charles R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Enos, David G. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    This progress report describes work being done at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. In order for SCC to occur, three criteria must be met. A corrosive environment must be present on the canister surface, the metal must susceptible to SCC, and sufficient tensile stress to support SCC must be present through the entire thickness of the canister wall. SNL is currently evaluating the potential for each of these criteria to be met.

  6. Criticality safety evaluation report for the multi-canister overpack

    International Nuclear Information System (INIS)

    This criticality evaluation is for Spent N Reactor fuel unloaded from the existing canisters in both KE and KW Basins, and loaded into multiple canister overpack (MCO) containers with specially built baskets containing a maximum of either 54 Mark 1V or 48 Mark IA fuel assemblies. The criticality evaluations include loading baskets into the cask-MCO, operations at the Cold Vacuum Drying Facility, and storage in the Canister Storage Building. Many conservatisms have been built into this analysis, the primary one being the selection of the keff = 0.95 criticality safety limit. Additional analyses in this revision include partial fuel basket loadings, loading 26.1 inch Mark IA fuel assemblies into Mark IV fuel baskets, and the revised fuel and scrap basket designs. The MCO MCNP model was revised to include the shield plug assembly

  7. Microwaves in Airborne Surveillance

    OpenAIRE

    Christopher, S.

    2013-01-01

    The use of microwave spectrum is widespread due to its convenience. Therefore, enormous amount of information is available in the free space channel. Obviously, mining this channel for surveillance is quite common. Airborne surveillance offers significant advantages in military operations. This paper talks of the usage of microwaves in airborne surveillance systems, in general, and in the Indian airborne early warning and control (AEW&C) System, in particular. It brings out the multiple s...

  8. Use of land surface remotely sensed satellite and airborne data for environmental exposure assessment in cancer research

    Science.gov (United States)

    Maxwell, S.K.; Meliker, J.R.; Goovaerts, P.

    2010-01-01

    In recent years, geographic information systems (GIS) have increasingly been used for reconstructing individual-level exposures to environmental contaminants in epidemiological research. Remotely sensed data can be useful in creating space-time models of environmental measures. The primary advantage of using remotely sensed data is that it allows for study at the local scale (e.g., residential level) without requiring expensive, time-consuming monitoring campaigns. The purpose of our study was to identify how land surface remotely sensed data are currently being used to study the relationship between cancer and environmental contaminants, focusing primarily on agricultural chemical exposure assessment applications. We present the results of a comprehensive literature review of epidemiological research where remotely sensed imagery or land cover maps derived from remotely sensed imagery were applied. We also discuss the strengths and limitations of the most commonly used imagery data (aerial photographs and Landsat satellite imagery) and land cover maps. ?? 2010 Nature Publishing Group All rights reserved.

  9. Debris Removal Project K West Canister Cleaning System Performance Specification

    International Nuclear Information System (INIS)

    Approximately 2,300 metric tons Spent Nuclear Fuel (SNF) are currently stored within two water filled pools, the 105 K East (KE) fuel storage basin and the 105 K West (KW) fuel storage basin, at the U.S. Department of Energy, Richland Operations Office (RL). The SNF Project is responsible for operation of the K Basins and for the materials within them. A subproject to the SNF Project is the Debris Removal Subproject, which is responsible for removal of empty canisters and lids from the basins. Design criteria for a Canister Cleaning System to be installed in the KW Basin. This documents the requirements for design and installation of the system

  10. Chemical stability of copper-canisters in deep repository

    International Nuclear Information System (INIS)

    The spent fuel from Finnish nuclear reactors is planned to be encapsulated in thick-walled copper-iron canisters and placed deep into the bedrock. The copper wall of the canister provides a long-time shield against corrosion, preventing the high-level nuclear fuel from contact with ground water. In the report, stability of metallic copper and its possible corrosion reactions in the conditions of deep bedrock are evaluated by means of thermo-dynamic calculations. (90 refs., 28 figs., 11 tabs.)

  11. Materials for Consideration in Standardized Canister Design Activities.

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Charles R.; Ilgen, Anastasia Gennadyevna; Enos, David George; Teich-McGoldrick, Stephanie; Hardin, Ernest

    2014-10-01

    This document identifies materials and material mitigation processes that might be used in new designs for standardized canisters for storage, transportation, and disposal of spent nuclear fuel. It also addresses potential corrosion issues with existing dual-purpose canisters (DPCs) that could be addressed in new canister designs. The major potential corrosion risk during storage is stress corrosion cracking of the weld regions on the 304 SS/316 SS canister shell due to deliquescence of chloride salts on the surface. Two approaches are proposed to alleviate this potential risk. First, the existing canister materials (304 and 316 SS) could be used, but the welds mitigated to relieve residual stresses and/or sensitization. Alternatively, more corrosion-resistant steels such as super-austenitic or duplex stainless steels, could be used. Experimental testing is needed to verify that these alternatives would successfully reduce the risk of stress corrosion cracking during fuel storage. For disposal in a geologic repository, the canister will be enclosed in a corrosion-resistant or corrosion-allowance overpack that will provide barrier capability and mechanical strength. The canister shell will no longer have a barrier function and its containment integrity can be ignored. The basket and neutron absorbers within the canister have the important role of limiting the possibility of post-closure criticality. The time period for corrosion is much longer in the post-closure period, and one major unanswered question is whether the basket materials will corrode slowly enough to maintain structural integrity for at least 10,000 years. Whereas there is extensive literature on stainless steels, this evaluation recommends testing of 304 and 316 SS, and more corrosion-resistant steels such as super-austenitic, duplex, and super-duplex stainless steels, at repository-relevant physical and chemical conditions. Both general and localized corrosion testing methods would be used to

  12. Debris Removal Project K West Canister Cleaning System Performance Specification

    Energy Technology Data Exchange (ETDEWEB)

    FARWICK, C.C.

    1999-12-09

    Approximately 2,300 metric tons Spent Nuclear Fuel (SNF) are currently stored within two water filled pools, the 105 K East (KE) fuel storage basin and the 105 K West (KW) fuel storage basin, at the U.S. Department of Energy, Richland Operations Office (RL). The SNF Project is responsible for operation of the K Basins and for the materials within them. A subproject to the SNF Project is the Debris Removal Subproject, which is responsible for removal of empty canisters and lids from the basins. Design criteria for a Canister Cleaning System to be installed in the KW Basin. This documents the requirements for design and installation of the system.

  13. 对抗高超声速武器的机载激光武器发展研究%Research on the Development of Airborne Laser Weapons Against Hypersonic Weapons

    Institute of Scientific and Technical Information of China (English)

    张同鑫; 李权

    2016-01-01

    The military threat of hypersonic weapon to current air defense system, and the potential military value of airborne laser weapon confronted to the hypersonic weapon were illustrated. Detailed introduction was made on the technical barriers of airborne laser weapon and the state of the art research progress. It is emphasized that now to research airborne laser weapon, its weight and size must be decreased, beam control system and aiming and tracking system in dynamic environments must be researched, special aerodynamic layout must be designed and smart energy sources management must be established.%介绍了高超声速武器对现有军事防御系统的威胁,机载激光武器对抗高超声速武器的军事价值。详细描述了国外机载激光武器的研究进展以及研究机载激光武器的技术难点,指出当前研究机载激光武器必须进一步降低激光武器的重量和体积,研发动态环境的光束控制与瞄准跟踪系统,开展特殊气动布局设计研究,建立周密的能源管理系统。

  14. EB-welding of the copper canister for the nuclear waste disposal. Final report of the development programme 1994-1997

    Energy Technology Data Exchange (ETDEWEB)

    Aalto, H. [Outokumpu Oy Poricopper, Pori (Finland)

    1998-10-01

    to investigations the creep strength of the copper material is sufficient for repository conditions. The ultrasonic inspection of the weld is very challenging because of large and orientated grain structure of the material. Some additional work is needed to optimise the material grain structure and ultrasonic probes which will be used in full scale canister inspection. The whole research work confirm the applicability of copper as a canister material and gives good basis on manufacture of full size canisters applying EB-welding technique. (author) 12 refs.

  15. EB-welding of the copper canister for the nuclear waste disposal. Final report of the development programme 1994-1997

    International Nuclear Information System (INIS)

    to investigations the creep strength of the copper material is sufficient for repository conditions. The ultrasonic inspection of the weld is very challenging because of large and orientated grain structure of the material. Some additional work is needed to optimise the material grain structure and ultrasonic probes which will be used in full scale canister inspection. The whole research work confirm the applicability of copper as a canister material and gives good basis on manufacture of full size canisters applying EB-welding technique. (author)

  16. Interaction between rock, bentonite buffer and canister. FEM calculations of some mechanical effects on the canister in different disposal concepts

    International Nuclear Information System (INIS)

    An important task of the buffer of highly compacted bentonite is to offer a mechanical protection to the canister. This role has been investigated by a number of finite element calculations using the complex elasto plastic material models for the bentonite that have been developed on the basis of laboratory tests and adapted to the code ABAQUS. The following main functions and scenarios have been investigated for some different canister types and repository concepts: - The effect of the water and swelling pressure, - The effect of a rock shear perpendicular to the canister axis, - The effect of creep in the copper after a rock shear displacement, - The thermomechanical effects when an initially saturated buffer is used

  17. Airborne Ultrasonic Tactile Display BCI

    OpenAIRE

    Hamada, Katsuhiko; Mori, Hiromu; Shinoda, Hiroyuki; Rutkowski, Tomasz M.

    2015-01-01

    This chapter presents results of our project, which studied whether contactless and airborne ultrasonic tactile display (AUTD) stimuli delivered to a user's palms could serve as a platform for a brain computer interface (BCI) paradigm. We used six palm positions to evoke combined somatosensory brain responses to implement a novel contactless tactile BCI. This achievement was awarded the top prize in the Annual BCI Research Award 2014 competition. This chapter also presents a comparison with a...

  18. Derived release limits for radionuclides in airborne and liquid effluents for the Whiteshell Nuclear Research Establishment and errata

    International Nuclear Information System (INIS)

    Radionuclides released to the environment may cause external and internal radiation exposure to man via a number of potential pathways. The resulting radiation dose due to such releases from any operating facility must be kept below dose limits specified in the regulations issued by the Atomic Energy Control Board of Canada. At the Whiteshell Nuclear Research Establishment (WNRE), there is one primary source of liquid effluent to the Winnipeg River via the process water outfall. There are five sources of gaseous effluents: the WR-1 stack; the incinerator stack in the waste management area; the active laboratories building (including the hot cells); the Active-Liquid Waste Treatment Centre; and the compactor-baler in the Waste Management Area. This report presents the methodology and models used to calculate the maximum permissible release rates of radionuclides for each of these sources

  19. Analysis for Eccentric Multi Canister Overpack (MCO) Drops at the Canister Storage Building (CSB) (CSB-S-0073)

    Energy Technology Data Exchange (ETDEWEB)

    HOLLENBECK, R.G.

    2000-05-08

    The Spent Nuclear Fuel (SNF) Canister Storage Building (CSB) is the interim storage facility for the K-Basin SNF at the US. Department of Energy (DOE) Hanford Site. The SNF is packaged in multi-canister overpacks (MCOs). The MCOs are placed inside transport casks, then delivered to the service station inside the CSB. At the service station, the MCO handling machine (MHM) moves the MCO from the cask to a storage tube or one of two sample/weld stations. There are 220 standard storage tubes and six overpack storage tubes in a below grade reinforced concrete vault. Each storage tube can hold two MCOs.

  20. Study on the methods for analysis of the chemical poison in canister by neutron activity

    International Nuclear Information System (INIS)

    The method that is used to analyse the poison gases in canister by neutron activity is proposed. Through theory analysis and experimental measurement, the feasibility for analysis of the poison gases in a canister by neutron activity has been demonstrated, and it is proved that the method itself do not result in radioactive problem to use again the canister. (authors)

  1. Corrosion resistance of a copper canister for spent nuclear fuel

    International Nuclear Information System (INIS)

    The report presents an evaluation of copper as canister material for spent nuclear fuel. The evaluation is made from the viewpoint of corrosion and applies to a concept of 1977. Supplementary corrosion studies have been performed. The report includes 9 appendices which deal with experimental data. (G.B.)

  2. Analysis of water from K west basin canisters (second campaign)

    Energy Technology Data Exchange (ETDEWEB)

    Trimble, D.J., Fluor Daniel Hanford

    1997-03-06

    Gas and liquid samples have been obtained from a selection of the approximately 3,820 spent fuel storage canisters in the K West Basin. The samples were taken to characterize the contents of the gas and water in the canisters. The data will provide source term information for two subprojects of the Spent Nuclear Fuel Project (SNFP) (Fulton 1994): the K Basins Integrated Water Treatment System subproject (Ball 1996) and the K Basins Fuel Retrieval System subproject (Waymire 1996). The barrels of ten canisters were sampled in 1995, and 50 canisters were sampled in a second campaign in 1996. The analysis results for the gas and liquid samples of the first campaign have been reported (Trimble 1995a; Trimble 1995b; Trimble 1996a; Trimble 1996b). An analysis of cesium-137 (137CS ) data from the second campaign samples was reported (Trimble and Welsh 1997), and the gas sample results are documented in Trimble 1997. This report documents the results of all analytes of liquid samples from the second campaign.

  3. OCRWM Bulletin: Westinghouse begins designing multi-purpose canister

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This publication consists of two parts: OCRWM (Office of Civilian Radioactive Waste Management) Bulletin; and Of Mountains & Science which has articles on the Yucca Mountain project. The OCRWM provides information about OCRWM activities and in this issue has articles on multi-purpose canister design, and transportation cask trailer.

  4. High level waste canister emplacement and retrieval concepts study

    International Nuclear Information System (INIS)

    Several concepts are described for the interim (20 to 30 years) storage of canisters containing high level waste, cladding waste, and intermediate level-TRU wastes. It includes requirements, ground rules and assumptions for the entire storage pilot plant. Concepts are generally evaluated and the most promising are selected for additional work. Follow-on recommendations are made

  5. OCRWM Bulletin: Westinghouse begins designing multi-purpose canister

    International Nuclear Information System (INIS)

    This publication consists of two parts: OCRWM (Office of Civilian Radioactive Waste Management) Bulletin; and Of Mountains ampersand Science which has articles on the Yucca Mountain project. The OCRWM provides information about OCRWM activities and in this issue has articles on multi-purpose canister design, and transportation cask trailer

  6. Multi-Canister overpack dual pressure rating; TOPICAL

    International Nuclear Information System (INIS)

    The SNF Project will change the Multi-Canister Overpack (MCO) design pressure rating in the mechanical closure configuration to 150 psig to permit substitution of 304L/304 stainless steel for the higher cost XM-19 in the MCO collar. The 450 psig pressure rating for the final welded MCO will remain unchanged

  7. Effects of glacial meltwater on corrosion of copper canisters

    International Nuclear Information System (INIS)

    The composition of glacial meltwater and its reactions in the bedrock are examined. The evidences that there are or should be from past intrusions of glacial meltwater and oxygen deep in the bedrock are also considered. The study is concluded with an evaluation of the potential effects of oxygenated meltwater on the corrosion of copper canisters. (46 refs., 3 figs., 2 tabs.)

  8. Canister Cleaning System Final Design Report - Project A.2.A

    International Nuclear Information System (INIS)

    Approximately 2,300 metric tons Spent Nuclear Fuel (SNF) are currently stored within two water filled pools, the 105 K East (KE) fuel storage basin and the 105 K West (KW) fuel storage basin, at the U.S. Department of Energy, Richland Operations Office (RL). The SNF Project is responsible for operation of the K Basins and for the materials within them. A subproject to the SNF Project is the Debris Removal Subproject, which is responsible for removal of empty canisters and lids from the basins. The Canister Cleaning System (CCS) is part of the Debris Removal Project. The CCS will be installed in the KW Basin and operated during the fuel removal activity. The KW Basin has approximately 3600 canisters that require removal from the basin. The CCS is being designed to ''clean'' empty fuel canisters and lids and package them for disposal to the Environmental Restoration Disposal Facility complex. The system will interface with the KW Basin and be located in the Dummy Elevator Pit

  9. Drying behavior of K-East canister sludge

    International Nuclear Information System (INIS)

    A series of tests were conducted by Pacific Northwest National Laboratory to evaluate the drying behavior of sludge taken from the Hanford K-East Basin storage canisters. Some of the components of K-Basin sludge, such as oxides of uranium and its hydrates, could be associated with the spent nuclear fuel that will ultimately be loaded into Multi-Canister Overpacks (MCOs) and transferred to interim dry storage on the Hanford Site. The materials sealed in the MCOs must be compatible with the storage facility safety basis and the design accident analyses. Understanding the drying behavior of hydrates that may be formed by the reaction of uranium oxides (corrosion products) and water will help ensure these criteria are addressed. Drying measurements of sludge samples collected from K-East Basin canisters showed the water content (physically plus chemically bound) to range between 5 wt% and 75 wt%. Uranium oxide hydrates, the main source of gaseous products that can pressurize the MCOs during storage, constituted about 3 wt% to 15 wt% of the total water content of the initial weight. Most of the physically bound water was assumed to be released from the samples at ambient temperature when the system was pumped down to vacuum conditions of about 40 mTorr. The period for release of most free water in the K-East canister sludge was about 24 hours

  10. Based on the Airborne LIDAR Technology Research and its Prospect%基于机载LIDAR技术的研究及其展望

    Institute of Scientific and Technical Information of China (English)

    郭向前; 郝伟涛; 李响

    2013-01-01

    This article through to the airborne laser radar scanning technique for measuring the working principle, system composition and characteristics of LIDAR is discussed, showing the airborne LIDAR technology advantage, and the development prospect was presented.%通过对机载三维激光雷达扫描测量技术的工作原理、系统组成和LIDAR特点的论述,展示出机载LIDAR技术的优势,并对其发展前景做了一定的展望.

  11. The in-flight blackbody calibration system for the GLORIA interferometer on board an airborne research platform

    Directory of Open Access Journals (Sweden)

    F. Olschewski

    2013-06-01

    Full Text Available The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA is a prototype of an imaging Fourier Transform Spectrometer (FTS for PREMIER, a candidate mission for ESA's Earth Explorer 7. GLORIA is deployed on board various research aircraft like the Russian M55 Geophysica or the German HALO. The instrument provides detailed infrared images of the Upper Troposphere/Lower Stratosphere (UTLS region, which plays a crucial role in the climate system. GLORIA uses a two-dimensional detector array for infrared limb observations in emission and therefore needs large-area blackbody radiation sources (126 mm × 126 mm for calibration. In order to meet the highly demanding uncertainty requirements for the scientific objectives of the GLORIA missions and due to the sophisticated tomographic evaluation scheme, the spatial distribution of the radiance temperature of the blackbody calibration sources has to be determined with an uncertainty of about 0.1 K. Since GLORIA is exposed to the hostile environment of the UTLS with mutable low temperature and pressure, an in-flight calibration system has to be carefully designed to cope with those adverse circumstances. The GLORIA in-flight calibration system consists of two identical weight-optimised high-precision blackbody radiation sources, which are independently stabilized at two different temperatures. The two point calibration is in the range of the observed atmospheric infrared radiance emissions with 10 K below and 30 K above ambient temperature, respectively. Thermo-Electric Coolers are used to control the temperature of the blackbody radiation sources offering the advantage of avoiding cryogens and mechanical coolers. The design and performance of the GLORIA in-flight calibration system is presented. The blackbody calibration sources have been comprehensively characterized for their spatially (full aperture and spectrally (7 μm to 13 μm resolved radiation properties in terms of radiance

  12. Chemical durability of copper canisters under crystalline bedrock repository conditions

    International Nuclear Information System (INIS)

    In the Swedish waste management program, the copper canister is expected to provide containment of the radionuclides for a very long time, perhaps millions of years. The purpose of the present paper, is to analyze prerequisites for assessments of corrosion lifetimes for copper canisters. The analysis is based on compilations of literature from the following areas: chemical literature on copper and copper corrosion, mineralogical literature with emphasis on the stability of copper in near surface environments, and chemical and mineralogical literature with emphasis on the stabilities and thermodynamics of species and phases that may exist in a repository environment. Three main types of situations are identified: (1) under oxidizing and low chloride conditions, passivating oxide type of layers may form on the copper surface; (2) under oxidizing and high chloride conditions, the species formed may all be dissolved; and (3) under reducing conditions, non-passivating sulfide type layer may form on the copper surface. Considerable variability and uncertainty exists regarding the chemical environment for the canister, especially in certain scenarios. Thus, the mechanisms for corrosion can be expected to differ greatly for different situations. The lifetime of a thick-walled copper canister subjected to general corrosion appears to be long for most reasonable chemistries. (It is assumed that the canister has no defects from manufacturing and that the bentonite buffer is intact). Localized corrosion may appear for types (1) and (3) above but the mechanisms are widely different in character. The penetration caused by localized corrosion can be expected to be very sensitive to details in the chemistry

  13. Defects which might occur in the copper-iron canister classified according to their likely effect on canister integrity

    International Nuclear Information System (INIS)

    Earlier studies identified the material and manufacturing defects that might occur in serially produced canisters to the SKB reference design. This study has considered the defects, which were identified in the earlier works and classified them in terms of their importance to the durability of the canister in service. It has depended on, observations made by the writer over a seven-year involvement with SKI, literature studies and consultation with experts. For ease of reference each section of the report contains a table which includes information on defects taken from the earlier work plus the classification arising from this work. A study has been conducted to identify the material and manufacturing defects that might occur in serially produced canisters to the SKB reference design. The study has depended on cooperation of contractors engaged by SKB to participate in the development program, SKB staff, observations made by the writer over a five-year involvement with SKI, literature studies and consultation with experts. The candidate manufacturing procedures have been described inasmuch as it has been necessary to do so to make the points related to defects. Where possible, the cause of defects, their likely effects on manufacturing procedures or on durability of the canister and the methods available for their detection are given. For ease of reference each section of the report contains a table which summarises the information in it and, in the final section of the report, all the tables are presented en-bloc

  14. Deep geological disposal system development; mechanical structural stability analysis of spent nuclear fuel disposal canister under the internal/external pressure variation

    Energy Technology Data Exchange (ETDEWEB)

    Kwen, Y. J.; Kang, S. W.; Ha, Z. Y. [Hongik University, Seoul (Korea)

    2001-04-01

    This work constitutes a summary of the research and development work made for the design and dimensioning of the canister for nuclear fuel disposal. Since the spent nuclear fuel disposal emits high temperature heats and much radiation, its careful treatment is required. For that, a long term(usually 10,000 years) safe repository for spent fuel disposal should be securred. Usually this repository is expected to locate at a depth of 500m underground. The canister construction type introduced here is a solid structure with a cast iron insert and a corrosion resistant overpack, which is designed for spent nuclear fuel disposal in a deep repository in the crystalline bedrock, which entails an evenly distributed load of hydrostatic pressure from undergroundwater and high pressure from swelling of bentonite buffer. Hence, the canister must be designed to withstand these high pressure loads. Many design variables may affect the structural strength of the canister. In this study, among those variables array type of inner baskets and thicknesses of outer shell and lid and bottom are tried to be determined through the mechanical linear structural analysis, thicknesses of outer shell is determined through the nonlinear structural analysis, and the bentonite buffer analysis for the rock movement is conducted through the of nonlinear structural analysis Also the thermal stress effect is computed for the cast iron insert. The canister types studied here are one for PWR fuel and another for CANDU fuel. 23 refs., 60 figs., 23 tabs. (Author)

  15. Heat propagation from a radioactive waste repository. SKB 91 reference canister

    International Nuclear Information System (INIS)

    A study of heat propagation around a hypothetical radioactive waste repository is presented. The investigated flow domain was limited to a quarter of the flow domain around a single canister due to symmetry by vertical planes passing through the centre of the canister, half distance between the adjacent tunnels and the adjacent canisters. Strictly speaking, such an approach is applicable to a repository of infinite extent. However, from a practical point of view this assumption applies to all canisters but the ones close to the edge of the repository. The following different material regions were considered: (a.) Canister containing the spent fuel, (b.) Buffer (bentonite) around the canister, (c.) Backfilled (mixture of bentonite and sand) tunnels, and (d.) host Rock. The canister material was presented by a 'homogenized' medium obtained by weighted averaging of the main constituents of the canister, viz. spent fuel, copper and lead. A geothermal gradient of 13 degrees C/km was assumed. The initial heat effect per canister was 1066 W. The total vertical extent of the flow domain considered was about 1500 meters. The base case, with 6.2 m canister spacing and 30 m tunnel spacing, resulted in a maximum temperature at the canister/buffer interface of about 66 degrees C (corresponding to a temperature rise of about 54 degrees C), and about 50 degrees C (about 38 degrees C temperature rise) in the rock. (au)

  16. Drying tests conducted on Three Mile Island fuel canisters containing simulated debris

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A.J.

    1995-12-31

    Drying tests were conducted on TMI-2 fuel canisters filled with simulated core debris. During these tests, canisters were dried by heating externally by a heating blanket while simultaneously purging the canisters` interior with hot, dry nitrogen. Canister drying was found to be dominated by moisture retention properties of a concrete filler material (LICON) used for geometry control. This material extends the drying process 10 days or more beyond what would be required were it not there. The LICON resides in a nonpurgeable chamber separate from the core debris, and because of this configuration, dew point measurements on the exhaust stream do not provide a good indication of the dew point in the canisters. If the canisters are not dried, but rather just dewatered, 140-240 lb of water (not including the LICON water of hydration) will remain in each canister, approximately 50-110 lb of which is pore water in the LICON and the remainder unbound water.

  17. The Effect of Weld Residual Stress on Life of Used Nuclear Fuel Dry Storage Canisters

    Energy Technology Data Exchange (ETDEWEB)

    Ronald G. Ballinger; Sara E. Ferry; Bradley P. Black; Sebastien P. Teysseyre

    2013-08-01

    With the elimination of Yucca Mountain as the long-term storage facility for spent nuclear fuel in the United States, a number of other storage options are being explored. Currently, used fuel is stored in dry-storage cask systems constructed of steel and concrete. It is likely that used fuel will continue to be stored at existing open-air storage sites for up to 100 years. This raises the possibility that the storage casks will be exposed to a salt-containing environment for the duration of their time in interim storage. Austenitic stainless steels, which are used to construct the canisters, are susceptible to stress corrosion cracking (SCC) in chloride-containing environments if a continuous aqueous film can be maintained on the surface and the material is under stress. Because steel sensitization in the canister welds is typically avoided by avoiding post-weld heat treatments, high residual stresses are present in the welds. While the environment history will play a key role in establishing the chemical conditions for cracking, weld residual stresses will have a strong influence on both crack initiation and propagation. It is often assumed for modeling purposes that weld residual stresses are tensile, high and constant through the weld. However, due to the strong dependence of crack growth rate on stress, this assumption may be overly conservative. In particular, the residual stresses become negative (compressive) at certain points in the weld. The ultimate goal of this research project is to develop a probabilistic model with quantified uncertainties for SCC failure in the dry storage casks. In this paper, the results of a study of the residual stresses, and their postulated effects on SCC behavior, in actual canister welds are presented. Progress on the development of the model is reported.

  18. Desludging of N Reactor fuel canisters: Analysis, Test, and data requirements

    International Nuclear Information System (INIS)

    The N Reactor fuel is currently stored in canisters in the K East (KE) and K West (KW) Basins. In KE, the canisters have open tops; in KW, the cans have sealed lids, but are vented to release gases. Corrosion products have formed on exposed uranium metal fuel, on carbon steel basin component surfaces, and on aluminum alloy canister surfaces. Much of the corrosion product is retained on the corroding surfaces; however, large inventories of particulates have been released. Some of the corrosion product particulates form sludge on the basin floors; some particulates are retained within the canisters. The floor sludge inventories are much greater in the KE Basin than in the KW Basin because KE Basin operated longer and its water chemistry was less controlled. Another important factor is the absence of lids on the KE canisters, allowing uranium corrosion products to escape and water-borne species, principally iron oxides, to settle in the canisters. The inventories of corrosion products, including those released as particulates inside the canisters, are only beginning to be characterized for the closed canisters in KW Basin. The dominant species in the KE floor sludge are oxides of aluminum, iron, and uranium. A large fraction of the aluminum and uranium floor sludge particulates may have been released during a major fuel segregation campaign in the 1980s, when fuel was emptied from 4990 canisters. Handling and jarring of the fuel and aluminum canisters seems likely to have released particulates from the heavily corroded surfaces. Four candidate methods are discussed for dealing with canister sludge emerged in the N Reactor fuel path forward: place fuel in multi-canister overpacks (MCOs) without desludging; drill holes in canisters and drain; drill holes in canisters and flush with water; and remove sludge and repackage the fuel

  19. CFD modeling of natural convection within dry spent nuclear fuel storage canisters

    International Nuclear Information System (INIS)

    One of the interim storage configurations being considered for aluminum-clad foreign research reactor fuel, such as the Material and Testing Reactor (MTR) design, is in a dry storage facility. To support design studies of storage options, a computational and experimental program was conducted at the Savannah River Site (SRS). The objective was to develop computational fluid dynamics (CFD) models which would be benchmarked using data obtained from a full scale heat transfer experiment conducted in the SRS Experimental Thermal Fluids Laboratory. The current work documents the CFD approach and presents comparison of results with experimental data. CFDS-FLOW3D (version 3.3) CFD code has been used to model the 3-dimensional convective velocity and temperature distributions within a single dry storage canister of MTR fuel elements. The analysis was made for the cases with q double-prime ' = 100 or 137 watts per MTR fuel element (equivalent to 25 or 35 kW/m3) using different convective boundary conditions around the canister wall and different cooling gases (N2 or He). For the present analysis, the Boussinesq approximation was used for the consideration of buoyancy-driven natural convection. Comparison of the CFD code can be used to predict reasonably accurate flow and thermal behavior of a typical foreign research reactor fuel stored in a dry storage facility

  20. The airborne laser

    Science.gov (United States)

    Lamberson, Steven; Schall, Harold; Shattuck, Paul

    2007-05-01

    The Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the current program status.

  1. SOFIA's Airborne Astronomy Ambassadors: An External Evaluation of Cycle 1

    Science.gov (United States)

    Phillips, Michelle

    2015-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) represents a partnership between NASA and the German Aerospace Center (DLR). The observatory itself is a Boeing 747 SP that has been modified to serve as the world's largest airborne research observatory. The SOFIA Airborne Astronomy Ambassadors (AAA) program is a component of SOFIA's…

  2. Safety evaluation for the inner canister closure station

    International Nuclear Information System (INIS)

    The Inner Canister Closure Station (ICCS), built by Remote Technology Corporation, will be operability tested. The ICCS is used to remotely leak test Inner Canister Closures (ICC's) and replace ICC's that are not water tight. After operability testing, the ICCS will be inspected and sent to the 717-F mock-up shop for remotability demonstration and dimensional checks, then installed in the Vitrification Building, 221-S. An analysis of potential safety hazards, equipment safety features, and procedural controls indicates that the ICCS can be operated without undue hazard to employees or to the public. A safety inspection and a new equipment inspection will be held before operation to verify that the ICCS meets Savannah River Site safety requirements. 4 refs., 6 figs

  3. Multi-purpose canister system evaluation: A systems engineering approach

    International Nuclear Information System (INIS)

    This report summarizes Department of Energy (DOE) efforts to investigate various container systems for handling, transporting, storing, and disposing of spent nuclear fuel (SNF) assemblies in the Civilian Radioactive Waste Management System (CRWMS). The primary goal of DOE's investigations was to select a container technology that could handle the vast majority of commercial SNF at a reasonable cost, while ensuring the safety of the public and protecting the environment. Several alternative cask and canister concepts were evaluated for SNF assembly packaging to determine the most suitable concept. Of these alternatives, the multi-purpose canister (MPC) system was determined to be the most suitable. Based on the results of these evaluations, the decision was made to proceed with design and certification of the MPC system. A decision to fabricate and deploy MPCs will be made after further studies and preparation of an environmental impact statement

  4. Analysis of probability of defects in the disposal canisters

    International Nuclear Information System (INIS)

    This report presents a probability model for the reliability of the spent nuclear waste final disposal canister. Reliability means here that the welding of the canister lid has no critical defects from the long-term safety point of view. From the reliability point of view, both the reliability of the welding process (that no critical defects will be born) and the non-destructive testing (NDT) process (all critical defects will be detected) are equally important. In the probability model, critical defects in a weld were simplified into a few types. Also the possibility of human errors in the NDT process was taken into account in a simple manner. At this moment there is very little representative data to determine the reliability of welding and also the data on NDT is not well suited for the needs of this study. Therefore calculations presented here are based on expert judgements and on several assumptions that have not been verified yet. The Bayesian probability model shows the importance of the uncertainty in the estimation of the reliability parameters. The effect of uncertainty is that the probability distribution of the number of defective canisters becomes flat for larger numbers of canisters compared to the binomial probability distribution in case of known parameter values. In order to reduce the uncertainty, more information is needed from both the reliability of the welding and NDT processes. It would also be important to analyse the role of human factors in these processes since their role is not reflected in typical test data which is used to estimate 'normal process variation'.The reported model should be seen as a tool to quantify the roles of different methods and procedures in the weld inspection process. (orig.)

  5. Spent nuclear fuel Canister Storage Building CDR Review Committee report

    International Nuclear Information System (INIS)

    The Canister Storage Building (CSB) is a subproject under the Spent Nuclear Fuels Major System Acquisition. This subproject is necessary to design and construct a facility capable of providing dry storage of repackaged spent fuels received from K Basins. The CSB project completed a Conceptual Design Report (CDR) implementing current project requirements. A Design Review Committee was established to review the CDR. This document is the final report summarizing that review

  6. CLASSIFICATION OF THE MGR CANISTERED SNF DISPOSAL CONTAINER SYSTEM

    International Nuclear Information System (INIS)

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) canistered spent nuclear fuel disposal container system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333PY ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998)

  7. Development of ultrasonic immersion inspection technique for spent fuel canisters

    International Nuclear Information System (INIS)

    This report summarizes ultrasonic nondestructive testing development for metal matrix supported spent fuel disposal canisters. The work has concentated in two areas: inspection for lack of bond at the shell/matrix interface and inspection for voids in the matrix. The capabilities and limitations of these techniques have been fully established. Unbonded areas as small as 4 mm in diameter and voids 6 mm in diameter, 25 mm deep in the matrix, can readily be detected

  8. Thermal assessment of Shippingport pressurized water reactor blanket fuel assemblies within a multi-canister overpack within the canister storage building

    International Nuclear Information System (INIS)

    A series of analyses were performed to assess the thermal performance characteristics of the Shippingport Pressurized Water Reactor Core 2 Blanket Fuel Assemblies as loaded within a Multi-Canister Overpack within the Canister Storage Building. A two-dimensional finite element was developed, with enough detail to model the individual fuel plates: including the fuel wafers, cladding, and flow channels

  9. Inter-agency Working Group for Airborne Data and Telemetry Systems (IWGADTS)

    Science.gov (United States)

    Webster, Chris; Freudinge, Lawrence; Sorenson, Carl; Myers, Jeff; Sullivan, Don; Oolman, Larry

    2009-01-01

    The Interagency Coordinating Committee for Airborne Geosciences Research and Applications (ICCAGRA) was established to improve cooperation and communication among agencies sponsoring airborne platforms and instruments for research and applications, and to serve as a resource for senior level management on airborne geosciences issues. The Interagency Working Group for Airborne Data and Telecommunications Systems (IWGADTS) is a subgroup to ICCAGRA for the purpose of developing recommendations leading to increased interoperability among airborne platforms and instrument payloads, producing increased synergy among research programs with similar goals, and enabling the suborbital layer of the Global Earth Observing System of Systems.

  10. Canister displacement in KBS-3V. A theoretical study

    International Nuclear Information System (INIS)

    The vertical displacement of the canister in the KBS-3V concept has been studied in a number of consolidation and creep calculations using the FE-program ABAQUS. The creep model used for the calculations is based on Singh-Mitchell's creep theory, which has been adapted to and verified for the buffer material MX-80 in earlier tests. A porous elastic model with Drucker-Prager plasticity has been used for the consolidation calculations. For simplicity the buffer has been assumed to be water saturated from start. In one set of calculations only the consolidation and creep in the buffer without considering the interaction with the backfill was studied. In the other set of calculations the interaction with the backfill was included for a backfill consisting of an in situ compacted mixture of 30% bentonite and 70% crushed rock. The motivation to also study the behaviour of the buffer alone was that the final choice of backfill material and backfilling technique is not made yet so that set of calculations simulates a backfill that has identical properties with the buffer. The two cases represent two extreme cases, one with a backfill that has a low stiffness and the lowest allowable swelling pressure and one that has the highest possible swelling pressure and stiffness. The base cases in the calculations correspond to the final average density at saturation of 2,000 kg/m3 with the expected swelling pressure of 7 MPa in a buffer. In order to study the sensitivity of the system to loss in bentonite mass and swelling pressure seven additional calculations were done with reduced swelling pressure down to 80 kPa corresponding to a density at water saturation of about 1,500 kg/m3. The calculations included two stages, where the first stage models the swelling and consolidation that takes place in order for the buffer to reach force equilibrium. This stage takes place during the saturation phase and the subsequent consolidation/swelling phase. The second stage models the

  11. PAUT inspection of copper canister: Structural attenuation and POD formulation

    Science.gov (United States)

    Gianneo, A.; Carboni, M.; Mueller, C.; Ronneteg, U.

    2016-02-01

    For inspection of thick-walled (50mm) copper canisters for final disposal of spent nuclear fuel in Sweden, ultrasonic inspection using phased array technique (PAUT) is applied. Because thick-walled copper is not commonly used as a structural material, previous experience on Phased Array Ultrasonic Testing for this type of application is limited. The paper presents the progress in understanding the amplitudes and attenuation changes acting on the Phased Array Ultrasonic Testing inspection of copper canisters. Previous studies showed the existence of a low pass filtering effect and a heterogeneous grain size distribution along the depth, thus affecting both the detectability of defects and their "Probability of Detection" determination. Consequently, the difference between the first and second back wall echoes were not sufficient to determine the local attenuation (within the inspection range), which affects the signal response for each individual defect. Experimental evaluation of structural attenuation was carried out onto step-wedge samples cut from full-size, extruded and pierced & drawn, copper canisters. Effective attenuation values has been implemented in numerical simulations to achieve a Multi Parameter Probability of Detection and to formulate a Model Assisted Probability of Detection through a Monte-Carlo extraction model.

  12. Test report for the Sample Transfer Canister system

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, B.D.

    1998-03-04

    The Sample Transfer Canister will be used by the Waste Receiving and Processing Facility (WRAP) for the transport of small quantity liquid samples that meet the definition of a limited quantity radioactive material, and may also be corrosive and/or flammable. Transport of the system will typically be north of the Wye Barricade between WRAP and the 222-S Laboratory. The samples are intended to conform to the US Department of Transportation (DOT) regulation 49 CFR 1 73.4, ``Exceptions for small quantities.`` The regulations require prototype testing of the package to demonstrate the effectiveness of the packaging system. The test procedure consisted of one 24-hour compression test and five drop tests of various orientations onto an unyielding drop pad. The testing of the Sample Transfer Canister System was performed between February 16, 1998 and February 25, 1998. The results of the testing concluded that the Sample Transfer Canister System successfully met the testing requirements with certain modifications to the original system. The modifications included replacing the original eight flange screws which were cold rolled 316 stainless steel with greater strength grade 8 high carbon-carbon steel screws, replacing the initial two glass receptacles with a better performing single glass receptacle which proved not to leak during testing, and adding more bubble wrap as extra padding.

  13. Test programs conducted in support of high-level waste canister fabrication using radioactively contaminated steel

    International Nuclear Information System (INIS)

    The Canister Fabrication Development Activity (CFDA) was developed at the INEL to investigate the potential of fabricating high-level waste (HLW) canisters from radioactively contaminated stainless steel. Metal melting and forming processes were evaluated, and centrifugal casting was the method ultimately chosen for the process to fabricate the cylindrical portion of the HLW canister. Test programs were conducted to determine if a centrifugally cast (CF-3) stainless steel canister is equivalent to a wrought 304L stainless steel canister and to determine what problems might result from melting, casting, machining, and utilizing canisters fabricated from radioactively contaminated steel. A survey was also made of the radioactively contaminated stainless steel volumes in the United States to determine a source of steel for fabrication of the canisters. The results of the survey showed that there are up to 30,000 tons of radioactively contaminated stainless steel that could be available over the next 25 years. The results of these tests showed that centrifugally cast canisters are an acceptable alternative to wrought canisters and that HLW canisters can be successfully fabricated from radioactively contaminated steel

  14. Thermal Dimensioning of SiC Canister Applied A-KRS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Inyoung; Choi, Heuijoo; Yoo, Malgobalgebitnala [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Reducing toxicity and volume of SNF and reusing valuable fissile materials, pyro-processing connected with SFR is under-developing. The A-KRS is composed of 1 cm thick copper cold-spray-coated cast iron canisters, buffer blocks, disposal holes and disposal tunnels, etc. To manufacture disposal canisters, massive un-reusable copper and iron resources are required. Recently, SiC which has high thermal conductivity and good mechanical properties is investigated as a substitute material of metal canister to save metal resources. In this study, thermal performance of SiC canister is investigated and thermal dimensioning of SiC canister applied A-KRS is conducted to estimate thermal applicability of SiC canister in repository. In this study, thermal applicability of SiC as a substitute material of copper and cast iron canister is assessed. Due to higher thermal conductivity of SiC, calculated maximum temperature of SiC applied system is lower than original metal canister applied system and estimated minimum disposal hole pitch of SiC canister system is narrower than metal canister system. But decrease of distance between disposal hole pitch by adopting SiC canister is negligible considering engineering and safety margin. As a result, it is confirmed that SiC could be used as a substitute materials of metal in respect of thermal aspect. To apply SiC canister in deep geological repository, however, thermal-mechanical assessment need to be conducted as future studies. Especially thermally induced stress and intactness of canister must be estimated because SiC is fragile material and its thermal conductivity is highly dependent on temperature.

  15. Thermal Dimensioning of SiC Canister Applied A-KRS

    International Nuclear Information System (INIS)

    Reducing toxicity and volume of SNF and reusing valuable fissile materials, pyro-processing connected with SFR is under-developing. The A-KRS is composed of 1 cm thick copper cold-spray-coated cast iron canisters, buffer blocks, disposal holes and disposal tunnels, etc. To manufacture disposal canisters, massive un-reusable copper and iron resources are required. Recently, SiC which has high thermal conductivity and good mechanical properties is investigated as a substitute material of metal canister to save metal resources. In this study, thermal performance of SiC canister is investigated and thermal dimensioning of SiC canister applied A-KRS is conducted to estimate thermal applicability of SiC canister in repository. In this study, thermal applicability of SiC as a substitute material of copper and cast iron canister is assessed. Due to higher thermal conductivity of SiC, calculated maximum temperature of SiC applied system is lower than original metal canister applied system and estimated minimum disposal hole pitch of SiC canister system is narrower than metal canister system. But decrease of distance between disposal hole pitch by adopting SiC canister is negligible considering engineering and safety margin. As a result, it is confirmed that SiC could be used as a substitute materials of metal in respect of thermal aspect. To apply SiC canister in deep geological repository, however, thermal-mechanical assessment need to be conducted as future studies. Especially thermally induced stress and intactness of canister must be estimated because SiC is fragile material and its thermal conductivity is highly dependent on temperature

  16. Stress analysis of high-level waste canisters: methods, applications, and design data

    International Nuclear Information System (INIS)

    An overview of stress analysis methods, structural design procedures, and design data is presented for canisters used to package solidified wastes, particularly borosilicate glass. In addition, waste processing, canister materials, fabrication and inspection methods, and performance testing are summarized. Sources of stress in canisters are lifting and handling loads, internal pressure, high-temperature filling operations, transient heating and cooling, differential thermal expansions of canisters and glass, and impact loadings from low-probability accidents. Results of case studies that illustrate applicable methods of stress analyses are presented for these sources of stress. Existing sections of ASME Boiler and Pressure Vessel Code are applicable to canister fabrication, but the code does not cover many aspects of canister service loadings. Specialized criteria for minimum wall thicknesses to sustain filling stresses are proposed in this report. Results of a test program to measure the creep strength of candidate canister materials are described. Methods to predict residual stresses in the walls of waste canisters are described; predicted residual stress levels agree with measured stress levels. The consequences of these residual stresses are reviewed, and stress-corrosion cracking is identified as the mode of canister failure affected by residual stresses. Canister-closure design is covered in detail, particularly the welding and inspection of the final closure seal-weld. It is shown that the methods of fracture mechanics and fatigue-crack-growth analyses are valuable tools for evaluating the performance of closure welds in the presence of crack-like defects. Canister performance in process trials at PNL shows the ability of canisters to survive high temperatures and loadings during processing. Impact tests show that a suitably designed canister can sustain severe impacts without loss of intergrity

  17. Inspection of copper canister for spent nuclear fuel by means of ultrasound. Copper characterization, FSW monitoring with acoustic emission and ultrasonic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Engholm, Marcus; Olofsson, Tomas (Uppsala Univ., Signals and Systems, Dept. of Technical Sciences, Uppsala (Sweden))

    2009-08-15

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in 2008. The first part of the report is concerned with aspects related to ultrasonic attenuation of copper material used for canisters. We present results of attenuation measurement performed for a number of samples taken from a real canister; two from the lid and four from different parts of canister wall. Ultrasonic attenuation of the material originating from canister lid is relatively low (less that 50 dB/m) and essentially frequency independent in the frequency range up to 5 MHz. However, for the material originating from the extruded canister part considerable variations of the attenuation are observed, which can reach even 200 dB/m at 3.5 MHz. In the second part of the report we present further development of the concept of the friction stir welding process monitoring by means of multiple sensors formed into a uniform circular array (UCA). After a brief introduction into modeling Lamb waves and UCA we focus on array processing techniques that enable estimating direction of arrival of multimodal Lamb waves. We consider two new techniques, the Capon beamformer and the broadband multiple signal classification technique (MUSIC). We present simulation results illustrating their performance. In the final part we present the phase shift migration algorithm for ultrasonic imaging of layered media using synthetic aperture concept. We start from explaining theory of the phase migration concept, which is followed by the results of experiments performed on copper blocks with drilled holes. We show that the proposed algorithm performs well for immersion inspection of metal objects and yields both improved spatial resolution and suppressed grain noise

  18. Inspection of copper canister for spent nuclear fuel by means of ultrasound. Copper characterization, FSW monitoring with acoustic emission and ultrasonic imaging

    International Nuclear Information System (INIS)

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in 2008. The first part of the report is concerned with aspects related to ultrasonic attenuation of copper material used for canisters. We present results of attenuation measurement performed for a number of samples taken from a real canister; two from the lid and four from different parts of canister wall. Ultrasonic attenuation of the material originating from canister lid is relatively low (less that 50 dB/m) and essentially frequency independent in the frequency range up to 5 MHz. However, for the material originating from the extruded canister part considerable variations of the attenuation are observed, which can reach even 200 dB/m at 3.5 MHz. In the second part of the report we present further development of the concept of the friction stir welding process monitoring by means of multiple sensors formed into a uniform circular array (UCA). After a brief introduction into modeling Lamb waves and UCA we focus on array processing techniques that enable estimating direction of arrival of multimodal Lamb waves. We consider two new techniques, the Capon beamformer and the broadband multiple signal classification technique (MUSIC). We present simulation results illustrating their performance. In the final part we present the phase shift migration algorithm for ultrasonic imaging of layered media using synthetic aperture concept. We start from explaining theory of the phase migration concept, which is followed by the results of experiments performed on copper blocks with drilled holes. We show that the proposed algorithm performs well for immersion inspection of metal objects and yields both improved spatial resolution and suppressed grain noise

  19. Test manufacturing of copper canisters with cast inserts. Assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, C.G

    1998-08-01

    The current design of canisters for the deep repository for spent nuclear fuel consists of an outer corrosion-protective copper casing in the form of a tubular section with lid and bottom and an inner pressure-resistant insert. The insert is designed to be manufactured by casting and inside are channels in which the fuel assemblies are to be placed. Over the last years, a number of full-scale manufacturing tests of all canister components have been carried out. The purpose has been to determine and develop the best manufacturing technique and to establish long-term contacts with the best suppliers of material and technology. Part of the work has involved the developing and implementing of a quality assurance system in accordance with ISO 9001, covering the whole chain from suppliers of material up to and including the delivery of assembled canisters. This report consists of a description of the design of the canister together with current drawings and complementary technical specifications stipulating, among other things, requirements placed on different materials. The different manufacturing methods that have been used are also described and commented on in both text and illustrations. For the manufacturing of copper tubes, the roll-forming of rolled plate to tube halves and longitudinal welding is a method that has been tested on a relatively large number of tubes by now, and that probably can be developed into a functioning production method. However, the very promising outcome of performed tests on seamless tube manufacturing, has resulted in a change in direction in tube manufacturing, focusing on continued testing of extrusion as well as pierce and draw processing in the immediate future. In connection with ongoing operations, new manufacturing tests of tubes with less material thickness will be carried out. Test manufacturing of cast inserts has resulted in the choice of nodular iron as material in the continued work. This improvement in design has resulted

  20. Test manufacturing of copper canisters with cast inserts. Assessment report

    International Nuclear Information System (INIS)

    The current design of canisters for the deep repository for spent nuclear fuel consists of an outer corrosion-protective copper casing in the form of a tubular section with lid and bottom and an inner pressure-resistant insert. The insert is designed to be manufactured by casting and inside are channels in which the fuel assemblies are to be placed. Over the last years, a number of full-scale manufacturing tests of all canister components have been carried out. The purpose has been to determine and develop the best manufacturing technique and to establish long-term contacts with the best suppliers of material and technology. Part of the work has involved the developing and implementing of a quality assurance system in accordance with ISO 9001, covering the whole chain from suppliers of material up to and including the delivery of assembled canisters. This report consists of a description of the design of the canister together with current drawings and complementary technical specifications stipulating, among other things, requirements placed on different materials. The different manufacturing methods that have been used are also described and commented on in both text and illustrations. For the manufacturing of copper tubes, the roll-forming of rolled plate to tube halves and longitudinal welding is a method that has been tested on a relatively large number of tubes by now, and that probably can be developed into a functioning production method. However, the very promising outcome of performed tests on seamless tube manufacturing, has resulted in a change in direction in tube manufacturing, focusing on continued testing of extrusion as well as pierce and draw processing in the immediate future. In connection with ongoing operations, new manufacturing tests of tubes with less material thickness will be carried out. Test manufacturing of cast inserts has resulted in the choice of nodular iron as material in the continued work. This improvement in design has resulted

  1. Kinetic modelling of bentonite-canister interaction. Long-term predictions of copper canister corrosion under oxic and anoxic conditions

    International Nuclear Information System (INIS)

    A new modelling approach for canister corrosion which emphasises chemical processes and diffusion at the bentonite-canister interface is presented. From the geochemical boundary conditions corrosion rates for both an anoxic case and an oxic case are derived and uncertainties thereof are estimated via sensitivity analyses. Time scales of corrosion are assessed by including calculations of the evolution of redox potential in the near field and pitting corrosion. This indicates realistic corrosion depths in the range of 10-7 and 4*10-5 mm/yr, respectively for anoxic and oxic corrosion. Taking conservative estimates, depths are increased by a factor of about 200 for both cases. From these predictions it is suggested that copper canister corrosion does not constitute a problem for repository safety, although certain factors such as temperature and radiolysis have not been explicitly included. The possible effect of bacterial processes on corrosion should be further investigated as it might enhance locally the described redox process. 35 refs, 11 figs, 6 tabs

  2. Thermo-hydro-mechanical mode of canister retrieval test

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. The Canister Retrieval Tests (CRT) is a full scale in situ experiment performed by SKB at Aespoe Laboratory. The experiment involves placing a canister equipped with electrical heaters inside of a deposition hole bored in Aespoe diorite. The deposition hole is 8.55 metres deep and has a diameter of 1.76 metres. The space between canister and the hole is filled with a MX-80 bentonite buffer. The bentonite buffer was installed in form of blocks and rings of bentonite. At the top of the canister bentonite bricks occupy the volume between the canister top surface and the bottom surface of the plug. Due to the bentonite ring size there are two gaps; once between canister and buffer which was left empty and another one between buffer and rock that was filled with bentonite pellets. The top of the hole was sealed with a retaining plug composed of concrete and a steel plate. The plug was secured against heave caused by the swelling clay with nine cables anchored in the rock. An artificial pressurised saturation system was used because the supply of water from the rock was judged to be insufficient for saturating the buffer in a feasible time. A large number of instruments were installed to monitor the test as follows: - Canister - temperature and strain. - Rock mass - temperature and stress. - Retaining system - force and displacement. - Buffer - temperature, relative humidity, pore pressure and total pressure. After dismantling the tests the final dry density and water content of bentonite and pellets were measured. The comprehensive record of the Thermo-Hydro-Mechanical (THM) processes in the buffer give the possibility to investigate theoretical formulations and models, since the results of THM analyses can be checked against experimental data. As part of the European project THERESA, a 2-D axisymmetric model simulation of CRT bas been carried out. Some of the main objectives of this simulation are the study of the

  3. 外企空降兵初期受到的挑战研究%The Challenge of Foreign Airborne Early by Research

    Institute of Scientific and Technical Information of China (English)

    韩九林

    2014-01-01

    Based on management theory (organization and human resource, multinational management, and strategic manag-ement) and market survey (some painful organization reform and culture change activities) for many East-China FIE (foreigner investment enterprise) successful airborne employees strategy in multinational corporate, some key factors which deeply impact airborne employee were identified. Airborne work in an organization is more than 6 months so they basically approved the company and airborne troops will also be working on for a long time, airborne golden time will expand gradually, starting from the second year in a sustainable 5~6 years. The model for airborne employee development and their performance contribution was developed, and believe these studies and the model will also contribute more multination corporate and local corporate.%本文通过调查众多中国华东地区的外商投资企业引进的高级管理人才(空降兵)在本企业怎样经历一系列的组织变革、文化变革等活动的阵痛过程,以及这些变革和阵痛如何深刻影响中国华东地区的外企“空降兵”的成长,同时结合管理学的组织和人力资源理论,跨国公司及战略管理理论并运用归纳总结法得出了“空降兵”人才战略在众多外企不同程度地取得了成功,同时也挖掘出了影响“空降兵”成功的几个关键因素,并在此基础上推导出了相应的“空降兵”的成长和业绩贡献模型。空降兵在一个组织工作6个月以上的话那么他们基本上就认可这家企业,空降兵也将长期工作下去,空降兵的黄金贡献时间也会渐渐展开,从第二年开始可持续5~6年。这些研究对当今外企和国内企业如何改变本企业的相关制度和文化建设来成功实施“空降兵”人才战略促进自己的发展具有重要的指导意义。

  4. Active airborne contamination control using electrophoresis

    International Nuclear Information System (INIS)

    In spite of our best efforts, radioactive airborne contamination continues to be a formidable problem at many of the Department of Energy (DOE) weapons complex sites. For workers that must enter areas with high levels of airborne contamination, personnel protective equipment (PPE) can become highly restrictive, greatly diminishing productivity. Rather than require even more restrictive PPE for personnel in some situations, the Rocky Flats Plant (RFP) is actively researching and developing methods to aggressively combat airborne contamination hazards using electrophoretic technology. With appropriate equipment, airborne particulates can be effectively removed and collected for disposal in one simple process. The equipment needed to implement electrophoresis is relatively inexpensive, highly reliable, and very compact. Once airborne contamination levels are reduced, less PPE is required and a significant cost savings may be realized through decreased waste and maximized productivity. Preliminary ''cold,'' or non-radioactive, testing results at the RFP have shown the technology to be effective on a reasonable scale, with several potential benefits and an abundance of applications

  5. 机载共形的双环微带缝隙全向天线%Research on Airborne Conformal Microstrip Dual-slot Omni-directional Antenna

    Institute of Scientific and Technical Information of China (English)

    许国清; 武伟

    2011-01-01

    机载全向天线不但要满足水平面全向的指标要求,而且要与机体表面共形设计,常规的单极子天线和微带天线均无法满足要求。提出一种双环微带缝隙天线,可以实现机载共形的全向天线。分析了系统对机载天线的要求、双环微带缝隙天线的展宽带宽的方法,并给出了该天线的设计参数和实测结果,实测结果与仿真结果一致,验证了设计方法的正确性。%The airborne omni-directional antenna must have the omni-directional performance in horizontal plane, and also have conformal shape with the surface of airplane. The common monopole antenna and microstrip antenna can not meet the above requirements. The paper presents the mierostrip dual-slot antenna in order to realize the airborne conformal omni-directional antenna. The requirements for the airborne antenna of system and the methods for microslrip dual - slot antenna to broaden the band are analyzed, and then the design parameters and the measurement results are given. The measurement results and the simulation results are consistent, which can validate the design methods.

  6. Production methods and costs of oxygen free copper canisters for nuclear waste disposal

    International Nuclear Information System (INIS)

    The fabrication technology and costs of various manufacturing alternatives to make large copper canisters for spent fuel repository are discussed. The capsule design is based on the TVO's new advanced cold process concept where a steel canister is surrounded by the oxygen free copper canister. This study shows that already at present there exist several possible manufacturing routes, which results in consistently high quality canisters. Hot rolling, bending and EB-welding the seam is the best way to assure the small grain size which is preferable for the best inspectability of the final EB-welded seam of the lid. The same route turns out also to be the most economical. (au)

  7. NDE to Manage Atmospheric SCC in Canisters for Dry Storage of Spent Fuel: An Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Ryan M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pardini, Allan F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cuta, Judith M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Adkins, Harold E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qiao, Hong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larche, Michael R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Diaz, Aaron A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Doctor, Steven R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    This report documents efforts to assess representative horizontal (Transuclear NUHOMS®) and vertical (Holtec HI-STORM) storage systems for the implementation of non-destructive examination (NDE) methods or techniques to manage atmospheric stress corrosion cracking (SCC) in canisters for dry storage of used nuclear fuel. The assessment is conducted by assessing accessibility and deployment, environmental compatibility, and applicability of NDE methods. A recommendation of this assessment is to focus on bulk ultrasonic and eddy current techniques for direct canister monitoring of atmospheric SCC. This assessment also highlights canister regions that may be most vulnerable to atmospheric SCC to guide the use of bulk ultrasonic and eddy current examinations. An assessment of accessibility also identifies canister regions that are easiest and more difficult to access through the ventilation paths of the concrete shielding modules. A conceivable sampling strategy for canister inspections is to sample only the easiest to access portions of vulnerable regions. There are aspects to performing an NDE inspection of dry canister storage system (DCSS) canisters for atmospheric SCC that have not been addressed in previous performance studies. These aspects provide the basis for recommendations of future efforts to determine the capability and performance of eddy current and bulk ultrasonic examinations for atmospheric SCC in DCSS canisters. Finally, other important areas of investigation are identified including the development of instrumented surveillance specimens to identify when conditions are conducive for atmospheric SCC, characterization of atmospheric SCC morphology, and an assessment of air flow patterns over canister surfaces and their influence on chloride deposition.

  8. SITE-94. CAMEO: A model of mass-transport limited general corrosion of copper canisters

    International Nuclear Information System (INIS)

    This report describes the technical basis for the CAMEO code, which models the general, uniform corrosion of a copper canister either by transport of corrodants to the canister, or by transport of corrosion products away from the canister. According to the current Swedish concept for final disposal of spent nuclear fuels, extremely long containment times are achieved by thick (60-100 mm) copper canisters. Each canister is surrounded by a compacted bentonite buffer, located in a saturated, crystalline rock at a depth of around 500 m below ground level. Three diffusive transport-limited cases are identified for general, uniform corrosion of copper: General corrosion rate-limited by diffusive mass-transport of sulphide to the canister surface under reducing conditions; General corrosion rate-limited by diffusive mass-transport of oxygen to the canister surface under mildly oxidizing conditions; General corrosion rate-limited by diffusive mass-transport of copper chloride away from the canister surface under highly oxidizing conditions. The CAMEO code includes general corrosion models for each of the above three processes. CAMEO is based on the well-tested CALIBRE code previously developed as a finite-difference, mass-transfer analysis code for the SKI to evaluate long-term radionuclide release and transport in the near-field. A series of scoping calculations for the general, uniform corrosion of a reference copper canister are presented

  9. 基于供应链管理的机载导航设备库存控制研究%Stock control research of airborne navigation equipment based on SCM

    Institute of Scientific and Technical Information of China (English)

    于仁清; 何波贤; 关越巍; 冯诚; 李启超

    2015-01-01

    In order to realize the aviation security departments of various devices of economic, efficient supply, this paper takes the airborne navigation equipment as the research object, a concrete analysis of the factors affecting the characteristics of inventory control and inventory airborne navigation equipment, discusses some applicable to the management of supply chain inventory control methods. For airborne navigation equipment comprehensive cost is analyzed, established the optimization model for inventory, inventory scheme of minimum supply costs has been. At the end of the inventory model for sensitivity analysis. The simulation results show that, the model is suitable for a wide range, can effectively improve the efficiency of the use of aviation equipment management of funds.%为了实现航空保障部门各种器件经济、高效的供应,本文以机载导航设备为研究对象,具体分析了机载导航设备的库存控制特点和库存影响因素,探讨了几种适用于供应链管理的库存控制方法。对机载导航设备综合成本进行了分析,建立了库存优化模型,得到了最小供应成本的库存方案。最后对库存模型进行了敏感度分析。仿真结果证明,该模型适用范围广,可有效提高航空器材管理经费的使用效益。

  10. Critical review of welding technology for canisters for disposal of spent fuel and high level waste

    International Nuclear Information System (INIS)

    surface. Further research is required for a thorough comparison on which method, NG-GTAW or EBW, generates the lowest residual stress magnitudes for the final design of the canister. Post-weld treatment is recommended to mitigate residual stresses. It is likely that a combination of the reviewed residual stress mitigation techniques will lead to the best technical solution. Post-weld heat treatment of C-Mn steels is typically carried out at 600 oC, for one hour per 25 mm of nominal weld thickness, what might not be suitable for the current application. Local heating redistributes the residual stresses in the region of the weld. This might be an economic option if EB is used for sealing the canister since the equipment would already exist. Various surface treatment methods (shot, ultrasonic, hammer and laser peening) can be applied to modify the residual stresses near the external surface of the canister. Friction welding processes offer considerable opportunities for the mitigation of residual stresses. However, work would be needed to establish the suitability of these processes. More information is necessary on the mechanical properties required, before the impact of the design on the canister can be fully assessed. From a welding process viewpoint the integration of a self-locating spigot joint would be beneficial for controlling penetration and protecting the contents of the canister. Ultrasonic and radiographic inspection techniques are both appropriate for the non-destructive testing of NG-GTAW and EB welds. The currently proposed material ASTM A516 Grade 70 is weldable with both processes; however, grades of steel with similar mechanical properties and corrosion resistance are available with improved weldability and lower impurity contents

  11. COMSOL Multiphysics Model For DWPF Canister Filling, Revision 1

    International Nuclear Information System (INIS)

    This revision is an extension of the COMSOL Multiphysics model previously developed and documented to simulate the temperatures of the glass during pouring a Defense Waste Processing Facility (DWPF) canister. In that report the COMSOL Multiphysics model used a lumped heat loss term derived from experimental thermocouple data based on a nominal pour rate of 228 lbs./hr. As such, the model developed using the lumped heat loss term had limited application without additional experimental data. Therefore, the COMSOL Multiphysics model was modified to simulate glass pouring and subsequent heat input which, replaced the heat loss term in the initial model. This new model allowed for changes in flow geometry based on pour rate as well as the ability to increase and decrease flow and stop and restart flow to simulate varying process conditions. A revised COMSOL Multiphysics model was developed to predict temperatures of the glass within DWPF canisters during filling and cooldown. The model simulations and experimental data were in good agreement. The largest temperature deviations were ∼ 40 C for the 87 inch thermocouple location at 3000 minutes and during the initial cool down at the 51 inch location occurring at approximately 600 minutes. Additionally, the model described in this report predicts the general temperature trends during filling and cooling as observed experimentally. The revised model incorporates a heat flow region corresponding to the glass pouring down the centerline of the canister. The geometry of this region is dependent on the flow rate of the glass and can therefore be used to see temperature variations for various pour rates. The equations used for this model were developed by comparing simulation output to experimental data from a single pour rate. Use of the model will predict temperature profiles for other pour rates but the accuracy of the simulations is unknown due to only a single flow rate comparison.

  12. Upgrade of the NASA 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) to its Full Science Capability of Sun-Sky-Cloud-Trace Gas Spectrometry in Airborne Science Deployments

    Science.gov (United States)

    Johnson, Roy R.; Russell, P.; Dunagan, S.; Redemann, J.; Shinozuka, Y.; Segal-Rosenheimer, M.; LeBlanc, S.; Flynn, C.; Schmid, B.; Livingston, J.

    2014-01-01

    The objectives of this task in the AITT (Airborne Instrument Technology Transition) Program are to (1) upgrade the NASA 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument to its full science capability of measuring (a) direct-beam sun transmission to derive aerosol optical depth spectra, (b) sky radiance vs scattering angle to retrieve aerosol absorption and type (via complex refractive index spectra, shape, and mode-resolved size distribution), (c) zenith radiance for cloud properties, and (d) hyperspectral signals for trace gas retrievals, and (2) demonstrate its suitability for deployment in challenging NASA airborne multiinstrument campaigns. 4STAR combines airborne sun tracking, sky scanning, and zenith pointing with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to air pollution, radiant energy budgets (hence climate), and remote measurements of Earth's surfaces. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements are intended to tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. 4STAR test flights, as well as science flights in the 2012-13 TCAP (Two-Column Aerosol Project) and 2013 SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) have demonstrated that the following are essential for 4STAR to achieve its full science potential: (1) Calibration stability for both direct-beam irradiance and sky radiance, (2) Improved light collection and usage, and (3) Improved flight operability and reliability. A particular challenge

  13. Pitting corrosion on a copper canister; Gropfraetning paa kopparkapsel

    Energy Technology Data Exchange (ETDEWEB)

    Hermansson, H.P.; Beverskog, B. [Studsvik Material AB, Nykoeping, (Sweden)

    1996-02-01

    It is demonstrated that normal pitting can occur during oxidizing conditions in the repository. It is also concluded that a new theory for pitting corrosion has to be developed, as the present theory is not in accordance with all practical and experimental observations. A special variant of pitting, based on the growth of sulfide whiskers, is suggested to occur during reducing conditions. However, such a mechanism needs to be demonstrated experimentally. A simple calculational model of canister corrosion was developed based on the results of this study. 69 refs, 3 figs.

  14. NASA Langley Airborne High Spectral Resolution Lidar Instrument Description

    Science.gov (United States)

    Harper, David B.; Cook, Anthony; Hostetler, Chris; Hair, John W.; Mack, Terry L.

    2006-01-01

    NASA Langley Research Center (LaRC) recently developed the LaRC Airborne High Spectral Resolution Lidar (HSRL) to make measurements of aerosol and cloud distribution and optical properties. The Airborne HSRL has undergone as series of test flights and was successfully deployed on the Megacity Initiative: Local and Global Research Observations (MILAGRO) field mission in March 2006 (see Hair et al. in these proceedings). This paper provides an overview of the design of the Airborne HSRL and descriptions of some key subsystems unique to this instrument.

  15. Airborne Wide Area Imager for Wildfire Mapping and Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An autonomous airborne imaging system for earth science research, disaster response, and fire detection is proposed. The primary goal is to improve information to...

  16. Cleaning Genesis Sample Return Canister for Flight: Lessons for Planetary Sample Return

    Science.gov (United States)

    Allton, J. H.; Hittle, J. D.; Mickelson, E. T.; Stansbery, Eileen K.

    2016-01-01

    Sample return missions require chemical contamination to be minimized and potential sources of contamination to be documented and preserved for future use. Genesis focused on and successfully accomplished the following: - Early involvement provided input to mission design: a) cleanable materials and cleanable design; b) mission operation parameters to minimize contamination during flight. - Established contamination control authority at a high level and developed knowledge and respect for contamination control across all institutions at the working level. - Provided state-of-the-art spacecraft assembly cleanroom facilities for science canister assembly and function testing. Both particulate and airborne molecular contamination was minimized. - Using ultrapure water, cleaned spacecraft components to a very high level. Stainless steel components were cleaned to carbon monolayer levels (10 (sup 15) carbon atoms per square centimeter). - Established long-term curation facility Lessons learned and areas for improvement, include: - Bare aluminum is not a cleanable surface and should not be used for components requiring extreme levels of cleanliness. The problem is formation of oxides during rigorous cleaning. - Representative coupons of relevant spacecraft components (cut from the same block at the same time with identical surface finish and cleaning history) should be acquired, documented and preserved. Genesis experience suggests that creation of these coupons would be facilitated by specification on the engineering component drawings. - Component handling history is critical for interpretation of analytical results on returned samples. This set of relevant documents is not the same as typical documentation for one-way missions and does include data from several institutions, which need to be unified. Dedicated resources need to be provided for acquiring and archiving appropriate documents in one location with easy access for decades. - Dedicated, knowledgeable

  17. The canister durability tests of the in-can type incineration-melting furnace

    International Nuclear Information System (INIS)

    Construction of LEDF (Large equipment dismantling facility) which has the in-can type incineration-melting furnace is planned. The in-can type incineration-melting furnace performs incineration and melting solidification of radioactive waste within the canister made from ceramics, and is characterized by discarding the canister. On the other hand, as for this furnace, the amount of incineration is restrained to canister capacity. Therefore, how to repeat incineration and melting can be considered as a method of increasing the amount of incineration. However, we were anxious about the contact time of the melt and a canister extending, the amount of wear of canister base material increasing, or the heat load (heat cycle) to a canister increasing, and the material intensity of canister base material falling, in order that this method may repeat incineration and melting. Then, the tests used imitation waste, are the conditions which repeat(1,3,10 bathes) the incineration temperature of 1000degC, and the melt temperature of 1500degC, and investigated change of the amount of wear of canister base material and high temperature bend strength. The result is as follows. (1) The amount of wear of canister base material was 0.09 mm/h at the maximum. This result was a sufficiently few value, even if compared with the conventional result (1.0 mm /h). Moreover, the high temperature bend strength of canister base material is about 3 Mpa on an average, and change was not seen before and after the examination to which heat load is applied. (2) These tests showed that the factor which spoils the soundness of a canister was oxidisation degradation of the canister base material by peeling from the base material of Glaze (glass coating material). The portion embrittlement by oxidisation degradation is locally worn down by contact of the melt. (3) Heat-resistant temperature of Glaze is about 1300degC. At the melting operation temperature of 1500degC, and the incineration temperature of

  18. Microwaves in Airborne Surveillance

    Directory of Open Access Journals (Sweden)

    S. Christopher

    2013-03-01

    Full Text Available The use of microwave spectrum is widespread due to its convenience. Therefore, enormous amount of information is available in the free space channel. Obviously, mining this channel for surveillance is quite common. Airborne surveillance offers significant advantages in military operations. This paper talks of the usage of microwaves in airborne surveillance systems, in general, and in the Indian airborne early warning and control (AEW&C System, in particular. It brings out the multiple sub-systems onboard the aircraft comprising the AEW&C system and their spectral coverage. Co-location of several systems has its own problems and resolving them in terms of geometric location, frequency band and time of operation are covered. AEW&C, being an airborne system, has several other requirements  including minimal weight, volume and power considerations, lightning protection, streamlining, structural integrity, thermal management, vibration tolerance, corrosion prevention, erosion resistance, static charge discharge capability, bird strike resilience, etc. The methods adopted to cater to all these requirements in the microwave systems that are used in the AEW&C system are discussed. Paper ultimately speaks of the microwave systems that are designed and developed for the Indian AEW&C system to surmount these unusual constraints.Defence Science Journal, 2013, 63(2, pp.138-144, DOI:http://dx.doi.org/10.14429/dsj.63.4255

  19. Analysis of the research plan and adjustment of American spaceborne and airborne anti-missile laser%美军天基和机载激光反导研究计划及调整分析

    Institute of Scientific and Technical Information of China (English)

    王建华; 张东来; 李小将; 王志恒

    2012-01-01

    将激光技术应用于反导弹领域一直是美军努力的方向,天基激光反导弹武器和机载激光反导弹武器是美国激光反导的两个重要研发项目.本文结合美军强激光武器的发展历史,详细讲述了美军天基和机载激光反导武器的研究计划,分析了天基和机载激光反导弹项目调整的原因,总结了激光反导弹武器的未来发展趋势.%American has always been making effort to apply laser into anti-missile field. Spaceborne and airborne anti missile laser weapons are two important developing directions. Relating to the history, development and adjustment of American anti-missile laser projects,this paper introduces the research status of the U. S. spacebome and airborne an ti-missile laser weapons, especially analyzes the reasons of the project adjustment. Future trend and prospect are also predicted.

  20. International Symposium on Airborne Geophysics

    Science.gov (United States)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  1. Multi Canister Overpack (MCO) Topical Report [SEC 1 THRU 3

    Energy Technology Data Exchange (ETDEWEB)

    LORENZ, B.D.

    2000-05-11

    In February 1995, the US Department of Energy (DOE) approved the Spent Nuclear Fuel (SNF) Project's ''Path Forward'' recommendation for resolution of the safety and environmental concerns associated with the deteriorating SNF stored in the Hanford Site's K Basins (Hansen 1995). The recommendation included an aggressive series of projects to design, construct, and operate systems and facilitates to permit the safe retrieval, packaging, transport, conditions, and interim storage of the K Basins' SNF. The facilities are the Cold VAcuum Drying Facility (CVDF) in the 100 K Area of the Hanford Site and the Canister Storage building (CSB) in the 200 East Area. The K Basins' SNF is to be cleaned, repackaged in multi-canister overpacks (MCOs), removed from the K Basins, and transported to the CVDF for initial drying. The MCOs would then be moved to the CSB and weld sealed (Loscoe 1996) for interim storage (about 40 years). One of the major tasks associated with the initial Path Forward activities is the development and maintenance of the safety documentation. In addition to meeting the construction needs for new structures, the safety documentation for each must be generated.

  2. The P6 truss moves to a payload transport canister

    Science.gov (United States)

    2000-01-01

    In the Space Station Processing Facility, the P6 integrated truss segment is placed in the payload transport canister while workers watch its progress. After being secured in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour's payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station's electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a '''blanket''' that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST.

  3. Plutonium Can-In-Canister-Design Basis Event Analysis

    International Nuclear Information System (INIS)

    The purpose of this document is to perform a preliminary design basis event (DBE) analysis of the immobilized plutonium (can-in-canister) waste form to be referred to in this analysis as high level waste/plutonium (HLW/Pu). The objective of the analysis is to determine any preclosure safety impacts of the waste form on the Monitored Geologic Repository (MGR). The scope of this analysis is to determine the offsite dose consequences and associated frequencies of selected DBEs for systems handling disposable canisters that bound all surface and subsurface off-normal events, and to compare these results against regulatory limits. The results of this work are preliminary and are intended to be used to establish a set of preliminary MGR and waste form requirements, to identify mitigation or prevention options that may be required to meet regulatory limits, and to provide input to the Site Recommendation (SR) report. This document is prepared in accordance with the associated development plan (Civilian Radioactive Waste Management System Management and Operating Contractor [CRWMS M and O] 1999e)

  4. Research on Sensor Networks Deployment in the Combat of Airborne Guard%空降扼守战斗中传感器网络部署

    Institute of Scientific and Technical Information of China (English)

    胡博; 沈军; 罗护

    2011-01-01

    In order to measure wireless sensor networks deployment in combat of airborne guard comprehensively and rationally, a new kind of index system of evaluating a wireless sensor networks deployment is built and the determining method of each factor is given. In this base, the math model of wireless sensor networks is built, the detailed solving algorithm is also given. The simulation shows the model is valid.%为了全面、合理地度量空降扼守战斗中传感器网络部署的优劣,建立了一种新的评价指标体系,给出了指标的具体确定方法;在此基础上建立传感器网络部署的数学模型,给出了算法流程.通过仿真实验证明,模型是有效的.

  5. Test plan for K Basin Sludge Canister and Floor Sampling Device

    Energy Technology Data Exchange (ETDEWEB)

    Meling, T.A.

    1995-03-28

    This document provides the test plan and procedure forms for conducting the functional and operational acceptance testing of the K Basin Sludge Canister and Floor Sampling Device(s). These samplers samples sludge off the floor of the 100K Basins and out of 100K fuel storage canisters.

  6. Thermal-hydraulic assessment of concrete storage cubicle with horizontal 3013 canisters

    International Nuclear Information System (INIS)

    The FIDAP computer code was used to perform a series of analyses to assess the thermal-hydraulic performance characteristics of the concrete plutonium storage cubicles, as modified for the horizontal placement of 3013 canisters. Four separate models were developed ranging from a full height model of the storage cubicle to a very detailed standalone model of a horizontal 3013 canister

  7. The design analysis of ACP-canister for nuclear waste disposal

    International Nuclear Information System (INIS)

    The design basis, dimensioning and some manufacturing aspects of the Advanced Cold Process Canister (ACPC) for the nuclear waste disposal is summarized in the report. The strength of the canister has been evaluated in normal design load condition and in extreme high hydrostatic pressure load condition possibly caused by ice age (orig.)

  8. Thermal behavior of the CANDU type spent fuel dry-storage concrete canister

    International Nuclear Information System (INIS)

    This paper describes a simple model developed for calculation of the temperature distribution and thermal behavior analysis of the spent fuel dry-storage concrete canister. The model takes into account the relevant heat transfer processes and the cylindrical geometry of the concrete canister. (author)

  9. Two-dimensional model of a Space Station Freedom thermal energy storage canister

    Science.gov (United States)

    Kerslake, Thomas W.; Ibrahim, Mounir B.

    1990-01-01

    The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change salt contained in toroidal canisters for thermal energy storage. Results are presented from heat transfer analyses of the phase change salt containment canister. A 2-D, axisymmetric finite difference computer program which models the canister walls, salt, void, and heat engine working fluid coolant was developed. Analyses included effects of conduction in canister walls and solid salt, conduction and free convection in liquid salt, conduction and radiation across salt vapor filled void regions and forced convection in the heat engine working fluid. Void shape, location, growth or shrinkage (due to density difference between the solid and liquid salt phases) were prescribed based on engineering judgement. The salt phase change process was modeled using the enthalpy method. Discussion of results focuses on the role of free-convection in the liquid salt on canister heat transfer performance. This role is shown to be important for interpreting the relationship between ground based canister performance (in l-g) and expected on-orbit performance (in micro-g). Attention is also focused on the influence of void heat transfer on canister wall temperature distributions. The large thermal resistance of void regions is shown to accentuate canister hot spots and temperature gradients.

  10. Performance Specification Shippinpark Pressurized Water Reactor Fuel Drying and Canister Inerting System for PWR Core 2 Blanket Fuel Assemblies Stored within Shippingport Spent Fuel Canisters

    International Nuclear Information System (INIS)

    This specification establishes the performance requirements and basic design requirements imposed on the fuel drying and canister inerting system for Shippingport Pressurized Water Reactor (PWR) Core 2 blanket fuel assemblies (BFAs) stored within Shippingport spent fuel (SSFCs) canisters (fuel drying and canister inerting system). This fuel drying and canister inerting system is a component of the U.S. Department of Energy, Richland Operations Office (RL) Spent Nuclear Fuels Project at the Hanford Site. The fuel drying and canister inerting system provides for removing water and establishing an inert environment for Shippingport PWR Core 2 BFAs stored within SSFCs. A policy established by the U.S. Department of Energy (DOE) states that new SNF facilities (this is interpreted to include structures, systems and components) shall achieve nuclear safety equivalence to comparable U.S. Nuclear Regulatory Commission (NRC)-licensed facilities. This will be accomplished in part by applying appropriate NRC requirements for comparable NRC-licensed facilities to the fuel drying and canister inerting system, in addition to applicable DOE regulations and orders

  11. Canister cryogenic system for cooling germanium semiconductor detectors in borehole and marine probes

    Science.gov (United States)

    Boynton, G.R.

    1975-01-01

    High resolution intrinsic and lithium-drifted germanium gamma-ray detectors operate at about 77-90 K. A cryostat for borehole and marine applications has been designed that makes use of prefrozen propane canisters. Uses of such canisters simplifies cryostat construction, and the rapid exchange of canisters greatly reduces the time required to restore the detector to full holding-time capability and enhances the safety of a field operation where high-intensity 252Cf or other isotopic sources are used. A holding time of 6 h at 86 K was achieved in the laboratory in a simulated borehole probe in which a canister 3.7 cm diameter by 57 cm long was used. Longer holding times can be achieved by larger volume canisters in marine probes. ?? 1975.

  12. Development and demonstration of prototype transportation equipment for emplacing HL vitrified waste canisters into small diameter bored horizontal disposal cells

    International Nuclear Information System (INIS)

    Docking Table, the Disposal Cell Mouth equipment and a full scale (100 m long) test bench, in addition to the Dummy Canister and a second generation Pushing Robot. The successful completion of the test campaign associated with the first prototype P1 confirmed the feasibility of emplacing 2 tonne/0.6 m diameter waste packages (canisters) containing long lived HLW in 40 m long horizontal bore holes (disposal cells) with only minimal annular clearance between the canister and the disposal cell liner. Preliminary testing of the second prototype P2 indicates that proper docking onto the cell mouth, followed by emplacement in 80 to 100 m long disposal cells, is possible. The developed technology is considered to be mature enough for a potential industrial application. The 2 prototypes (the 2nd and 3rd phases of the work) were executed within the framework of the ESDRED Project (Engineering Studies and Demonstration of Repository Designs) which is co-funded by the European Commission as part of the sixth EURATOM Research and Training Framework Programme (FP6) on nuclear energy (2002 - 2006). (author)

  13. SPENT NUCLEAR FUEL (SNF) PROJECT CANISTER STORAGE BUILDING (CSB) MULTI CANISTER OVERPACK (MCO) SAMPLING SYSTEM VALIDATION (OCRWM)

    Energy Technology Data Exchange (ETDEWEB)

    BLACK, D.M.; KLEM, M.J.

    2003-11-17

    Approximately 400 Multi-canister overpacks (MCO) containing spent nuclear fuel are to be interim stored at the Canister Storage Building (CSB). Several MCOs (monitored MCOs) are designated to be gas sampled periodically at the CSB sampling/weld station (Bader 2002a). The monitoring program includes pressure, temperature and gas composition measurements of monitored MCOs during their first two years of interim storage at the CSB. The MCO sample cart (CART-001) is used at the sampling/weld station to measure the monitored MCO gas temperature and pressure, obtain gas samples for laboratory analysis and refill the monitored MCO with high purity helium as needed. The sample cart and support equipment were functionally and operationally tested and validated before sampling of the first monitored MCO (H-036). This report documents the results of validation testing using training MCO (TR-003) at the CSB. Another report (Bader 2002b) documents the sample results from gas sampling of the first monitored MCO (H-036). Validation testing of the MCO gas sampling system showed the equipment and procedure as originally constituted will satisfactorily sample the first monitored MCO. Subsequent system and procedural improvements will provide increased flexibility and reliability for future MCO gas sampling. The physical operation of the sampling equipment during testing provided evidence that theoretical correlation factors for extrapolating MCO gas composition from sample results are unnecessarily conservative. Empirically derived correlation factors showed adequate conservatism and support use of the sample system for ongoing monitored MCO sampling.

  14. Description of Defense Waste Processing Facility reference waste form and canister. Revision 1

    International Nuclear Information System (INIS)

    The Defense Waste Processing Facility (DWPF) will be located at the Savannah River Plant in Aiken, SC, and is scheduled for construction authorization during FY-1984. The reference waste form is borosilicate glass containing approx. 28 wt % sludge oxides, with the balance glass frit. Borosilicate glass was chosen because of its high resistance to leaching by water, its relatively high solubility for nuclides found in the sludge, and its reasonably low melting temperature. The glass frit contains about 58% SiO2 and 15% B2O3. Leachabilities of SRP waste glasses are expected to approach 10-8 g/m2-day based upon 1000-day tests using glasses containing SRP radioactive waste. Tests were performed under a wide variety of conditions simulating repository environments. The canister is filled with 3260 lb of glass which occupies about 85% of the free canister volume. The filled canister will generate approx. 470 watts when filled with oxides from 5-year-old sludge and 15-year-old supernate from the sludge and supernate processes. The radionuclide content of the canister is about 177,000 ci, with a radiation level of 5500 rem/h at canister surface contact. The reference canister is fabricated of standard 24-in.-OD, Schedule 20, 304L stainless steel pipe with a dished bottom, domed head, and a combined lifting and welding flange on the head neck. The overall canister length is 9 ft 10 in. with a 3/8-in. wall thickness. The 3-m canister length was selected to reduce equipment cell height in the DWPF to a practical size. The canister diameter was selected as an optimum size from glass quality considerations, a logical size for repository handling and to ensure that a filled canister with its double containment shipping cask could be accommodated on a legal-weight truck. The overall dimensions and weight appear to be compatible with preliminary assessments of repository requirements. 10 references

  15. Remote Handled WIPP Canisters at Los Alamos National Laboratory Characterized for Retrieval

    International Nuclear Information System (INIS)

    The Los Alamos National Laboratory (LANL) is pursuing retrieval, transportation, and disposal of 16 remote handled transuranic waste canisters stored below ground in shafts since 1994. These canisters were retrievably stored in the shafts to await Nuclear Regulatory Commission certification of the Model Number RH-TRU 72B transportation cask and authorization of the Waste Isolation Pilot Plant (WIPP) to accept the canisters for disposal. Retrieval planning included radiological characterization and visual inspection of the canisters to confirm historical records, verify container integrity, determine proper personnel protection for the retrieval operations, provide radiological dose and exposure rate data for retrieval operations, and to provide exterior radiological contamination data. The radiological characterization and visual inspection of the canisters was performed in May 2006. The effort required the development of remote techniques and equipment due to the potential for personnel exposure to radiological doses approaching 300 R/hr. Innovations included the use of two nested 1.5 meter (m) (5-feet [ft]) long concrete culvert pipes (1.1-m [42 inch (in.)] and 1.5-m [60-in] diameter, respectively) as radiological shielding and collapsible electrostatic dusting wands to collect radiological swipe samples from the annular space between the canister and shaft wall. Visual inspection indicated that the canisters are in good condition with little or no rust, the welded seams are intact, and ten of the canisters include hydrogen gas sampling equipment on the pintle that will have to be removed prior to retrieval. The visual inspection also provided six canister identification numbers that matched historical storage records. The exterior radiological data indicated alpha and beta contamination below LANL release criteria and radiological dose and exposure rates lower than expected based upon historical data and modeling of the canister contents. (authors)

  16. Aespoe Hard Rock Laboratory Canister Retrieval Test. Microorganisms in buffer from the Canister Retrieval Test - numbers and metabolic diversity

    International Nuclear Information System (INIS)

    'Canister Retrieval Test' (CRT) is an experiment that started at Aespoe Hard Rock Laboratory (HRL) 2000. CRT is a part of the investigations which evaluate a possible KBS-3 storage of nuclear waste. The primary aim was to see whether it is possible or not to retrieve a copper canister after storage under authentic KBS-3 conditions. However, CRT also provided a unique opportunity to investigate if bacteria survived in the bentonite buffer during storage. Therefore, in connection to the retrieval of the canister microbiological samples were extracted from the bentonite buffer and the bacterial composition was studied. In this report, microbiological analyses of a total of 66 samples at the C2, R10, R9 and R6 levels in the bentonite from CRT are presented and discussed. By culturing bacteria from the bentonite in specific media the following bacterial parameters were investigated: The total amount of culturable heterotrophic aerobic bacteria, sulphate-reducing bacteria, and bacteria that produce the organic compound acetate (acetogens). The biovolume in the bentonite was determined by detection of the ATP content. In addition, bacteria from the bentonite were cultured in different sulphate-reducing media. In these cultures, the presence of the biotic compounds sulphide and acetate was investigated, since these have potentially negative effect on the copper canister in a KBS-3 repository. The results were to some extent compared to density, water content, and temperature data provided by Clay Technology AB. The results showed that 100-102 viable sulphate-reducing and acetogenic bacteria and 102-104 heterotrophic aerobic bacteria g-1 bentonite were present after five years of storage in the rock. Bacteria with several morphologies could be found in the cultures with bentonite. The most bacteria were detected in the bentonite buffer close to the rock but in a few samples also in bentonite close to the copper canister. When the presence of bacteria in the bentonite is

  17. Aespoe Hard Rock Laboratory Canister Retrieval Test. Microorganisms in buffer from the Canister Retrieval Test - numbers and metabolic diversity

    Energy Technology Data Exchange (ETDEWEB)

    Lydmark, Sara; Pedersen, Karsten (Microbial Analytics Sweden AB (Sweden))

    2011-03-15

    'Canister Retrieval Test' (CRT) is an experiment that started at Aespoe Hard Rock Laboratory (HRL) 2000. CRT is a part of the investigations which evaluate a possible KBS-3 storage of nuclear waste. The primary aim was to see whether it is possible or not to retrieve a copper canister after storage under authentic KBS-3 conditions. However, CRT also provided a unique opportunity to investigate if bacteria survived in the bentonite buffer during storage. Therefore, in connection to the retrieval of the canister microbiological samples were extracted from the bentonite buffer and the bacterial composition was studied. In this report, microbiological analyses of a total of 66 samples at the C2, R10, R9 and R6 levels in the bentonite from CRT are presented and discussed. By culturing bacteria from the bentonite in specific media the following bacterial parameters were investigated: The total amount of culturable heterotrophic aerobic bacteria, sulphate-reducing bacteria, and bacteria that produce the organic compound acetate (acetogens). The biovolume in the bentonite was determined by detection of the ATP content. In addition, bacteria from the bentonite were cultured in different sulphate-reducing media. In these cultures, the presence of the biotic compounds sulphide and acetate was investigated, since these have potentially negative effect on the copper canister in a KBS-3 repository. The results were to some extent compared to density, water content, and temperature data provided by Clay Technology AB. The results showed that 100-102 viable sulphate-reducing and acetogenic bacteria and 102-104 heterotrophic aerobic bacteria g-1 bentonite were present after five years of storage in the rock. Bacteria with several morphologies could be found in the cultures with bentonite. The most bacteria were detected in the bentonite buffer close to the rock but in a few samples also in bentonite close to the copper canister. When the presence of bacteria in the

  18. Modelling the deposition of airborne radionuclides into the urban environment. First report of the VAMP Urban Working Group. Part of the IAEA/CEC co-ordinated research programme on the validation of environmental model predictions (VAMP)

    International Nuclear Information System (INIS)

    A co-ordinated research programme was begun at the IAEA in 1988 with the short title of Validation of Environmental Model Predictions (VAMP). The VAMP Urban Working Group aims to examine, by means of expert review combined with formal validation exercises, modelling for the assessment of the radiation exposure of urban populations through the external irradiation and inhalation pathways. An aim of the studies is to evaluate the lessons learned and to document the improvements in modelling capability as a result of experience gained following the Chernobyl accident. This Technical Document, the first report of the Group, addresses the subject of the deposition of airborne radionuclides into the urban environment. It summarizes not only the present status of modelling in this field, but also the results of a limited validation exercise that was performed under the auspices of VAMP. 42 refs, figs and tabs

  19. Coupled Stochastic Time-Inverted Lagrangian Transport/Weather Forecast and Research/Vegetation Photosynthesis and Respiration Model. Part II; Simulations of Tower-Based and Airborne CO2 Measurements

    Science.gov (United States)

    Eluszkiewicz, Janusz; Nehrkorn, Thomas; Wofsy, Steven C.; Matross, Daniel; Gerbig, Christoph; Lin, John C.; Freitas, Saulo; Longo, Marcos; Andrews, Arlyn E.; Peters, Wouter

    2007-01-01

    This paper evaluates simulations of atmospheric CO2 measured in 2004 at continental surface and airborne receptors, intended to test the capability to use data with high temporal and spatial resolution for analyses of carbon sources and sinks at regional and continental scales. The simulations were performed using the Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by the Weather Forecast and Research (WRF) model, and linked to surface fluxes from the satellite-driven Vegetation Photosynthesis and Respiration Model (VPRM). The simulations provide detailed representations of hourly CO2 tower data and reproduce the shapes of airborne vertical profiles with high fidelity. WRF meteorology gives superior model performance compared with standard meteorological products, and the impact of including WRF convective mass fluxes in the STILT trajectory calculations is significant in individual cases. Important biases in the simulation are associated with the nighttime CO2 build-up and subsequent morning transition to convective conditions, and with errors in the advected lateral boundary condition. Comparison of STILT simulations driven by the WRF model against those driven by the Brazilian variant of the Regional Atmospheric Modeling System (BRAMS) shows that model-to-model differences are smaller than between an individual transport model and observations, pointing to systematic errors in the simulated transport. Future developments in the WRF model s data assimilation capabilities, basic research into the fundamental aspects of trajectory calculations, and intercomparison studies involving other transport models, are possible venues for reducing these errors. Overall, the STILT/WRF/VPRM offers a powerful tool for continental and regional scale carbon flux estimates.

  20. GRYPHON : Airborne lifestyle concept

    OpenAIRE

    Evers, Erik

    2014-01-01

    The result of the project, the Gryphon, is a helicopter concept designed for private use. The intention of the project has been to investigate how safe, personal airborne mobility could be an attractive transportation alternative in the future. As an aspirational concept the goal has been to inspire and show an exciting way to enjoy a modern, sustainable lifestyle close to nature without the need for conventional infrastructure.

  1. Reliability in sealing of canister for spent nuclear fuel

    International Nuclear Information System (INIS)

    The reliability of the system for sealing the canister and inspecting the weld that has been developed for the Encapsulation plant was investigated. In the investigation the occurrence of discontinuities that can be formed in the welds was determined both qualitatively and quantitatively. The probability that these discontinuities can be detected by nondestructive testing (NDT) was also studied. The friction stir welding (FSW) process was verified in several steps. The variables in the welding process that determine weld quality were identified during the development work. In order to establish the limits within which they can be allowed to vary, a screening experiment was performed where the different process settings were tested according to a given design. In the next step the optimal process setting was determined by means of a response surface experiment, whereby the sensitivity of the process to different variable changes was studied. Based on the optimal process setting, the process window was defined, i.e. the limits within which the welding variables must lie in order for the process to produce the desired result. Finally, the process was evaluated during a demonstration series of 20 sealing welds which were carried out under production-like conditions. Conditions for the formation of discontinuities in welding were investigated. The investigations show that the occurrence of discontinuities is dependent on the welding variables. Discontinuities that can arise were classified and described with respect to characteristics, occurrence, cause and preventive measures. To ensure that testing of the welds has been done with sufficient reliability, the probability of detection (POD) of discontinuities by NDT and the accuracy of size determination by NDT were determined. In the evaluation of the demonstration series, which comprised 20 welds, a statistical method based on the generalized extreme value distribution was fitted to the size estimate of the indications

  2. Reliability in sealing of canister for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ronneteg, Ulf [Bodycote Materials Testing AB, Nykoeping (Sweden); Cederqvist, Lars; Ryden, Haakan [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Oeberg, Tomas [Tomas Oeberg Konsult AB, Karlskrona (Sweden); Mueller, Christina [Federal Inst. for Materials Research and Testing, Berlin (Germany)

    2006-06-15

    The reliability of the system for sealing the canister and inspecting the weld that has been developed for the Encapsulation plant was investigated. In the investigation the occurrence of discontinuities that can be formed in the welds was determined both qualitatively and quantitatively. The probability that these discontinuities can be detected by nondestructive testing (NDT) was also studied. The friction stir welding (FSW) process was verified in several steps. The variables in the welding process that determine weld quality were identified during the development work. In order to establish the limits within which they can be allowed to vary, a screening experiment was performed where the different process settings were tested according to a given design. In the next step the optimal process setting was determined by means of a response surface experiment, whereby the sensitivity of the process to different variable changes was studied. Based on the optimal process setting, the process window was defined, i.e. the limits within which the welding variables must lie in order for the process to produce the desired result. Finally, the process was evaluated during a demonstration series of 20 sealing welds which were carried out under production-like conditions. Conditions for the formation of discontinuities in welding were investigated. The investigations show that the occurrence of discontinuities is dependent on the welding variables. Discontinuities that can arise were classified and described with respect to characteristics, occurrence, cause and preventive measures. To ensure that testing of the welds has been done with sufficient reliability, the probability of detection (POD) of discontinuities by NDT and the accuracy of size determination by NDT were determined. In the evaluation of the demonstration series, which comprised 20 welds, a statistical method based on the generalized extreme value distribution was fitted to the size estimate of the indications

  3. Airborne wireless communication systems, airborne communication methods, and communication methods

    Science.gov (United States)

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  4. Critical Issues for Long-Term Nuclear Waste Canister Safety: How 'Good' is 'Good Enough?'

    International Nuclear Information System (INIS)

    The long-term performance of KBS-3 canisters for geologic disposal of spent nuclear fuel will depend upon a number of critical issues. This summary provides an overview of these critical issues, which include near-field environmental conditions, metallurgical composition, fabrication history, long-term performance, and the acceptable margin or 'factor of safety' for this performance. The impact of these factors on the mechanical integrity of KBS-3 canisters is also addressed. The KBS-3 canister design was developed to withstand the environmental conditions predicted to occur following the emplacement of the canisters in Bentonite-filled boreholes (or drifts) in a saturated granite repository horizon. This emplacement scenario was conceived to utilize the advantageous effect of Bentonite swelling, which occurs as the repository re-saturates following final closure. Critical issues that will impact the mechanical integrity of the KBS-3 canisters include potential variation in the water composition (fresh vs. saline), the uniformity of the re-saturation of the Bentonite (and the subsequent strains that will be induced on the canisters), the plastic deformation and creep deformation of the copper, outer barrier under 'normal' conditions, and the potential, significant mechanical deformations that may result from seismically induced canister shear. Another set of parameters that has the potential to significantly impact the mechanical integrity of KBS-3 canisters is the metallurgical composition of the copper, outer barrier and the composition and microstructure of this barrier at the final closure seal. Current KBS-3 design plans call for the use of high-purity copper that is seal with either an electron beam weld or a friction stir weld. The methods of fabrication and inspection for both the base metal of the canister and the closure seal will provide the opportunity for undetected 'flaws' that have the potential to compromise the mechanical integrity of the canister

  5. Uncertainty evaluation in radon concentration measurement using charcoal canister

    International Nuclear Information System (INIS)

    Active charcoal detectors are used for testing the concentration of radon in dwellings. The method of measurement is based on radon adsorption on coal and measurement of gamma radiation of radon daughters. The contributions to the final measurement uncertainty are identified, based on the equation for radon activity concentration calculation. Different methods for setting the region of interest for gamma spectrometry of canisters were discussed and evaluated. The obtained radon activity concentration and uncertainties do not depend on peak area determination method. - Highlights: • Measurement uncertainty budget for radon activity concentration established. • Three different methods for ROI selection are used and compared. • Recommend to use one continuous ROI, less sensitive to gamma spectrometry system instabilities

  6. Acoustic monitoring techniques for corrosion degradation in cemented waste canisters

    International Nuclear Information System (INIS)

    This report describes work carried out to investigate acoustic emission as a monitor of corrosion and degradation of wasteforms where the waste is potentially reactive metal. Electronic monitoring equipment has been designed, built and tested to allow long-term monitoring of a number of waste packages simultaneously. Acoustic monitoring experiments were made on a range of 1 litre cemented Magnox and aluminium samples cast into canisters comparing the acoustic events with hydrogen gas evolution rates and electrochemical corrosion rates. The attenuation of the acoustic signals by the cement grout under a range of conditions has been studied to determine the volume of wasteform that can be satisfactorily monitored by one transducer. The final phase of the programme monitored the acoustic events from full size (200 litre) cemented, inactive, simulated aluminium swarf wastepackages prepared at the AEA waste cementation plant at Winfrith. (Author)

  7. Analysis of sludge from Hanford K East Basin canisters

    Energy Technology Data Exchange (ETDEWEB)

    Makenas, B.J. [ed.] [comp.] [DE and S Hanford, Inc., Richland, WA (United States); Welsh, T.L. [B and W Protec, Inc. (United States); Baker, R.B. [DE and S Hanford, Inc., Richland, WA (United States); Hoppe, E.W.; Schmidt, A.J.; Abrefah, J.; Tingey, J.M.; Bredt, P.R.; Golcar, G.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-09-12

    Sludge samples from the canisters in the Hanford K East Basin fuel storage pool have been retrieved and analyzed. Both chemical and physical properties have been determined. The results are to be used to determine the disposition of the bulk of the sludge and to assess the impact of residual sludge on dry storage of the associated intact metallic uranium fuel elements. This report is a summary and review of the data provided by various laboratories. Although raw chemistry data were originally reported on various bases (compositions for as-settled, centrifuged, or dry sludge) this report places all of the data on a common comparable basis. Data were evaluated for internal consistency and consistency with respect to the governing sample analysis plan. Conclusions applicable to sludge disposition and spent fuel storage are drawn where possible.

  8. Analysis of sludge from Hanford K East Basin canisters

    International Nuclear Information System (INIS)

    Sludge samples from the canisters in the Hanford K East Basin fuel storage pool have been retrieved and analyzed. Both chemical and physical properties have been determined. The results are to be used to determine the disposition of the bulk of the sludge and to assess the impact of residual sludge on dry storage of the associated intact metallic uranium fuel elements. This report is a summary and review of the data provided by various laboratories. Although raw chemistry data were originally reported on various bases (compositions for as-settled, centrifuged, or dry sludge) this report places all of the data on a common comparable basis. Data were evaluated for internal consistency and consistency with respect to the governing sample analysis plan. Conclusions applicable to sludge disposition and spent fuel storage are drawn where possible

  9. Stardust is revealed after a protective canister is removed

    Science.gov (United States)

    1999-01-01

    At Launch Pad 17-A, Cape Canaveral Air Station, workers watch as the protective canister is lifted from the Stardust spacecraft. Preparations continue for liftoff of the Boeing Delta II rocket carrying Stardust on Feb. 6. Stardust is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon- based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006.

  10. Development of remote-operating welding system of canister cap

    International Nuclear Information System (INIS)

    The authors have developed a remote-operating welding system for mock-up test facilities of vitrification process of high level radio-active waste of nuclear fuel. This system enables cap sealing welding of canister to accomodate a vitrified waste. Supposing the operation is conducted under high level radio-active environment, the system has been considered to be well handled remotely by adopting guide-pin connection of the welding head, and also developing the automatic electrode exchanger, detecting method of work piece set location by means of the electrode itself as a sensor, slipping joint of power cable (work piece side) and shielding gas quality checking method by measuring an arc voltage changes. To ensure high quality welding, welding conditions were fully examined and established according to temperatures of the work piece before welding. (author)

  11. Procedural development for nuclear waste canister impact testing

    International Nuclear Information System (INIS)

    Double containment requirements for transporting nuclear waste in glass form are costly and may not be necessary for some waste forms. To allow single containment, a procedure for examining particle size distribution and the amount of respirable particles generated under accident conditions was needed. A statistically designed experiment was conducted to examine the effects of glass temperature, fill rate and canister drop orientation upon the amount of sub-ten micron particles generated under simulated accident conditions. Measuring such small particles is somewhat inaccurate because of material loss in handling. By assuming a lognormal particle size distribution, the amount of sub-ten micron particles was estimated from the results for the larger measurable particles. Analyses revealed no temperature or fill rate effect but indicated that the amount of respirable particles is affected by drop orientation. This led to identification of a worst case drop orientation to be used in qualification testing. 4 refs., 2 figs

  12. STS-100 MPLM Raffaello is moved to the payload canister

    Science.gov (United States)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - Workers inside the payload canister wait for the Multi-Purpose Logistics Module Raffaello to be lowered inside. It joins the Canadian robotic arm, SSRMS, already in place. Both elements are part of the payload on mission STS- 100 to the International Space Station. Raffaello carries six system racks and two storage racks for the U.S. Lab. The arm has seven motorized joints and is capable of handling large payloads and assisting with docking the Space Shuttle. The SSRMS is self- relocatable with a Latching End Effector so it can be attached to complementary ports spread throughout the Station'''s exterior surfaces. Launch of STS-100 is scheduled for April 19, 2001 at 2:41 p.m. EDT from Launch Pad 39A.

  13. Multi-canister overpack closure operations location study

    International Nuclear Information System (INIS)

    The Spent Nuclear Fuel Path Forward Project (SNF Project) has been established to develop engineered methods for the expedited removal of the irradiated uranium fuel from the K East (KE) and K West (KW) Basins. As specified by the SNF Project, the SNF will be removed from the K Basins, conditioned for dry storage and placed in a long term interim storage facility located in the 200 East Area. The SNF primarily consists of Zircaloy-2 clad uranium fuel discharged from the N-Reactor. A small portion of the SNF is Single Pass Reactor (SPR) Fuel, which is aluminum clad uranium fuel. The SNF will be loaded into Multi-Canister Overpacks (MCOs) at the K Basins, transferred to the Cold Vacuum Drying (CVD) facility for initial fuel conditioning, and transported to the Canister Storage Building (CSB) for staging, final fuel conditioning, and dry storage. The MCO is a transportation, conditioning, and storage vessel. The MCO consists of a 24 inch pipe with a welded bottom closure and a top closure that is field welded after the MCO is loaded with SNF. The MCO is handled and transported in the vertical orientation during all operations. Except for operations within the CSB, the MCO is always within the transportation cask which primarily provides radiological shielding and structural protection of the MCO. The MCO closure operations location study provides a relative evaluation of location options at the K Basins and the CVD Facility and recommends that the MCO closure weld be performed, inspected, and repaired at the CVD Facility

  14. User definition and mission requirements for unmanned airborne platforms, revised

    Science.gov (United States)

    Kuhner, M. B.; Mcdowell, J. R.

    1979-01-01

    The airborne measurement requirements of the scientific and applications experiment user community were assessed with respect to the suitability of proposed strawman airborne platforms. These platforms provide a spectrum of measurement capabilities supporting associated mission tradeoffs such as payload weight, operating altitude, range, duration, flight profile control, deployment flexibility, quick response, and recoverability. The results of the survey are used to examine whether the development of platforms is warranted and to determine platform system requirements as well as research and technology needs.

  15. Production methods and costs of oxygen free copper canisters for nuclear waste disposal

    International Nuclear Information System (INIS)

    The fabrication technology and costs of various manufacturing alternatives to make large copper canisters for disposal of spent nuclear fuel from reactors of Teollisuuden Voima Oy (TVO) and Imatran Voima Oy (IVO) are discussed. The canister design is based on the Posiva's concept where solid insert structure is surrounded by the copper mantle. During recent years Outokumpu Copper Products and Posiva have continued their work on development of the copper canisters. Outokumpu Copper Products has also increased capability to manufacture these canisters. In the study the most potential manufacturing methods and their costs are discussed. The cost estimates are based on the assumption that Outokumpu will supply complete copper mantles. At the moment there are at least two commercially available production methods for copper cylinder manufacturing. These routes are based on either hot extrusion of the copper tube or hot rolling, bending and EB-welding of the tube. Trial fabrications has been carried out with both methods for the full size canisters. These trials of the canisters has shown that both the forming from rolled plate and the extrusion are possible methods for fabricating copper canisters on a full scale. (orig.) (26 refs.)

  16. Molecular Contamination on Anodized Aluminum Components of the Genesis Science Canister

    Science.gov (United States)

    Burnett, D. S.; McNamara, K. M.; Jurewicz, A.; Woolum, D.

    2005-01-01

    Inspection of the interior of the Genesis science canister after recovery in Utah, and subsequently at JSC, revealed a darkening on the aluminum canister shield and other canister components. There has been no such observation of film contamination on the collector surfaces, and preliminary spectroscopic ellipsometry measurements support the theory that the films observed on the anodized aluminum components do not appear on the collectors to any significant extent. The Genesis Science Team has made an effort to characterize the thickness and composition of the brown stain and to determine if it is associated with molecular outgassing.Detailed examination of the surfaces within the Genesis science canister reveals that the brown contamination is observed to varying degrees, but only on surfaces exposed in space to the Sun and solar wind hydrogen. In addition, the materials affected are primarily composed of anodized aluminum. A sharp line separating the sun and shaded portion of the thermal closeout panel is shown. This piece was removed from a location near the gold foil collector within the canister. Future plans include a reassembly of the canister components to look for large-scale patterns of contamination within the canister to aid in revealing the root cause.

  17. Equipment for deployment of canisters with spent nuclear fuel and bentonite buffer in horizontal holes

    International Nuclear Information System (INIS)

    The study presents the predesign of equipment for the deployment of canisters in long horizontal holes. The canisters are placed in the centre of the hole and are surrounded by a bentonite buffer. In thE study the canisters are assumed to have a diameter of 1.6 m and a length of 5.9 m, including the hemispherical ends. Their total weight is 60 tonnes. The bentonite buffer after homogenization is 400 mm thick, making a total package diameter of 2.4 m. The deployment system consists of four wagons for handling The canisters and the bentonite blocks. To ensure safe emplacement, every part is installed separately in its final position. This also makes it possible to use small clearances between the canisters and the bentonite blocks and between the blocks and the rock wall. With small clearances, backfilling can be avoided. Another basic design idea is that the wagons are equipped with wheels, which are in direct contact with the rock walls. Thus, rails, which have to be removed as the deployment progresses, are unnecessary. To minimize the time taken for deploying one canister, the wagons are designed so that only three trips from the service area to the deposit area are needed. Due to the radiation in the vicinity of the canisters, the wagons have to be teleoperated

  18. Equipment for deployment of canisters with spent nuclear fuel and bentonite buffer in horisontal holes

    International Nuclear Information System (INIS)

    This study presents the predesign of equipment for the deployment of canisters in long horizontal holes. The canisters are placed in the centre of the hole and are surrounded by a bentonite buffer. In this study the canisters are assumed to have a diameter of 1.6 m and a length of 5.9 m, including the hemispherical ends. Their total weight is 60 tonnes. The bentonite buffer after homogenization is 400 mm thick, making a total package diameter of 2.4 m. The deployment system consists of four wagons for handling the canisters and the bentonite blocks. To ensure safe emplacement, every part is installed separately in its final position. This also makes it possible to use small clearances between the canisters and the bentonite blocks and between the blocks and the rock wall. With small clearances, backfilling can be avoided. Another basic design idea is that the wagons are equipped with wheels, which are in direct contact with the rock walls. Thus, rails, which have to be removed as the deployment progresses, are unnecessary. To minimize the time taken for deploying one canister, the wagons are designed so that only three trips from the service area to the deposit area are needed. Due to the radiation in the vicinity of the canisters, the wagons have to be teleoperated. (au)

  19. Demonstrative drop tests of transport and storage full-scale canisters with high corrosion-resistant material

    International Nuclear Information System (INIS)

    The concrete modular dry storage technologies are becoming widely-used, aiming at better economic performances. In 1997, we commenced a research program of the demonstration test for interim storage of spent fuel, mainly involving concrete cask storage technologies, particularly aiming at the realization of dry storage away from reactor in 2010. Key issues of this research include safety standards in operation and maintenance during storage and unloading/loading for transportation, long-term integrity of metal canister and concrete materials, and so on. To propose safety standards for concrete cask structures, systems, components, the demonstration program for qualification of concrete cask performance under the normal, ab-normal and accidental events was successfully terminated. Especially, due to the lack of the experimental studies related to tipping-over or drop event scenarios, in this research program, the demonstration drop test program using double-lid welded multi-purpose canister (MPCs) was executed, with the aim of obtaining basic data for regulating safety. This paper introduces the summary of the CRIEPI's drop test program

  20. Analysis for Eccentric Multi Canister Overpack (MCO) Drops at the Canister Storage Building (CSB) (CSB-S-0073)

    International Nuclear Information System (INIS)

    The purpose of this report is to investigate the potential for damage to the multi-canister overpack (MCO) during impact from an eccentric accidental drop onto the standard storage tube, overpack storage tube, service station or sampling/weld station. Damage to the storage tube and sample/weld station is beyond the scope of this report. The results of this analysis are required to show the following: (1) If a breach resulting in unacceptable release of contamination could occur in the MCO. (2) If the dropped MCO could become stuck in the storage tube after the drop. (3) Maximum deceleration of the spent nuclear fuel baskets. The model appropriate for the standard storage tubes with the smaller gap is the basis for the analysis and results reported herein in this SNF-5204, revision 2 report. Revision 1 of this report is based on a model that includes the larger gap appropriate for the overpack tubes

  1. Plutonium Immobilization Project - Can-In-Canister Hardware Development/Selection

    International Nuclear Information System (INIS)

    This paper covers the design, development and testing of the magazines (cylinders containing cans of plutonium-ceramic pucks) and the rack that holds them in place inside the waste glass canister. Several magazine and rack concepts were evaluated to produce a design that gives the optimal balance between resistance to thermal degradation and facilitation of remote handling. This paper also reviews the effort to develop a jointed robotic arm that can remotely load seven magazines into defined locations inside a stationary canister working only through the 4 inch (102mm) diameter canister throat

  2. Preliminary design specification for Department of Energy standardized spent nuclear fuel canisters. Volume 2: Rationale document

    International Nuclear Information System (INIS)

    This document (Volume 2) is a companion document to a preliminary design specification for the design of canisters to be used during the handling, storage, transportation, and repository disposal of Department of Energy (DOE) spent nuclear fuel (SNF). This document contains no procurement information, such as the number of canisters to be fabricated, explicit timeframes for deliverables, etc. However, this rationale document does provide background information and design philosophy in order to help engineers better understand the established design criteria (contained in Volume 1 respectively) necessary to correctly design and fabricate these DOE SNF canisters

  3. Spectrum research of airborne opto-electronic reconnaissance platforms EMC environment%机载光电侦察平台EMC环境频谱研究

    Institute of Scientific and Technical Information of China (English)

    王增发; 孙丽娜; 孙学军

    2013-01-01

    为了解决机载光电平台电磁辐射超标、干扰其他电子设备的问题,寻找光电平台的辐射发射和传导发射源,分析辐射发射和传导发射超标的产生机理,为光电平台进行电磁兼容设计提供理论指导.分析了周期性脉冲信号以及与实际电子线路中时钟信号、数字信号最接近的周期梯形脉冲信号的频谱结构,周期脉冲信号和周期梯形脉冲信号含有大量的高频频谱分量,信号变化越快,即脉冲的上升/下降时间越快,信号的高频分量越多.根据周期脉冲信号的这一特点,分析了光电侦察平台各组成部分的信号频谱特点,找到了光电平台的主要辐射发射和传导发射源.用频谱分析仪测试光电侦察平台各组成部分的电磁辐射情况,与理论分析情况一致,根据辐射源的频谱发射特点,针对不同的发射源采取了切实有效的改进措施,使光电侦察平台满足GJB151A-97中规定的海军飞机舱外设备电磁辐射发射要求.%In order to solve airborne opto-electronic platform electromagnetic radiation exceeding interfere with other electronic equipment, looking for radiation and conduction emission source of the airborne opto-electronic reconnaissance platform , analyze the generation mechanism of radiation and conduction emission exceeding, to provide theoretical guidance for EMC for opto-electronic platform. This article analyzes the periodic pulse signal and the clock signal with the actual electronic circuits, the spectral structure of the digital signal closest periodic trapezoidal pulse signal, a periodic pulse signal and periodic trapezoidal pulse signal contains a lot of high-frequency spectral component, the faster the signal changes the faster, i. e. the pulse rise/fall time, the more high-frequency component of the signal. According to this feature of the periodic pulse signal, analyzes the signal spectral characteristics, of the various components of the optical

  4. Theoretical study and evaluation of the state of knowledge of fractive and activity release of HTGR-fuel elements due to repository accidents with canister drop

    International Nuclear Information System (INIS)

    The state of knowledge of the fracture of HTGR-fuel elements by mechanical impact and of activity release terms of repository accidents with canister drop is evaluated. The research works of fuel element development, reactor safety of HTGR and HTGR-fuel element reprocessing are analysed. Source terms to repository accidents based on the current knowledge are estimated and open questions are identified. (orig.) With 54 tabs., 45 figs

  5. Airborne radioactive contamination monitoring

    International Nuclear Information System (INIS)

    Current technologies for the detection of airborne radioactive contamination do not provide real-time capability. Most of these techniques are based on the capture of particulate matter in air onto filters which are then processed in the laboratory; thus, the turnaround time for detection of contamination can be many days. To address this shortcoming, an effort is underway to adapt LRAD (Long-Range-Alpha-Detection) technology for real-time monitoring of airborne releases of alpa-emitting radionuclides. Alpha decays in air create ionization that can be subsequently collected on electrodes, producing a current that is proportional to the amount of radioactive material present. Using external fans on a pipe containing LRAD detectors, controlled samples of ambient air can be continuously tested for the presence of radioactive contamination. Current prototypes include a two-chamber model. Sampled air is drawn through a particulate filter and then through the first chamber, which uses an electrostatic filter at its entrance to remove ambient ionization. At its exit, ionization that occurred due to the presence of radon is collected and recorded. The air then passes through a length of pipe to allow some decay of short-lived radon species. A second chamber identical to the first monitors the remaining activity. Further development is necessary on air samples without the use of particulate filtering, both to distinguish ionization that can pass through the initial electrostatic filter on otherwise inert particulate matter from that produced through the decay of radioactive material and to separate both of these from the radon contribution. The end product could provide a sensitive, cost-effective, real-time method of determining the presence of airborne radioactive contamination

  6. Airborne field strength monitoring

    Directory of Open Access Journals (Sweden)

    J. Bredemeyer

    2007-06-01

    Full Text Available In civil and military aviation, ground based navigation aids (NAVAIDS are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000 by the International Civil Aviation Organization (ICAO. One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz, the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA accelerated method of moments (MoM using a complex geometric model of the aircraft. First results will be presented in this paper.

  7. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Ultrasonic imaging, FSW monitoring with acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Olofsson, Tomas; Wennerstroem, Erik [Uppsala Univ., Dept. of Technical Sciences (Sweden). Signals and Systems

    2006-12-15

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2005/2006. In the first part of the report we propose a concept of monitoring of the friction stir welding (FSW) process by means of acoustic emission (AE) technique. First, we introduce the AE technique and then we present the principle of the system for monitoring the FSW process in cylindrical symmetry specific for the SKB canisters. We propose an omnidirectional circular array of ultrasonic transducers for receiving the AE signals generated by the FSW tool and the releases of the residual stress at canister's circumference. Finally, we review the theory of uniform circular arrays. The second part of the report is concerned with synthetic aperture focusing technique (SAFT) characterized by enhanced spatial resolution. We evaluate three different approaches to perform imaging with less computational cost than that of the extended SAFT (ESAFT) method proposed in our previous reports. First, a sparse version of ESAFT is presented, which solves the reconstruction problem only for a small set of the most probable scatterers in the image. A frequency domain the {omega}-k SAFT algorithm, which relies on the far-field approximation is presented in the second part. Finally, a detailed analysis of the most computationally intense step in the ESAFT and the sparse 2D deconvolution is presented. In the final part of the report we introduce basics of the 3D ultrasonic imaging that has a great potential in the inspection of the FSW welds. We discuss in some detail the three interrelated steps involved in the 3D ultrasonic imaging: data acquisition, 3D reconstruction, and 3D visualization.

  8. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Ultrasonic imaging, FSW monitoring with acoustic emission

    International Nuclear Information System (INIS)

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2005/2006. In the first part of the report we propose a concept of monitoring of the friction stir welding (FSW) process by means of acoustic emission (AE) technique. First, we introduce the AE technique and then we present the principle of the system for monitoring the FSW process in cylindrical symmetry specific for the SKB canisters. We propose an omnidirectional circular array of ultrasonic transducers for receiving the AE signals generated by the FSW tool and the releases of the residual stress at canister's circumference. Finally, we review the theory of uniform circular arrays. The second part of the report is concerned with synthetic aperture focusing technique (SAFT) characterized by enhanced spatial resolution. We evaluate three different approaches to perform imaging with less computational cost than that of the extended SAFT (ESAFT) method proposed in our previous reports. First, a sparse version of ESAFT is presented, which solves the reconstruction problem only for a small set of the most probable scatterers in the image. A frequency domain the ω-k SAFT algorithm, which relies on the far-field approximation is presented in the second part. Finally, a detailed analysis of the most computationally intense step in the ESAFT and the sparse 2D deconvolution is presented. In the final part of the report we introduce basics of the 3D ultrasonic imaging that has a great potential in the inspection of the FSW welds. We discuss in some detail the three interrelated steps involved in the 3D ultrasonic imaging: data acquisition, 3D reconstruction, and 3D visualization

  9. Compositae dermatitis from airborne parthenolide

    DEFF Research Database (Denmark)

    Paulsen, E; Christensen, Lars Porskjær; Andersen, Klaus Ejner

    2007-01-01

    BACKGROUND: Compositae dermatitis confined to exposed skin has often been considered on clinical grounds to be airborne. Although anecdotal clinical and plant chemical reports suggest true airborne allergy, no proof has been procured. Feverfew (Tanacetum parthenium) is a European Compositae plant...

  10. Airborne transmission of lyssaviruses.

    Science.gov (United States)

    Johnson, N; Phillpotts, R; Fooks, A R

    2006-06-01

    In 2002, a Scottish bat conservationist developed a rabies-like disease and subsequently died. This was caused by infection with European bat lyssavirus 2 (EBLV-2), a virus closely related to Rabies virus (RABV). The source of this infection and the means of transmission have not yet been confirmed. In this study, the hypothesis that lyssaviruses, particularly RABV and the bat variant EBLV-2, might be transmitted via the airborne route was tested. Mice were challenged via direct introduction of lyssavirus into the nasal passages. Two hours after intranasal challenge with a mouse-adapted strain of RABV (Challenge Virus Standard), viral RNA was detectable in the tongue, lungs and stomach. All of the mice challenged by direct intranasal inoculation developed disease signs by 7 days post-infection. Two out of five mice challenged by direct intranasal inoculation of EBLV-2 developed disease between 16 and 19 days post-infection. In addition, a simple apparatus was evaluated in which mice could be exposed experimentally to infectious doses of lyssavirus from an aerosol. Using this approach, mice challenged with RABV, but not those challenged with EBLV-2, were highly susceptible to infection by inhalation. These data support the hypothesis that lyssaviruses, and RABV in particular, can be spread by airborne transmission in a dose-dependent manner. This could present a particular hazard to personnel exposed to aerosols of infectious RABV following accidental release in a laboratory environment. PMID:16687600

  11. Airborne monitoring system

    International Nuclear Information System (INIS)

    A complete system for tracking, mapping, and performing a composition analysis of a radioactive plume and contaminated area was developed at the NRCN. The system includes two major units : An airborne unit for monitoring and a ground station for analyzing. The airborne unit is mounted on a helicopter and includes file following. Four radiation sensor, two 2'' x 2'' Nal (Tl) sensors horizontally separated by lead shield for mapping and spectroscopy, and two Geiger Mueller (GM) tubes as part of the safety system. A multichannel analyzer card is used for spectroscopy. A navigation system, based on GPS and a barometric altitude meter, is used to locate the plume or ground data. The telemetry system, consisting of a transceiver and a modem, transfers all the data in real time to the ground station. An industrial PC (Field Works) runs a dedicated C++ Windows application to manage the acquired data. An independent microprocessor based backup system includes a recorder, display, and key pad. The ground station is based on an industrial PC, a telemetry system, a color printer and a modem to communicate with automatic meteorology stations in the relevant area. A special software controls the ground station. Measurement results are analyzed in the ground station to estimate plume parameters including motion, location, size, velocity, and perform risk assessment. (authors)

  12. 基于机载平台的干涉仪测向技术研究%Research on interferometer DF technique based on airborne platform

    Institute of Scientific and Technical Information of China (English)

    胡知非; 盛骥松

    2013-01-01

    The problems that the interferometer DF technology is facing in the practical engineering is that the maneuvering platform space is limited and multiple signals can not be distinguished at the same time. An corresponding solution was proposed after the problems were studied. According to the characteristics of the airborne platform,a five elements uniform elliptic array model is given. The influence of elliptical array aperture and the wavelength ratio on the estimation performance of the incident angle are analyzed. A conclusion that increasing array aperture in a certain range can improve the accuracy of direction finding was achieved. The virtual array element is introduced by using the four order cumulant MUSIC algorithm to solve the problem of increasing aperture on the limited platform. Simulation results show that this algorithm is effective in the interferometer elliptical array model.%  围绕工程实际中干涉仪测向技术面临着布阵平台空间有限、不能同时对多个信号分辨的问题进行研究,提出相应的解决办法。首先根据机载平台特点,给出了5元均匀椭圆阵列模型,分析了椭圆阵列孔径与波长之比对入射角度的估计性能影响,得出了在一定孔径范围内增大阵列孔径能提高测向精度的结论;接着采用四阶累积量MUSIC算法引入虚拟阵元来解决受限平台上增大孔径的问题,仿真验证了此算法在干涉仪椭圆阵列模型中的有效性。

  13. High-level waste canister storage final design, installation, and testing. Topical report

    International Nuclear Information System (INIS)

    This report is a description of the West Valley Demonstration Project's radioactive waste storage facility, the Chemical Process Cell (CPC). This facility is currently being used to temporarily store vitrified waste in stainless steel canisters. These canisters are stacked two-high in a seismically designed rack system within the cell. Approximately 300 canisters will be produced during the Project's vitrification campaign which began in June 1996. Following the completion of waste vitrification and solidification, these canisters will be transferred via rail or truck to a federal repository (when available) for permanent storage. All operations in the CPC are conducted remotely using various handling systems and equipment. Areas adjacent to or surrounding the cell provide capabilities for viewing, ventilation, and equipment/component access

  14. Canister storage building (CSB) safety analysis report phase 3:safety analysis documentation supporting CSB construction

    International Nuclear Information System (INIS)

    The purpose of this report is to provide an evaluation of the Canister Storage Building (CSB) design criteria, the design's compliance with the applicable criteria, and the basis for authorization to proceed with construction of the CSB

  15. Canister design concepts for disposal of spent fuel and high level waste

    International Nuclear Information System (INIS)

    As part of its long-term plans for development of a repository for spent fuel (SF) and high level waste (HLW), Nagra is exploring various options for the selection of materials and design concepts for disposal canisters. The selection of suitable canister options is driven by a series of requirements, one of the most important of which is providing a minimum 1000 year lifetime without breach of containment. One candidate material is carbon steel, because of its relatively low corrosion rate under repository conditions and because of the advanced state of overall technical maturity related to construction and fabrication. Other materials and design options are being pursued in parallel studies. The objective of the present study was to develop conceptual designs for carbon steel SF and HLW canisters along with supporting justification. The design process and outcomes result in design concepts that deal with all key aspects of canister fabrication, welding and inspection, short-term performance (handling and emplacement) and long-term performance (corrosion and structural behaviour after disposal). A further objective of the study is to use the design process to identify the future work that is required to develop detailed designs. The development of canister designs began with the elaboration of a number of design requirements that are derived from the need to satisfy the long-term safety requirements and the operational safety requirements (robustness needed for safe handling during emplacement and potential retrieval). It has been assumed based on radiation shielding calculations that the radiation dose rate at the canister surfaces will be at a level that prohibits manual handling, and therefore a hot cell and remote handling will be needed for filling the canisters and for final welding operations. The most important canister requirements were structured hierarchically and set in the context of an overall design methodology. Conceptual designs for SF canisters

  16. Evaluation of radiation shielding performance of disposal canister storing PWR spent fuels

    International Nuclear Information System (INIS)

    Radiation shielding is an important factor in designing disposal canister containing spent nuclear fuel(SNF), because intensity for photon and neutron in SNF assembly after 40 year cooling is still high, ∼1015 photons/sec and ∼108 neutrons/sec, respectively. Radiation escaping from the disposal canister emplaced in repository may cause radiolysis and form oxidizing chemical species. This may result in corrosion of canister itself to proceed. Personnel exposure is also important concern. If shielding performance of canister can reduce radiation level to 1mRem/hr, human access without a control on duration and frequency of exposure may be possible. This provides the benefit of more direct human control of waste packages handling and emplacement operations. In this paper, the radiation shielding performance was evaluated based on current reference disposal system to check absorbed dose for radiolysis, and exposure dose for radiation protection

  17. High-level waste canister storage final design, installation, and testing. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Connors, B.J.; Meigs, R.A.; Pezzimenti, D.M.; Vlad, P.M.

    1998-04-01

    This report is a description of the West Valley Demonstration Project`s radioactive waste storage facility, the Chemical Process Cell (CPC). This facility is currently being used to temporarily store vitrified waste in stainless steel canisters. These canisters are stacked two-high in a seismically designed rack system within the cell. Approximately 300 canisters will be produced during the Project`s vitrification campaign which began in June 1996. Following the completion of waste vitrification and solidification, these canisters will be transferred via rail or truck to a federal repository (when available) for permanent storage. All operations in the CPC are conducted remotely using various handling systems and equipment. Areas adjacent to or surrounding the cell provide capabilities for viewing, ventilation, and equipment/component access.

  18. Demonstration of a Solution Film Leak Test Technique and Equipment for the S00645 Canister Closure

    International Nuclear Information System (INIS)

    The purpose of this effort was to demonstrate that the SFT technique, when adapted to a DWPF canister nozzle, is capable of detecting leaks not meeting the Waste Acceptance Product Specifications (WAPS) acceptance criterion

  19. Demonstration of a Solution Film Leak Test Technique and Equipment for the S00645 Canister Closure

    Energy Technology Data Exchange (ETDEWEB)

    Cannell, G.R.

    1999-10-07

    The purpose of this effort was to demonstrate that the SFT technique, when adapted to a DWPF canister nozzle, is capable of detecting leaks not meeting the Waste Acceptance Product Specifications (WAPS) acceptance criterion.

  20. Multiple-canister flow and transport code in 2-dimensional space. MCFT2D: user's manual

    International Nuclear Information System (INIS)

    A two-dimensional numerical code, MCFT2D (Multiple-Canister Flow and Transport code in 2-Dimensional space), has been developed for groundwater flow and radionuclide transport analyses in a water-saturated high-level radioactive waste (HLW) repository with multiple canisters. A multiple-canister configuration and a non-uniform flow field of the host rock are incorporated in the MCFT2D code. Effects of heterogeneous flow field of the host rock on migration of nuclides can be investigated using MCFT2D. The MCFT2D enables to take into account the various degrees of the dependency of canister configuration for nuclide migration in a water-saturated HLW repository, while the dependency was assumed to be either independent or perfectly dependent in previous studies. This report presents features of the MCFT2D code, numerical simulation using MCFT2D code, and graphical representation of the numerical results. (author)

  1. Coupled transport/reaction modelling of copper canister corrosion aided by microbial processes

    International Nuclear Information System (INIS)

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100 000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphide available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the intruding groundwater, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer is included in the model. The local depth of copper canister corrosion is calculated by the model. (orig.)

  2. Coupled transport/reaction modelling of copper canister corrosion aided by microbial processes

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jinsong; Neretnieks, I. [Dept. of Chemical Engineering and Technology, Royal Inst. of Tech., Stockholm (Sweden)

    2004-07-01

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100 000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphide available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the intruding groundwater, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer is included in the model. The local depth of copper canister corrosion is calculated by the model. (orig.)

  3. Multi-dimensional neutronics analysis of the 'canister blanket' for NET

    International Nuclear Information System (INIS)

    At KfK a design of a helium-cooled ceramic breeder blanket, called 'canister blanket', has been developed for the NET fusion test reactor. In this report a detailed neutronic analysis of the 'canister blanket', based on one-, two- and three-dimensional Monte-Carlo calculations in the NET-III double null configuration, is presented. The main object refers to the three-dimensional analysis of a complete sector of the NET-reactor containing the 'canister blanket'. This concerns the poloidal distribution of the neutron wall load and the neutron fluxes at the first wall, the spatial distribution of the power density, the total power production and global effects on the tritium breeding ratio. It is shown that, in case of the 'canister blanket', a global tritium breeding ratio beyond 1.0 seems to be feasible for NET. (orig.)

  4. Multi Canister Overpack (MCO) Design Report [SEC 1 Thru 3

    Energy Technology Data Exchange (ETDEWEB)

    GOLDMANN, L.H.

    2000-02-29

    The MCO is designed to facilitate the removal, processing and storage of the spent nuclear fuel currently stored in the East and West K-Basins. The MCO is a stainless steel canister approximately 24 inches in diameter and 166 inches long with cover cap installed. The shell and the collar which is welded to the shell are fabricated from 304/304L dual certified stainless steel for the shell and F304/F304L dual certified for the collar. The shell has a nominal thickness of 1/2 inch. The top closure consists of a shield plug with four processing ports and a locking ring with jacking bolts to pre-load a metal seal under the shield plug. The fuel is placed in one of four types of baskets, excluding the SPR fuel baskets, in the fuel retention basin. Each basket is then loaded into the MCO which is inside the transfer cask. Once all of the baskets are loaded into the MCO, the shield plug with a process tube is placed into the open end of the MCO. This shield plug provides shielding for workers when the transfer cask, containing the MCO, is lifted from the pool. After being removed from the pool, the locking ring is installed and the jacking bolts are tightened to pre-load the metal main closure seal. The cask is then sealed and the MCO taken to the Cold Vacuum Drying (CVD) facility for bulk water removal and vacuum drying through the process ports. Covers for the process ports may be installed or removed as needed per operating procedures. The MCO is then transferred to the Canister Storage Building (CSB), in the closed transfer cask. At the CSB, the MCO is then removed from the cask and becomes one of two MCOs stacked in a storage tube. MCOs will have a cover cap welded over the shield plug providing a complete welded closure. A number of MCOs may be stored with just the mechanical seal to allow monitoring of the MCO pressure, temperature, and gas composition.

  5. Process and machinery description of equipment for deposition of canisters in horizontal deposition holes

    International Nuclear Information System (INIS)

    In this report are presented seventeen methods to deposit canisters with spent nuclear fuel in horizontal holes, one canister per hole, in the KBS-3 system. They have been developed successively, after an analysis of weak points and strong points in previously described methods. In conformance with the guidelines for Project JADE, two choices of system have been considered during the development work. One choice is whether the canister should be provided with a tubular radiation shield or not during transport in the secondary tunnels. Another choice is whether canister and bentonite buffer should be deposited at different occasions, but shortly after each other ('in parts') or together in a single package ('in a package'). The basic technical problem is placing heavy objects, the canister and the buffer components, in an horizontal hole which is 8 m long. For depositing of bentonite buffer and canister 'in parts', the use of a guiding pipe has been studied to reduce the impact of a sliding canister on the bentonite rings. For depositing 'in a package', three alternative techniques have been studied: a loading laddle that is rotated, a fork carriage and rails. Development has been aimed at avoiding the use of a guiding pipe and at reducing the cross section area of the secondary tunnel. A failure mode and effect analysis has been performed for three of the methods in order to provide a basis for a decision whether to use a tubular radiation shield around the canister during transport and handling in the secondary tunnels. SKB has subsequently decided, partly on this basis, that the canisters should be placed in radiation shields. The development work reported here has not yet yielded a definitive method for placing canisters in horizontal holes. It is recommended that in the continued work: canister and bentonite buffer are deposited in a hole at the same time, as a package; methods involving a minimum number of movements in the tunnel are preferred and that

  6. Near-Field Mechanical Analysis of Radioactive Waste Canister in Deep Repository

    International Nuclear Information System (INIS)

    The spent nuclear fuel and the radioactive materials formed during the operation of the Swedish nuclear power plants will be enclosed into tight metal canisters. These canisters will then be placed in large disposal boreholes drilled into the floor of the repository tunnels. Bentonite blocks will be placed to fill the space between the canisters and the boreholes. The main purpose with the bentonite is to provide a hydrological barrier. In general the types of analysis required to study the behavior of the canister and the buffer material shall account for mechanical, hydraulic, thermal and chemical effects. In this study, only near field mechanical behavior is investigated. Preliminary analyses are made based on simplified assumptions and on some simple two-dimensional finite element solutions. As a results of the preliminary analysis, limited tectonic movements in the bedrock and unfavorable local swelling are studied and modeled by the finite element code ABAQUS using tree-dimensional models. The bentonite is modeled using two different material models, Mohr-Coulomb and Drucker-Prager, while the canister materials are modeled using a Drucker-Prager material model. A certain form of sensitivity analysis for parameters has also been carried out. The analyses of uneven swelling of the bentonite did not give any plastic strains in the canister. Local swelling is therefore not a threat against the canister. This load case is not the critical one. The results from the analyses of movements in the bedrock show that, as a consequence of large deviatoric stresses, plastic strains appear locally in the canister. However, the material properties for the materials in the canister show that the size of the deviatoric stresses is less than half on the failure stress. Thus, there seems to be no risk for local or total failure of the canister in case of movements in the bedrock. The conclusion from the finite element analyses is that the design of the nuclear waste canister

  7. Process and machinery description of equipment for deposition of canisters in medium-long deposition holes

    International Nuclear Information System (INIS)

    In this report twelve methods are presented to deposit a canister with spent nuclear fuel in a horizontal hole, several canisters per hole (MLH). These methods are part of the KBS-3 system. They have been developed successively, after an analysis of weak points and strong points in previously described methods. In conformance with the guidelines for Project JADE, a choices of system has been considered during the development work. This is whether canister and bentonite buffer should be deposited 'in parts', i.e. at different occasions, but shortly after each other or 'in a package', i.e. together in a single package. The other choice in the guidelines for the JADE project, whether the canister should be placed in a radiation shield or not during transport in the secondary tunnels, was not relevant to MLR. The basic technical problem is depositing heavy objects, the canister and the buffer components, in an horizontal hole which is approximately 200 m deep. Two methods for depositing of the bentonite barrier and the canisters in separate processes have been studied. For depositing of the bentonite barrier and the canister 'in a package', four alternative techniques have been studied: a metallic sleeve around the package, a loading scoop that is rotated, a fork carriage and rails. The repeated transports in a hole, a consequence of depositing several canisters in the same hole, could lead to the rock being crushed. The mutual impact of machines, load and rock wall has therefore been particularly considered. In several methods, the use of a gangway has been proposed (steel plates or layer of ice). A failure mode and effect analysis has been performed for one of the twelve methods. When comparing with a method to deposit one canister per hole using the same technique, the need for equipment and resources is far larger for this MLH method if incidents should occur during depositing. The development work reported here has not yet yielded a definitive method for placing

  8. Data compilation report: Gas and liquid samples from K West Basin fuel storage canisters

    International Nuclear Information System (INIS)

    Forty-one gas and liquid samples were taken from spent fuel storage canisters in the K West Basin during a March 1995 sampling campaign. (Spent fuel from the N Reactor is stored in sealed canisters at the bottom of the K West Basin.) A description of the sampling process, gamma energy analysis data, and quantitative gas mass spectroscopy data are documented. This documentation does not include data analysis

  9. Gas and liquid sampling for closed canisters in K-West basins - functional design criteria

    International Nuclear Information System (INIS)

    The purpose of this document is to provide functions and requirements for the design and fabrication of equipment for sampling closed canisters in the K-West basin. The samples will be used to help determine the state of the fuel elements in closed canisters. The characterization information obtained will support evaluation and development of processes required for safe storage and disposition of Spent Nuclear Fuel (SNF) materials

  10. Data quality objectives for gas and liquid samples from sealed K Basin canisters

    International Nuclear Information System (INIS)

    Data Quality Objectives (DQOS) for gas and liquid sampling from the sealed canisters in K West Basin have been developed and are presented in this document. The scope of this document is limited primarily to the initial sampling effort. This sampling campaign either supports the selection of canisters to provide fuel for hotcell examinations, supports the demonstration of sampling equipment capabilities or provides an initial assessment of gas/liquid chemistry for comparison to the results of fuel element hotcell examinations. No sampling of canisters has occurred since 1983. It is proposed here that samples of gas and water be analyzed for constituents such as cesium, fission gases, and hydrogen which are markers for corrosion of uranium in a water environment. These data will allow an assessment of the risks involved when particular canisters are opened to retrieve fuel. This sampling campaign will also ensure that canisters with some failed fuel elements are included in the population that is opened for retrieval of fuel for hotcell examinations. Additionally, valuable correlations between the macroscopic visible condition of fuel, hotcell examinations, and the gases generated in canisters will be possible. The analysis of other chemical species in the gas and liquid will allow assessments of the performance of the previously added corrosion inhibitor and possibly assessments of radiolysis. Sampling of canisters will be performed with equipment that opens the valves in the canister lid and draws a 15 ml sample of either gas or water. This work will most likely be performed in one of the pits-associated with the K West Basin

  11. An assessment of canister needs for defueling the TMI-2 core

    International Nuclear Information System (INIS)

    It is projected that the TMI-2 Cleanup Program can be completed with a total of 355 canisters (272 fuel, 75 filter, and 8 k/o canisters). This is within the 360 canister space allocation at the INEL. There is a sufficient number and mix of available canisters on-site to meet the outstanding requirements. As of May 1989, the shipment campaign has included 18 rail shipments, with a total of 259 canisters. It is estimated that an additional five rail shipments of three casks (21 canisters) each will be required to complete the program. The achievements of the shipment campaign, the challenges that have been presented, and the reasons for its success can be outlined as follows: very few reactors have ever had to undertake a fuel shipment program paralleled to the magnitude of the TMI-2 program; the cleanup project faced a task of transporting an entire damaged reactor core from TMI-2 to the INEL; this shipment campaign may one day become a blueprint for future shipments of spent fuel by other utilities; the transport system essentially consists of three major subsystems: the casks, the cask support systems, and the shielded dry fuel transfer system, the program successfully worked out the interactions and operation of these subsystems; to date, the shipment program has compiled an impressive record of safe, on-time, and essentially trouble-free performance

  12. Physical properties of encapsulate spent fuel in canisters; Comportamiento fisico de las capsulas de almacenamiento

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Spent fuel and high-level wastes will be permanently stored in a deep geological repository (AGP). Prior to this, they will be encapsulated in canisters. The present report is dedicated to the study of such canisters under the different physical demands that they may undergo, be those in operating or accident conditions. The physical demands of interest include mechanical demands, both static and dynamic, and thermal demands. Consideration is given to the complete file of the canister, from the time when it is empty and without lid to the final conditions expected in the repository. Thermal analyses of canisters containing spent fuel are often carried out in two dimensions, some times with hypotheses of axial symmetry and some times using a plane transverse section through the centre of the canister. The results obtained in both types of analyses are compared here to those of complete three-dimensional analyses. The latter generate more reliable information about the temperatures that may be experienced by the canister and its contents; they also allow calibrating the errors embodied in the two-dimensional calculations. (Author)

  13. The Meaning of the Sampling of the ZPPR Canisters And Proposed New Surveillance Operating Instructions

    Energy Technology Data Exchange (ETDEWEB)

    Charles W. Solbrig

    2007-01-01

    Analysis of the sample data taken from the ZPPR canisters containing Uranium plate fuel indicates that (as of February 2004) hydriding could be occurring in 35 of them. Since there appears to be no way of determining that a getter is functional, the getters in all the canisters should be replaced now (unless canister residence time can be determined) to prevent further hydriding. In addition, the surveillance procedure should be modified. Canisters to be inspected should be selected sequentially, 12 each quarter resulting in all being opened once every five years. Three of the 12 should be sampled and results reported before opening any of the canisters. Water vapor and pressure should be measured as well as the current hydrogen, oxygen, and nitrogen. Then all 12 canisters should be opened for physical evaluation of the plate conditions and correlation with the sample measurements. The getters should be replaced at each inspection ensuring that no getter is used more than five years. The data should be analyzed each year and a conclusion made on the adequacy of the surveillance procedure and modifications made if it is inadequate.

  14. Effects of annular air gaps surrounding an emplaced nuclear waste canister in deep geologic storage

    International Nuclear Information System (INIS)

    Annular air spaces surrounding an emplaced nuclear waste canister in deep geologic storage will have significant effects on the long-term performance of the waste form. Addressed specifically in this analysis is the influence of a gap on the thermal response of the waste package. Three dimensional numerical modeling predicts temperature effects for a series of parameter variations, including the influence of gap size, surface emissivities, initial thermal power generation of the canister, and the presence/absence of a sleeve. Particular emphasis is placed on determining the effects these variables have on the canister surface temperature. We have identified critical gap sizes at which the peak transient temperature occurs when gap widths are varied for a range of power levels. It is also shown that high emissivities for the heat exchanging surfaces are desirable, while that of the canister surface has the greatest influence. Gap effects are more pronounced, and therefore more effort should be devoted to optimal design, in situations where the absolute temperature of the near field medium is high. This occurs for higher power level emplacements and in geomedia with low thermal conductivities. Finally, loosely inserting a sleeve in the borehole effectively creates two gaps and drastically raises the canister peak temperature. It is possible to use these results in the design of an optimum package configuration which will maintain the canister at acceptable temperature levels. A discussion is provided which relates these findings to NRC regulatory considerations

  15. Summary of Preliminary Criticality Analysis for Peach Bottom Fuel in the DOE Standardized Spent Nuclear Fuel Canister

    International Nuclear Information System (INIS)

    The Department of Energy's (DOE's) National Spent Nuclear Fuel Program is developing a standardized set of canisters for DOE spent nuclear fuel (SNF). These canisters will be used for DOE SNF handling, interim storage, transportation, and disposal in the national repository. Several fuels are being examined in conjunction with the DOE SNF canisters. This report summarizes the preliminary criticality safety analysis that addresses general fissile loading limits for Peach Bottom graphite fuel in the DOE SNF canister. The canister is considered both alone and inside the 5-HLW/DOE Long Spent Fuel Co-disposal Waste Package, and in intact and degraded conditions. Results are appropriate for a single DOE SNF canister. Specific facilities, equipment, canister internal structures, and scenarios for handling, storage, and transportation have not yet been defined and are not evaluated in this analysis. The analysis assumes that the DOE SNF canister is designed so that it maintains reasonable geometric integrity. Parameters important to the results are the canister outer diameter, inner diameter, and wall thickness. These parameters are assumed to have nominal dimensions of 45.7-cm (18.0-in.), 43.815-cm (17.25-in), and 0.953-cm (0.375-in.), respectively. Based on the analysis results, the recommended fissile loading for the DOE SNF canister is 13 Peach Bottom fuel elements if no internal steel is present, and 15 Peach Bottom fuel elements if credit is taken for internal steel

  16. Modeling for Airborne Contamination

    International Nuclear Information System (INIS)

    The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of sufficient thickness to simulate the drift

  17. Corrosion of iron: A study for radioactive waste canisters

    Science.gov (United States)

    Lagha, S. Ben; Crusset, D.; Mabille, I.; Tran, M.; Bernard, M. C.; Sutter, E.

    2007-05-01

    The purpose of this study is to examine the risks of atmospheric corrosion of steel waste canisters following their deep geological disposal in the temperature range from 303 to 363 K. The work was performed using iron samples deposited as thin films on a quartz crystal microbalance (QCM) and disposed in a climatic chamber. The experiments showed that, in the temperature under study (298-363 K), the mass increase due to the formation of oxide/hydroxide rose sharply above 70% RH, as is commonly observed at room temperatures, indicating that the phenomenon remains electrochemical in nature. Ex situ Raman spectrometric analyses indicate the formation of magnetite, maghemite and oxyhydroxides species in the 298-363 K temperature range, and for oxygen contents above 1 vol.%, whereas only Fe3O4 and γ-Fe2O3 are detected at 363 K. In this work, the kinetics of the rust growth is discussed, on the bases of the rate of mass increase and of the composition of the rust, as a function of the climatic parameters and the oxygen content of the atmosphere.

  18. Design basis for the copper canister. Stage one

    International Nuclear Information System (INIS)

    The copper/iron canister which has been proposed for containment of high level waste in the Swedish Nuclear Waste Disposal Programme has been studied from the points of view of choice of materials, manufacturing technology and quality assurance. The choice of High Strength Low Alloy steel for the load bearing element appears to be a good choice but it is necessary to understand the effect of laser welding on the structure of the chosen alloy and to ensure that the very rapid cooling rates which attend laser welding of thick material do not lead to the development of untempered martensite. The choice of an almost pure copper for the corrosion barrier is based on the very good corrosion resistance claimed for it under repository conditions. Production trials are in progress using this material and serious difficulties are expected both in manufacture and in quality assurance. The trials may or may not produce a satisfactory prototype but they will give pointers towards modifications in choice of material and processing technology. This study concludes that the chosen material is particularly difficult to process and to test, and that the claimed good corrosion resistance in in doubt. 54 refs

  19. Co-ordinated research project on assessment of levels and health-effects of airborne particulate matter in mining, metal refining and metal working industries using nuclear and related analytical techniques. Report on the first research co-ordination meeting (RCM)

    International Nuclear Information System (INIS)

    The objectives of the CRP are to: (1) improve competence for research on workplace monitoring in terms of proper sampling and analytical procedures, (2) obtain relevant and reliable data on sources and levels of workplace pollution in various countries, (3) promote a better understanding of methods for the interpretation of such data including occupational heath studies, and (4) encourage closer collaboration between analytical scientists and researchers in the field of occupational health in the countries concerned. The CRP focuses on the use of nuclear and related analytical techniques for the following kinds of studies: (1) strategies and techniques for sampling of workplace airborne particulate matter and of human tissues and body fluids (hair, blood, etc.) sampling of exposed and non-exposed persons; (2) development of suitable analytical procedures for analysis of such types of samples; (3) workplace and personal monitoring of airborne particulate matter in the mining, refining and metal working industries, and the health effects of such exposure; and (4) tissue analysis of the workers exposed for biological monitoring and the health effects studies. This report includes the core and supplementary programme of the CRP; technical aspects of sampling, analysis, data processing, and quality assurance; and organizational aspects. The report includes also 10 papers contributed by the participants. Each individual contribution was indexed and provided with an abstract

  20. 机载LiDAR点云数据精度评定方法的研究%The Research on Accuracy Evaluation Method of the Airborne LiDAR Point Cloud Data

    Institute of Scientific and Technical Information of China (English)

    王勇; 熊爱武

    2013-01-01

    Based on the system composition and operational principle of the airborne LIDAR,the paper researches the accuracy evaluation method of the lasers point cloud data,including the method of interpolation characteristic comparative analysis,the method of statistical analysis,the method of plane geometry analysis,the method for analysis of error propagation law and etc.Each method has its own advantages and disadvantages when evaluating the accuracy of lasers point cloud data,and these methods should be combined.%基于机载LiDAR系统组成及工作原理,对激光点云数据精度评定方法进行研究,主要包括内插特征点对比分析法、统计分析法、斜面几何分析法、误差传播定律分析法.各种方法都有各自的优缺点,在进行具体精度评定时,几种方法要结合使用.

  1. Tropospheric Airborne Meteorological Data and Reporting (TAMDAR) Icing Sensor Performance during the 2003/2004 Alliance Icing Research Study (AIRS II)

    Science.gov (United States)

    Murray, John J.; Nguyen, Louis A.; Daniels, Taumi; Minnis, Patrick; Schaffner, Phillip R.; Cagle, Melinda F.; Nordeen, Michele L.; Wolff, Cory A.; Anderson, Mark V.; Mulally, Daniel J.

    2005-01-01

    NASA Langley Research Center and its research partners from the University of North Dakota (UND) and the National Center for Atmospheric Research (NCAR) participated in the AIRS II campaign from November 17 to December 17, 2003. AIRS II provided the opportunity to compare TAMDAR in situ in-flight icing condition assessments with in situ data from the UND Citation II aircraft's Rosemont system. TAMDAR is designed to provide a general warning of ice accretion and to report it directly into the Meteorological Data Communications and Reporting System (MDCRS). In addition to evaluating TAMDAR with microphysical data obtained by the Citation II, this study also compares these data to the NWS operational in-flight icing Current Icing Potential (CIP) graphic product and with the NASA Advanced Satellite Aviation-weather Products (ASAP) Icing Severity product. The CIP and ASAP graphics are also examined in this study to provide a context for the Citation II's sorties in AIRS II.

  2. System-Level Logistics for Dual Purpose Canister Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kalinina, Elena A.

    2014-06-03

    The analysis presented in this report investigated how the direct disposal of dual purpose canisters (DPCs) may be affected by the use of standard transportation aging and disposal canisters (STADs), early or late start of the repository, and the repository emplacement thermal power limits. The impacts were evaluated with regard to the availability of the DPCs for emplacement, achievable repository acceptance rates, additional storage required at an interim storage facility (ISF) and additional emplacement time compared to the corresponding repackaging scenarios, and fuel age at emplacement. The result of this analysis demonstrated that the biggest difference in the availability of UNF for emplacement between the DPC-only loading scenario and the DPCs and STADs loading scenario is for a repository start date of 2036 with a 6 kW thermal power limit. The differences are also seen in the availability of UNF for emplacement between the DPC-only loading scenario and the DPCs and STADs loading scenario for the alternative with a 6 kW thermal limit and a 2048 start date, and for the alternatives with a 10 kW thermal limit and 2036 and 2048 start dates. The alternatives with disposal of UNF in both DPCs and STADs did not require additional storage, regardless of the repository acceptance rate, as compared to the reference repackaging case. In comparison to the reference repackaging case, alternatives with the 18 kW emplacement thermal limit required little to no additional emplacement time, regardless of the repository start time, the fuel loading scenario, or the repository acceptance rate. Alternatives with the 10 kW emplacement thermal limit and the DPCs and STADs fuel loading scenario required some additional emplacement time. The most significant decrease in additional emplacement time occurred in the alternative with the 6 kW thermal limit and the 2036 repository starting date. The average fuel age at emplacement ranges from 46 to 88 years. The maximum fuel age at

  3. Nanomembrane Canister Architectures for the Visualization and Filtration of Oxyanion Toxins with One-Step Processing.

    Science.gov (United States)

    Aboelmagd, Ahmed; El-Safty, Sherif A; Shenashen, Mohamed A; Elshehy, Emad A; Khairy, Mohamed; Sakaic, Masaru; Yamaguchi, Hitoshi

    2015-11-01

    Nanomembrane canister-like architectures were fabricated by using hexagonal mesocylinder-shaped aluminosilica nanotubes (MNTs)-porous anodic alumina (PAA) hybrid nanochannels. The engineering pattern of the MNTs inside a 60 μm-long membrane channel enabled the creation of unique canister-like channel necks and cavities. The open-tubular canister architecture design provides controllable, reproducible, and one-step processing patterns of visual detection and rejection/permeation of oxyanion toxins such as selenite (SeO3(2-)) in aquatic environments (i.e., in ground and river water sources) in the Ibaraki Prefecture of Japan. The decoration of organic ligand moieties such as omega chrome black blue (OCG) into inorganic Al2O3@tubular SiO2/Al2O3 canister membrane channel cavities led to the fabrication of an optical nanomembrane sensor (ONS). The OCG ligand was not leached from the canister as observed in washing, sensing, and recovery assays of selenite anions in solution, which enabled its multiple reuse. The ONS makes a variety of alternate processing analyses of selective quantification, visual detection, rejection/permeation, and recovery of toxic selenite quick and simple without using complex instrumentation. Under optimal conditions, the ONS canister exhibited a high selectivity toward selenite anions relative to other ions and a low-level detection limit of 0.0093 μM. Real analytical data showed that approximately 96% of SeO3(2-) anions can be recovered from aquatic and wastewater samples. The ONS canister holds potential for field recovery applications of toxic selenite anions from water. PMID:26178184

  4. Transporting existing VSC-24 canisters using a risk-based licensing approach

    International Nuclear Information System (INIS)

    The eventual disposition of the spent fuel assemblies loaded in canisters and casks currently designed and licensed only for on-site storage is an industry-wide issue. The canister-specific BUC evaluation approach developed by BFS can be used to license many of these storage canisters and casks for transportation. This will allow these storage canisters and casks to be transported intact to a long-term storage facility or repository, thereby minimizing fuel handling operations, impact on plant operations, and occupational exposure, as well as total infrastructure costs. Application of the proposed canister-specific BUC analysis approach to a preliminary evaluation of the 58 loaded MSBs demonstrates the benefits of this approach. The results of this preliminary evaluation show that a more rigorous analysis based on the known characteristics of the loaded spent fuel, rather than the design-basis fuel parameters, produces significantly lower maximum keff values and can be used to qualify many of the existing loaded storage canisters for transportation. Transportation certification for storage canisters having more reactive spent fuel payloads may require reliance on BUC approaches that are more aggressive than current NRC guidelines allow. Credit may be required for fission- product isotopes that do not have sufficient chemical assay data for benchmarking. In addition, reduced criticality safety margins may be required. For these more-aggressive BUC approaches, a risk assessment should be provided to support the NRC-approval basis. The risk assessment should evaluate the possibility and consequences of an accidental criticality event based upon inaccuracies in the characterization of the spent-fuel payloads

  5. Tests for manufacturing technology of disposal canisters for nuclear spent fuel; Loppusijoituskapselin valmistustekniset kokeet

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, H. [VTT Energy (Finland); Salonen, T. [Outokumpu Poricopper Oy (Finland); Meuronen, I. [Suomen Teknohaus Oy (Finland); Lehto, K. [Valmet Oyj Rautpohja Foundry (Finland)

    1999-06-01

    The summary and status of the results of the manufacturing technology programmes concerning the disposal canister for spent nuclear fuel conducted by Posiva Oy are given in this report. Posiva has maintained a draft plan for a disposal canister design and an assessment of potential manufacturing technologies for about ten years in Finland. Now, during the year 1999, the first full scale demonstration canister is manufactured in Finland. The technology used for manufacturing of this prototype is developed by Posiva Oy mainly in co-operation with domestic industry. The main partner in developing the manufacturing technology for the copper shell has been Outokumpu Poricopper Oy, Pori, Finland, and the main partner in developing the technology for the iron insert of the canister has been Valmet Oyj Rautpohja Foundry, Jyvaeskylae, Finland. In both areas many subcontractors have been used, predominantly domestic engineering workshops, but also some foreign subcontractors, e.g. for EB-welding, who have had large enough welding equipment. This report describes the developing programmes for canister manufacturing, evaluates the results and presents some alternative methods, and tries to evaluate the pros and contras of them. In addition, the adequacy of the achieved technological know-how is assessed in respect of the required quality of the disposal canister. The following manufacturing technologies have been the concrete topics of the development programme: Electron beam welding technology development for thick-walled copper, Casting of massive copper billets, Hot rolling of thick-walled copper plates, Hot pressing and forging in lid manufacture, Extrusion and drawing of copper tubes, Bending of copper plates by roller or press, Machining of copper, Residual stress removal by heat treatment, Non-destructive testing, Long-term strength of EB-welds, Casting and machining of the iron insert of the canister The specialists from all the main developing partner companies have

  6. Recommendations for codes and standards to be used for design and fabrication of high level waste canister

    International Nuclear Information System (INIS)

    This study identifies codes, standards, and regulatory requirements for developing design criteria for high-level waste (HLW) canisters for commercial operation. It has been determined that the canister should be designed as a pressure vessel without provision for any overpressure protection type devices. It is recommended that the HLW canister be designed and fabricated to the requirements of the ASME Section III Code, Division 1 rules, for Code Class 3 components. Identification of other applicable industry and regulatory guides and standards are provided in this report. Requirements for the Design Specification are found in the ASME Section III Code. It is recommended that design verification be conducted principally with prototype testing which will encompass normal and accident service conditions during all phases of the canister life. Adequacy of existing quality assurance and licensing standards for the canister was investigated. One of the recommendations derived from this study is a requirement that the canister be N stamped. In addition, acceptance standards for the HLW waste should be established and the waste qualified to those standards before the canister is sealed. A preliminary investigation of use of an overpack for the canister has been made, and it is concluded that the use of an overpack, as an integral part of overall canister design, is undesirable, both from a design and economics standpoint. However, use of shipping cask liners and overpack type containers at the Federal repository may make the canister and HLW management safer and more cost effective. There are several possible concepts for canister closure design. These concepts can be adapted to the canister with or without an overpack. A remote seal weld closure is considered to be one of the most suitable closure methods; however, mechanical seals should also be investigated

  7. Manufacturing of the canister shells T54 and T55

    International Nuclear Information System (INIS)

    This report constitutes a summary of the manufacturing test of the disposal canister copper shells T54 and T55. The copper billets were manufactured at Luvata Pori Oy, Finland. The hot-forming and machining of the copper shells were made at Vallourec and Mannesmann Tubes, Reisholz mill, Germany. The shells were manufactured with the pierce and draw method. Both of the pipes were manufactured separately in two phases. The first phase consisted of following steps: preheating of the billet, upsetting, piercing and the first draw with mandrel through drawing ring. After cooling down the block is measured and machined in case of excessive eccentricity or surface defects. In the second phase the block is heated up again and expanded and drawn in 6 sequences. In this process the pipe inside dimension is expanded and the length is increased in each step. Before the last, the 6th step, the bottom of the pipe is deformed in a sequence of special processes. During the manufacture of the first pipe, T54, some difficulties were detected with the centralization of the billet before upsetting. For the second manufacture of the T55, an additional steering ring was made and the result was remarkably more coaxial. After the manufacture and non-destructive inspections the shells were cut in pieces and three parts of each shell were taken for destructive testing. The three inspected parts were the bottom plate, a ring from the middle of the cylinder and a ring from the top of the cylinder. The destructive testing was made by Luvata Pori Oy. In spite of some practical difficulties and accidents during the manufacturing process, the results of the examinations showed that both of the test produced copper shells fulfilled all the specified requirements as for soundness (integrity), mechanical properties, chemical composition, dimensions, hardness and grain size. (orig.)

  8. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Algorithms for ultrasonic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Engholm, Marcus; Olofsson, Tomas (Uppsala Univ., Signals and Systems, Dept. of Technical Sciences (Sweden))

    2011-07-15

    This report contains research results concerning the use of advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala Univ. in 2009 and 2010. The first part of the report deals with ultrasonic imaging of damage in planar structures using Lamb waves. We present results of the first successful attempt to apply an adaptive beamformer for Lamb waves. Our algorithm is an extension of the adaptive beamformer based on minimum variance distortion less response (MVDR) approach to dispersive, multimodal Lamb waves. We present simulation and experimental results illustrating the performance of the MVDR applied to imaging artificial damage in an aluminum plate. In the second part of the report we present two extensions of the previously proposed 2D phase shift migration algorithms for enhancing resolution in ultrasonic imaging of solid objects. The first extension enables processing 3D data in order to fully utilize the resolution enhancement potential of the technique. The second extension, consists in generalizing the technique to allow for the processing of data acquired using an array instead of a previously concerned single transducer. Robustness issue related to objects having front surfaces that are slightly tilted relative to the scanning axis is also considered

  9. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Algorithms for ultrasonic imaging

    International Nuclear Information System (INIS)

    This report contains research results concerning the use of advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala Univ. in 2009 and 2010. The first part of the report deals with ultrasonic imaging of damage in planar structures using Lamb waves. We present results of the first successful attempt to apply an adaptive beamformer for Lamb waves. Our algorithm is an extension of the adaptive beamformer based on minimum variance distortion less response (MVDR) approach to dispersive, multimodal Lamb waves. We present simulation and experimental results illustrating the performance of the MVDR applied to imaging artificial damage in an aluminum plate. In the second part of the report we present two extensions of the previously proposed 2D phase shift migration algorithms for enhancing resolution in ultrasonic imaging of solid objects. The first extension enables processing 3D data in order to fully utilize the resolution enhancement potential of the technique. The second extension, consists in generalizing the technique to allow for the processing of data acquired using an array instead of a previously concerned single transducer. Robustness issue related to objects having front surfaces that are slightly tilted relative to the scanning axis is also considered

  10. Analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    An airborne particulate matter (APM) consists of many kinds of solid and liquid particles in air. APM analysis methods and the application examples are explained on the basis of paper published after 1998. Books and general remarks, sampling and the measurement of concentration and particle distribution, elemental analysis methods and the present state of analysis of species are introduced. Tapered Element Oscillating Microbalance (TEOM) method can collect continuously the integrating mass, but indicates lower concentration. Cu, Ni, Zn, Co, Fe(2), Mn, Cd, Fe(3) and Pb, the water-soluble elements, are determined by ion-chromatography after ultrasonic extraction of the aqueous solution. The detection limit of them is from 10 to 15 ppb (30 ppb Cd and 60 ppb Pb). The elemental carbon (EC) and organic carbon (OC) are separated by the thermal mass measurement-differential scanning calorimeter by means of keeping at 430degC for 60 min. 11 research organizations compared the results of TC (Total Carbon) and EC by NIOSH method 5040 and the thermal method and obtained agreement of TC. ICP-MS has been developed in order to determine correctly and quickly the trace elements. The determination methods for distinction of chemical forms in the environment were developed. GC/MS, LC/MS and related technologies for determination of organic substances are advanced. Online real-time analysis of APN, an ideal method, is examined. (S.Y.)

  11. Methods for air cleaning and protection of building occupants from airborne pathogens

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor

    2009-01-01

    This article aims to draw the attention of the scientific community towards the elevated risks of airborne transmission of diseases and the associated risks of epidemics or pandemics. The complexity of the problem and the need for multidisciplinary research is highlighted. The airborne route of...

  12. Airborne Particulate Threat Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  13. Canister transfer in access tunnel. Lay-out, system and operation description

    International Nuclear Information System (INIS)

    In this report the alternative of canister transfer by a vehicle is examined, the principle and the plans are shown in those details that differ from the canister-transfer-throughshaft alternative. In vehicle-transfer alternative the disposal canisters are transferred with a freely steered motor vehicle from ground surface to the repository at level 400 to 500 m below ground surface. The vehicle is a crawler type heavy-load transfer vehicle. The disposal canisters are loaded into the shield cylinder of the vehicle at the encapsulation plant. Canisters are transferred with the vehicle from encapsulation plant to the mouth of the repository ramp, then through the ramp to the repository level underground and finally through central tunnels to the disposal tunnel and disposal hole. Radiation effects of the canister can be detected only in the close vicinity of the vehicle. Transfer route in the site area shall be selected in a way that heavy traffic areas are avoided and the roads used should be even and passable. Underground, the canister transfer proceeds always in the controlled area. The access ramp is declared to be controlled area temporarily in four sections as the transfer proceeds through the ramp. The ventilation is temporarily closed in the controlled area section during canister transfer. To transfer the vehicle from access ramp to the technical rooms of the controlled area of the repository level a construction of a by-pass tunnel is planned. This is made for avoiding disturbance of the simultaneous uncontrolled area operations on the repository level. In two-storey alternative, a by-pass tunnel access is needed also on the lower level of the repository. In case of one-storey repository alternative, the vehicle transfer of the disposal canister does not cause any changes in the order of use of the disposal tunnels or in the organization of controlled and uncontrolled area. In case of two-storey repository, the order of the use of some disposal tunnels is

  14. A review of the possible effects of hydrogen on lifetime of carbon steel nuclear waste canisters

    International Nuclear Information System (INIS)

    In Switzerland, the National Cooperative for the Disposal of Radioactive Waste (Nagra) is responsible for developing an effective method for the safe disposal of vitrified high level waste (HLW) and spent fuel. One of the options for disposal canisters is thick-walled carbon steel. The canisters, which would have a diameter of about 1 m and a length of about 3 m (HLW) or about 5 m (spent fuel), will be embedded in horizontal tunnels and surrounded with bentonite clay. The regulatory requirement for the minimum canister lifetime is 1000 years but demonstration of a minimum lifetime of 10,000 years would be desirable. The pore-water to which the canister will be exposed is of marine origin with about 0.1-0.3 M Cl-. Since hydrogen is generated during the corrosion process, it is necessary to assess the probability of hydrogen assisted cracking modes and to make recommendations to eliminate that probability. To that aim, key reports detailing projections for the local environment and associated corrosion rate of the waste canister have been evaluated with the focus on the implication for the absorbed hydrogen concentration in the steel. Simple calculations of hydrogen diffusion and accumulation in the inner compartment of the sealed canister indicate that a pressure equivalent to that for gas pockets external to the canister (envisaged to be about 10 MPa) may be attained in the proposed exposure time, an important consideration since it is not possible to modify the internal surface of the closure weld. Current ideas on mechanisms of hydrogen assisted cracking are assessed from which it is concluded that the mechanistic understanding and associated models of hydrogen assisted cracking are insufficient to provide a framework for quantitative prediction for this application. The emphasis then was to identify threshold conditions for cracking and to evaluate the likelihood that these may be exceeded over the lifetime of the containment. Based on an analysis of data in the

  15. South African Airborne Operations

    Directory of Open Access Journals (Sweden)

    McGill Alexander

    2012-02-01

    Full Text Available Airborne operations entail the delivery of ground troops and their equipment by air to their area of operations. They can also include the subsequent support of these troops and their equipment by air. Historically, and by definition, this would encompass delivery by fixed-wing powered aircraft, by glider, by parachute or by helicopter. Almost any troops can be delivered by most of these means. However, the technical expertise and physical as well as psychological demands required by parachuting have resulted in specialist troops being selected and trained for this role. Some of the material advantages of using parachute troops, or paratroops, are: the enormous strategic reach provided by the long-distance transport aircraft used to convey them; the considerable payload which these aircraft are capable of carrying; the speed with which the parachute force can deploy; and the fact that no infrastructure such as airfields are required for their arrival. Perhaps most attractively to cash-strapped governments, the light equipment scales of parachute units’ makes them economical to establish and maintain. There are also less tangible advantages: the soldiers selected are invariably volunteers with a willingness or even desire to tackle challenges; their selection and training produces tough, confident and aggressive troops, psychologically geared to face superior odds and to function independently from other units; and their initiative and self-reliance combined with a high level of physical fitness makes them suitable for a number of different and demanding roles.

  16. Analysis of Welding Joint on Handling High Level Waste-Glass Canister

    International Nuclear Information System (INIS)

    The analysis of welding joint of stainless steel austenitic AISI 304 for canister material has been studied. At the handling of waste-glass canister from melter below to interim storage, there is a step of welding of canister lid. Welding quality must be kept in a good condition, in order there is no gas out pass welding pores and canister be able to lift by crane. Two part of stainless steel plate in dimension (200 x 125 x 3) mm was jointed by welding. Welding was conducted by TIG machine with protection gas is argon. Electric current were conducted for welding were 70, 80, 90, 100, 110, 120, 130, and 140 A. Welded plates were cut with dimension according to JIS 3121 standard for tensile strength test. Hardness test in welding zone, HAZ, and plate were conducted by Vickers. Analysis of microstructure by optic microscope. The increasing of electric current at the welding, increasing of tensile strength of welding yields. The best quality welding yields using electric current was 110 A. At the welding with electric current more than 110 A, the electric current influence towards plate quality, so that decreasing of stainless steel plate quality and breaking at the plate. Tensile strength of stainless steel plate welding yields in requirement conditions according to application in canister transportation is 0.24 kg/mm2. (author)

  17. Effects of stabilizers on the heat transfer characteristics of a nuclear waste canister

    International Nuclear Information System (INIS)

    This report summarizes the feasibility and the effectiveness of using stabilizers (internal metal structural components) to augment the heat transfer characteristics of a nuclear waste canister. The problem was modeled as a transient two-dimensional heat transfer in two physical domains - the stabilizer and the wedge (a 30-degree-angle canister segment), which includes the heat-producing spent-fuel rods. This problem is solved by a simultaneous and interrelated numerical investigation of the two domains in cartesian and polar coordinate systems. The numerical investigations were performed for three cases. In the first case, conduction was assumed to be the dominant mechanism for heat transfer. The second case assumed that radiation was the dominant mechanism, and in the third case both radiation and conduction were considered as mechanisms of heat transfer. The results show that for typical conditions in a waste package design, the stabilizers are quite effective in reducing the overall temperature in a waste canister. Furthermore, the results show that increasing the stabilizer thickness over the thickness specified in the present design has a negligible effect on the temperature distribution in the canister. Finally, the presence of the stabilizers was found to shift the location of the peak temperature areas in the waste canister

  18. Characterization of projected DWPF glasses heat treated to simulate canister centerline cooling

    International Nuclear Information System (INIS)

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Eventually these canistered waste forms will be sent to a geologic repository for final disposal. In order to assure acceptability by the repository, the Department of Energy has defined requirements which DWPF canistered waste forms must meet. These requirements are the Waste Acceptance Product Specifications (WAPS). The WAPS require DWPF to identify the crystalline phases expected to be present in the final glass product. Knowledge of the thermal history of the borosilicate glass during filling and cooldown of the canister is necessary to determine the amount and type of crystalline phases present in the final glass product. Glass samples of seven projected DWPF compositions were cooled following the same temperature profile as that of glass at the centerline of the full scale DWPF canister. The glasses were characterized by X-ray diffraction and scanning electron microscopy to identify the crystalline phases present. The volume percents of each crystalline phase present were determined by quantitative x-ray diffraction. The Product Consistency Test (PCT) was used to determine the durability of the heat treated glasses

  19. A New Frangible Composite Canister Cover with the Function of Specified Direction Separation

    Science.gov (United States)

    Zhou, Guangming; Cai, Deng'an; Qian, Yuan; Deng, Jian; Wang, Xiaopei

    2016-08-01

    A lightweight and auto-separated canister cover is required for quick launching in some specific missile launchers. In this paper, a new frangible composite canister cover with the function of specified direction separation is proposed and studied via both experimental and numerical approaches. The frangible canister cover with local non-split weak zone structure, which is manufactured by traditional hand lay-up process with vacuum assisted resin infusion (VARI) method, is designed to fail and separate in a predetermined and specified direction in comparison with the cover with full split weak zone structure. This design is innovative and also necessary for reduction of potential risk to peripheral equipment around the missile launcher. The failure pressure of the cover is determined on the basis of the failure criteria used in finite element (FE) model. In experimental pressurized testing, a number of frangible canister covers subjected to pressure loadings in six cases are studied. Close agreements between the experimental and numerical results have been examined. The frangible canister covers with local non-split weak zone structure which have been studied can be separated and fly out to the specified direction.

  20. Safety evaluation for bolting design of a transportable storage canister of spent nuclear fuels

    International Nuclear Information System (INIS)

    This paper is to perform safety evaluation for bolting design of a transportable storage canister of spent nuclear fuels in a nuclear power plant. To develop the related techniques for inter unit transfer of the spent nuclear fuels, a seamless metal canister design with reopening function is adopted. The canister with bolting flange needs to maintain its seamless and structural integrity under normal operation and postulated accident conditions. For bolting design, the requirements on material and structural strength are completely examined by following ASME Boiler and Pressure Vessel Codes. All calculations in this work are performed by using the commercial finite element analysis software, ANSYS. With different sensitivity analysis results of numerical finite element models, the maximum and minimum operation value of bolting preload torque can be thus obtained. Moreover, during the inter unit transfer and operation of spent nuclear fuels, fatigue of the bolt is addressed and no leakage occurs as the canister keeps closure with lids subject to the accident condition is also verified. The structural functions and safety of a transportable storage canister with new bolting design can be shown.

  1. Certification of VOC canister samplers for use at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    The Waste Isolation Pilot Plant (WIPP) site is designed to demonstrate safe disposal of transuranic (TRU) mixed waste. An air monitoring program has been established at the WIPP site to verify that volatile organic compounds (VOCs) do not migrate out of the disposal unit. In this air monitoring program, modified commercially available dual canister samplers are used to collect air samples for VOC analysis. Sampler certification, sample collection, and sample analysis are performed based on the procedures contained in US Environmental Protection Agency's Compendium Method TO-14. The canister samplers are certified for cleanliness by passing humid zero air through the entire sampling system and collecting a sample in a canister over a 24-hour period. In addition, each canister sampler is certified for target compound recovery efficiency by passing a humid calibration gas standard through the entire sampling system and collecting a sample in a canister over a 24-hour period. In this paper, the authors discuss the techniques developed for meeting the stringent certification requirements of the monitoring program and present data to support the need for these stringent requirements

  2. Corrosion experiments on stainless steels used in dry storage canisters of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ryskamp, J.M.; Adams, J.P.; Faw, E.M.; Anderson, P.A.

    1996-09-01

    Nonradioactive (cold) experiments have been set up in the Idaho Chemical Processing Plant (ICPP)-1634, and radioactive (hot) experiments have been set up in the Irradiated Fuel Storage Facility (IFSF) at ICPP. The objective of these experiments is to provide information on the interactions (corrosion) between the spent nuclear fuel currently stored at the ICPP and the dry storage canisters and containment materials in which this spent fuel will be stored for the next several decades. This information will be used to help select canister materials that will retain structural integrity over this period within economic, criticality, and other constraints. The two purposes for Dual Purpose Canisters (DPCs) are for interim storage of spent nuclear fuel and for shipment to a final geological repository. Information on how corrosion products, sediments, and degraded spent nuclear fuel may corrode DPCs will be required before the DPCs will be allowed to be shipped out of the State of Idaho. The information will also be required by the Nuclear Regulatory Commission (NRC) to support the licensing of DPCs. Stainless steels 304L and 316L are the most likely materials for dry interim storage canisters. Welded stainless steel coupons are used to represent the canisters in both hot and cold experiments.

  3. Corrosion experiments on stainless steels used in dry storage canisters of spent nuclear fuel

    International Nuclear Information System (INIS)

    Nonradioactive (cold) experiments have been set up in the Idaho Chemical Processing Plant (ICPP)-1634, and radioactive (hot) experiments have been set up in the Irradiated Fuel Storage Facility (IFSF) at ICPP. The objective of these experiments is to provide information on the interactions (corrosion) between the spent nuclear fuel currently stored at the ICPP and the dry storage canisters and containment materials in which this spent fuel will be stored for the next several decades. This information will be used to help select canister materials that will retain structural integrity over this period within economic, criticality, and other constraints. The two purposes for Dual Purpose Canisters (DPCs) are for interim storage of spent nuclear fuel and for shipment to a final geological repository. Information on how corrosion products, sediments, and degraded spent nuclear fuel may corrode DPCs will be required before the DPCs will be allowed to be shipped out of the State of Idaho. The information will also be required by the Nuclear Regulatory Commission (NRC) to support the licensing of DPCs. Stainless steels 304L and 316L are the most likely materials for dry interim storage canisters. Welded stainless steel coupons are used to represent the canisters in both hot and cold experiments

  4. A preliminary assessment of gas migration from the copper/steel canister

    International Nuclear Information System (INIS)

    A preliminary assessment has been carried out of the consequences of hydrogen gas generation in the copper/steel canister, a new concept that is being considered by SKB, Sweden, for the encapsulation of spent fuel for geological disposal. The principal aims of the study were as follows: a. to determine the mechanisms by which gas generated by anaerobic corrosion will migrate from a canister; b. to identify the possible consequences of gas generation, for example overpressurization of the canisters and effects on water movement; c. to carry out studies to assess the magnitudes of the consequences of gas generation and the way in which they are influenced by the mechanisms and ease of gas migration; d. to determine the likely fate of the gas produced in the repository; for example whether the gas will eventually be dissolved in the groundwater as it moves away from the canister or whether it will collect as free gas in the tunnel or elsewhere; e. to identify the potential benefits of using computer modelling techniques for estimating hydrogen generation rates within disposal canisters during the post-emplacement period

  5. State of the art of the welding method for sealing spent nuclear fuel canister made of copper. Part 1 - FSW

    International Nuclear Information System (INIS)

    The purpose of this report is to gather together comprehensive information concerning FSW as an optional welding method for welding the nuclear waste copper canister at the disposal facility. This report discusses the current situation, knowledge of the process and information concerning results of the development and research work related to welding thick copper and the special needs of the disposal environment. Most of the research work and development work has been done by Posiva's Swedish partner SKB, Swedish Nuclear Fuel and Waste Management Co. SKB chose FSW as their reference welding method in 2005. FSW (friction stir welding) is a solid-state welding method, invented in 1991, in which frictional heat is generated between the tool and the weld metal, causing the metal to soften, normally without reaching the melting point, and allowing the tool to traverse the joint line. Friction stir welding can be used for joining many types of materials and material combinations, if the tool materials and designs can be found which operate at the forging temperature of the workpiece. The general requirements for the copper canister weld and base material are presented in Posiva's VAHA-system, which sets the most critical values or demands concerning the short- and long-term properties or other needs. The sections in this report are set out in a similar way as in the VAHA-system. Concerning the results from the research and development work, it can be said that FS weld material fulfils the values set by VAHA. The quality of the welds fulfils the set demands for intact weld material and the welding process is robust using an automatic control system. There still remains work concerning the acceptance procedure for the welding process and other open issues which are described in this report. (orig.)

  6. State of the art of the welding method for sealing spent nuclear fuel canister made of copper. Part 1 - FSW

    Energy Technology Data Exchange (ETDEWEB)

    Purhonen, T.

    2014-05-15

    The purpose of this report is to gather together comprehensive information concerning FSW as an optional welding method for welding the nuclear waste copper canister at the disposal facility. This report discusses the current situation, knowledge of the process and information concerning results of the development and research work related to welding thick copper and the special needs of the disposal environment. Most of the research work and development work has been done by Posiva's Swedish partner SKB, Swedish Nuclear Fuel and Waste Management Co. SKB chose FSW as their reference welding method in 2005. FSW (friction stir welding) is a solid-state welding method, invented in 1991, in which frictional heat is generated between the tool and the weld metal, causing the metal to soften, normally without reaching the melting point, and allowing the tool to traverse the joint line. Friction stir welding can be used for joining many types of materials and material combinations, if the tool materials and designs can be found which operate at the forging temperature of the workpiece. The general requirements for the copper canister weld and base material are presented in Posiva's VAHA-system, which sets the most critical values or demands concerning the short- and long-term properties or other needs. The sections in this report are set out in a similar way as in the VAHA-system. Concerning the results from the research and development work, it can be said that FS weld material fulfils the values set by VAHA. The quality of the welds fulfils the set demands for intact weld material and the welding process is robust using an automatic control system. There still remains work concerning the acceptance procedure for the welding process and other open issues which are described in this report. (orig.)

  7. State of the art of the welding method for sealing spent nuclear fuel canister made of copper. Part 2 - EBW

    International Nuclear Information System (INIS)

    This report consist the results of the development of the electron beam welding (EBW) method for sealing spent nuclear fuel (SNF) disposal canister. This report has been used as background material for selection of the sealing method for the SNF canister. Report contains the state of the art knowledge of the EBW method and research and development (R and D) results done by Posiva. Relevant R and D results of EB-welds done by SKB are also reviewed in this report. Requirements set for the welding and weld are present. These requirements are based on the long term safety and also some part of requirements are set by other processes like non-destructive testing (NDT) and manufacturing processes of components. Initial state of the weld is described in this report. Initial state has significant effect on the long term safety issues like corrosion resistance and creep ductility. Also short and long term mechanical properties as well as corrosion properties are described. Microstructure and residual stresses of the weld is represented in this report. Report consists also imperfections of the weld and statistical analysis of the evaluation of the probability of the largest defect size on the weld. Results of corrosion and creep tests of EB-welds are reviewed in this report. EBW process and machine are described. Preliminary designing of the EBW-machine has been done including component handling equipments. Preliminary welding procedure specification (pWPS) has drawn up and qualification of the personnel is described briefly. In-line process and quality control system including seam tracking system is implemented in modern EBW machine. Also NDT methods for inspection of the weld are described in this report. Concerning the results from the research and development work it can be concluded that EB welding method is suitable method for sealing SNF canister. Weld material fulfils requirements set by the long term safety. The welding system is robust and reliable and it is based

  8. State of the art of the welding method for sealing spent nuclear fuel canister made of copper. Part 2 - EBW

    Energy Technology Data Exchange (ETDEWEB)

    Salonen, T.

    2014-05-15

    This report consist the results of the development of the electron beam welding (EBW) method for sealing spent nuclear fuel (SNF) disposal canister. This report has been used as background material for selection of the sealing method for the SNF canister. Report contains the state of the art knowledge of the EBW method and research and development (R and D) results done by Posiva. Relevant R and D results of EB-welds done by SKB are also reviewed in this report. Requirements set for the welding and weld are present. These requirements are based on the long term safety and also some part of requirements are set by other processes like non-destructive testing (NDT) and manufacturing processes of components. Initial state of the weld is described in this report. Initial state has significant effect on the long term safety issues like corrosion resistance and creep ductility. Also short and long term mechanical properties as well as corrosion properties are described. Microstructure and residual stresses of the weld is represented in this report. Report consists also imperfections of the weld and statistical analysis of the evaluation of the probability of the largest defect size on the weld. Results of corrosion and creep tests of EB-welds are reviewed in this report. EBW process and machine are described. Preliminary designing of the EBW-machine has been done including component handling equipments. Preliminary welding procedure specification (pWPS) has drawn up and qualification of the personnel is described briefly. In-line process and quality control system including seam tracking system is implemented in modern EBW machine. Also NDT methods for inspection of the weld are described in this report. Concerning the results from the research and development work it can be concluded that EB welding method is suitable method for sealing SNF canister. Weld material fulfils requirements set by the long term safety. The welding system is robust and reliable and it is based

  9. Automated extraction of absorption features from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Geophysical and Environmental Research Imaging Spectrometer (GERIS) data

    Science.gov (United States)

    Kruse, Fred A.; Calvin, Wendy M.; Seznec, Olivier

    1988-01-01

    Automated techniques were developed for the extraction and characterization of absorption features from reflectance spectra. The absorption feature extraction algorithms were successfully tested on laboratory, field, and aircraft imaging spectrometer data. A suite of laboratory spectra of the most common minerals was analyzed and absorption band characteristics tabulated. A prototype expert system was designed, implemented, and successfully tested to allow identification of minerals based on the extracted absorption band characteristics. AVIRIS spectra for a site in the northern Grapevine Mountains, Nevada, have been characterized and the minerals sericite (fine grained muscovite) and dolomite were identified. The minerals kaolinite, alunite, and buddingtonite were identified and mapped for a site at Cuprite, Nevada, using the feature extraction algorithms on the new Geophysical and Environmental Research 64 channel imaging spectrometer (GERIS) data. The feature extraction routines (written in FORTRAN and C) were interfaced to the expert system (written in PROLOG) to allow both efficient processing of numerical data and logical spectrum analysis.

  10. Corrosion of the copper canister in the repository environment

    Energy Technology Data Exchange (ETDEWEB)

    Hermansson, H.P.; Eriksson, Sture [Studsvik Material AB, Nykoeping (Sweden)

    1999-12-01

    The present report accounts for studies on copper corrosion performed at Studsvik Material AB during 1997-1999 on commission by SKI. The work has been focused on localised corrosion and electrochemistry of copper in the repository environment. The current theory of localised copper corrosion is not consistent with recent practical experiences. It is therefore desired to complete and develop the theory based on knowledge about the repository environment and evaluations of previous as well as recent experimental and field results. The work has therefore comprised a thorough compilation and up-date of literature on copper corrosion and on the repository environment. A selection of a 'working environment', defining the chemical parameters and their ranges of variation has been made and is used as a fundament for the experimental part of the work. Experiments have then been performed on the long-range electrochemical behaviour of copper in selected environments simulating the repository. Another part of the work has been to further develop knowledge about the thermodynamic limits for corrosion in the repository environment. Some of the thermodynamic work is integrated here. Especially thermodynamics for the system Cu-Cl-H-O up to 150 deg C and high chloride concentrations are outlined. However, there is also a rough overview of the whole system Cu-Fe-Cl-S-C-H-O as a fundament for the discussion. Data are normally accounted as Pourbaix diagrams. Some of the conclusions are that general corrosion on copper will probably not be of significant importance in the repository as far as transportation rates are low. However, if such rates were high, general corrosion could be disastrous, as there is no passivation of copper in the highly saline environment. The claim on knowledge of different kinds of localised corrosion and pitting is high, as pitting damages can shorten the lifetime of a canister dramatically. Normal pitting can happen in oxidising environment, but

  11. Corrosion of the copper canister in the repository environment

    International Nuclear Information System (INIS)

    The present report accounts for studies on copper corrosion performed at Studsvik Material AB during 1997-1999 on commission by SKI. The work has been focused on localised corrosion and electrochemistry of copper in the repository environment. The current theory of localised copper corrosion is not consistent with recent practical experiences. It is therefore desired to complete and develop the theory based on knowledge about the repository environment and evaluations of previous as well as recent experimental and field results. The work has therefore comprised a thorough compilation and up-date of literature on copper corrosion and on the repository environment. A selection of a 'working environment', defining the chemical parameters and their ranges of variation has been made and is used as a fundament for the experimental part of the work. Experiments have then been performed on the long-range electrochemical behaviour of copper in selected environments simulating the repository. Another part of the work has been to further develop knowledge about the thermodynamic limits for corrosion in the repository environment. Some of the thermodynamic work is integrated here. Especially thermodynamics for the system Cu-Cl-H-O up to 150 deg C and high chloride concentrations are outlined. However, there is also a rough overview of the whole system Cu-Fe-Cl-S-C-H-O as a fundament for the discussion. Data are normally accounted as Pourbaix diagrams. Some of the conclusions are that general corrosion on copper will probably not be of significant importance in the repository as far as transportation rates are low. However, if such rates were high, general corrosion could be disastrous, as there is no passivation of copper in the highly saline environment. The claim on knowledge of different kinds of localised corrosion and pitting is high, as pitting damages can shorten the lifetime of a canister dramatically. Normal pitting can happen in oxidising environment, but there is

  12. STS-45 ATLAS-1 pallets and SSBUV canisters in OV-104's payload bay (PLB)

    Science.gov (United States)

    1992-01-01

    STS-45 payload bay (PLB) configuration onboard Atlantis, Orbiter Vehicle (OV) 104, includes the Shuttle Solar Backscatter Ultraviolet 4 (SSBUV-4) and Atmospheric Laboratory for Applications and Science 1 (ATLAS-1) instruments. The SSBUV get away special (GAS) canisters are mounted on a GAS adapter beam on the starboard PLB sill longeron. THE SSBUV support canister is in the foreground and the SSBUV instrument canister with motorized door assembly (MDA) is next to it. ATLAS-1 equipment includes the igloo (center - decorated with several insignias), the Space Experiments with Particle Accelerators (SEPAC) spheres, and additional instruments mounted on unpressurized spacelab pallets. In the background, are the orbital maneuvering system (OMS) pods and vertical tail highlighted against the cloud-covered surface of the Earth.

  13. Three-Dimensional Heat Transfer Analysis for A Thermal Energy Storage Canister

    Institute of Scientific and Technical Information of China (English)

    Hou Xinbin; Xin Yuming; Yang Chunxin; Yuan Xiugan; Dong Keyong

    2001-01-01

    High temperature latent thermal storage is one of the critical techniques for a solar dynamic power system. This paper presents results from heat transfer analysis of a phase change salt containment canister. A three dimensional analysis program is developed to model heat transfer in a PCM canister. Analysis include effects of asymmetric circumference heat flux, conduction in canister walls, liquid PCM and solid PCM, void volume change and void location, and conduction and radiation across PCM vapor void. The PCM phase change process is modeled using the enthalpy method and the simulation results are compared with those of other two dimensional investigations. It's shown that there are large difference with two-dimensional analysis, therefore the three-dimensional model is necessary for system design of high temperature latent thermal storage.

  14. Design, Manufacturing, and Performance estimation of a Disposal Canister for the Ceramic Waste from Pyroprocessing

    International Nuclear Information System (INIS)

    A pyroprocess is currently being developed by KAERI to cope with a highly accumulated spent nuclear fuel in Korea. The pyroprocess produces a certain amount of high-level radioactive waste (HLW), which is solidified by a ceramic binder. The produced ceramic waste will be confined in a secure disposal canister and then placed in a deep geologic formation so as not to contaminate human environment. In this paper, the development of a disposal canister was overviewed by discussing mainly its design premises, constitution, manufacturing methods, corrosion resistance in a deep geologic environment, radiation shielding, and structural stability. The disposal canister should be safe from thermal, chemical, mechanical, and biological invasions for a very long time so as not to release any kind of radionuclides.

  15. Criticality safety evaluation report for the multi-canister overpack; TOPICAL

    International Nuclear Information System (INIS)

    This criticality evaluation is for Spent N Reactor fuel unloaded from the existing canisters in both KE and KW Basins, and loaded into multiple canister overpack (MCO) containers with specially built baskets containing a maximum of either 54 Mark 1V or 48 Mark IA fuel assemblies. The criticality evaluations include loading baskets into the cask-MCO, operations at the Cold Vacuum Drying Facility, and storage in the Canister Storage Building. Many conservatisms have been built into this analysis, the primary one being the selection of the k(sub eff)= 0.95 criticality safety limit. Additional analyses in this revision include partial fuel basket loadings, loading 26.1 inch Mark IA fuel assemblies into Mark IV fuel baskets, and the revised fuel and scrap basket designs. The MCO MCNP model was revised to include the shield plug assembly

  16. Testing of candidate waste-package backfill and canister materials for basalt

    International Nuclear Information System (INIS)

    The Basalt Waste Isolation Project (BWIP) is developing a multiple-barrier waste package to contain high-level nuclear waste as part of an overall system (e.g., waste package, repository sealing system, and host rock) designed to isolate the waste in a repository located in basalt beneath the Hanford Site, Richland, Washington. The three basic components of the waste package are the waste form, the canister, and the backfill. An extensive testing program is under way to determine the chemical, physical, and mechanical properties of potential canister and backfill materials. The data derived from this testing program will be used to recommend those materials that most adequately perform the functions assigned to the canister and backfill

  17. Enhanced Earthquake-Resistance on the High Level Radioactive Waste Canister

    International Nuclear Information System (INIS)

    In this paper, the earthquake-resistance type buffer was developed with the method protecting safely about the earthquake. The main parameter having an effect on the earthquake-resistant performance was analyzed and the earthquake-proof type buffer material was designed. The shear analysis model was developed and the performance of the earthquake-resistance buffer material was evaluated. The dynamic behavior of the radioactive waste disposal canister was analyzed in case the earthquake was generated. In the case, the disposal canister gets the serious damage. In this paper, the earthquake-resistance buffer material was developed in order to prevent this damage. By putting the buffer in which the density is small between the canister and buffer, the earthquake-resistant performance was improved about 80%

  18. Mechanical analysis of cylindrical part of canisters for spent nuclear fuel

    International Nuclear Information System (INIS)

    This report describes mechanical analyses of cylindrical part of the VVER 440-, BWR and EPR-type canisters for spent nuclear fuel. The task was first to evaluate the stresses at maximum design pressure and further by increasing pressure load to determine the limit collapse load and corresponding safety factor. Maximum design pressure 44 MPa is a sum of the hydrostatic pressure 30 MPa caused by 3 km ice layer, 7 MPa caused by ground water pressure at the deepest disposal depth of 700 m and 7 MPa from bentonite swelling pressure. The analysis presented in this report concern the middle area of the canisters, where the cast iron insert is considered to be more critical than in the ends of the canister. For the model a piece from the middle area of the canister was separated by two planes perpendicular to the axis of the canister. This piece was studied first by two-dimensional plane strain model, where the planes are constrained and no elongation of the canister takes place. In the second model one of the planes was constrained and the other plane was allowed to displace in axial direction, which remains as a plane during deformation and to which axial pressure force is directed. This analysis, which corresponds better the real condition in the canister, was performed as threedimensional. The analyses gave however practically equal results due to plastic deformation. Thus the analysis can be done by two-dimensional plane strain model leading to same accuracy with less computation effort. Analyses were performed as large displacement and large strain analyses by the PASULA computing package, which has been developed at VTT for a variety of structural analysis and for heat conduction calculations. A special routine was developed for automatic mesh generation. Before the analysis of the VVER 440-, BWR- and EPR-type canisters the calculation methodology was validated with test results, which were received from pressure tests performed with a short BWR canister in Germany

  19. Canisters for spent-fuel disposal: Design measures against localized corrosion

    International Nuclear Information System (INIS)

    Common to all high-level-waste disposal concepts is the encapsulation of the waste into metal canisters. The purpose of this waste canister is to isolate the radioactive waste from contact with its surroundings for a desired time period. The design service life ranges from hundreds to thousands of years depending on the disposal concept. After the isolation has been breached, other barriers in the disposal system will delay and attenuate the radioactive releases to acceptable levels. In a deep geologic repository, the waste package will be exposed to chemical attack and, depending on the type of repository, to mechanical stresses. Each of these factors will by itself or in combination inevitably lead to loss of confinement some time in the future. In the design of the Swedish waste canister, the corrosion resistance is provided by an outer shell of pure copper while an insert supplies the mechanical strength cast nodular iron. The close fit between the insert and the copper results in very small tensile stresses in the copper over very limited areas once the repository has been saturated. Measurements of stress corrosion crack growth show that annealed copper cannot maintain sufficiently high stress intensity factors for cracks to grow. For annealed copper, the stress intensity factor was limited to 25 MPa·m1/2 because of extensive plastic deformation. For cold-worked copper, no crack growth could be observed for stress intensity factors 1/2. Through the choices of canister material, canister, and repository design, and considering the expected chemical conditions, the risks for localized corrosion can be lowered to an acceptable level, if not eliminated altogether, and the releases from prematurely failed canisters can be kept well within acceptable dose levels

  20. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Jinsong Liu [Royal Institute of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2006-04-15

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10{sup 5} years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10{sup 5} years.

  1. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    International Nuclear Information System (INIS)

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 105 years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 105 years

  2. Design basis for the copper/steel canister. Stage three. Final report

    International Nuclear Information System (INIS)

    The development of the copper/iron canister proposed for the containment of high-level waste in the Swedish disposal programme has been studied from the points of view of choice of materials, manufacturing technology and Q A. This report describes the observations on progress which has been made between March 1995 and February 1996 and the results of further literature studies. A first trial canister has been produced by SKB using a fabricated steel liner and an extruded copper tubular, a second one using a fabricated tubular is at an advanced stage. A change from a fabricated steel inner canister to a proposed cast canister has been justified by a criticality argument but the technology for producing a cast canister is at present untried. It is considered that such a change will require a significant development programme. The microstructure achieved in the extruded copper tubular for the first canister is unacceptable. An improved microstructure may be achieved by extruding at a lower temperature but this remains to be demonstrated. Similar problems exist with plate used for the fabricated tubular but some more favourable structures have been achieved already by this route. Seam welding of the first tubular failed through a suspected material problem. The second fabricated tubular welded without difficulty. However it was necessary to constrain it during welding and it subsequently distorted during machining. There was some evidence of hot tearing close to the weld. The distortion problem may be overcome by a stress relieving anneal but this could cause further grain size problems. 19 refs

  3. Analyses of atmospheric radon 222 / canisters exposed by Greenpeace in Niger (Arlit / Akokan sector)

    International Nuclear Information System (INIS)

    The companies SOMAIR and COMINAK, subsidiaries of the AREVA group, are mining uranium deposits in northern Niger. In the course of a field mission carried out in November 2009, a Greenpeace International team deposited detectors (canisters of activated charcoal) to measure radon 222, a radioactive gas formed by the decay of the radium 226 present in the uranium ore. This report includes the results of the analysis of the activated charcoal canisters conducted in CRIIRAD's laboratory, and a brief commentary on the interpretation of the results. (authors)

  4. Friction stir welding - an alternative method for sealing nuclear waste storage canisters

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, R.E. [TWI Ltd, Cambridge (United Kingdom)

    2004-12-01

    When welding 50 mm thick copper a very high heat input is required to combat the high thermal diffusivity and only the Electron Beam Welding (EBW) process had this capability when this copper canister concept was conceived. Despite the encouraging results achieved using EBW with thick section copper, SKB felt that it would be prudent to assess other joining methods. This assessment concluded that friction welding, could also provide very high quality welds to satisfy the service life requirements of the SKB canister design. A friction welding variant called Friction Stir Welding (FSW) was shown to have the capability of welding 3 mm thick copper sheet with excellent integrity and reproducibility. This later provided sufficient encouragement for SKB to consider the potential of FSW as a method for joining thick section copper, using relatively simple machine tool based technology. It was thought that FSW might provide an alternative or complementary method for welding lids, or bases to canisters. In 1997 an FSW development programme started at TWI, focussed on the feasibility of welding 10 mm thick copper plate. Once this task was successfully completed, work continued to demonstrate that progressively thicker plate, up to 50 mm thick, could be joined. At this stage, with process viability established, a full size experimental FSW canister machine was designed and built. Work with this machine finished in January 2003, when it had been shown that FSW could definitely be used to weld lids to full size canisters. This report summarises the TWI development of FSW for SKB from 1997 to January 2003. It also highlights the important aspects of the process and the project milestones that will help to ensure that SKB has a welding technology that can be used with confidence for production fabrication of copper waste storage canisters in the future. The overall conclusion to this FSW development is that there is no doubt that the FSW process could be used to produce full

  5. An evaluation of dual-purpose canisters in the Civilian Radioactive Waste Management System

    International Nuclear Information System (INIS)

    An evaluation was made of the Civilian Radioactive Waste Management System (CRWMS) using dual-purpose canisters (DPCs) and was compared to a system using multi-purpose canisters (MPCs). The DPC would be designed for transportation and storage, whereas the MPC is designed for transportation, storage, and geologic disposal. Implementation of the DPC concept could allow the federal government to proceed with storage and transportation of spent nuclear fuel (SNF) without linkage to geologic disposal, while continuing to independently develop ultimate geologic disposal requirements and designs

  6. Friction stir welding - an alternative method for sealing nuclear waste storage canisters

    International Nuclear Information System (INIS)

    When welding 50 mm thick copper a very high heat input is required to combat the high thermal diffusivity and only the Electron Beam Welding (EBW) process had this capability when this copper canister concept was conceived. Despite the encouraging results achieved using EBW with thick section copper, SKB felt that it would be prudent to assess other joining methods. This assessment concluded that friction welding, could also provide very high quality welds to satisfy the service life requirements of the SKB canister design. A friction welding variant called Friction Stir Welding (FSW) was shown to have the capability of welding 3 mm thick copper sheet with excellent integrity and reproducibility. This later provided sufficient encouragement for SKB to consider the potential of FSW as a method for joining thick section copper, using relatively simple machine tool based technology. It was thought that FSW might provide an alternative or complementary method for welding lids, or bases to canisters. In 1997 an FSW development programme started at TWI, focussed on the feasibility of welding 10 mm thick copper plate. Once this task was successfully completed, work continued to demonstrate that progressively thicker plate, up to 50 mm thick, could be joined. At this stage, with process viability established, a full size experimental FSW canister machine was designed and built. Work with this machine finished in January 2003, when it had been shown that FSW could definitely be used to weld lids to full size canisters. This report summarises the TWI development of FSW for SKB from 1997 to January 2003. It also highlights the important aspects of the process and the project milestones that will help to ensure that SKB has a welding technology that can be used with confidence for production fabrication of copper waste storage canisters in the future. The overall conclusion to this FSW development is that there is no doubt that the FSW process could be used to produce full

  7. Mechanical failure of SKB spent fuel disposal canisters. Mathematical modelling and scoping calculations

    International Nuclear Information System (INIS)

    According to the current design of SKB, a copper overpack with a cast steel inner component will be used as the disposal canister for spent nuclear fuel. A recent study considered the case of a breach in the copper overpack, through which groundwater could enter the canister. It has pointed out that hydrogen gas generated by an anaerobic corrosion could cushion the system and reduce or eventually stop further infiltration of water into the breached canister, and thence the spent fuel. One potential pitfall in this previous study lies in the fact that it did not consider any processes which might violate the following assumptions which are essential for the gas 'cushioning': 1. Hydrogen gas accumulated in the annular gap in the canister forms a free gas phase which is stable indefinitely into future; 2. Elevated gas pressure in the canister prevents further supply of groundwater except for diffusion of vapour. In the current study we developed a set of mathematical models for the above problem and applied it to carry out an independent assessment of the long-term behaviour of the canister. A key aim in this study was to clarify whether there are any alternative processes which may affect the result obtained by the previous study by violating one of the assumptions listed above. For this purpose, a scenario development exercise was conducted. The result supported the concept described in the previous study. One exception is that possible intrusion of bentonite gel followed by its desaturation could leave paths both for the gas and water simultaneously without forming a gas cushion. This is summarised in the first part of the report. In the second part, development of mathematical models and their applications are described. The key results are: 1. The model describing behaviour of gas and pore water in the canister and the buffer material reproduced the main results of the previous study; 2. The model considering intrusion of the bentonite gel pointed out possibility

  8. System Configuration Management Implementation Procedure for the Canister Storage Building (CSB)

    Energy Technology Data Exchange (ETDEWEB)

    GARRISON, R.C.

    2000-11-28

    This document provides configuration management for the Distributed Control System (DCS), the Gaseous Effluent Monitoring System (GEMS-100) System, the Heating Ventilation and Air Conditioning (HVAC) Programmable Logic Controller (PLC), the Canister Receiving Crane (CRC) CRN-001 PLC, and both North and South vestibule door interlock system PLCs at the Canister Storage Building (CSB). This procedure identifies and defines software configuration items in the CSB control and monitoring systems, and defines configuration control throughout the system life cycle. Components of this control include: configuration status accounting; physical protection and control; and verification of the completeness and correctness of these items.

  9. Creep properties of welded joints in copper canisters for nuclear waste containment

    International Nuclear Information System (INIS)

    Copper canisters for nuclear waste containment can be expected to be exposed to temperatures up to 1000C. Since the material is pure copper, creep properties must be taken into account in particular for the welded joints in the canisters. In the paper creep rupture properties of parent metal, weld metal, and simulated heat affected zones are presented for 1100C. About ten times shorter rupture times were found for the weld metal in comparison to the parent metal. Cross weld specimens showed even shorter rupture times

  10. Integrity of copper/steel canisters under crystalline bedrock repository conditions

    International Nuclear Information System (INIS)

    In the Swedish nuclear waste disposal programme, the need to store the spent nuclear fuel safely for very long times has prompted a strategy which includes a long life canister. Technical as well as economical considerations related to design, choice of materials and manufacturing technology have lead to the selection of a reference design to be used for the continued development work. The canisters are cylindrical with a diameter close to 1 meter and a height of about 5 meters. In order to meet the need for an appropriate combination of mechanical strength, toughness, durability and corrosion resistance, the canisters comprise an inner vessel made of steel or cast iron to cope with mechanical stresses and an outer vessel made of almost pure copper to provide corrosion resistance. The Swedish nuclear industry has recently extended its development work to full-scale tests. Such experience is needed not least for the evaluation of the long-term integrity of the canister. This work has been closely followed by the Swedish Nuclear Power Inspectorate (SKI) who have also carried out independent investigations and analyses. It should be emphasized that the findings relate to a canister which is under development and cannot, in general, be expected to be relevant for the fully developed canister. Significant results of the analyses include the identification of conceivable modes of canister failures. Such failures may be related to defects, segregation, limitations in inspectability, long term creep properties, adverse mechanical load situations, etc. It is assessed that the distribution functions of these failures might have their largest uncertainties at the tails extending to comparatively short times. Specific issues related to canister manufacture, scaling and non destructive testing which have been found to warrant further investigation are: defects in the copper ingot which may transfer to the rolled copper plate; the amount of work applied during the rolling or

  11. Transportation considerations related to waste forms and canisters for Defense TRU wastes

    International Nuclear Information System (INIS)

    This report identifies and discusses the considerations imposed by transportation on waste forms and canisters for contact-handled, solid transuranic wastes from the US Department of Energy (DOE) activities. The report reviews (1) the existing raw waste forms and potential immobilized waste forms, (2) the existing and potential future DOE waste canisters and shipping containers, (3) regulations and regulatory trends for transporting commercial transuranic wastes on the ISA, (4) truck and rail carrier requirements and preferences for transporting the wastes, and (5) current and proposed Type B external packagings for transporting wastes

  12. Cost analysis for application of solidified waste fission product canisters in U.S. Army steam plants

    International Nuclear Information System (INIS)

    The main objectives of the present study are to design steam plants using projected waste fission product canister characteristics, to analyze the overall impact and cost/benefit to the nuclear fuel cycle associated with these plants, and to develop plans for this application if the cost analysis so warrants it. The construction and operation of a steam plant fueled with waste fission product canisters would require the involvement and cooperation of various government agencies and private industry; thus the philosophies of these groups were studied. These philosophies are discussed, followed by a forecast of canister supply, canister characteristics, and strategies for Army canister use. Another section describes the safety and licensing of these steam plants since this affects design and capital costs. The discussion of steam plant design includes boiler concepts, boiler heat transfer, canister temperature distributions, steam plant size, and steam plant operation. Also, canister transportation is discussed since this influences operating costs. Details of economics of Army steam plants are provided including steam plant capital costs, operating costs, fuel reprocessor savings due to Army canister storage, and overall economics. Recommendations are made in the final section

  13. Spent Nuclear Fuel project stage and store K basin SNF in canister storage building functions and requirements. Revision 1

    International Nuclear Information System (INIS)

    This document establishes the functions and requirements baseline for the implementation of the Canister Storage Building Subproject. The mission allocated to the Canister Storage Building Subproject is to provide safe, environmentally sound staging and storage of K Basin SNF until a decision on the final disposition is reached and implemented

  14. Characterization of mechanical properties of leather with airborne ultrasonics

    Science.gov (United States)

    A nondestructive method to accurately evaluate the quality of hides and leather is urgently needed by leather and hide industries. We previously reported the research results for airborne ultrasonic (AU) testing using non-contact transducers to evaluate the quality of hides and leather. The abilit...

  15. Co-ordinated research project on assessment of levels and health-effects of airborne particulate matter in mining, metal refining and metal working industries using nuclear and related analytical techniques. Report on the second research co-ordination meeting

    International Nuclear Information System (INIS)

    Overall objectives: To demonstrate the applicability of nuclear and related techniques in studies that may impact on human health, giving emphasis to the solution of problems that have been identified to be of high priority in national and international programmes for sustainable development. Specific objectives: To develop strategies and techniques for sampling of workplace airborne particulate matter (APM) and of human tissues and body fluids (hair, blood, etc.) of exposed and non-exposed persons; To development suitable analytical procedures for analysis of such types of samples, using nuclear and related analytical techniques; To carry out workplace and personal monitoring of APM and characterise the health effects of such exposure in terms of the observed elemental concentration; To carry out tissue analyses of the workers so exposed for biological monitoring and the health effects studies. Achievements: a) Specific industries not previously monitored in individual countries have been targeted in respect of pollution assessment. Some examples are: Stainless steel processing and construction; Galvanising industry; Zinc smelting operations; Mineral fertiliser industry. b) Validation of analytical techniques through quality control exercises: NAT-3 Interlaboratory comparison for the determination of trace and minor elements in urban dust artificially loaded on air filters; NAT-4 Proficiency test on selected trace elements in lyophilised urine and air filters. c) Capacity building through the establishment of new multidisciplinary teams, personnel training and laboratory expertise. d) The sampling procedures have been harmonised through: The application of the ''Gent'' sampler for APM collection, IAEA procedures and IUPAC guidelines for sampling and sample handling of hair, blood and urine. e) All participants performed surveys on targeted industries and selected pollutants. f) The scientific output of the CRP is materialised in various national and international

  16. The simulation and anlaysis on the radioprotection of the TH-PPL CT's lead canister by Monte Carlo method

    International Nuclear Information System (INIS)

    The TH-PPL CT teaching instrument, developed to Tsinghua University, adopts a 137Cs standard radiation source, which is shielded by one lead canister. This paper simulates and analyses the irradiation rate around the lead canister by a method, which combines Monte Carlo and practical measurement. The simulative result validates the correctness of this method. ICRU sphere's sediment energy is simulated, when the ICRU sphere is 50 mm far away from the lead canister. The personal dose will be calculated from the previous step, the results approve that the lead canister's protection is safe and Monte Carlo can be used in radioprotection analysis and optimum design of lead canister to shield radiation source. (authors)

  17. An Assessment of Using Vibrational Compaction of Calcined HLW and LLW in DWPF Canisters

    International Nuclear Information System (INIS)

    Since 1963, the INEL has calcined almost 8 million gallons of liquid mixed waste and liquid high-level waste, converting it to some 1.1 million gallons of dry calcine (about 4275.0 m3), which consists of alumina-and zirconia-based calcine and zirconia-sodium blend calcine. In addition, if all existing and projected future liquid wastes are solidified, approximately 2,000 m3 of additional calcine will be produced primarily from sodium-bearing waste. Calcine is a more desirable material to store than liquid radioactive waste because it reduces volume, is much less corrosive, less chemically reactive, less mobile under most conditions, easier to monitor and more protective of human health and the environment. This paper describes the technical issue involved in the development of a feasible solution for further volume reduction of calcined nuclear waste for transportation and long term storage, using a standard DWPF canister. This will be accomplished by developing a process wherein the canisters are transported into a vibrational machine, for further volume reduction by about 35%. The random compaction experiments show that this volume reduction is achievable. The main goal of this paper is to demonstrate through computer modeling that it is feasible to use volume reduction vibrational machine without developing stress/strain forces that will weaken the canister integrity. Specifically, the paper presents preliminary results of the stress/strain analysis of the DWPF canister as a function of granular calcined height during the compaction and verifying that the integrity of the canister is not compromised. This preliminary study will lead to the development of better technology for safe compactions of nuclear waste that will have significant economical impact on nuclear waste storage and treatment. The preliminary results will guide us to find better solutions to the following questions: 1) What are the optimum locations and directions (vertical versus horizontal or

  18. Handling Trajectory Uncertainties for Airborne Conflict Management

    Science.gov (United States)

    Barhydt, Richard; Doble, Nathan A.; Karr, David; Palmer, Michael T.

    2005-01-01

    Airborne conflict management is an enabling capability for NASA's Distributed Air-Ground Traffic Management (DAG-TM) concept. DAGTM has the goal of significantly increasing capacity within the National Airspace System, while maintaining or improving safety. Under DAG-TM, autonomous aircraft maintain separation from each other and from managed aircraft unequipped for autonomous flight. NASA Langley Research Center has developed the Autonomous Operations Planner (AOP), an onboard decision support system that provides airborne conflict management (ACM) and strategic flight planning support for autonomous aircraft pilots. The AOP performs conflict detection, prevention, and resolution from nearby traffic aircraft and area hazards. Traffic trajectory information is assumed to be provided by Automatic Dependent Surveillance Broadcast (ADS-B). Reliable trajectory prediction is a key capability for providing effective ACM functions. Trajectory uncertainties due to environmental effects, differences in aircraft systems and performance, and unknown intent information lead to prediction errors that can adversely affect AOP performance. To accommodate these uncertainties, the AOP has been enhanced to create cross-track, vertical, and along-track buffers along the predicted trajectories of both ownship and traffic aircraft. These buffers will be structured based on prediction errors noted from previous simulations such as a recent Joint Experiment between NASA Ames and Langley Research Centers and from other outside studies. Currently defined ADS-B parameters related to navigation capability, trajectory type, and path conformance will be used to support the algorithms that generate the buffers.

  19. Multi-dimensional modeling of a thermal energy storage canister. M.S. Thesis - Cleveland State Univ., Dec. 1990

    Science.gov (United States)

    Kerslake, Thomas W.

    1991-01-01

    The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change material (PCM) contained in toroidal canisters for thermal energy storage. Presented are the results from heat transfer analyses of a PCM containment canister. One and two dimensional finite difference computer models are developed to analyze heat transfer in the canister walls, PCM, void, and heat engine working fluid coolant. The modes of heat transfer considered include conduction in canister walls and solid PCM, conduction and pseudo-free convection in liquid PCM, conduction and radiation across PCM vapor filled void regions, and forced convection in the heat engine working fluid. Void shape, location, growth or shrinkage (due to density difference between the solid and liquid PCM phases) are prescribed based on engineering judgment. The PCM phase change process is analyzed using the enthalpy method. The discussion of the results focuses on how canister thermal performance is affected by free convection in the liquid PCM and void heat transfer. Characterizing these effects is important for interpreting the relationship between ground-based canister performance (in 1-g) and expected on-orbit performance (in micro-g). Void regions accentuate canister hot spots and temperature gradients due to their large thermal resistance. Free convection reduces the extent of PCM superheating and lowers canister temperatures during a portion of the PCM thermal charge period. Surprisingly small differences in canister thermal performance result from operation on the ground and operation on-orbit. This lack of a strong gravity dependency is attributed to the large contribution of container walls in overall canister energy redistribution by conduction.

  20. Experimental assessment of the thermal performance of storage canister/holding fixture configurations for the Los Alamos Nuclear Materials Storage Facility

    International Nuclear Information System (INIS)

    This report presents experimental results on the thermal performance of various nested canister configurations and canister holding fixtures to be used in the Los Alamos Nuclear Materials Storage Facility. The experiment consisted of placing a heated aluminum billet (to represent heat-generating nuclear material) inside curved- and flat-bottom canisters with and without holding plate fixtures and/or extended fin surfaces. Surface temperatures were measured at several locations on the aluminum billet, inner and outer canisters, and the holding plate fixture to assess the effectiveness of the various configurations in removing and distributing the heat from the aluminum billet. Results indicated that the curved-bottom canisters, with or without holding fixtures, were extremely ineffective in extracting heat from the aluminum billet. The larger thermal contact area provided by the flat-bottom canisters compared with the curved-bottom design, greatly enhanced the heat removal process and lowered the temperature of the aluminum billet considerably. The addition of the fixture plates to the flat-bottom canister geometry greatly enhances the heat removal rates and lowers the canister operating temperatures considerably. The addition of the fixture plates to the flat-bottom canister geometry greatly enhances the heat removal rates and lowers the canister operating temperatures considerably. Finally, the addition of extended fin surfaces to the outer flat-bottom canister positioned on a fixture plate, reduced the canister temperatures still further

  1. Development of single tubing-type canister for cryo-storage of bull semen and their effect on sperm motility and viability

    Directory of Open Access Journals (Sweden)

    Mohd Iswadi Ismail

    2014-04-01

    Full Text Available The objective of this study was to evaluate the potential of using single tubing-type canister on sperm quality. Semen was collected from the Bali cattle bull by electroejaculation technique and was cryopreserved in liquid nitrogen using slow freezing cryopreservation method. Two type of canister volume was used in this study; commercial canister (342.25π x 278 mm² and single tubing-type canister (4π x 90 mm². Makler counting chamber and computer assisted sperm analyzer (CASA were used to evaluate the sperm motility and viability of post-thaw sperm. Results showed that the bull sperm motility and viability at the bottom of tubing-type canister was statistically higher and significant as compared to the commercial canister (p<0.05. Significant changes were found in sperm kinetics (VCL, VAP, VSL of tubing-type canister compared to commercial canister. No significant changes in the motility and viability of the bull sperm at the top of tubing-type canister and commercial canister. There were no significant changes in sperm progression (LIN, WOB, PROG in both the canisters. Developed tubing-type canister in this study showed potential as an alternative to be used in bull sperm cryo-storage.

  2. Airborne Survey Capacity Building of National Nuclear Safety Administration (MEP) in China

    International Nuclear Information System (INIS)

    Airborne survey is being paid more and attention in the nuclear radiation environment monitoring due to its unique advantages, especially monitoring due to its unique advantages, especially after the nuclear accident of Fukushima Japan. Thus, National Nuclear Safety Administration is strengthening to build airborne survey capacity. The administration has set up an advanced airborne survey system and established expert team. This airborne survey system here is fixed under a capable helicopter, which has a monitoring volume of 75.6 liters, independent advanced digital spectrometer and intelligent data processing functions. In this paper, a way that is applied for wireless data real-time transmission is presented, and our research works on calibration and the survey methods are also included. The airborne survey system can be widely used in the nuclear and radiation accidents monitoring and relative radiation monitoring in NORM. (author)

  3. Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB) Process Flow Diagram Mass Balance Calculations

    International Nuclear Information System (INIS)

    The purpose of these calculations is to develop the material balances for documentation of the Canister Storage Building (CSB) Process Flow Diagram (PFD) and future reference. The attached mass balances were prepared to support revision two of the PFD for the CSB. The calculations refer to diagram H-2-825869

  4. System design description for the consolidated sludge sampling system for K Basins floor and fuel canisters

    International Nuclear Information System (INIS)

    This System Design Description describes the Consolidated Sludge Sampling System used in the gathering of sludge samples from K Basin floor and fuel canisters. This document provides additional information on the need for the system, the functions and requirements of the systems, the operations of the system, and the general work plan used in its' design and development

  5. Instrumentation. Nondestructive Examination for Verification of Canister and Cladding Integrity - FY2013 Status Update

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Ryan M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Anthony M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pardini, Allan F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Denslow, Kayte M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Crawford, Susan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larche, Michael R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-30

    This report documents FY13 efforts for two instrumentation subtasks under storage and transportation. These instrumentation tasks relate to developing effective nondestructive evaluation (NDE) methods and techniques to (1) verify the integrity of metal canisters for the storage of used nuclear fuel (UNF) and to (2) characterize hydrogen effects in UNF cladding to facilitate safe storage and retrieval.

  6. Transport from the canister to the biosphere: Using an integrated near- and far-field model

    International Nuclear Information System (INIS)

    A coupled model concept which may be used for performance assessment of a nuclear repository is presented. The tool is developed by integration of two models, one near field and one far field model. A compartment model, NUCTRAN, is used to calculate the near field release from a damaged canister. The far field transport through fractured rock is simulated by using CHAN3D, based on a three-dimensional stochastic channel network concept. The near field release depends on the local hydraulic properties of the far field. The transport in the far field in turn depends on where the damaged canister(s) is located. The very large heterogeneities in the rock mass makes it necessary to study both the near field release properties and the location of release at the same time. In order to demonstrate the capabilities of the coupled model concept it is applied on a hypothetical repository located at the Hard Rock Laboratory in Aespoe, Sweden. Two main items were studied; the location of a damaged canister in relation to fracture zones and the barrier function of the host rock. In the study of the near field rock as a transport barrier the effect of different tunnel excavation methods which may influence the damage level of the rock around the tunnel was addressed

  7. Quality Assurance Program Plan for Project W-379: Spent Nuclear Fuels Canister Storage Building Projec

    International Nuclear Information System (INIS)

    This document describes the Quality Assurance Program Plan (QAPP) for the Spent Nuclear Fuels (SNF) Canister Storage Building (CSB) Project. The purpose of this QAPP is to control project activities ensuring achievement of the project mission in a safe, consistent and reliable manner

  8. Fuel and canister process report for the safety assessment SR-Site

    International Nuclear Information System (INIS)

    This report documents fuel and canister processes identified as relevant to the long-term safety of a KBS-3 repository. It forms an important part of the reporting of the safety assessment SR-Site. The detailed assessment methodology, including the role of the process reports in the assessment, is described in the SR-Site Main report /SKB 2011/

  9. Stress analysis of glass-canister interaction: a study of residual stresses and fracturing

    International Nuclear Information System (INIS)

    Residual stresses and cracking in canisters filled with vitrified nuclear waste are simulated using finite element computer calculations. Cooling rates, internal heat generation, and thermal expansion coefficients significantly affect stress levels. Glass behavior within the softening temperature range is taken to follow the instant freezing concept of Bartenev

  10. Potential Multi-Canister Overpack (MCO) Cask Drop in the K West Basin South Loadout Pit

    International Nuclear Information System (INIS)

    This calculation note documents the probabilistic calculation of a potential drop of a multi-canister overpack (MCO) cask or MCO cask and immersion pail at the K West Basin south loadout pit. The calculations are in support of the cask loading system (CLS) subproject alignment of CLS equipment in the K West Basin south loadout pit

  11. Plutonium Immobilization Project - Can-In-Canister Hardware Development/Selection

    International Nuclear Information System (INIS)

    The Plutonium Immobilization Project (PIP) is a program funded by the U.S. Department of Energy to develop technology to disposition excess weapons grade plutonium. This program introduces the ''Can-in-Canister'' (CIC) technology that immobilizes the plutonium by encapsulating it in ceramic forms (or pucks) and ultimately surrounding it with high-level waste glass to provide a deterrent to recovery. Since there are significant radiation, contamination and security concerns, the project team is developing unique technologies to remotely perform plutonium immobilization tasks. This paper covers the design, development and testing of the magazines (cylinders containing cans of ceramic pucks) and the rack that holds them in place inside the waste glass canister. Several magazine and rack concepts were evaluated to produce a design that gives the optimal balance between resistance to thermal degradation and facilitation of remote handling. This paper also reviews the effort to develop a join ted arm robot that can remotely load seven magazines into defined locations inside a stationary canister working only through the 4 inch (102 mm) diameter canister throat

  12. Plutonium Immobilization Project - Can-In-Canister Hardware Development/Selection

    International Nuclear Information System (INIS)

    The Plutonium Immobilization Project (PIP) is a program funded by the U.S. Department of Energy to develop technology to disposition excess weapons grade plutonium. This program introduces the ''Can-in-Canister'' (CIC) technology that immobilizes the plutonium by encapsulating it in ceramic forms (or pucks) and ultimately surrounding it with high-level waste glass to provide a deterrent to recovery. Since there are significant radiation, contamination and security concerns, the project team is developing unique technologies to remotely perform plutonium immobilization tasks. This paper covers the design, development and testing of the magazines (cylinders containing cans of ceramic pucks) and the rack that holds them in place inside the waste glass canister. Several magazine and rack concepts were evaluated to produce a design that gives the optimal balance between resistance to thermal degradation and facilitation of remote handling. This paper also reviews the effort to develop a jointed arm robot that can remotely load seven magazines into defined locations inside a stationary canister working only through the 4 inch (102 mm) diameter canister throat

  13. Instrumentation: Nondestructive Examination for Verification of Canister and Cladding Integrity. FY2014 Status Update

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Ryan M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suter, Jonathan D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Anthony M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-12

    This report documents FY14 efforts for two instrumentation subtasks under storage and transportation. These instrumentation tasks relate to developing effective nondestructive evaluation (NDE) methods and techniques to (1) verify the integrity of metal canisters for the storage of used nuclear fuel (UNF) and to (2) verify the integrity of dry storage cask internals.

  14. The Characteristics of Welding Joint on Stainless Steel as a Candidate of High Level Waste Canister

    International Nuclear Information System (INIS)

    High level waste is the waste generated from reprocessing of the spent fuels. This type of waste is vitrified with borosilicate glass to become waste-glass. This waste glass is contained in a canister made of austenitic stainless steel. The canister material is subjected to be welded during fabrication and utilization. The character of the welding joint that is the function of the electrical current used in the welding process have been studied. The strength of the joint is tested mechanically i.e.: the tensile strength and hardness test. The result shows that the higher the current used in welding process, the better the strength of the joint and as well the tensile strength. The optimum current is 110 A. From the hardness test, it was figured that the length of the HAZ area is 14 mm. The material in HAZ area is the hardest compared to the others, it is due to the appearance of the chrome-carbide. The welding of the canister with such a condition, during fabrication as well as during the utilization of the canister for the container of the high level waste with the PWHT process gives better result. (author)

  15. SPENT NUCLEAR FUEL NUMBER DENSITIES FOR MULTI-PURPOSE CANISTER CRITICALITY CALCULATIONS

    International Nuclear Information System (INIS)

    The purpose of this analysis is to calculate the number densities for spent nuclear fuel (SNF) to be used in criticality evaluations of the Multi-Purpose Canister (MPC) waste packages. The objective of this analysis is to provide material number density information which will be referenced by future MPC criticality design analyses, such as for those supporting the Conceptual Design Report

  16. Acceptance Test Report for the high pressure water jet system canister cleaning fixture

    International Nuclear Information System (INIS)

    This Acceptance Test confirmed the test results and recommendations, documented in WHC-SD-SNF-DTR-001, Rev. 0 Development Test Report for the High Pressure Water Jet System Nozzles, for decontaminating empty fuel canisters in KE-Basin. Optimum water pressure, water flow rate, nozzle size and overall configuration were tested

  17. Interim Storage of RH-TRU 72B Canisters at the DOE Oak Ridge Reservation

    International Nuclear Information System (INIS)

    This paper describes an evaluation performed by the Department of Energy (DOE) Oak Ridge Operations (ORO) office for potential interim storage of remote-handled (RH) transuranic (TRU) 72B waste canisters at the Oak Ridge National Laboratory (ORNL). The evaluation included the conceptual design of a devoted canister storage facility and an assessment of the existing RHTRU waste storage facilities for storage of canisters. The concept for the devoted facility used modular concrete silos located on an above-grade storage pad. The assessment of the existing facilities considered the potential methods, facility modifications, and conceptual equipment that might be used for storage of 400 millisievert per hour (mSv/hr) canisters. The results of the evaluation indicated that the initial investment into a devoted facility was relatively high as compared to the certainty that significant storage capacity was necessary prior to the Waste Isolation Pilot Plant (WIPP) accepting RH-TRU waste for disposal. As an alternative, the use of individual concrete overpacks provided an incremental method that could be used with the existing storage facilities and outside storage pads. For the concrete overpack concepts considered, the cylindrical design stored in a vertical orientation was determined to be the most effective

  18. Fuel and canister process report for the safety assessment SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    Werme, Lars; Lilja, Christina (eds.)

    2010-12-15

    This report documents fuel and canister processes identified as relevant to the long-term safety of a KBS-3 repository. It forms an important part of the reporting of the safety assessment SR-Site. The detailed assessment methodology, including the role of the process reports in the assessment, is described in the SR-Site Main report /SKB 2011/

  19. Data compliation report: K West Basin fuel storage canister liquid samples

    International Nuclear Information System (INIS)

    Sample analysis data from the 222-S Laboratory are reported. The data are for liquid samples taken from spent fuel storage canisters in the 105 K West Basin during March 1995. An analysis and data report from the Special Analytical Studies group of Westinghouse Hanford Company regarding these samples is also included. Data analysis is not included herein

  20. Examining the role of canister cooling conditions on the formation of nepheline from nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-01

    Nepheline (NaAlSiO₄) crystals can form during slow cooling of high-level waste (HLW) glass after it has been poured into a waste canister. Formation of these crystals can adversely affect the chemical durability of the glass. The tendency for nepheline crystallization to form in a HLW glass increases with increasing concentrations of Al₂O₃ and Na₂O.

  1. Airborne gamma-ray spectrometry

    DEFF Research Database (Denmark)

    Hovgaard, Jens

    A new method - Noise Adjusted Singular Value Decomposition, NASVD - for processing gamma-ray spectra has been developed as part of a Ph.D. project. By using this technique one is able to decompose a large set of data - for example from airborne gamma-ray surveys - into a few spectral components. ...

  2. The effect of discontinuities on the corrosion behaviour of copper canisters

    International Nuclear Information System (INIS)

    Discontinuities may remain in the weld region of copper canisters following the final closure welding and inspection procedures. Although the shell of the copper canister is expected to exhibit excellent corrosion properties in the repository environment, the question remains what impact these discontinuities might have on the long-term performance and service life of the canister. A review of the relevant corrosion literature has been carried out and an expert opinion of the impact of these discontinuities on the canister lifetime has been developed. Since the amount of oxidant in the repository is limited and the maximum wall penetration is expected to be 2O/Cu(OH)2 film at a critical electrochemical potential determines where and when pits initiate, not the presence of pit-shaped surface discontinuities. The factors controlling pit growth and death are well understood. There is evidence for a maximum pit radius for copper in chloride solutions, above which the small anodic: cathodic surface area ratio required for the formation of deep pits cannot be sustained. This maximum pit radius is of the order of 0.1-0.5 mm. Surface discontinuities larger than this size are unlikely to propagate as pits, and pits generated from smaller discontinuities will die once they reach this maximum size. Death of propagating pits will be compounded by the decrease in oxygen flux to the canister as the repository environment becomes anoxic. Surface discontinuities could impact the SCC behaviour either through their effect on the local environment or via stress concentration or intensification. There is no evidence that surface discontinuities will affect the initiation of SCC by ennoblement of the corrosion potential or the formation of locally aggressive conditions. Stress concentration at pits could lead to crack initiation under some circumstances, but the stress intensity factor for the resultant cracks, or for pre-existing crack-like discontinuities, will be smaller than the

  3. Simulation of residual stresses and deformations in electron beam-welded copper canisters

    International Nuclear Information System (INIS)

    This report presents the modelling of residual stresses and deformations of an EB-welded copper canister. Two different mock-up lengths are modelled with the Abaqus FEA program, and the similarity of those results is studied. Canister mock-ups of 450 mm and 915 mm were chosen for the test cases. The heat treatment results presented in Taskinen 2009 are used as input data for the mechanical model. For the mechanical analysis some simplifications were made to the model. The contact surface between pipe and lid is assumed to be tied and support from the bottom surface is provided with four support points. Results show that, due to the similarity of 450 mm and 915 mm canisters, the short mock-up can be used to predict the stresses and deformation on a full-length canister (5000 mm). The similarity of the temperature fields has already been shown in the previous reports (Taskinen 2009). The main result in the deformation is the shape of the canister in the residual state. The top of the canister tries to shrink, resulting in the lid buckling inwards. The deformation of the lid of the canister is about 2.2 mm at the centre of the lid. The main results in the stresses are the stress level on the surface, the deviation of stresses over the circle and the stresses near the welding. On the surface there are areas where the circumferential stress is at tension. However, radial and axial stresses are usually in compression on the surface. The deviation of the stress level over the circle is quite small, except in the overlap area and near it. The residual stresses from 0 deg C to 45 deg C change remarkably, but over the rest of the area the stresses are more constant. Near the welding the stresses on the top surface are in compression, but in the centre of the welding the stresses are in tension. In the modelling, the possibility of calculating a mechanical model with the contact surface between pipe and lid, so that they could be separated during the welding, was also tested

  4. Development of fabrication technology for copper canisters with cast inserts. Status report in August 2001

    International Nuclear Information System (INIS)

    This report contains an account of the results of trial fabrication of copper canisters with cast inserts carried out during the period 1998 - 2001. The work of testing of fabrication methods is being focused on a copper thickness of 50 mm. Occasional canisters with 30 mm copper thickness are being fabricated for the purpose of gaining experience and evaluating fabrication and inspection methods for such canisters. For the fabrication of copper tubes, SKB has concentrated its efforts on seamless tubes made by extrusion and pierce and draw processing. Five tubes have been extruded and two have been pierced and drawn during the period. Materials testing has shown that the resultant structure and mechanical properties of these tubes are good. Despite certain problems with dimensional accuracy, it can be concluded that both of these methods can be developed for use in the serial production of SKB' copper tubes. No new trial fabrication with roll forming of copper plate and longitudinal welding has been done. This method is nevertheless regarded as a potential alternative. Copper lids and bottoms are made by forging of continuous-cast bars. The forged blanks are machined to the desired dimensions. Due to the Canister Laboratory's need for lids to develop the technique for sealing welding, a relatively large number of forged blanks have been fabricated. It is noted in the report that the grain size obtained in lids and bottoms is much coarser than in fabricated copper tubes. Development work has been commenced for the purpose of optimizing the forging process. Nine cast inserts have been cast during the three-year period. The results of completed material testing of test pieces taken at different places along the length of the inserts have in several cases shown an unacceptable range of variation in strength properties and structure. In the continued work, insert fabrication will be developed in terms of both casting technique and iron composition. Development work on

  5. Miniature Canister (MiniCan) Corrosion experiment progress report 4 for 2008-2011

    Energy Technology Data Exchange (ETDEWEB)

    Smart, Nick; Reddy, Bharti; Rance, Andy [Serco, Hook (United Kingdom)

    2012-06-15

    To ensure the safe encapsulation of spent nuclear fuel rods for geological disposal, SKB of Sweden are considering using the Copper-Iron Canister, which consists of an outer copper canister and a cast iron insert. Over the years a programme of laboratory work has been carried out to investigate a range of corrosion issues associated with the canister, including the possibility of expansion of the outer copper canister as a result of the anaerobic corrosion of the cast iron insert. Previous experimental work using stacks of test specimens has not shown any evidence of corrosion-induced expansion. However, as a further step in developing an understanding of the likely performance of the canister in a repository environment, Serco has set up a series of experiments in SKB's Aespoe Hard Rock Laboratory (HRL) using inactive model canisters, in which leaks were deliberately introduced into the outer copper canister while surrounded by bentonite, with the aim of obtaining information about the internal corrosion evolution of the internal environment. The experiments use five small scale model canisters (300 mm long x 150 mm diameter) that simulate the main features of the SKB canister design (hence the project name, 'MiniCan'). The main aim of the work is to examine how corrosion of the cast iron insert will evolve if a leak is present in the outer copper canister. This report describes the progress on the five experiments running at the Aespoe Hard Rock Laboratory and the data obtained from the start of the experiments in late 2006 up to Winter 2011. The full details of the design and installation of the experiments are given in a previous report and this report concentrates on summarising and interpreting the data obtained to date. This report follows the earlier progress reports presenting results up to December 2010. The current document (progress report 4) describes work up to December 2011. The current report presents the results of the water analyses

  6. Calculation of displacements on fractures intersecting canisters induced by earthquakes: Aberg, Beberg and Ceberg examples

    International Nuclear Information System (INIS)

    This study shows how the method developed in La Pointe and others can be applied to assess the safety of canisters due to secondary slippage of fractures intersecting those canisters in the event of an earthquake. The method is applied to the three generic sites Aberg, Beberg and Ceberg. Estimation of secondary slippage or displacement is a four-stage process. The first stage is the analysis of lineament trace data in order to quantify the scaling properties of the fractures. This is necessary to insure that all scales of fracturing are properly represented in the numerical simulations. The second stage consists of creating stochastic discrete fracture network (DFN) models for jointing and small faulting at each of the generic sites. The third stage is to combine the stochastic DFN model with mapped lineament data at larger scales into data sets for the displacement calculations. The final stage is to carry out the displacement calculations for all of the earthquakes that might occur during the next 100,000 years. Large earthquakes are located along any lineaments in the vicinity of the site that are of sufficient size to accommodate an earthquake of the specified magnitude. These lineaments are assumed to represent vertical faults. Smaller earthquakes are located at random. The magnitude of the earthquake that any fault could generate is based upon the mapped surface trace length of the lineaments, and is calculated from regression relations. Recurrence rates for a given magnitude of earthquake are based upon published studies for Sweden. A major assumption in this study is that future earthquakes will be similar in magnitude, location and orientation as earthquakes in the geological and historical records of Sweden. Another important assumption is that the displacement calculations based upon linear elasticity and linear elastic fracture mechanics provides a conservative (over-)estimate of possible displacements. A third assumption is that the world

  7. Miniature Canister (MiniCan) Corrosion Experiment Progress Report 3 for 2008-2010

    Energy Technology Data Exchange (ETDEWEB)

    Smart, N.R.; Reddy, B.; Rance, A.P. (Serco (United Kingdom))

    2011-08-15

    To ensure the safe encapsulation of spent nuclear fuel rods for geological disposal, SKB of Sweden are considering using the Copper-Iron Canister, which consists of an outer copper canister and a cast iron insert. Over the years a programme of laboratory work has been carried out to investigate a range of corrosion issues associated with the canister, including the possibility of expansion of the outer copper canister as a result of the anaerobic corrosion of the cast iron insert. Previous experimental work using stacks of test specimens has not shown any evidence of corrosion-induced expansion. However, as a further step in developing an understanding of the likely performance of the canister in a repository environment, Serco has set up a series of experiments in SKB's Aespoe Hard Rock Laboratory (HRL) using inactive model canisters, in which leaks were deliberately introduced into the outer copper canister while surrounded by bentonite, with the aim of obtaining information about the internal corrosion evolution of the internal environment. The experiments use five small-scale model canisters (300 mm long x 150 mm diameter) that simulate the main features of the SKB canister design (hence the project name, 'MiniCan'). The main aim of the work is to examine how corrosion of the cast iron insert will evolve if a leak is present in the outer copper canister. This report describes the progress on the five experiments running at the Aespoe Hard Rock Laboratory and the data obtained from the start of the experiments in late 2006 up to Winter 2010. The full details of the design and installation of the experiments are given in a previous report and this report concentrates on summarising and interpreting the data obtained to date. This report follows two earlier progress reports presenting results up to December 2009. The current document (progress report 3) describes work up to December 2010. The current report presents the results of the water analyses

  8. Miniature Canister (MiniCan) Corrosion experiment progress report 4 for 2008-2011

    International Nuclear Information System (INIS)

    To ensure the safe encapsulation of spent nuclear fuel rods for geological disposal, SKB of Sweden are considering using the Copper-Iron Canister, which consists of an outer copper canister and a cast iron insert. Over the years a programme of laboratory work has been carried out to investigate a range of corrosion issues associated with the canister, including the possibility of expansion of the outer copper canister as a result of the anaerobic corrosion of the cast iron insert. Previous experimental work using stacks of test specimens has not shown any evidence of corrosion-induced expansion. However, as a further step in developing an understanding of the likely performance of the canister in a repository environment, Serco has set up a series of experiments in SKB's Aespoe Hard Rock Laboratory (HRL) using inactive model canisters, in which leaks were deliberately introduced into the outer copper canister while surrounded by bentonite, with the aim of obtaining information about the internal corrosion evolution of the internal environment. The experiments use five small scale model canisters (300 mm long x 150 mm diameter) that simulate the main features of the SKB canister design (hence the project name, 'MiniCan'). The main aim of the work is to examine how corrosion of the cast iron insert will evolve if a leak is present in the outer copper canister. This report describes the progress on the five experiments running at the Aespoe Hard Rock Laboratory and the data obtained from the start of the experiments in late 2006 up to Winter 2011. The full details of the design and installation of the experiments are given in a previous report and this report concentrates on summarising and interpreting the data obtained to date. This report follows the earlier progress reports presenting results up to December 2010. The current document (progress report 4) describes work up to December 2011. The current report presents the results of the water analyses obtained in

  9. Miniature Canister (MiniCan) Corrosion Experiment Progress Report 3 for 2008-2010

    International Nuclear Information System (INIS)

    To ensure the safe encapsulation of spent nuclear fuel rods for geological disposal, SKB of Sweden are considering using the Copper-Iron Canister, which consists of an outer copper canister and a cast iron insert. Over the years a programme of laboratory work has been carried out to investigate a range of corrosion issues associated with the canister, including the possibility of expansion of the outer copper canister as a result of the anaerobic corrosion of the cast iron insert. Previous experimental work using stacks of test specimens has not shown any evidence of corrosion-induced expansion. However, as a further step in developing an understanding of the likely performance of the canister in a repository environment, Serco has set up a series of experiments in SKB's Aespoe Hard Rock Laboratory (HRL) using inactive model canisters, in which leaks were deliberately introduced into the outer copper canister while surrounded by bentonite, with the aim of obtaining information about the internal corrosion evolution of the internal environment. The experiments use five small-scale model canisters (300 mm long x 150 mm diameter) that simulate the main features of the SKB canister design (hence the project name, 'MiniCan'). The main aim of the work is to examine how corrosion of the cast iron insert will evolve if a leak is present in the outer copper canister. This report describes the progress on the five experiments running at the Aespoe Hard Rock Laboratory and the data obtained from the start of the experiments in late 2006 up to Winter 2010. The full details of the design and installation of the experiments are given in a previous report and this report concentrates on summarising and interpreting the data obtained to date. This report follows two earlier progress reports presenting results up to December 2009. The current document (progress report 3) describes work up to December 2010. The current report presents the results of the water analyses obtained in

  10. Polarization Characteristics Simulation of Airborne Weather Radar Rainfall Target Based on Numerical Weather Prediction

    OpenAIRE

    Liu Xia; Han Yanfei; Li Hai; Lu Xiaoguang; Wu Renbiao

    2016-01-01

    Meteorological target simulation using polarization information is the foundation of the theoretical research and design application of dual-polarization Doppler weather radar. Currently, the theoretical research of airborne dual-polarization weather radar is in the development stage. To provide high-fidelity simulation data required for airborne dual-polarization weather radar detection technology, in this study, a simulation method of the polarization characteristics of rainfall determined ...

  11. SLUDGE TREATMENT PROJECT COST COMPARISON BETWEEN HYDRAULIC LOADING AND SMALL CANISTER LOADING CONCEPTS

    International Nuclear Information System (INIS)

    The Sludge Treatment Project (STP) is considering two different concepts for the retrieval, loading, transport and interim storage of the K Basin sludge. The two design concepts under consideration are: (1) Hydraulic Loading Concept - In the hydraulic loading concept, the sludge is retrieved from the Engineered Containers directly into the Sludge Transport and Storage Container (STSC) while located in the STS cask in the modified KW Basin Annex. The sludge is loaded via a series of transfer, settle, decant, and filtration return steps until the STSC sludge transportation limits are met. The STSC is then transported to T Plant and placed in storage arrays in the T Plant canyon cells for interim storage. (2) Small Canister Concept - In the small canister concept, the sludge is transferred from the Engineered Containers (ECs) into a settling vessel. After settling and decanting, the sludge is loaded underwater into small canisters. The small canisters are then transferred to the existing Fuel Transport System (FTS) where they are loaded underwater into the FTS Shielded Transfer Cask (STC). The STC is raised from the basin and placed into the Cask Transfer Overpack (CTO), loaded onto the trailer in the KW Basin Annex for transport to T Plant. At T Plant, the CTO is removed from the transport trailer and placed on the canyon deck. The CTO and STC are opened and the small canisters are removed using the canyon crane and placed into an STSC. The STSC is closed, and placed in storage arrays in the T Plant canyon cells for interim storage. The purpose of the cost estimate is to provide a comparison of the two concepts described

  12. Nonlinear dynamic impact analysis for installing a dry storage canister into a vertical concrete cask

    International Nuclear Information System (INIS)

    In this paper, a series of dynamic impact analysis for installing a dry storage canister into a vertical concrete cask (VCC) is performed. The dry storage system considered herein is called HCDSS-69, recently developed by INER and being capable of accommodating 69 bundles of BWR spent nuclear fuels. The impact accident is stemming from a conservative consideration of accidental movement when the canister is being hoisted into a VCC. According to NUREG-0554, the accidental movement is conservatively simulated by 80 mm- and 160 mm-height free-drop motions and then with straight and 2°-oblique impact to a pedestal in VCC. A symmetric fully 3-D finite element model is built and analyzed using the explicit finite element code, LS-DYNA. Geometrical, contact, and material nonlinearities are all taken into account. The analysis result concludes that the permanent deformations of the canister are not severe to affect fuel retrieve after the impact accident and the maximum stress intensity in the canister shell can meet the ASME code appendix F F-1340, preventing the leakage of radioactive materials. The study also found that with properly reducing the wall thickness of the pedestal cylinder, the maximum acceleration and permanent deformation of the canister can be much alleviated, even though the drop height is increased to the double of the required brake distance specified in NUREG-0554. The damages of the pedestal in each analysis are moderate so that the heat transfer condition after the impact accident can be bounded by the off-normal event for half-blockage of air inlets

  13. Clean Assembly of Genesis Collector Canister for Flight: Lessons for Planetary Sample Return

    Science.gov (United States)

    Allton, J. H.; Stansbery, E. K.; Allen, C. C.; Warren, J. L.; Schwartz, C. M.

    2007-01-01

    Measurement of solar composition in the Genesis collectors requires not only high sensitivity but very low blanks; thus, very strict collector contamination minimization was required beginning with mission planning and continuing through hardware design, fabrication, assembly and testing. Genesis started with clean collectors and kept them clean inside of a canister. The mounting hardware and container for the clean collectors were designed to be cleanable, with access to all surfaces for cleaning. Major structural components were made of aluminum and cleaned with megasonically energized ultrapure water (UPW). The UPW purity was >18 M resistivity. Although aluminum is relatively difficult to clean, the Genesis protocol achieved level 25 and level 50 cleanliness on large structural parts; however, the experience suggests that surface treatments may be helpful on future missions. All cleaning was performed in an ISO Class 4 (Class 10) cleanroom immediately adjacent to an ISO Class 4 assembly room; thus, no plastic packaging was required for transport. Persons assembling the canister were totally enclosed in cleanroom suits with face shield and HEPA filter exhaust from suit. Interior canister materials, including fasteners, were installed, untouched by gloves, using tweezers and other stainless steel tools. Sealants/lubricants were not exposed inside the canister, but vented to the exterior and applied in extremely small amounts using special tools. The canister was closed in ISO Class 4, not to be opened until on station at Earth-Sun L1. Throughout the cleaning and assembly, coupons of reference materials that were cleaned at the same time as the flight hardware were archived for future reference and blanks. Likewise reference collectors were archived. Post-mission analysis of collectors has made use of these archived reference materials.

  14. Evaluation of DUSTRAN Software System for Modeling Chloride Deposition on Steel Canisters

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Tracy T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jensen, Philip J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fritz, Brad G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rutz, Frederick C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Devanathan, Ram [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-29

    The degradation of steel by stress corrosion cracking (SCC) when exposed to atmospheric conditions for decades is a significant challenge in the fossil fuel and nuclear industries. SCC can occur when corrosive contaminants such as chlorides are deposited on a susceptible material in a tensile stress state. The Nuclear Regulatory Commission has identified chloride-induced SCC as a potential cause for concern in stainless steel used nuclear fuel (UNF) canisters in dry storage. The modeling of contaminant deposition is the first step in predictive multiscale modeling of SCC that is essential to develop mitigation strategies, prioritize inspection, and ensure the integrity and performance of canisters, pipelines, and structural materials. A multiscale simulation approach can be developed to determine the likelihood that a canister would undergo SCC in a certain period of time. This study investigates the potential of DUSTRAN, a dust dispersion modeling system developed by Pacific Northwest National Laboratory, to model the deposition of chloride contaminants from sea salt aerosols on a steel canister. Results from DUSTRAN simulations run with historical meteorological data were compared against measured chloride data at a coastal site in Maine. DUSTRAN’s CALPUFF model tended to simulate concentrations higher than those measured; however, the closest estimations were within the same order of magnitude as the measured values. The decrease in discrepancies between measured and simulated values as the level of abstraction in wind speed decreased suggest that the model is very sensitive to wind speed. However, the influence of other parameters such as the distinction between open-ocean and surf-zone sources needs to be explored further. Deposition values predicted by the DUSTRAN system were not in agreement with concentration values and suggest that the deposition calculations may not fully represent physical processes. Overall, results indicate that with parameter

  15. Evaluation of DUSTRAN Software System for Modeling Chloride Deposition on Steel Canisters

    International Nuclear Information System (INIS)

    The degradation of steel by stress corrosion cracking (SCC) when exposed to atmospheric conditions for decades is a significant challenge in the fossil fuel and nuclear industries. SCC can occur when corrosive contaminants such as chlorides are deposited on a susceptible material in a tensile stress state. The Nuclear Regulatory Commission has identified chloride-induced SCC as a potential cause for concern in stainless steel used nuclear fuel (UNF) canisters in dry storage. The modeling of contaminant deposition is the first step in predictive multiscale modeling of SCC that is essential to develop mitigation strategies, prioritize inspection, and ensure the integrity and performance of canisters, pipelines, and structural materials. A multiscale simulation approach can be developed to determine the likelihood that a canister would undergo SCC in a certain period of time. This study investigates the potential of DUSTRAN, a dust dispersion modeling system developed by Pacific Northwest National Laboratory, to model the deposition of chloride contaminants from sea salt aerosols on a steel canister. Results from DUSTRAN simulations run with historical meteorological data were compared against measured chloride data at a coastal site in Maine. DUSTRAN's CALPUFF model tended to simulate concentrations higher than those measured; however, the closest estimations were within the same order of magnitude as the measured values. The decrease in discrepancies between measured and simulated values as the level of abstraction in wind speed decreased suggest that the model is very sensitive to wind speed. However, the influence of other parameters such as the distinction between open-ocean and surf-zone sources needs to be explored further. Deposition values predicted by the DUSTRAN system were not in agreement with concentration values and suggest that the deposition calculations may not fully represent physical processes. Overall, results indicate that with parameter

  16. SLUDGE TREATMENT PROJECT COST COMPARISON BETWEEN HYDRAULIC LOADING AND SMALL CANISTER LOADING CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    GEUTHER J; CONRAD EA; RHOADARMER D

    2009-08-24

    The Sludge Treatment Project (STP) is considering two different concepts for the retrieval, loading, transport and interim storage of the K Basin sludge. The two design concepts under consideration are: (1) Hydraulic Loading Concept - In the hydraulic loading concept, the sludge is retrieved from the Engineered Containers directly into the Sludge Transport and Storage Container (STSC) while located in the STS cask in the modified KW Basin Annex. The sludge is loaded via a series of transfer, settle, decant, and filtration return steps until the STSC sludge transportation limits are met. The STSC is then transported to T Plant and placed in storage arrays in the T Plant canyon cells for interim storage. (2) Small Canister Concept - In the small canister concept, the sludge is transferred from the Engineered Containers (ECs) into a settling vessel. After settling and decanting, the sludge is loaded underwater into small canisters. The small canisters are then transferred to the existing Fuel Transport System (FTS) where they are loaded underwater into the FTS Shielded Transfer Cask (STC). The STC is raised from the basin and placed into the Cask Transfer Overpack (CTO), loaded onto the trailer in the KW Basin Annex for transport to T Plant. At T Plant, the CTO is removed from the transport trailer and placed on the canyon deck. The CTO and STC are opened and the small canisters are removed using the canyon crane and placed into an STSC. The STSC is closed, and placed in storage arrays in the T Plant canyon cells for interim storage. The purpose of the cost estimate is to provide a comparison of the two concepts described.

  17. Thermal analysis of dry concrete canister storage system for CANDU spent fuel

    International Nuclear Information System (INIS)

    This paper presents the results of a thermal analysis of the concrete canisters for interim dry storage of spent, irradiated Canadian Deuterium Uranium(CANDU) fuel. The canisters are designed to contain 6-year-old fuel safely for periods of 50 years in stainless steel baskets sealed inside a steel-lined concrete shield. In order to assure fuel integrity during the storage, fuel rod temperature shall not exceed the temperature limit. The contents of thermal analysis include the following : 1) Steady state temperature distributions under the conservative ambient temperature and insolation load. 2) Transient temperature distributions under the changes in ambient temperature and insolation load. Accounting for the coupled heat transfer modes of conduction, convection, and radiation, the computer code HEATING5 was used to predict the thermal response of the canister storage system. As HEATING5 does not have the modeling capability to compute radiation heat transfer on a rod-to-rod basis, a separate calculating routine was developed and applied to predict temperature distribution in a fuel bundle. Thermal behavior of the canister is characterized by the large thermal mass of the concrete and radiative heat transfer within the basket. The calculated results for the worst case (steady state with maximum ambient temperature and design insolation load) indicated that the maximum temperature of the 6 year cooled fuel reached to 182.4 .deg. C, slightly above the temperature limit of 180 .deg. C. However,the thermal inertia of the thick concrete wall moderates the internal changes and prevents a rise in fuel temperature in response to ambient changes. The maximum extent of the transient zone was less than 75% of the concrete wall thickness for cyclic insolation changes. When transient nature of ambient temperature and insolation load are considered, the fuel temperature will be a function of the long term ambient temperature as opposed to daily extremes. The worst design

  18. Final Technical Report for Interagency Agreement No. DE-SC0005453 “Characterizing Aerosol Distributions, Types, and Optical and Microphysical Properties using the NASA Airborne High Spectral Resolution Lidar (HSRL) and the Research Scanning Polarimeter (RSP)”

    Energy Technology Data Exchange (ETDEWEB)

    Hostetler, Chris [NASA Langley Research Center, Hampton, VA (United States); Ferrare, Richard [NASA Langley Research Center, Hampton, VA (United States)

    2015-01-13

    Measurements of the vertical profile of atmospheric aerosols and aerosol optical and microphysical characteristics are required to: 1) determine aerosol direct and indirect radiative forcing, 2) compute radiative flux and heating rate profiles, 3) assess model simulations of aerosol distributions and types, and 4) establish the ability of surface and space-based remote sensors to measure the indirect effect. Consequently the ASR program calls for a combination of remote sensing and in situ measurements to determine aerosol properties and aerosol influences on clouds and radiation. As part of our previous DOE ASP project, we deployed the NASA Langley airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 King Air aircraft during major field experiments in 2006 (MILAGRO and MaxTEX), 2007 (CHAPS), 2009 (RACORO), and 2010 (CalNex and CARES). The HSRL provided measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm). These measurements were typically made in close temporal and spatial coincidence with measurements made from DOE-funded and other participating aircraft and ground sites. On the RACORO, CARES, and CalNEX missions, we also deployed the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). RSP provided intensity and degree of linear polarization over a broad spectral and angular range enabling column-average retrievals of aerosol optical and microphysical properties. Under this project, we analyzed observations and model results from RACORO, CARES, and CalNex and accomplished the following objectives. 1. Identified aerosol types, characterize the vertical distribution of the aerosol types, and partition aerosol optical depth by type, for CARES and CalNex using HSRL data as we have done for previous missions. 2. Investigated aerosol microphysical and macrophysical properties using the RSP. 3. Used the aerosol backscatter and extinction profiles measured by the HSRL

  19. The Next Generation Airborne Polarimetric Doppler Radar

    Science.gov (United States)

    Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.

    2013-04-01

    NCAR's Electra Doppler radar (ELDORA) with a dual-beam slotted waveguide array using dual-transmitter, dual-beam, rapid scan and step-chirped waveform significantly improved the spatial scale to 300m (Hildebrand et al. 1996). However, ELDORA X-band radar's penetration into precipitation is limited by attenuation and is not designed to collect polarimetric measurements to remotely estimate microphysics. ELDORA has been placed on dormancy because its airborne platform (P3 587) was retired in January 2013. The US research community has strongly voiced the need to continue measurement capability similar to the ELDORA. A critical weather research area is quantitative precipitation estimation/forecasting (QPE/QPF). In recent years, hurricane intensity change involving eye-eyewall interactions has drawn research attention (Montgomery et al., 2006; Bell and Montgomery, 2006). In the case of convective precipitation, two issues, namely, (1) when and where convection will be initiated, and (2) determining the organization and structure of ensuing convection, are key for QPF. Therefore collocated measurements of 3-D winds and precipitation microphysics are required for achieving significant skills in QPF and QPE. Multiple radars in dual-Doppler configuration with polarization capability estimate dynamical and microphysical characteristics of clouds and precipitation are mostly available over land. However, storms over complex terrain, the ocean and in forest regions are not observable by ground-based radars (Bluestein and Wakimoto, 2003). NCAR/EOL is investigating potential configurations for the next generation airborne radar that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. ELDORA's slotted waveguide array radar is not compatible for dual-polarization measurements. Therefore, the new design has to address both dual-polarization capability and platform requirements to replace the ELDORA system. NCAR maintains a C-130

  20. Development of measurement technology of chlorine attached on canister using laser. Application of LIBS using collinear geometry

    International Nuclear Information System (INIS)

    A concrete cask is adopted for interim storage of spent fuel. The facility has a natural ventilating system to cool down a stainless steel canister inside the concrete cask. When sea salt particles enter into the ventilating system and attach to the canister, the canister has a possibility to suffer SCC(Stress Corrosion Cracking) induced by chlorine. Therefore, measurement of concentration of chlorine on the canister is requested to check the occurrence of SCC. Laser-induced breakdown spectroscopy (LIBS) is suitable for on-site measurement of concentration of chlorine attached on the canister because noncontact measurement for a canister with high temperature is possible. Experiments were performed using stainless steel plates (SUS304L, SUS316L) sprayed with synthetic seawater. Nd:YAG laser beam was focused onto the SUS304L and SUS316L sample and the emission of the ablated plasma was detected by a spectrometer and an intensified CCD camera. The chlorine spectra were measured for the samples with chlorine concentration from 0.0 g/m2 to 4.0 g/m2 by using single or double pulse measurement. The double pulse measurement was designed by collinear geometry. The intensity of the chlorine fluorescence normalized by oxygen fluorescence increased monotonously versus chlorine concentration from 0.0 to 0.4 g/m2 in double pulse measurements. These results show the possibility of the quantitative measurement of chlorine content on the canister by LIBS. (author)

  1. Removal plan for Shippingport pressurized water reactor core 2 blanket fuel assemblies form T plant to the canister storage building

    Energy Technology Data Exchange (ETDEWEB)

    Lata

    1996-09-26

    This document presents the current strategy and path forward for removal of the Shippingport Pressurized Water Reactor Core 2 blanket fuel assemblies from their existing storage configuration (wet storage within the T Plant canyon) and transport to the Canister Storage Building (designed and managed by the Spent Nuclear Fuel. Division). The removal plan identifies all processes, equipment, facility interfaces, and documentation (safety, permitting, procedures, etc.) required to facilitate the PWR Core 2 assembly removal (from T Plant), transport (to the Canister storage Building), and storage to the Canister Storage Building. The plan also provides schedules, associated milestones, and cost estimates for all handling activities.

  2. 国产机载LiDAR数据采集与处理的质量控制方法研究%Research on Domestic Airborne LiDAR Data Acquisition and Processing Quality Control Methods

    Institute of Scientific and Technical Information of China (English)

    刘田龙; 左建章; 谢劭峰

    2015-01-01

    Domestic airborne LiDAR system is continuously booming in recent years, its market and application in surveying and mapping field expands unceasingly, and the accuracy of surveying and mapping is inevitable. As integration of airborne LiDAR system is composed of multiple subsystems, each subsystem may introduces different level errors, data acquisition and processing of each link will be effected on the final result. The concrete test on domestic airborne LiDAR data acquisition and processing in the process of quality control method is studied in this article.%近年来机载LiDAR系统在国内不断发展,其测绘市场和应用领域不断扩大,提高并保证测绘精度在所难免,但是机载LiDAR系统是由多个子系统集成,各个子系统都会不同程度地引入误差,数据采集与处理的各个环节都会对最终结果产生影响。本文通过具体试验对国产机载LiDAR数据采集与处理过程中的质量控制方法进行了研究。

  3. Comments on 'SKB FUD-program 95' focused on canister integrity and corrosion

    International Nuclear Information System (INIS)

    The work presented in this report is a result of reading the SKB program for R,D and D on safe storage of radioactive wastes. Our work, which is focused on the waste canisters, was commissioned by the Swedish Nuclear Power Inspectorate. We find the program very difficult to follow owing to the lack of detail in chapter seven. In our opinion this will make the work difficult to monitor by SKI or SKB. We also feel that the interpretation of information already available is overoptimistic. As a consequence the difficulties ahead are understated and the programme is converging too quickly. We believe that it should be possible to develop a satisfactory canister for disposal of high level nuclear waste according to the general method proposed by SKB and with the proposed capacity within the timescale of the overall programme. We do not believe, however, that all the difficulties have been recognised. As a consequence of this the results to date are interpreted optimistically. We believe that progress should be subjected to more professional review within SKB and that a higher level of metallurgical support is required. We disagree that suitable full size canisters have been created and that production technology is available for both canisters at full size. We also disagree that the long-time durability is ascertained. I.a. it is easy to find corrosion mechanisms for the canister system that have to be demonstrated not to be harmful. We feel there are many areas which need further evaluation, i.a. effects of non uniform loading and creep, effects of departure from circularity, welding, quality control, effects of radiolysis, corrosion properties, etc. We also feel that insufficient emphasis has been placed on the further development on high power electron beam welding, machining, casting of the insert, testing and overall handling. We consider that more information should be provided on the detail and timing of the development plan for the trial fabrication programme of

  4. Research into The Cross Location in Airborne Single-station Fixed Target Direction-finding%机载单站固定目标测向交叉定位研究

    Institute of Scientific and Technical Information of China (English)

    田明辉; 方青; 任清安

    2012-01-01

    机载平台对地面固定目标定位是电子侦察中的一项重要任务。针对机载平台的特点,提出了一种机载单站对地面固定目标的纯方位交叉定位算法,通过测量地面辐射源信号的方位角,结合机载平台的位置与航向信息,建立三维球面弧线计算模型求解目标的地理经纬度,给出了快速计算目标方位斜率的方法,通过多次融合定位提高定位精度。仿真实验中采用卫星工具开发包(STK)仿真软件生成机载平台的位置数据和目标的方位角数据,分析了多次融合定位的收敛情况及不同测向精度下的定位性能,最后给出了一些工程实践性的建议,具有一定的参考意义。%It is an important task in the electronic reconnaissance that the airborne platform locates the ground fixed target.Aiming at the characteristics of airborne platform,this paper puts forward a cross location algorithm that the airborne single-station locates the ground fixed target based on azimuth only,by measuring the azimuth angles of ground radiation source signal,establishes the 3D spherical pitch arc calculation model to find the solution of geographical latitude and longitude of target combining with the position and course information of airborne platform,presents the method to calculate the azimuth slope of target rapidly,improves the locating precision through multi-fusion location,uses satelite took kit(STK) simulation software to generate the position data of airborne platform and azimuth data of target in the simulation experiment,analyzes the convergence of multi-fusion location and the locating performance at different direction finding precision,finally gives some suggestions with engineering practicality,which has definite reference meaning.

  5. Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, volume 73

    Science.gov (United States)

    Haas, Michael R. (Editor); Davidson, Jacqueline A. (Editor); Erickson, Edwin F. (Editor)

    1995-01-01

    This symposium was organized to review the science related to NASA's Airborne Astronomy Program on the occasion of the twentieth anniversary of the Kuiper Airborne Observatory (KAO). The theme selected, 'The Galactic Ecosystem: From Gas to Stars to Dust,' was considered to capture the underlying commonality of much of the research discussed. The 8 sessions were as follows: The Interstellar Medium; The Life Cycle of the ISM in Other Galaxies; Star and Planetary System Formation; Our Planetary System: The Solar System; The Enrichment of the Interstellar Medium; The Galactic Center: A Unique Region of the Galactic Ecosystem; Instrumentation for Airborne Astronomy; KAO History and Education; and Missions and the Future of Infrared Astronomy.

  6. Airborne Remote Sensing of River Flow and Morphology

    Science.gov (United States)

    Zuckerman, S.; Anderson, S. P.; McLean, J.; Redford, R.

    2014-12-01

    River morphology, surface slope and flow are some of the fundamental measurements required for surface water monitoring and hydrodynamic research. This paper describes a method of combining bathymetric lidar with space-time processing of mid-wave infrared (MWIR) imagery to simultaneously measure bathymetry, currents and surface slope from an airborne platform. In May 2014, Areté installed a Pushbroom Imaging Lidar for Littoral Surveillance (PILLS) and a FLIR SC8000 MWIR imaging system sampling at 2 Hz in a small twin-engine aircraft. Data was collected over the lower Colorado River between Picacho Park and Parker. PILLS is a compact bathymetric lidar based on streak-tube sensor technology. It provides channel and bank topography and water surface elevation at 1 meter horizontal scales and 25 cm vertical accuracy. Surface currents are derived from the MWIR imagery by tracking surface features using a cross correlation algorithm. This approach enables the retrieval of currents along extended reaches at the forward speed of the aircraft with spatial resolutions down to 5 m with accuracy better than 10 cm/s. The fused airborne data captures current and depth variability on scales of meters over 10's of kilometers collected in just a few minutes. The airborne MWIR current retrievals are combined with the bathymetric lidar data to calculate river discharge which is then compared with real-time streamflow stations. The results highlight the potential for improving our understanding of complex river environments with simultaneous collections from multiple airborne sensors.

  7. ISRO's dual frequency airborne SAR pre-cursor to NISAR

    Science.gov (United States)

    Ramanujam, V. Manavala; Suneela, T. J. V. D.; Bhan, Rakesh

    2016-05-01

    The Indian Space Research Organisation (ISRO) and the National Aeronautics and Space Administration (NASA) have jointly embarked on NASA-ISRO Synthetic Aperture Radar (NISAR) operating in L-band and S-band, which will map Earth's surface every 12 days. As a pre-cursor to the NISAR mission, ISRO is planning an airborne SAR (L&S band) which will deliver NISAR analogue data products to the science community. ISRO will develop all the hardware with the aim of adhering to system design aspects of NISAR to the maximum extent possible. It is a fully polarimetric stripmap SAR and can be operated in single, dual, compact, quasi-quad and full polarimetry modes. It has wide incidence angle coverage from 24°-77° with swath coverage from 5.5km to 15 km. Apart from simultaneous imaging operations, this system can also operate in standalone L/S SAR modes. This system is planned to operate from an aircraft platform with nominal altitude of 8000meters. Antenna for this SAR will be rigidly mounted to the aircraft, whereas, motion compensation will be implemented in the software processor to generate data products. Data products for this airborne SAR will be generated in slant & ground range azimuth dimension and geocoded in HDF5/Geotiff formats. This airborne SAR will help to prepare the Indian scientific community for optimum utilization of NISAR data. In-order to collect useful science data, airborne campaigns are planned from end of 2016 onwards.

  8. The use of airborne geophysics for levee classification and assessment

    Science.gov (United States)

    Dunbar, Joseph B.

    2011-12-01

    This research is the first known application into using airborne geophysical methods to evaluate and classify levees. This research is an important step toward developing new technologies and methods to rapidly screen and evaluate earthen flood control levees for safety against flooding. An investigation of airborne geophysical methods was conducted on levees in the lower Rio Grande Valley and involved electromagnetic induction, magnetometer, and LiDAR surveys of the levee system. Airborne EM signatures were analyzed by geologic mapping of floodplain depositional environments, examination of published soils data, and drilling of borings. A geographic information system was developed to manage the various data sets and evaluate historic land use changes and development of the flood control systems to better understand the signatures using airborne methods. This research presents information about the historic basis for evaluating and classifying levees, which is based primarily on the federal perspective and flood control experiences in the lower Mississippi River Valley, where national floodplain engineering methods and standards were developed. This research examines the evolution of today's flood control policy, and the development of engineering assessment procedures, and the application of geophysical methods to provide critical information about levee failure mechanisms and assessment of flood control systems. This research demonstrates that topographic base maps and Sengpiel sections showing the results of electrical conductivity or resistivity surveys at different frequencies along the levee corridor provide accurate and valuable information to determine the composition of floodplain soils and the foundation stratigraphy to assess modes of levee failure, to aid in the placement of borings to obtain material properties of the levee and foundation, and to determine the extent of levee reaches with similar properties for the engineering analysis. The main

  9. NASA Airborne Science Program: NASA Stratospheric Platforms

    Science.gov (United States)

    Curry, Robert E.

    2010-01-01

    The National Aeronautics and Space Administration conducts a wide variety of remote sensing projects using several unique aircraft platforms. These vehicles have been selected and modified to provide capabilities that are particularly important for geophysical research, in particular, routine access to very high altitudes, long range, long endurance, precise trajectory control, and the payload capacity to operate multiple, diverse instruments concurrently. While the NASA program has been in operation for over 30 years, new aircraft and technological advances that will expand the capabilities for airborne observation are continually being assessed and implemented. This presentation will review the current state of NASA's science platforms, recent improvements and new missions concepts as well as provide a survey of emerging technologies unmanned aerial vehicles for long duration observations (Global Hawk and Predator). Applications of information technology that allow more efficient use of flight time and the ability to rapidly reconfigure systems for different mission objectives are addressed.

  10. Monitoring and evaluation techniques for airborne contamination

    Energy Technology Data Exchange (ETDEWEB)

    Xia Yihua [China Inst. of Atomic Energy, Beijing (China)

    1997-06-01

    Monitoring and evaluation of airborne contamination are of great importance for the purpose of protection of health and safety of workers in nuclear installations. Because airborne contamination is one of the key sources to cause exposure to individuals by inhalation and digestion, and to cause diffusion of contaminants in the environment. The main objectives of monitoring and evaluation of airborne contamination are: to detect promptly a loss of control of airborne material, to help identify those individuals and predict exposure levels, to assess the intake and dose commitment to the individuals, and to provide sufficient documentation of airborne radioactivity. From the viewpoint of radiation protection, the radioactive contaminants in air can be classified into the following types: airborne aerosol, gas and noble gas, and volatile gas. In this paper, the following items are described: sampling methods and techniques, measurement and evaluation, and particle size analysis. (G.K.)

  11. Sampling and Analysis Plan for canister liquid and gas sampling at 105-KW fuel storage basin

    International Nuclear Information System (INIS)

    This Sampling and Analysis Plan (SAP) details the sampling and analyses to be performed on fuel canisters transferred to the Weasel Pit of the 105-KW fuel storage basin. The radionuclide content of the liquid and gas in the canisters must be evaluated to support the shipment of fuel elements to the 300 Area in support of the fuel characterization studies (Abrefah, et al. 1994, Trimble 1995). The following sections provide background information and a description of the facility under investigation, discuss the existing site conditions, present the constituents of concern, outline the purpose and scope of the investigation, outline the data quality objectives (DQO), provide analytical detection limit, precision, and accuracy requirements, and address other quality assurance (QA) issues

  12. A study of defects which might arise in the copper steel canister

    International Nuclear Information System (INIS)

    A study has been conducted to identify the material and manufacturing defects that might occur in serially produced canisters to the SKB reference design. The study has depended on cooperation of contractors engaged by SKB to participate in the development program, SKB staff, observations made by the writer over a five-year involvement with SKI, literature studies and consultation with experts. The candidate manufacturing procedures have been described inasmuch as it has been necessary to do so to make the points related to defects. Where possible, the cause of defects, their likely effects on manufacturing procedures or on durability of the canister and the methods available for their detection are given. For ease of reference each section of the report contains a table which summarizes the information in it and, in the final section of the report, all the tables are presented en-bloc

  13. The gas-cooled Li2O moderator/breeder canister blanket for fusion-synfuels

    International Nuclear Information System (INIS)

    A new integrated power and breeding blanket is described. The blanket incorporates features that make it suitable for synthetic fuel production. It is matched to the thermal and electrical requirements of the General Atomic water-splitting process for producing hydrogen. The fusion reaction is the Tandem Mirror Reactor (TMR) using Mirror Advanced Reactor Study (MARS) physics. The canister blanket is a high temperature, pressure balanced, crossflow heat exchanger contained within a low activity, independently cooled, moderate temperature, first wall structural envelope. The canister uses Li2O as the moderator/breeder and helium as the coolant. ''In situ'' tritium control, combined with slip stream processing and self-healing permeation barriers, assures a hydrogen product essentially free of tritium. The blanket is particularly adapted to synfuels production but is equally useful for electricity production or co-generation

  14. A crane is lowered over the payload canister with the SRTM inside

    Science.gov (United States)

    1999-01-01

    A crane is lowered over the payload canister with the Shuttle Radar Topography Mission (SRTM) inside in Orbiter Processing Facility (OPF) bay 2. The primary payload on STS-99, the SRTM will soon be lifted out of the canister and installed into the payload bay of the orbiter Endeavour. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation. The SRTM hardware includes one radar antenna in the Shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A.

  15. Moisture probe using neutron moderation for PuO2 canister inspection

    International Nuclear Information System (INIS)

    At several U.S. Department of Energy sites, where the production of nuclear materials was once active, powdered PuO2 contained in small metal canisters is sealed in larger containers for long-term storage. To prevent corrosion and the generation of significant amounts of hydrogen gas within the small canisters, the moisture content of the PuO2 powder must be 2 powder in situ, we proposed the development of a system that is based on the moderation of neutrons. We discuss the results of calculations and measurements performed in a project supported by Los Alamos National Laboratory (LANL) to examine the capabilities and sensitivity of this inspection technique

  16. A study of defects which might arise in the copper steel canister

    Energy Technology Data Exchange (ETDEWEB)

    Bowyer, W.H. [Meadow End Farm, Farnham (United Kingdom)

    1999-05-15

    A study has been conducted to identify the material and manufacturing defects that might occur in serially produced canisters to the SKB reference design. The study has depended on cooperation of contractors engaged by SKB to participate in the development program, SKB staff, observations made by the writer over a five-year involvement with SKI, literature studies and consultation with experts. The candidate manufacturing procedures have been described inasmuch as it has been necessary to do so to make the points related to defects. Where possible, the cause of defects, their likely effects on manufacturing procedures or on durability of the canister and the methods available for their detection are given. For ease of reference each section of the report contains a table which summarizes the information in it and, in the final section of the report, all the tables are presented en-bloc.

  17. Yucca Mountain project canister material corrosion studies as applied to the electrometallurgical treatment metallic waste form

    International Nuclear Information System (INIS)

    Yucca Mountain, Nevada is currently being evaluated as a potential site for a geologic repository. As part of the repository assessment activities, candidate materials are being tested for possible use as construction materials for waste package containers. A large portion of this testing effort is focused on determining the long range corrosion properties, in a Yucca Mountain environment, for those materials being considered. Along similar lines, Argonne National Laboratory is testing a metallic alloy waste form that also is scheduled for disposal in a geologic repository, like Yucca Mountain. Due to the fact that Argonne's waste form will require performance testing for an environment similar to what Yucca Mountain canister materials will require, this report was constructed to focus on the types of tests that have been conducted on candidate Yucca Mountain canister materials along with some of the results from these tests. Additionally, this report will discuss testing of Argonne's metal waste form in light of the Yucca Mountain activities

  18. Shielding analysis of depleted uranium silicate filler concept for spent fuel canister designs

    International Nuclear Information System (INIS)

    A Depleted Uranium Silicate Container Backfill System (DUSCOBS) has been proposed at Oak Ridge National Laboratory. This concept suggests the use of small, depleted-uranium silicate glass beads as a backfill material inside storage, transportation, and repository waste packages containing spent nuclear fuel. Use of this backfdl material would substantially reduce external dose rates from a waste canister, allowing a reduction of the amount of external shielding required. This paper summarizes the results of scoping studies to estimate the dose reduction from the use of DUSCOBS in a conceptual canister design, and to determine what design modifications are required to offset the increased mass of the system, while simultaneously maintaining sufficient shielding to meet external dose rate limits

  19. Identifying Airborne Pathogens in Time to Respond

    Energy Technology Data Exchange (ETDEWEB)

    Hazi, A

    2006-01-25

    Among the possible terrorist activities that might threaten national security is the release of an airborne pathogen such as anthrax. Because the potential damage to human health could be severe, experts consider 1 minute to be an operationally useful time limit for identifying the pathogen and taking action. Many commercial systems can identify airborne pathogenic microbes, but they take days or, at best, hours to produce results. The Department of Homeland Security (DHS) and other U.S. government agencies are interested in finding a faster approach. To answer this national need, a Livermore team, led by scientist Eric Gard, has developed the bioaerosol mass spectrometry (BAMS) system--the only instrument that can detect and identify spores at low concentrations in less than 1 minute. BAMS can successfully distinguish between two related but different spore species. It can also sort out a single spore from thousands of other particles--biological and nonbiological--with no false positives. The BAMS team won a 2005 R&D 100 Award for developing the system. Livermore's Laboratory Directed Research and Development (LDRD) Program funded the biomedical aspects of the BAMS project, and the Department of Defense's Technical Support Working Group and Defense Advanced Research Project Agency funded the biodefense efforts. Developing a detection system that can analyze small samples so quickly has been challenging. Livermore engineer Vincent Riot, who worked on the BAMS project, explains, ''A typical spore weighs approximately one-trillionth of a gram and is dispersed in the atmosphere, which contains naturally occurring particles that could be present at concentrations thousands of times higher. Previous systems also had difficulty separating benign organisms from those that are pathogenic but very similar, which has resulted in false alarms''.

  20. Oxidative Dissolution of Spent Fuel and Release of Nuclides from a Copper/Iron Canister : Model Developments and Applications

    OpenAIRE

    Liu, Longcheng

    2001-01-01

    Three models have been developed and applied in the performance assessment of a final repository. They are based on accepted theories and experimental results for known and possible mechanisms that may dominate in the oxidative dissolution of spent fuel and the release of nuclides from a canister. Assuming that the canister is breached at an early stage after disposal, the three models describe three sub-systems in the near field of the repository, in which the governing processes and mechani...

  1. Feasibility of using a high-level waste canister as an engineered barrier in disposal

    International Nuclear Information System (INIS)

    The objective of this report is to evaluate the feasibility of designing a process canister that could also serve as a barrier canister. To do this a general set of performance criteria is assumed and several metal alloys having a high probability of demonstrating high corrosion resistance under repository conditions are evaluated in a qualitative design assessment. This assessment encompasses canister manufacture, the glass-filling process, interim storage, transportation, and to a limited extent, disposal in a repository. A series of scoping tests were carried out on two titanium alloys and Inconel 625 to determine if the high temperature inherent in the glass-fill processing would seriously affect either the strength or corrosion resistance of these metals. This is a process-related concern unique to the barrier canister concept. The material properties were affected by the heat treatments which simulated both the joule-heated glass melter process (titanium alloys and Inconel 625) and the in-can melter (ICM) process (Inconel 625). However, changes in the material properties were generally within 20% of the original specimens. Accelerated corrosion testing of the heat treated coupons in a highly oxygenated brine showed basic corrosion resistance of titanium grade 12 and Inconel 625 to compare favorably with that of the untreated coupons. The titanium grade 2 coupons experienced severe corrosion pitting. These corrosion tests were of a scoping nature and suitable primarily for the detection of gross sensitivity to the heat treatment inherent in the glass-fill process. They are only suggstive of repository performance since the tests do not adequately model the wide range of repository conditions that could conceivably occur

  2. Analytical Results of DWPF Glass Sample Taken During Filling of Canister S01913

    International Nuclear Information System (INIS)

    The Defense Waste Processing Facility (DWPF) began processing Sludge Batch 2 (SB2) in December 2001 as part of Sludge Receipt and Adjustment Tank (SRAT) Batch 208. Sludge Batch 2 consists of the contents of Tank 40 and Tank 8 in approximately equal proportions. The sludge slurry is received into the DWPF Chemical Processing Cell and is processed through the SRAT and Slurry Mix Evaporator Tank. The treated sludge slurry is then transferred to the Melter Feed Tank and fed to the melter. During the processing of each sludge batch, the DWPF is required to take at least one glass sample. This glass sample is taken to meet the objectives of the Glass Product Control Program1 and to complete the necessary Production Records so that the final glass product may be disposed of at a Federal Repository.The DWPF requested analysis of a radioactive glass sample obtained from the melter pour stream during the processing of Macrobatch 3 (MB3) (Sludge Batch 2)2 with Frit 320. A glass sample was obtained while pouring Canister S01913 and was sent to the Savannah River National Laboratory Shielded Cells for characterization. Canister S01913 was the 267th canister poured during vitrification of Sludge Batch 2 (364 canisters of glass were prepared from SB2). The glass sample arrived from DWPF in primary container PC0034. The primary container contained pieces of glass. The glass had been extracted from the sample holder in the DWPF. This report contains the visual observations of the as-received glass sample, results for the density, the chemical composition, the Product Consistency Test and the calculated and measured radionuclide results needed for the Production

  3. Monitored Retrievable Storage/Multi-Purpose Canister analysis: Simulation and economics of automation

    International Nuclear Information System (INIS)

    Robotic automation is examined as a possible alternative to manual spent nuclear fuel, transport cask and Multi-Purpose canister (MPC) handling at a Monitored Retrievable Storage (MRS) facility. Automation of key operational aspects for the MRS/MPC system are analyzed to determine equipment requirements, through-put times and equipment costs is described. The economic and radiation dose impacts resulting from this automation are compared to manual handling methods

  4. NDT Reliability - Final Report. Reliability in non-destructive testing (NDT) of the canister components

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, Mato; Takahashi, Kazunori; Mueller, Christina; Boehm, Rainer (BAM, Federal Inst. for Materials Research and Testing, Berlin (Germany)); Ronneteg, Ulf (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2008-12-15

    This report describes the methodology of the reliability investigation performed on the ultrasonic phased array NDT system, developed by SKB in collaboration with Posiva, for inspection of the canisters for permanent storage of nuclear spent fuel. The canister is composed of a cast iron insert surrounded by a copper shell. The shell is composed of the tube and the lid/base which are welded to the tube after the fuel has been place, in the tube. The manufacturing process of the canister parts and the welding process are described. Possible defects, which might arise in the canister components during the manufacturing or in the weld during the welding, are identified. The number of real defects in manufactured components have been limited. Therefore the reliability of the NDT system has been determined using a number of test objects with artificial defects. The reliability analysis is based on the signal response analysis. The conventional signal response analysis is adopted and further developed before applied on the modern ultrasonic phased-array NDT system. The concept of multi-parameter a, where the response of the NDT system is dependent on more than just one parameter, is introduced. The weakness of use of the peak signal response in the analysis is demonstrated and integration of the amplitudes in the C-scan is proposed as an alternative. The calculation of the volume POD, when the part is inspected with more configurations, is also presented. The reliability analysis is supported by the ultrasonic simulation based on the point source synthesis method

  5. Comparative evaluations of the thermomechanical responses for three high level waste canister emplacement alternatives

    International Nuclear Information System (INIS)

    The structural responses of three room and canister configurations proposed for the underground storage of high level nuclear wastes have been compared. Coupled secondary creep and heat transfer computations indicate that the future retrieval of waste is most readily assured with a design that combines a low extraction ratio (large pillars) with waste emplacement into the floors of each storage room. Thermoelastic computations show minimal room closure in comparison to room closure due to creep deformations

  6. A charcoal canister survey of radon emanation at the rehabilitated uranium mine site at Nabarlek

    International Nuclear Information System (INIS)

    This paper describes a recent survey of radon emanation measurements from the rehabilitated Nabarlek mine site. It was mined out in 1979, decommissioned in 1995 and provided a good test bed for assessment of rehabilitation in terms of radon flux attenuation. Measurements have been made with charcoal canisters. Studies to measure the radon-220 flux by observing Tl-208 progeny of thoron the effectiveness of trial covers and meteorological considerations will be reported

  7. NDT Reliability - Final Report. Reliability in non-destructive testing (NDT) of the canister components

    International Nuclear Information System (INIS)

    This report describes the methodology of the reliability investigation performed on the ultrasonic phased array NDT system, developed by SKB in collaboration with Posiva, for inspection of the canisters for permanent storage of nuclear spent fuel. The canister is composed of a cast iron insert surrounded by a copper shell. The shell is composed of the tube and the lid/base which are welded to the tube after the fuel has been place, in the tube. The manufacturing process of the canister parts and the welding process are described. Possible defects, which might arise in the canister components during the manufacturing or in the weld during the welding, are identified. The number of real defects in manufactured components have been limited. Therefore the reliability of the NDT system has been determined using a number of test objects with artificial defects. The reliability analysis is based on the signal response analysis. The conventional signal response analysis is adopted and further developed before applied on the modern ultrasonic phased-array NDT system. The concept of multi-parameter a, where the response of the NDT system is dependent on more than just one parameter, is introduced. The weakness of use of the peak signal response in the analysis is demonstrated and integration of the amplitudes in the C-scan is proposed as an alternative. The calculation of the volume POD, when the part is inspected with more configurations, is also presented. The reliability analysis is supported by the ultrasonic simulation based on the point source synthesis method

  8. Automated waste canister docking and emplacement using a sensor-based intelligent controller

    International Nuclear Information System (INIS)

    A sensor-based intelligent control system is described that utilizes a multiple degree-of-freedom robotic system for the automated remote manipulation and precision docking of large payloads such as waste canisters. Computer vision and ultrasonic proximity sensing are used to control the automated precision docking of a large object with a passive target cavity. Real-time sensor processing and model-based analysis are used to control payload position to a precision of ± 0.5 millimeter

  9. Electrospray Collection of Airborne Contaminants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In stark contrast to current stagnation-based methods for capturing airborne particulates and biological aerosols, our demonstrated, cost-effective electrospray...

  10. Multicenter airborne coherent atmospheric wind sensor (MACAWS) instrument: recent upgrades and results

    Science.gov (United States)

    Howell, James N.; Rothermel, Jeffrey; Tratt, David M.; Cutten, Dean; Darby, Lisa S.; Hardesty, R. Michael

    1999-10-01

    The Multicenter Airborne Coherent Atmospheric Wind Sensor instrument is an airborne coherent Doppler laser radar (Lidar) capable of measuring atmospheric wind fields and aerosol structure. Since the first demonstration flights onboard the NASA DC-8 research aircraft in September 1995, two additional science flights have been completed. Several system upgrades have also bee implemented. In this paper we discuss the system upgrades and present several case studies which demonstrate the various capabilities of the system.

  11. Elementary analysis of airborne dust (preliminary findings of the AFR Coordinated Airborne Dust Programme (LVPr))

    International Nuclear Information System (INIS)

    In March 1981 the systematic measuring of 15 elements of airborne dust was started in the Coordinated Airborne Dust Program (LVPr) by the Association for the Promotion of Radionuclide Technology (AFR). The sampling was done under comparable conditions at five selected places within the Federal Republic of Germany by using especially developed large-filter High Volume Samplers. The aim of this research is to establish the foundation for further investigations on the effects of the current given element concentrations on human life. When the results of the first half-year (summer period) were in hand, these element concentrations, which had been analysed using different methods, were presented to a group of experts, also with the experience gained with the analytical methods, in order to critically assess procedure and philosophy of this study. This evaluation was done on the occasion of a colloquium on Jun 29th, 1982 at the Karlsruhe Nuclear Research Centre. The presented AFR-Report contains the papers and the discussions of this meeting as well as the average element data with respect to the sampling time between 15th and 40th week of the year 1981. The discussion contributions presented here correspond to the essential statements that have been given and recorded. A total classification of all data relating to the whole sampling time of the LVPr will be given in AFR-Report No. 007. (orig.)

  12. Topical safety analysis report for the transportation of the NUHOMS{reg_sign} dry shielded canister. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-08-01

    This Topical Safety Analysis Report (SAR) describes the design and the generic transportation licensing basis for utilizing the NUTECH HORIZONTAL MODULAR STORAGE (NUHOMS{reg_sign}) system dry shielded canister (DSC) containing twenty-four pressurized water reactor (PWR) spent fuel assemblies (SFA) in conjunction with a conceptually designed Transportation Cask. This SAR documents the design qualification of the NUHOMS{reg_sign} DSC as an integral part of a 10CFR71 Fissile Material Class III, Type B(M) Transportation Package. The package consists of the canister and a conceptual transportation cask (NUHOMS{reg_sign} Transportation Cask) with impact limiters. Engineering analysis is performed for the canister to confirm that the existing canister design complies with 10CFR71 transportation requirements. Evaluations and/or analyses is performed for criticality safety, shielding, structural, and thermal performance. Detailed engineering analysis for the transportation cask will be submitted in a future SAR requesting 10CFR71 certification of the complete waste package. Transportation operational considerations describe various operational aspects of the canister/transportation cask system. operational sequences are developed for canister transfer from storage to the transportation cask and interfaces with the cask auxiliary equipment for on- and off-site transport.

  13. ALPHN: A computer program for calculating ([alpha], n) neutron production in canisters of high-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, R.; Hermann, O.W.

    1992-10-01

    The rate of neutron production from ([alpha], n) reactions in canisters of immobilized high-level waste containing borosilicate glass or glass-ceramic compositions is significant and must be considered when estimating neutron shielding requirements. The personal computer program ALPHA calculates the ([alpha], n) neutron production rate of a canister of vitrified high-level waste. The user supplies the chemical composition of the glass or glass-ceramic and the curies of the alpha-emitting actinides present. The output of the program gives the ([alpha], n) neutron production of each actinide in neutrons per second and the total for the canister. The ([alpha], n) neutron production rates are source terms only; that is, they are production rates within the glass and do not take into account the shielding effect of the glass. For a given glass composition, the user can calculate up to eight cases simultaneously; these cases are based on the same glass composition but contain different quantities of actinides per canister. In a typical application, these cases might represent the same canister of vitrified high-level waste at eight different decay times. Run time for a typical problem containing 20 chemical species, 24 actinides, and 8 decay times was 35 s on an IBM AT personal computer. Results of an example based on an expected canister composition at the Defense Waste Processing Facility are shown.

  14. ALPHN: A computer program for calculating (α, n) neutron production in canisters of high-level waste

    International Nuclear Information System (INIS)

    The rate of neutron production from (α, n) reactions in canisters of immobilized high-level waste containing borosilicate glass or glass-ceramic compositions is significant and must be considered when estimating neutron shielding requirements. The personal computer program ALPHA calculates the (α, n) neutron production rate of a canister of vitrified high-level waste. The user supplies the chemical composition of the glass or glass-ceramic and the curies of the alpha-emitting actinides present. The output of the program gives the (α, n) neutron production of each actinide in neutrons per second and the total for the canister. The (α, n) neutron production rates are source terms only; that is, they are production rates within the glass and do not take into account the shielding effect of the glass. For a given glass composition, the user can calculate up to eight cases simultaneously; these cases are based on the same glass composition but contain different quantities of actinides per canister. In a typical application, these cases might represent the same canister of vitrified high-level waste at eight different decay times. Run time for a typical problem containing 20 chemical species, 24 actinides, and 8 decay times was 35 s on an IBM AT personal computer. Results of an example based on an expected canister composition at the Defense Waste Processing Facility are shown

  15. Challenge to Overcome the Concern of SCC in Canister During Long-Term Storage of Spent Fuel

    International Nuclear Information System (INIS)

    In order to put the concrete cask in practical use in Japan (an island country), stress corrosion cracking (SCC) of canister must be coped with. It is required to take measures for one or two of the three factors, i.e. welding residual stress, material, and environment, to cope with the SCC that may result in loss of the containment function of the canister. Prevention of loss of containment due to SCC of a canister was evaluated either by a method of comparing the amount of salt on the canister surface during storage with the minimum amount of salt to initiate rust and SCC or by a method of comparing the wetting time of the canister surface under salty-air field environment with the lifetime of the SCC fracture of the canister material. Although the use of highly corrosion-resistance stainless steel is one solution, it brings about a cost rise of the concrete cask storage. In order to suppress the cost rise, it should be evaluated whether the measure against SCC of the normal stainless steel is possible by reducing welding residual stress. In addition, technology should be developed to reduce salt particles in the air flowing into the storage facility and concrete cask. (author)

  16. Analysis of burns caused by pre-filled gas canisters used for lamps or portable camping stoves.

    Science.gov (United States)

    Desouches, C; Salazard, B; Romain, F; Karra, C; Lavie, A; Volpe, C Della; Manelli, J C; Magalon, G

    2006-12-01

    The use of pre-filled valveless gas canisters for lamps or camping stoves has caused a number of serious burn incidents. We performed a retrospective analysis of all of the patients who were victims of such incidents admitted to the Marseille Burn Centre between January 1990 and March 2004. There were a total of 21 patients burned in such conditions. Adult males made up the majority of the victims of this sort. Lesions were often extensive (60% of the patients were burned over more than 10% of their body surface) and systematically deep. In order of frequency, burn locations were: the lower limbs, the upper limbs, the hands and the face. The incidents principally occurred during replacement of the canister near an open flame. The marketing of a canister with a valve in order to avoid gas leaks did not cause the old canisters to be taken off the market. On the contrary, European Safety Standard EN417, updated in October 2003, validated the use of these valveless canisters. The severity of the lesions caused and the existence of safe equivalent products requires the passage of a law that forbids valveless canisters. PMID:16982156

  17. Development of flaw acceptance criteria for aging management of spent nuclear fuel multi-purpose canisters

    International Nuclear Information System (INIS)

    A typical multipurpose canister (MPC) is made of austenitic stainless steel and is loaded with spent nuclear fuel assemblies. The canister may be subject to service-induced degradation when it is exposed to aggressive atmospheric environments during a possibly long-term storage period if the permanent repository is yet to be identified and readied. Because heat treatment for stress relief is not required for the construction of an MPC, stress corrosion cracking may be initiated on the canister surface in the welds or in the heat affected zone. An acceptance criteria methodology is being developed for flaw disposition should the crack-like defects be detected by periodic in-service Inspection. The first-order instability flaw sizes has been determined with bounding flaw configurations, that is, through-wall axial or circumferential cracks, and part-through-wall long axial flaw or 360° circumferential crack. The procedure recommended by the American Petroleum Institute (API) 579 Fitness-for-Service code (Second Edition) is used to estimate the instability crack length or depth by implementing the failure assessment diagram (FAD) methodology. The welding residual stresses are mostly unknown and are therefore estimated with the API 579 procedure. It is demonstrated in this paper that the residual stress has significant impact on the instability length or depth of the crack. The findings will limit the applicability of the flaw tolerance obtained from limit load approach where residual stress is ignored and only ligament yielding is considered.

  18. Acceptance of canisters of consolidated spent nuclear fuel by the Federal Waste Management System

    International Nuclear Information System (INIS)

    This report is one of a series of eight prepared by E. R. Johnson Associates, Inc. (JAI) under ORNL's contract with DOE's OCRWM Systems Integration Program and in support of the Annual Capacity Report (ACR) Issue Resolution Process. The report topics relate specifically to the list of high priority technical waste acceptance issues developed jointly by DOE and a utility-working group. JAI performed various analyses and studies on each topic to serve as starting points for further discussion and analysis leading eventually to finalizing the process by which DOE will accept spent fuel and waste into its waste management system. The eight reports are concerned with the conditions under which spent fuel and high level waste will be accepted in the following categories: failed fuel; consolidated fuel and associated structural parts; non-fuel-assembly hardware; fuel in metal storage casks; fuel in multi-element sealed canisters; inspection and testing requirements for wastes; canister criteria; spent fuel selection for deliver; and defense and commercial high-level waste packages. This document discusses canister standards and criteria. 12 refs., 7 figs., 28 tabs

  19. Development of flaw acceptance criteria for aging management of spent nuclear fuel multi-purpose canisters

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Poh -Sang [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Materials Science and Technology; Sindelar, Robert L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Materials Science and Technology

    2015-03-09

    A typical multipurpose canister (MPC) is made of austenitic stainless steel and is loaded with spent nuclear fuel assemblies. The canister may be subject to service-induced degradation when it is exposed to aggressive atmospheric environments during a possibly long-term storage period if the permanent repository is yet to be identified and readied. Because heat treatment for stress relief is not required for the construction of an MPC, stress corrosion cracking may be initiated on the canister surface in the welds or in the heat affected zone. An acceptance criteria methodology is being developed for flaw disposition should the crack-like defects be detected by periodic in-service Inspection. The first-order instability flaw sizes has been determined with bounding flaw configurations, that is, through-wall axial or circumferential cracks, and part-through-wall long axial flaw or 360° circumferential crack. The procedure recommended by the American Petroleum Institute (API) 579 Fitness-for-Service code (Second Edition) is used to estimate the instability crack length or depth by implementing the failure assessment diagram (FAD) methodology. The welding residual stresses are mostly unknown and are therefore estimated with the API 579 procedure. It is demonstrated in this paper that the residual stress has significant impact on the instability length or depth of the crack. The findings will limit the applicability of the flaw tolerance obtained from limit load approach where residual stress is ignored and only ligament yielding is considered.

  20. Development of flaw acceptance criteria for aging management of spent nuclear fuel multiple-purpose canisters

    Energy Technology Data Exchange (ETDEWEB)

    Lam, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Materials Science and Technology; Sindelar, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Materials Science and Technology

    2015-03-09

    A typical multipurpose canister (MPC) is made of austenitic stainless steel and is loaded with spent nuclear fuel assemblies. The canister may be subject to service-induced degradation when it is exposed to aggressive atmospheric environments during a possibly long-term storage period if the permanent repository is yet to be identified and readied. Because heat treatment for stress relief is not required for the construction of an MPC, stress corrosion cracking may be initiated on the canister surface in the welds or in the heat affected zone. An acceptance criteria methodology is being developed for flaw disposition should the crack-like defects be detected by periodic In-service Inspection. The first-order instability flaw sizes has been determined with bounding flaw configurations, that is, through-wall axial or circumferential cracks, and part-through-wall long axial flaw or 360° circumferential crack. The procedure recommended by the American Petroleum Institute (API) 579 Fitness-for-Service code (Second Edition) is used to estimate the instability crack length or depth by implementing the failure assessment diagram (FAD) methodology. The welding residual stresses are mostly unknown and are therefore estimated with the API 579 procedure. It is demonstrated in this paper that the residual stress has significant impact on the instability length or depth of the crack. The findings will limit the applicability of the flaw tolerance obtained from limit load approach where residual stress is ignored and only ligament yielding is considered.

  1. Acceptance of canisters of consolidated spent nuclear fuel by the Federal Waste Management System

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    This report is one of a series of eight prepared by E. R. Johnson Associates, Inc. (JAI) under ORNL's contract with DOE's OCRWM Systems Integration Program and in support of the Annual Capacity Report (ACR) Issue Resolution Process. The report topics relate specifically to the list of high priority technical waste acceptance issues developed jointly by DOE and a utility-working group. JAI performed various analyses and studies on each topic to serve as starting points for further discussion and analysis leading eventually to finalizing the process by which DOE will accept spent fuel and waste into its waste management system. The eight reports are concerned with the conditions under which spent fuel and high level waste will be accepted in the following categories: failed fuel; consolidated fuel and associated structural parts; non-fuel-assembly hardware; fuel in metal storage casks; fuel in multi-element sealed canisters; inspection and testing requirements for wastes; canister criteria; spent fuel selection for deliver; and defense and commercial high-level waste packages. This document discusses canister standards and criteria. 12 refs., 7 figs., 28 tabs.

  2. Stress corrosion cracking of stainless-steel canister for concrete cask storage of spent fuel

    Science.gov (United States)

    Tani, Jun-ichi; Mayuzumi, Masami; Hara, Nobuyoshi

    2008-09-01

    Resistance to external stress corrosion cracking (ESCC) and crevice corrosion were examined for various candidate canister materials in the spent fuel dry storage condition using concrete casks. A constant load ESCC test was conducted on the candidate materials in air after deposition of simulated sea salt particles on the specimen gage section. Highly corrosion resistant stainless steels (SS), S31260 and S31254, did not fail for more than 46 000 h at 353 K with relative humidity of 35%, although the normal stainless steel, S30403 SS failed within 500 h by ESCC. Crevice corrosion potentials of S31260 and S31254 SS became larger than 0.9 V (SCE) in synthetic sea water at temperatures below 298 K, while those of S30403 and S31603 SS were less than 0 V (SCE) at the same temperature range. No rust was found on S31260 and S31254 SS specimens at temperatures below 298 K in the atmospheric corrosion test, which is consistent with the temperature dependency of crevice corrosion potential. From the test result, the critical temperature of atmospheric corrosion was estimated to be 293 K for both S31260 and S31254 SS. Utilizing the ESCC test result and the critical temperature, together with the weather station data and the estimated canister wall temperature, the integrity of canister was assessed from the view point of ESCC.

  3. Corrosion of high-level radioactive waste iron-canisters in contact with bentonite.

    Science.gov (United States)

    Kaufhold, Stephan; Hassel, Achim Walter; Sanders, Daniel; Dohrmann, Reiner

    2015-03-21

    Several countries favor the encapsulation of high-level radioactive waste (HLRW) in iron or steel canisters surrounded by highly compacted bentonite. In the present study the corrosion of iron in contact with different bentonites was investigated. The corrosion product was a 1:1 Fe layer silicate already described in literature (sometimes referred to as berthierine). Seven exposition test series (60 °C, 5 months) showed slightly less corrosion for the Na-bentonites compared to the Ca-bentonites. Two independent exposition tests with iron pellets and 38 different bentonites clearly proved the role of the layer charge density of the swelling clay minerals (smectites). Bentonites with high charged smectites are less corrosive than bentonites dominated by low charged ones. The type of counterion is additionally important because it determines the density of the gel and hence the solid/liquid ratio at the contact to the canister. The present study proves that the integrity of the multibarrier-system is seriously affected by the choice of the bentonite buffer encasing the metal canisters in most of the concepts. In some tests the formation of a patina was observed consisting of Fe-silicate. Up to now it is not clear why and how the patina formed. It, however, may be relevant as a corrosion inhibitor. PMID:25536393

  4. Thermal analysis of heat storage canisters for a solar dynamic, space power system

    Science.gov (United States)

    Wichner, R. P.; Solomon, A. D.; Drake, J. B.; Williams, P. T.

    1988-01-01

    A thermal analysis was performed of a thermal energy storage canister of a type suggested for use in a solar receiver for an orbiting Brayton cycle power system. Energy storage for the eclipse portion of the cycle is provided by the latent heat of a eutectic mixture of LiF and CaF2 contained in the canister. The chief motivation for the study is the prediction of vapor void effects on temperature profiles and the identification of possible differences between ground test data and projected behavior in microgravity. The first phase of this study is based on a two-dimensional, cylindrical coordinates model using an interim procedure for describing void behavor in 1-g and microgravity. The thermal analysis includes the effects of solidification front behavior, conduction in liquid/solid salt and canister materials, void growth and shrinkage, radiant heat transfer across the void, and convection in the melt due to Marangoni-induced flow and, in 1-g, flow due to density gradients. A number of significant differences between 1-g and o-g behavior were found. This resulted from differences in void location relative to the maximum heat flux and a significantly smaller effective conductance in 0-g due to the absence of gravity-induced convection.

  5. Eddy Current for Sizing Cracks in Canisters for Dry Storage of Used Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Ryan M.; Jones, Anthony M.; Pardini, Allan F.

    2014-01-01

    The storage of used nuclear fuel (UNF) in dry canister storage systems (DCSSs) at Independent Spent Fuel Storage Installations (ISFSI) sites is a temporary measure to accommodate UNF inventory until it can be reprocessed or transferred to a repository for permanent disposal. Policy uncertainty surrounding the long-term management of UNF indicates that DCSSs will need to store UNF for much longer periods than originally envisioned. Meanwhile, the structural and leak-tight integrity of DCSSs must not be compromised. The eddy current technique is presented as a potential tool for inspecting the outer surfaces of DCSS canisters for degradation, particularly atmospheric stress corrosion cracking (SCC). Results are presented that demonstrate that eddy current can detect flaws that cannot be detected reliably using standard visual techniques. In addition, simulations are performed to explore the best parameters of a pancake coil probe for sizing of SCC flaws in DCSS canisters and to identify features in frequency sweep curves that may potentially be useful for facilitating accurate depth sizing of atmospheric SCC flaws from eddy current measurements.

  6. Inner material requirements and candidates screening for spent fuel disposal canister

    International Nuclear Information System (INIS)

    In the context of the present Spanish 'once-through' nuclear fuel cycle, the need arises to complete the geological repository reference concept with a spent fuel canister final design. One of the main issues in its design is selecting the inner material to be placed inside the canister, between the steel walls and the spent fuel assemblies. The primary purpose of this material will be to avoid the possibility of a criticality event once the canister walls have been finally breached by corrosion and the spent fuel is flooded with groundwater. That is an important role because the increase in heat generation from such an event would act against spent fuel stability and compromise bentonite barrier functions, negatively affecting overall repository performance. To prevent this possibility a detailed set of requirements for a material to fulfil this role in the repository environment have been devised and presented in this paper. With these requirements in view, eight potentially interesting candidates were selected and evaluated: cast iron or steel, borosilicate glass, spinel, depleted uranium, dehydrated zeolites, haematite, phosphates, and olivine. Among these, the first four materials or material families are found promising for this application. In addition, other relevant non-performance-related aspects of candidate materials, which could help on decision making, are also considered and evaluated. (authors)

  7. 航空机载雷达研制费参数化估算方法研究%Research on Parameters Estimation Method of Airborne Radar Development Cost

    Institute of Scientific and Technical Information of China (English)

    刘芳; 张海涛

    2014-01-01

    Modern combat aircraft airborne radar development and procurement costs has been grievous everspending estimating the costs at a program startup or early in a project more accurately has became the issues of common concern of the military and industry sector. Using foreign techno-economic data of airborne ifre control radar, and employing partial least squares, the airborne ifre control radar development cost estimation model was established. At the same time, the rationality and accuracy of the mode have been veriifed by the data of radar APG-77 equipped in F-22A ifghter.%现代作战飞机机载雷达的研制费和成本已经出现了严重超支的情况,在项目启动时或项目初期如何对其费用进行准确估算已经成为军方和工业部门普遍关心的问题。本文利用国外机载火控雷达的技术经济数据,采用偏最小二乘法,建立了适用于机载火控雷达研制费快速估算的参数模型,估算效果较好。同时,该模型的合理性和精度得到了F-22A战斗机装雷达APG-77数据的验证。

  8. Fire simulation of the canister transfer and installation vehicle; Kapselin siirto- ja asennusajoneuvon palosimulointi

    Energy Technology Data Exchange (ETDEWEB)

    Peltokorpi, L. [Fortum Power and Heat Oy, Espoo (Finland)

    2012-12-15

    A pyrolysis model of the canister transfer and installation vehicle was developed and vehicle fires in the final disposal tunnel and in the central tunnel were simulated using the fire simulation program FDS (Fire Dynamics Simulator). For comparison, same vehicle fire was also simulated at conditions in which the fire remained as a fuel controlled during the whole simulation. The purpose of the fire simulations was to simulate the fire behaviour realistically taking into account for example the limitations coming from the lack of oxygen. The material parameters for the rubber were defined and the simulation models for the tyres developed by simulating the fire test of a front wheel loader rubber tyre done by SP Technical Research Institute of Sweden. In these simulations the most important phenomena were successfully brought out but the timing of the phenomena was difficult. The final values for the rubber material parameters were chosen so that the simulated fire behaviour was at least as intense as the measured one. In the vehicle fire simulations a hydraulic oil or diesel leak causing a pool fire size of 2 MW and 2 m{sup 2} was assumed. The pool fire was assumed to be located under the tyres of the SPMT (Self Propelled Modular Transporters) transporter. In each of the vehicle fire simulations only the tyres of the SPMT transporter were observed to be burning whereas the tyres of the trailer remained untouched. In the fuel controlled fire the maximum power was slightly under 10 MW which was reached in about 18 minutes. In the final disposal tunnel the growth of the fire was limited due to the lack of oxygen and the relatively fast air flows existing in the tunnel. Fast air flows caused the flame spreading to be limited to the certain directions. In the final disposal tunnel fire the maximum power was slightly over 7 MW which was reached about 8 minutes after the ignition. In the central tunnel there was no shortage of oxygen but the spread of the fire was limited

  9. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Phased arrays, ultrasonic imaging and nonlinear acoustics

    International Nuclear Information System (INIS)

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2003/2004. After a short introduction a review of beam forming fundamentals required for proper understanding phased array operation is included. The factors that determine lateral resolution during ultrasonic imaging of flaws in solids are analyzed and results of simulations modelling contact inspection of copper are presented. In the second chapter an improved synthetic aperture imaging (SAI) technique is introduced. The proposed SAI technique is characterized by an enhanced lateral resolution compared with the previously proposed extended synthetic aperture focusing technique (ESAFT). The enhancement of imaging performance is achieved due to more realistic assumption concerning the probability density function of scatterers in the region of interest. The proposed technique takes the form of a two-step algorithm using the result obtained in the first step as a prior for the second step. Final chapter contains summary of our recent experimental and theoretical research on nonlinear ultrasonics of unbounded interfaces. A new theoretical model for rough interfaces is developed, and the experimental results from the copper specimens that mimic contact cracks of different types are presented. Derivation of the theory and selected measurement results are given in appendix

  10. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Phased arrays, ultrasonic imaging and nonlinear acoustics

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Ping Wu; Wennerstroem, Erik [Uppsala Univ. (Sweden). Signals and Systems

    2004-09-01

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2003/2004. After a short introduction a review of beam forming fundamentals required for proper understanding phased array operation is included. The factors that determine lateral resolution during ultrasonic imaging of flaws in solids are analyzed and results of simulations modelling contact inspection of copper are presented. In the second chapter an improved synthetic aperture imaging (SAI) technique is introduced. The proposed SAI technique is characterized by an enhanced lateral resolution compared with the previously proposed extended synthetic aperture focusing technique (ESAFT). The enhancement of imaging performance is achieved due to more realistic assumption concerning the probability density function of scatterers in the region of interest. The proposed technique takes the form of a two-step algorithm using the result obtained in the first step as a prior for the second step. Final chapter contains summary of our recent experimental and theoretical research on nonlinear ultrasonics of unbounded interfaces. A new theoretical model for rough interfaces is developed, and the experimental results from the copper specimens that mimic contact cracks of different types are presented. Derivation of the theory and selected measurement results are given in appendix.

  11. A MATLAB GEODETIC SOFTWARE FOR PROCESSING AIRBORNE LIDAR BATHYMETRY DATA

    OpenAIRE

    Pepe, M.; Prezioso, G.

    2015-01-01

    The ability to build three-dimensional models through technologies based on satellite navigation systems GNSS and the continuous development of new sensors, as Airborne Laser Scanning Hydrography (ALH), data acquisition methods and 3D multi-resolution representations, have contributed significantly to the digital 3D documentation, mapping, preservation and representation of landscapes and heritage as well as to the growth of research in this fields. However, GNSS systems led to the use...

  12. Aerosol classification by airborne high spectral resolution lidar observations

    OpenAIRE

    S. Groß; Esselborn, M.; Weinzierl, B.; M. Wirth; Fix, A.; Petzold, A

    2012-01-01

    During four aircraft field experiments with the DLR research aircraft Falcon in 1998 (LACE), 2006 (SAMUM-1) and 2008 (SAMUM-2 and EUCAARI), airborne High Spectral Resolution Lidar (HSRL) and in situ measurements of aerosol microphysical and optical properties were performed. Altogether, the properties of six different aerosol types and aerosol mixtures – Saharan mineral dust, Saharan dust mixtures, Canadian biomass burning aerosol, African biomass burning aerosol, anthropogenic polluti...

  13. Performance Assessment and Sensitivity Analyses of Disposal of Plutonium as Can-in-Canister Ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Rainer Senger

    2001-09-25

    The purpose of this analysis is to examine whether there is a justification for using high-level waste (HLW) as a surrogate for plutonium disposal in can-in-canister ceramic in the total-system performance assessment (TSPA) model for the Site Recommendation (SR). In the TSPA-SR model, the immobilized plutonium waste form is not explicitly represented, but is implicitly represented as an equal number of canisters of HLW. There are about 50 metric tons of plutonium in the U. S. Department of Energy inventory of surplus fissile material that could be disposed. Approximately 17 tons of this material contain significant quantities of impurities and are considered unsuitable for mixed-oxide (MOX) reactor fuel. This material has been designated for direct disposal by immobilization in a ceramic waste form and encapsulating this waste form in high-level waste (HLW). The remaining plutonium is suitable for incorporation into MOX fuel assemblies for commercial reactors (Shaw 1999, Section 2). In this analysis, two cases of immobilized plutonium disposal are analyzed, the 17-ton case and the 13-ton case (Shaw et al. 2001, Section 2.2). The MOX spent-fuel disposal is not analyzed in this report. In the TSPA-VA (CRWMS M&O 1998a, Appendix B, Section B-4), the calculated dose release from immobilized plutonium waste form (can-in-canister ceramic) did not exceed that from an equivalent amount of HLW glass. This indicates that the HLW could be used as a surrogate for the plutonium can-in-canister ceramic. Representation of can-in-canister ceramic as a surrogate is necessary to reduce the number of waste forms in the TSPA model. This reduction reduces the complexity and running time of the TSPA model and makes the analyses tractable. This document was developed under a Technical Work Plan (CRWMS M&O 2000a), and is compliant with that plan. The application of the Quality Assurance (QA) program to the development of that plan (CRWMS M&O 2000a) and of this Analysis is described in

  14. Chemical Microsensor Instrument for UAV Airborne Atmospheric Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) proposes to develop a miniaturized Airborne Chemical Microsensor Instrument (ACMI) suitable for real-time, airborne measurements of...

  15. Geophex airborne unmanned survey system

    International Nuclear Information System (INIS)

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This nonintrusive system will provide open-quotes stand-offclose quotes capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits two operators to rapidly conduct geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance, of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak anomalies can be detected

  16. Geophex Airborne Unmanned Survey System

    Energy Technology Data Exchange (ETDEWEB)

    Won, I.J.; Keiswetter, D. [Geophex, Ltd., Raleigh, NC (United States)

    1995-10-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits rapid geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected.

  17. Development of fabrication technology for copper canisters with cast inserts. Status report in August 2001

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Claes-Goeran

    2002-04-01

    This report contains an account of the results of trial fabrication of copper canisters with cast inserts carried out during the period 1998 - 2001. The work of testing of fabrication methods is being focused on a copper thickness of 50 mm. Occasional canisters with 30 mm copper thickness are being fabricated for the purpose of gaining experience and evaluating fabrication and inspection methods for such canisters. For the fabrication of copper tubes, SKB has concentrated its efforts on seamless tubes made by extrusion and pierce and draw processing. Five tubes have been extruded and two have been pierced and drawn during the period. Materials testing has shown that the resultant structure and mechanical properties of these tubes are good. Despite certain problems with dimensional accuracy, it can be concluded that both of these methods can be developed for use in the serial production of SKB' copper tubes. No new trial fabrication with roll forming of copper plate and longitudinal welding has been done. This method is nevertheless regarded as a potential alternative. Copper lids and bottoms are made by forging of continuous-cast bars. The forged blanks are machined to the desired dimensions. Due to the Canister Laboratory's need for lids to develop the technique for sealing welding, a relatively large number of forged blanks have been fabricated. It is noted in the report that the grain size obtained in lids and bottoms is much coarser than in fabricated copper tubes. Development work has been commenced for the purpose of optimizing the forging process. Nine cast inserts have been cast during the three-year period. The results of completed material testing of test pieces taken at different places along the length of the inserts have in several cases shown an unacceptable range of variation in strength properties and structure. In the continued work, insert fabrication will be developed in terms of both casting technique and iron composition. Development

  18. Mechanical Analysis of an SM 2 Blk IV restrained firing within a concentric canister launcher test unit

    Energy Technology Data Exchange (ETDEWEB)

    Kassner, M C; Kennedy, T C; Puttapitukporn, T; Rosen, R S

    1999-03-01

    The Office of Naval Research (ONR) and PMS512 have undertaken a program to develop a new Vertical Launching System (VLS) for future generation ships, such as the DD-21 Destroyer. The Naval Sea Systems Command Combat Weapons Program (NAVSEA 05K) and Naval Surface Warfare Center Dahlgren Division (NSWCDD) are working jointly with industry and universities to develop one such launcher design, the Concentric Canister Launcher (CCL). The basic CCL design consists of a tube made of two concentric cylinders; one end is open, the other is sealed with a hemispherical end cap. During firing, the missile exhaust gas is turned 180 degrees by the hemispherical end cap and flows through the annular space between inner and outer cylinders. Depending on the missile utilized and the particular service environment of the CCL, maximum temperatures within the cylinder material have been calculated to exceed 2000 F. In an earlier study [1], the authors determined the high temperature mechanical properties of several candidate alloys being considered for fabrication of the CCL. This study [1] found that, of these candidate materials, titanium alloys exhibit higher yield stresses than that of 316L stainless steel at temperatures up to about 1000 F; above 1500 F, the yield stress of 316L stainless steel is comparable to those of the titanium alloys. The 316L stainless steel was found to strain harden (increase its flow stress with increasing strain) at temperatures up to about 1800 F. The ability of the 316L stainless steel to strain harden at high temperatures may provide an added margin of safety for engineering design of the CCL. The objective of the current study was to perform a computer simulation of the structural response of a CCL during a restrained firing, one in which a SM-2 Blk IV missile would fail to exit the canister. A finite element model of the inner cylinder, outer cylinder, end rings (mounting brackets), and lateral restraints in the uptake was constructed. An elastic

  19. Mechanical Analysis of an SM 2 Blk IV restrained firing within a concentric canister launcher test unit; TOPICAL

    International Nuclear Information System (INIS)

    The Office of Naval Research (ONR) and PMS512 have undertaken a program to develop a new Vertical Launching System (VLS) for future generation ships, such as the DD-21 Destroyer. The Naval Sea Systems Command Combat Weapons Program (NAVSEA 05K) and Naval Surface Warfare Center Dahlgren Division (NSWCDD) are working jointly with industry and universities to develop one such launcher design, the Concentric Canister Launcher (CCL). The basic CCL design consists of a tube made of two concentric cylinders; one end is open, the other is sealed with a hemispherical end cap. During firing, the missile exhaust gas is turned 180 degrees by the hemispherical end cap and flows through the annular space between inner and outer cylinders. Depending on the missile utilized and the particular service environment of the CCL, maximum temperatures within the cylinder material have been calculated to exceed 2000 F. In an earlier study[1], the authors determined the high temperature mechanical properties of several candidate alloys being considered for fabrication of the CCL. This study[1] found that, of these candidate materials, titanium alloys exhibit higher yield stresses than that of 316L stainless steel at temperatures up to about 1000 F; above 1500 F, the yield stress of 316L stainless steel is comparable to those of the titanium alloys. The 316L stainless steel was found to strain harden (increase its flow stress with increasing strain) at temperatures up to about 1800 F. The ability of the 316L stainless steel to strain harden at high temperatures may provide an added margin of safety for engineering design of the CCL. The objective of the current study was to perform a computer simulation of the structural response of a CCL during a restrained firing, one in which a SM-2 Blk IV missile would fail to exit the canister. A finite element model of the inner cylinder, outer cylinder, end rings (mounting brackets), and lateral restraints in the uptake was constructed. An elastic

  20. Airborne Synthetic Aperature Radar (AIRSAR) on left rear fuselage of DC-8 Airborne Laboratory

    Science.gov (United States)

    1998-01-01

    A view of the Airborne Synthetic Aperature Radar (AIRSAR) antenna on the left rear fuselage of the DC-8. The AIRSAR captures images of the ground from the side of the aircraft and can provide precision digital elevation mapping capabilities for a variety of studies. The AIRSAR is one of a number of research systems that have been added to the DC-8. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.