WorldWideScience

Sample records for airborne radiometric measurements

  1. Airborne microwave radiometric imaging system

    Science.gov (United States)

    Guo, Wei; Li, Futang; Zhang, Zuyin

    1999-09-01

    A dual channel Airborne Microwave Radiometric Imaging system (AMRI) was designed and constructed for regional environment mapping. The system operates at 35GHz, which collects radiation at horizontal and vertical polarized channels. It runs at mechanical conical scanning with 45 degrees incidence angle. Two Cassegrain antennas with 1.5 degrees beamwidth scan the scene alternately and two pseudo- color images of two channels are displayed on the screen of PC in real time. Simultaneously, all parameters of flight and radiometric data are sorted in hard disk for post- processing. The sensitivity of the radiometer (Delta) T equals 0.16K. A new displaying method, unequal size element arc displaying method, is used in image displaying. Several experiments on mobile tower were carried out and the images demonstrate that the AMRI is available to work steadily and accurately.

  2. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    Science.gov (United States)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  3. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    Directory of Open Access Journals (Sweden)

    C. K. Gatebe

    2010-03-01

    Full Text Available This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR and AERONET data. A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34–2.30 μm and angular range (180° of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM Central Facility, Oklahoma, USA, and (d the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  4. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    Directory of Open Access Journals (Sweden)

    C. K. Gatebe

    2009-12-01

    Full Text Available This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer, CAR, and AERONET data. A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34–2.30 μm and angular range (180° of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM Central Facility, Oklahoma, USA, and (d the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  5. Radiometric temperature measurements fundamentals

    CERN Document Server

    Zhang, Zhuomin M; Machin, Graham

    2009-01-01

    This book describes the theory of radiation thermometry, both at a primary level and for a variety of applications, such as in the materials processing industries and remote sensing. This book is written for those who will apply radiation thermometry in industrial practice; use radiation thermometers for scientific research; the radiation thermometry specialist in a national measurement institute; developers of radiation thermometers who are working to innovate products for instrument manufacturers, and developers of non-contact thermometry methods to address challenging thermometry problems.

  6. Peat Mapping Associations of Airborne Radiometric Survey Data

    Directory of Open Access Journals (Sweden)

    David Beamish

    2014-01-01

    Full Text Available This study considers recent airborne radiometric (gamma ray survey data, obtained at high-resolution, across various regions of the UK. The datasets all display a very evident attenuation of signal in association with peat, and intra-peat variations are observed. The geophysical response variations are examined in detail using example data sets across lowland areas (raised bogs, meres, fens and afforested peat and upland areas of blanket bog, together with associated wetland zones. The radiometric data do not map soils per se. The bedrock (the radiogenic parent provides a specific amplitude level. Attenuation of this signal level is then controlled by moisture content in conjunction with the density and porosity of the soil cover. Both soil and bedrock variations need to be jointly assessed. The attenuation theory, reviewed here, predicts that the behaviour of wet peat is distinct from most other soil types. Theory also predicts that the attenuation levels observed across wet peatlands cannot be generally used to map variations in peat thickness. Four survey areas at various scales, across England, Scotland, Wales and Ireland are used to demonstrate the ability of the airborne data to map peat zones. A 1:50 k national mapping of deep peat is used to provide control although variability in the definition of peat zones across existing databases is also demonstrated.

  7. Imager-to-radiometer inflight cross calibration: RSP radiometric comparison with airborne and satellite sensors

    Directory of Open Access Journals (Sweden)

    J. McCorkel

    2015-10-01

    Full Text Available This work develops a method to compare the radiometric calibration between a radiometer and imagers hosted on aircraft and satellites. The radiometer is the airborne Research Scanning Polarimeter (RSP that takes multi-angle, photo-polarimetric measurements in several spectral channels. The RSP measurements used in this work were coincident with measurements made by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS, which was on the same aircraft. These airborne measurements were also coincident with an overpass of the Landsat 8 Operational Land Imager (OLI. First we compare the RSP and OLI radiance measurements to AVIRIS since the spectral response of the multispectral instruments can be used to synthesize a spectrally equivalent signal from the imaging spectrometer data. We then explore a method that uses AVIRIS as a transfer between RSP and OLI to show that radiometric traceability of a satellite-based imager can be used to calibrate a radiometer despite differences in spectral channel sensitivities. This calibration transfer shows agreement within the uncertainty of both the various instruments for most spectral channels.

  8. Survey of emissivity measurement by radiometric methods.

    Science.gov (United States)

    Honner, M; Honnerová, P

    2015-02-01

    A survey of the state of the art in the field of spectral directional emissivity measurements by using radiometric methods is presented. Individual quantity types such as spectral, band, or total emissivity are defined. Principles of emissivity measurement by various methods (direct and indirect, and calorimetric and radiometric) are discussed. The paper is focused on direct radiometric methods. An overview of experimental setups is provided, including the design of individual parts such as the applied reference sources of radiation, systems of sample clamping and heating, detection systems, methods for the determination of surface temperature, and procedures for emissivity evaluation.

  9. Pilot study of the application of Tellus airborne radiometric and soil geochemical data for radon mapping.

    Science.gov (United States)

    Appleton, J D; Miles, J C H; Green, B M R; Larmour, R

    2008-10-01

    The scope for using Tellus Project airborne gamma-ray spectrometer and soil geochemical data to predict the probability of houses in Northern Ireland having high indoor radon concentrations is evaluated, in a pilot study in the southeast of the province, by comparing these data statistically with in-house radon measurements. There is generally good agreement between radon maps modelled from the airborne radiometric and soil geochemical data using multivariate linear regression analysis and conventional radon maps which depend solely on geological and indoor radon data. The radon maps based on the Tellus Project data identify some additional areas where the radon risk appears to be relatively high compared with the conventional radon maps. One of the ways of validating radon maps modelled on the Tellus Project data will be to carry out additional indoor measurements in these areas.

  10. Radiometric Normalization of Large Airborne Image Data Sets Acquired by Different Sensor Types

    Science.gov (United States)

    Gehrke, S.; Beshah, B. T.

    2016-06-01

    Generating seamless mosaics of aerial images is a particularly challenging task when the mosaic comprises a large number of im-ages, collected over longer periods of time and with different sensors under varying imaging conditions. Such large mosaics typically consist of very heterogeneous image data, both spatially (different terrain types and atmosphere) and temporally (unstable atmo-spheric properties and even changes in land coverage). We present a new radiometric normalization or, respectively, radiometric aerial triangulation approach that takes advantage of our knowledge about each sensor's properties. The current implementation supports medium and large format airborne imaging sensors of the Leica Geosystems family, namely the ADS line-scanner as well as DMC and RCD frame sensors. A hierarchical modelling - with parameters for the overall mosaic, the sensor type, different flight sessions, strips and individual images - allows for adaptation to each sensor's geometric and radiometric properties. Additional parameters at different hierarchy levels can compensate radiome-tric differences of various origins to compensate for shortcomings of the preceding radiometric sensor calibration as well as BRDF and atmospheric corrections. The final, relative normalization is based on radiometric tie points in overlapping images, absolute radiometric control points and image statistics. It is computed in a global least squares adjustment for the entire mosaic by altering each image's histogram using a location-dependent mathematical model. This model involves contrast and brightness corrections at radiometric fix points with bilinear interpolation for corrections in-between. The distribution of the radiometry fixes is adaptive to each image and generally increases with image size, hence enabling optimal local adaptation even for very long image strips as typi-cally captured by a line-scanner sensor. The normalization approach is implemented in HxMap software. It has been

  11. Imager-to-Radiometer In-flight Cross Calibration: RSP Radiometric Comparison with Airborne and Satellite Sensors

    Science.gov (United States)

    McCorkel, Joel; Cairns, Brian; Wasilewski, Andrzej

    2016-01-01

    This work develops a method to compare the radiometric calibration between a radiometer and imagers hosted on aircraft and satellites. The radiometer is the airborne Research Scanning Polarimeter (RSP), which takes multi-angle, photo-polarimetric measurements in several spectral channels. The RSP measurements used in this work were coincident with measurements made by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), which was on the same aircraft. These airborne measurements were also coincident with an overpass of the Landsat 8 Operational Land Imager (OLI). First we compare the RSP and OLI radiance measurements to AVIRIS since the spectral response of the multispectral instruments can be used to synthesize a spectrally equivalent signal from the imaging spectrometer data. We then explore a method that uses AVIRIS as a transfer between RSP and OLI to show that radiometric traceability of a satellite-based imager can be used to calibrate a radiometer despite differences in spectral channel sensitivities. This calibration transfer shows agreement within the uncertainty of both the various instruments for most spectral channels.

  12. Radiometric instrumentation and measurements guide for photovoltaic performance testing

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D.

    1997-04-01

    The Photovoltaic Module and Systems Performance and Engineering Project at the National Renewable Energy Laboratory performs indoor and outdoor standardization, testing, and monitoring of the performance of a wide range of photovoltaic (PV) energy conversion devices and systems. The PV Radiometric Measurements and Evaluation Team (PVSRME) within that project is responsible for measurement and characterization of natural and artificial optical radiation which stimulates the PV effect. The PV manufacturing and research and development community often approaches project members for technical information and guidance. A great area of interest is radiometric instrumentation, measurement techniques, and data analysis applied to understanding and improving PV cell, module, and system performance. At the Photovoltaic Radiometric Measurements Workshop conducted by the PVSRME team in July 1995, the need to communicate knowledge of solar and optical radiometric measurements and instrumentation, gained as a result of NREL`s long-term experiences, was identified as an activity that would promote improved measurement processes and measurement quality in the PV research and manufacturing community. The purpose of this document is to address the practical and engineering need to understand optical and solar radiometric instrument performance, selection, calibration, installation, and maintenance applicable to indoor and outdoor radiometric measurements for PV calibration, performance, and testing applications. An introductory section addresses radiometric concepts and definitions. Next, concepts essential to spectral radiometric measurements are discussed. Broadband radiometric instrumentation and measurement concepts are then discussed. Each type of measurement serves as an important component of the PV cell, module, and system performance measurement and characterization process.

  13. Analysis of airborne radiometric data. Volume 3. Topical reports

    Energy Technology Data Exchange (ETDEWEB)

    Reed, J.H.; Shreve, D.C.; Sperling, M.; Woolson, W.A.

    1978-05-01

    This volume consists of four topical reports: a general discussion of the philosophy of unfolding spectra with continuum and discrete components, a mathematical treatment of the effects of various physical parameters on the uncollided gamma-ray spectrum at aircraft elevations, a discussion of the application of the unfolding code MAZNAI to airborne data, and a discussion of the effects of the nonlinear relationship between energy deposited and pulse height in NaI(T1) detectors.

  14. The radiometric characteristics of KOMPSAT-3A by using reference radiometric tarps and ground measurement

    Science.gov (United States)

    Yeom, Jong-Min

    2016-09-01

    In this study, we performed the vicarious radiometric calibration of KOMPSAT-3A multispectral bands by using 6S radiative transfer model, radiometric tarps, MFRSR measurements. Furthermore, to prepare the accurate input parameter, we also did experiment work to measure the BRDF of radiometric tarps based on hyperspectral gonioradiometer to compensate the observation geometry difference between satellite and ASD Fieldspec 3. Also, we measured point spread function (PSF) by using the bright star and corrected multispectral bands based on the Wiener filter. For accurate atmospheric constituent effects such as aerosol optical depth, column water, and total ozone, we used MFRSR instrument and estimated related optical depth of each gases. Based on input parameters for 6S radiative transfer model, we simulated top of atmosphere (TOA) radiance by observed by KOMPSAT-3A and matched-up the digital number. Consequently, DN to radiance coefficients was determined based on aforementioned methods and showed reasonable statistics results.

  15. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement

    Science.gov (United States)

    2013-09-30

    Radiometric Measurement Lian Shen Department of Mechanical Engineering & St. Anthony Falls Laboratory University of Minnesota Minneapolis, MN...information if it does not display a currently valid OMB control number. 1. REPORT DATE 30 SEP 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00...2013 4. TITLE AND SUBTITLE Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  16. Analysis of Properties of Reflectance Reference Targets for Permanent Radiometric Test Sites of High Resolution Airborne Imaging Systems

    Directory of Open Access Journals (Sweden)

    Eero Ahokas

    2010-08-01

    Full Text Available Reliable and optimal exploitation of rapidly developing airborne imaging methods requires geometric and radiometric quality assurance of production systems in operational conditions. Permanent test sites are the most promising approach for cost-efficient performance assessment. Optimal construction of permanent radiometric test sites for high resolution airborne imaging systems is an unresolved issue. The objective of this study was to assess the performance of commercially available gravels and painted and unpainted concrete targets for permanent, open-air radiometric test sites under sub-optimal climate conditions in Southern Finland. The reflectance spectrum and reflectance anisotropy and their stability were characterized during the summer of 2009. The management of reflectance anisotropy and stability were shown to be the key issues for better than 5% reflectance accuracy.

  17. Local-scale flood mapping on vegetated floodplains from radiometrically calibrated airborne LiDAR data

    Science.gov (United States)

    Malinowski, Radosław; Höfle, Bernhard; Koenig, Kristina; Groom, Geoff; Schwanghart, Wolfgang; Heckrath, Goswin

    2016-09-01

    Knowledge about the magnitude of localised flooding of riverine areas is crucial for appropriate land management and administration at regional and local levels. However, detection and delineation of localised flooding with remote sensing techniques are often hampered on floodplains by the presence of herbaceous vegetation. To address this problem, this study presents the application of full-waveform airborne laser scanning (ALS) data for detection of floodwater extent. In general, water surfaces are characterised by low values of backscattered energy due to water absorption of the infrared laser shots, but the exact strength of the recorded laser pulse depends on the area covered by the targets located within a laser pulse footprint area. To account for this we analysed the physical quantity of radiometrically calibrated ALS data, the backscattering coefficient, in relation to water and vegetation coverage within a single laser footprint. The results showed that the backscatter was negatively correlated to water coverage, and that of the three distinguished classes of water coverage (low, medium, and high) only the class with the largest extent of water cover (>70%) had relatively distinct characteristics that can be used for classification of water surfaces. Following the laser footprint analysis, three classifiers, namely AdaBoost with Decision Tree, Naïve Bayes and Random Forest, were utilised to classify laser points into flooded and non-flooded classes and to derive the map of flooding extent. The performance of the classifiers is highly dependent on the set of laser points features used. Best performance was achieved by combining radiometric and geometric laser point features. The accuracy of flooding maps based solely on radiometric features resulted in overall accuracies of up to 70% and was limited due to the overlap of the backscattering coefficient values between water and other land cover classes. Our point-based classification methods assure a high

  18. Analysis of airborne radiometric data. Volume 2. Description, listing, and operating instructions for the code DELPHI/MAZAS. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, M.; Shreve, D.C.

    1978-12-01

    The computer code DELPHI is an interactive English language command system for the analysis of airborne radiometric data. The code includes modules for data reduction, data simulation, time filtering, data adjustment and graphical presentation of the results. DELPHI is implemented in FORTRAN on a DEC-10 computer. This volume gives a brief set of operations instructions, samples of the output obtained from hard copies of the display on a Tektronix terminal and finally a listing of the code.

  19. Results of radiometric ash-content measurements at the Dudar coal mine, Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Csoti, T. (Veszpremi Szenbanyak Dudari Banyauezeme, Dudar (Hungary))

    1983-12-01

    The regression analysis of the results of calorimetric and radiometric ash-content measurements of 1239 coal samples have shown that the calorific values which cannot be measured easily with traditional means can be approximated reasonably from the more easily measured radiometric data. The introduction of the radiometric measurements can be recommended for coal deposits. 6 refs.

  20. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements

    Science.gov (United States)

    2015-03-31

    2. REPORT DATE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 6. AUTHOR(S) 7. PERFORMING ORGANIZATION NAME(S) AND...WORK UNIT NUMBER 1. REPORT DATE (DD-MM-YYYY) 16. SECURITY CLASSIFICATION OF: PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 31-03-2015...Final March 2013 -- February 2015 Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements N00014-13-1-0352 Yue, Dick K.P

  1. Microwave Radiometric Measurement of Sea Surface Salinity.

    Science.gov (United States)

    1984-04-01

    potential problems of polution and urban water sup- plies. Although salinity can be measured from a surface vessel, economic consider- ations advocate...Washington, DC 20350 Commander Naval Sea System Commandaa ComAinder ATTN: Mr. C. Smith, NAVSEA 63R* Nval Air Development Center "’-’. "Washington, DC...20362 ATTN: Mr. R. Bollard, Code 2062% .’* Warminster, PA 18974 • .’.Commander CNaval Sea System CommandCoimCander Headquarters Naval Air Systems

  2. Simulation study of element plastic migration from radiometric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, Faena M.L.; Manzoli, Jose Eduardo; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Soares, Eufemia Paez [Escola SENAI Fundacao Zerrenner, Sao Paulo, SP (Brazil)], E-mail: eufemia@sp.senai.br

    2007-07-01

    Element migration from plastic packaging to either foodstuffs or medicine is a serious public health. Many conventional experimental techniques such as chromatography-mass spectrometry, atomic absorption spectroscopy, inductively coupled plasma spectroscopy or calorimetric methods are used to measure total and specific migration of components from plastic packaging. The radiometric method is also used to measure the element migration. In this study a numerical technique was employed to simulate the experimental migration results obtained from measurements of elements from dairy product polymeric packages into 3% acetic acid solution which is a normative food simulant. This numerical technique can be used as complementary tool for the experimental measurements, allowing for a better understanding of the diffusion process and to estimate element migration situations not experimentally measured. (author)

  3. Radiometric Calibrations, Measurements, and Standards Development at NREL: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D. R.; Andreas, A.; Stoffel, T.; Reda, I.; Wilcox, S.; Gotseff, P.; Kay, B.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Radiometric calibrations, measurements, and standards development at NREL. We describe proposed revisions to current reference standard spectral distributions used to evaluate photovoltaic device performance and durability of materials. Improvements in broadband outdoor radiometer calibrations reduce uncertainties in broadband radiometer calibrations. We report a method to quantify the rate of change of broadband radiometer responsivities as a function of integrated exposure to irradiance and thermal energy. The results of applying a vector of calibration factors or responsivities to field data to remove zenith-angle dependent errors in global solar radiation measurements are shown. We report on the relative sensitivity of radiometers to daily versus biweekly cleaning.

  4. Spectral deconvolution and operational use of stripping ratios in airborne radiometrics.

    Science.gov (United States)

    Allyson, J D; Sanderson, D C

    2001-01-01

    Spectral deconvolution using stripping ratios for a set of pre-defined energy windows is the simplest means of reducing the most important part of gamma-ray spectral information. In this way, the effective interferences between the measured peaks are removed, leading, through a calibration, to clear estimates of radionuclide inventory. While laboratory measurements of stripping ratios are relatively easy to acquire, with detectors placed above small-scale calibration pads of known radionuclide concentrations, the extrapolation to measurements at altitudes where airborne survey detectors are used bring difficulties such as air-path attenuation and greater uncertainties in knowing ground level inventories. Stripping ratios are altitude dependent, and laboratory measurements using various absorbers to simulate the air-path have been used with some success. Full-scale measurements from an aircraft require a suitable location where radionuclide concentrations vary little over the field of view of the detector (which may be hundreds of metres). Monte Carlo simulations offer the potential of full-scale reproduction of gamma-ray transport and detection mechanisms. Investigations have been made to evaluate stripping ratios using experimental and Monte Carlo methods.

  5. Evaluating Radiometric Measurements Using a Fixed 45 Degrees Responsivity and Zenith Angle Dependent Responsivities (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, M.; Habte, A.; Reda, I.; Sengupta, M.; Gotseff, P.; Andreas, A.; Anderberg, M.

    2014-03-01

    This poster seeks to demonstrate the importance and application of an existing but unused approach that ultimately reduces the uncertainty of radiometric measurements. Current radiometric data is based on a single responsivity value that introduces significant uncertainty to the data, however, through using responsivity as a function of solar zenith angle, the uncertainty could be decreased by 50%.

  6. Investigating the influence of radiometric calibration on tree species determination based on small footprint full-waveform airborne LiDAR

    Science.gov (United States)

    Mücke, W.; Briese, C.; Hollaus, M.; Pfeifer, N.; Wagner, W.

    2013-12-01

    Small footprint airborne LiDAR is a well-established measurement technique in forestry, where cost- and time efficient wide-area data acquisition of the vegetation structure is required. Gathering stand-based information about tree species composition is of particular interest for forestry applications. Modern LiDAR systems provide, next to the acquired 3D (i.e. geometric) information, also a quantification of the signal strength of each echo. In order to utilize this information for tree species determination independently from different overlapping LiDAR swaths, different LiDAR sensors or acquisition times, radiometric calibration is a necessity. This contribution summarises the theoretical background of radiometric LiDAR data calibration on the physical basis of the radar equation. Using LiDAR observations of reference targets with known reflectivity the so-called calibration constant is computed. It accounts for sensor specific parameters, as well as atmospheric attenuation of the laser signal. Hence the backscatter properties of the laser echoes can be determined and physical observables characterizing the reflectivity of the scanned surface can be estimated. A practical calibration workflow is demonstrated on the example of a single wavelength full-waveform LiDAR data set from a mixed woodland in Austria. Subsequently, an automated method for tree species determination that is based on the laser light scattering mechanisms in the forest canopy is applied on both (calibrated and un-calibrated) data sets. First, an edge-based segmentation approach is used to aggregate LiDAR echoes to segments representing single tree crowns. Second, metrics are computed for each tree crown describing radiometric and geometric features that are related to foliage composition. Third, these metrics are used in a knowledge-based fuzzy classification scheme for the determination of segments representing coniferous and deciduous trees. Influences of the radiometric calibration on the

  7. Processing and analysis of radiometer measurements for airborne reconnaissance

    Science.gov (United States)

    Suess, Helmut

    1990-11-01

    Thi8 paper describes selected results of airborne, radiometric imaging measurements at 90 GHz and 140 GHz relevant for the application in reconnaissance. Using a temperature resolution below 0.5 K and an angular resolution of about 1 degree high quality images show the capability of discriminating between many brightness temperature classes within our natural environment and man-made objects. Measurement examples are given for cloud and fog penetration at 90 GHz, for the detection of vehicles on roads, and for the detection and classification of airports and airplanes. The application of different contour enhancement methods (Marr-Hildreth and Canny) shows the possibility of extracting lines and shapes precisely in order to improve automatic target recognition. The registration of the passive images with corresponding X-band synthetic aperture images from the same area is carried out and the high degree of correlation is dicussed.

  8. Airborne Geophysical Surveys in the North-Central Region of Goias (Brazil): Implications for Radiometric Characterization of Subtropical Soils

    CERN Document Server

    Guimarães, S N P; Justo, J S

    2011-01-01

    In this work we present progress obtained in analysis airborne geophysical survey data for the north-central region of the state of Goias (Brazil). The results obtained indicate that most of the subtropical soil types are characterized by Uranium contents of greater than one parts per million (ppm). Only ultisol and oxisol soils are found to have Uranium contents lower than one ppm. Thorium and Potassium abundances also display trends similar to those of Uranium. The K/U ratios fall in the expected range of values for common soils while the Th/U ratios are higher than normal. This latter observation may indicate a characteristic feature of subtropical soils. Alternatively it may be considered as indicative of disequilibrium conditions in radioactive series and consequent underestimation of Uranium in soil layers of the study area. In this context we point out the possibility of using results of radiometric surveys as a convenient complementary tool in identifying geochemical zoning of soils in subtropical env...

  9. The OLI Radiometric Scale Realization Round Robin Measurement Campaign

    Science.gov (United States)

    Cutlip, Hansford; Cole,Jerold; Johnson, B. Carol; Maxwell, Stephen; Markham, Brian; Ong, Lawrence; Hom, Milton; Biggar, Stuart

    2011-01-01

    A round robin radiometric scale realization was performed at the Ball Aerospace Radiometric Calibration Laboratory in January/February 2011 in support of the Operational Land Imager (OLI) Program. Participants included Ball Aerospace, NIST, NASA Goddard Space Flight Center, and the University of Arizona. The eight day campaign included multiple observations of three integrating sphere sources by nine radiometers. The objective of the campaign was to validate the radiance calibration uncertainty ascribed to the integrating sphere used to calibrate the OLI instrument. The instrument level calibration source uncertainty was validated by quatnifying: (1) the long term stability of the NIST calibrated radiance artifact, (2) the responsivity scale of the Ball Aerospace transfer radiometer and (3) the operational characteristics of the large integrating sphere.

  10. Radiometric Measurements of Slant Path Attenuation in the V/W Bands

    Science.gov (United States)

    2014-09-01

    MM-YYYY) SEPTEMBER 2014 2. REPORT TYPE INTERIM TECHNICAL REPORT 3. DATES COVERED (From - To) AUG 2012 – APR 2014 4. TITLE AND SUBTITLE RADIOMETRIC ... RADIOMETRIC MEASUREMENTS OF SLANT PATH ATTENUATION IN THE V/W BANDS SEPTEMBER 2014 INTERIM TECHNICAL REPORT APPROVED...information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD

  11. Ground-Based Radiometric Measurements of Slant Path Attenuation in the V/W Bands

    Science.gov (United States)

    2016-04-01

    this in-house final report we discuss the use of radiometric techniques to determine V and W band slant-path attenuation cumulative distribution...GROUND-BASED RADIOMETRIC MEASUREMENTS OF SLANT PATH ATTENUATION IN THE V/W BANDS APRIL 2016 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE...manufacture, use, or sell any patented invention that may relate to them. This report was cleared for public release by the 88th ABW, Wright

  12. Chemical Microsensor Instrument for UAV Airborne Atmospheric Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) proposes to develop a miniaturized Airborne Chemical Microsensor Instrument (ACMI) suitable for real-time, airborne measurements of...

  13. Calibrated, multiband radiometric measurements of the optical radiation from lightning

    Science.gov (United States)

    Quick, Mason G.

    Calibrated, multiband radiometric measurements of the optical radiation emitted by rocket-triggered lightning (RTL) have been made in the ultraviolet (UV, 200-360 nm), the visible and near infrared (VNIR, 400-1000 nm), and the long wave infrared (LWIR, 8-12 microm) spectral bands. Measurements were recorded from a distance of 198 m at the University of Florida International Center for Lightning Research and Testing (ICLRT) during the summers of 2011 and 2012. The ICLRT provided time-correlated measurements of the current at the base of the RTL channels. Following the onset of a return stroke, the dominant mechanism for the initial rise of the UV and VNIR waveforms was the geometrical growth of the channel in the field-of-view of the sensors. The UV emissions peaked about 0.7 micros after the current peak, with a peak spectral power emitted by the source per unit length of channel of 10 +/- 7 kW/(nm-m) in the UV. The VNIR emissions peaked 0.9 micros after the current peak, with a spectral power of at 7 +/- 4 kW/(nm-m). The LWIR emissions peaked 30-50 micros after the current peak, and the mean peak spectral power was 940 +/- 380 mW/(nm-m), a value that is about 4 orders of magnitude lower than the other spectral band emissions. In some returns strokes the LWIR peak coincides with a secondary maximum in the VNIR band that occurs during a steady decrease in channel current. Examples of the optical waveforms in each spectral band are shown as a function of time and are discussed in the context of the current measured at the channel base. Source power estimates in the VNIR band have a mean and standard deviation of 2.5 +/- 2.2 MW/m and are in excellent agreement with similar estimates of the emission from natural subsequent strokes that remain in a pre-existing channel which have a mean and standard deviation of 2.3 +/- 3.4 MW/m. The peak optical power emitted by RTL in the UV and VNIR bands are observed to be proportional to the square of the peak current at the

  14. An Assessment of Polynomial Regression Techniques for the Relative Radiometric Normalization (RRN of High-Resolution Multi-Temporal Airborne Thermal Infrared (TIR Imagery

    Directory of Open Access Journals (Sweden)

    Mir Mustafizur Rahman

    2014-11-01

    Full Text Available Thermal Infrared (TIR remote sensing images of urban environments are increasingly available from airborne and satellite platforms. However, limited access to high-spatial resolution (H-res: ~1 m TIR satellite images requires the use of TIR airborne sensors for mapping large complex urban surfaces, especially at micro-scales. A critical limitation of such H-res mapping is the need to acquire a large scene composed of multiple flight lines and mosaic them together. This results in the same scene components (e.g., roads, buildings, green space and water exhibiting different temperatures in different flight lines. To mitigate these effects, linear relative radiometric normalization (RRN techniques are often applied. However, the Earth’s surface is composed of features whose thermal behaviour is characterized by complexity and non-linearity. Therefore, we hypothesize that non-linear RRN techniques should demonstrate increased radiometric agreement over similar linear techniques. To test this hypothesis, this paper evaluates four (linear and non-linear RRN techniques, including: (i histogram matching (HM; (ii pseudo-invariant feature-based polynomial regression (PIF_Poly; (iii no-change stratified random sample-based linear regression (NCSRS_Lin; and (iv no-change stratified random sample-based polynomial regression (NCSRS_Poly; two of which (ii and iv are newly proposed non-linear techniques. When applied over two adjacent flight lines (~70 km2 of TABI-1800 airborne data, visual and statistical results show that both new non-linear techniques improved radiometric agreement over the previously evaluated linear techniques, with the new fully-automated method, NCSRS-based polynomial regression, providing the highest improvement in radiometric agreement between the master and the slave images, at ~56%. This is ~5% higher than the best previously evaluated linear technique (NCSRS-based linear regression.

  15. Solar Tower Experiments for Radiometric Calibration and Validation of Infrared Imaging Assets and Analysis Tools for Entry Aero-Heating Measurements

    Science.gov (United States)

    Splinter, Scott C.; Daryabeigi, Kamran; Horvath, Thomas J.; Mercer, David C.; Ghanbari, Cheryl M.; Ross, Martin N.; Tietjen, Alan; Schwartz, Richard J.

    2008-01-01

    The NASA Engineering and Safety Center sponsored Hypersonic Thermodynamic Infrared Measurements assessment team has a task to perform radiometric calibration and validation of land-based and airborne infrared imaging assets and tools for remote thermographic imaging. The IR assets and tools will be used for thermographic imaging of the Space Shuttle Orbiter during entry aero-heating to provide flight boundary layer transition thermography data that could be utilized for calibration and validation of empirical and theoretical aero-heating tools. A series of tests at the Sandia National Laboratories National Solar Thermal Test Facility were designed for this task where reflected solar radiation from a field of heliostats was used to heat a 4 foot by 4 foot test panel consisting of LI 900 ceramic tiles located on top of the 200 foot tall Solar Tower. The test panel provided an Orbiter-like entry temperature for the purposes of radiometric calibration and validation. The Solar Tower provided an ideal test bed for this series of radiometric calibration and validation tests because it had the potential to rapidly heat the large test panel to spatially uniform and non-uniform elevated temperatures. Also, the unsheltered-open-air environment of the Solar Tower was conducive to obtaining unobstructed radiometric data by land-based and airborne IR imaging assets. Various thermocouples installed on the test panel and an infrared imager located in close proximity to the test panel were used to obtain surface temperature measurements for evaluation and calibration of the radiometric data from the infrared imaging assets. The overall test environment, test article, test approach, and typical test results are discussed.

  16. Off-axis measurements of atmospheric trace gases by use of an airborne ultraviolet-visible spectrometer.

    Science.gov (United States)

    Petritoli, Andrea; Ravegnani, Fabrizio; Giovanelli, Giorgio; Bortoli, Daniele; Bonafè, Ubaldo; Kostadinov, Ivan; Oulanovsky, Alexey

    2002-09-20

    An airborne UV-visible spectrometer, the Gas Analyzer Spectrometer Correlating Optical Differences, airborne version (GASCOD/A4pi) was successfully operated during the Airborne Polar Experiment, Geophysica Aircraft in Antarctica airborne campaign from Ushuaia (54 degrees 49' S, 68 degrees 18' W), Argentina in southern spring 1999. The instrument measured scattered solar radiation through three optical windows with a narrow field of view (FOV), one from the zenith, two from the horizontal, as well as actinic fluxes through 2pi FOV radiometric heads. Only a few airborne measurements of scattered solar radiation at different angles from the zenith are available in the literature. With our configuration we attempted to obtain the average line-of-sight concentrations of detectable trace gases. The retrieval method, based on differential optical absorption spectroscopy, is described and results for ozone are shown and compared with measurements from an in situ instrument as the first method of validation.

  17. Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data

    Science.gov (United States)

    Höfle, Bernhard; Hollaus, Markus; Hagenauer, Julian

    2012-01-01

    This paper introduces a new GIS workflow for urban vegetation mapping from high-density (50 pts./m 2) full-waveform airborne LiDAR data, combining the advantages of both raster and point cloud based analysis. Polygon segments derived by edge-based segmentation of the normalized digital surface model are used for classification. A rich set of segment features based on the point cloud and derived from full-waveform attributes is built, serving as input for a decision tree and artificial neural network (ANN) classifier. Exploratory data analysis and detailed investigation of the discriminative power of selected point cloud and full-waveform LiDAR observables indicate a high value of the occurrence of multiple distinct targets in a laser beam (i.e. 'echo ratio') for vegetation classification (98% correctness). The radiometric full-waveform observables (e.g. backscattering coefficient) do not suffice as single discriminators with low correctness values using a decision tree classifier (⩽72% correctness) but higher values with ANN (⩽95% correctness). Tests using reduced point densities indicate that the derived segment features and classification accuracies remain relatively stable even up to a reduction factor of 10 (5 pts./m 2). In a representative study area in the City of Vienna/Austria the applicability of the developed object-based GIS workflow is demonstrated. The unique high density full-waveform LiDAR data open a new scale in 3D object characterization but demands for novel joint strategies in object-based raster and 3D point cloud analysis.

  18. A new automatic system for angular measurement and calibration in radiometric instruments.

    Science.gov (United States)

    Marquez, Jose Manuel Andujar; Bohórquez, Miguel Ángel Martínez; Garcia, Jonathan Medina; Nieto, Francisco Jose Aguilar

    2010-01-01

    This paper puts forward the design, construction and testing of a new automatic system for angular-response measurement and calibration in radiometric instruments. Its main characteristics include precision, speed, resolution, noise immunity, easy programming and operation. The developed system calculates the cosine error of the radiometer under test by means of a virtual instrument, from the measures it takes and through a mathematical procedure, thus allowing correcting the radiometer with the aim of preventing cosine error in its measurements.

  19. A New Automatic System for Angular Measurement and Calibration in Radiometric Instruments

    Directory of Open Access Journals (Sweden)

    Jose Manuel Andujar Marquez

    2010-04-01

    Full Text Available This paper puts forward the design, construction and testing of a new automatic system for angular-response measurement and calibration in radiometric instruments. Its main characteristics include precision, speed, resolution, noise immunity, easy programming and operation. The developed system calculates the cosine error of the radiometer under test by means of a virtual instrument, from the measures it takes and through a mathematical procedure, thus allowing correcting the radiometer with the aim of preventing cosine error in its measurements.

  20. Airborne Atmospheric Aerosol Measurement System

    Science.gov (United States)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  1. International Symposium on Airborne Geophysics

    Science.gov (United States)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  2. Initial Radiometric Characteristics of KOMPSAT-3A Multispectral Imagery Using the 6S Radiative Transfer Model, Well-Known Radiometric Tarps, and MFRSR Measurements

    Directory of Open Access Journals (Sweden)

    Jong-Min Yeom

    2017-02-01

    Full Text Available On-orbit radiometric characterization of the multispectral (MS imagery of the Korea Aerospace Research Institute (KARI’s Korea Multi-Purpose Satellite-3A (KOMPSAT-3A, which was launched on 25 March 2015, was conducted to provide quantitative radiometric information about KOMPSAT-3A. During the in-orbit test (IOT, vicarious radiometric calibration of KOMPSAT-3A was performed using the Second Simulation of a Satellite Signal in the Solar Spectrum (6S radiative transfer model. The characteristics of radiometric tarps, the atmospheric optical depth from multi-filter rotating shadowband radiometer (MFRSR measurements, and sun–sensor–geometry were carefully considered, in order to calculate the exact top of atmosphere (TOA radiance received by KOMPSAT-3A MS bands. In addition, the bidirectional reflectance distribution function (BRDF behaviors of the radiometric tarps were measured in the laboratory with a two-dimensional hyperspectral gonioradiometer, to compensate for the geometry discrepancy between the satellite and the ASD FieldSpec® 3 spectroradiometer. The match-up datasets between the TOA radiance and the digital number (DN from KOMPSAT-3A were used to determine DN-to-radiance conversion factors, based on linear least squares fitting for two field campaigns. The final results showed that the R2 values between the observed and simulated radiances for the blue, green, red, and near-infrared (NIR bands, are greater than 0.998. An approximate error budget analysis for the vicarious calibration of KOMPSAT-3A showed an error of less than 6.8%. When applying the laboratory-based BRDF correction to the case of higher viewing zenith angle geometry, the gain ratio was improved, particularly for the blue (1.3% and green (1.2% bands, which exhibit high sensitivity to the BRDF of radiometric tarps during the backward-scattering phase. The calculated gain ratio between the first and second campaigns showed a less than 5% discrepancy, indicating that

  3. Verification of the radiometric map of the Czech Republic.

    Science.gov (United States)

    Matolín, Milan

    2017-01-01

    The radiometric map of the Czech Republic is based on uniform regional airborne radiometric total count measurements (1957-1959) which covered 100% of the country. The airborne radiometric instrument was calibrated to a (226)Ra point source. The calibration facility for field gamma-ray spectrometers, established in the Czech Republic in 1975, significantly contributed to the subsequent radiometric data standardization. In the 1990's, the original analogue airborne radiometric data were digitized and using the method of back-calibration (IAEA, 2003) converted to dose rate. The map of terrestrial gamma radiation expressed in dose rate (nGy/h) was published on the scale 1:500,000 in 1995. Terrestrial radiation in the Czech Republic, formed by magmatic, sedimentary and metamorphic rocks of Proterozoic to Quaternary age, ranges mostly from 6 to 245 nGy/h, with a mean of 65.6 ± 19.0 nGy/h. The elevated terrestrial radiation in the Czech Republic, in comparison to the global dose rate average of 54 nGy/h, reflects an enhanced content of natural radioactive elements in the rocks. The 1995 published radiometric map of the Czech Republic was successively studied and verified by additional ground gamma-ray spectrometric measurements and by comparison to radiometric maps of Germany, Poland and Slovakia in border zones. A ground dose rate intercomparison measurement under participation of foreign and domestic professional institutions revealed mutual dose rate deviations about 20 nGy/h and more due to differing technical parameters of applied radiometric instruments. Studies and verification of the radiometric map of the Czech Republic illustrate the magnitude of current deviations in dose rate data. This gained experience can assist in harmonization of dose rate data on the European scale.

  4. Calibration and Measurement Uncertainty Estimation of Radiometric Data: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Sengupta, M.; Reda, I.; Andreas, A.; Konings, J.

    2014-11-01

    Evaluating the performance of photovoltaic cells, modules, and arrays that form large solar deployments relies on accurate measurements of the available solar resource. Therefore, determining the accuracy of these solar radiation measurements provides a better understanding of investment risks. This paper provides guidelines and recommended procedures for estimating the uncertainty in calibrations and measurements by radiometers using methods that follow the International Bureau of Weights and Measures Guide to the Expression of Uncertainty (GUM). Standardized analysis based on these procedures ensures that the uncertainty quoted is well documented.

  5. Determination of Cloud Ice Water Content and Geometrical Thickness Using Microwave and Infrared Radiometric Measurements.

    Science.gov (United States)

    Wu, Man-Li C.

    1987-08-01

    Cloud ice water content and cloud geometrical thickness have been determined using a combination of near-infrared, thermal infrared and thermal microwave radiometric measurements. The radiometric measurements are from a Multispectral Cloud Radiometer, which has seven channels ranging from visible to thermal infrared, and an Advanced Microwave Moisture Sounder, which has four channels ranging from 90 to 183 GHz. Studies indicate that the microwave brightness temperatures depend not only on the amount of ice water content but also on the vertical distribution of ice water content. Studies also show that the low brightness temperature at 92 GHz for large ice water content is due to cloud reflection which reflects most of the irradiance incident at the cloud base downward. Therefore the 92 GHz channel detects a low brightness temperature at the cloud top.

  6. Microwave radiometric system for biomedical 'true temperature' and emissivity measurements.

    Science.gov (United States)

    Lüdeke, K M; Köhler, J

    1983-09-01

    A novel type of radiometer is described, which solves the problem of emissivity-(mismatch)-independent noise temperature measurements by simultaneous registration of an object's apparent temperature and its reflectivity with just one microwave receiver and real-time calculation of the object's emissivity and its actual temperature.

  7. First measurements with the Physikalisches Institut Radiometric Experiment (PHIRE)

    Science.gov (United States)

    Gunderson, K.; Thomas, N.; Whitby, J. A.

    2006-09-01

    We have constructed an experiment to perform bidirectional reflectance distribution function (BRDF) measurements of laboratory samples, and have used the experiment to characterize a sample of JSC-1 lunar regolith simulant. Characterizations relied on in-plane BRDF measurements in visible and near-infrared (NIR) bandpasses. The optical properties of the simulant sample were found to be similar to those observed for bright, lunar highland regions. Reflectance models (Hapke 1981. Bidirectional reflectance spectroscopy 1. Theory. J. Geophys. Res. 86(B4), 3,039-3,054; 1984. Bidirectional reflectance spectroscopy 3. Correction for macroscopic roughness. Icarus 59, 41-59; 1986. Bidirectional reflectance spectroscopy 4. The extinction coefficient and the opposition effect. Icarus 67, 264-280; 2002. Bidirectional reflectance spectroscopy 5. The coherent backscatter opposition effect and anisotropic scattering. Icarus 157, 523-534) made excellent fits to fixed incidence angle, variable emission angle data sets. However, the models were not found to extrapolate well to fixed, near-zero phase angle data at varying incidence angles, and no solutions were found that provided simultaneous, high quality fits to the two types of data sets. Except for the single-scattering albedo, the best-fit parameters of the fixed incidence angle data were statistically the same in the visible and NIR. Correlations between the reflectance model parameters were systematically examined, and strong correlations were found between single-scattering albedo and the two two-stream Henyey-Greenstein scattering parameters and, to a lesser extent, the small-scale mean surface roughness.

  8. Geometric and radiometric preprocessing of airborne visible/infrared imaging spectrometer (AVIRIS) data in rugged terrain for quantitative data analysis

    Science.gov (United States)

    Meyer, Peter; Green, Robert O.; Staenz, Karl; Itten, Klaus I.

    1994-01-01

    A geocoding procedure for remotely sensed data of airborne systems in rugged terrain is affected by several factors: buffeting of the aircraft by turbulence, variations in ground speed, changes in altitude, attitude variations, and surface topography. The current investigation was carried out with an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) scene of central Switzerland (Rigi) from NASA's Multi Aircraft Campaign (MAC) in Europe (1991). The parametric approach reconstructs for every pixel the observation geometry based on the flight line, aircraft attitude, and surface topography. To utilize the data for analysis of materials on the surface, the AVIRIS data are corrected to apparent reflectance using algorithms based on MODTRAN (moderate resolution transfer code).

  9. Airborne measurements in the longwave infrared using an imaging hyperspectral sensor

    Science.gov (United States)

    Allard, Jean-Pierre; Chamberland, Martin; Farley, Vincent; Marcotte, Frédérick; Rolland, Matthias; Vallières, Alexandre; Villemaire, André

    2008-08-01

    Emerging applications in Defense and Security require sensors with state-of-the-art sensitivity and capabilities. Among these sensors, the imaging spectrometer is an instrument yielding a large amount of rich information about the measured scene. Standoff detection, identification and quantification of chemicals in the gaseous state is one important application. Analysis of the surface emissivity as a means to classify ground properties and usage is another one. Imaging spectrometers have unmatched capabilities to meet the requirements of these applications. Telops has developed the FIRST, a LWIR hyperspectral imager. The FIRST is based on the Fourier Transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. The FIRST, a man portable sensor, provides datacubes of up to 320x256 pixels at 0.35mrad spatial resolution over the 8-12 μm spectral range at spectral resolutions of up to 0.25cm-1. The FIRST has been used in several field campaigns, including the demonstration of standoff chemical agent detection [http://dx.doi.org/10.1117/12.795119.1]. More recently, an airborne system integrating the FIRST has been developed to provide airborne hyperspectral measurement capabilities. The airborne system and its capabilities are presented in this paper. The FIRST sensor modularity enables operation in various configurations such as tripod-mounted and airborne. In the airborne configuration, the FIRST can be operated in push-broom mode, or in staring mode with image motion compensation. This paper focuses on the airborne operation of the FIRST sensor.

  10. A Kalman Approach to Lunar Surface Navigation using Radiometric and Inertial Measurements

    Science.gov (United States)

    Chelmins, David T.; Welch, Bryan W.; Sands, O. Scott; Nguyen, Binh V.

    2009-01-01

    Future lunar missions supporting the NASA Vision for Space Exploration will rely on a surface navigation system to determine astronaut position, guide exploration, and return safely to the lunar habitat. In this report, we investigate one potential architecture for surface navigation, using an extended Kalman filter to integrate radiometric and inertial measurements. We present a possible infrastructure to support this technique, and we examine an approach to simulating navigational accuracy based on several different system configurations. The results show that position error can be reduced to 1 m after 5 min of processing, given two satellites, one surface communication terminal, and knowledge of the starting position to within 100 m.

  11. SPECTRAL REFLECTANCE MEASUREMENTS AT THE CHINA RADIOMETRIC CALIBRATION TEST SITE FOR THE REMOTE SENSING SATELITE SENSOR

    Institute of Scientific and Technical Information of China (English)

    张玉香; 张广顺; 刘志权; 张立军; 朱顺斌; 戎志国; 邱康睦

    2001-01-01

    A comprehensive field experiment was made with the support of the project of China Radiometric Calibration Site (CRCS) during June-July 1999. Ground reflectance spectra were measured at Dunhuang Calibration Test Site in the experiment. More than two thousands of spectral curves were acquired in a 20 km × 20 km area. The spectral coverage is from 350 nm to 2500 nm. The measurement values show that reflectance is between 10% and 33% at the VISSWIR spectral region. The standard deviation of reflectance is between 1.0% and 2.0% for the spectral range. Optical characteristics and ground reflectance measurements at the Dunhuang test site, result analysis and error source were described. In addition, a comparison of the reflectance obtained in 1999 with those measured in 1994 and 1996 was also made.

  12. Measurements and analysis of solar direct irradiance-meter on Dunhuang radiometric calibration sites

    Science.gov (United States)

    Liu, En-chao; Li, Xin; Zhang, Yan-na; Zheng, Xiao-bing; Yan, Jing

    2016-10-01

    In order to realize the quantitative application of satellite remote sensing data and adapt to the demand of field calibration of hyper-spectral remote sensors, the solar direct spectral irradiance-meter was developed. According to the sampling principle of spectral irradiance, the irradiance-meter was designed with some technical improvements, the radiometric calibration based on system-level detector were adopted. Irradiance-meter took part in field calibration experiment on Dunhuang radiometric calibration sites and the correct data results were collected. The measurement results of spectral irradiance were consistent with simulated ground irradiance by MODTRAN model. The relative deviation of atmospheric optical depth(AOD) compared with solar radiometer CE318 was less than 4.84%. The whole day results of the irradiance observations and atmospheric transmission in the data applications were collected, the local atmosphere mode and the change of environment were reflected accurately, the input information of the atmospheric parameter were provided for the study of atmospheric properties and field calibration of remote sensors.

  13. Photovoltaics radiometric issues and needs

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D.R. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-11-01

    This paper presents a summary of issues discussed at the photovoltaic radiometric measurements workshop. Topics included radiometric measurements guides, the need for well-defined goals, documentation, calibration checks, accreditation of testing laboratories and methods, the need for less expensive radiometric instrumentation, data correlations, and quality assurance.

  14. Calibration for Radiation Protection Equipment for the Measuring Airborne Tritium

    Institute of Scientific and Technical Information of China (English)

    CHEN; Xi-lin; SHEN; En-wei; WEI; Ke-xin; WANG; Kong-zhao; LI; Hou-wen; GE; Jian-an; LV; Xiao-xia

    2012-01-01

    <正>Monitoring airborne tritium is an important routine work in heavy water reactor nuclear power stations and the units related with tritium. Nowadays direct measuring instruments like hand carrying tritium monitors are more often used in routine workshop environment check. Need for calibrating such monitors was suggested. A trial work about the calibration for radiation protection equipment for measuring airborne tritium was carried out with a domestic standard EJ/T 1077-1998 equivalent that of IEC 710.

  15. Radiometric Measurements on Ag/n-Si Composite Films for Detecting Radiation in the Earth’s Atmospheric Windows

    Science.gov (United States)

    2009-02-20

    NAME(S) AND ADDRESS(ES) AFOSR/NE 875 N. Randolph Street Suite 324, room 3112 Arlington VA 22203-1768 Dr. Silversmith 10. SPONSOR/MONITOR’S...008 to 30-11-008 AFOSR Grant # FA9550-08-1-0008 Program Manager - Dr. Donald Silversmith Radiometric Measurements on Ag/n-Si Composite Films for

  16. Airborne gravity field Measurements - status and developments

    DEFF Research Database (Denmark)

    Olesen, Arne Vestergaard; Forsberg, René

    2016-01-01

    English Abstract:DTU-Space has since 1996 carried out large area airborne surveys over both polar, tropical and temperate regions, especially for geoid determination and global geopotential models. Recently we have started flying two gravimeters (LCR and Chekan-AM or inertial navigation systems) ...

  17. A W-Band Radiometer with the Offset Parabolic Antenna for Radiometric Measurements

    Directory of Open Access Journals (Sweden)

    Li Wu

    2016-01-01

    Full Text Available This paper deals with the development of a W-band noise-adding radiometer which combines the millimeter-wave (MMW radiometric measurements with a high-resolution imager. The offset parabolic antenna is presented to achieve an accurate measurement and a high resolution. To reduce the cross-polarization level of the antenna, a multimode feed horn with a multistep structure is proposed to match the focal region fields of the reflector. It has advantages over the corrugated horns in lower mass and easier manufacturing. In addition, due to an unavoidable settling time for the noise-adding radiometer output signal passing through the low-pass filter, a theoretical criterion for the optimum duty cycle determination to reject extraneous contributions from the transient is proposed in this paper. The appropriate duty cycle threshold is 0.33 for the developed W-band radiometer. Also, a geometric correction method is presented to correct the obtained passive image suffering from a distortion for a better image interpretation. Preliminary experimental results are given to illustrate and verify the presented techniques.

  18. Digital Airborne Photogrammetry—A New Tool for Quantitative Remote Sensing?—A State-of-the-Art Review On Radiometric Aspects of Digital Photogrammetric Images

    Directory of Open Access Journals (Sweden)

    Nikolaj Veje

    2009-09-01

    Full Text Available The transition from film imaging to digital imaging in photogrammetric data capture is opening interesting possibilities for photogrammetric processes. A great advantage of digital sensors is their radiometric potential. This article presents a state-of-the-art review on the radiometric aspects of digital photogrammetric images. The analysis is based on a literature research and a questionnaire submitted to various interest groups related to the photogrammetric process. An important contribution to this paper is a characterization of the photogrammetric image acquisition and image product generation systems. The questionnaire revealed many weaknesses in current processes, but the future prospects of radiometrically quantitative photogrammetry are promising.

  19. Comparison between laboratory and airborne BRDF measurements for remote sensing

    Science.gov (United States)

    Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.

    2006-08-01

    Samples from soil and leaf litter were obtained at a site located in the savanna biome of South Africa (Skukuza; 25.0°S, 31.5°E) and their bidirectional reflectance distribution functions (BRDF) were measured using the out-of-plane scatterometer located in the National Aeronautics and Space Administration's (NASA's) Goddard Space Flight Center (GSFC) Diffuser Calibration Facility (DCaF). BRDF was measured using P and S incident polarized light over a range of incident and scatter angles. A monochromator-based broadband light source was used in the ultraviolet (uv) and visible (vis) spectral ranges. The diffuse scattered light was collected using an uv-enhanced silicon photodiode detector with output fed to a computer-controlled lock-in amplifier. Typical measurement uncertainties of the reported laboratory BRDF measurements are found to be less than 1% (k=1). These laboratory results were compared with airborne measurements of BRDF from NASA's Cloud Absorption Radiometer (CAR) instrument over the same general site where the samples were obtained. This study presents preliminary results of the comparison between these laboratory and airborne BRDF measurements and identifies areas for future laboratory and airborne BRDF measurements. This paper presents initial results in a study to try to understand BRDF measurements from laboratory, airborne, and satellite measurements in an attempt to improve the consistency of remote sensing models.

  20. Pulsed Airborne Lidar Measurements of C02 Column Absorption

    Science.gov (United States)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Rodriquez, Michael; Browell, Edward V.

    2011-01-01

    We report on airborne lidar measurements of atmospheric CO2 column density for an approach being developed as a candidate for NASA's ASCENDS mission. It uses a pulsed dual-wavelength lidar measurement based on the integrated path differential absorption (IPDA) technique. We demonstrated the approach using the CO2 measurement from aircraft in July and August 2009 over four locations. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The 2009 measurements have been analyzed in detail and the results show approx.1 ppm random errors for 8-10 km altitudes and approx.30 sec averaging times. Airborne measurements were also made in 2010 with stronger signals and initial analysis shows approx. 0.3 ppm random errors for 80 sec averaging times for measurements at altitudes> 6 km.

  1. Identifying areas with potential for high indoor radon levels: analysis of the national airborne radiometric reconnaissance data for California and the Pacific Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Moed, B.A.; Nazaroff, W.W.; Nero, A.V.; Schwehr, M.B.; Van Heuvelen, A.

    1984-04-01

    Radon-222 is an important indoor air pollutant which, through the inhalation of its radioactive decay products, accounts for nearly half of the effective dose equivalent to the public from natural ionizing radiation. Indoor radon concentrations vary widely, largely because of local and regional differences in the rate of entry from sources. The major sources are soil and rock near building foundations, earth-based building materials, and domestic water; of these, soil and rock are thought to be predominant in many buildings with higher-than-average concentrations. Thus, one key factor in determining radon source potential is the concentration of radium, the progenitor of radon, in surficial rocks and soils. Aerial radiometric data were analyzed, collected for the National Uranium Resource Evaluation Program, for seven Western states to: (1) provide information on the spatial distribution of radium contents in surficial geologic materials for those states; and (2) investigate approaches for using the aerial data, which have been collected throughout the contiguous United States and Alaska, to identify areas where high indoor radon levels may be common. Radium concentrations were found to be relatively low in central and western portions of Washington, Oregon, and northern California; they were found to be relatively high in central and southern California. A field validation study, conducted along two flight-line segments near Spokane, Washington, showed close correspondence between the aerial data, in situ measurements of both radium content and radon flux from soil, and laboratory measurements of both radium content of and radon emanation rate from soil samples. 99 references, 11 figures, 3 tables.

  2. Ground and Airborne Methane Measurements with an Optical Parametric Amplifier

    Science.gov (United States)

    Numata, Kenji

    2012-01-01

    We report on ground and airborne atmospheric methane measurements with a differential absorption lidar using an optical parametric amplifier (OPA). Methane is a strong greenhouse gas on Earth and its accurate global mapping is urgently needed to understand climate change. We are developing a nanosecond-pulsed OPA for remote measurements of methane from an Earth-orbiting satellite. We have successfully demonstrated the detection of methane on the ground and from an airplane at approximately 11-km altitude.

  3. A Method to Estimate Uncertainty in Radiometric Measurement Using the Guide to the Expression of Uncertainty in Measurement (GUM) Method; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Sengupta, M.; Reda, I.

    2015-03-01

    Radiometric data with known and traceable uncertainty is essential for climate change studies to better understand cloud radiation interactions and the earth radiation budget. Further, adopting a known and traceable method of estimating uncertainty with respect to SI ensures that the uncertainty quoted for radiometric measurements can be compared based on documented methods of derivation.Therefore, statements about the overall measurement uncertainty can only be made on an individual basis, taking all relevant factors into account. This poster provides guidelines and recommended procedures for estimating the uncertainty in calibrations and measurements from radiometers. The approach follows the Guide to the Expression of Uncertainty in Measurement (GUM). derivation.Therefore, statements about the overall measurement uncertainty can only be made on an individual basis, taking all relevant factors into account. This poster provides guidelines and recommended procedures for estimating the uncertainty in calibrations and measurements from radiometers. The approach follows the Guide to the Expression of Uncertainty in Measurement (GUM).

  4. Airborne Repeat Pass Interferometry for Deformation Measurements

    NARCIS (Netherlands)

    Groot, J.; Otten, M.; Halsema, E. van

    2000-01-01

    In ground engineering the need for deformation measurements is urgent. SAR interferometry can be used to measure small (sub-wavelength) deformations. An experiment to investigate this for dike deformations was set up, using the C-band SAR system PHARUS (PHased ARray Universal SAR). This paper descri

  5. Particle sizing of airborne radioactivity field measurements at Olympic Dam

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, S.B.; Wilkis, M.; O`Brein, R.; Ganakas, G.

    1993-12-01

    On July 1, 1991 the Australian Radiation Laboratory (ARL) commenced a two year project entitled - Particle sizing of airborne radioactivity, funded by a Mining and Quarrying Occupational Health and Safety Committee - grant (submission No. 9138). This study was set out to measure airborne radioactivity size distributions in an underground uranium mine, in order to provide better estimates of the health risks associated with inhalation of airborne radiation in the work place. These measurements included both active and passive measurement of radon gas, continuous and spot sample of radon daughter levels, as well as wire screen diffusion battery measurements of the radon daughter size distributions. The results of measurements at over 50 sites within the mine are reported, together with the calculated dose conversion factors derived from the older dosimetric models and from the new ICRP lung model using the computer code RADEP. The results showed that the ventilation is relatively uniform within the mine and the radon daughter concentrations are kept to less than 20% of the equilibrium concentration. The radon and radon daughter concentrations showed marked variability with both time and position within the mine. It is concluded that the present radiation protection methods and dose conversion factors used in Australia provide a good estimate of the radiation risk for the inhalation of radon progeny. 29 refs., 8 tabs., 9 figs.

  6. The Airborne Measurements of Methane Fluxes (AIRMETH) Arctic Campaign (Invited)

    Science.gov (United States)

    Serafimovich, A.; Metzger, S.; Hartmann, J.; Kohnert, K.; Sachs, T.

    2013-12-01

    One of the most pressing questions with regard to climate feedback processes in a warming Arctic is the regional-scale methane release from Arctic permafrost areas. The Airborne Measurements of Methane Fluxes (AIRMETH) campaign is designed to quantitatively and spatially explicitly address this question. Ground-based eddy covariance (EC) measurements provide continuous in-situ observations of the surface-atmosphere exchange of methane. However, these observations are rare in the Arctic permafrost zone and site selection is bound by logistical constraints among others. Consequently, these observations cover only small areas that are not necessarily representative of the region of interest. Airborne measurements can overcome this limitation by covering distances of hundreds of kilometers over time periods of a few hours. Here, we present the potential of environmental response functions (ERFs) for quantitatively linking methane flux observations in the atmospheric surface layer to meteorological and biophysical drivers in the flux footprints. For this purpose thousands of kilometers of AIRMETH data across the Alaskan North Slope are utilized, with the aim to extrapolate the airborne EC methane flux observations to the entire North Slope. The data were collected aboard the research aircraft POLAR 5, using its turbulence nose boom and fast response methane and meteorological sensors. After thorough data pre-processing, Reynolds averaging is used to derive spatially integrated fluxes. To increase spatial resolution and to derive ERFs, we then use wavelet transforms of the original high-frequency data. This enables much improved spatial discretization of the flux observations, and the quantification of continuous and biophysically relevant land cover properties in the flux footprint of each observation. A machine learning technique is then employed to extract and quantify the functional relationships between the methane flux observations and the meteorological and

  7. Water depth measurement using an airborne pulsed neon laser system

    Science.gov (United States)

    Hoge, F. E.; Swift, R. N.; Frederick, E. B.

    1980-01-01

    The paper presents the water depth measurement using an airborne pulsed neon laser system. The results of initial base-line field test results of NASA airborne oceanographic lidar in the bathymetry mode are given, with water-truth measurements of depth and beam attenuation coefficients by boat taken at the same time as overflights to aid in determining the system's operational performance. The nadir-angle tests and field-of-view data are presented; this laser bathymetry system is an improvement over prior models in that (1) the surface-to-bottom pulse waveform is digitally recorded on magnetic tape, and (2) wide-swath mapping data may be routinely acquired using a 30 deg full-angle conical scanner.

  8. Patch Antenna for Measuring the Internal Temperature of Biological Objects Using the Near-Field Microwave Radiometric Method

    Science.gov (United States)

    Ubaichin, A.; Bespalko, A.; Filatov, A.; Alexeev, E.; Zhuk, G.

    2016-01-01

    The near-field microwave antenna with central frequency of 2.23 GHz has been designed and manufactured to be used as a part of the medical microwave radiometric system. Experimental studies of the reflection coefficient in different parts of the human body were conducted using the developed antenna. The experimental studies were carried out in a group of volunteers with normal somatic growth. The results of the experiments were used to perform the analysis of the potential errors in the measurements obtained via the developed antenna.

  9. Transmittance Measurement of a Heliostat Facility used in the Preflight Radiometric Calibration of Earth-Observing Sensors

    Science.gov (United States)

    Czapla-Myers, J.; Thome, K.; Anderson, N.; McCorkel, J.; Leisso, N.; Good, W.; Collins, S.

    2009-01-01

    Ball Aerospace and Technologies Corporation in Boulder, Colorado, has developed a heliostat facility that will be used to determine the preflight radiometric calibration of Earth-observing sensors that operate in the solar-reflective regime. While automatically tracking the Sun, the heliostat directs the solar beam inside a thermal vacuum chamber, where the sensor under test resides. The main advantage to using the Sun as the illumination source for preflight radiometric calibration is because it will also be the source of illumination when the sensor is in flight. This minimizes errors in the pre- and post-launch calibration due to spectral mismatches. It also allows the instrument under test to operate at irradiance values similar to those on orbit. The Remote Sensing Group at the University of Arizona measured the transmittance of the heliostat facility using three methods, the first of which is a relative measurement made using a hyperspectral portable spectroradiometer and well-calibrated reference panel. The second method is also a relative measurement, and uses a 12-channel automated solar radiometer. The final method is an absolute measurement using a hyperspectral spectroradiometer and reference panel combination, where the spectroradiometer is calibrated on site using a solar-radiation-based calibration.

  10. Transmittance measurement of a heliostat facility used in the preflight radiometric calibration of Earth-observing sensors

    Science.gov (United States)

    Czapla-Myers, J.; Thome, K.; Anderson, N.; McCorkel, J.; Leisso, N.; Good, W.; Collins, S.

    2009-08-01

    Ball Aerospace and Technologies Corporation in Boulder, Colorado, has developed a heliostat facility that will be used to determine the preflight radiometric calibration of Earth-observing sensors that operate in the solar-reflective regime. While automatically tracking the Sun, the heliostat directs the solar beam inside a thermal vacuum chamber, where the sensor under test resides. The main advantage to using the Sun as the illumination source for preflight radiometric calibration is because it will also be the source of illumination when the sensor is in flight. This minimizes errors in the pre- and post-launch calibration due to spectral mismatches. It also allows the instrument under test to operate at irradiance values similar to those on orbit. The Remote Sensing Group at the University of Arizona measured the transmittance of the heliostat facility using three methods, the first of which is a relative measurement made using a hyperspectral portable spectroradiometer and well-calibrated reference panel. The second method is also a relative measurement, and uses a 12-channel automated solar radiometer. The final method is an absolute measurement using a hyperspectral spectroradiometer and reference panel combination, where the spectroradiometer is calibrated on site using a solar-radiation-based calibration.

  11. Ultrasonic airborne insertion loss measurements at normal incidence (L).

    Science.gov (United States)

    Farley, Jayrin; Anderson, Brian E

    2010-12-01

    Transmission loss and insertion loss measurements of building materials at audible frequencies are commonly made using plane wave tubes or as a panel between reverberant rooms. These measurements provide information for noise isolation control in architectural acoustics and in product development. Airborne ultrasonic sound transmission through common building materials has not been fully explored. Technologies and products that utilize ultrasonic frequencies are becoming increasingly more common, hence the need to conduct such measurements. This letter presents preliminary measurements of the ultrasonic insertion loss levels for common building materials over a frequency range of 28-90 kHz using continuous-wave excitation.

  12. Analyzers Measure Greenhouse Gases, Airborne Pollutants

    Science.gov (United States)

    2012-01-01

    In complete darkness, a NASA observatory waits. When an eruption of boiling water billows from a nearby crack in the ground, the observatory s sensors seek particles in the fluid, measure shifts in carbon isotopes, and analyze samples for biological signatures. NASA has landed the observatory in this remote location, far removed from air and sunlight, to find life unlike any that scientists have ever seen. It might sound like a scene from a distant planet, but this NASA mission is actually exploring an ocean floor right here on Earth. NASA established a formal exobiology program in 1960, which expanded into the present-day Astrobiology Program. The program, which celebrated its 50th anniversary in 2010, not only explores the possibility of life elsewhere in the universe, but also examines how life begins and evolves, and what the future may hold for life on Earth and other planets. Answers to these questions may be found not only by launching rockets skyward, but by sending probes in the opposite direction. Research here on Earth can revise prevailing concepts of life and biochemistry and point to the possibilities for life on other planets, as was demonstrated in December 2010, when NASA researchers discovered microbes in Mono Lake in California that subsist and reproduce using arsenic, a toxic chemical. The Mono Lake discovery may be the first of many that could reveal possible models for extraterrestrial life. One primary area of interest for NASA astrobiologists lies with the hydrothermal vents on the ocean floor. These vents expel jets of water heated and enriched with chemicals from off-gassing magma below the Earth s crust. Also potentially within the vents: microbes that, like the Mono Lake microorganisms, defy the common characteristics of life on Earth. Basically all organisms on our planet generate energy through the Krebs Cycle, explains Mike Flynn, research scientist at NASA s Ames Research Center. This metabolic process breaks down sugars for energy

  13. Airborne measurements of spatial NO2 distributions during AROMAT

    Science.gov (United States)

    Meier, Andreas Carlos; Seyler, André; Schönhardt, Anja; Richter, Andreas; Ruhtz, Thomas; Lindemann, Carsten; Burrows, John P.

    2015-04-01

    Nitrogen oxides, NOx (NOx = NO + NO2) play a key role in tropospheric chemistry. In addition to their directly harmful effects on the respiratory system of living organisms, they influence the levels of tropospheric ozone and contribute to acid rain and eutrophication of ecosystems. As they are produced in combustion processes, they can serve as an indicator for anthropogenic air pollution. In September 2014 several European research groups conducted the ESA funded Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign to test and intercompare newly developed airborne observation sytsems dedicated to air quality satellite validation studies. The IUP Bremen contributed to this campaign with its Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution (AirMAP) on board a Cessna 207 turbo, operated by the FU Berlin. AirMAP allows the retrieval of integrated NO2 column densities in a stripe below the aircraft at a fine spatial resolution of up to 30 x 80 m2, at a typical flight altitude. Measurements have been performed over the city of Bucharest, creating for the first time high spatial resolution maps of Bucharest's NO2 distribution in a time window of approx. 2 hours. The observations were synchronised with ground-based car MAX-DOAS measurements for comparison. In addition, measurements were taken over the city of Berlin, Germany and at the Rovinari power plant, Romania. In this work the results of the research flights will be presented and conclusions will be drawn on the quality of the measurements, their applicability for satellite data validation and possible improvements for future measurements.

  14. Design and instrumentation of an airborne far infrared radiometer for in-situ measurements of ice clouds

    Science.gov (United States)

    Proulx, Christian; Ngo Phong, Linh; Lamontagne, Frédéric; Wang, Min; Fisette, Bruno; Martin, Louis; Châteauneuf, François

    2016-09-01

    We report on the design and instrumentation of an aircraft-certified far infrared radiometer (FIRR) and the resulting instrument characteristics. FIRR was designed to perform unattended airborne measurements of ice clouds in the arctic in support of a microsatellite payload study. It provides radiometrically calibrated data in nine spectral channels in the range of 8-50 μm with the use of a rotating wheel of bandpass filters and reference blackbodies. Measurements in this spectral range are enabled with the use of a far infrared detector based on microbolometers of 104-μm pitch. The microbolometers have a new design because of the large structure and are coated with gold black to maintain uniform responsivity over the working spectral range. The vacuum sealed detector package is placed at the focal plane of a reflective telescope based on a Schwarschild configuration with two on-axis spherical mirrors. The telescope field-of-view is of 6° and illuminates an area of 2.1-mm diameter at the focal plane. In operation, FIRR was used as a nonimaging radiometer and exhibited a noise equivalent radiance in the range of 10-20 mW/m2-sr. The dynamic range and the detector vacuum integrity of FIRR were found to be suited for the conditions of the airborne experiments.

  15. Observability of Airborne Passive Location System with Phase Difference Measurements

    Institute of Scientific and Technical Information of China (English)

    Deng Xinpu; Wang Qiang; Zhong Danxing

    2008-01-01

    With a pair of antennas spaced apart, an airborne passive location system measures phase differences of emitting signals. Regarded as cyclic ambiguities, the moduli of the measurements traditionally are resolved by adding more antenna elements. This paper models the cyclic ambiguity as a component of the system state, of which the observability is analyzed and compared to that of the bear- ings-only passive location system. It is shown that the necessary and sufficient observability condition for the bearings-only passive location system is only the necessary observability condition for the passive location system with phase difference measurements, and that when the system state is observable, the cyclic ambiguities can be estimated by accumulating the phase difference measurements, thereby making the observer able to locate the emitter with high-precision.

  16. Correlation of VLF-EM Data with Radiometric Measurements: Implications for Uranium Exploration around Beldih, South Purulia Shear Zone, India

    Directory of Open Access Journals (Sweden)

    Saurabh Mittal

    2014-01-01

    Full Text Available This study is an attempt to correlate VLF-EM data with the radiometric measurements to decipher the subsurface structure and to locate uranium mineralization in the shear zone. The study area is around Beldih mine which is an open cast apatite mine located on the South Purulia Shear Zone. VLF method has been applied to map the structure and the presence of radioactive minerals has been delineated by the detection of high α and γ counts with respect to the background radiations. High radiation counts and high surface γ activity are found just above the higher apparent current-density zones in all the profiles studied, at various locations, indicating uranium and/or thorium mineralization as well as good correlation between these techniques.

  17. Airborne Measurements of Atmospheric Methane Using Pulsed Laser Transmitters

    Science.gov (United States)

    Numata, Kenji; Riris, Haris; Wu, Stewart; Gonzalez, Brayler; Rodriguez, Michael; Hasselbrack, William; Fahey, Molly; Yu, Anthony; Stephen, Mark; Mao, Jianping; Kawa, Stephan

    2016-01-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. At NASA Goddard Space Flight Center (GSFC) we have been developing a laser-based technology needed to remotely measure CH4 from orbit. We report on our development effort for the methane lidar, especially on our laser transmitters and recent airborne demonstration. Our lidar transmitter is based on an optical parametric process to generate near infrared laser radiation at 1651 nanometers, coincident with a CH4 absorption. In an airborne flight campaign in the fall of 2015, we tested two kinds of laser transmitters --- an optical parametric amplifier (OPA) and an optical parametric oscillator (OPO). The output wavelength of the lasers was rapidly tuned over the CH4 absorption by tuning the seed laser to sample the CH4 absorption line at several wavelengths. This approach uses the same Integrated Path Differential Absorption (IPDA) technique we have used for our CO2 lidar for ASCENDS. The two laser transmitters were successfully operated in the NASAs DC-8 aircraft, measuring methane from 3 to 13 kilometers with high precision.

  18. Method for measuring the size distribution of airborne rhinovirus

    Energy Technology Data Exchange (ETDEWEB)

    Russell, M.L.; Goth-Goldstein, R.; Apte, M.G.; Fisk, W.J.

    2002-01-01

    About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber. Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor.

  19. Ground and Airborne Methane Measurements Using Optical Parametric Amplifiers

    Science.gov (United States)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Abshire, James Brice; Dawsey, Martha; Ramanathan, Anand

    2011-01-01

    We report on ground and airborne methane measurements with an active sensing instrument using widely tunable, seeded optical parametric generation (OPG). The technique has been used to measure methane, CO2, water vapor, and other trace gases in the near and mid-infrared spectral regions. Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planetary bodies. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Carbon and methane emissions from land are expected to increase as permafrost melts exposing millennial-age carbon stocks to respiration (aerobic-CO2 and anaerobic-CH4) and fires. Methane emissions from c1athrates in the Arctic Ocean and on land are also likely to respond to climate warming. However, there is considerable uncertainty in present Arctic flux levels, as well as how fluxes will change with the changing environment. For Mars, methane measurements are of great interest because of its potential as a strong biogenic marker. A remote sensing instrument that can measure day and night over all seasons and latitudes can localize sources of biogenic gas plumes produced by subsurface chemistry or biology, and aid in the search for extra-terrestrial life. In this paper we report on remote sensing measurements of methane using a high peak power, widely tunable optical parametric generator (OPG) operating at 3.3 micrometers and 1.65 micrometers. We have demonstrated detection of methane at 3.3 micrometers and 1650 nanometers in an open path and compared them to accepted standards. We also report on preliminary airborne demonstration of methane measurements at 1.65 micrometers.

  20. Millimeter-wave radiometric measurements of a treeline and building for aircraft obstacle avoidance

    Science.gov (United States)

    Wikner, David A.

    2003-08-01

    Passive millimeter-wave (MMW) imagers have the potential to be used on low-flying aircraft for terrain-following / terrain-avoidance during low-visibility conditions. This potential exists because of the inherent nature of MMW radiation that allows it to penetrate many visible and IR obscurants such as fog, clouds, and smoke. The phenomenology associated with this application, however, has not been fully explored. Specifically, the radiometric signatures of the various obstacles that might be encountered during a low-altitude flight need to be thoroughly understood. The work described in this paper explores the 93-GHz passive signature of a deciduous treeline and a concrete/glass building. The data were taken from the roof of a 4-story building to simulate the view of a low-flying aircraft. The data were collected over many months with an ARL-built Stokes-vector radiometer. This radiometer is a single-beam system that raster scans over a scene to collect a calibrated 93-GHz image. The data show the effects of weather and tree lifecycle on the 93-GHz brightness temperature contrast between the horizon sky and the obstacles. For the case of trees, it is shown that the horizon sky brightness temperature is greater than that of the trees when the leaves are on because of the reflective properties of the leaves. This made the trees quite detectable to our system during the late spring, summer, and early fall. Concrete buildings are inherently low-contrast obstacles because their vertical nature reflects the horizon behind the sensor and can easily mimic the forward horizon sky. Solar loading can have a large effect on building signatures.

  1. Airborne compact rotational Raman lidar for temperature measurement.

    Science.gov (United States)

    Wu, Decheng; Wang, Zhien; Wechsler, Perry; Mahon, Nick; Deng, Min; Glover, Brent; Burkhart, Matthew; Kuestner, William; Heesen, Ben

    2016-09-05

    We developed an airborne compact rotational Raman lidar (CRL) for use on the University of Wyoming King Air (UWKA) aircraft to obtain two-dimensional (2D) temperature disman tributions. It obtained fine-scale 2D temperature distributions within 3 km below the aircraft for the first time during the PECAN (Plains Elevated Convection At Night) campaign in 2015. The CRL provided nighttime temperature measurements with a random error of <0.5 K within 800 m below aircraft at 45 m vertical and 1000 m horizontal resolution. The temperatures obtained by the CRL and a radiosonde agreed. Along with water vapor and aerosol measurements, the CRL provides critical parameters on the state of the lower atmosphere for a wide range of atmospheric research.

  2. Measuring airborne microorganisms and dust from livestock houses

    OpenAIRE

    Yang Zhao, Yang

    2011-01-01

      Airborne transmission has been suspected to be responsible for epidemics of highly infectious disease in livestock production. In such transmission, the pathogenic microorganisms may associate with dust particles. However, the extent to which airborne transmission plays a role in the spread of diseases between farms, and the relationship between microorganisms and dust remain unclear. In order to better understand airborne transmission and to set up effective control techniques, this s...

  3. Airborne flux measurements of biogenic volatile organic compounds over California

    Science.gov (United States)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-03-01

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK + MAC, methanol, monoterpenes, and MBO over ∼10 000 km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z / zi). Fluxes were generally measured by flying consistently at 400 ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  4. ARM Airborne Carbon Measurements VI (ACME VI) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Biraud, S [Lawrence Berkeley National Laboratory

    2015-12-01

    From October 1 through September 30, 2016, the Atmospheric Radiation Measurement (ARM) Aerial Facility will deploy the Cessna 206 aircraft over the Southern Great Plains (SGP) site, collecting observations of trace-gas mixing ratios over the ARM’s SGP facility. The aircraft payload includes two Atmospheric Observing Systems, Inc., analyzers for continuous measurements of CO2 and a 12-flask sampler for analysis of carbon cycle gases (CO2, CO, CH4, N2O, 13CO2, 14CO2, carbonyl sulfide, and trace hydrocarbon species, including ethane). The aircraft payload also includes instrumentation for solar/infrared radiation measurements. This research is supported by the U.S. Department of Energy’s ARM Climate Research Facility and Terrestrial Ecosystem Science Program and builds upon previous ARM Airborne Carbon Measurements (ARM-ACME) missions. The goal of these measurements is to improve understanding of 1) the carbon exchange at the SGP site, 2) how CO2 and associated water and energy fluxes influence radiative forcing, convective processes and CO2 concentrations over the SGP site, and 3) how greenhouse gases are transported on continental scales.

  5. Measuring airborne microorganisms and dust from livestock houses

    NARCIS (Netherlands)

    Yang Zhao, Yang

    2011-01-01

      Airborne transmission has been suspected to be responsible for epidemics of highly infectious disease in livestock production. In such transmission, the pathogenic microorganisms may associate with dust particles. However, the extent to which airborne transmission plays a role in the spread

  6. Study on a mean radiant temperature measure tool based on an almost spherical array of radiometric sensors.

    Science.gov (United States)

    Fontana, L

    2012-11-01

    Mean radiant temperature has significant influence on indoor thermal comfort conditions. It has gained greater importance with the wider application of heating and cooling systems based on the use of large surfaces with a temperature slightly higher or lower than the indoor temperature (hot/cold floors or ceilings), because these systems operate through the radiant temperature control. The most used tool to measure radiant temperature, the globe thermometer, still has large margins of error, most of all due to the uncertainty in the evaluation of the convection heat exchanges between the globe surface and the indoor air. The feasibility of a device to measure mean radiant temperature in indoor condition, alternative to the globe-thermometer (obtained placing radiometric sensors (thermopiles) on the sides of different geometric regular solids), is proposed. The behavior has been investigated for different regular solids, such as the residual error and its dependence on walls average temperature, non-uniformity magnitude, orientation and position of the solid in the enclosure, room shape, non-uniformity temperature distribution. Icosahedron shape shows an excellent behavior, with errors lower than 0.1 K in all the examined conditions.

  7. Airborne measurements of fission product fall-out

    Energy Technology Data Exchange (ETDEWEB)

    Hovgaard, J.; Korsbech, U.

    1992-12-01

    During 1993 the Danish Emergency Management Agency will install an airborne [gamma]-ray detector system for area survey of contamination with radioactive nuclides - primarily fission products that may be released during a heavy accident at a nuclear power plant or from accidents during transport of radioactive material. The equipment is based on 16 liter NaI(TI) crystals and multichannel analysers from Exploranium (Canada). A preliminary investigation of the possibilities for detection of low and high level contamination - and the problems that may be expected during use of the equipment, and during interpretation of the measured data, is described. Several days after reactor shut-down some of the nuclides can be identified directly from the measured spectrum, and contamination levels may be determined within a factor two. After several weeks, most fission products have decayed. Concentrations and exposure rates can be determined with increasing accuracy as time passes. Approximate calibration of the equipment for measurements of surface contamination and natural radioactivity can be performed in the laboratory. Further checks of equipment should include accurate measurements of the spectrum resolution. Detectors should be checked individually, and all together. Further control of dead time and pulse pile-up should be performed. Energy calibration, electronics performance and data equipment should be tested against results from the original calibration. (AB).

  8. Aero radiometric measurements in the framework of the ARM06 experiment; Aeroradiometrische Messungen im Rahmen der Uebung ARM06

    Energy Technology Data Exchange (ETDEWEB)

    Bucher, B.; Butterweck, G.; Rybach, L.; Schwarz, G

    2007-02-15

    The measurement flights of the exercise ARM06 were performed between 19th and 22nd of June 2006 under the direction of Y. Loertscher of the National Emergency Operations Centre (NAZ) and coordination by the Expert Group for Aeroradiometrics (FAR). According to the alternating schedule of the annual ARM exercises, the environs of the nuclear power plants Beznau (KKB) and Leibstadt (KKL), of the Paul Scherrer Institut (PSI) research facility and of the Intermediate Storage Facility for Nuclear Waste (ZWILAG) were inspected. The measurements showed similar results to those obtained in former years. Additionally, a neutron detector provided by the Kompetenzzentrum ABC Spiez was employed during these flights. With this detector, the neutron radiation of the proton accelerator of PSI was detected, whereas the nuclear power plants and ZWILAG showed no increase of neutron count rate. The measurements above cities were continued with the cities of Neuchatel and La Chaux-de-Fonds. Western Switzerland was largely spared from Chernobyl fallout, a fact which was reflected in the results of the airborne gamma spectroscopic (ARM) measurements. Training of the measuring teams was intensified with two dedicated training flights in the vicinity of Unteriberg (SZ) and Rothenthurm (SZ). A training search for radioactive sources was performed together with the local emergency response forces in the vicinity of Le Cerneux-Pequinot (NE). The calibration of the ARM equipment was checked with in-situ gamma spectroscopic and ambient dose equivalent rate measurements performed near Biaufond (NE, JU) by teams from Spiez Laboratory, Institut Universitaire de Radiophysique Appliquee (IRA), Sektion Ueberwachung der Radioaktivitaet (SueR) of the Federal Office of Public Health (FOPH) and the Swiss Federal Nuclear Safety Inspectorate (HSK) . The railway line between Berne and Zurich was inspected with airborne gamma spectroscopy due to a request from the Swiss National Railways (SBB). (author)

  9. Using Airborne SAR Interferometry to Measure the Elevation of a Greenland Ice Cap

    DEFF Research Database (Denmark)

    Dall, Jørgen; Keller, K.; Madsen, S.N.

    2000-01-01

    A digital elevation model (DEM) of an ice cap in Greenland has been generated from airborne SAR interferometry data, calibrated with a new algorithm, and compared with airborne laser altimetry profiles and carrier-phase differential GPS measurements of radar reflectors deployed on the ice cap...

  10. Application of porous foams for size-selective measurements of airborne wheat allergen

    NARCIS (Netherlands)

    Bogdanovic, J.; Pater, A.J. de; Doekes, G.; Wouters, I.M.; Heederik, D.J.J.

    2006-01-01

    Background: Exposure to airborne wheat allergen is a well-known cause of bakers' allergy and asthma. Airborne wheat allergen can be measured by enzyme immunoassays (EIAs) in extracts of inhalable dust samples, but only limited knowledge is available on the size distribution of wheat allergen-carryin

  11. Ground and Airborne Methane Measurements using Optical Parametric Amplifiers

    Science.gov (United States)

    Riris, Haris; Numata, Kenji; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Abshire, James; Dawsey, Martha; Ramanathan, Anand

    2012-01-01

    We report on an initial airborne demonstration of atmospheric methane column measurements at 1.65 micrometers using a widely tunable, seeded optical parametric amplifier (OPA) lidar and a photon counting detector. Methane is an important greenhouse gas and accurate knowledge of its sources and sinks is needed for climate modeling. Our lidar system uses 20 pulses at increasing wavelengths and integrated path differential absorption (IPDA) to map a methane line at 1650.9 nanometers. The wavelengths are generated by using a Nd:YAG pump laser at 1064.5 nanometers and distributed feedback diode laser at 1650.9 nanometers and a periodically-poled lithium niobate (PPLN) crystal. The pulse width was 3 nanoseconds and the pulse repetition rate was 6.28 KHz. The outgoing energy was approximately 13 microJoules/pulse. A commercial 20 nanometer diameter fiber-coupled telescope with a photon counting detector operated in analog mode with a 0.8 nanometer bandpass filter was used as the lidar receiver. The lidar system was integrated on NASA's DC-8 flying laboratory, based at Dryden Airborne operations Facility (DAOF) in Palmdale CA. Three flights were performed in the central valley of California. Each flight lasted about 2.5 hours and it consisted of several flight segments at constant altitudes at approximately 3, 4.5, 6, 7.6, 9.1, 10.6 km (l0, 15, 20, 25, 30, 35 kft). An in-situ cavity ring down spectrometer made by Picarro Inc. was flown along with the lidar instrument provided us with the "truth" i.e. the local CH4, CO2 and H2O concentrations at the constant flight altitude segments. Using the aircraft's altitude, GPS, and meteorological data we calculated the theoretical differential optical depth of the methane absorption at increasing altitudes. Our results showed good agreement between the experimentally derived optical depth measurements from the lidar instrument and theoretical calculations as the flight altitude was increased from 3 to 10.6 kilometers, assuming a

  12. The Precambrian Singo Igneous Complex (SIC), Uganda Revealed As a Mineralized Nested Ring Complex Using High Resolution Airborne Radiometric and Magnetic Data.

    Science.gov (United States)

    Atekwana, E. A.; LePera, A.; Abdelsalam, M. G.; Katumwehe, A. B.; Achang, M.

    2014-12-01

    We used high-resolution radiometrics and aeromagnetic data to investigate the Precambrian Singo Igneous Complex (SIC) in Uganda. The SIC covers an area of about 700 km² and is host to hydrothermally formed economic minerals such as Gold and Tungsten. The distribution of the ore deposits is not well known and current mine workings are limited to the western margins of the complex. Our objectives were to (1) provide a detailed geological map of the SIC and surrounding, (2) investigate relationships between preserved intrusive bodies and Precambrian tectonic structures to provide insight into emplacement of the complex, (3) examine links between magma emplacement, discontinuities and hydrothermal alteration (4) generate two-dimensional (2-D) and three-dimensional (3-D) models of the complex to understand its subsurface geometry, (5) investigate the relationship between the structure of the SIC and mineral occurrences as an aid to future exploration programs. Edge enhancement filters such as the analytical signal, vertical and tilt derivatives were applied to the magnetic data. In addition, 2-D and 3-D models were produced using Geosoft's GM-SYS 2-D and Voxi modules. The filtered data provided unprecedented structural details of the complex and revealed the following: (1) the edge of the SIC is characterized by higher magnetic susceptibility and Thorium content than its interior, (2) the SIC is characterized by eight to nine nested ring complexes with diameters ranging from 2.5 to 14 km, (3) the 3-D inversion suggests near vertical walls for the ring complexes extending to a depth of about 7 km, (4) the SIC was emplaced within a Precambrian folded basement and was traversed by numerous NW-trending dykes and (5) present day mining activities are concentrated within the folded basement units although occurrences of Tungsten and Gold are found associated with the highly magnetized edge of the ring complexes. We interpret the highly magnetized edges of the nested ring

  13. Alaska Radiometric Ages

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Alaska Radiometric Age file is a database of radiometric ages of rocks or minerals sampled from Alaska. The data was collected from professional publications...

  14. Solar Radiometric Data Quality Assessment of SIRS, SKYRAD and GNDRAD Measurements (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Stoffel, T.; Reda, I.; Wilcox, S.; Kutchenreiter, M.; Gotseff, P.; Anderberg, M.

    2014-03-01

    Solar radiation is the driving force for the earth's weather and climate. Understanding the elements of this dynamic energy balance requires accurate measurements of broadband solar irradiance. Since the mid-1990's the ARM Program has deployed pyrheliometers and pyranometers for the measurement of direct normal irradiance (DNI), global horizontal irradiance (GHI), diffuse horizontal irradiance (DHI), and upwelling shortwave (US) radiation at permanent and mobile field research sites. This poster summarizes the basis for assessing the broadband solar radiation data available from the SIRS, SKYRAD, and GNDRAD measurement systems and provides examples of data inspections.

  15. Integration Technique of Multi-source Information Dominated by Aerial Radiometric Measure-ment and Its Application

    Institute of Scientific and Technical Information of China (English)

    刘德长; 孙茂荣; 朱德龄; 张静波; 何建国

    1994-01-01

    This paper aims at exploring a digital image integration technique for multi-geoscience in formation dominated by airborne gamma-ray data, especially deeply discussing the method to secondly develop those aerial data by combining digital image processing system with the colored mapping system. Utilizing this technique , we have analyzed the geologic environment of uranium mineralization of Lianshanguan area > Liaoning Province, provided some important background information for further seeking of minerals. Meanwhile , experimental studies have been made to predict uranium mineralization , and evident results aquired. Practise shows that this new technique offers prospecting significance for mineral seeking and great practical value in survey of uranium resources.

  16. Airborne flux measurements of Biogenic Isoprene over California

    Energy Technology Data Exchange (ETDEWEB)

    Misztal, P.; Karl, Thomas G.; Weber, Robin; Jonsson, H. H.; Guenther, Alex B.; Goldstein, Allen H.

    2014-10-10

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK+MAC, methanol, monoterpenes, and MBO over ~10,000-km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z/zi). Fluxes were generally measured by flying consistently 1 at 400 m ±50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  17. Airborne flux measurements of biogenic volatile organic compounds over California

    Directory of Open Access Journals (Sweden)

    P. K. Misztal

    2014-03-01

    Full Text Available Biogenic Volatile Organic Compound (BVOC fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK + MAC, methanol, monoterpenes, and MBO over ∼10 000 km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z / zi. Fluxes were generally measured by flying consistently at 400 ± 50 m (a.g.l. altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF landcover datasets used to drive biogenic VOC (BVOC emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m−2 h−1 above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions

  18. Results of radiometric and geochemical measurement for the natural radioactivity map of Slovenia

    Directory of Open Access Journals (Sweden)

    Mišo Andjelov

    1994-12-01

    Full Text Available In 1990, a program was initiated to cover Slovenia with portable gamma-ray spectrometer measurements on a 5 x 5 km grid. The measurements were performed with a four channel Scintrex GAD-6 spectrometer. Five gamma-ray measurements were taken at each of 816 locations. Samples of the upper 10 cm of soil profile were collected for laboratory analysis. Uranium in samples was determinedby delayed neutron method (DNC. Other 35 elements: Ag, Al, As, Au, Ba, Be,Bi, Ca, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Sb, Se, Sn, Sr, Th, Ti,U, V, W, Y, Zn and Zr were analyzed by plasma-coupled emission spectrometry (ICP. The field gamma-ray measurements were converted to ground concentrationsof potassium, uranium and thorium. These show good correlation with the laboratory analyses of soil samples. Regardless of the wide spaced sampling, the produced maps show relatively good correlation with main geological units. They demonstrated that the methodology can be successfully implemented for environmental monitoring, geological mapping and mineral exploration. The product ofthis project is the frist natural background radioactivity map of Slovenia covering the entire country.

  19. Emission Spectroscopy and Radiometric Measurements in the NASA Ames IHF Arc Jet Facility

    Science.gov (United States)

    Winter, Michael W.; Raiche, George A.; Prabhu, Dinesh K.

    2012-01-01

    Plasma diagnostic measurement campaigns in the NASA Ames Interaction Heating Facility (IHF) have been conducted over the last several years with a view towards characterizing the flow in the arc jet facility by providing data necessary for modeling and simulation. Optical emission spectroscopy has been used in the plenum and in the free jet of the nozzle. Radiation incident over a probe surface has also been measured using radiometry. Plenum measurements have shown distinct radial profiles of temperature over a range of operating conditions. For cases where large amounts of cold air are added radially to the main arc-heated stream, the temperature profiles are higher by as much as 1500 K than the profiles assumed in flow simulations. Optical measurements perpendicular to the flow direction in the free jet showed significant contributions to the molecule emission through inverse pre-dissociation, thus allowing determination of atom number densities from molecular emission. This has been preliminarily demonstrated with the N2 1st Positive System. Despite the use of older rate coefficients, the resulting atom densities are reasonable and surprisingly close to flow predictions.

  20. Radiometric modeling and calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) ground based measurement experiment

    Science.gov (United States)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-12-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere's thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The GIFTS calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts, therefore, enhancing the absolute calibration accuracy. This method is applied to data collected during the GIFTS Ground Based Measurement (GBM) experiment, together with simultaneous observations by the accurately calibrated AERI (Atmospheric Emitted Radiance Interferometer), both simultaneously zenith viewing the sky through the same external scene mirror at ten-minute intervals throughout a cloudless day at Logan Utah on September 13, 2006. The accurately calibrated GIFTS radiances are produced using the first four PC scores in the GIFTS-AERI regression model. Temperature and moisture profiles retrieved from the PC-calibrated GIFTS radiances are verified against radiosonde measurements collected throughout the GIFTS sky measurement period. Using the GIFTS GBM calibration model, we compute the calibrated radiances from data

  1. Sea-surface temperature and salinity mapping from remote microwave radiometric measurements of brightness temperature

    Science.gov (United States)

    Hans-Juergen, C. B.; Kendall, B. M.; Fedors, J. C.

    1977-01-01

    A technique to measure remotely sea surface temperature and salinity was demonstrated with a dual frequency microwave radiometer system. Accuracies in temperature of 1 C and in salinity of part thousand for salinity greater than 5 parts per thousand were attained after correcting for the influence of extraterrestrial background radiation, atmospheric radiation and attenuation, sea-surface roughness, and antenna beamwidth. The radiometers, operating at 1.43 and 2.65 GHz, comprise a third-generation system using null balancing and feedback noise injection. Flight measurements from an aircraft at an altitude of 1.4 km over the lower Chesapeake Bay and coastal areas of the Atlantic Ocean resulted in contour maps of sea-surface temperature and salinity with a spatial resolution of 0.5 km.

  2. Measurements of sea ice by satellite and airborne altimetry

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine

    A changing sea ice cover in the Arctic Ocean is an early indicator of a climate in transition, the sea ice has in addition a large impact on the climate. The annual and interannual variations of the sea ice cover have been observed by satellites since the start of the satellite era in 1979......, and it has been in retreat every since. The mass balance of the sea ice is an important input to climate models, where the ice thickness is the most uncertain parameter. In this study, data from the CryoSat-2 radar altimeter satellite are used. CryoSat-2 has been measuring the sea ice in the Arctic Ocean...... freeboard is found to be 35 cm for both the airborne and satellite data implying, that the radar signal is here reflected from the snow surface, probably due to weather conditions. CryoSat-2 is very sensitive to returns from specular surfaces, even if they appear o_-nadir. This contaminates the “true...

  3. Mapping methane emission sources over California based on airborne measurements

    Science.gov (United States)

    Karl, T.; Guha, A.; Peischl, J.; Misztal, P. K.; Jonsson, H.; Goldstein, A. H.; Ryerson, T. B.

    2011-12-01

    The California Global Warming Solutions Act of 2006 (AB 32) has created a need to accurately characterize the emission sources of various greenhouse gases (GHGs) and verify the existing state GHG inventory. Methane (CH4) is a major GHG with a global warming potential of 20 times that of CO2 and currently constitutes about 6% of the total statewide GHG emissions on a CO2 equivalent basis. Some of the major methane sources in the state are area sources where methane is biologically produced (e.g. dairies, landfills and waste treatment plants) making bottom-up estimation of emissions a complex process. Other potential sources include fugitive emissions from oil extraction processes and natural gas distribution network, emissions from which are not well-quantified. The lack of adequate field measurement data to verify the inventory and provide independently generated estimates further contributes to the overall uncertainty in the CH4 inventory. In order to gain a better perspective of spatial distribution of major CH4 sources in California, a real-time measurement instrument based on Cavity Ring Down Spectroscopy (CRDS) was installed in a Twin Otter aircraft for the CABERNET (California Airborne BVOC Emissions Research in Natural Ecosystems Transects) campaign, where the driving research goal was to understand the spatial distribution of biogenic VOC emissions. The campaign took place in June 2011 and encompassed over forty hours of airborne CH4 and CO2 measurements during eight unique flights which covered much of the Central Valley and its eastern edge, the Sacramento-San Joaquin delta and the coastal range. The coincident VOC measurements, obtained through a high frequency proton transfer reaction mass spectrometer (PTRMS), aid in CH4 source identification. High mixing ratios of CH4 (> 2000 ppb) are observed consistently in all the flight transects above the Central Valley. These high levels of CH4 are accompanied by high levels of methanol which is an important

  4. A Review of LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration

    Directory of Open Access Journals (Sweden)

    Alireza G. Kashani

    2015-11-01

    Full Text Available In addition to precise 3D coordinates, most light detection and ranging (LIDAR systems also record “intensity”, loosely defined as the strength of the backscattered echo for each measured point. To date, LIDAR intensity data have proven beneficial in a wide range of applications because they are related to surface parameters, such as reflectance. While numerous procedures have been introduced in the scientific literature, and even commercial software, to enhance the utility of intensity data through a variety of “normalization”, “correction”, or “calibration” techniques, the current situation is complicated by a lack of standardization, as well as confusing, inconsistent use of terminology. In this paper, we first provide an overview of basic principles of LIDAR intensity measurements and applications utilizing intensity information from terrestrial, airborne topographic, and airborne bathymetric LIDAR. Next, we review effective parameters on intensity measurements, basic theory, and current intensity processing methods. We define terminology adopted from the most commonly-used conventions based on a review of current literature. Finally, we identify topics in need of further research. Ultimately, the presented information helps lay the foundation for future standards and specifications for LIDAR radiometric calibration.

  5. Airborne flux measurements of biogenic isoprene over California

    Science.gov (United States)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-10-01

    Biogenic isoprene fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne Biogenic volatile organic compound (BVOC) Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a proton transfer reaction mass spectrometer (PTR-MS) and a wind radome probe to directly determine fluxes of isoprene over 7400 km of flight paths focusing on areas of California predicted to have the largest emissions. The fast Fourier transform (FFT) approach was used to calculate fluxes of isoprene over long transects of more than 15 km, most commonly between 50 and 150 km. The continuous wavelet transformation (CWT) approach was used over the same transects to also calculate instantaneous isoprene fluxes with localization of both frequency and time independent of non-stationarities. Fluxes were generally measured by flying consistently at 400 m ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence determined in the racetrack-stacked profiles. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to basal emission factor (BEF) land-cover data sets used to drive BVOC emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. Even though the isoprene emissions from agricultural crop regions, shrublands, and coniferous forests were extremely low, observations at the Walnut Grove tower south of Sacramento demonstrate that isoprene oxidation products from the high emitting regions in the surrounding oak woodlands accumulate at night in

  6. An airborne microwave radiometer and measurements of cloud liquid water

    Institute of Scientific and Technical Information of China (English)

    LEI Hengchi; JIN Dezhen; WEI Chong; SHEN Zhilai

    2003-01-01

    A single-channel (9.5 mm) airborne microwave radiometer with one antenna is developed. The retrieval methods and primary observation results of cloud liquid water and super-cooled cloud liquid water are discussed. The aircraft experiments show that the cloud liquid water and super-cooled liquid water can be sensitively monitored at some level of accuracy by the radiometer. The results of cloud liquid water content are reasonable and correspond well with the surface radar echo intensity. The design of the airborne radiometer and its retrieval methods are feasible, giving it application value.

  7. Airborne Passive Microwave Measurements from the AMISA 2008 Science Campaign for Modeling of Arctic Sea Ice Heating

    Science.gov (United States)

    Zucker, M. L.; Gasiewski, A. J.; CenterEnvironmental Technology

    2011-12-01

    While climate changes in the Arctic are occurring more rapidly than anywhere else on Earth model-based predictions of sea ice extent are at once both more optimistic than the data suggest and exhibit a high degree of variability. It is believed that this high level of uncertainty is the result of an inadequate quantitative understanding of surface heating mechanisms, which in large part is due to a lack of high spatial resolution data on boundary layer and surface energy processes during melt and freezeup. In August 2008 the NASA Arctic Mechanisms of Interactions between the Surface and Atmosphere (AMISA) campaign, in conjunction with the Swedish-led Arctic Summer Cloud-Ocean Study (ASCOS) conducted coordinated high spatial resolution measurements of geophysical parameters in the Arctic relevant to atmospheric-sea ice interaction. The IPY-approved AMISA campaign used airborne radiometers, including the Polarimetric Scanning Radiometer (PSR) system, a suite of L-band to V-band fixed-beam radiometers for cloud liquid and water vapor measurement, short and longwave radiation sensors, meteorological parameters from cloud size distribution probes, GPS dropsondes, and aerosol sensors. Calibration of the PSR is achieved through periodic observations of stable references such as thermal blackbody targets and noise diodes. A combination of methods using both infrequent external thermal blackbody views and brief frequent internal noise sources has proven practical for airborne systems such as the PSR and is proposed for spaceborne systems such as GeoMAS. Once radiometric data is calibrated it is then rasterized into brightness temperature images which are then geo-located and imported into Google EarthTM. An example brightness temperature map from the AMISA 2008 campaign is included in this abstract. The analysis of this data provides a basis for the development of a heat flux model needed to decrease the uncertainly in weather and climate predictions within the Arctic. In

  8. A new airborne Ka-band double-antenna microwave radiometer for cloud liquid water content measurement

    Science.gov (United States)

    Sun, Jian; Zhao, Kai; Jiang, Tao; Gu, Lingjia

    2013-09-01

    A new type upward-looking airborne double-antenna microwave radiometer (ADAMR) system intended for detecting atmospheric cloud liquid water content (LWC) is developed in this paper. The frequency of this radiometer is 31.65 GHz. For the antenna elevation angle, one is 30°and the other is 90°. In order to detect the signals with low effective noise temperature (antenna ports respectively, the technique can elevate the small input noise signal power to the detectable range of the square-law detector and thus realize the weak signal detection. Moreover, in order to eliminate the impacts of the system gain fluctuations and obtain a higher sensitivity, an auto-gain compensation method based on the analog-to-digital converter, microcontroller and host computer software techniques is also proposed. Compared with the traditional radiometers, the radiometer topology is greatly simplified and the gain fluctuations can be readily realtime compensated using the compensation method. The laboratory test results show that radiometric sensitivity is better than 0.2 K for 300ms integration time and the instrument is conforming to specifications. Finally, the flight observation experiment results are presented to prove that the designed instrument is able to detect small changes of noise signal in a wide effective range of noise temperature (10-350K) and is a powerful tool for LWC measurement.

  9. Methane airborne measurements and comparison to global models during BARCA

    NARCIS (Netherlands)

    Beck, Veronika; Chen, Huilin; Gerbig, Christoph; Bergamaschi, Peter; Bruhwiler, Lori; Houweling, Sander; Rockmann, Thomas; Kolle, Olaf; Steinbach, Julia; Koch, Thomas; Sapart, Celia J.; van der Veen, Carina; Frankenberg, Christian; Andreae, Meinrat O.; Artaxo, Paulo; Longo, Karla M.; Wofsy, Steven C.

    2012-01-01

    Tropical regions, especially the Amazon region, account for large emissions of methane (CH4). Here, we present CH4 observations from two airborne campaigns conducted within the BARCA (Balanco Atmosferico Regional de Carbono na Amazonia) project in the Amazon basin in November 2008 (end of the dry se

  10. Validation of LIRIC aerosol concentration retrievals using airborne measurements during a biomass burning episode over Athens

    Science.gov (United States)

    Kokkalis, Panagiotis; Amiridis, Vassilis; Allan, James D.; Papayannis, Alexandros; Solomos, Stavros; Binietoglou, Ioannis; Bougiatioti, Aikaterini; Tsekeri, Alexandra; Nenes, Athanasios; Rosenberg, Philip D.; Marenco, Franco; Marinou, Eleni; Vasilescu, Jeni; Nicolae, Doina; Coe, Hugh; Bacak, Asan; Chaikovsky, Anatoli

    2017-01-01

    In this paper we validate the Lidar-Radiometer Inversion Code (LIRIC) retrievals of the aerosol concentration in the fine mode, using the airborne aerosol chemical composition dataset obtained over the Greater Athens Area (GAA) in Greece, during the ACEMED campaign. The study focuses on the 2nd of September 2011, when a long-range transported smoke layer was observed in the free troposphere over Greece, in the height range from 2 to 3 km. CIMEL sun-photometric measurements revealed high AOD ( 0.4 at 532 nm) and Ångström exponent values ( 1.7 at 440/870 nm), in agreement with coincident ground-based lidar observations. Airborne chemical composition measurements performed over the GAA, revealed increased CO volume concentration ( 110 ppbv), with 57% sulphate dominance in the PM1 fraction. For this case, we compare LIRIC retrievals of the aerosol concentration in the fine mode with the airborne Aerosol Mass Spectrometer (AMS) and Passive Cavity Aerosol Spectrometer Probe (PCASP) measurements. Our analysis shows that the remote sensing retrievals are in a good agreement with the measured airborne in-situ data from 2 to 4 km. The discrepancies observed between LIRIC and airborne measurements at the lower troposphere (below 2 km), could be explained by the spatial and temporal variability of the aerosol load within the area where the airborne data were averaged along with the different time windows of the retrievals.

  11. Radiometric surveys in underground environment

    Science.gov (United States)

    Bochiolo, Massimo; Chiozzi, Paolo; Verdoya, Massimo; Pasquale, Vincenzo

    2010-05-01

    Due to their ability to travel through the air for several metres, gamma-rays emitted from natural radioactive elements can be successfully used in surveys carried out both with airborne and ground equipments. Besides the concentration of the radio-elements contained in rocks and soils and the intrinsic characteristics of the gamma-ray detector, the detected count rate depends on the solid angle around the spectrometer. On a flat outcrop, ground spectrometry detects the radiation ideally produced by a cylindrical mass of rock of about two metres in diameter and thickness of about half a meter. Under these geometrical conditions, the natural radioactivity can be easily evaluated. With operating conditions different from the standard ones, such as at the edge of an escarpment, the count rate halves because of the missing material, whereas in the vicinity of a rock wall the count rate will increase. In underground environment, the recorded count rate may even double and the in situ assessment of the concentration of radio-elements may be rather difficult, even if the ratios between the different radio-elements may not be affected. We tested the applicability of gamma-ray spectrometry for rapid assessment of the potential hazard levels related to radon and radiation dose rate in underground environment. A mine shaft, located in a zone of uranium enrichment in Liguria (Italy), has been investigated. A preliminary ground radiometric survey was carried out to define the extent of the ore deposit. Then, the radiometric investigation was focussed on the mine shaft. Due to rock mass above the shaft vault, the background gamma radiation can be considered of negligible influence on measurements. In underground surveys, besides deviations from a flat geometry, factors controlling radon exhalation, emanation and stagnation, such as fractures, water leakage and the presence of ventilation, should be carefully examined. We attempted to evaluate these control factors and collected

  12. Detecting tropical forest biomass dynamics from repeated airborne lidar measurements

    Directory of Open Access Journals (Sweden)

    V. Meyer

    2013-08-01

    Full Text Available Reducing uncertainty of terrestrial carbon cycle depends strongly on the accurate estimation of changes of global forest carbon stock. However, this is a challenging problem from either ground surveys or remote sensing techniques in tropical forests. Here, we examine the feasibility of estimating changes of tropical forest biomass from two airborne lidar measurements of forest height acquired about 10 yr apart over Barro Colorado Island (BCI, Panama. We used the forest inventory data from the 50 ha Center for Tropical Forest Science (CTFS plot collected every 5 yr during the study period to calibrate the estimation. We compared two approaches for detecting changes in forest aboveground biomass (AGB: (1 relating changes in lidar height metrics from two sensors directly to changes in ground-estimated biomass; and (2 estimating biomass from each lidar sensor and then computing changes in biomass from the difference of two biomass estimates, using two models, namely one model based on five relative height metrics and the other based only on mean canopy height (MCH. We performed the analysis at different spatial scales from 0.04 ha to 10 ha. Method (1 had large uncertainty in directly detecting biomass changes at scales smaller than 10 ha, but provided detailed information about changes of forest structure. The magnitude of error associated with both the mean biomass stock and mean biomass change declined with increasing spatial scales. Method (2 was accurate at the 1 ha scale to estimate AGB stocks (R2 = 0.7 and RMSEmean = 27.6 Mg ha−1. However, to predict biomass changes, errors became comparable to ground estimates only at a spatial scale of about 10 ha or more. Biomass changes were in the same direction at the spatial scale of 1 ha in 60 to 64% of the subplots, corresponding to p values of respectively 0.1 and 0.033. Large errors in estimating biomass changes from lidar data resulted from the uncertainty in detecting changes at 1 ha from ground

  13. Radiometric Normalization of Temporal Images Combining Automatic Detection of Pseudo-Invariant Features from the Distance and Similarity Spectral Measures, Density Scatterplot Analysis, and Robust Regression

    Directory of Open Access Journals (Sweden)

    Ana Paula Ferreira de Carvalho

    2013-05-01

    Full Text Available Radiometric precision is difficult to maintain in orbital images due to several factors (atmospheric conditions, Earth-sun distance, detector calibration, illumination, and viewing angles. These unwanted effects must be removed for radiometric consistency among temporal images, leaving only land-leaving radiances, for optimum change detection. A variety of relative radiometric correction techniques were developed for the correction or rectification of images, of the same area, through use of reference targets whose reflectance do not change significantly with time, i.e., pseudo-invariant features (PIFs. This paper proposes a new technique for radiometric normalization, which uses three sequential methods for an accurate PIFs selection: spectral measures of temporal data (spectral distance and similarity, density scatter plot analysis (ridge method, and robust regression. The spectral measures used are the spectral angle (Spectral Angle Mapper, SAM, spectral correlation (Spectral Correlation Mapper, SCM, and Euclidean distance. The spectral measures between the spectra at times t1 and t2 and are calculated for each pixel. After classification using threshold values, it is possible to define points with the same spectral behavior, including PIFs. The distance and similarity measures are complementary and can be calculated together. The ridge method uses a density plot generated from images acquired on different dates for the selection of PIFs. In a density plot, the invariant pixels, together, form a high-density ridge, while variant pixels (clouds and land cover changes are spread, having low density, facilitating its exclusion. Finally, the selected PIFs are subjected to a robust regression (M-estimate between pairs of temporal bands for the detection and elimination of outliers, and to obtain the optimal linear equation for a given set of target points. The robust regression is insensitive to outliers, i.e., observation that appears to deviate

  14. Airborne 2-Micron Double Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    Science.gov (United States)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke

    2015-01-01

    An airborne 2-micron double-pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. This new 2-miron pulsed IPDA lidar has been flown in spring of 2014 for total ten flights with 27 flight hours. It provides high precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement.

  15. Simultaneous Inflight Spectral and Radiometric Calibration Validation of AVRIS and HYDICE Over Lunar Lake, Nevada

    Science.gov (United States)

    Chrien, Thomas; Green, Robert; Chovit, Chris; Faust, Jessica; Johnson, Howell; Basedow, Robert; Zalewski, Edward; Colwell, John

    1995-01-01

    An experiment to check the spectral and radiometric calibration of two sensors--the airborne visible/infrared imaging spectromenter (AVRIS) and the Hyperspectral digital image collection experiment (HYDICE)--is described.

  16. Column CO2 Measurement From an Airborne Solid-State Double-Pulsed 2-Micron Integrated Path Differential Absorption Lidar

    Science.gov (United States)

    Singh, U. N.; Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Fay, J.; Reithmaier, K.

    2014-01-01

    NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micrometers IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  17. High Energy 2-Micron Solid-State Laser Transmitter for NASA's Airborne CO2 Measurements

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Bai, Yingxin

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  18. Utilizing The Synergy of Airborne Backscatter Lidar and In-Situ Measurements for Evaluating CALIPSO

    Directory of Open Access Journals (Sweden)

    Tsekeri Alexandra

    2016-01-01

    Full Text Available Airborne campaigns dedicated to satellite validation are crucial for the effective global aerosol monitoring. CALIPSO is currently the only active remote sensing satellite mission, acquiring the vertical profiles of the aerosol backscatter and extinction coefficients. Here we present a method for CALIPSO evaluation from combining lidar and in-situ airborne measurements. The limitations of the method have to do mainly with the in-situ instrumentation capabilities and the hydration modelling. We also discuss the future implementation of our method in the ICE-D campaign (Cape Verde, August 2015.

  19. Measurement of airborne radioactivity from the Fukushima reactor accident in Tokushima, Japan

    CERN Document Server

    Fushimi, K; Sakama, M; Sakaguchi, Y

    2011-01-01

    The airborne radioactive isotopes from the Fukushima Daiichi nuclear plant was measured in Tokushima, western Japan. The continuous monitoring has been carried out in Tokushima. From March 23, 2011 the fission product $^{131}$I was observed. The radioisotopes $^{134}$Cs and $^{137}$Cs were also observed in the beginning of April. However the densities were extremely smaller than the Japanese regulation of radioisotopes.

  20. Coordinated airborne, spaceborne, and ground-based measurements of massive thick aerosol layers during the dry season in southern Africa

    NARCIS (Netherlands)

    Schmid, B.; Redemann, J.; Russell, P.B.; Hobbs, P.V.; Hlavka, D.L.; McGill, M.J.; Holben, B.N.; Welton, E.J.; Campbell, J.R.; Torres, O.; Kahn, R.A.; Diner, D.J.; Helmlinger, M.C.; Chu, D.A.; Robles-Gonzalez, C.; Leeuw, G.de

    2003-01-01

    During the dry season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), coordinated observations were made of massive thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sun photometer measurements of aero

  1. NASA LaRC airborne high spectral resolution lidar aerosol measurements during MILAGRO: observations and validation

    Directory of Open Access Journals (Sweden)

    L. I. Kleinman

    2009-07-01

    Full Text Available The NASA Langley Research Center (LaRC airborne High Spectral Resolution Lidar (HSRL measures vertical profiles of aerosol extinction, backscatter, and depolarization at both 532 nm and 1064 nm. In March of 2006 the HSRL participated in the Megacity Initiative: Local and Global Research Observations (MILAGRO campaign along with several other suites of instruments deployed on both aircraft and ground based platforms. This paper presents high spatial and vertical resolution HSRL measurements of aerosol extinction and optical depth from MILAGRO and comparisons of those measurements with similar measurements from other sensors and model predictions. HSRL measurements coincident with airborne in situ aerosol scattering and absorption measurements from two different instrument suites on the C-130 and G-1 aircraft, airborne aerosol optical depth (AOD and extinction measurements from an airborne tracking sunphotometer on the J-31 aircraft, and AOD from a network of ground based Aerosol Robotic Network (AERONET sun photometers are presented as a validation of the HSRL aerosol extinction and optical depth products. Regarding the extinction validation, we find bias differences between HSRL and these instruments to be less than 3% (0.01 km−1 at 532 nm, the wavelength at which the HSRL technique is employed. The rms differences at 532 nm were less than 50% (0.015 km−1. To our knowledge this is the most comprehensive validation of the HSRL measurement of aerosol extinction and optical depth to date. The observed bias differences in ambient aerosol extinction between HSRL and other measurements is within 15–20% at visible wavelengths, found by previous studies to be the differences observed with current state-of-the-art instrumentation (Schmid et al., 2006.

  2. NASA LaRC airborne high spectral resolution lidar aerosol measurements during MILAGRO: observations and validation

    Directory of Open Access Journals (Sweden)

    R. R. Rogers

    2009-04-01

    Full Text Available The NASA Langley Research Center (LaRC airborne High Spectral Resolution Lidar (HSRL measures vertical profiles of aerosol extinction, backscatter, and depolarization at both 532 nm and 1064 nm. In March of 2006 the HSRL participated in the Megacity Initiative: Local and Global Research Observations (MILAGRO campaign along with several other suites of instruments deployed on both aircraft and ground based platforms. This paper presents high spatial and vertical resolution HSRL measurements of aerosol extinction and optical depth from MILAGRO and comparisons of those measurements with similar measurements from other sensors and model predictions. HSRL measurements coincident with airborne in situ aerosol scattering and absorption measurements from two different instrument suites on the C-130 and G-1 aircraft, airborne aerosol optical depth (AOD and extinction measurements from an airborne tracking sunphotometer on the J-31 aircraft, and AOD from a network of ground based Aerosol Robotic Network (AERONET sun photometers are presented as a validation of the HSRL aerosol extinction and optical depth products. Regarding the extinction validation, we find bias differences between HSRL and these instruments to be less than 3% (0.01 km−1 at 532 nm, the wavelength at which the HSRL technique is employed. The rms differences at 532 nm were less than 50% (0.015 km−1. To our knowledge this is the most comprehensive validation of the HSRL measurement of aerosol extinction and optical depth to date. The observed bias differences in ambient aerosol extinction between HSRL and other measurements is within 15–20% at visible wavelengths, found by previous studies to be the differences observed with current state-of-the-art instrumentation (Schmid et al., 2006.

  3. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-01-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  4. Assessment of water pollution by airborne measurement of chlorophyll

    Science.gov (United States)

    Arvesen, J. C.; Weaver, E. C.; Millard, J. P.

    1972-01-01

    Remote measurement of chlorophyll concentrations to determine extent of water pollution is discussed. Construction and operation of radiometer to provide measurement capability are explained. Diagram of equipment is provided.

  5. Topography and Penetration of the Greenland Ice Sheet Measured with Airborne SAR Interferometry

    DEFF Research Database (Denmark)

    Dall, Jørgen; Madsen, Søren Nørvang; Keller, K.

    2001-01-01

    A digital elevation model (DEM) of the Geikie ice sap in East Greenland has been generated from interferometric C-band synthetic aperture radar (SAR) data acquired with the airborne EMISAR system. GPS surveyed radar reflectors and an airborne laser altimeter supplemented the experiment. The accur......A digital elevation model (DEM) of the Geikie ice sap in East Greenland has been generated from interferometric C-band synthetic aperture radar (SAR) data acquired with the airborne EMISAR system. GPS surveyed radar reflectors and an airborne laser altimeter supplemented the experiment....... The accuracy of the SAR DEM is about 1.5 m. The mean difference between the laser heights and the SAR heights changes from 0 m in the soaked zone to a maximum of 13 m in the percolation zone. This is explained by the fact that the snow in the soaked zone contains liquid water which attenuates the radar signals......, while the transparency of the firn in the percolation zone makes volume scattering dominate at the higher elevations. For the first time, the effective penetration has been measured directly as the difference between the interferometric heights and reference heights obtained with GPS and laser altimetry....

  6. Measurement of airborne fission products in Chapel Hill, NC, USA from the Fukushima I reactor accident

    CERN Document Server

    MacMullin, S; Green, M P; Henning, R; Holmes, R; Vorren, K; Wilkerson, J F

    2011-01-01

    We present measurements of airborne fission products in Chapel Hill, NC, USA, from 62 days following the March 11, 2011, accident at the Fukushima I Nuclear Power Plant. Airborne particle samples were collected daily in air filters and radio-assayed with two high-purity germanium (HPGe) detectors. The fission products I-131 and Cs-137 were measured with maximum activities of 4.2 +/- 0.6 mBq/m^2 and 0.42 +/- 0.07 mBq/m^2 respectively. Additional activity from I-131, I-132, Cs-134, Cs-136, Cs-137 and Te-132 were measured in the same air filters using a low-background HPGe detector at the Kimballton Underground Research Facility (KURF).

  7. Determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using radiochemical separation combined with radiometric and mass spectrometric measurements.

    Science.gov (United States)

    Xu, Yihong; Qiao, Jixin; Hou, Xiaolin; Pan, Shaoming; Roos, Per

    2014-02-01

    This paper reports an analytical method for the determination of plutonium isotopes ((238)Pu, (239)Pu, (240)Pu, (241)Pu) in environmental samples using anion exchange chromatography in combination with extraction chromatography for chemical separation of Pu. Both radiometric methods (liquid scintillation counting and alpha spectrometry) and inductively coupled plasma mass spectrometry (ICP-MS) were applied for the measurement of plutonium isotopes. The decontamination factors for uranium were significantly improved up to 7.5 × 10(5) for 20 g soil compared to the level reported in the literature, this is critical for the measurement of plutonium isotopes using mass spectrometric technique. Although the chemical yield of Pu in the entire procedure is about 55%, the analytical results of IAEA soil 6 and IAEA-367 in this work are in a good agreement with the values reported in the literature or reference values, revealing that the developed method for plutonium determination in environmental samples is reliable. The measurement results of (239+240)Pu by alpha spectrometry agreed very well with the sum of (239)Pu and (240)Pu measured by ICP-MS. ICP-MS can not only measure (239)Pu and (240)Pu separately but also (241)Pu. However, it is impossible to measure (238)Pu using ICP-MS in environmental samples even a decontamination factor as high as 10(6) for uranium was obtained by chemical separation.

  8. King George Island ice cap geometry updated with airborne GPR measurements

    Directory of Open Access Journals (Sweden)

    M. Rückamp

    2012-07-01

    Full Text Available Ice geometry is a mandatory requirement for numerical modelling purposes. In this paper we present a consistent data set for the ice thickness, the bedrock topography and the ice surface topography of the King George Island ice cap (Arctowski icefield and the adjacent central part. The new data set is composed of ground based and airborne ground penetrating radar (GPR and differential GPS (DGPS measurements, obtained during several field campaigns. Blindow et al. (2010 already provided a comprehensive overview of the ground based measurements carried out in the safely accessible area of the ice cap. The updated data set incorporates airborne measurements in the heavily crevassed coastal areas. Therefore, in this paper special attention is paid to the airborne measurements by addressing the instrument used, survey procedure, and data processing in more detail. In particular, the inclusion of airborne GPR measurements with the 30 MHz BGR-P30-System developed at the Institute of Geophysics (University of Münster completes the picture of the ice geometry substantially. The compiled digital elevation model of the bedrock shows a rough, highly variable topography with pronounced valleys, ridges, and troughs. Mean ice thickness is 240 ± 6 m, with a maximum value of 422 ± 10 m in the surveyed area. Noticeable are bounded areas in the bedrock topography below sea level where marine based ice exists. The provided data set is required as a basis for future monitoring attempts or as input for numerical modelling experiments. The data set is available from the PANGAEA database at http://dx.doi.org/10.1594/PANGAEA.770567.

  9. King George Island ice cap geometry updated with airborne GPR measurements

    Directory of Open Access Journals (Sweden)

    M. Rückamp

    2011-12-01

    Full Text Available Ice geometry is a mandatory requirement for numerical modelling purposes. In this paper we present a consistent data set for the ice thickness, the bedrock topography and the ice surface topography of the King George Island ice cap (Arctowski Icefield and the adjacent central part. The newly data set is composed of groundbased and airborne Ground Penetrating Radar (GPR and differential GPS (DGPS measurements, obtained during several field campaigns. Blindow et al. (2010 already provided a comprehensive overview of the groundbased measurements carried out in the safely accessible area of the ice cap. The updated data set incorporates airborne measurements in the heavily crevassed coastal areas. Therefore, in this paper special attention is paid to the airborne measurements by addressing the used instrument, survey, and data processing in more detail. In particular, the inclusion of airborne GPR measurements with the 30 MHz BGR-P30-System developed at the Institute of Geophysics (University of Münster completes the picture of the ice geometry substantially. The compiled digital elevation model of the bedrock shows a rough, highly variable topography with pronounced valleys, ridges, and troughs. Mean ice thickness is ~240 m, with a maximum value of ~400 m in the surveyed area. Noticeable are bounded areas in the bedrock topography below sea level where marine based ice exists. The provided data set is required as a basis for future monitoring attempts or as input for numerical modelling experiments. The data set is available from the PANGAEA database at doi:10.1594/PANGAEA.770567.

  10. Reconciling In Situ Foliar Nitrogen and Vegetation Structure Measurements with Airborne Imagery Across Ecosystems

    Science.gov (United States)

    Flagg, C.

    2015-12-01

    Over the next 30 years the National Ecological Observatory Network (NEON) will monitor environmental and ecological change throughout North America. NEON will provide a suite of standardized data from several ecological topics of interest, including net primary productivity and nutrient cycling, from 60+ sites across 20 eco-climatic domains when fully operational in 2017. The breadth of sampling includes ground-based measurements of foliar nitrogen and vegetation structure, ground-based spectroscopy, airborne LIDAR, and airborne hyperspectral surveys occurring within narrow overlapping time intervals once every five years. While many advancements have been made in linking and scaling in situ data with airborne imagery, establishing these relationships across dozens of highly variable sites poses significant challenges to understanding continental-wide processes. Here we study the relationship between foliar nitrogen content and airborne hyperspectral imagery at different study sites. NEON collected foliar samples from three sites in 2014 as part of a prototype study: Ordway Swisher Biological Station (pine-oak savannah, with active fire management), Jones Ecological Research Center (pine-oak savannah), and San Joaquin Experimental Range (grass-pine oak woodland). Leaf samples and canopy heights of dominant and co-dominant species were collected from trees located within 40 x 40 meter sampling plots within two weeks of aerial LIDAR and hyperspectral surveys. Foliar canopy samples were analyzed for leaf mass per area (LMA), stable isotopes of C and N, C/N content. We also examine agreement and uncertainty between ground based canopy height and airborne LIDAR derived digital surface models (DSM) for each site. Site-scale maps of canopy nitrogen and canopy height will also be presented.

  11. Radiometric Dating Does Work!

    Science.gov (United States)

    Dalrymple, G. Brent

    2000-01-01

    Discusses the accuracy of dating methods and creationist arguments that radiometric dating does not work. Explains the Manson meteorite impact and the Pierre shale, the ages of meteorites, the K-T tektites, and dating the Mount Vesuvius eruption. (Author/YDS)

  12. Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne lidar survey (SHOALS): II. Practical results and comparison with independent data

    Science.gov (United States)

    Tuell, Grady H.; Feygels, Viktor; Kopilevich, Yuri; Weidemann, Alan D.; Cunningham, A. Grant; Mani, Reza; Podoba, Vladimir; Ramnath, Vinod; Park, J. Y.; Aitken, Jen

    2005-08-01

    Estimation of water column optical properties and seafloor reflectance (532 nm) is demonstrated using recent SHOALS data collected at Fort Lauderdale, Florida (November, 2003). To facilitate this work, the first radiometric calibrations of SHOALS were performed. These calibrations permit a direct normalization of recorded data by converting digitized counts at the output of the SHOALS receivers to input optical power. For estimation of environmental parameters, this normalization is required to compensate for the logarithmic compression of the signals and the finite frequency of the bandpass of the detector/amplifier. After normalization, the SHOALS data are used to estimate the backscattering coefficient, the beam attenuation coefficient, the single-scattering albedo, the VSF asymmetry, and seafloor reflectance by fitting simulated waveforms to actual waveforms measured by the SHOALS APD and PMT receivers. The resulting estimates of these water column optical properties are compared to in-situ measurements acquired at the time of the airborne data collections. Images of green laser bottom reflectance are also presented and compared to reflectance estimated from simultaneously acquired passive spectral data.

  13. Dis-aggregation of airborne flux measurements using footprint analysis

    NARCIS (Netherlands)

    Hutjes, R.W.A.; Vellinga, O.S.; Gioli, B.; Miglietta, F.

    2010-01-01

    Aircraft measurements of turbulent fluxes are generally being made with the objective to obtain an estimate of regional exchanges between land surface and atmosphere, to investigate the spatial variability of these fluxes, but also to learn something about the fluxes from some or all of the land cov

  14. Radiative flux measurements during the Airborne Tropical Tropopause Experiment (ATTREX) Guam Deployment.

    Science.gov (United States)

    Kindel, B. C.; Pilewskie, P.; Schmidt, S.

    2015-12-01

    The Airborne Tropical Tropopause Experiment was a field program utilizing the NASA Global Hawk aircraft, to make extensive measurements of tropical tropopause layer (TTL) over the Pacific Ocean. In February and March of 2014, the NASA Global Hawk was deployed to Guam and flew six long duration science flights. The aircraft was outfitted with a suite of instruments to study the composition of the TTL. Measurements included: water vapor amount, cloud particle size and shape, various gaseous species (e.g. CO, CH4, CO2, O3), and radiation measurements. The radiation measurements were comprised of the Solar Spectral Flux Radiometer (SSFR) that made spectrally resolved measurements of upwelling and downwelling solar irradiance from 350 to 2200 nm and thermal broadband (4μm to 42 μm) upwelling and downwelling irradiance. Once airborne, the Global Hawk made numerous vertical profiles (14 - 18 km) through the TTL. In this work we present results of combined solar spectral irradiance and broadband thermal irradiance measurements. Solar spectral measurements are correlated, wavelength-by-wavelength, with broadband thermal measurements. The radiative impact in the TTL of water vapor and cirrus clouds are examined both in the solar and thermal wavelengths from both upwelling and downwelling irradiances. The spectral measurements are used in an attempt to attribute physical mechanisms to the thermal (spectrally integrated) measurements. Measurements of heating rates are also presented, highlighting the difficultly in obtaining reliable results from aircraft measurements.

  15. Sensible and latent heat flux from radiometric surface temperatures at the regional scale: methodology and validation

    Directory of Open Access Journals (Sweden)

    F. Miglietta

    2009-02-01

    Full Text Available The CarboEurope Regional Experiment Strategy (CERES was designed to develop and test a range of methodologies to assess regional surface energy and mass exchange of a large study area in the south-western part of France. This paper describes a methodology to estimate sensible and latent heat fluxes on the basis of net radiation, surface radiometric temperature measurements and information obtained from available products derived from the Meteosat Second Generation (MSG geostationary meteorological satellite, weather stations and ground-based eddy covariance towers. It is based on a simplified bulk formulation of sensible heat flux that considers the degree of coupling between the vegetation and the atmosphere and estimates latent heat as the residual term of net radiation. Estimates of regional energy fluxes obtained in this way are validated at the regional scale by means of a comparison with direct flux measurements made by airborne eddy-covariance. The results show an overall good matching between airborne fluxes and estimates of sensible and latent heat flux obtained from radiometric surface temperatures that holds for different weather conditions and different land use types. The overall applicability of the proposed methodology to regional studies is discussed.

  16. Experimental evidence of interhemispheric transport from airborne carbon monoxide measurements

    Science.gov (United States)

    Newell, R. E.; Gauntner, D. J.

    1979-01-01

    During the period 28-30 October 1977, a Pan American 747-SP aircraft flew around the world with an automated instrument package that included measurements of atmospheric CO made every 4 sec. The flight path extended from San Francisco, over the North Pole to London, south to Capetown, over the South Pole to Auckland, and back to San Francisco. The data collected show large changes with longitude, which are interpreted as direct evidence of interhemispheric mixing. Possible sources for CO are discussed.

  17. Indoor and outdoor measurements of vertical concentration profiles of airborne particulate matter.

    Science.gov (United States)

    Micallef, A; Deuchar, C N; Colls, J J

    1998-05-04

    Vertical concentration profiles of various particle size ranges of airborne particulate matter were measured from ground level up to 3 m, in outdoor and indoor environments. Indoor measurements were carried out in an electronics workshop, while two outdoor environments were chosen: a street canyon cutting across a town and an open field situated in a semi-rural environment. The novel measurement technique employed in this experimental work, which can also be used to determine vertical concentration gradients of pollutants other than airborne particles in different environments, is given particular attention. Analyses of the collected data for the environments considered are presented and some conclusions and plausible explanations of the profiles are discussed. The workshop and street canyon environments exhibited larger concentrations and vertical concentration gradients as compared to the sports field. This indicates that people breathing at different heights are subjected to different concentrations of airborne particulate matter, which has implications for sitting air pollution monitors intended for protection of public health and estimation of human exposure.

  18. Airborne measurements of biomass burning products over Africa

    Science.gov (United States)

    Helas, Guenter; Lobert, Juergen; Goldammer, Johann; Andreae, Meinrat O.; Lacaux, J. P.; Delmas, R.

    1994-01-01

    Ozone has been observed in elevated concentrations by satellites over hitherto believed 'background' areas. There is meteorological evidence that these ozone 'plumes' found over the Atlantic ocean originate from biomass fires on the African continent. Therefore we have investigated ozone and assumed precursor compounds over African regions. The measurements revealed large photosmog layers in altitudes between 1.5 and 4 km. Here we will focus on some results of ozone mixing ratios obtained during the DECAFE 91/FOS experiment and estimate the relevance of biomass burning as a source by comparing the strength of this source to stratospheric input.

  19. Airborne Gamma-ray Measurements in the Chernobyl Plume

    DEFF Research Database (Denmark)

    Grasty, R. L.; Hovgaard, Jens; Multala, J.

    1997-01-01

    On 29 April 1986, the Geological Survey of Finland (GSF) survey aircraft with a gamma ray spectrometer flew through a radioactive plume from the Chernobyl nuclear accident. The aircraft became contaminated and the gamma spectrometer measured radioactivity in the plume as well as radioactivity...... on the aircraft. By using simple assumptions on the build-up of contamination it has been possible to separate the signals from contamination and from plume. The analysis further showed that even a detector/spectrometer with low energy resolution is able to identify a contamination with iodine....

  20. Validation of Airborne FMCW Radar Measurements of Snow Thickness Over Sea Ice in Antarctica

    Science.gov (United States)

    Galin, Natalia; Worby, Anthony; Markus, Thorsten; Leuschen, Carl; Gogineni, Prasad

    2012-01-01

    Antarctic sea ice and its snow cover are integral components of the global climate system, yet many aspects of their vertical dimensions are poorly understood, making their representation in global climate models poor. Remote sensing is the key to monitoring the dynamic nature of sea ice and its snow cover. Reliable and accurate snow thickness data are currently a highly sought after data product. Remotely sensed snow thickness measurements can provide an indication of precipitation levels, predicted to increase with effects of climate change in the polar regions. Airborne techniques provide a means for regional-scale estimation of snow depth and distribution. Accurate regional-scale snow thickness data will also facilitate an increase in the accuracy of sea ice thickness retrieval from satellite altimeter freeboard estimates. The airborne data sets are easier to validate with in situ measurements and are better suited to validating satellite algorithms when compared with in situ techniques. This is primarily due to two factors: better chance of getting coincident in situ and airborne data sets and the tractability of comparison between an in situ data set and the airborne data set averaged over the footprint of the antennas. A 28-GHz frequency modulated continuous wave (FMCW) radar loaned by the Center for Remote Sensing of Ice Sheets to the Australian Antarctic Division is used to measure snow thickness over sea ice in East Antarctica. Provided with the radar design parameters, the expected performance parameters of the radar are summarized. The necessary conditions for unambiguous identification of the airsnow and snowice layers for the radar are presented. Roughnesses of the snow and ice surfaces are found to be dominant determinants in the effectiveness of layer identification for this radar. Finally, this paper presents the first in situ validated snow thickness estimates over sea ice in Antarctica derived from an FMCW radar on a helicopterborne platform.

  1. An Ultralow Power Fast-Response Nano-TCD CH4 sensor for UAV Airborne Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this project, KWJ proposes to develop a low power, fast response, lightweight miniature CH4 measurement system based on KWJ nano-TCD sensor for airborne...

  2. Lidar System for Airborne Measurement of Clouds and Aerosols

    Science.gov (United States)

    McGill, Matthew; Scott, V. Stanley; Izquierdo, Luis Ramos; Marzouk, Joe

    2008-01-01

    A lidar system for measuring optical properties of clouds and aerosols at three wavelengths is depicted. The laser transmitter is based on a Nd:YVO4 laser crystal pumped by light coupled to the crystal via optical fibers from laser diodes that are located away from the crystal to aid in dissipating the heat generated in the diodes and their drive circuits. The output of the Nd:YVO4 crystal has a wavelength of 1064 nm, and is made to pass through frequency-doubling and frequency-tripling crystals. As a result, the net laser output is a collinear superposition of beams at wavelengths of 1064, 532, and 355 nm. The laser operates at a pulse-repetition rate of 5 kHz, emitting per-pulse energies of 50 microJ at 1064 nm, 25 microJ at 532 nm and 50 microJ at 355 nm. An important feature of this system is an integrating sphere located between the laser output and the laser beam expander lenses. The integrating sphere collects light scattered from the lenses. Three energy-monitor detectors are located at ports inside the integrating sphere. Each of these detectors is equipped with filters such that the laser output energy is measured independently for each wavelength. The laser output energy is measured on each pulse to enable the most accurate calibration possible. The 1064-nm and 532-nm photodetectors are, more specifically, single photon-counting modules (SPCMs). When used at 1064 nm, these detectors have approximately 3% quantum efficiency and low thermal noise (fewer than 200 counts per second). When used at 532 nm, the SPCMs have quantum efficiency of about 60%. The photodetector for the 355-nm channel is a photon-counting photomultiplier tube having a quantum efficiency of about 20%. The use of photon-counting detectors is made feasible by the low laser pulse energy. The main advantage of photon-counting is ease of inversion of data without need for complicated calibration schemes like those necessary for analog detectors. The disadvantage of photon-counting detectors

  3. Passive Measurement of CO2 Column from an Airborne Platform

    Science.gov (United States)

    Heaps, William S.; Kawa, S. R.; Wilson, Emily; Georgleva, Elena

    2004-01-01

    We are in the third and final year of our IIP funding to develop a sensor for very precise determination of the CO2 Column. Global measurements of this sort from a satellite platform are needed to improve our understanding of the global carbon budget. In previous reports to this meeting we have described the method by which this system operates and presented data taken during ground based tests of the instrument. Work in the final year has concentrated on building the flight hardened version of the instrument that will be used in our field trials on the Dryden DC-8. The flight unit represents an integration of three channels into a single instrument. These three channels are the CO2 channel, the oxygen pressure sensing channel, and the oxygen temperature sensing channel. Integration of the three channels into a single unit significantly decreases the size of the instrument. The flight unit also employs more rugged optical mounts and integrated optical shielding. Light enters the instrument from below first striking the right angled mirror shown extending over the edge of the platform. The light is then focused through a pinhole to define the instrument field of view, chopped and recollimated. Dichroic mirrors are used to separate the CO2 wavelength from the O2 wavelength and that light is further divided by a 50-50 beamsplitter between the 2 oxygen channels - the pressure channel and the temperature channel. The six white boxes contain the detectors for each of the three channels. The detectors on the left in the photo serve the reference channels and the detectors on the right are for the Fabry-Perots. CO2 is measured by the pair of detectors farthest from the viewer. Pressure via O2 is detected by the central pair of detectors. The closest pair is used to determine temperature via O2.

  4. Downsizing of Georgia Tech's Airborne Fluorescence Spectrometer (AFS) for the Measurement of Nitrogen Oxides

    Science.gov (United States)

    Sandholm, Scott

    1998-01-01

    This report addresses the Tropospheric Trace Gas and Airborne Measurements (TTGAMG) endeavors to further downsize and stabilize the Georgia Institute of Technology's Airborne Laser Induced Fluorescence Experiment (GITALIFE). It will mainly address the TTGAMG successes and failures as participants in the summer 1998 Wallops Island test flights on board the P3-B. Due to the restructuring and reorganization of the TTGAMG since the original funding of this grant, some of the objectives and time lines of the deliverables have been changed. Most of these changes have been covered in the preceding annual report. We are anticipating getting back on track with the original proposal's downsizing effort this summer, culminating in the GITALIFE no longer occupying a high bay rack and the loss of several hundred pounds.

  5. Rapid assessment of water pollution by airborne measurement of chlorophyll content.

    Science.gov (United States)

    Arvesen, J. C.; Weaver, E. C.; Millard, J. P.

    1971-01-01

    Present techniques of airborne chlorophyll measurement are discussed as an approach to water pollution assessment. The differential radiometer, the chlorophyll correlation radiometer, and an infrared radiometer for water temperature measurements are described as the key components of the equipment. Also covered are flight missions carried out to evaluate the capability of the chlorophyll correlation radiometer in measuring the chlorophyll content in water bodies with widely different levels of nutrients, such as fresh-water lakes of high and low eutrophic levels, marine waters of high and low productivity, and an estuary with a high sediment content. The feasibility and usefulness of these techniques are indicated.

  6. Airborne measurements of NO{sub y} and impact of this trace gas on atmospheric chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Perros, P.E.; Marion, T. [Paris-12 et 7 Univ., Laboratoire Interuniversitaire des Systemes Atmospheriques, 94 - Creteil (France)

    1999-05-01

    Nitrogen compounds play a key role in the ozone production processes. The airborne measurement of individual species is difficult compared to their global measurement. This can be done by the conversion of all the species (NO{sub y}) in NO followed by a subsequent analysis by chemiluminescence. Laboratory tests allow up to determine the main characteristics of such conversion. NO{sub y} measurements associated with NO{sub x} concentrations allow a quantitative and qualitative study of ozone production processes. In particular it is possible to determine the ozone production potential of an air mass, the ozone production efficiency and to specify the chemical regimes. (authors) 13 refs.

  7. Double-Pulse Two-Micron IPDA Lidar Simulation for Airborne Carbon Dioxide Measurements

    Science.gov (United States)

    Refaat, Tamer F.; Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta

    2015-01-01

    An advanced double-pulsed 2-micron integrated path differential absorption lidar has been developed at NASA Langley Research Center for measuring atmospheric carbon dioxide. The instrument utilizes a state-of-the-art 2-micron laser transmitter with tunable on-line wavelength and advanced receiver. Instrument modeling and airborne simulations are presented in this paper. Focusing on random errors, results demonstrate instrument capabilities of performing precise carbon dioxide differential optical depth measurement with less than 3% random error for single-shot operation from up to 11 km altitude. This study is useful for defining CO2 measurement weighting, instrument setting, validation and sensitivity trade-offs.

  8. On the impact of a refined stochastic model for airborne LiDAR measurements

    Science.gov (United States)

    Bolkas, Dimitrios; Fotopoulos, Georgia; Glennie, Craig

    2016-09-01

    Accurate topographic information is critical for a number of applications in science and engineering. In recent years, airborne light detection and ranging (LiDAR) has become a standard tool for acquiring high quality topographic information. The assessment of airborne LiDAR derived DEMs is typically based on (i) independent ground control points and (ii) forward error propagation utilizing the LiDAR geo-referencing equation. The latter approach is dependent on the stochastic model information of the LiDAR observation components. In this paper, the well-known statistical tool of variance component estimation (VCE) is implemented for a dataset in Houston, Texas, in order to refine the initial stochastic information. Simulations demonstrate the impact of stochastic-model refinement for two practical applications, namely coastal inundation mapping and surface displacement estimation. Results highlight scenarios where erroneous stochastic information is detrimental. Furthermore, the refined stochastic information provides insights on the effect of each LiDAR measurement in the airborne LiDAR error budget. The latter is important for targeting future advancements in order to improve point cloud accuracy.

  9. Airborne Measurements of Atmospheric Methane Column Abundance Made Using a Pulsed IPDA Lidar

    Science.gov (United States)

    Riris, Haris; Numata, Kenji; Li, Steve; Wu, Stewart; Ramanathan, Anamd; Dawsey, Martha; Mao, Jianping; Kawa, Randolph; Abshire, James B.

    2012-01-01

    We report airborne measurements of the column abundance of atmospheric methane made over an altitude range of 3-11 km using a direct detection IPDA lidar with a pulsed laser emitting at 1651 nm. The laser transmitter was a tunable, seeded optical parametric amplifier (OPA) pumped by a Nd:YAG laser and the receiver used a photomultiplier detector and photon counting electronics. The results follow the expected changes with aircraft altitude and the measured line shapes and optical depths show good agreement with theoretical calculations.

  10. Retrieval of aerosol backscatter and extinction from airborne coherent Doppler wind lidar measurements

    Directory of Open Access Journals (Sweden)

    F. Chouza

    2015-02-01

    Full Text Available A novel method for calibration and quantitative aerosol optical properties retrieval from Doppler wind lidars (DWL is presented in this work. Due to the strong wavelength dependence of the atmospheric molecular backscatter and the low sensitivity of the coherent detection to spectrally broad signals, calibration methods for aerosol lidars cannot be applied to a coherent DWLs usually operating at wavelengths between 1.5–2 μm. Instead, concurrent measurements of an airborne DWL at 2 μm and the POLIS ground-based aerosol lidar at 532 nm are used in this work, in combination with sun photometer measurements, for the calibration and retrieval of aerosol backscatter and extinction profiles. The proposed method was applied to measurements from the SALTRACE experiment in June–July 2013, which aimed at quantifying the aerosol transport and change in aerosol properties from the Sahara desert to the Caribbean. The retrieved backscatter and extinction coefficient profiles from the airborne DWL are within 20% of POLIS aerosol lidar and CALIPSO satellite measurements. Thus the proposed method extends the capabilities of coherent DWL to measure profiles of the horizontal and vertical wind towards aerosol backscatter and extinction profiles, which is of high benefit for aerosol transport studies.

  11. Radiometric Modeling and Calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS)Ground Based Measurement Experiment

    Science.gov (United States)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-01-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere s thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The GIFTS calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts, therefore, enhancing the absolute calibration accuracy. This method is applied to data collected during the GIFTS Ground Based Measurement (GBM) experiment, together with simultaneous observations by the accurately calibrated AERI (Atmospheric Emitted Radiance Interferometer), both simultaneously zenith viewing the sky through the same external scene mirror at ten-minute intervals throughout a cloudless day at Logan Utah on September 13, 2006. The accurately calibrated GIFTS radiances are produced using the first four PC scores in the GIFTS-AERI regression model. Temperature and moisture profiles retrieved from the PC-calibrated GIFTS radiances are verified against radiosonde measurements collected throughout the GIFTS sky measurement period. Using the GIFTS GBM calibration model, we compute the calibrated radiances from data

  12. Lidar measurements of polar stratospheric clouds during the 1989 airborne Arctic stratospheric expedition

    Science.gov (United States)

    Ismail, Syed; Browell, Edward V.

    1991-01-01

    The Airborne Arctic Stratospheric Expedition (AASE) was conducted during January to February 1989 from the Sola Air Station, Norway. As part of this expedition, the NASA Langley Research Center's multiwavelength airborne lidar system was flown on the NASA Ames Research Center's DC-8 aircraft to measure ozone (O3) and aerosol profiles in the region of the polar vortex. The lidar system simultaneously transmitted laser beams at 1064, 603, 311, and 301.5 nm to measure atmospheric scattering, polarization and O3 profiles. Long range flights were made between Stavanger, Norway, and the North Pole, and between 40 deg W and 20 deg E meridians. Eleven flights were made, each flight lasting an average of 10 hours covering about 8000 km. Atmospheric scattering ratios, aerosol polarizations, and aerosol scattering ratio wavelength dependences were derived from the lidar measurements to altitudes above 27 km. The details of the aerosol scattering properties of lidar observations in the IR, VIS, and UV regions are presented along with correlations with the national meteorological Center's temperature profiles.

  13. The correlation and quantification of airborne spectroradiometer data to turbidity measurements at Lake Powell, Utah

    Science.gov (United States)

    Merry, C. J.

    1979-01-01

    A water sampling program was accomplished at Lake Powell, Utah, during June 1975 for correlation to multispectral data obtained with a 500-channel airborne spectroradiometer. Field measurements were taken of percentage of light transmittance, surface temperature, pH and Secchi disk depth. Percentage of light transmittance was also measured in the laboratory for the water samples. Analyses of electron micrographs and suspended sediment concentration data for four water samples located at Hite Bridge, Mile 168, Mile 150 and Bullfrog Bay indicated differences in the composition and concentration of the particulate matter. Airborne spectroradiometer multispectral data were analyzed for the four sampling locations. The results showed that: (1) as the percentage of light transmittance of the water samples decreased, the reflected radiance increased; and (2) as the suspended sediment concentration (mg/l) increased, the reflected radiance increased in the 1-80 mg/l range. In conclusion, valuable qualitative information was obtained on surface turbidity for the Lake Powell water spectra. Also, the reflected radiance measured at a wavelength of 0.58 micron was directly correlated to the suspended sediment concentration.

  14. Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples

    Directory of Open Access Journals (Sweden)

    S. P. Burton

    2012-01-01

    Full Text Available The NASA Langley Research Center (LaRC airborne High Spectral Resolution Lidar (HSRL on the NASA B200 aircraft has acquired extensive datasets of aerosol extinction (532 nm, aerosol optical depth (AOD (532 nm, backscatter (532 and 1064 nm, and depolarization (532 and 1064 nm profiles during 18 field missions that have been conducted over North America since 2006. The lidar measurements of aerosol intensive parameters (lidar ratio, depolarization, backscatter color ratio, and spectral depolarization ratio are shown to vary with location and aerosol type. A methodology based on observations of known aerosol types is used to qualitatively classify the extensive set of HSRL aerosol measurements into eight separate types. Several examples are presented showing how the aerosol intensive parameters vary with aerosol type and how these aerosols are classified according to this new methodology. The HSRL-based classification reveals vertical variability of aerosol types during the NASA ARCTAS field experiment conducted over Alaska and northwest Canada during 2008. In two examples derived from flights conducted during ARCTAS, the HSRL classification of biomass burning smoke is shown to be consistent with aerosol types derived from coincident airborne in situ measurements of particle size and composition. The HSRL retrievals of AOD and inferences of aerosol types are used to apportion AOD to aerosol type; results of this analysis are shown for several experiments.

  15. Outdoor relative radiometric calibration method using gray scale targets

    Institute of Scientific and Technical Information of China (English)

    DUAN; YiNi; YAN; Lei; YANG; Bin; JING; Xin; CHEN; Wei

    2013-01-01

    The radiometric calibration of remote sensors is a basis and prerequisite of information quantification in remote sensing. This paper proposes a method for outdoor relative radiometric calibration using gray scale targets. In this method, the idea of two substitutions is adopted. Sunlight is used to replace the integrating sphere light source, and gray scale targets are used to re-place the diffuser. In this way, images at different radiance levels obtained outdoors can calculate the relative radiometric cali-bration coefficients using the least square method. The characteristics of this method are as follows. Firstly, compared with la-boratory calibration, it greatly reduces the complexity of the calibration method and the test cost. Secondly, compared with the existing outdoor relative radiometric calibration of a single radiance level, it uses test images of different radiance levels to re-duce errors. Thirdly, it is easy to operate with fewer environmental requirements, has obvious advantages in the rapid calibra-tion of airborne remote sensors before or after flight and is practical in engineering. This paper theoretically and experimental-ly proves the feasibility of this method. Calibration experiments were conducted on the wide-view multispectral imager (WVMI) using this method, and the precision of this method was evaluated by analyzing the corrected images of large uniform targets on ground. The experiment results have demonstrated that the new method is effective and its precision meets the re-quirement of the absolute radiometric calibration.

  16. Overview and Initial Results from the DEEPWAVE Airborne and Ground-Based Measurement Program

    Science.gov (United States)

    Fritts, D. C.

    2015-12-01

    The deep-propagating gravity wave experiment (DEEPWAVE) was performed on and over New Zealand, the Tasman Sea, and the Southern Ocean with core airborne measurements extending from 5 June to 21 July 2014 and supporting ground-based measurements spanning a longer interval. The NSF/NCAR GV employed standard flight-level measurements and new airborne lidar and imaging measurements of gravity waves (GWs) from sources at lower altitudes throughout the stratosphere and into the mesosphere and lower thermosphere (MLT). The new GV lidars included a Rayleigh lidar measuring atmospheric density and temperature from ~20-60 km and a sodium resonance lidar measuring sodium density and temperature at ~75-105 km. An airborne Advanced Mesosphere Temperature Mapper (AMTM) and two IR "wing" cameras imaged the OH airglow temperature and/or intensity fields extending ~900 km across the GV flight track. The DLR Falcon was equipped with its standard flight-level instruments and an aerosol Doppler lidar measuring radial winds below the Falcon. DEEPWAVE also included extensive ground-based measurements in New Zealand, Tasmania, and Southern Ocean Islands. DEEPWAVE performed 26 GV flights and 13 Falcon flights, and ground-based measurements occurred whether or not the aircraft were flying. Collectively, many diverse cases of GW forcing, propagation, refraction, and dissipation spanning altitudes of 0-100 km were observed. Examples include strong mountain wave (MW) forcing and breaking in the lower and middle stratosphere, weak MW forcing yielding MW penetration into the MLT having very large amplitudes and momentum fluxes, MW scales at higher altitudes ranging from ~10-250 km, large-scale trailing waves from orography refracting into the polar vortex and extending to high altitudes, GW generation by deep convection, large-scale GWs arising from jet stream sources, and strong MWs in the MLT arising from strong surface flow over a small island. DEEPWAVE yielded a number of surprises, among

  17. Airborne High Spectral Resolution Lidar Aerosol Measurements during MILAGRO and TEXAQS/GOMACCS

    Science.gov (United States)

    Ferrare, Richard; Hostetler, Chris; Hair, John; Cook Anthony; Harper, David; Burton, Sharon; Clayton, Marian; Clarke, Antony; Russell, Phil; Redemann, Jens

    2007-01-01

    Two1 field experiments conducted during 2006 provided opportunities to investigate the variability of aerosol properties near cities and the impacts of these aerosols on air quality and radiative transfer. The Megacity Initiative: Local and Global Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX-MEX)/Intercontinental Chemical Transport Experiment-B (INTEX-B) joint experiment conducted during March 2006 investigated the evolution and transport of pollution from Mexico City. The Texas Air Quality Study (TEXAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) (http://www.al.noaa.gov/2006/) conducted during August and September 2006 investigated climate and air quality in the Houston/Gulf of Mexico region. During both missions, the new NASA Langley airborne High Spectral Resolution Lidar (HSRL) was deployed on the NASA Langley B200 King Air aircraft and measured profiles of aerosol extinction, backscattering, and depolarization to: 1) characterize the spatial and vertical distributions of aerosols, 2) quantify aerosol extinction and optical thickness contributed by various aerosol types, 3) investigate aerosol variability near clouds, 4) evaluate model simulations of aerosol transport, and 5) assess aerosol optical properties derived from a combination of surface, airborne, and satellite measurements.

  18. Validation of stratospheric water vapour measurements from the airborne microwave radiometer AMSOS

    Directory of Open Access Journals (Sweden)

    S. C. Müller

    2008-01-01

    Full Text Available We present the validation of a water vapour dataset obtained by the Airborne Microwave Stratospheric Observing System AMSOS, a passive microwave radiometer operating at 183 GHz. Vertical profiles are retrieved from spectra by an optimal estimation method. The useful vertical range lies in the upper troposphere up to the mesosphere with an altitude resolution of 8 to 16 km and a horizontal resolution of about 57 km. Flight campaigns were performed once a year from 1998 to 2006 measuring the latitudinal distribution of water vapour from the tropics to the polar regions. The obtained profiles show clearly the main features of stratospheric water vapour in all latitudinal regions. Data are validated against a set of instruments comprising satellite, ground-based, airborne remote sensing and in-situ instruments. It appears that AMSOS profiles have a dry bias of 3–20%, when compared to satellite experiments. A good agreement with a difference of 3.3% was found between AMSOS and in-situ hygrosondes FISH and FLASH and an excellent matching of the lidar measurements from the DIAL instrument in the short overlap region in the upper troposphere.

  19. Airborne Lidar for Simultaneous Measurement of Column CO2 and Water Vapor in the Atmosphere

    Science.gov (United States)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Antill, Charles W.; Remus, Ruben; Yu, Jirong

    2016-01-01

    The 2-micron wavelength region is suitable for atmospheric carbon dioxide (CO2) measurements due to the existence of distinct absorption feathers for the gas at this particular wavelength. For more than 20 years, researchers at NASA Langley Research Center (LaRC) have developed several high-energy and high repetition rate 2-micron pulsed lasers. This paper will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar. The development of this active optical remote sensing IPDA instrument is targeted for measuring both CO2 and water vapor (H2O) in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver telescope, detection system and data acquisition. Future plans for the IPDA lidar system for ground integration, testing and flight validation will also be presented.

  20. Measurements of airborne influenza virus in aerosol particles from human coughs.

    Directory of Open Access Journals (Sweden)

    William G Lindsley

    Full Text Available Influenza is thought to be communicated from person to person by multiple pathways. However, the relative importance of different routes of influenza transmission is unclear. To better understand the potential for the airborne spread of influenza, we measured the amount and size of aerosol particles containing influenza virus that were produced by coughing. Subjects were recruited from patients presenting at a student health clinic with influenza-like symptoms. Nasopharyngeal swabs were collected from the volunteers and they were asked to cough three times into a spirometer. After each cough, the cough-generated aerosol was collected using a NIOSH two-stage bioaerosol cyclone sampler or an SKC BioSampler. The amount of influenza viral RNA contained in the samplers was analyzed using quantitative real-time reverse-transcription PCR (qPCR targeting the matrix gene M1. For half of the subjects, viral plaque assays were performed on the nasopharyngeal swabs and cough aerosol samples to determine if viable virus was present. Fifty-eight subjects were tested, of whom 47 were positive for influenza virus by qPCR. Influenza viral RNA was detected in coughs from 38 of these subjects (81%. Thirty-five percent of the influenza RNA was contained in particles>4 µm in aerodynamic diameter, while 23% was in particles 1 to 4 µm and 42% in particles<1 µm. Viable influenza virus was detected in the cough aerosols from 2 of 21 subjects with influenza. These results show that coughing by influenza patients emits aerosol particles containing influenza virus and that much of the viral RNA is contained within particles in the respirable size range. The results support the idea that the airborne route may be a pathway for influenza transmission, especially in the immediate vicinity of an influenza patient. Further research is needed on the viability of airborne influenza viruses and the risk of transmission.

  1. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region

    Science.gov (United States)

    Thorpe, Andrew K.; Thompson, David R.; Hulley, Glynn; Kort, Eric Adam; Vance, Nick; Borchardt, Jakob; Krings, Thomas; Gerilowski, Konstantin; Sweeney, Colm; Conley, Stephen; Bue, Brian D.; Aubrey, Andrew D.; Hook, Simon; Green, Robert O.

    2016-01-01

    Methane (CH4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit ∼ 2 kg/h to 5 kg/h through ∼ 5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. With the observed confirmation of a lognormal emission distribution, this airborne observing strategy and its ability to locate previously unknown point sources in real time provides an efficient and effective method to identify and mitigate major emissions contributors over a wide geographic area. With improved instrumentation, this capability scales to spaceborne applications [Thompson DR, et al. (2016) Geophys Res Lett 43(12):6571–6578]. Further illustration of this potential is demonstrated with two detected, confirmed, and repaired pipeline leaks during the campaign. PMID:27528660

  2. Airborne Lidar Measurements of Atmospheric Pressure Made Using the Oxygen A-Band

    Science.gov (United States)

    Riris, Haris; Rodriquez, Michael D.; Allan, Graham R.; Hasselbrack, William E.; Mao, Jianping; Stephen, Mark A.; Abshire, James B.

    2012-01-01

    Accurate measurements of greenhouse gas mixing ratios on a global scale are currently needed to gain a better understanding of climate change and its possible impact on our planet. In order to remotely measure greenhouse gas concentrations in the atmosphere with regard to dry air, the air number density in the atmosphere is also needed in deriving the greenhouse gas concentrations. Since oxygen is stable and uniformly mixed in the atmosphere at 20.95%, the measurement of an oxygen absorption in the atmosphere can be used to infer the dry air density and used to calculate the dry air mixing ratio of a greenhouse gas, such as carbon dioxide or methane. OUT technique of measuring Oxygen uses integrated path differential absorption (IPDA) with an Erbium Doped Fiber Amplifier (EDF A) laser system and single photon counting module (SPCM). It measures the absorbance of several on- and off-line wavelengths tuned to an O2 absorption line in the A-band at 764.7 nm. The choice of wavelengths allows us to maximize the pressure sensitivity using the trough between two absorptions in the Oxygen A-band. Our retrieval algorithm uses ancillary meteorological and aircraft altitude information to fit the experimentally obtained lidar O2 line shapes to a model atmosphere and derives the pressure from the profiles of the two lines. We have demonstrated O2 measurements from the ground and from an airborne platform. In this paper we will report on our airborne measurements during our 2011 campaign for the ASCENDS program.

  3. Retrieval of Precipitation from Microwave Airborne Sensors during TOGA COARE.

    Science.gov (United States)

    Viltard, Nicolas; Obligis, Estelle; Marecal, Virginie; Klapisz, Claude

    1998-07-01

    The aim of this paper is to report on the retrieval of the vertically averaged liquid cloud water content and vertically averaged precipitation rates (rain and ice) from microwave airborne radiometric observations in a two-plane parallel layer atmosphere. The approach is based on the inversion of a simple radiative transfer model in which a raindrop size distribution derived from microphysical measurements is introduced. The microwave data (18.7, 21, 37, and 92 GHz) used were acquired by the Airborne Multichannel Microwave Radiometer and Advanced Microwave Moisture Sounder on board NASA DC8 within a mesoscale convective system on 6 February 1993 during the Tropical Oceans Global Atmosphere Coupled Ocean-Atmosphere Response Experiment.Before interpreting the results, the quality of the inversion is checked. The fit between the measured and the model-retrieved brightness temperatures is good when compared to the model and measurements uncertainties. Doppler radar data from three other aircraft help the result's interpretation, providing reflectivity and wind fields. The cloud liquid content seems to be difficult to retrieve. The ice and liquid rain rates are consistent with the other data sources: order of magnitude for convective and stratiform regions, presence of ice and liquid precipitation correlated with cell structure, and presence of cloud particles in the lighter precipitating regions.A quantitative comparison is done between the radiometric rainfall rates and those derived from the Airborne Rain Mapping Radar observations (also on board NASA DC8). There is a good agreement between the two from the statistical point of view (mean and standard deviation values). Moreover, the finescale rain structures that appear in radar results are rather well reproduced in the radiometric results. The importance of the new drop size distribution introduced in the radiative transfer model is emphasized by this last comparison.

  4. Development and Integration of a Pulsed 2-micron Direct Detection Integrated Path Differential Absorption (IPDA) Lidar for CO2 Column Measurement from Airborne platform Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop, integrate and demonstrate a 2-micron pulsed Integrated Path Differential Absorption Lidar (IPDA) instrument CO2 Column Measurement from Airborne platform...

  5. Comparison of surface wind stress measurements - Airborne radar scatterometer versus sonic anemometer

    Science.gov (United States)

    Brucks, J. T.; Leming, T. D.; Jones, W. L.

    1980-01-01

    Sea surface wind stress measurements recorded by a sonic anemometer are correlated with airborne scatterometer measurements of ocean roughness (cross section of radar backscatter) to establish the accuracy of remotely sensed data and assist in the definition of geophysical algorithms for the scatterometer sensor aboard Seasat A. Results of this investigation are as follows: Comparison of scatterometer and sonic anemometer wind stress measurements are good for the majority of cases; however, a tendency exists for scatterometer wind stress to be somewhat high for higher wind conditions experienced in this experiment (6-9 m/s). The scatterometer wind speed algorithm tends to overcompute the higher wind speeds by approximately 0.5 m/s. This is a direct result of the scatterometer overestimate of wind stress from which wind speeds are derived. Algorithmic derivations of wind speed and direction are, in most comparisons, within accuracies defined by Seasat A scatterometer sensor specifications.

  6. Measurements of snow radiometric and microstructure properties over a transect of plot-scale field observations: Application to snow thermodynamic and passive microwave emission models (Invited)

    Science.gov (United States)

    Langlois, A.; Royer, A.; Montpetit, B.; Roy, A.; Derksen, C.

    2010-12-01

    Snow geophysical and thermophysical properties are known to be sensitive to climate variability and change and are of primary importance for hydrological and climatological processes in northern regions. Specifically, spatial and temporal variations of snow extent and thickness are good indicators of climate variability and change, and better tools are required to assess those changes from space. Numerous studies have looked at the linkages between passive microwave brightness temperatures (Tb) and snow thickness and water equivalent (SWE), but lingering uncertainties remain with regards to the effect of snow grain metamorphism on the microwave emission. Snow grains play an important role in the scattering mechanisms, but the lack of objectivity and repeatability in the measurement of snow grain morphology highlights the need for improved observations in order to fully exploit passive microwave radiometry. This work presents an innovative approach to measure and better define snow grains through accurate measurements of specific surface area (SSA) using near-infrared photography at 715 nm and laser measurements at 1310 nm. The relationship between infrared reflectance and snow grain morphology parameters measured from directional lighting photographs is also investigated. Using the theoretical snow albedo model of Kokhanovsky and Zege (2004), vertical SSA profiles are derived and coupled to snow thermodynamic and microwave emission models (SNOWPACK and MEMLS). Measurements of snow properties and microwave emission at 19 and 37 GHz were performed over a transect of 2 000 km in northerneastern Canada, from the dense boreal forest to arctic tundra. A series of plot-scale observations were performed every 40 km. Results show that with proper assessment of snow grains, simulations of brightness temperatures are improved when compared to field measurements from airborne passive microwave radiometers.

  7. Airborne Carbon Dioxide Laser Absorption Spectrometer for IPDA Measurements of Tropospheric CO2: Recent Results

    Science.gov (United States)

    Spiers, Gary D.; Menzies, Robert T.

    2008-01-01

    The National Research Council's decadal survey on Earth Science and Applications from Space[1] recommended the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission for launch in 2013-2016 as a logical follow-on to the Orbiting Carbon Observatory (OCO) which is scheduled for launch in late 2008 [2]. The use of a laser absorption measurement technique provides the required ability to make day and night measurements of CO2 over all latitudes and seasons. As a demonstrator for an approach to meeting the instrument needs for the ASCENDS mission we have developed the airborne Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) which uses the Integrated Path Differential Absorption (IPDA) Spectrometer [3] technique operating in the 2 micron wavelength region.. During 2006 a short engineering checkout flight of the CO2LAS was conducted and the results presented previously [4]. Several short flight campaigns were conducted during 2007 and we report results from these campaigns.

  8. Derivation of Cumulus Cloud Dimensions and Shape from the Airborne Measurements by the Research Scanning Polarimeter

    Science.gov (United States)

    Alexandrov, Mikhail D.; Cairns, Brian; Emde, Claudia; Ackerman, Andrew S.; Ottaviani, Matteo; Wasilewski, Andrzej P.

    2016-01-01

    The Research Scanning Polarimeter (RSP) is an airborne instrument, whose measurements have been extensively used for retrievals of microphysical properties of clouds. In this study we show that for cumulus clouds the information content of the RSP data can be extended by adding the macroscopic parameters of the cloud, such as its geometric shape, dimensions, and height above the ground. This extension is possible by virtue of the high angular resolution and high frequency of the RSP measurements, which allow for geometric constraint of the cloud's 2D cross section between a number of tangent lines of view. The retrieval method is tested on realistic 3D radiative transfer simulations and applied to actual RSP data.

  9. Mapping methane sources and emissions over California from direct airborne flux and VOC source tracer measurements

    Science.gov (United States)

    Guha, A.; Misztal, P. K.; Peischl, J.; Karl, T.; Jonsson, H. H.; Woods, R. K.; Ryerson, T. B.; Goldstein, A. H.

    2013-12-01

    Quantifying the contributions of methane (CH4) emissions from anthropogenic sources in the Central Valley of California is important for validation of the statewide greenhouse gas (GHG) inventory and subsequent AB32 law implementation. The state GHG inventory is largely based on activity data and emission factor based estimates. The 'bottom-up' emission factors for CH4 have large uncertainties and there is a lack of adequate 'top-down' measurements to characterize emission rates. Emissions from non-CO2 GHG sources display spatial heterogeneity and temporal variability, and are thus, often, poorly characterized. The Central Valley of California is an agricultural and industry intensive region with large concentration of dairies and livestock operations, active oil and gas fields and refining operations, as well as rice cultivation all of which are known CH4 sources. In order to gain a better perspective of the spatial distribution of major CH4 sources in California, airborne measurements were conducted aboard a Twin Otter aircraft for the CABERNET (California Airborne BVOC Emissions Research in Natural Ecosystems Transects) campaign, where the driving research goal was to understand the spatial distribution of biogenic VOC emissions. The campaign took place in June 2011 and encompassed over forty hours of low-altitude and mixed layer airborne CH4 and CO2 measurements alongside coincident VOC measurements. Transects during eight unique flights covered much of the Central Valley and its eastern edge, the Sacramento-San Joaquin delta and the coastal range. We report direct quantification of CH4 fluxes using real-time airborne Eddy Covariance measurements. CH4 and CO2 were measured at 1-Hz data rate using an instrument based on Cavity Ring Down Spectroscopy (CRDS) along with specific VOCs (like isoprene, methanol, acetone etc.) measured at 10-Hz using Proton Transfer Reaction Mass Spectrometer - Eddy Covariance (PTRMS-EC) flux system. Spatially resolved eddy covariance

  10. Measurements of Ultra-fine and Fine Aerosol Particles over Siberia: Large-scale Airborne Campaigns

    Science.gov (United States)

    Arshinov, Mikhail; Paris, Jean-Daniel; Stohl, Andreas; Belan, Boris; Ciais, Philippe; Nédélec, Philippe

    2010-05-01

    In this paper we discuss the results of in-situ measurements of ultra-fine and fine aerosol particles carried out in the troposphere from 500 to 7000 m in the framework of several International and Russian State Projects. Number concentrations of ultra-fine and fine aerosol particles measured during intensive airborne campaigns are presented. Measurements carried over a great part of Siberia were focused on particles with diameters from 3 to 21 nm to study new particle formation in the free/upper troposphere over middle and high latitudes of Asia, which is the most unexplored region of the Northern Hemisphere. Joint International airborne surveys were performed along the following routes: Novosibirsk-Salekhard-Khatanga-Chokurdakh-Pevek-Yakutsk-Mirny-Novosibirsk (YAK-AEROSIB/PLARCAT2008 Project) and Novosibirsk-Mirny-Yakutsk-Lensk-Bratsk-Novosibirsk (YAK-AEROSIB Project). The flights over Lake Baikal was conducted under Russian State contract. Concentrations of ultra-fine and fine particles were measured with automated diffusion battery (ADB, designed by ICKC SB RAS, Novosibirsk, Russia) modified for airborne applications. The airborne ADB coupled with CPC has an additional aspiration unit to compensate ambient pressure and changing flow rate. It enabled to classify nanoparticles in three size ranges: 3-6 nm, 6-21 nm, and 21-200 nm. To identify new particle formation events we used similar specific criteria as Young et al. (2007): (1) N3-6nm >10 cm-3, (2) R1=N3-6/N621 >1 and R2=N321/N21200 >0.5. So when one of the ratios R1 or R2 tends to decrease to the above limits the new particle formation is weakened. It is very important to notice that space scale where new particle formation was observed is rather large. All the events revealed in the FT occurred under clean air conditions (low CO mixing ratios). Measurements carried out in the atmospheric boundary layer over Baikal Lake did not reveal any event of new particle formation. Concentrations of ultra

  11. Airborne measurements of condensation nuclei and cloud condensation nuclei above the alpine foothills

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, B. [Inst. for Meteorology and Geophysics, Univ. of Frankfurt (Germany); Georgii, H.W. [Inst. for Meteorology and Geophysics, Univ. of Frankfurt (Germany)

    1994-11-01

    During the Cloud Experiment OberPfaffenhofen And TRAnsport (CLEOPATRA) in the summer 1992 airborne measurements of cloud condensation nuclei (CCN) and concentrations of condensation nuclei (CN) or total particle concentration have been determined. Flights were made in convective as well as in stratiform clouds. Enhancement of particle concentrations in the vicinity of clouds was observed in some but not all cases. Conditions pertaining to enhanced concentrations are examined. (orig.) [Deutsch] Im Sommer 1992 wurden im Rahmen des CLoud Experiment OberPfaffenhofen And TRAnsport (CLEOPATRA) Flugzeugmessungen von Wolkenkondensationskernen (CCN) und Kondensationskernen (CN) durchgefuehrt. Bei Fluegen in konvektiven und stratiformen Wolken wurde ein Anstieg von Partikeln im Wolkenrandbereich gemessen. Dieser Anstieg konnte allerdings nicht in allen Faellen beobachtet werden und war abhaengig von den Umgebungsbedingungen. (orig.)

  12. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    Science.gov (United States)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; Ponsardin, Patrick; Hueser, Alene W.

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  13. A new method for GPS-based wind speed determinations during airborne volcanic plume measurements

    Science.gov (United States)

    Doukas, Michael P.

    2002-01-01

    Begun nearly thirty years ago, the measurement of gases in volcanic plumes is today an accepted technique in volcano research. Volcanic plume measurements, whether baseline gas emissions from quiescent volcanoes or more substantial emissions from volcanoes undergoing unrest, provide important information on the amount of gaseous output of a volcano to the atmosphere. Measuring changes in gas emission rates also allows insight into eruptive behavior. Some of the earliest volcanic plume measurements of sulfur dioxide were made using a correlation spectrometer (COSPEC). The COSPEC, developed originally for industrial pollution studies, is an upward-looking optical spectrometer tuned to the ultraviolet absorption wavelength of sulfur dioxide (Millán and Hoff, 1978). In airborne mode, the COSPEC is mounted in a fixed-wing aircraft and flown back and forth just underneath a volcanic plume, perpendicular to the direction of plume travel (Casadevall and others, 1981; Stoiber and others, 1983). Similarly, for plumes close to the ground, the COSPEC can be mounted in an automobile and driven underneath a plume if a suitable road system is available (Elias and others, 1998). The COSPEC can also be mounted on a tripod and used to scan a volcanic plume from a fixed location on the ground, although the effectiveness of this configuration declines with distance from the plume (Kyle and others, 1990). In the 1990’s, newer airborne techniques involving direct sampling of volcanic plumes with infrared spectrometers and electrochemical sensors were developed in order to measure additional gases such as CO2 and H2S (Gerlach and others, 1997; Gerlach and others, 1999; McGee and others, 2001). These methods involve constructing a plume cross-section from several measurement traverses through the plume in a vertical plane. Newer instruments such as open-path Fourier transform infrared (FTIR) spectrometers are now being used to measure the gases in volcanic plumes mostly from fixed

  14. Radiometric consistency assessment of hyperspectral infrared sounders

    OpenAIRE

    Wang, L.; Y. Han; Jin, X.; Y. Chen; D. A. Tremblay

    2015-01-01

    The radiometric and spectral consistency among the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) is fundamental for the creation of long-term infrared (IR) hyperspectral radiance benchmark datasets for both inter-calibration and climate-related studies. In this study, the CrIS radiance measurements on Suomi National Polar-orbiting Partnership (SNPP) satellite are directly com...

  15. Potential scientific research which will benefit from an airborne Doppler lidar measurement system

    Science.gov (United States)

    Frost, W.

    1980-01-01

    Areas of research which can be significantly aided by the Doppler lidar airborne system are described. The need for systematic development of the airborne Doppler lidar is discussed. The technology development associated with the systematic development of the system will have direct application to satellite systems for which the lidar also promises to be an effective instrument for atmospheric research.

  16. Remote estimation of canopy nitrogen content in winter wheat using airborne hyperspectral reflectance measurements

    Science.gov (United States)

    Zhou, Xianfeng; Huang, Wenjiang; Kong, Weiping; Ye, Huichun; Luo, Juhua; Chen, Pengfei

    2016-11-01

    Timely and accurate assessment of canopy nitrogen content (CNC) provides valuable insight into rapid and real-time nitrogen status monitoring in crops. A semi-empirical approach based on spectral index was extensively used for nitrogen content estimation. However, in many cases, due to specific vegetation types or local conditions, the applicability and robustness of established spectral indices for nitrogen retrieval were limited. The objective of this study was to investigate the optimal spectral index for winter wheat (Triticum aestivum L.) CNC estimation using Pushbroom Hyperspectral Imager (PHI) airborne hyperspectral data. Data collected from two different field experiments that were conducted during the major growth stages of winter wheat in 2002 and 2003 were used. Our results showed that a significant linear relationship existed between nitrogen and chlorophyll content at the canopy level, and it was not affected by cultivars, growing conditions and nutritional status of winter wheat. Nevertheless, it varied with growth stages. Periods around heading stage mainly worsened the relationship and CNC estimation, and CNC assessment for growth stages before and after heading could improve CNC retrieval accuracy to some extent. CNC assessment with PHI airborne hyperspectra suggested that spectral indices based on red-edge band including narrowband and broadband CIred-edge, NDVI-like and ND705 showed convincing results in CNC retrieval. NDVI-like and ND705 were sensitive to detect CNC changes less than 5 g/m2, narrowband and broadband CIred-edge were sensitive to a wide range of CNC variations. Further evaluation of CNC retrieval using field measured hyperspectra indicated that NDVI-like was robust and exhibited the highest accuracy in CNC assessment, and spectral indices (CIred-edge and CIgreen) that established on narrow or broad bands showed no obvious difference in CNC assessment. Overall, our study suggested that NDVI-like was the optimal indicator for winter

  17. Airborne gamma ray measurements conducted during an international trial in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, D.C.W.; Allyson, J.D.; McConville, P.; Murphy, S.; Smith, J. [Scottish Univ. Research and Reactor Centre, Glasgow, Scotland (United Kingdom)

    1997-12-31

    The Scottish Universities Research and Reactor Centre (SURRC) contributed to the Resume 95 exercise by developing the calibration site at Vesivehmaa, and by participating in the airborne gamma spectrometry (AGS) part of the study. This paper summarises the airborne survey results from the SURRC team. The AGS tasks included fallout mapping of a 6x3 km area in central Finland with nominal 150 m line spacing, and a time constrained search for an undisclosed number of hidden radioactive sources. Measurements at the calibration site were also taken to provide a basis for traceable cross comparison between each teams` quantification procedures at a single, well characterised, location. A full set of calibrated maps of Chernobyl deposition and natural radionuclides, together with overlays corresponding to topography, roads, rivers and lakes were finished during the survey and displayed at the end of the exercise. The main survey area (Area II) was found to have a mean {sup 137}Cs deposition of 64.4{+-}24.4 kBq m{sup -2}, based on the calibration appropriate to the Vesivehmaa site. The major point sources in Area III were discovered, although the collimated {sup 137}Cs and {sup 60}Co sources were not. Retrospective analysis has shown that sources Cs3 and Cs4 were not significantly above local environmental levels in our data set; whereas the low activity {sup 60}Co source Co3 was detected. This confirms the improved sensitivity of AGS source searches to nuclides which are not already present as environmental contaminants. The collimated {sup 192}Ir was found both using scattered radiation and from full energy lines detected with a Ge detector. The {sup 99m}Tc was located using a ratio of low energy integrals from the NaI spectra. (EG). 28 refs.

  18. Atmospheric dispersion of airborne pollen evidenced by near-surface and columnar measurements in Barcelona, Spain

    Science.gov (United States)

    Sicard, Michaël.; Izquierdo, Rebeca; Jorba, Oriol; Alarcón, Marta; Belmonte, Jordina; Comerón, Adolfo; De Linares, Concepción; Baldasano, José Maria

    2016-10-01

    Hourly measurements of pollen near-surface concentration and lidar-derived profiles of volume and particle depolarization ratios during a 5-day pollination event observed in Barcelona, Spain, between 27 - 31 March, 2015, are presented. Maximum hourly pollen concentrations of 4700 and 1200 m-3 h-1 were found for Platanus and Pinus, respectively, which represented together more than 80 % of the total pollen. . The pollen concentration was found positively correlated with temperature (correlation coefficient, r, of 0.95) and wind speed (r = 0.82) and negatively correlated with relative humidity (r = -0.18). The ground concentration shows a clear diurnal cycle although pollen activity is also detected during nighttime in three occasions and is clearly associated with periods of strong wind speeds. Everyday a clear diurnal cycle caused by the vertical transport of the airborne pollen was visible on the lidar-derived profiles of the volume depolarization ratio with maxima usually reached between 12 and 15 UT. On average the volume depolarization ratios in the pollen plume ranged between 0.08 and 0.22. Except in the cases of nocturnal pollen activity, the correlation coefficients between volume depolarization ratio and near-surface concentration are high (>0.68). The dispersion of the Platanus and Pinus in the atmosphere was simulated with the Nonhydrostatic Multiscale Meteorological Model on the B grid at the Barcelona Supercomputing Center with a newly developed Chemical Transport Model (NMMB/BSC-CTM). Model near-surface daily pollen concentrations were compared to our observations at two sites: in Barcelona and Bellaterra (12 km NE of Barcelona). Model hourly pollen concentrations were compared to our observations in Barcelona. Better results are obtained for Pinus than for Platanus. Guidelines are proposed to improve the dispersion of airborne pollen by atmospheric models.

  19. Airborne measurements of fission product fall-out. An investigation of possibilities and problems

    Energy Technology Data Exchange (ETDEWEB)

    Hovgaard, J.; Korsbech, U.

    1992-12-01

    During 1993 the Danish Emergency Management Agency will install an airborne {gamma}-ray detector system for area survey of contamination with radioactive nuclides - primarily fission products that may be released during a heavy accident at a nuclear power plant or from accidents during transport of radioactive material. The equipment is based on 16 liter NaI(TI) crystals and multichannel analysers from Exploranium (Canada). A preliminary investigation of the possibilities for detection of low and high level contamination - and the problems that may be expected during use of the equipment, and during interpretation of the measured data, is described. Several days after reactor shut-down some of the nuclides can be identified directly from the measured spectrum, and contamination levels may be determined within a factor two. After several weeks, most fission products have decayed. Concentrations and exposure rates can be determined with increasing accuracy as time passes. Approximate calibration of the equipment for measurements of surface contamination and natural radioactivity can be performed in the laboratory. Further checks of equipment should include accurate measurements of the spectrum resolution. Detectors should be checked individually, and all together. Further control of dead time and pulse pile-up should be performed. Energy calibration, electronics performance and data equipment should be tested against results from the original calibration. (AB).

  20. Evaluation of ozone column amount from the solar backscattering spectra measured with the Airborne-OPUS and error analysis

    Science.gov (United States)

    Nakata, T.; Kita, K.; Suzuki, M.; Shiomi, K.; Okumura, S.; Ogawa, T.

    Satellite observation is one of the best methods to monitor the increase of atmospheric pollutants including tropospheric ozone especially due to industrial activities in Asia It is significant to investigate the satellite sensor and data processing algorithm for developing next generation monitoring system The Airborne Ozone and Pollution measuring Ultraviolet Spectrometer Airborne-OPUS sensor was developed by JAXA EORC to study the solar ultraviolet backscattering measurement of ozone nitrogen dioxide sulfur dioxide and some other species from a satellite In this study we deduced slant column amounts of ozone from the Airborne-OPUS data during an aircraft observation and estimated analytical errors The Airborne-OPUS which consists of a compact spectrometer Jobin-Yvon CP-200 thermoelectric-cooled CCD SpectraVideo SV11C and optics measures backward-scattered ultraviolet spectra between 300 and 455 nm with a spectral resolution of 0 9 nm FWHM from an aircraft In this study the spectra between 315 and 325 nm obtained during Pacific Exploration and Asia and Continental Emission phase-A campaign Parrish et al 2004 in January 2002 were analyzed to evaluate the ozone column amount In this analysis the absorption by ozone the scattering by atmospheric molecules and the Ring effect were estimated from the ratios between the target spectra derived when the solar zenith angle SZA exceeded about 60o and the reference spectra when SZA was minimum at the same day The scattering by aerosols surface albedo and artificial continuous

  1. Aspects regarding vertical distribution of greenhouse gases resulted from in situ airborne measurements

    Science.gov (United States)

    Boscornea, Andreea; Sorin Vajaiac, Nicolae; Ardelean, Magdalena; Benciu, Silviu Stefan

    2016-04-01

    In the last decades the air quality, as well as other components of the environment, has been severely affected by uncontrolled emissions of gases - most known as greenhouse gases (GHG). The main role of GHG is given by the direct influence on the Earth's radiative budget, through Sun light scattering and indirectly by participating in cloud formation. Aldo, many efforts were made for reducing the high levels of these pollutants, e.g., International Panel on Climate Change (IPCC) initiatives, Montreal Protocol, etc., this issue is still open. In this context, this study aims to present several aspects regarding the vertical distribution in the lower atmosphere of some greenhouse gases: water vapours, CO, CO2 and methane. Bucharest and its metropolitan area is one of the most polluted regions of Romania due to high traffic. For assessing the air quality of this area, in situ measurements of water vapours, CO, CO2 and CH4 were performed using a Britten Norman Islander BN2 aircraft equipped with a Picarro gas analyser, model G2401-mc, able to provide precised, continuous and accurate data in real time. This configuration consisting in aircraft and airborne instruments was tested for the first time in Romania. For accomplishing the objectives of the measurement campaign, there were proposed several flight strategies which included vertical and horizontal soundings from 105 m to 3300 m and vice-versa around Clinceni area (20 km West of Bucharest). During 5 days (25.08.2015 - 31.08.2015) were performed 7 flights comprising 10h 18min research flight hours. The measured concentrations of GHS ranged between 0.18 - 2.2 ppm for water vapours with an average maximum value of 1.7 ppm, 0.04 - 0.53 ppm for CO with an average maximum value of 0.21 ppm, 377 - 437.5 ppm for CO2 with an average maximum value of 397 ppm and 1.7 - 6.1 ppm for CH4 with an average maximum value of 2.195 ppm. It was noticed that measured concentrations of GHG are decreasing for high values of sounding

  2. Measure of the temperature-depth profile by and S band radiometric receiver for biomedical applications; Mesure du profil de temperature en profondeur par un recepteur radiometrique a bande S pour applications biomedicales

    Energy Technology Data Exchange (ETDEWEB)

    Bri, S. [Universite My, Lab. de Genie Electrique de Meknes (LGEM), Dept. Genie Electrique, Meknes (Morocco); Bri, S.; Zenkouar, L.; Bellarbi, L. [Laboratoire d' Electronique et Communications (LEC), EMI, Rabat (Morocco); Saadi, A.; Habibi, M. [Universite Ibn Tofail, Lab. d' Automatique et de Micro-ondes (LAMO), Faculte des Sciences, Dept. de Physique, Kenitra (Morocco); Mamouni, A. [Lille-1 Univ., IEMN, UMR CNRS 8520, 59 - Villeneuve-d' Ascq (France)

    2004-04-01

    The authors present a method for measuring the temperature-depth profile in a lossy material by applying Kalman algorithm to radiometric signals. The method employs a correlation microwave radiometer. It uses both short-range weighting functions and the delay times of the correlator. An experimental verification of this new thermal inversion approach is presented. The thermal noise is received in the microwave domain, by a S band radiometer by using an automatic experimental bench. A feature of this method is that it can be used in biomedical applications. (author)

  3. Regular, Fast and Accurate Airborne In-Situ Methane Measurements Around the Tropopause

    Science.gov (United States)

    Dyroff, Christoph; Rauthe-Schöch, Armin; Schuck, Tanja J.; Zahn, Andreas

    2013-04-01

    We present a laser spectrometer for automated monthly measurements of methane (CH4) mixing ratios aboard the CARIBIC passenger aircraft. The instrument is based on a commercial fast methane analyzer (FMA, Los Gatos Res.), which was modified for fully unattended employment. A laboratory characterization was performed and the results with emphasis on the precision, cross sensitivity to H2O, and accuracy are presented. An in-flight calibration strategy is described, that utilizes CH4 measurements obtained from flask samples taken during the same flights. By statistical comparison of the in-situ measurements with the flask samples we derive a total uncetrainty estimate of ~ 3.85 ppbv (1?) around the tropopause, and ~ 12.4 ppbv (1?) during aircraft ascent and descent. Data from the first two years of airborne operation are presented that span a large part of the northern hemispheric upper troposphere and lowermost stratosphere, with occasional crossings of the tropics on flights to southern Africa. With its high spatial resolution and high accuracy this data set is unprecedented in the highly important atmospheric layer of the tropopause.

  4. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    Directory of Open Access Journals (Sweden)

    J.-C. Raut

    2007-07-01

    Full Text Available A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF, enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL for the ACRI is close to 1.51(±0.02–i0.017(±0.003 at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  5. Wildfire smoke in the Siberian Arctic in summer: source characterization and plume evolution from airborne measurements

    Directory of Open Access Journals (Sweden)

    P. Ciais

    2009-12-01

    Full Text Available We present airborne measurements of carbon dioxide (CO2, carbon monoxide (CO, ozone (O3, equivalent black carbon (EBC and ultra fine particles over North-Eastern Siberia in July 2008 performed during the YAK-AEROSIB/POLARCAT experiment. During a "golden day" (11 July 2008 a number of biomass burning plumes were encountered with CO mixing ratio enhancements of up to 500 ppb relative to a background of 90 ppb. Number concentrations of aerosols in the size range 3.5–200 nm peaked at 4000 cm−3 and the EBC content reached 1.4 μg m−3. These high concentrations were caused by forest fires in the vicinity of the landing airport in Yakutsk where measurements in fresh smoke could be made during the descent. We estimate a combustion efficiency of 90 ± 3% based on CO and CO2 measurements and a CO emission factor of 65.5 ± 10.8 g CO per kilogram of dry matter burned. This suggests a potential increase in the average northern hemispheric CO mixing ratio of 3.0–7.2 ppb per million hectares of Siberian forest burned. For BC, we estimate an emission factor of 0.52 ± 0.07 g BC kg−1, comparable to values reported in the literature. The emission ratio of ultra-fine particles (3.5–200 nm was 26 cm−3 (ppb CO−1, consistent with other airborne studies.

    The transport of identified biomass burning plumes was investigated using the FLEXPART Lagrangian model. Based on sampling of wildfire plumes from the same source but with different atmospheric ages derived from FLEXPART, we estimate that the e-folding lifetimes of EBC and ultra fine particles (between 3.5 and 200 nm in size against removal and growth processes are 5.1 and 5.5 days respectively, supporting lifetime estimates used in various modelling studies.

  6. Airborne Dust Cloud Measurements at the INL National Security Test Range

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Abbott; Norm Stanley; Larry Radke; Charles Smeltzer

    2007-09-01

    On July 11, 2007, a surface, high-explosive test (<20,000 lb TNT-equivalent) was carried out at the National Security Test Range (NSTR) on the Idaho National Laboratory (INL) Site. Aircraft-mounted rapid response (1-sec) particulate monitors were used to measure airborne PM-10 concentrations directly in the dust cloud and to develop a PM-10 emission factor that could be used for subsequent tests at the NSTR. The blast produced a mushroom-like dust cloud that rose approximately 2,500–3,000 ft above ground level, which quickly dissipated (within 5 miles of the source). In general, the cloud was smaller and less persistence than expected, or that might occur in other areas, likely due to the coarse sand and subsurface conditions that characterize the immediate NSTR area. Maximum short time-averaged (1-sec) PM-10 concentrations at the center of the cloud immediately after the event reached 421 µg m-3 but were rapidly reduced (by atmospheric dispersion and fallout) to near background levels (~10 µg m-3) after about 15 minutes. This occurred well within the INL Site boundary, about 8 km (5 miles) from the NSTR source. These findings demonstrate that maximum concentrations in ambient air beyond the INL Site boundary (closest is 11.2 km from NSTR) from these types of tests would be well within the 150 µg m-3 24-hour National Ambient Air Quality Standards for PM-10. Aircraft measurements and geostatistical techniques were used to successfully quantify the initial volume (1.64E+9 m3 or 1.64 km3) and mass (250 kg) of the PM-10 dust cloud, and a PM-10 emission factor (20 kg m-3 crater soil volume) was developed for this specific type of event at NSTR. The 250 kg of PM-10 mass estimated from this experiment is almost seven-times higher than the 36 kg estimated for the environmental assessment (DOE-ID 2007) using available Environmental Protection Agency (EPA 1995) emission factors. This experiment demonstrated that advanced aircraft-mounted instruments operated by

  7. Snow thickness retrieval using SMOS satellite data: Comparison with airborne IceBridge and buoy measurements

    Science.gov (United States)

    Maaß, N.; Kaleschke, L.; Tian-Kunze, X.

    2015-12-01

    The passive microwave mission SMOS (Soil Moisture and Ocean Salinity) provides daily coverage of the polar regions and its data have been used to retrieve thin sea ice thickness up to about one meter. In addition, there has been an attempt to retrieve snow thickness over thick Arctic multi-year ice, which is a crucial parameter for the freeboard-based estimation of (thick) sea ice thickness from lidar and radar altimetry. SMOS provides measurements at a frequency of 1.4 GHz (L-band) at horizontal and vertical polarization for a range of incidence angles (0 to 60°). The retrieval of ice or snow parameters from SMOS measurements is based on an emission model that describes the 1.4 GHz brightness temperature of (snow-covered) sea ice as a function of the ice and snow thicknesses and the permittivities of these media, which are mainly determined by ice temperature and salinity and snow density, respectively. In the first attempts to retrieve snow thickness from SMOS data, these parameters were assumed to be constant in the emission model, and the resulting maps were compared with airborne ice and snow thickness measurements taken during NASA's Operation IceBridge mission in spring 2012. The present approach to produce SMOS snow thickness maps is more elaborate. For example, available information on the ice surface temperature from MODIS (MODerate resolution Imaging Spectroradiometer) satellite images or from the IceBridge campaign itself are used, and the ice in the retrieval model is described by temperature and salinity profiles instead of using bulk values. As a first step we have produced (winter/spring) snow thickness maps of the Arctic, from 3-day-averages up to monthly means, using the available SMOS data from 2010 on. Here, we show how our spatial snow thickness distributions compare with IceBridge campaign data in the western Arctic from spring 2011 to 2015. In addition, we show how the temporal evolution of SMOS-retrieved snow thickness compares with snow

  8. How Cities Breathe: Ground-Referenced, Airborne Hyperspectral Imaging Precursor Measurements To Space-Based Monitoring

    Science.gov (United States)

    Leifer, Ira; Tratt, David; Quattrochi, Dale; Bovensmann, Heinrich; Gerilowski, Konstantin; Buchwitz, Michael; Burrows, John

    2013-01-01

    the complex and often aerosol laden, humid, urban microclimates, atmospheric transport and profile monitoring, spatial resolution, temporal cycles (diurnal and seasonal which involve interactions with the surrounding environment diurnal and seasonal cycles) and representative measurement approaches given traffic realities. Promising approaches incorporate contemporaneous airborne remote sensing and in situ measurements, nocturnal surface surveys, with ground station measurement

  9. Airborne Lidar and Radar Measurments In and Around Greenland CryoVEx 2006

    DEFF Research Database (Denmark)

    Stenseng, Lars; Hvidegaard, Sine Munk; Skourup, Henriette;

    This report describes the airborne part of the fieldwork performed as part of the CryoSat Validation Experiment (CryoVEx) 2006 and the processing of the collected dataset. The airborne part of the campaign was carried out by the Danish National Space Center (DNSC) using a Twin-Otter chartered from...... of overflights of corner reflectors both on sea ice and inland ice will aid this understanding and serve the calibration of ASIRAS. The airborne part of the CryoVEx 2006 campaign has successfully been carried out by DNSC during the period April 18 to May 18 and the gathered datasets are now stored and secured...

  10. HONO emission and production determined from airborne measurements over the Southeast U.S.

    Science.gov (United States)

    Neuman, J. A.; Trainer, M.; Brown, S. S.; Min, K.-E.; Nowak, J. B.; Parrish, D. D.; Peischl, J.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Veres, P. R.

    2016-08-01

    The sources and distribution of tropospheric nitrous acid (HONO) were examined using airborne measurements over the Southeast U.S. during the Southeast Nexus Experiment in June and July 2013. HONO was measured once per second using a chemical ionization mass spectrometer on the NOAA WP-3D aircraft to assess sources that affect HONO abundance throughout the planetary boundary layer (PBL). The aircraft flew at altitudes between 0.12 and 6.4 km above ground level on 18 research flights that were conducted both day and night, sampling emissions from urban and power plant sources that were transported in the PBL. At night, HONO mixing ratios were greatest in plumes from agricultural burning, where they exceeded 4 ppbv and accounted for 2-14% of the reactive nitrogen emitted by the fires. The HONO to carbon monoxide ratio in these plumes from flaming stage fires ranged from 0.13 to 0.52%. Direct HONO emissions from coal-fired power plants were quantified using measurements at night, when HONO loss by photolysis was absent. These direct emissions were often correlated with total reactive nitrogen with enhancement ratios that ranged from 0 to 0.4%. HONO enhancements in power plant plumes measured during the day were compared with a Lagrangian plume dispersion model, showing that HONO produced solely from the gas phase reaction of OH with NO explained the observations. Outside of recently emitted plumes from known combustion sources, HONO mixing ratios measured several hundred meters above ground level were indistinguishable from zero within the 15 parts per trillion by volume measurement uncertainty. The results reported here do not support the existence of a ubiquitous unknown HONO source that produces significant HONO concentrations in the lower troposphere.

  11. Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission

    Science.gov (United States)

    Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jiamping,; Kawa, Stephan R.; Weaver, Clark J.

    2011-01-01

    We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.

  12. Taking Stock of Circumboreal Forest Carbon With Ground Measurements, Airborne and Spaceborne LiDAR

    Science.gov (United States)

    Neigh, Christopher S. R.; Nelson, Ross F.; Ranson, K. Jon; Margolis, Hank A.; Montesano, Paul M.; Sun, Guoqing; Kharuk, Viacheslav; Naesset, Erik; Wulder, Michael A.; Andersen, Hans-Erik

    2013-01-01

    The boreal forest accounts for one-third of global forests, but remains largely inaccessible to ground-based measurements and monitoring. It contains large quantities of carbon in its vegetation and soils, and research suggests that it will be subject to increasingly severe climate-driven disturbance. We employ a suite of ground-, airborne- and space-based measurement techniques to derive the first satellite LiDAR-based estimates of aboveground carbon for the entire circumboreal forest biome. Incorporating these inventory techniques with uncertainty analysis, we estimate total aboveground carbon of 38 +/- 3.1 Pg. This boreal forest carbon is mostly concentrated from 50 to 55degN in eastern Canada and from 55 to 60degN in eastern Eurasia. Both of these regions are expected to warm >3 C by 2100, and monitoring the effects of warming on these stocks is important to understanding its future carbon balance. Our maps establish a baseline for future quantification of circumboreal carbon and the described technique should provide a robust method for future monitoring of the spatial and temporal changes of the aboveground carbon content.

  13. Tracking a maneuvering target in clutter with out-of-sequence measurements for airborne radar

    Institute of Scientific and Technical Information of China (English)

    Weihua Wu; Jing Jiang; Yang Wan

    2015-01-01

    There are many proposed optimal or suboptimal al-gorithms to update out-of-sequence measurement(s) (OoSM(s)) for linear-Gaussian systems, but few algorithms are dedicated to track a maneuvering target in clutter by using OoSMs. In order to address the nonlinear OoSMs obtained by the airborne radar located on a moving platform from a maneuvering target in clut-ter, an interacting multiple model probabilistic data association (IMMPDA) algorithm with the OoSM is developed. To be practical, the algorithm is based on the Earth-centered Earth-fixed (ECEF) coordinate system where it considers the effect of the platform’s attitude and the curvature of the Earth. The proposed method is validated through the Monte Carlo test compared with the perfor-mance of the standard IMMPDA algorithm ignoring the OoSM, and the conclusions show that using the OoSM can improve the track-ing performance, and the shorter the lag step is, the greater degree the performance is improved, but when the lag step is large, the performance is not improved any more by using the OoSM, which can provide some references for engineering application.

  14. In situ real-time measurement of physical characteristics of airborne bacterial particles

    Science.gov (United States)

    Jung, Jae Hee; Lee, Jung Eun

    2013-12-01

    Bioaerosols, including aerosolized bacteria, viruses, and fungi, are associated with public health and environmental problems. One promising control method to reduce the harmful effects of bioaerosols is thermal inactivation via a continuous-flow high-temperature short-time (HTST) system. However, variations in bioaerosol physical characteristics - for example, the particle size and shape - during the continuous-flow inactivation process can change the transport properties in the air, which can affect particle deposition in the human respiratory system or the filtration efficiency of ventilation systems. Real-time particle monitoring techniques are a desirable alternative to the time-consuming process of microscopic analysis that is conventionally used in sampling and particle characterization. Here, we report in situ real-time optical scattering measurements of the physical characteristics of airborne bacteria particles following an HTST process in a continuous-flow system. Our results demonstrate that the aerodynamic diameter of bacterial aerosols decreases when exposed to a high-temperature environment, and that the shape of the bacterial cells is significantly altered. These variations in physical characteristics using optical scattering measurements were found to be in agreement with the results of scanning electron microscopy analysis.

  15. Airborne measurements of submicron aerosols across the coastline at Bhubaneswar during ICARB

    Indian Academy of Sciences (India)

    P Murugavel; V Gopalakrishnan; Vimlesh Pant; A K Kamra

    2008-07-01

    Airborne measurements of the number concentration and size distribution of aerosols from 13 to 700 nm diameter have been made at four vertical levels across a coastline at Bhubaneswar (20° 25′N, 85° 83′E) during the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) programme conducted in March–April 2006. The measurements made during the constant-level flights at 0.5, 1, 2 and 3 km altitude levels extend ∼100 km over land and ∼150km over ocean. Aerosol number concentrations vary from 2200 to 4500 cm-3 at 0.5 km level but are almost constant at ∼6000 cm-3 and ∼800 cm-3 at 2 and 3 km levels, respectively. At 1km level, aerosol number concentration shows a peak of 18,070 cm-3 around the coastline. Most of the aerosol size distribution curves at 0.5 km and 1 km levels are monomodal with a maxima at 110nm diameter which shifts to 70 nm diameter at 2 and 3 km levels. However, at the peak at 1 km level, number concentration has a bimodal distribution with an additional maximum appearing in nucleation mode. It is proposed that this maxima in nucleation mode at 1 km level may be due to the formation and transport of new particles from coastal regions.

  16. Technical Note: Characterisation of a DUALER instrument for the airborne measurement of peroxy radicals during AMMA 2006

    Directory of Open Access Journals (Sweden)

    D. Kartal

    2009-09-01

    Full Text Available A DUALER (dual-channel airborne peroxy radical chemical amplifier instrument has been developed and optimised for the airborne measurement of the total sum of peroxy radicals during the AMMA (African Monsoon Multidisciplinary Analyses measurement campaign which took place in Burkina Faso in August 2006. The innovative feature of the instrument is that both reactors are sampling simultaneously from a common pre-reactor nozzle while the whole system is kept at a constant pressure to ensure more signal stability and accuracy.

    Laboratory experiments were conducted to characterise the stability of the NO2 detector signal and the chain length with the pressure. The results show that airborne measurements using chemical amplification require constant pressure at the luminol detector. Wall losses of main peroxy radicals HO2 and CH3O2 were investigated. The chain length was experimentally determined for different ambient mixtures and compared with simulations performed by a chemical box model.

    The DUALER instrument was successfully mounted within the German DLR-Falcon. The analysis of AMMA data utilises a validation procedure based on the O3 mixing ratios simultaneously measured onboard. The validation and analysis procedure is illustrated by means of the data measured during the AMMA campaign. The detection limit and the accuracy of the ambient measurements are also discussed.

  17. The Cough Cylinder : A tool to study measures against airborne spread of (myco-) bacteria

    NARCIS (Netherlands)

    Driessche, K. van den; Marais, B.J.; Wattenberg, M.; Magis-Escurra, C.; Reijers, M.; Tuinman, I.L.; Boeree, M.J.; Soolingen, D. van; Groot, R. de; Cotton, M.F.

    2013-01-01

    BACKGROUND: 'Covering your cough' reduces droplet number, but its effect on airborne pathogen transmission is less clear. The World Health Organization specifically recommends cough etiquette to prevent the spread of Mycobacterium tuberculosis, but implementation is generally poor and evidence suppo

  18. Spatially explicit regionalization of airborne flux measurements using environmental response functions

    Directory of Open Access Journals (Sweden)

    S. Metzger

    2013-04-01

    Full Text Available The goal of this study is to characterize the sensible (H and latent (LE heat exchange for different land covers in the heterogeneous steppe landscape of the Xilin River catchment, Inner Mongolia, China. Eddy-covariance flux measurements at 50–100 m above ground were conducted in July 2009 using a weight-shift microlight aircraft. Wavelet decomposition of the turbulence data enables a spatial discretization of 90 m of the flux measurements. For a total of 8446 flux observations during 12 flights, MODIS land surface temperature (LST and enhanced vegetation index (EVI in each flux footprint are determined. Boosted regression trees are then used to infer an environmental response function (ERF between all flux observations (H, LE and biophysical (LST, EVI and meteorological drivers. Numerical tests show that ERF predictions covering the entire Xilin River catchment (≈3670 km2 are accurate to ≤18% (1 σ. The predictions are then summarized for each land cover type, providing individual estimates of source strength (36 W m−2 H −2, 46 W m−2 −2 and spatial variability (11 W m−2 H −2, 14 W m−2 LE −2 to a precision of ≤5%. Lastly, ERF predictions of land cover specific Bowen ratios are compared between subsequent flights at different locations in the Xilin River catchment. Agreement of the land cover specific Bowen ratios to within 12 ± 9% emphasizes the robustness of the presented approach. This study indicates the potential of ERFs for (i extending airborne flux measurements to the catchment scale, (ii assessing the spatial representativeness of long-term tower flux measurements, and (iii designing, constraining and evaluating flux algorithms for remote sensing and numerical modelling applications.

  19. Spectrally and Radiometrically Stable, Wideband, Onboard Calibration Source

    Science.gov (United States)

    Coles, James B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Porter, Michael D.; Green, Robert O.; Nolte, Scott H.; Hernandez, Marco A.; Knoll, Linley A.

    2013-01-01

    The Onboard Calibration (OBC) source incorporates a medical/scientific-grade halogen source with a precisely designed fiber coupling system, and a fiber-based intensity-monitoring feedback loop that results in radiometric and spectral stabilities to within less than 0.3 percent over a 15-hour period. The airborne imaging spectrometer systems developed at the Jet Propulsion Laboratory incorporate OBC sources to provide auxiliary in-use system calibration data. The use of the OBC source will provide a significant increase in the quantitative accuracy, reliability, and resulting utility of the spectral data collected from current and future imaging spectrometer instruments.

  20. Water Raman normalization of airborne laser fluorosensor measurements - A computer model study

    Science.gov (United States)

    Poole, L. R.; Esaias, W. E.

    1982-01-01

    The technique for normalizing airborne lidar measurements of chlorophyll fluoresence by the water Raman scattering signal is investigated for laser-excitation wavelengths of 480 and 532 nm using a semianalytic Monte Carlo methodology (SALMON). The signal-integration depth for chlorophyll fluorescence Z(90,F), is found to be insensitive to excitation wavelength and ranges from a maximum of 4.5 m in clearest waters to less than 1 m at a chlorophyll concentration of 20 microgram/liter. For excitation at 532 nm, the signal-integration depth for Raman scattering, Z(90,R), is comparable to Z(90,F). For excitation at 480 nm, Z(90,R) is four times as large as Z(90,F) in clearest waters but nearly equivalent at chlorophyll concentrations greater than 2-3 microgram/liter. Absolute signal levels are stronger with excitation at 480 nm than with excitation at 532 nm, but this advantage must be weighed against potential ambiguities resulting from different integration depths for the fluorescence and Raman scattering signals in clearer waters. To the precision of the simulations, Raman normalization produces effectively linear response to chlorophyll concentration for both excitation wavelengths.

  1. Composition measurements of the 1989 Arctic winter stratosphere by airborne infrared solar absorption spectroscopy

    Science.gov (United States)

    Toon, G. C.; Farmer, C. B.; Schaper, P. W.; Lowes, L. L.; Norton, R. H.

    1992-01-01

    The paper reports simultaneous measurements of the stratospheric burdens of H2O, HDO, OCS, CO2, O3, N2O, CO, CH4, CF2Cl2, CFCl3, CHF2Cl, C2H6, HCN, NO, NO2, HNO3, ClNO3, HOCl, HCl, and HF made by the JPL MkIV interferometer on board the NASA DC-8 aircraft during January and early February 1989 as part of the Airborne Arctic Stratosphere Experiment. Data were obtained on 11 flights at altitudes of up to 12 km over a geographic region covering the NE Atlantic Ocean, Iceland, and Greenland. Analyses of the chemically active gases reveal highly perturbed conditions within the vortex. The ClNO3 abundance was chemically enhanced near the edge of the vortex but was then depleted inside. NO2 was severely depleted inside the vortex. In contrast to Antarctica, H2O and HNO3 were both more abundant inside the vortex than outside. It is suggested that although the Arctic vortex did not get cold enough to produce any dehydration, or as vertically extensive denitrification as occurred in Antarctica, nevertheless, enough heterogeneous chemistry occurred to convert over 90 percent of the inorganic chlorine to active forms in the 14- to 27-km altitude range by early February 1989.

  2. Radiometric force in dusty plasmas

    CERN Document Server

    Ignatov, A M

    2000-01-01

    A radiofrequency glow discharge plasma, which is polluted with a certain number of dusty grains, is studied. In addition to various dusty plasma phenomena, several specific colloidal effects should be considered. We focus on radiometric forces, which are caused by inhomogeneous temperature distribution. Aside from thermophoresis, the role of temperature distribution in dusty plasmas is an open question. It is shown that inhomogeneous heating of the grain by ion flows results in a new photophoresis like force, which is specific for dusty discharges. This radiometric force can be observable under conditions of recent microgravity experiments.

  3. Emissions of volatile organic compounds inferred from airborne flux measurements over a megacity

    Directory of Open Access Journals (Sweden)

    T. Karl

    2009-01-01

    Full Text Available Toluene and benzene are used for assessing the ability to measure disjunct eddy covariance (DEC fluxes of Volatile Organic Compounds (VOC using Proton Transfer Reaction Mass Spectrometry (PTR-MS on aircraft. Statistically significant correlation between vertical wind speed and mixing ratios suggests that airborne VOC eddy covariance (EC flux measurements using PTR-MS are feasible. City-median midday toluene and benzene fluxes are calculated to be on the order of 14.1±4.0 mg/m2/h and 4.7±2.3 mg/m2/h, respectively. For comparison the adjusted CAM2004 emission inventory estimates toluene fluxes of 10 mg/m2/h along the footprint of the flight-track. Wavelet analysis of instantaneous toluene and benzene measurements during city overpasses is tested as a tool to assess surface emission heterogeneity. High toluene to benzene flux ratios above an industrial district (e.g. 10–15 g/g including the International airport (e.g. 3–5 g/g and a mean flux (concentration ratio of 3.2±0.5 g/g (3.9±0.3 g/g across Mexico City indicate that evaporative fuel and industrial emissions play an important role for the prevalence of aromatic compounds. Based on a tracer model, which was constrained by BTEX (BTEX– Benzene/Toluene/Ethylbenzene/m, p, o-Xylenes compound concentration ratios, the fuel marker methyl-tertiary-butyl-ether (MTBE and the biomass burning marker acetonitrile (CH3CN, we show that a combination of industrial, evaporative fuel, and exhaust emissions account for >87% of all BTEX sources. Our observations suggest that biomass burning emissions play a minor role for the abundance of BTEX compounds in the MCMA (2–13%.

  4. Using in situ airborne measurements to evaluate three cloud phase products derived from CALIPSO

    Science.gov (United States)

    Cesana, G.; Chepfer, H.; Winker, D.; Getzewich, B.; Cai, X.; Jourdan, O.; Mioche, G.; Okamoto, H.; Hagihara, Y.; Noel, V.; Reverdy, M.

    2016-05-01

    We compare the cloud detection and cloud phase determination of three independent climatologies based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) to airborne in situ measurements. Our analysis of the cloud detection shows that the differences between the satellite and in situ measurements mainly arise from three factors. First, averaging CALIPSO Level l data along track before cloud detection increases the estimate of high- and low-level cloud fractions. Second, the vertical averaging of Level 1 data before cloud detection tends to artificially increase the cloud vertical extent. Third, the differences in classification of fully attenuated pixels among the CALIPSO climatologies lead to differences in the low-level Arctic cloud fractions. In another section, we compare the cloudy pixels detected by colocated in situ and satellite observations to study the cloud phase determination. At midlatitudes, retrievals of homogeneous high ice clouds by CALIPSO data sets are very robust (more than 94.6% of agreement with in situ). In the Arctic, where the cloud phase vertical variability is larger within a 480 m pixel, all climatologies show disagreements with the in situ measurements and CALIPSO-General Circulation Models-Oriented Cloud Product (GOCCP) report significant undefined-phase clouds, which likely correspond to mixed-phase clouds. In all CALIPSO products, the phase determination is dominated by the cloud top phase. Finally, we use global statistics to demonstrate that main differences between the CALIPSO cloud phase products stem from the cloud detection (horizontal averaging, fully attenuated pixels) rather than the cloud phase determination procedures.

  5. Emissions of volatile organic compounds inferred from airborne flux measurements over a megacity

    Directory of Open Access Journals (Sweden)

    T. Karl

    2008-07-01

    Full Text Available Toluene and benzene are used for assessing the ability to measure disjunct eddy covariance (DEC fluxes of Volatile Organic Compounds (VOC using Proton Transfer Reaction Mass Spectrometry (PTR-MS on aircraft. Statistically significant correlation between vertical wind speed and mixing ratios suggests that airborne VOC eddy covariance (EC flux measurements using PTR-MS are feasible. City-average midday toluene and benzene fluxes are calculated to be on the order of 15.5±4.0 mg/m2/h and 4.7±2.3 mg/m2/h respectively. These values argue for an underestimation of toluene and benzene emissions in current inventories used for the Mexico City Metropolitan Area (MCMA. Wavelet analysis of instantaneous toluene and benzene measurements during city overpasses is tested as a tool to assess surface emission heterogeneity. High toluene to benzene flux ratios above an industrial district (e.g. 10–15 including the International airport (e.g. 3–5 and a mean flux (concentration ratio of 3.2±0.5 (3.9±0.3 across Mexico City indicate that evaporative fuel and industrial emissions play an important role for the prevalence of aromatic compounds. Based on a tracer model, which was constrained by BTEX (Benzene/Toluene/Ethylbenzene/m,p,o-Xylenes compound concentration ratios, the fuel marker methyl-tertiary-butyl-ether (MTBE and the biomass burning marker acetonitrile (CH3CN, we show that a combination of industrial, evaporative fuel, and exhaust emissions account for >90% of all BTEX sources. Our observations suggest that biomass burning emissions play a minor role for the abundance of BTEX compounds (0–10% in the MCMA.

  6. Emissions of volatile organic compounds inferred from airborne flux measurements over a megacity

    Science.gov (United States)

    Karl, T.; Apel, E.; Hodzic, A.; Riemer, D. D.; Blake, D. R.; Wiedinmyer, C.

    2009-01-01

    Toluene and benzene are used for assessing the ability to measure disjunct eddy covariance (DEC) fluxes of Volatile Organic Compounds (VOC) using Proton Transfer Reaction Mass Spectrometry (PTR-MS) on aircraft. Statistically significant correlation between vertical wind speed and mixing ratios suggests that airborne VOC eddy covariance (EC) flux measurements using PTR-MS are feasible. City-median midday toluene and benzene fluxes are calculated to be on the order of 14.1±4.0 mg/m2/h and 4.7±2.3 mg/m2/h, respectively. For comparison the adjusted CAM2004 emission inventory estimates toluene fluxes of 10 mg/m2/h along the footprint of the flight-track. Wavelet analysis of instantaneous toluene and benzene measurements during city overpasses is tested as a tool to assess surface emission heterogeneity. High toluene to benzene flux ratios above an industrial district (e.g. 10-15 g/g) including the International airport (e.g. 3-5 g/g) and a mean flux (concentration) ratio of 3.2±0.5 g/g (3.9±0.3 g/g) across Mexico City indicate that evaporative fuel and industrial emissions play an important role for the prevalence of aromatic compounds. Based on a tracer model, which was constrained by BTEX (BTEX- Benzene/Toluene/Ethylbenzene/m, p, o-Xylenes) compound concentration ratios, the fuel marker methyl-tertiary-butyl-ether (MTBE) and the biomass burning marker acetonitrile (CH3CN), we show that a combination of industrial, evaporative fuel, and exhaust emissions account for >87% of all BTEX sources. Our observations suggest that biomass burning emissions play a minor role for the abundance of BTEX compounds in the MCMA (2-13%).

  7. Characterizing the impact of urban emissions on regional aerosol particles; airborne measurements during the MEGAPOLI experiment

    Directory of Open Access Journals (Sweden)

    E. J. Freney

    2013-09-01

    Full Text Available The MEGAPOLI experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS giving detailed information of the non-refractory submicron aerosol species. The mass concentration of BC, measured by a particle absorption soot photometer (PSAP, was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA, black carbon and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NOx. Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (−log(NOx / NOy. Plotting the equivalent ratios for the Positive Matrix Factorization (PMF resolved species (LV-OOA, SV-OOA, and HOA illustrate that the increase in OA is a result of secondary organic aerosol (SOA. Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in Mexico city, Mexico and in New England, USA. Using the measured VOCs species together with recent organic aerosol formation yields we predicted ~ 50% of the measured organics. These airborne measurements during the MEGAPOLI experiment show that urban emissions contribute to the

  8. NOx production by lightning in Hector: first airborne measurements during SCOUT-O3/ACTIVE

    Science.gov (United States)

    Huntrieser, H.; Schlager, H.; Lichtenstern, M.; Roiger, A.; Stock, P.; Minikin, A.; Höller, H.; Schmidt, K.; Betz, H.-D.; Allen, G.; Viciani, S.; Ulanovsky, A.; Ravegnani, F.; Brunner, D.

    2009-11-01

    During the SCOUT-O3/ACTIVE field phase in November-December 2005, airborne in situ measurements were performed inside and in the vicinity of thunderstorms over northern Australia with several research aircraft (German Falcon, Russian M55 Geophysica, and British Dornier-228. Here a case study from 19 November is presented in detail on the basis of airborne trace gas measurements (NO, NOy, CO, O3) and stroke measurements from the German LIghtning Location NETwork (LINET), set up in the vicinity of Darwin during the field campaign. The anvil outflow from three different types of thunderstorms was probed by the Falcon aircraft: (1) a continental thunderstorm developing in a tropical airmass near Darwin, (2) a mesoscale convective system (MCS), known as Hector, developing within the tropical maritime continent (Tiwi Islands), and (3) a continental thunderstorm developing in a subtropical airmass ~200 km south of Darwin. For the first time detailed measurements of NO were performed in the Hector outflow. The highest NO mixing ratios were observed in Hector with peaks up to 7 nmol mol-1 in the main anvil outflow at ~11.5-12.5 km altitude. The mean NOx (=NO+NO2) mixing ratios during these penetrations (~100 km width) varied between 2.2 and 2.5 nmol mol-1. The NOx contribution from the boundary layer (BL), transported upward with the convection, to total anvil-NOx was found to be minor (<10%). On the basis of Falcon measurements, the mass flux of lightning-produced NOx (LNOx) in the well-developed Hector system was estimated to 0.6-0.7 kg(N) s-1. The highest average stroke rate of the probed thunderstorms was observed in the Hector system with 0.2 strokes s-1 (here only strokes with peak currents ≥10 kA contributing to LNOx were considered). The LNOx mass flux and the stroke rate were combined to estimate the LNOx production rate in the different thunderstorm types. For a better comparison with other studies, LINET strokes were scaled with Lightning Imaging Sensor (LIS

  9. Comparison of airborne radar altimeter and ground-based Ku-band radar measurements on the ice cap Austfonna, Svalbard

    Directory of Open Access Journals (Sweden)

    O. Brandt

    2008-11-01

    Full Text Available We compare coincident data from the European Space Agency's Airborne SAR/Interferometric Radar Altimeter System (ASIRAS with ground-based Very High Bandwidth (VHB stepped-frequency radar measurements in the Ku-band. The ASIRAS instrument obtained data from ~700 m above the surface, using a 13.5 GHz center frequency and a 1 GHz bandwidth. The ground-based VHB radar measurements were acquired using the same center frequency, but with a variable bandwidth of either 1 or 8 GHz. Four sites were visited with the VHB radar; two sites within the transition region from superimposed ice to firn, and two sites in the long-term firn area (wet-snow zone. The greater bandwidth VHB measurements show that the first peak in the airborne data is a composite of the return from the surface (i.e. air-snow interface and returns of similar or stronger amplitude from reflectors in the upper ~30 cm of the subsurface. The peak position in the airborne data is thus not necessarily a good proxy for the surface since the maximum and width of the first return depend on the degree of interference between surface and subsurface reflectors. The major response from the winter snowpack was found to be caused by units of thin crust/ice layers (0.5–2 mm surrounded by large crystals (>3 mm. In the airborne data, it is possible to track such layers for tens of kilometers. The winter snowpack lacked thicker ice layers. The last year's summer surface, characterized by a low density large crystal layer overlaying a harder denser layer, gives a strong radar response, frequently the strongest. The clear relationship observed between the VHB and ASIRAS waveforms, justifies the use of ground-based radar measurements in the validation of air- or spaceborne radars.

  10. Spectroscopic measurements of a CO2 absorption line in an open vertical path using an airborne lidar

    CERN Document Server

    Ramanathan, Anand; Allan, Graham R; Riris, Haris; Weaver, Clark J; Hasselbrack, William E; Browell, Edward V; Abshire, James B

    2013-01-01

    We use an airborne pulsed integrated path differential absorption lidar to make spectroscopic measurements of the pressure-induced line broadening and line center shift of atmospheric CO2 at the 1572.335 nm absorption line. We measure the absorption lineshape in the vertical column between the aircraft and ground. A comparison of our measured absorption lineshape to calculations based on HITRAN shows excellent agreement with the peak optical depth accurate to within 0.3%. Additionally, we measure changes in the line center position to within 5.2 MHz of calculations, and the absorption linewidth to within 0.6% of calculations.

  11. NOx production by lightning in Hector: first airborne measurements during SCOUT-O3/ACTIVE

    Directory of Open Access Journals (Sweden)

    D. Brunner

    2009-11-01

    Full Text Available During the SCOUT-O3/ACTIVE field phase in November–December 2005, airborne in situ measurements were performed inside and in the vicinity of thunderstorms over northern Australia with several research aircraft (German Falcon, Russian M55 Geophysica, and British Dornier-228. Here a case study from 19 November is presented in detail on the basis of airborne trace gas measurements (NO, NOy, CO, O3 and stroke measurements from the German LIghtning Location NETwork (LINET, set up in the vicinity of Darwin during the field campaign. The anvil outflow from three different types of thunderstorms was probed by the Falcon aircraft: (1 a continental thunderstorm developing in a tropical airmass near Darwin, (2 a mesoscale convective system (MCS, known as Hector, developing within the tropical maritime continent (Tiwi Islands, and (3 a continental thunderstorm developing in a subtropical airmass ~200 km south of Darwin. For the first time detailed measurements of NO were performed in the Hector outflow. The highest NO mixing ratios were observed in Hector with peaks up to 7 nmol mol−1 in the main anvil outflow at ~11.5–12.5 km altitude. The mean NOx (=NO+NO2 mixing ratios during these penetrations (~100 km width varied between 2.2 and 2.5 nmol mol−1. The NOx contribution from the boundary layer (BL, transported upward with the convection, to total anvil-NOx was found to be minor (x (LNOx in the well-developed Hector system was estimated to 0.6–0.7 kg(N s−1. The highest average stroke rate of the probed thunderstorms was observed in the Hector system with 0.2 strokes s−1 (here only strokes with peak currents ≥10 kA contributing to LNOx were considered. The LNOx mass flux and the stroke rate were combined to estimate the LNOx production rate in the different thunderstorm types. For a better comparison with other studies, LINET strokes were scaled with Lightning Imaging Sensor (LIS flashes. The LNOx production rate per LIS flash was estimated

  12. NOx production by lightning in Hector: first airborne measurements during SCOUT-O3/ACTIVE

    Directory of Open Access Journals (Sweden)

    A. Ulanovsky

    2009-07-01

    Full Text Available During the SCOUT-O3/ACTIVE field phase in November–December 2005 airborne in situ measurements were performed inside and in the vicinity of thunderstorms over northern Australia with several research aircraft (German Falcon, Russian M55 Geophysica, and British Dornier-228. Here a case study from 19 November is presented in large detail on the basis of airborne trace gas measurements (NO, NOy, CO, O3 and stroke measurements from the German LIghtning Location NETwork (LINET, set up in the vicinity of Darwin during the field campaign. The anvil outflow from three different types of thunderstorms was probed by the Falcon aircraft: 1 a continental thunderstorm developing in a tropical airmass near Darwin, 2 a mesoscale convective system (MCS developing within the tropical maritime continent (Tiwi Islands known as Hector, and 3 a continental thunderstorm developing in a subtropical airmass ~200 km south of Darwin. For the first time detailed measurements of NO were performed in the Hector outflow. The highest NO mixing ratios were observed in Hector with peaks up to 7 nmol mol−1 in the main anvil outflow at ~11.5–12.5 km altitude. The mean NOx (=NO+NO2 mixing ratios during these penetrations (~100 km width varied between 2.2 and 2.5 nmol mol−1. The NOx contribution from the boundary layer (BL, transported upward with the convection, to total anvil-NOx was found to be minor (x (LNOx in the well-developed Hector system was estimated to 0.6–0.7 kg(N s−1. The highest average stroke rate of the probed thunderstorms was observed in the Hector system with 0.2 strokes s−1 (here only strokes with peak currents ≥10 kA contributing to LNOx were considered. The LNOx mass flux and the stroke rate were combined to estimate the LNOx production rate in the different thunderstorm types. For a better comparison with other studies, LINET strokes were scaled with Lightning Imaging Sensor (LIS flashes. The LNOx production rate per LIS flash was estimated

  13. Retrieval of ozone column content from airborne Sun photometer measurements during SOLVE II: comparison with coincident satellite and aircraft measurements

    Directory of Open Access Journals (Sweden)

    J. M. Livingston

    2005-01-01

    Full Text Available During the 2003 SAGE (Stratospheric Aerosol and Gas Experiment III Ozone Loss and Validation Experiment (SOLVE II, the fourteen-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14 was mounted on the NASA DC-8 aircraft and measured spectra of total and aerosol optical depth (TOD and AOD during the sunlit portions of eight science flights. Values of ozone column content above the aircraft have been derived from the AATS-14 measurements by using a linear least squares method that exploits the differential ozone absorption in the seven AATS-14 channels located within the Chappuis band. We compare AATS-14 columnar ozone retrievals with temporally and spatially near-coincident measurements acquired by the SAGE III and the Polar Ozone and Aerosol Measurement (POAM III satellite sensors during four solar occultation events observed by each satellite. RMS differences are 19 DU (7% of the AATS value for AATS-SAGE and 10 DU (3% of the AATS value for AATS-POAM. In these checks of consistency between AATS-14 and SAGE III or POAM III ozone results, the AATS-14 analyses use airmass factors derived from the relative vertical profiles of ozone and aerosol extinction obtained by SAGE III or POAM III. We also compare AATS-14 ozone retrievals for measurements obtained during three DC-8 flights that included extended horizontal transects with total column ozone data acquired by the Total Ozone Mapping Spectrometer (TOMS and the Global Ozone Monitoring Experiment (GOME satellite sensors. To enable these comparisons, the amount of ozone in the column below the aircraft is estimated either by assuming a climatological model or by combining SAGE and/or POAM data with high resolution in-situ ozone measurements acquired by the NASA Langley Research Center chemiluminescent ozone sensor, FASTOZ, during the aircraft vertical profile at the start or end of each flight. Resultant total column ozone values agree with corresponding TOMS and GOME measurements to within 10

  14. Retrieval of ozone column content from airborne Sun photometer measurements during SOLVE II: comparison with coincident satellite and aircraft measurements

    Directory of Open Access Journals (Sweden)

    J. M. Livingston

    2005-01-01

    Full Text Available During the 2003 SAGE (Stratospheric Aerosol and Gas Experiment III Ozone Loss and Validation Experiment (SOLVE II, the fourteen-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14 was mounted on the NASA DC-8 aircraft and measured spectra of total and aerosol optical depth (TOD and AOD during the sunlit portions of eight science flights. Values of ozone column content above the aircraft have been derived from the AATS-14 measurements by using a linear least squares method that exploits the differential ozone absorption in the seven AATS-14 channels located within the Chappuis band. We compare AATS-14 columnar ozone retrievals with temporally and spatially near-coincident measurements acquired by the SAGE III and the Polar Ozone and Aerosol Measurement (POAM III satellite sensors during four solar occultation events observed by each satellite. RMS differences are 19 DU (6% of the AATS value for AATS-SAGE and 10 DU (3% of the AATS value for AATS-POAM. In these checks of consistency between AATS-14 and SAGE III or POAM III ozone results, the AATS-14 analyses use airmass factors derived from the relative vertical profiles of ozone and aerosol extinction obtained by SAGE III or POAM III.

    We also compare AATS-14 ozone retrievals for measurements obtained during three DC-8 flights that included extended horizontal transects with total column ozone data acquired by the Total Ozone Mapping Spectrometer (TOMS and the Global Ozone Monitoring Experiment (GOME satellite sensors. To enable these comparisons, the amount of ozone in the column below the aircraft is estimated either by assuming a climatological model or by combining SAGE and/or POAM data with high resolution in-situ ozone measurements acquired by the NASA Langley Research Center chemiluminescent ozone sensor, FASTOZ, during the aircraft vertical profile at the start or end of each flight. Resultant total column ozone values agree with corresponding TOMS and GOME measurements to

  15. RADIOMETRIC PROPERTIES OFAGRICULTURAL PERMEABLE COVERINGS

    Directory of Open Access Journals (Sweden)

    Sergio Castellano

    2010-06-01

    Full Text Available Nets are commonly used for agricultural applications. However, only little is known about the radiometric properties of net types and how to influence them. In order to investigate the influence of net construction parameters on their radiometric properties, a set of radiometric tests were performed on 45 types of agricultural nets. Laboratory tests on large size net samples was performed using a large and a small integrating sphere. Open field radiometric test were carried out by means of an experimental set up (120x120x50 cm and a full scale shade house. Small differences (less than 5% occurred between laboratory and open field tests. Results highlighted that the porosity and the mesh size, combined with the colour and secondarily, with the fabric and the kind of threads of the net influenced the shading performance of the net. The colour influenced the spectral distribution of the radiation passing through the net absorbing its complementary colours. Since nets are three-dimensional structures the transmissivity of direct light under different angles of incident of solar radiation changes when installed in the warp or weft direction. Transmissivity could be considered one of the main parameters involved in the agronomic performances of the netting system.

  16. Using airborne measurements and modelling to determine the leak rate of the Elgin platform in 2012

    Science.gov (United States)

    Mobbs, Stephen D.; Bauguitte, Stephane J.-B.; Wellpott, Axel; O'Shea, Sebastian

    2013-04-01

    On the 25th March 2012 the French multinational oil and gas company Total reported a gas leak at the Elgin gas field in the North Sea following an operation on well G4 on the wellhead platform. During operations to plug and decommission the well methane leaked out which lead to the evacuation of the platform. Total made immense efforts to quickly stop the leak and on the 16th May 2012 the company announced the successful "Top kill". The UK's National Centre for Atmospheric Science (NCAS) supported the Total response to the leak with flights of the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft. Between the 3rd of April and the 4th of May five missions were flown. The FAAM aircraft was equipped with a Fast Greenhouse Gas Analyser (FGGA, Model RMT-200, Los Gatos Research Inc., US) to measure CH4 mixing ratios with an accuracy of 0.07±2.48 ppbv. The measurement strategy used followed closely NOAA's during the Deepwater Horizon (DWH) spill in the Gulf of Mexico in 2010. The basis of the method is to sample the cross-wind structure of the plume at different heights downwind of the source. The measurements were then fitted to a Gaussian dispersion model which allowed the calculation of the leak rate. The first mission was flown on the 30th March 2012 only 5 days after Total reported the leak. On this day maximum CH4 concentrations exceeded 2800 ppbv. The plume was very distinct and narrow especially near the platform (10km) and it showed almost perfect Gaussian characteristics. Further downwind the plume was split up into several filaments. On this day the CH4 leak rate was estimated to be 1.1 kg/s. Between the 1st and 2nd mission (03/04/2012) the leak rate decreased significantly to about 0.5 kg/s. From the 2nd flight onwards only a minor decrease in leak rate was calculated. The last mission - while the platform was still leaking - was flown on the 4th of May, when the leak rate was estimated to be 0.3 kg/s. The FAAM aircraft measurements

  17. In Situ Airborne Measurement of Formaldehyde with a New Laser Induced Fluorescence Instrument

    Science.gov (United States)

    Arkinson, H.; Hanisco, T. F.; Cazorla, M.; Fried, A.; Walega, J.

    2012-12-01

    Formaldehyde (HCHO) is a highly reactive and ubiquitous compound in the atmosphere that originates from primary emissions and secondary formation by photochemical oxidation of volatile organic compounds. HCHO is an important precursor to the formation of ozone and an ideal tracer for the transport of boundary layer pollutants to higher altitudes. In situ measurements of HCHO are needed to improve understanding of convective transport mechanisms and the effects of lofted pollutants on ozone production and cloud microphysics in the upper troposphere. The Deep Convective Clouds and Chemistry Project (DC3) field campaign addressed the effects of deep, midlatitude continental convective clouds on the upper troposphere by examining vertical transport of fresh emissions and water aloft and by characterizing subsequent changes in composition and chemistry. Observations targeting convective storms were conducted over Colorado, Alabama, and Texas and Oklahoma. We present measurements of the In Situ Airborne Formaldehyde instrument (ISAF), which uses laser induced fluorescence to achieve the high sensitivity and fast time response required to detect low concentrations in the upper troposphere and capture the fine structure characteristic of convective storm outflow. Preliminary results from DC3 indicate that the ISAF is able to resolve concentrations ranging from under 35 ppt to over 35 ppb, spanning three orders of magnitude, in less than a few minutes. Frequent, abrupt changes in HCHO captured by the ISAF are corroborated by similar patterns observed by simultaneous trace gas and aerosol measurements. Primary HCHO emissions are apparent in cases when the DC-8 flew over combustion sources or biomass burning, and secondary HCHO formation is suggested by observations of enhanced HCHO concurrent with other elevated hydrocarbons. Vertical transport of HCHO is indicated by measurements of over 6 ppb from outflow in the upper troposphere. The DC-8 payload also included the

  18. The Tropical Forest and fire emissions experiment: overview and airborne fire emission factor measurements

    Directory of Open Access Journals (Sweden)

    R. J. Yokelson

    2007-05-01

    Full Text Available The Tropical Forest and Fire Emissions Experiment (TROFFEE used laboratory measurements followed by airborne and ground based field campaigns during the 2004 Amazon dry season to quantify the emissions from pristine tropical forest and several plantations as well as the emissions, fuel consumption, and fire ecology of tropical deforestation fires. The airborne campaign used an Embraer 110B aircraft outfitted with whole air sampling in canisters, mass-calibrated nephelometry, ozone by uv absorbance, Fourier transform infrared spectroscopy (FTIR, and proton-transfer mass spectrometry (PTR-MS to measure PM10, O3, CO2, CO, NO, NO2, HONO, HCN, NH3, OCS, DMS, CH4, and up to 48 non-methane organic compounds (NMOC. The Brazilian smoke/haze layers extended to 2–3 km altitude, which is much lower than the 5–6 km observed at the same latitude, time of year, and local time in Africa in 2000. Emission factors (EF were computed for the 19 tropical deforestation fires sampled and they largely compare well to previous work. However, the TROFFEE EF are mostly based on a much larger number of samples than previously available and they also include results for significant emissions not previously reported such as: nitrous acid, acrylonitrile, pyrrole, methylvinylketone, methacrolein, crotonaldehyde, methylethylketone, methylpropanal, "acetol plus methylacetate," furaldehydes, dimethylsulfide, and C1-C4 alkyl nitrates. Thus, we recommend these EF for all tropical deforestation fires. The NMOC emissions were ~80% reactive, oxygenated volatile organic compounds (OVOC. Our EF for PM10 (17.8±4 g/kg is ~25% higher than previously reported for tropical forest fires and may reflect a trend towards, and sampling of, larger fires than in earlier studies. A large fraction of the total burning for 2004 likely occurred during a two-week period of very low humidity. The combined output of these

  19. Vertical distribution of aerosols over the east coast of India inferred from airborne LIDAR measurements

    Energy Technology Data Exchange (ETDEWEB)

    Satheesh, S.K. [Indian Institute of Science, Bangalore (India). Centre for Atmospheric and Oceanic Sciences; Indian Institute of Science, Bangalore (India). Divecha Centre for Climate Change; Vinoj, V. [Indian Institute of Science, Bangalore (India). Centre for Atmospheric and Oceanic Sciences; Suresh Babu, S.; Krishna Moorthy, K.; Nair, Vijayakumar S. [Vikram Sarabhai Space Centre, Thiruvananthapuram (India). Space Physics Lab.

    2009-07-01

    The information on altitude distribution of aerosols in the atmosphere is essential in assessing the impact of aerosol warming on thermal structure and stability of the atmosphere. In addition, aerosol altitude distribution is needed to address complex problems such as the radiative interaction of aerosols in the presence of clouds. With this objective, an extensive, multi-institutional and multi-platform field experiment (ICARB-Integrated Campaign for Aerosols, gases and Radiation Budget) was carried out under the Geosphere Biosphere Programme of the Indian Space Research Organization (ISRO-GBP) over continental India and adjoining oceans during March to May 2006. Here, we present airborne LIDAR measurements carried out over the east Coast of the India during the ICARB field campaign. An increase in aerosol extinction (scattering + absorption) was observed from the surface upwards with a maximum around 2 to 4 km. Aerosol extinction at higher atmospheric layers (>2 km) was two to three times larger compared to that of the surface. A large fraction (75-85%) of aerosol column optical depth was contributed by aerosols located above 1 km. The aerosol layer heights (defined in this paper as the height at which the gradient in extinction coefficient changes sign) showed a gradual decrease with an increase in the offshore distance. A large fraction (60-75%) of aerosol was found located above clouds indicating enhanced aerosol absorption above clouds. Our study implies that a detailed statistical evaluation of the temporal frequency and spatial extent of elevated aerosol layers is necessary to assess their significance to the climate. This is feasible using data from space-borne lidars such as CALIPSO, which fly in formation with other satellites like MODIS AQUA and MISR, as part of the A-Train constellation. (orig.)

  20. Vertical distribution of aerosols over the east coast of India inferred from airborne LIDAR measurements

    Directory of Open Access Journals (Sweden)

    S. K. Satheesh

    2009-11-01

    Full Text Available The information on altitude distribution of aerosols in the atmosphere is essential in assessing the impact of aerosol warming on thermal structure and stability of the atmosphere. In addition, aerosol altitude distribution is needed to address complex problems such as the radiative interaction of aerosols in the presence of clouds. With this objective, an extensive, multi-institutional and multi-platform field experiment (ICARB-Integrated Campaign for Aerosols, gases and Radiation Budget was carried out under the Geosphere Biosphere Programme of the Indian Space Research Organization (ISRO-GBP over continental India and adjoining oceans during March to May 2006. Here, we present airborne LIDAR measurements carried out over the east Coast of the India during the ICARB field campaign. An increase in aerosol extinction (scattering + absorption was observed from the surface upwards with a maximum around 2 to 4 km. Aerosol extinction at higher atmospheric layers (>2 km was two to three times larger compared to that of the surface. A large fraction (75–85% of aerosol column optical depth was contributed by aerosols located above 1 km. The aerosol layer heights (defined in this paper as the height at which the gradient in extinction coefficient changes sign showed a gradual decrease with an increase in the offshore distance. A large fraction (60–75% of aerosol was found located above clouds indicating enhanced aerosol absorption above clouds. Our study implies that a detailed statistical evaluation of the temporal frequency and spatial extent of elevated aerosol layers is necessary to assess their significance to the climate. This is feasible using data from space-borne lidars such as CALIPSO, which fly in formation with other satellites like MODIS AQUA and MISR, as part of the A-Train constellation.

  1. Tropospheric ozone and aerosols measured by airborne lidar during the 1988 Arctic boundary layer experiment

    Science.gov (United States)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Ozone (O3) and aerosol distributions were measured from an aircraft using a differential absorption lidar (DIAL) system as part of the 1988 NASA Global Tropospheric Experiment - Arctic Boundary Layer Experiment (ABLE-3A) to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during the summer. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere. Several cases of continental polar air masses were examined during the experiment. The aerosol scattering associated with these air masses was very low, and the atmospheric distribution of aerosols was quite homogeneous for those air masses that had been transported over the ice for greater than or = 3 days. The transition in O3 and aerosol distributions from tundra to marine conditions was examined several times. The aerosol data clearly show an abrupt change in aerosol scattering properties within the mixed layer from lower values over the tundra to generally higher values over the water. The distinct differences in the heights of the mixed layers in the two regions was also readily apparent. Several cases of enhanced O3 were observed during ABLE-3 in conjunction with enhanced aerosol scattering in layers in the free atmosphere. Examples are presented of the large scale variations of O3 and aerosols observed with the airborne lidar system from near the surface to above the tropopause over the Arctic during ABLE-3.

  2. Spatial resolution and regionalization of airborne flux measurements using environmental response functions

    Directory of Open Access Journals (Sweden)

    S. Metzger

    2012-11-01

    Full Text Available The goal of this study is to characterize the sensible (H and latent (LE heat exchange for different land covers in the heterogeneous steppe landscape of the Xilin River Catchment, Inner Mongolia, China. Eddy-covariance flux measurements at 50–100 m above ground were conducted in July 2009 using a weight-shift microlight aircraft. Wavelet decomposition of the turbulence data enables a spatial discretization of 90 m of the flux measurements. For a total of 8446 flux observations during 12 flights, MODIS land surface temperature (LST and enhanced vegetation index (EVI in each flux footprint are determined. Boosted regression trees are then used to infer an environmental response function (ERF between all flux observations (H, LE and biophysical- (LST, EVI and meteorological drivers. Numerical tests show that ERF predictions covering the entire Xilin River Catchment (≈ 3670 km2 are accurate to ≤ 18%. The predictions are then summarized for each land cover type, providing individual estimates of source strength (36 W m−2 < H < 364 W m−2, 46 W m−2 < LE < 425 W m−2 and spatial variability (11 W m−2 < σH < 169 W m−2, 14 W m−2 < σLE < 152 W m−2 to a precision of ≤ 5%. Lastly, ERF predictions of land cover specific Bowen ratios are compared between subsequent flights at different locations in the Xilin River Catchment. Agreement of the land cover specific Bowen ratios to within 12 ± 9% emphasizes the robustness of the presented approach. This study indicates the potential of ERFs for (i extending airborne flux measurements to the catchment scale, (ii assessing the spatial representativeness of long-term tower flux measurements, and (iii designing, constraining and evaluating flux algorithms for remote sensing and numerical modelling applications.

  3. Airborne Measurements of Atmospheric Pressure made Using an IPDA Lidar Operating in the Oxygen A-Band

    Science.gov (United States)

    Riris, Haris; Abshire, James B.; Stephen, Mark; Rodriquez, Michael; Allan, Graham; Hasselbrack, William; Mao, Jianping

    2012-01-01

    We report airborne measurements of atmospheric pressure made using an integrated path differential absorption (IPDA) lidar that operates in the oxygen A-band near 765 nm. Remote measurements of atmospheric temperature and pressure are needed for NASA s Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission to measure atmospheric CO2. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve our predictions of climate change. The goal of ASCENDS is to determine the CO2 dry mixing ratio with lidar measurements from space at a level of 1 ppm. Analysis to date shows that with current weather models, measurements of both the CO2 column density and the column density of dry air are needed. Since O2 is a stable molecule that uniformly mixed in the atmosphere, measuring O2 absorption in the atmosphere can be used to infer the dry air density. We have developed an airborne (IPDA) lidar for Oxygen, with support from the NASA ESTO IIP program. Our lidar uses DFB-based seed laser diodes, a pulsed modulator, a fiber laser amplifier, and a non-linear crystal to generate wavelength tunable 765 nm laser pulses with a few uJ/pulse energy. The laser pulse rate is 10 KHz, and average transmitted laser power is 20 mW. Our lidar steps laser pulses across a selected line O2 doublet near 764.7 nm in the Oxygen A-band. The direct detection lidar receiver uses a 20 cm diameter telescope, a Si APD detector in Geiger mode, and a multi-channel scalar to detect and record the time resolved laser backscatter in 40 separate wavelength channels. Subsequent analysis is used to estimate the transmission line shape of the doublet for the laser pulses reflected from the ground. Ground based data analysis allows averaging from 1 to 60 seconds to increase SNR in the transmission line shape of the doublet. Our retrieval algorithm fits the expected O2 lineshapes against the measurements and

  4. a Comparison of LIDAR Reflectance and Radiometrically Calibrated Hyperspectral Imagery

    Science.gov (United States)

    Roncat, A.; Briese, C.; Pfeifer, N.

    2016-06-01

    In order to retrieve results comparable under different flight parameters and among different flight campaigns, passive remote sensing data such as hyperspectral imagery need to undergo a radiometric calibration. While this calibration, aiming at the derivation of physically meaningful surface attributes such as a reflectance value, is quite cumbersome for passively sensed data and relies on a number of external parameters, the situation is by far less complicated for active remote sensing techniques such as lidar. This fact motivates the investigation of the suitability of full-waveform lidar as a "single-wavelength reflectometer" to support radiometric calibration of hyperspectral imagery. In this paper, this suitability was investigated by means of an airborne hyperspectral imagery campaign and an airborne lidar campaign recorded over the same area. Criteria are given to assess diffuse reflectance behaviour; the distribution of reflectance derived by the two techniques were found comparable in four test areas where these criteria were met. This is a promising result especially in the context of current developments of multi-spectral lidar systems.

  5. Unmanned Airborne System Deployment at Turrialba Volcano for Real Time Eruptive Cloud Measurements

    Science.gov (United States)

    Diaz, J. A.; Pieri, D. C.; Fladeland, M. M.; Bland, G.; Corrales, E.; Alan, A., Jr.; Alegria, O.; Kolyer, R.

    2015-12-01

    The development of small unmanned aerial systems (sUAS) with a variety of instrument packages enables in situ and proximal remote sensing measurements of volcanic plumes, even when the active conditions of the volcano do not allow volcanologists and emergency response personnel to get too close to the erupting crater. This has been demonstrated this year by flying a sUAS through the heavy ash driven erupting volcanic cloud of Turrialba Volcano, while conducting real time in situ measurement of gases over the crater summit. The event also achieved the collection of newly released ash samples from the erupting volcano. The interception of the Turrialba ash cloud occurred during the CARTA 2015 field campaign carried out as part of an ongoing program for remote sensing satellite calibration and validation purposes, using active volcanic plumes. These deployments are timed to support overflights of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) onboard the NASA Terra satellite on a bimonthly basis using airborne platforms such as tethered balloons, free-flying fixed wing small UAVs at altitudes up to 12.5Kft ASL within about a 5km radius of the summit crater. The onboard instrument includes the MiniGas payload which consists of an array of single electrochemical and infrared gas detectors (SO2, H2S CO2), temperature, pressure, relative humidity and GPS sensors, all connected to an Arduino-based board, with data collected at 1Hz. Data are both stored onboard and sent by telemetry to the ground operator within a 3 km range. The UAV can also carry visible and infrared cameras as well as other payloads, such as a UAV-MS payload that is currently under development for mass spectrometer-based in situ measurements. The presentation describes the ongoing UAV- based in situ remote sensing validation program at Turrialba Volcano, the results of a fly-through the eruptive cloud, as well as future plans to continue these efforts. Work presented here was

  6. Development of an Airborne Sea Ice Thickness Measurement System and Field Test Results

    Science.gov (United States)

    1989-12-01

    R.P., F.W. DeBord, F.A. Geisel , J.L. Kovacs, A. and A.J. Gow (1976) Some character- Cobrun and K.E. Dane (1981) Winter 1981 traffic- istics of...MOUS 𔃽 47 A facsimile catalog card in Library of Congress MARC format is reproduced below. Kovacs, Austin Development of an airborne sea ice thickness

  7. Arctic Sea Ice: Using Airborne Topographic Mapper Measurements (ATM) to Determine Sea Ice Thickness

    Science.gov (United States)

    2011-05-10

    today. MATERIALS AND METHODS IceBridge is a six-year NASA airborne mission which is aimed at surveying both poles of the earth. IceBridge comprises a...http://psc.apl.washington.edu/ArcticSeaiceVolume/IceVolume.php> Wahdams, Peter. “Ice in the Oceans.” Scott Polar Reseach Institute, Cambridge United

  8. Statistical synthesis of multiantenna ultrawideband radiometric complexes

    Science.gov (United States)

    Volosyuk, V. K.; Kravchenko, V. F.; Pavlikov, V. V.; Pustovoit, V. I.

    2016-04-01

    An optimum signal processing algorithm of radiometric imaging has been synthesized for the first time using multiantenna ultrawideband (UWB) radiometric complexes (RMCs). Radiometric images (RMI) are interpreted physically as intensity depending on the angular coordinates or the spectral radio brightness averaged in the operation frequency band. In accordance with the synthesized algorithm, a structural scheme of ultrawideband radiometric complexes has been developed. An analytical expression for the ambiguity function of radiometric complexes has been obtained. The ambiguity function is modeled in the case of processing narrowband and ultrawideband radiometric signals. As follows from the analysis of the results, new elements of the theory of optimum processing of UWB radiometric signals with the involvement of multielement antenna systems are an important tool in creating highly accurate, biologically and ecologically safe complexes for studying various media and objects.

  9. NEON Airborne Remote Sensing of Terrestrial Ecosystems

    Science.gov (United States)

    Kampe, T. U.; Leisso, N.; Krause, K.; Karpowicz, B. M.

    2012-12-01

    sensing data collection protocol to meet NEON science requirements? How do aircraft altitude, spatial sampling, spatial resolution, and LiDAR instrument configuration affect data retrievals? What are appropriate algorithms to derive ECVs from AOP data? What methodology should be followed to validate AOP remote sensing products and how should ground truth data be collected? Early test flights were focused on radiometric and geometric calibration as well as processing from raw data to Level-1 products. Subsequent flights were conducted focusing on collecting vegetation chemistry and structure measurements. These test flights that were conducted during 2012 have proved to be extremely valuable for verifying instrument functionality and performance, exercising remote sensing collection protocols, and providing data for algorithm and science product validation. Results from these early flights are presented, including the radiometric and geometric calibration of the AOP instruments. These 2012 flight campaigns are just the first of a series of test flights that will take place over the next several years as part of the NEON observatory construction. Lessons learned from these early campaigns will inform both airborne and ground data collection methodologies for future campaigns as well as guide the AOP sampling strategy before NEON enters full science operations.

  10. Spectrally and Radiometrically Stable Wide-Band on Board Calibration Source for In-Flight Data Validation in Imaging Spectroscopy Applications

    Science.gov (United States)

    Coles, J. B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Hernandez, Marco A.; Kroll, Linley A.; Nolte, Scott H.; Porter, Michael D.; Green, Robert O.

    2011-01-01

    The quality of the quantitative spectral data collected by an imaging spectrometer instrument is critically dependent upon the accuracy of the spectral and radiometric calibration of the system. In order for the collected spectra to be scientifically useful, the calibration of the instrument must be precisely known not only prior to but during data collection. Thus, in addition to a rigorous in-lab calibration procedure, the airborne instruments designed and built by the NASA/JPL Imaging Spectroscopy Group incorporate an on board calibrator (OBC) system with the instrument to provide auxiliary in-use system calibration data. The output of the OBC source illuminates a target panel on the backside of the foreoptics shutter both before and after data collection. The OBC and in-lab calibration data sets are then used to validate and post-process the collected spectral image data. The resulting accuracy of the spectrometer output data is therefore integrally dependent upon the stability of the OBC source. In this paper we describe the design and application of the latest iteration of this novel device developed at NASA/JPL which integrates a halogen-cycle source with a precisely designed fiber coupling system and a fiber-based intensity monitoring feedback loop. The OBC source in this Airborne Testbed Spectrometer was run over a period of 15 hours while both the radiometric and spectral stabilities of the output were measured and demonstrated stability to within 1% of nominal.

  11. Radiometric Dating in Geology.

    Science.gov (United States)

    Pankhurst, R. J.

    1980-01-01

    Described are several aspects and methods of quantitatively measuring geologic time using a constant-rate natural process of radioactive decay. Topics include half lives and decay constants, radiogenic growth, potassium-argon dating, rubidium-strontium dating, and the role of geochronology in support of geological exploration. (DS)

  12. A first attempt to derive soil erosion rates from 137Cs airborne gamma measurements in two Alpine valleys

    Science.gov (United States)

    Arata, Laura; Meusburger, Katrin; Bucher, Benno; Mabit, Lionel; Alewell, Christine

    2016-04-01

    The application of fallout radionuclides (FRNs) as soil tracers is currently one of the most promising and effective approach for evaluating soil erosion magnitudes in mountainous grasslands. Conventional assessment or measurement methods are laborious and constrained by the topographic and climatic conditions of the Alps. The 137Cs (half-life = 30.2 years) is the most frequently used FRN to study soil redistribution. However the application of 137Cs in alpine grasslands is compromised by the high heterogeneity of the fallout due to the origin of 137Cs fallout in the Alps, which is linked to single rain events occurring just after the Chernobyl accident when most of the Alpine soils were still covered by snow. The aim of this study was to improve our understanding of the 137Cs distribution in two study areas in the Central Swiss Alps: the Ursern valley (Canton Uri), and the Piora valley (Canton Ticino). In June 2015, a helicopter equipped with a NaI gamma detector flew over the two study sites and screened the 137Cs activity of the top soil. The use of airborne gamma measurements is particularly efficient in case of higher 137Cs concentration in the soil. Due to their high altitude and high precipitation rates, the Swiss Alps are expected to be more contaminated by 137Cs fallout than other parts of Switzerland. The airborne gamma measurements have been related to several key parameters which characterize the areas, such as soil properties, slopes, expositions and land uses. The ground truthing of the airborne measurements (i.e. the 137Cs laboratory measurements of the soil samples collected at the same points) returned a good fit. The obtained results offer an overview of the 137Cs concentration in the study areas, which allowed us to identify suitable reference sites, and to analyse the relationship between the 137Cs distribution and the above cited parameters. The authors also derived a preliminary qualitative and a quantitative assessment of soil redistribution

  13. Radiative Characteristics of Clouds Embedded in Smoke Derived from Airborne Multiangular Measurements

    Science.gov (United States)

    Gautam, Ritesh; Gatebe, Charles K.; Singh, Manoj; Varnai, Tamas; Poudyal, Rajesh

    2016-01-01

    Clouds in the presence of absorbing aerosols result in their apparent darkening, observed at the top of atmosphere (TOA), which is associated with the radiative effects of aerosol absorption. Owing to the large radiative effect and potential impacts on regional climate, above-cloud aerosols have recently been characterized in multiple satellite-based studies. While satellite data are particularly useful in showing the radiative impact of above-cloud aerosols at the TOA, recent literature indicates large uncertainties in satellite retrievals of above-cloud aerosol optical depth (AOD) and single scattering albedo (SSA), which are among the most important parameters in the assessment of associated radiative effects. In this study, we analyze radiative characteristics of clouds in the presence of wildfire smoke using airborne data primarily from NASA's Cloud Absorption Radiometer, collected during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites campaign in Canada during the 2008 summer season. We found a strong positive reflectance (R) gradient in the UV-visible (VIS)-near infrared (NIR) spectrum for clouds embedded in dense smoke, as opposed to an (expected) negative gradient for cloud-free smoke and a flat spectrum for smoke-free cloud cover. Several cases of clouds embedded in thick smoke were found, when the aircraft made circular/spiral measurements, which not only allowed the complete characterization of angular distribution of smoke scattering but also provided the vertical distribution of smoke and clouds (within 0.5-5 km). Specifically, the largest darkening by smoke was found in the UV/VIS, with R(sub 0.34 microns) reducing to 0.2 (or 20%), in contrast to 0.8 at NIR wavelengths (e.g., 1.27 microns). The observed darkening is associated with large AODs (0.5-3.0) and moderately low SSA (0.85-0.93 at 0.53 microns), resulting in a significantly large instantaneous aerosol forcing efficiency of 254 +/- 47 W/sq m/t. Our

  14. Radiative characteristics of clouds embedded in smoke derived from airborne multiangular measurements

    Science.gov (United States)

    Gautam, Ritesh; Gatebe, Charles K.; Singh, Manoj K.; Várnai, Tamás.; Poudyal, Rajesh

    2016-08-01

    Clouds in the presence of absorbing aerosols result in their apparent darkening, observed at the top of atmosphere (TOA), which is associated with the radiative effects of aerosol absorption. Owing to the large radiative effect and potential impacts on regional climate, above-cloud aerosols have recently been characterized in multiple satellite-based studies. While satellite data are particularly useful in showing the radiative impact of above-cloud aerosols at the TOA, recent literature indicates large uncertainties in satellite retrievals of above-cloud aerosol optical depth (AOD) and single scattering albedo (SSA), which are among the most important parameters in the assessment of associated radiative effects. In this study, we analyze radiative characteristics of clouds in the presence of wildfire smoke using airborne data primarily from NASA's Cloud Absorption Radiometer, collected during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites campaign in Canada during the 2008 summer season. We found a strong positive reflectance (R) gradient in the UV-visible (VIS)-near infrared (NIR) spectrum for clouds embedded in dense smoke, as opposed to an (expected) negative gradient for cloud-free smoke and a flat spectrum for smoke-free cloud cover. Several cases of clouds embedded in thick smoke were found, when the aircraft made circular/spiral measurements, which not only allowed the complete characterization of angular distribution of smoke scattering but also provided the vertical distribution of smoke and clouds (within 0.5-5 km). Specifically, the largest darkening by smoke was found in the UV/VIS, with R0.34μm reducing to 0.2 (or 20%), in contrast to 0.8 at NIR wavelengths (e.g., 1.27 µm). The observed darkening is associated with large AODs (0.5-3.0) and moderately low SSA (0.85-0.93 at 0.53 µm), resulting in a significantly large instantaneous aerosol forcing efficiency of 254 ± 47 W m-2 τ-1. Our observations of smoke

  15. Investigation of Ozone Sources in California Using AJAX Airborne Measurements and Models: Implications for Stratospheric Intrusion and Long Range Transport

    Science.gov (United States)

    Ryoo, Ju-Mee; Johnson, Matthew S.; Iraci, Laura T.; Yates, Emma L.; Pierce, R. Bradley; Tanaka, Tomoaki; Gore, Warren

    2015-01-01

    High ozone concentrations at low altitudes near the surface were detected from airborne Alpha Jet Atmospheric eXperiment (AJAX) measurements on May 30, 2012. We investigate the causes of the elevated ozone concentrations using the airborne measurements and various models. GEOS-chem and WRF-STILT model simulations show that the contribution from local sources is small. From MERRA reanalysis, it is found that high potential vorticity (PV) is observed at low altitudes. This high PV appears to be only partially coming through the stratospheric intrusions because the air inside the high PV region is moist, which shows that mixing appears to be enhanced in the low altitudes. Considering that diabatic heating can also produce high PV in the lower troposphere, high ozone is partially coming through stratospheric intrusion, but this cannot explain the whole ozone concentration in the target areas of the western U.S. A back-trajectory model is utilized to see where the air masses originated. The air masses of the target areas came from the lower stratosphere (LS), upper (UT), mid- (MT), and lower troposphere (LT). The relative number of trajectories coming from LS and UT is low (7.7 and 7.6, respectively) compared to that from LT (64.1), but the relative ozone concentration coming from LS and UT is high (38.4 and 20.95, respectively) compared to that from LT (17.7). The air mass coming from LT appears to be mostly coming from Asia. Q diagnostics show that there is sufficient mixing along the trajectory to indicate that ozone from the different origins is mixed and transported to the western U.S. This study shows that high ozone concentrations can be detected by airborne measurements, which can be analyzed by integrated platforms such as models, reanalysis, and satellite data.

  16. Aerosol Properties Derived from Airborne Sky Radiance and Direct Beam Measurements in Recent NASA and DoE Field Campaigns

    Science.gov (United States)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Russell, P. B.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.; LeBlanc, S.; Schmidt, S.; Pilewskie, P.; Song, S.

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions.The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL (Pacific Northwest National Laboratory) with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. The 4STAR instrument operated successfully in the SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE (Department of Energy)-sponsored TCAP (Two Column Aerosol Project, July 2012 & Feb. 2013) experiment aboard the DoE G-1 aircraft. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In this presentation, we provide an overview of the new 4STAR capabilities, with an emphasis on 26 high-quality sky radiance measurements carried out by 4STAR in SEAC4RS. We compare collocated 4STAR and AERONET sky radiances, as well as their retrievals of aerosol microphysical properties for a subset of the available case studies. We summarize the particle property and air-mass characterization studies made possible by the combined 4STAR direct beam and sky radiance

  17. Absolute Radiometric Calibration of ALS Intensity Data: Effects on Accuracy and Target Classification

    Directory of Open Access Journals (Sweden)

    Anssi Krooks

    2011-11-01

    Full Text Available Radiometric calibration of airborne laser scanning (ALS intensity data aims at retrieving a value related to the target scattering properties, which is independent on the instrument or flight parameters. The aim of a calibration procedure is also to be able to compare results from different flights and instruments, but practical applications are sparsely available, and the performance of calibration methods for this purpose needs to be further assessed. We have studied the radiometric calibration with data from three separate flights and two different instruments using external calibration targets. We find that the intensity data from different flights and instruments can be compared to each other only after a radiometric calibration process using separate calibration targets carefully selected for each flight. The calibration is also necessary for target classification purposes, such as separating vegetation from sand using intensity data from different flights. The classification results are meaningful only for calibrated intensity data.

  18. Airborne spectral radiation measurements to derive solar radiative forcing of Saharan dust mixed with biomass burning smoke particles

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, S.; Bierwirth, E.; Wendisch, M. (Leipzig Inst. for Meteorology (LIM), Univ. of Leipzig, Leipzig (Germany)), e-mail: s.bauer@uni-leipzig.de; Esselborn, M.; Petzold, A.; Trautmann, T. (Deutsches Zentrum fur Luft- und Raumfahrt (DLR), Oberpfaffenhofen (Germany)); Macke, A. (Leibniz Inst. for Tropospheric Research (IfT) (Germany))

    2011-09-15

    Airborne measurements of upward solar spectral irradiances were performed during the second Saharan Mineral dUst experiMent (SAMUM-2) campaign based on the Cape Verde Islands. Additionally, airborne high resolution lidar measurements of vertical profiles of particle extinction coefficients were collected in parallel to the radiation data. Aerosol layers of Saharan dust, partly mixed with biomass-burning smoke, were probed. With corresponding radiative transfer simulations the single scattering albedo and the asymmetry parameter of the aerosol particles were derived although with high uncertainty. The broad-band aerosol solar radiative forcing at the top of atmosphere was calculated and examined as a function of the aerosol types. However, due to uncertainties in both the measurements and the calculations the chemical composition cannot be identified. In addition, a mostly measurement-based method to derive the broad-band aerosol solar radiative forcing was used. This approach revealed clear differences of broad-band net irradiances as a function of the aerosol optical depth. The data were used to identify different aerosol types from different origins. Higher portions of biomass-burning smoke lead to larger broad-band net irradiances

  19. GIFTS SM EDU Radiometric and Spectral Calibrations

    Science.gov (United States)

    Tian, J.; Reisse, R. a.; Johnson, D. G.; Gazarik, J. J.

    2007-01-01

    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Sensor Module (SM) Engineering Demonstration Unit (EDU) is a high resolution spectral imager designed to measure infrared (IR) radiance using a Fourier transform spectrometer (FTS). The GIFTS instrument gathers measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. This paper describes the processing algorithms involved in the calibration. The calibration procedures can be subdivided into three categories: the pre-calibration stage, the calibration stage, and finally, the post-calibration stage. Detailed derivations for each stage are presented in this paper.

  20. Airborne measurements of CO2, CH4 and HCN in boreal biomass burning plumes

    Science.gov (United States)

    O'Shea, Sebastian J.; Bauguitte, Stephane; Muller, Jennifer B. A.; Le Breton, Michael; Archibald, Alex; Gallagher, Martin W.; Allen, Grant; Percival, Carl J.

    2013-04-01

    Biomass burning plays an important role in the budgets of a variety of atmospheric trace gases and particles. For example, fires in boreal Russia have been linked with large growths in the global concentrations of trace gases such as CO2, CH4 and CO (Langenfelds et al., 2002; Simpson et al., 2006). High resolution airborne measurements of CO2, CH4 and HCN were made over Eastern Canada onboard the UK Atmospheric Research Aircraft FAAM BAe-146 from 12 July to 4 August 2011. These observations were made as part of the BORTAS project (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites). Flights were aimed at transecting and sampling the outflow from the commonly occurring North American boreal forest fires during the summer months and to investigate and identify the chemical composition and evolution of these plumes. CO2 and CH4 dry air mole fractions were determined using an adapted system based on a Fast Greenhouse Gas Analyser (FGGA, Model RMT-200) from Los Gatos Research Inc, which uses the cavity enhanced absorption spectroscopy technique. In-flight calibrations revealed a mean accuracy of 0.57 ppmv and 2.31 ppbv for 1 Hz observations of CO2 and CH4, respectively, during the BORTAS project. During these flights a number of fresh and photochemically-aged plumes were identified using simultaneous HCN measurements. HCN is a distinctive and useful marker for forest fire emissions and it was detected using chemical ionisation mass spectrometry (CIMS). In the freshest plumes, strong relationships were found between CH4, CO2 and other tracers for biomass burning. From this we were able to estimate that 8.5 ± 0.9 g of CH4 and 1512 ± 185 g of CO2 were released into the atmosphere per kg of dry matter burnt. These emission factors are in good agreement with estimates from previous studies and can be used to calculate budgets for the region. However for aged plumes the correlations between CH4 and other

  1. RADI's Airborne X-SAR with High Resolution: Performance, Characterization and Verification

    Science.gov (United States)

    Shen, T.; Li, J.; Wang, Z. R.; Huang, L.

    2016-11-01

    X-SAR is an airborne multi-mode synthetic aperture radar (SAR) system with high- resolution, interferometer and full-polarization, developed by the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), funded by the CAS Large Research Infrastructures. Since 2009, the first developed stage of X-SAR system was successfully implemented to an operational SAR with high resolution (up to 0.5 meter). In May 2013, the imaging verification on flights test was carried out. The data calibration on the laboratory measurements were completed at the end of 2015. Many valuable results of imaging verification and data calibration have emphasized the quantitative microwave measurement capabilities. This paper presents the results of X-SAR system performance, characterization, optimization, and verification as carried out during the flight trials and laboratory measurement. The system performance and calibration parameters are presented such as transmitter amplitude accuracy, phase noise, system gain change with temperature variation, long-term radiometric stability. The imaging verification of the key performance parameters is discussed, including target-response function, target pairs discrimination, image noise and radiometric resolution. The example imagery of radiometric enhanced products for intensity change detection is also described.

  2. Identifying a Sea Breeze Circulation Pattern Over the Los Angeles Basin Using Airborne In Situ Carbon Dioxide Measurements

    Science.gov (United States)

    Brannan, A. L.; Schill, S.; Trousdell, J.; Heath, N.; Lefer, B. L.; Yang, M. M.; Bertram, T. H.

    2014-12-01

    The Los Angeles Basin in Southern California is an optimal location for a circulation study, due to its location between the Pacific Ocean to the west and the Santa Monica and San Gabriel mountain ranges to the east, as well as its booming metropolitan population. Sea breeze circulation carries air at low altitudes from coastal to inland regions, where the air rises and expands before returning back towards the coast at higher altitudes. As a result, relatively clean air is expected at low altitudes over coastal regions, but following the path of sea breeze circulation should increase the amount of anthropogenic influence. During the 2014 NASA Student Airborne Research Program, a highly modified DC-8 aircraft completed flights from June 23 to 25 in and around the LA Basin, including missed approaches at four local airports—Los Alamitos and Long Beach (coastal), Ontario and Riverside (inland). Because carbon dioxide (CO2) is chemically inert and well-suited as a conserved atmospheric tracer, the NASA Langley Atmospheric Vertical Observations of CO2 in the Earth's Troposphere (AVOCET) instrument was used to make airborne in situ carbon dioxide measurements. Combining measured wind speed and direction data from the aircraft with CO2 data shows that carbon dioxide can be used to trace the sea breeze circulation pattern of the Los Angeles basin.

  3. NASA COAST and OCEANIA Airborne Missions Support Ecosystem and Water Quality Research in the Coastal Zone

    Science.gov (United States)

    Guild, L. S.; Kudela, R. M.; Hooker, S. B.; Morrow, J. H.; Russell, P. B.; Palacios, S. L.; Livingston, J. M.; Negrey, K.; Torres-Perez, J. L.; Broughton, J.

    2014-12-01

    NASA has a continuing requirement to collect high-quality in situ data for the vicarious calibration of current and next generation ocean color satellite sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal is to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. The imaging spectrometer (Headwall) is optimized in the blue spectral domain to emphasize remote sensing of marine and freshwater ecosystems. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data are accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Flight operations are presented for the instrument payloads using the CIRPAS Twin Otter flown over Monterey Bay during the seasonal fall algal bloom in 2011 (COAST) and 2013 (OCEANIA) to support bio-optical measurements of phytoplankton for coastal zone research.

  4. A new airborne polar Nephelometer for the measurements of optical and microphysical cloud properties. Part I: Theoretical design

    Directory of Open Access Journals (Sweden)

    J. F. Gayet

    Full Text Available A new optical sensor, the airborne Polar Nephelometer, is described. The sensor is designed to measure the optical and microphysical parameters of clouds containing either water droplets or ice crystals or a mixture of these particles ranging in size from a few micrometers to about 500 µm diameter. The probe measures the scattering phase function of an ensemble of cloud particles intersecting a collimated laser beam near the focal point of a paraboloïdal mirror. The light scattered from polar angles from 3.49° to 169° is reflected onto a circular array of 33 photodiodes. The signal processing electronics and computer storage can provide one measurement of the scattering phase function every 100 ms or every 0.2 ms. The first part of the paper describes the theoretical design of a prototype version of the probe.

  5. ARM Airborne Carbon Measurements (ARM-ACME) and ARM-ACME 2.5 Final Campaign Reports

    Energy Technology Data Exchange (ETDEWEB)

    Biraud, S. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tom, M. S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sweeney, C. [NOAA Earth Systems Research Lab., Boulder, CO (United States)

    2016-01-01

    We report on a 5-year multi-institution and multi-agency airborne study of atmospheric composition and carbon cycling at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site, with scientific objectives that are central to the carbon-cycle and radiative-forcing goals of the U.S. Global Change Research Program and the North American Carbon Program (NACP). The goal of these measurements is to improve understanding of 1) the carbon exchange of the Atmospheric Radiation Measurement (ARM) SGP region; 2) how CO2 and associated water and energy fluxes influence radiative-forcing, convective processes, and CO2 concentrations over the ARM SGP region, and 3) how greenhouse gases are transported on continental scales.

  6. Target detection algorithm for airborne thermal hyperspectral data

    OpenAIRE

    Marwaha, R.; Kumar, A.; Raju, P.L.N.; Y. V. N. Krishna Murthy

    2014-01-01

    Airborne hyperspectral imaging is constantly being used for classification purpose. But airborne thermal hyperspectral image usually is a challenge for conventional classification approaches. The Telops Hyper-Cam sensor is an interferometer-based imaging system that helps in the spatial and spectral analysis of targets utilizing a single sensor. It is based on the technology of Fourier-transform which yields high spectral resolution and enables high accuracy radiometric calibration. ...

  7. NASA Airborne Snow Observatory: Measuring Spatial Distribution of Snow Water Equivalent and Snow Albedo

    Science.gov (United States)

    Joyce, M.; Painter, T. H.; Mattmann, C. A.; Ramirez, P.; Laidlaw, R.; Bormann, K. J.; Skiles, M.; Richardson, M.; Berisford, D. F.

    2015-12-01

    The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. Despite their importance in controlling volume and timing of runoff, snowpack albedo and SWE are still largely unquantified in the US and not at all in most of the globe, leaving runoff models poorly constrained. NASA Jet Propulsion Laboratory, in partnership with the California Department of Water Resources, has developed the Airborne Snow Observatory (ASO), an imaging spectrometer and scanning LiDAR system, to quantify SWE and snow albedo, generate unprecedented knowledge of snow properties for cutting edge cryospheric science, and provide complete, robust inputs to water management models and systems of the future. This poster will describe the NASA Airborne Snow Observatory, its outputs and their uses and applications, along with recent advancements to the system and plans for the project's future. Specifically, we will look at how ASO uses its imaging spectrometer to quantify spectral albedo, broadband albedo, and radiative forcing by dust and black carbon in snow. Additionally, we'll see how the scanning LiDAR is used to determine snow depth against snow-free acquisitions and to quantify snow water equivalent when combined with in-situ constrained modeling of snow density.

  8. Airborne & Ground-based measurements of atmospheric CO2 using the 1.57-μm laser absorption spectrometer

    Science.gov (United States)

    Sakaizawa, D.; Kawakami, S.; Nakajima, M.; Tanaka, T.; Miyamoto, Y.; Morino, I.; Uchino, O.; Asai, K.

    2009-12-01

    Greenhouse gases observing satellite (GOSAT) started the measurement of global CO2 abundances to reveal its continental inventory using two passive remote sensors. The goal that the sensor needs to be done is to achieve an 1% relative accuracy in order to reduce uncertainties of CO2 budget. Nevertheless, in the future global CO2 monitoring, more accurate measurement of global tropospheric CO2 abundances with the monthly regional scale are required to improve the knowledge of CO2 exchanges among the land, ocean, and atmosphere. In order to fulfill demands, a laser remote sensor, such as DIAL or laser absorption spectrometer (LAS), is a potential candidate of future space-based missions. Nowadays, those technologies are required to demonstrate an accuracy of the few-ppm level through airborne & ground-based measurements. We developed the prototype of the 1.57um LAS for a step of the next missions and perform it at the ground-based and airborne platform to show the properly validated performance in the framework of GOSAT validation. Our CO2 LAS is consisted of all optical fiber circuits & compact receiving /transmitting optics to achieve the portable, flexible and rigid system. The optical sources of on- and off-line are distributed feedback lasers, which are tuned at the strong and weak position of the R12 line in the (30012rate and combined and amplified using an erbium doped fiber amplifier. Scattered signals from the hard target are collected by the 11cm receiving telescope and detected and stored into the laptop computer. After that, we evaluated the atmospheric CO2 density using the meteorological parameters and ratio between the on- and off-line signals. The resultant of the ground-based measurement of 3km optical length indicated that the statistical error of the path averaged atmospheric CO2 density is less than 2.8ppm with 25 minutes averaging. The variation of the path averaged atmospheric CO2 is also quite consistent with that obtained from the in

  9. Cigarettes vs. e-cigarettes: Passive exposure at home measured by means of airborne marker and biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Ballbè, Montse [Tobacco Control Unit, Cancer Prevention and Control Program, Institut Català d' Oncologia, L’Hospitalet de Llobregat, Barcelona (Spain); Catalan Network of Smoke-free Hospitals, L' Hospitalet de Llobregat, Barcelona (Spain); Cancer Prevention and Control Group, Institut d' Investigació Biomèdica de Bellvitge – IDIBELL, L’Hospitalet de Llobregat, Barcelona (Spain); Addictions Unit, Institute of Neurosciences, Hospital Clínic de Barcelona – IDIBAPS, Barcelona (Spain); Department of Clinical Sciences, Universitat de Barcelona, Barcelona (Spain); Martínez-Sánchez, Jose M., E-mail: jmmartinez@iconcologia.net [Tobacco Control Unit, Cancer Prevention and Control Program, Institut Català d' Oncologia, L’Hospitalet de Llobregat, Barcelona (Spain); Cancer Prevention and Control Group, Institut d' Investigació Biomèdica de Bellvitge – IDIBELL, L’Hospitalet de Llobregat, Barcelona (Spain); Biostatistics Unit, Department of Basic Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Barcelona (Spain); Sureda, Xisca; Fu, Marcela [Tobacco Control Unit, Cancer Prevention and Control Program, Institut Català d' Oncologia, L’Hospitalet de Llobregat, Barcelona (Spain); Cancer Prevention and Control Group, Institut d' Investigació Biomèdica de Bellvitge – IDIBELL, L’Hospitalet de Llobregat, Barcelona (Spain); Department of Clinical Sciences, Universitat de Barcelona, Barcelona (Spain); and others

    2014-11-15

    Background: There is scarce evidence about passive exposure to the vapour released or exhaled from electronic cigarettes (e-cigarettes) under real conditions. The aim of this study is to characterise passive exposure to nicotine from e-cigarettes' vapour and conventional cigarettes' smoke at home among non-smokers under real-use conditions. Methods: We conducted an observational study with 54 non-smoker volunteers from different homes: 25 living at home with conventional smokers, 5 living with nicotine e-cigarette users, and 24 from control homes (not using conventional cigarettes neither e-cigarettes). We measured airborne nicotine at home and biomarkers (cotinine in saliva and urine). We calculated geometric mean (GM) and geometric standard deviations (GSD). We also performed ANOVA and Student's t tests for the log-transformed data. We used Bonferroni-corrected t-tests to control the family error rate for multiple comparisons at 5%. Results: The GMs of airborne nicotine were 0.74 μg/m{sup 3} (GSD=4.05) in the smokers’ homes, 0.13 μg/m{sup 3} (GSD=2.4) in the e-cigarettes users’ homes, and 0.02 μg/m{sup 3} (GSD=3.51) in the control homes. The GMs of salivary cotinine were 0.38 ng/ml (GSD=2.34) in the smokers’ homes, 0.19 ng/ml (GSD=2.17) in the e-cigarettes users’ homes, and 0.07 ng/ml (GSD=1.79) in the control homes. Salivary cotinine concentrations of the non-smokers exposed to e-cigarette's vapour at home (all exposed ≥2 h/day) were statistically significant different that those found in non-smokers exposed to second-hand smoke ≥2 h/day and in non-smokers from control homes. Conclusions: The airborne markers were statistically higher in conventional cigarette homes than in e-cigarettes homes (5.7 times higher). However, concentrations of both biomarkers among non-smokers exposed to conventional cigarettes and e-cigarettes’ vapour were statistically similar (only 2 and 1.4 times higher, respectively). The levels of airborne

  10. Radiometric studies of Mycobacterium lepraemurium.

    Science.gov (United States)

    Camargo, E E; Larson, S M; Tepper, B S; Wagner, H N

    1976-01-01

    The radiometric method has been applied for studying the metabolism of M. lepraemurium and the conditions which might force or inhibit its metabolic activity in vitro. These organisms assimilate and oxidize (U-14C) glycerol, and (U-14C) acetate, but are unable to oxidize (U-14C) glucose, (U-14C) pyruvate, (U-14C) glycine and 14C-formate. When incubated at 30 degrees C M. lepraemurium oxidizes (U-14C) acetate to 14CO2 faster than 37 degrees C. The smae effect was observed with increasing concentrations of polysorbate 80 (Tween 80), or the 14C-substrate. No change in metabolic rate was observed when the organisms were kept at -20 degrees C for 12 days. Although tried several times, it was not possible to demonstrate any "inhibitors" of bacterial metabolism in the reaction system. The radiometric method seems to be an important tool for studying metabolic pathways and the influence of physical and biochemical factors on the metabolism of M. lepraemurium in vitro.

  11. Validating MODIS above-cloud aerosol optical depth retrieved from "color ratio" algorithm using direct measurements made by NASA's airborne AATS and 4STAR sensors

    Science.gov (United States)

    Jethva, Hiren; Torres, Omar; Remer, Lorraine; Redemann, Jens; Livingston, John; Dunagan, Stephen; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal Rosenheimer, Michal; Spurr, Rob

    2016-10-01

    We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the "color ratio" method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASA's airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne matchups revealed a good agreement (root-mean-square difference < 0.1), with most matchups falling within the estimated uncertainties associated the MODIS retrievals (about -10 to +50 %). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30-50 % for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite-based retrievals.

  12. NO2 Profile Retrieval using airborne multi axis UV-visible skylight absorption measurements over central Europe

    Directory of Open Access Journals (Sweden)

    I. Pundt

    2006-01-01

    Full Text Available A recent development in ground-based remote sensing of atmospheric constituents by UV/visible absorption measurements of scattered light is the simultaneous use of several directions with small elevation angles in addition to the traditional zenith-sky pointing. The different light paths through the atmosphere enable the vertical distribution of some atmospheric absorbers such as NO2, BrO or O3 to be retrieved. In this study, the amount of profile information that can be retrieved from such measurements on aircraft is investigated for the trace gas NO2. A Sensitivity study on synthetic data is performed for a combination of four lines of sight (LOS (0° (nadir, 88°, 92°, and 180° (zenith and three wavelength regions [center wavelengths: 362.5 nm, 437.5 nm, and 485.0 nm]. This investigation demonstrates the potential of this LOS/wavelengths setup to retrieve a significant amount of profile information from airborne multiaxis differential optical absorption spectrometer (AMAXDOAS measurements with a vertical resolution of 3.0 to 4.5 km in the lower troposphere and 2.0 to 3.5 km near flight altitude. Above 13 km the profile information content of AMAXDOAS measurements is sparse. Further, retrieved profiles with a significant amount (up to 3.2 ppbv of NO2 in the boundary layer over the Po-valley (Italy are presented. Airborne multiaxis measurements are thus a promising tool for atmospheric studies in the troposphere.

  13. NO2 Profile retrieval using airborne multi axis UV-visible skylight absorption measurements over central Europe

    Directory of Open Access Journals (Sweden)

    M. Bruns

    2006-01-01

    Full Text Available A recent development in ground-based remote sensing of atmospheric constituents by UV/visible absorption measurements of scattered light is the simultaneous use of several directions with small elevation angles in addition to the traditional zenith-sky pointing. The different light paths through the atmosphere enable the vertical distribution of some atmospheric absorbers such as NO2, BrO or O3 to be retrieved. In this study, the amount of profile information that can be retrieved from such measurements on aircraft is investigated for the trace gas NO2. A Sensitivity study on synthetic data is performed for a combination of four lines of sight (LOS (0°(nadir, 88°, 92°, and 180° (zenith and three wavelength regions [center wavelengths: 362.5 nm, 437.5 nm, and 485.0 nm]. The method used in this work is a combination of two previously established methods described in Petritoli et al. (2002 and Wang et al. (2004. The investigation presented here demonstrates the potential of this LOS/wavelengths setup to retrieve a significant amount of profile information from airborne multiax is differential optical absorption spectrometer (AMAXDOAS measurements with a vertical resolution of 3.0 to 4.5 km in the lower troposphere and 2.0 to 3.5 km near flight altitude. Above 13 km the profile information content of AMAXDOAS measurements is sparse. The retrieval algorithm used in this work is the AMAXDOAS profile retrievalalgorithm (APROVAL. Further, retrieved profiles with a significant amount (up to 3.2 ppbv of NO2 in the boundary layer over the Po-valley (Italy are presented. Airborne multiaxis measurements are thus a promising tool for atmospheric studies in the troposphere.

  14. Airborne measurements over the boreal forest of southern Finland during new particle formation events in 2009 and 2010

    Energy Technology Data Exchange (ETDEWEB)

    Schobesberger, S.; Vaananen, R.; Leino, K. [Helsinki Univ. (Finland). Dept. of Physics, Division of Atmospheric Sciences] [and others

    2013-06-01

    We conducted airborne observations of aerosol physical properties over the southern Finland boreal forest environment. The aim was to investigate the lower tropospheric aerosol (up to 4-km altitude) over an area of 250 by 200 km, in particular during new particle formation (NPF) events, and to address the spatial variability of aerosol number concentration and number size distribution. The regional NPF events, detected both airborne and at the ground, with air masses originating from the Arctic or northern Atlantic Ocean were studied throughout the boundary layer and throughout the area covered. Three suitable case studies are presented in more detail. In two of these studies, the concentrations of nucleation mode particles (3-10 nm in diameter) were found considerably higher (up to a factor of 30) in the upper parts of the planetary boundary layer compared to ground-based measurements during the nucleation events. The observed vertical variation can be connected to boundary layer dynamics and interactions between the boundary layer and the lower free troposphere, likely yielding high concentrations of newly formed aerosol particles. Our results suggest that nucleation does not necessarily occur close to the surface. In one presented case we found evidence of NPF occurring in a limited area above cloud, in the complete absence of a regional NPF event. (orig.)

  15. Measurements of condensation nuclei in the Airborne Arctic Stratospheric Expedition - Observations of particle production in the polar vortex

    Science.gov (United States)

    Wilson, J. C.; Stolzenburg, M. R.; Clark, W. E.; Loewenstein, M.; Ferry, G. V.; Chan, K. R.

    1990-01-01

    The ER-2 Condensation Nucleus Counter (ER-2 CNC) was operated in the Airborne Arctic Stratospheric Expedition (AASE) in January and February 1989. The ER-2 CNC measures the mixing ratio of particles, CN, with diameters from approximately 0.02 to approximately 1 micron. The spatial distribution of CN in the Arctic polar vortex was found to resemble that measured in the Antarctic in the Spring of 1987. The vertical profile of CN in the vortex was lowered by subsidence. At altitudes above the minimum in the CN mixing ratio profile, CN mixing ratios correlated negatively with that of N2O, demonstrating new particle production. CN serve as nuclei in the formation of Polar Stratospheric Clouds (PSCs) and the concentration of CN can affect PSC properties.

  16. Initial Results from the DEEPWAVE Airborne and Ground-Based Measurement Program in New Zealand in 2014

    Science.gov (United States)

    Fritts, Dave; Smith, Ron; Taylor, Mike; Doyle, Jim; Eckermann, Steve; Dörnbrack, Andreas; Rapp, Markus; Williams, Biff; Bossert, Katrina; Pautet, Dominique

    2015-04-01

    The deep-propagating gravity wave experiment (DEEPWAVE) was performed on and over New Zealand, Tasmania, the Tasman Sea, and the Southern Ocean with core airborne measurements extending from 5 June to 21 July 2014 and supporting ground-based measurements beginning in late May and extending beyond the airborne component. DEEPWAVE employed two aircraft, the NSF/NCAR GV and the German DLR Falcon. The GV carried the standard flight-level instruments, dropsondes, and the Microwave Temperature Profiler (MTP). It also hosted new airborne lidar and imaging instruments built specifically to allow quantification of gravity waves (GWs) from sources at lower altitudes (e.g., orography, convection, jet streams, fronts, and secondary GW generation) throughout the stratosphere and into the mesosphere and lower thermosphere (MLT). The new GV lidars included a Rayleigh lidar measuring atmospheric density and temperature from ~20-60 km and a sodium resonance lidar measuring sodium density and temperature at ~75-100 km. An airborne Advanced Mesosphere Temperature Mapper (AMTM) was also developed for the GV, and together with additional IR "wing" cameras, imaged the OH airglow temperature and/or intensity fields extending ~900 km across the GV flight track. The DLR Falcon was equipped with its standard flight-level instruments and an aerosol Doppler lidar able to measure radial winds below the Falcon where aerosol backscatter was sufficient. Additional ground-based instruments included a 449 MHz boundary layer radar, balloons at multiple sites, two ground-based Rayleigh lidars, a second ground-based AMTM, a Fabry Perot interferometer measuring winds and temperatures at ~87 and 95 km, and a meteor radar measuring winds from ~80-100 km. DEEPWAVE performed 26 GV flights, 13 Falcon flights, and an extensive series of ground-based measurements whether or not the aircraft were flying. Together, these observed many diverse cases of GW forcing, propagation, refraction, and dissipation

  17. Analyzing Source Apportioned Methane in Northern California During DISCOVER-AQ-CA Using Airborne Measurements and Model Simulations

    Science.gov (United States)

    Johnson, Matthew S.

    2014-01-01

    This study analyzes source apportioned methane (CH4) emissions and atmospheric concentrations in northern California during the Discover-AQ-CA field campaign using airborne measurement data and model simulations. Source apportioned CH4 emissions from the Emissions Database for Global Atmospheric Research (EDGAR) version 4.2 were applied in the 3-D chemical transport model GEOS-Chem and analyzed using airborne measurements taken as part of the Alpha Jet Atmospheric eXperiment over the San Francisco Bay Area (SFBA) and northern San Joaquin Valley (SJV). During the time period of the Discover-AQ-CA field campaign EDGAR inventory CH4 emissions were 5.30 Gg/day (Gg 1.0 109 grams) (equating to 1.9 103 Gg/yr) for all of California. According to EDGAR, the SFBA and northern SJV region contributes 30 of total emissions from California. Source apportionment analysis during this study shows that CH4 concentrations over this area of northern California are largely influenced by global emissions from wetlands and local/global emissions from gas and oil production and distribution, waste treatment processes, and livestock management. Model simulations, using EDGAR emissions, suggest that the model under-estimates CH4 concentrations in northern California (average normalized mean bias (NMB) -5 and linear regression slope 0.25). The largest negative biases in the model were calculated on days when hot spots of local emission sources were measured and atmospheric CH4 concentrations reached values 3.0 parts per million (model NMB -10). Sensitivity emission studies conducted during this research suggest that local emissions of CH4 from livestock management processes are likely the primary source of the negative model bias. These results indicate that a variety, and larger quantity, of measurement data needs to be obtained and additional research is necessary to better quantify source apportioned CH4 emissions in California and further the understanding of the physical processes

  18. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    Science.gov (United States)

    Abshire, James; Riris, Haris; Allan, Graham; Weaver, Clark; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William

    2010-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's planned ASCENDS space mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are rapidly and precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. The time of flight of the laser pulses are also used to estimate the height of the scattering surface and to identify cases of mixed cloud and ground scattering. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser's wavelength across the selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during fall 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin clouds. The atmospheric CO2 column measurements using the 1572.33 nm CO2 lines. Two flights were made above the

  19. [In-flight absolute radiometric calibration of UAV multispectral sensor].

    Science.gov (United States)

    Chen, Wei; Yan, Lei; Gou, Zhi-Yang; Zhao, Hong-Ying; Liu, Da-Ping; Duan, Yi-Ni

    2012-12-01

    Based on the data of the scientific experiment in Urad Front Banner for UAV Remote Sensing Load Calibration Field project, with the help of 6 hyperspectral radiometric targets with good Lambertian property, the wide-view multispectral camera in UAV was calibrated adopting reflectance-based method. The result reveals that for green, red and infrared channel, whose images were successfully captured, the linear correlation coefficients between the DN and radiance are all larger than 99%. In final analysis, the comprehensive error is no more than 6%. The calibration results demonstrate that the hyperspectral targets equipped by the calibration field are well suitable for air-borne multispectral load in-flight calibration. The calibration result is reliable and could be used in the retrieval of geophysical parameters.

  20. Measurement of snow depth distribution in the upper basin in the Japanese Alps using an airborne laser scanning

    Science.gov (United States)

    Suzuki, Keisuke; Sasaki, Akihiko

    2016-04-01

    In the Japanese Alps region, large amounts of precipitation in the form of snow constitute a more important water resource than rain. During the winter, precipitation that is deposited as snowfall accumulates in the river basins, and it forms natural dams known as "white dams." A quantitative understanding of snow depth distribution in these mountainous areas is important not only for evaluating water resource volume, but also for understanding the effects of snow in terms of its impact on landforms and its effect on the distribution of vegetation. However, it is not easy to perform a quantitative evaluation of snow depth distribution in mountainous areas. Several methods have been proposed for clarifying snow depth distribution. The most widely used of these is a method of inserting a sounding rod into the snow to measure its depth at each geographic position. Another method is to dig a trench in the snow and then perform an observational measurement of the side of the trench. These methods enable accurate measurement of the snow depth; however, when the snow is several meters deep, the methods may be limited by the measuring capacity of the equipment, or by the time restrictions of the survey. For these reasons, wide area measurement of the spatial distribution of snow is very difficult, and it is not suitable for investigating snow depth distribution in river basins. In recent years, a measurement technology has been developed that uses laser scanners mounted on aircraft. This method enables researchers to obtain ground surface coordinate data with high precision over a wide area from the air. Using such a scanner to measure the ground surface during snow coverage and during no snow coverage, and then finding the differences between the surface elevations, has made it possible to ascertain snow depth with high precision. Airborne laser measurement enables high-precision measurements over a wide area and in a short amount of time, and measurements can be made

  1. Double-pulse 2-μm integrated path differential absorption lidar airborne validation for atmospheric carbon dioxide measurement.

    Science.gov (United States)

    Refaat, Tamer F; Singh, Upendra N; Yu, Jirong; Petros, Mulugeta; Remus, Ruben; Ismail, Syed

    2016-05-20

    Field experiments were conducted to test and evaluate the initial atmospheric carbon dioxide (CO2) measurement capability of airborne, high-energy, double-pulsed, 2-μm integrated path differential absorption (IPDA) lidar. This IPDA was designed, integrated, and operated at the NASA Langley Research Center on-board the NASA B-200 aircraft. The IPDA was tuned to the CO2 strong absorption line at 2050.9670 nm, which is the optimum for lower tropospheric weighted column measurements. Flights were conducted over land and ocean under different conditions. The first validation experiments of the IPDA for atmospheric CO2 remote sensing, focusing on low surface reflectivity oceanic surface returns during full day background conditions, are presented. In these experiments, the IPDA measurements were validated by comparison to airborne flask air-sampling measurements conducted by the NOAA Earth System Research Laboratory. IPDA performance modeling was conducted to evaluate measurement sensitivity and bias errors. The IPDA signals and their variation with altitude compare well with predicted model results. In addition, off-off-line testing was conducted, with fixed instrument settings, to evaluate the IPDA systematic and random errors. Analysis shows an altitude-independent differential optical depth offset of 0.0769. Optical depth measurement uncertainty of 0.0918 compares well with the predicted value of 0.0761. IPDA CO2 column measurement compares well with model-driven, near-simultaneous air-sampling measurements from the NOAA aircraft at different altitudes. With a 10-s shot average, CO2 differential optical depth measurement of 1.0054±0.0103 was retrieved from a 6-km altitude and a 4-GHz on-line operation. As compared to CO2 weighted-average column dry-air volume mixing ratio of 404.08 ppm, derived from air sampling, IPDA measurement resulted in a value of 405.22±4.15  ppm with 1.02% uncertainty and 0.28% additional bias. Sensitivity analysis of environmental

  2. Analysis of Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption from 3-13 km Altitudes

    Science.gov (United States)

    Abshire, James B.; Weaver, Clark J.; Riris, Haris; Mao, Jianping; Sun, Xiaoli; Allan, Graham R.; Hasselbrack, William; Browell, Edward V.

    2011-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS space mission [1]. It uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1575 nm band, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver measures the energies of the laser echoes from the surface along with the range profile of scattering in the path. The column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off-line signals via the integrated path differential absorption (IPDA) technique. The time of flight of the laser pulses is used to estimate the height of the scattering surface and to reject laser photons scattered in the atmosphere. We developed an airborne lidar to demonstrate an early version of the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar stepped the pulsed laser's wavelength across the selected CO2 line with 20 wavelength steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a NIR photomultiplier and is recorded on every other reading by a photon counting system [2]. During August 2009 we made a series of 2.5 hour long flights and measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over locations in the US, including the SGP ARM site in Oklahoma, central Illinois, north-eastern North Carolina, and over the Chesapeake Bay and the eastern shore of Virginia. Although the received signal energies were weaker than expected for ASCENDS, clear CO2 line shapes were observed at all altitudes, and some measurements were made

  3. Development of an Airborne Triple-Pulse 2-Micron Integrated Path Differential Absorption Lidar (IPDA) for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    Science.gov (United States)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Remus, Ruben

    2016-01-01

    This presentation will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar being developed at NASA Langley Research Center with support from NASA ESTO Instrument Incubator Program. The development of this active optical remote sensing IPDA instrument is targeted for measuring both atmospheric carbon dioxide and water vapor in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plan for IPDA lidar system for ground integration, testing and flight validation will also be presented.

  4. Radiometric studies of mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Edwaldo E. Camargo

    1987-02-01

    Full Text Available An in vitro assay system that included automated radiometric quantification of 14CO2 released as a result of oxidation of 14C- substrates was applied for studying the metabolic activity of M. tuberculosis under various experimental conditions. These experiments included the study of a mtabolic pathways, b detection times for various inoculum sizes, c effect of filtration on reproducibility of results, d influence of stress environment e minimal inhibitory concentrations for isoniazid, streptomycin, ethambutol and rifampin, and f generation times of M. tuberculosis and M. bovis. These organisms were found to metabolize 14C-for-mate, (U-14C acetate, (U-14C glycerol, (1-14C palmitic acid, 1-14C lauric acid, (U-14C L-malic acid, (U-14C D-glucose, and (U-14C D-glucose, but not (1-14C L-glucose, (U-14C glycine, or (U-14C pyruvate to 14CO2. By using either 14C-for-mate, (1-14C palmitic acid, or (1-14C lauric acid, 10(7 organisms/vial could be detected within 24 48 hours and as few as 10 organisms/vial within 16-20 days. Reproducible results could be obtained without filtering the bacterial suspension, provided that the organisms were grown in liquid 7H9 medium with 0.05% polysorbate 80 and homogenized prior to the study. Drugs that block protein synthesis were found to have lower minimal inhibitory concentrations with the radiometric method when compared to the conventional agar dilution method. The mean generation time obtained for M. bovis and different strains of M. tuberculosis with various substrates was 9 ± 1 hours.

  5. Airborne Laser Absorption Spectrometer Measurements of CO2 Column Mixing Ratios: Source and Sink Detection in the Atmospheric Environment

    Directory of Open Access Journals (Sweden)

    Menzies Robert T.

    2016-01-01

    Full Text Available The JPL airborne Laser Absorption Spectrometer instrument has been flown several times in the 2007-2011 time frame for the purpose of measuring CO2 mixing ratios in the lower atmosphere. The four most recent flight campaigns were on the NASA DC-8 research aircraft, in support of the NASA ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons mission formulation studies. This instrument operates in the 2.05-μm spectral region. The Integrated Path Differential Absorption (IPDA method is used to retrieve weighted CO2 column mixing ratios. We present key features of the CO2LAS signal processing, data analysis, and the calibration/validation methodology. Results from flights in various U.S. locations during the past three years include observed mid-day CO2 drawdown in the Midwest, also cases of point-source and regional plume detection that enable the calculation of emission rates.

  6. Airborne Laser Absorption Spectrometer Measurements of CO2 Column Mixing Ratios: Source and Sink Detection in the Atmospheric Environment

    Science.gov (United States)

    Menzies, Robert T.; Spiers, Gary D.; Jacob, Joseph C.

    2016-06-01

    The JPL airborne Laser Absorption Spectrometer instrument has been flown several times in the 2007-2011 time frame for the purpose of measuring CO2 mixing ratios in the lower atmosphere. The four most recent flight campaigns were on the NASA DC-8 research aircraft, in support of the NASA ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) mission formulation studies. This instrument operates in the 2.05-μm spectral region. The Integrated Path Differential Absorption (IPDA) method is used to retrieve weighted CO2 column mixing ratios. We present key features of the CO2LAS signal processing, data analysis, and the calibration/validation methodology. Results from flights in various U.S. locations during the past three years include observed mid-day CO2 drawdown in the Midwest, also cases of point-source and regional plume detection that enable the calculation of emission rates.

  7. Feasibility Study of Radiometry for Airborne Detection of Aviation Hazards

    Science.gov (United States)

    Gimmestad, Gary G.; Papanicolopoulos, Chris D.; Richards, Mark A.; Sherman, Donald L.; West, Leanne L.; Johnson, James W. (Technical Monitor)

    2001-01-01

    Radiometric sensors for aviation hazards have the potential for widespread and inexpensive deployment on aircraft. This report contains discussions of three aviation hazards - icing, turbulence, and volcanic ash - as well as candidate radiometric detection techniques for each hazard. Dual-polarization microwave radiometry is the only viable radiometric technique for detection of icing conditions, but more research will be required to assess its usefulness to the aviation community. Passive infrared techniques are being developed for detection of turbulence and volcanic ash by researchers in this country and also in Australia. Further investigation of the infrared airborne radiometric hazard detection approaches will also be required in order to develop reliable detection/discrimination techniques. This report includes a description of a commercial hyperspectral imager for investigating the infrared detection techniques for turbulence and volcanic ash.

  8. Cloud particle size distributions measured with an airborne digital in-line holographic instrument

    Directory of Open Access Journals (Sweden)

    J. P. Fugal

    2009-03-01

    Full Text Available Holographic data from the prototype airborne digital holographic instrument HOLODEC (Holographic Detector for Clouds, taken during test flights are digitally reconstructed to obtain the size (equivalent diameters in the range 23 to 1000 μm, three-dimensional position, and two-dimensional profile of ice particles and then ice particle size distributions and number densities are calculated using an automated algorithm with minimal user intervention. The holographic method offers the advantages of a well-defined sample volume size that is not dependent on particle size or airspeed, and offers a unique method of detecting shattered particles. The holographic method also allows the volume sample rate to be increased beyond that of the prototype HOLODEC instrument, limited solely by camera technology.

    HOLODEC size distributions taken in mixed-phase regions of cloud compare well to size distributions from a PMS FSSP probe also onboard the aircraft during the test flights. A conservative algorithm for detecting shattered particles utilizing the particles depth-position along the optical axis eliminates the obvious ice particle shattering events from the data set. In this particular case, the size distributions of non-shattered particles are reduced by approximately a factor of two for particles 15 to 70 μm in equivalent diameter, compared to size distributions of all particles.

  9. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    Science.gov (United States)

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA F...

  10. Airborne Measurements of CO2 Column Absorption and Range Using a Pulsed Direct-Detection Integrated Path Differential Absorption Lidar

    Science.gov (United States)

    Abshire, James B.; Riris, Haris; Weaver, Clark J.; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Browell, Edward V.

    2013-01-01

    We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 810 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.

  11. Cross-Correlation of Diameter Measures for the Co-Registration of Forest Inventory Plots with Airborne Laser Scanning Data

    Directory of Open Access Journals (Sweden)

    Jean-Matthieu Monnet

    2014-09-01

    Full Text Available Continuous maps of forest parameters can be derived from airborne laser scanning (ALS remote sensing data. A prediction model is calibrated between local point cloud statistics and forest parameters measured on field plots. Unfortunately, inaccurate positioning of field measures lead to a bad matching of forest measures with remote sensing data. The potential of using tree diameter and position measures in cross-correlation with ALS data to improve co-registration is evaluated. The influence of the correction on ALS models is assessed by comparing the accuracy of basal area prediction models calibrated or validated with or without the corrected positions. In a coniferous, uneven-aged forest with high density ALS data and low positioning precision, the algorithm co-registers 91% of plots within two meters from the operator location when at least the five largest trees are used in the analysis. The new coordinates slightly improve the prediction models and allow a better estimation of their accuracy. In a forest with various stand structures and species, lower ALS density and differential Global Navigation Satellite System measurements, position correction turns out to have only a limited impact on prediction models.

  12. Lidar reflectance from snow at 2.05  μm wavelength as measured by the JPL Airborne Laser Absorption Spectrometer.

    Science.gov (United States)

    Spiers, Gary D; Menzies, Robert T; Jacob, Joseph C

    2016-03-10

    We report airborne measurements of lidar directional reflectance (backscatter) from land surfaces at a wavelength in the 2.05 μm CO₂ absorption band, with emphasis on snow-covered surfaces in various natural environments. Lidar backscatter measurements using this instrument provide insight into the capabilities of lidar for both airborne and future global-scale CO₂ measurements from low Earth orbit pertinent to the NASA Active Sensing of CO₂ Emissions over Nights, Days, and Seasons mission. Lidar measurement capability is particularly useful when the use of solar scattering spectroscopy is not feasible for high-accuracy atmospheric CO₂ measurements. Consequently, performance in high-latitude and winter season environments is an emphasis. Snow-covered surfaces are known to be dark in the CO₂ band spectral regions. The quantitative backscatter data from these field measurements help to elucidate the range of backscatter values that can be expected in natural environments.

  13. Assessing spaceborne lidar detection and characterization of aerosols near clouds using coincident airborne lidar and other measurements

    Science.gov (United States)

    Kacenelenbogen, M. S.; Redemann, J.; Russell, P. B.; Vaughan, M.; Omar, A. H.; Burton, S. P.; Rogers, R.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.

    2011-12-01

    The objectives are to 1) evaluate potential shortcomings in the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol height detection concerning specific biomass burning smoke events informed by airborne High Spectral Resolution Lidar (HSRL) in different cloud environments and 2) study the lidar-derived atmospheric parameters in the vicinity of clouds for the cases where smoke is within or above clouds. In the case of light absorbing aerosols like biomass burning smoke, studies show that the greater the cloud cover below the aerosols, the more likely the aerosols are to heat the planet. An accurate aerosol height assumption is also crucial to a correct retrieval of aerosol chemical composition from passive space-based measurements (through the Single Scattering Albedo (SSA) and aerosol absorption coefficient, as exemplified by aerosol retrievals using the passive Ozone Monitoring Instrument (OMI)). Strong smoke events are recognized as very difficult to quantify from space using passive (MODIS, OMI etc...) or active (CALIOP) satellite sensors for different reasons. This study is performed through (i) the selection of smoke events with coincident CALIOP and airborne HSRL aerosol observations, with smoke presence determined according to the HSRL aerosol classification data, (ii) the order of such events by range of HSRL aerosol optical depth, total color ratio and depolarization ratio (the latter two informing on the size and shape of the particles) and the evaluation of CALIOP's detection, classification and retrieval performance for each event, (iii) the study of the HSRL (or CALIOP when available) atmospheric parameters (total color ratio, volume depolarization ratio, mean attenuated backscatter) in the vicinity of clouds for each smoke event.

  14. A new airborne Polar Nephelometer for the measurement of optical and microphysical cloud properties. Part II: Preliminary tests

    Directory of Open Access Journals (Sweden)

    O. Crépel

    Full Text Available A new optical sensor, the airborne Polar Nephelometer, has been tested in an open wind tunnel. The wind tunnel was operated in cloudy conditions including either cloud water droplets or ice crystals, or a mixture of these particles. The sensor is designed to measure the optical and microphysical parameters of cloud particles sized from a few micrometers to about 500 µm diameter. Basically, the probe measures the scattering phase function of an ensemble of cloud particles which intersect a collimated laser beam near the focal point of a paraboloidal mirror. From the measured scattering phase function the retrieval of the droplet-size spectra and subsequent derived quantities such as liquid water content and size parameters can be calculated using an inversion method. The particle phase discrimination (water droplets/ice particles can be derived from the shape of the scattering phase function and the sensitivity of the probe allows the detection of small ice crystals (typically of 5 µm diameter. The paper describes the preliminary results obtained by the prototype version of the Polar Nephelometer in various cloudy conditions. These results are compared with direct microphysical measurements obtained by usual PMS probes also mounted in the wind tunnel. Complementary results obtained in a cold chamber are presented in order to illustrate the reliability of the Polar Nephelometer in the presence of small ice crystals.

  15. CBSIT 2009: Airborne Validation of Envisat Radar Altimetry and In Situ Ice Camp Measurements Over Arctic Sea Ice

    Science.gov (United States)

    Connor, Laurence; Farrell, Sinead; McAdoo, David; Krabill, William; Laxon, Seymour; Richter-Menge, Jacqueline; Markus, Thorsten

    2010-01-01

    The past few years have seen the emergence of satellite altimetry as valuable tool for taking quantitative sea ice monitoring beyond the traditional surface extent measurements and into estimates of sea ice thickness and volume, parameters that arc fundamental to improved understanding of polar dynamics and climate modeling. Several studies have now demonstrated the use of both microwave (ERS, Envisat/RA-2) and laser (ICESat/GLAS) satellite altimeters for determining sea ice thickness. The complexity of polar environments, however, continues to make sea ice thickness determination a complicated remote sensing task and validation studies remain essential for successful monitoring of sea ice hy satellites. One such validation effort, the Arctic Aircraft Altimeter (AAA) campaign of2006. included underflights of Envisat and ICESat north of the Canadian Archipelago using NASA's P-3 aircraft. This campaign compared Envisat and ICESat sea ice elevation measurements with high-resolution airborne elevation measurements, revealing the impact of refrozen leads on radar altimetry and ice drift on laser altimetry. Continuing this research and validation effort, the Canada Basin Sea Ice Thickness (CBSIT) experiment was completed in April 2009. CBSIT was conducted by NOAA. and NASA as part of NASA's Operation Ice Bridge, a gap-filling mission intended to supplement sea and land ice monitoring until the launch of NASA's ICESat-2 mission. CBIST was flown on the NASA P-3, which was equipped with a scanning laser altimeter, a Ku-band snow radar, and un updated nadir looking photo-imaging system. The CB5IT campaign consisted of two flights: an under flight of Envisat along a 1000 km track similar to that flown in 2006, and a flight through the Nares Strait up to the Lincoln Sea that included an overflight of the Danish GreenArc Ice Camp off the coast of northern Greenland. We present an examination of data collected during this campaign, comparing airborne laser altimeter measurements

  16. Investigating sources of ozone over California using AJAX airborne measurements and models: Assessing the contribution from long-range transport

    Science.gov (United States)

    Ryoo, Ju-Mee; Johnson, Matthew S.; Iraci, Laura T.; Yates, Emma L.; Gore, Warren

    2017-04-01

    High ozone (O3) concentrations at low altitudes (1.5-4 km) were detected from airborne Alpha Jet Atmospheric eXperiment (AJAX) measurements on 30 May 2012 off the coast of California (CA). We investigate the causes of those elevated O3 concentrations using airborne measurements and various models. GEOS-Chem simulation shows that the contribution from local sources is likely small. A back-trajectory model was used to determine the air mass origins and how much they contributed to the O3 over CA. Low-level potential vorticity (PV) from Modern Era Retrospective analysis for Research and Applications 2 (MERRA-2) reanalysis data appears to be a result of the diabatic heating and mixing of airs in the lower altitudes, rather than be a result of direct transport from stratospheric intrusion. The Q diagnostic, which is a measure of the mixing of the air masses, indicates that there is sufficient mixing along the trajectory to indicate that O3 from the different origins is mixed and transported to the western U.S. The back-trajectory model simulation demonstrates the air masses of interest came mostly from the mid troposphere (MT, 76%), but the contribution of the lower troposphere (LT, 19%) is also significant compared to those from the upper troposphere/lower stratosphere (UT/LS, 5%). Air coming from the LT appears to be mostly originating over Asia. The possible surface impact of the high O3 transported aloft on the surface O3 concentration through vertical and horizontal transport within a few days is substantiated by the influence maps determined from the Weather Research and Forecasting-Stochastic Time Inverted Lagrangian Transport (WRF-STILT) model and the observed increases in surface ozone mixing ratios. Contrasting this complex case with a stratospheric-dominant event emphasizes the contribution of each source to the high O3 concentration in the lower altitudes over CA. Integrated analyses using models, reanalysis, and diagnostic tools, allows high ozone values

  17. Relative Radiometric Normalization of Multitemporal images

    Directory of Open Access Journals (Sweden)

    Andrés Castillo Sanz

    2010-12-01

    Full Text Available A correct radiometric normalization between both images is fundamental for change detection. MAD method and its IR-MAD extension in an implementation on multisprectral aerial images is described in this paper

  18. Determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using radiochemical separation combined with radiometric and mass spectrometric measurements

    DEFF Research Database (Denmark)

    Xu, Yihong; Qiao, Jixin; Hou, Xiaolin

    2014-01-01

    This paper reports an analytical method for the determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using anion exchange chromatography in combination with extraction chromatography for chemical separation of Pu. Both radiometric methods (liquid scintillation...

  19. Development of a passive air sampler to measure airborne organophosphorus pesticides and oxygen analogs in an agricultural community.

    Science.gov (United States)

    Armstrong, Jenna L; Yost, Michael G; Fenske, Richard A

    2014-09-01

    Organophosphorus pesticides are some of the most widely used insecticides in the US, and spray drift may result in human exposures. We investigate sampling methodologies using the polyurethane foam passive air sampling device to measure cumulative monthly airborne concentrations of OP pesticides chlorpyrifos, azinphos-methyl, and oxygen analogs. Passive sampling rates (m(3)d(-1)) were determined using calculations using chemical properties, loss of depuration compounds, and calibration with side-by-side active air sampling in a dynamic laboratory exposure chamber and in the field. The effects of temperature, relative humidity, and wind velocity on outdoor sampling rates were examined at 23 sites in Yakima Valley, Washington. Indoor sampling rates were significantly lower than outdoors. Outdoor rates significantly increased with average wind velocity, with high rates (>4m(3)d(-1)) observed above 8ms(-1). In exposure chamber studies, very little oxygen analog was observed on the PUF-PAS, yet substantial amounts chlorpyrifos-oxon and azinphos methyl oxon were measured in outdoor samples. PUF-PAS is a practical and useful alternative to AAS because it results in little artificial transformation to the oxygen analog during sampling, it provides cumulative exposure estimates, and the measured sampling rates were comparable to rates for other SVOCs. It is ideal for community based participatory research due to low subject burden and simple deployment in remote areas.

  20. Modeling of mean radiant temperature based on comparison of airborne remote sensing data with surface measured data

    Science.gov (United States)

    Chen, Yu-Cheng; Chen, Chih-Yu; Matzarakis, Andreas; Liu, Jin-King; Lin, Tzu-Ping

    2016-06-01

    Assessment of outdoor thermal comfort is becoming increasingly important due to the urban heat island effect, which strongly affects the urban thermal environment. The mean radiant temperature (Tmrt) quantifies the effect of the radiation environment on humans, but it can only be estimated based on influencing parameters and factors. Knowledge of Tmrt is important for quantifying the heat load on human beings, especially during heat waves. This study estimates Tmrt using several methods, which are based on climatic data from a traditional weather station, microscale ground surface measurements, land surface temperature (LST) and light detection and ranging (LIDAR) data measured using airborne devices. Analytical results reveal that the best means of estimating Tmrt combines information about LST and surface elevation information with meteorological data from the closest weather station. The application in this method can eliminate the inconvenience of executing a wide range ground surface measurement, the insufficient resolution of satellite data and the incomplete data of current urban built environments. This method can be used to map a whole city to identify hot spots, and can be contributed to understanding human biometeorological conditions quickly and accurately.

  1. Lansat MSS, Radiometric Processing Improvement

    Science.gov (United States)

    Saunier, Sebastien; Salgues, Germain; Gascon, Ferran; Biaasutti, Roberto

    2016-08-01

    The reprocessing campaigns of Landsat European Space Agency (ESA) data archive have been initiated since 3 years [1]. As part of this project, the processing algorithms have been upgraded. This article focuses on the radiometric processing of historical data observed with the Multi Spectral Scanner (MSS) instruments on board Landsat 1, 2, 3, 4 and 5.The Landsat MSS data have been recorded data from 1972 up to 1990. The MSS instruments have been designed with four visible bands covering the near / infrared regions of the electromagnetic spectrum, allowing the spatial sampling of our Earth surface at 60 meter.The current calibration method has shown some limitations in case of data observed out of mid latitude areas, where the Earth surface is bright because of desert or snow. The resulting image data suffers from saturations and is not fit for the potential application purposes.Although, when saturation exist, further investigations have shown that the radiometry of the raw data involved in the production of the Level 1 images is generally correct. As consequences, experiments have been undertaken to adapt the current processing in order to produce image data saturation free products.

  2. Advances in High Energy Solid-State Pulsed 2-Micron Lidar Development for Ground and Airborne Wind, Water Vapor and CO2 Measurements

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Kavaya, Michael J.; Remus, Ruben

    2015-01-01

    NASA Langley Research Center has a long history of developing 2-micron lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful program spanning around two decades. Successful development of 2-micron lasers has led to development of a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement with an unprecedented laser pulse energy of 250 millijoules in a rugged package. This high pulse energy is produced by a Ho:Tm:LuLiF laser with an optical amplifier. While the lidar is meant for use as an airborne instrument, ground-based tests were carried out to characterize performance of the lidar. Atmospheric measurements will be presented, showing the lidar's capability for wind measurement in the atmospheric boundary layer and free troposphere. Lidar wind measurements are compared to a balloon sonde, showing good agreement between the two sensors. Similar architecture has been used to develop a high energy, Ho:Tm:YLF double-pulsed 2-micron Integrated Differential Absorption Lidar (IPDA) instrument based on direct detection technique that provides atmospheric column CO2 measurements. This instrument has been successfully used to measure atmospheric CO2 column density initially from a ground mobile lidar trailer, and then it was integrated on B-200 plane and 20 hours of flight measurement were made from an altitude ranging 1500 meters to 8000 meters. These measurements were compared to in-situ measurements and National Oceanic and Atmospheric Administration (NOAA) airborne flask measurement to derive the dry mixing ratio of the column CO2 by reflecting the signal by various reflecting surfaces such as land, vegetation, ocean surface, snow and sand. The lidar measurements when compared showed a very agreement with in-situ and airborne flask measurement. NASA Langley Research Center is currently developing a

  3. Airborne Sunphotometer Measurements of Aerosol Optical Depth and Columnar Water Vapor During the Puerto Rico Dust Experiment, and Comparison with Land, Aircraft, and Satellite Measurements

    Science.gov (United States)

    Livingston, John M.; Russell, Philip B.; Reid, Jeffrey; Redemann, Jens; Schmid, Beat; Allen, Duane A.; Torres, Omar; Levy, Robert C.; Remer, Lorraine A.; Holben, Brent N.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    Analyses of aerosol optical depth (AOD) and columnar water vapor (CWV) measurements obtained with the six-channel NASA Ames Airborne Tracking Sunphotometer (AATS-6) mounted on a twin-engine aircraft during the summer 2000 Puerto Rico Dust Experiment are presented. In general, aerosol extinction values calculated from AATS-6 AOD measurements acquired during aircraft profiles up to 5 km ASL reproduce the vertical structure measured by coincident aircraft in-situ measurements of total aerosol number and surface area concentration. Calculations show that the spectral dependence of AOD was small (mean Angstrom wavelength exponents of approximately 0.20) within three atmospheric layers defined as the total column beneath the top of each aircraft profile, the region beneath the trade wind inversion, and the region within the Saharan Air Layer (SAL) above the trade inversion. This spectral behavior is consistent with attenuation of incoming solar radiation by large dust particles or by dust plus sea salt. Values of CWV calculated from profile measurements by AATS-6 at 941.9 nm and from aircraft in-situ measurements by a chilled mirror dewpoint hygrometer agree to within approximately 4% (0.13 g/sq cm). AATS-6 AOD values measured on the ground at Roosevelt Roads Naval Air Station and during low altitude aircraft runs over the adjacent Cabras Island aerosol/radiation ground site agree to within 0.004 to 0.030 with coincident data obtained with an AERONET Sun/sky Cimel radiometer located at Cabras Island. For the same observation times, AERONET retrievals of CWV exceed AATS-6 values by a mean of 0.74 g/sq cm (approximately 21 %) for the 2.9-3.9 g/sq cm measured by AATS-6. Comparison of AATS-6 aerosol extinction values obtained during four aircraft ascents over Cabras Island with corresponding values calculated from coincident aerosol backscatter measurements by a ground-based micro-pulse lidar (MPL-Net) located at Cabras yields a similar vertical structure above the trade

  4. Medidas radiométricas em casas de vegetação com cobertura plástica na região de Campinas - SP Radiometric measurement of greenhouses with plastic cover at Campinas region- SP

    Directory of Open Access Journals (Sweden)

    Edilson Costa

    2011-06-01

    Full Text Available Com o objetivo de caracterizar as relações e alterações radiométricas em três casas de vegetação, cobertas com filme transparente de polietileno de baixa densidade (PEBD de camada simples com 150µm de espessura, tratado contra raios ultravioleta, sob ambientes distintos, foram realizados os experimentos durante o cultivo hidropônico de alface, cultivar Vera, na região de Campinas - SP, em diferentes períodos do ano, visando ao uso de dados experimentais de postos meteorológicos em substituição à necessidade de adquirir equipamentos de radiação para medições internas. As casas de vegetação eram de estrutura metálica de aço, de forma e volume idênticos. Coletaram-se a radiação solar global interna e externa (RSGI e RSGE, W m-2, a radiação fotossinteticamente ativa (RFA, µmol m-2 s-1 e a radiação ultravioleta, em 254; 312 e 365 nm (RUV, W m-2. Os resultados mostraram que as equações de regressão linear são estimativas aceitáveis na obtenção da radiação fotossinteticamente ativa em função da radiação solar global externa. Em ambientes fechados e climatizados, existe maior correlação entre a radiação fotossinteticamente ativa e a radiação solar global externa. A orientação das casas de vegetação não climatizadas não influencia no espalhamento interno da radiação fotossinteticamente ativa.The objective of this study was to characterize the radiometric relationship and changing in three greenhouses covered with transparent low density polyethylene film (PEBD with a 150µm single layer of low density polyethylene film, treated with compounds that inhibit rapid degradation by ultraviolet radiation, under effects of different environments. The experiments were conducted during hydroponics lettuce production of Vera variety at Campinas region-SP in different periods of the year, aiming the use of experimental data from meteorological stations in substitution of the needs to pursue radiometric

  5. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    Directory of Open Access Journals (Sweden)

    W. A. Cooper

    2014-09-01

    Full Text Available A new laser air-motion sensor measures the true airspeed with a standard uncertainty of less than 0.1 m s−1 and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the global positioning system, then indicate (via integrations of the hydrostatic equation during climbs and descents that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature, these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that although the initial calibration of the measured static and dynamic pressures requires a measured temperature, once calibrated these measured pressures and the measurement of airspeed from the new laser air-motion sensor provide a measurement of temperature that does not depend on any other temperature sensor.

  6. NASA COAST and OCEANIA Airborne Missions in Support of Ecosystem and Water Quality Research in the Coastal Zone

    Science.gov (United States)

    Guild, Liane S.; Hooker, Stanford B.; Kudela, Raphael; Morrow, John; Russell, Philip; Myers, Jeffrey; Dunagan, Stephen; Palacios, Sherry; Livingston, John; Negrey, Kendra; Torres-Perez, Juan

    2015-01-01

    Worldwide, coastal marine ecosystems are exposed to land-based sources of pollution and sedimentation from anthropogenic activities including agriculture and coastal development. Ocean color products from satellite sensors provide information on chlorophyll (phytoplankton pigment), sediments, and colored dissolved organic material. Further, ship-based in-water measurements and emerging airborne measurements provide in situ data for the vicarious calibration of current and next generation satellite ocean color sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal of the airborne missions was to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. Utilizing an imaging spectrometer optimized in the blue to green spectral domain enables higher signal for detection of the relatively dark radiance measurements from marine and freshwater ecosystem features. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic

  7. SLC-off Landsat-7 ETM+ reflective band radiometric calibration

    Science.gov (United States)

    Markham, B.L.; Barsi, J.A.; Thome, K.J.; Barker, J.L.; Scaramuzza, P.L.; Helder, D.L.; ,

    2005-01-01

    Since May 31, 2003, when the scan line corrector (SLC) on the Landsat-7 ETM+ failed, the primary foci of Landsat-7 ETM+ analyses have been on understanding and attempting to fix the problem and later on developing composited products to mitigate the problem. In the meantime, the Image Assessment System personnel and vicarious calibration teams have continued to monitor the radiometric performance of the ETM+ reflective bands. The SLC failure produced no measurable change in the radiometric calibration of the ETM+ bands. No trends in the calibration are definitively present over the mission lifetime, and, if present, are less than 0.5% per year. Detector 12 in Band 7 dropped about 0.5% in response relative to the rest of the detectors in the band in May 2004 and recovered back to within 0.1% of its initial relative gain in October 2004.

  8. Greenland annual accumulation along the EGIG line, 1959-2004, from ASIRAS airborne radar and neutron-probe density measurements

    Science.gov (United States)

    Overly, Thomas B.; Hawley, Robert L.; Helm, Veit; Morris, Elizabeth M.; Chaudhary, Rohan N.

    2016-08-01

    We report annual snow accumulation rates from 1959 to 2004 along a 250 km segment of the Expéditions Glaciologiques Internationales au Groenland (EGIG) line across central Greenland using Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) radar layers and high resolution neutron-probe (NP) density profiles. ASIRAS-NP-derived accumulation rates are not statistically different (95 % confidence interval) from in situ EGIG accumulation measurements from 1985 to 2004. ASIRAS-NP-derived accumulation increases by 20 % below 3000 m elevation, and increases by 13 % above 3000 m elevation for the period 1995 to 2004 compared to 1985 to 1994. Three Regional Climate Models (PolarMM5, RACMO2.3, MAR) underestimate snow accumulation below 3000 m by 16-20 % compared to ASIRAS-NP from 1985 to 2004. We test radar-derived accumulation rates sensitivity to density using modeled density profiles in place of NP densities. ASIRAS radar layers combined with Herron and Langway (1980) model density profiles (ASIRAS-HL) produce accumulation rates within 3.5 % of ASIRAS-NP estimates in the dry snow region. We suggest using Herron and Langway (1980) density profiles to calibrate radar layers detected in dry snow regions of ice sheets lacking detailed in situ density measurements, such as those observed by the Operation IceBridge campaign.

  9. ARM-ACME V: ARM Airborne Carbon Measurements V on the North Slope of Alaska Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Biraud, Sebastien C [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-05-01

    Atmospheric temperatures are warming faster in the Arctic than predicted by climate models. The impact of this warming on permafrost degradation is not well understood, but it is projected to increase carbon decomposition and greenhouse gas production (CO2 and/or CH4) by arctic ecosystems. Airborne observations of atmospheric trace gases, aerosols and cloud properties in North Slopes of Alaska (NSA) are improving our understanding of global climate, with the goal of reducing the uncertainty in global and regional climate simulations and projections. From June 1 through September 15, 2015, AAF deployed the G1 research aircraft and flew over the North Slope of Alaska (38 flights, 140 science flight hours), with occasional vertical profiling over Prudhoe Bay, Oliktok point, Barrow, Atqasuk, Ivotuk, and Toolik Lake. The aircraft payload included Picarro and Los Gatos Research (LGR) analyzers for continuous measurements of CO2, CH4, H2O, and CO and N2O mixing ratios, and a 12-flask sampler for analysis of carbon cycle gases (CO2, CO, CH4, N2O, 13CO2, and trace hydrocarbon species). The aircraft payload also include measurements of aerosol properties (number size distribution, total number concentration, absorption, and scattering), cloud properties (droplet and ice size information), atmospheric thermodynamic state, and solar/infrared radiation.

  10. CU Airborne MAX-DOAS measurements over California during the CalNEx and CARES field campaigns

    Science.gov (United States)

    Baidar, S.; Oetjen, H.; Coburn, S.; Ortega, I.; Dix, B. K.; Sinreich, R.; Volkamer, R.

    2010-12-01

    The University of Colorado Airborne Multi-Axis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument was deployed aboard the NOAA Optical Remote Sensing Twin Otter Research Aircraft during the CalNEx 2010 and CARES field campaigns. A total of 52 flights (48 research + 4 transfer flights) were carried out between May 19 and July 19 2010 and included flights in the South California Air Basin, the High deserts, Northern Mexico, the Central Valley, Sacramento, and the San Francisco Bay Area. A particular component of the CU AMAX-DOAS deployment was to enhance the value of ground-based super sites in Pasadena and Bakersfield, as well as the CARES T0 and T1 sites. The CU AMAX-DOAS is measuring column amounts of NO2, HCHO, CHOCHO, O4 and other gases above and below the aircraft. The focus of this deployment was to map the horizontal and vertical distribution of these gases. Here we describe the CU AMAX-DOAS instrument and give an overview of the NO2 vertical columns below the plane along the flight tracks. A first comparison of NO2 vertical columns measured by AMAX-DOAS and two CU Ground based MAX-DOAS instruments which were deployed in Pasadena and Fontana Arrows during CalNEx and at the T1 site during CARES is also presented.

  11. Size characterization of airborne SiO{sub 2} nanoparticles with on-line and off-line measurement techniques: an interlaboratory comparison study

    Energy Technology Data Exchange (ETDEWEB)

    Motzkus, C., E-mail: charles.motzkus@lne.fr; Mace, T.; Gaie-Levrel, F.; Ducourtieux, S.; Delvallee, A. [Laboratoire National de Metrologie et d' Essais (LNE) (France); Dirscherl, K. [Danish Fundamental Metrology (DFM) (Denmark); Hodoroaba, V.-D. [BAM Federal Institute for Materials Research and Testing (Germany); Popov, I. [The Hebrew University of Jerusalem, Unit for Nanocharacterization (Israel); Popov, O.; Kuselman, I. [National Physical Laboratory of Israel (INPL) (Israel); Takahata, K.; Ehara, K. [National Institute of Advanced Industrial Science and Technology (AIST), National Metrology Institute of Japan (NMIJ) (Japan); Ausset, P.; Maille, M. [Universite Paris-Est Creteil et Universite Paris-Diderot, Laboratoire Interuniversitaire des Systemes Atmospheriques (LISA), UMR CNRS 7583 (France); Michielsen, N.; Bondiguel, S.; Gensdarmes, F. [Institut de Radioprotection et de Surete Nucleaire (IRSN), PSN-RES, SCA, LPMA (France); Morawska, L.; Johnson, G. R.; Faghihi, E. M. [Queensland University of Technology (QUT), International Laboratory for Air Quality and Health (ILAQH) (Australia); and others

    2013-10-15

    Results of an interlaboratory comparison on size characterization of SiO{sub 2} airborne nanoparticles using on-line and off-line measurement techniques are discussed. This study was performed in the framework of Technical Working Area (TWA) 34-'Properties of Nanoparticle Populations' of the Versailles Project on Advanced Materials and Standards (VAMAS) in the project no. 3 'Techniques for characterizing size distribution of airborne nanoparticles'. Two types of nano-aerosols, consisting of (1) one population of nanoparticles with a mean diameter between 30.3 and 39.0 nm and (2) two populations of non-agglomerated nanoparticles with mean diameters between, respectively, 36.2-46.6 nm and 80.2-89.8 nm, were generated for characterization measurements. Scanning mobility particle size spectrometers (SMPS) were used for on-line measurements of size distributions of the produced nano-aerosols. Transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were used as off-line measurement techniques for nanoparticles characterization. Samples were deposited on appropriate supports such as grids, filters, and mica plates by electrostatic precipitation and a filtration technique using SMPS controlled generation upstream. The results of the main size distribution parameters (mean and mode diameters), obtained from several laboratories, were compared based on metrological approaches including metrological traceability, calibration, and evaluation of the measurement uncertainty. Internationally harmonized measurement procedures for airborne SiO{sub 2} nanoparticles characterization are proposed.

  12. Airborne multi-axis DOAS measurements of tropospheric SO2 plumes in the Po-valley, Italy

    Directory of Open Access Journals (Sweden)

    P. Wang

    2006-01-01

    Full Text Available During the second FORMAT (FORMaldehyde as A Tracer of oxidation in the troposphere campaign in 2003 the airborne multi-axis DOAS instrument (AMAXDOAS performed scattered-light spectroscopic measurements of SO2 over the city of Mantova and the power plant Porto Tolle, both situated in the Po-valley, Northern Italy. The SO2 vertical columns and emission flux were derived from two days of measurements, 26 and 27 September 2003. The SO2 emission flux from the power plant Porto Tolle was calculated to 1.93×1025 molec s-1 on 26 September and in good agreement with official emission data, which quote 2.25×1025 molec s-1. On 27 September the measured flux was much lower (3.77×1024 molec s-1 if ECMWF wind data are used, but of comparable magnitude (2.4×1025 molec s-1 if the aircraft on-board wind measurements are utilised. Official emission data was 2.07×1025 molec s-1 indicating only a small change from the previous day. Over the city of Mantova, the observed SO2 vertical columns were 1.1×1016 molec cm-2 and 1.9×1016 molec cm-2 on 26 and 27 September, respectively. This is in good agreement with ground-based measurements of 5.9 ppbv and 10.0 ppbv which correspond to 1.2×1016 molec cm-2 and 2.2×1016 molec cm-2 if a well mixed boundary layer of 500m altitude is assumed.

  13. Airborne and ground based lidar measurements of the atmospheric pressure profile

    Science.gov (United States)

    Korb, C. Laurence; Schwemmer, Geary K.; Dombrowski, Mark; Weng, Chi Y.

    1989-01-01

    The first high accuracy remote measurements of the atmospheric pressure profile have been made. The measurements were made with a differential absorption lidar system that utilizes tunable alexandrite lasers. The absorption in the trough between two lines in the oxygen A-band near 760 nm was used for probing the atmosphere. Measurements of the two-dimensional structure of the pressure field were made in the troposphere from an aircraft looking down. Also, measurements of the one-dimensional structure were made from the ground looking up. Typical pressure accuracies for the aircraft measurements were 1.5-2 mbar with a 30-m vertical resolution and a 100-shot average (20 s), which corresponds to a 2-km horizontal resolution. Typical accuracies for the upward viewing ground based measurements were 2.0 mbar for a 30-m resolution and a 100-shot average.

  14. Airborne infrared hyperspectral imager for intelligence, surveillance and reconnaissance applications

    Science.gov (United States)

    Lagueux, Philippe; Puckrin, Eldon; Turcotte, Caroline S.; Gagnon, Marc-André; Bastedo, John; Farley, Vincent; Chamberland, Martin

    2012-09-01

    Persistent surveillance and collection of airborne intelligence, surveillance and reconnaissance information is critical in today's warfare against terrorism. High resolution imagery in visible and infrared bands provides valuable detection capabilities based on target shapes and temperatures. However, the spectral resolution provided by a hyperspectral imager adds a spectral dimension to the measurements, leading to additional tools for detection and identification of targets, based on their spectral signature. The Telops Hyper-Cam sensor is an interferometer-based imaging system that enables the spatial and spectral analysis of targets using a single sensor. It is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides datacubes of up to 320×256 pixels at spectral resolutions as fine as 0.25 cm-1. The LWIR version covers the 8.0 to 11.8 μm spectral range. The Hyper-Cam has been recently used for the first time in two compact airborne platforms: a bellymounted gyro-stabilized platform and a gyro-stabilized gimbal ball. Both platforms are described in this paper, and successful results of high-altitude detection and identification of targets, including industrial plumes, and chemical spills are presented.

  15. Selection of chemotherapy for patient treatment utilizing a radiometric versus a cloning system.

    Science.gov (United States)

    Von Hoff, D D; Forseth, B J; Turner, J N; Clark, G M; Warfel, L E

    1986-01-01

    From the 1950s to the 1970s, a number of in vitro systems that measured inhibition of glucose metabolism were used to predict the responsiveness of patients' tumors to chemotherapy. In vitro-in vivo correlations were excellent, with true positive predictions ranging from 68% to 96% and true negative predictions of 95% to 100%. The radiometric system is a new in vitro technique that measures the conversion of 14C-glucose to 14CO2. The system already has been utilized to screen prospective new antineoplastic agents for cytotoxicity. The present study was undertaken to determine if the radiometric system might be used to predict correctly the responsiveness of an individual patient's tumor to single-agent or combination-agent chemotherapy. Fifty-six tumor specimens were divided and tested for drug sensitivity in the radiometric system and a conventional human tumor clonning system. Overall, there was a significant correlation between in vitro and in vivo results for the conventional cloning system (P = 0.03). However, there was no significant relationship between in vitro and in vivo results for the radiometric system. The radiometric system consistently failed to predict the tumor's clinical sensitivity to single agents. A radiometric system is not useful in predicting the responsiveness of a patient's tumor to single agent chemotherapy and is not a replacement for the more biologically attractive human tumor cloning system.

  16. Validating reconstruction of snow water equivalent in California's Sierra Nevada using measurements from the NASA Airborne Snow Observatory

    Science.gov (United States)

    Bair, Edward H.; Rittger, Karl; Davis, Robert E.; Painter, Thomas H.; Dozier, Jeff

    2016-11-01

    Accurately estimating basin-wide snow water equivalent (SWE) is the most important unsolved problem in mountain hydrology. Models that rely on remotely sensed inputs are especially needed in ranges with few surface measurements. The NASA Airborne Snow Observatory (ASO) provides estimates of SWE at 50 m spatial resolution in several basins across the Western U.S. during the melt season. Primarily, water managers use this information to forecast snowmelt runoff into reservoirs; another impactful use of ASO measurements lies in validating and improving satellite-based snow estimates or models that can scale to whole mountain ranges, even those without ground-based measurements. We compare ASO measurements from 2013 to 2015 to four methods that estimate spatially distributed SWE: two versions of a SWE reconstruction method, spatial interpolation from snow pillows and courses, and NOAA's Snow Data Assimilation System (SNODAS). SWE reconstruction downscales energy forcings to compute potential melt, then multiplies those values by satellite-derived estimates of fractional snow-covered area to calculate snowmelt. The snowpack is then built in reverse from the date the snow is observed to disappear. The two SWE reconstruction models tested include one that employs an energy balance calculation of snowmelt, and one that combines net radiation and degree-day approaches to estimate melt. Our full energy balance model, without ground observations, performed slightly better than spatial interpolation from snow pillows, having no systematic bias and 26% mean absolute error when compared to SWE from ASO. Both reconstruction models and interpolation were more accurate than SNODAS.

  17. Airborne UV/Vis actinic measurements in the lower Antarctic stratosphere

    Science.gov (United States)

    Kostadinov, Ivan; Ravegnani, Fabrizio; Petritoli, Andrea; Bortoli, Daniele; Masieri, Samuele; Premuda, Margherita; Giovanelli, Giorgio

    2009-09-01

    The present work deals with UV/Vis up-welling and down-welling irradiation measurements carried out in the lower Antarctic stratosphere by means of GASCOD-A/4pi spectroradiometer on board the M55-Geophysica aircraft during the APE-GAIA campaign. Very few such measurements have been performed in the lower stratosphere. The experimental data are used for the calculation of NO2 photodissociation rate coefficients in the upper troposphere and lower stratosphere along the altitude of the flight. A detailed description of the measurement method, instrumentation and calibration procedures is presented. Experimental results are presented and discussed too.

  18. Fast In Situ Airborne Measurement of Ammonia Using a Mid-Infrared Off-Axis ICOS Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Leen, J. Brian; Yu, Xiao-Ying; Gupta, Manish; Baer, Douglas S.; Hubbe, John M.; Kluzek, Celine D.; Tomlinson, Jason M.; Hubbell, Mike R.

    2013-08-23

    A new ammonia (NH3) analyzer was developed based on off-axis integrated cavity output spectroscopy. Its feasibility was demonstrated by making tropospheric measurements in flights aboard the Department of Energy Gulfstream-1 aircraft. The ammonia analyzer consists of an optical cell, quantum-cascade laser, gas sampling system, control and data acquisition electronics, and analysis software. The NH3 mixing ratio is determined from high-resolution absorption spectra obtained by tuning the laser wavelength over the NH3 fundamental vibration band near 9.67 μm. Excellent linearity is obtained over a wide dynamic range (0–101 ppbv) with a response rate (1/e) of 2 Hz and a precision of ±90 pptv (1σ in 1 s). Two research flights were conducted over the Yakima Valley in Washington State. In the first flight, the ammonia analyzer was used to identify signatures of livestock from local dairy farms with high vertical and spatial resolution under low wind and calm atmospheric conditions. In the second flight, the analyzer captured livestock emission signals under windy conditions. Finally, our results demonstrate that this new ammonia spectrometer is capable of providing fast, precise, and accurate in situ observations of ammonia aboard airborne platforms to advance our understanding of atmospheric compositions and aerosol formation.

  19. Vertical distribution of aerosol number concentration in the troposphere over Siberia derived from airborne in-situ measurements

    Science.gov (United States)

    Arshinov, Mikhail Yu.; Belan, Boris D.; Paris, Jean-Daniel; Machida, Toshinobu; Kozlov, Alexandr; Malyskin, Sergei; Simonenkov, Denis; Davydov, Denis; Fofonov, Alexandr

    2016-04-01

    Knowledge of the vertical distribution of aerosols particles is very important when estimating aerosol radiative effects. To date there are a lot of research programs aimed to study aerosol vertical distribution, but only a few ones exist in such insufficiently explored region as Siberia. Monthly research flights and several extensive airborne campaigns carried out in recent years in Siberian troposphere allowed the vertical distribution of aerosol number concentration to be summarized. In-situ aerosol measurements were performed in a wide range of particle sizes by means of improved version of the Novosibirsk-type diffusional particle sizer and GRIMM aerosol spectrometer Model 1.109. The data on aerosol vertical distribution enabled input parameters for the empirical equation of Jaenicke (1993) to be derived for Siberian troposphere up to 7 km. Vertical distributions of aerosol number concentration in different size ranges averaged for the main seasons of the year will be presented. This work was supported by Interdisciplinary integration projects of the Siberian Branch of the Russian Academy of Science No. 35, No. 70 and No. 131; the Branch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5); and Russian Foundation for Basic Research (grant No. 14-05-00526). Jaenicke R. Tropospheric aerosols, in Aerosol-Cloud-Climate Interactions, edited by P.V. Hobs. -Academic Press, San Diego, CA, 1993.- P. 1-31.

  20. Measurement of airborne radon concentrations at several sites in a radioactivity research laboratory.

    Science.gov (United States)

    Shimizu, M; Anzai, I

    1999-06-01

    Radon-222 is a natural, gaseous, radioactive nuclide released from the ground and building materials into the air. Radon and its daughter nuclides can be an important disturbance factor for the measurement of environmental radioactivity. Radon concentrations in air in a radiation laboratory were measured with PICO-RAD detectors, which directly adsorb radon gas on activated charcoal. Generally, radon concentration increased in the absence of ventilation; a high concentration was observed in a radioisotope storage room without ventilation. Concentrations were low in other rooms used for experiments and measurement, which suggests that the radiation control practice in this laboratory is satisfactory and that the influence of natural radon gas on the measurement of radioactivity is negligible.

  1. Snow measurement system for airborne snow surveys (GPR system from helicopter) in high mountian areas.

    Science.gov (United States)

    Sorteberg, Hilleborg K.

    2010-05-01

    In the hydropower industry, it is important to have precise information about snow deposits at all times, to allow for effective planning and optimal use of the water. In Norway, it is common to measure snow density using a manual method, i.e. the depth and weight of the snow is measured. In recent years, radar measurements have been taken from snowmobiles; however, few energy supply companies use this method operatively - it has mostly been used in connection with research projects. Agder Energi is the first Norwegian power producer in using radar tecnology from helicopter in monitoring mountain snow levels. Measurement accuracy is crucial when obtaining input data for snow reservoir estimates. Radar screening by helicopter makes remote areas more easily accessible and provides larger quantities of data than traditional ground level measurement methods. In order to draw up a snow survey system, it is assumed as a basis that the snow distribution is influenced by vegetation, climate and topography. In order to take these factors into consideration, a snow survey system for fields in high mountain areas has been designed in which the data collection is carried out by following the lines of a grid system. The lines of this grid system is placed in order to effectively capture the distribution of elevation, x-coordinates, y-coordinates, aspect, slope and curvature in the field. Variation in climatic conditions are also captured better when using a grid, and dominant weather patterns will largely be captured in this measurement system.

  2. Retrieval of Atmospheric CO2 Concentration above Clouds and Cloud Top Pressure from Airborne Lidar Measurements during ASCENDS Science Campaigns

    Science.gov (United States)

    Mao, J.; Ramanathan, A. K.; Rodriguez, M.; Allan, G. R.; Hasselbrack, W. E.; Abshire, J. B.; Riris, H.; Kawa, S. R.

    2014-12-01

    NASA Goddard is developing an integrated-path, differential absorption (IPDA) lidar approach to measure atmospheric CO2 concentrations from space as a candidate for NASA's ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) mission. The approach uses pulsed lasers to measure both CO2 and O2 absorption simultaneously in the vertical path to the surface at a number of wavelengths across a CO2 line at 1572.335 nm and an O2 line doublet near 764.7 nm. Measurements of time-resolved laser backscatter profiles from the atmosphere allow the technique to estimate column CO2 and O2 number density and range to cloud tops in addition to those to the ground. This allows retrievals of CO2 column above clouds and cloud top pressure, and all-sky measurement capability from space. This additional information can be used to evaluate atmospheric transport processes and other remote sensing carbon data in the free atmosphere, improve carbon data assimilation in models and help global and regional carbon flux estimates. We show some preliminary results of this capability using airborne lidar measurements from the summers of 2011 and 2014 ASCENDS science campaigns. These show simultaneous retrievals of CO2 and O2 column densities for laser returns from low-level marine stratus clouds in the west coast of California. This demonstrates the supplemental capability of the future space carbon mission to measure CO2 above clouds, which is valuable particularly for the areas with persistent cloud covers, e.g, tropical ITCZ, west coasts of continents with marine layered clouds and southern ocean with highest occurrence of low-level clouds, where underneath carbon cycles are active but passive remote sensing techniques using the reflected short wave sunlight are unable to measure accurately due to cloud scattering effect. We exercise cloud top pressure retrieval from O2 absorption measurements during the flights over the low-level marine stratus cloud decks, which is one of

  3. Hydroxyl radicals in the tropical troposphere over the Suriname rainforest: airborne measurements

    Directory of Open Access Journals (Sweden)

    M. Martinez

    2010-04-01

    Full Text Available Direct measurements of OH and HO2 over a tropical rainforest were made for the first time during the GABRIEL campaign in October 2005, deploying the custom-built HORUS instrument (HydrOxyl Radical measurement Unit based on fluorescence Spectroscopy, adapted to fly in a Learjet wingpod. Biogenic hydrocarbon emissions were expected to strongly reduce the OH and HO2 mixing ratios as the air is transported from the ocean over the forest. However, surprisingly high mixing ratios of both OH and HO2 were encountered in the boundary layer over the rainforest.

    The HORUS instrumentation and calibration methods are described in detail and the measurement results obtained are discussed. The extensive dataset collected during GABRIEL, including measurements of many other trace gases and photolysis frequencies, has been used to quantify the main sources and sinks of OH. Comparison of these measurement-derived formation and loss rates of OH indicates strong previously overlooked recycling of OH in the boundary layer over the tropical rainforest, occurring in chorus with isoprene emission.

  4. Hydroxyl radicals in the tropical troposphere over the Suriname rainforest: airborne measurements

    Science.gov (United States)

    Martinez, M.; Harder, H.; Kubistin, D.; Rudolf, M.; Bozem, H.; Eerdekens, G.; Fischer, H.; Klüpfel, T.; Gurk, C.; Königstedt, R.; Parchatka, U.; Schiller, C. L.; Stickler, A.; Williams, J.; Lelieveld, J.

    2010-04-01

    Direct measurements of OH and HO2 over a tropical rainforest were made for the first time during the GABRIEL campaign in October 2005, deploying the custom-built HORUS instrument (HydrOxyl Radical measurement Unit based on fluorescence Spectroscopy), adapted to fly in a Learjet wingpod. Biogenic hydrocarbon emissions were expected to strongly reduce the OH and HO2 mixing ratios as the air is transported from the ocean over the forest. However, surprisingly high mixing ratios of both OH and HO2 were encountered in the boundary layer over the rainforest. The HORUS instrumentation and calibration methods are described in detail and the measurement results obtained are discussed. The extensive dataset collected during GABRIEL, including measurements of many other trace gases and photolysis frequencies, has been used to quantify the main sources and sinks of OH. Comparison of these measurement-derived formation and loss rates of OH indicates strong previously overlooked recycling of OH in the boundary layer over the tropical rainforest, occurring in chorus with isoprene emission.

  5. Surface reflectance measurements in the ultraviolet from an airborne platform. Part 2.

    Science.gov (United States)

    Doda, D D; Green, A E

    1981-02-15

    The spectral and broadband reflectance of naturally occurring desert sand, black lava, White Sands, New Mexico gypsum sand, and snow cover is measured from a twin engine Cessna 402-series aircraft. The measurement system, fully described in Part 1 [D. D. Doda and A. E. S. Green, Appl. Opt. 19, 2140 (1980)], is computer controlled and electrically isolated from the aircraft. It consists of upward and downward looking hemispheric diffusers, filters, a rotating 90 degrees mirror, a focusing lens, and a double monochromator/PMT or a UV enhanced photodiode. Measurements are made at several altitudes enabling the empirical determination of the backscatter and attenuation effects on the reflectance. In addition these reflectance results along with those reported earlier for a pine forest, green farmland, the open ocean, and brown farmland are represented analytically.

  6. Measurement of the electrostatic charge in airborne particles: I - development of the equipment and preliminary results

    Directory of Open Access Journals (Sweden)

    Marra Jr. W.D.

    2000-01-01

    Full Text Available The design and construction of a equipment capable of measuring the electrostatic charges in aerosols, named the electrostatic charge classifier, were carried out. They were based on the concept of particle electromobility and the charge classifier was intended to classify the nature and the distribution of electrostatic charges as a function of particle size. The resulting piece of equipment is easy to dismount, which facilitates its cleaning and transport, and easy to operate. Early results indicate that the values of electrostatic charge measured on test particles are inside the range reported in the literature, indicating the adequacy of the technique utilized.

  7. Towards a Semantic Interpretation of Urban Areas with Airborne Synthetic Aperture Radar Tomography

    Science.gov (United States)

    D'Hondt, O.; Guillaso, S.; Hellwich, O.

    2016-06-01

    In this paper, we introduce a method to detect and reconstruct building parts from tomographic Synthetic Aperture Radar (SAR) airborne data. Our approach extends recent works in two ways: first, the radiometric information is used to guide the extraction of geometric primitives. Second, building facades and roofs are extracted thanks to geometric classification rules. We demonstrate our method on a 3 image L-Band airborne dataset over the city of Dresden, Germany. Experiments show how our technique allows to use the complementarity between the radiometric image and the tomographic point cloud to extract buildings parts in challenging situations.

  8. Development of a new platform for airborne measurements of atmospheric CO2 and CH4 and comparison with GOSAT measurements at Railroad Valley playa, Nevada

    Science.gov (United States)

    Tadic, J.; Loewenstein, M.; Iraci, L. T.; Gore, W.; Schiro, K. A.; Olson, R. A.; Sheffner, E. J.; Yates, E. L.

    2011-12-01

    Measurements of carbon dioxide (CO2) play an important role in understanding the global carbon cycle and its contribution to global warming. In recent years methane (CH4) has received increasing attention as the second most important anthropogenic greenhouse gas because of the high uncertainty of its sources and sinks. Aircraft measurements of greenhouse gases are essential for observations in the free troposphere and lower stratosphere to better understand changes at regional and continental scales. Recently new types of high-accuracy analyzers based on cavity-ring down spectroscopy have become available for use on aircraft. One of them, Picarro 2301-m, was remodeled and adapted for use outside the cabin of an Alpha Jet. In this unique attempt, the instrument was redesigned from a single unit to multiple units that fit inside the Alpha jet wing pod, with special emphasis on internal thermal management. After remodeling, the platform was tested in a laboratory, in a chamber with variable pressure and temperature, and in the field. This newly developed platform exhibits several important characteristics: the modular structure of the platform allows usage of other instruments simultaneously, the platform is capable of measuring both vertical and horizontal profiles of CO2 and CH4, and it is very insensitive to flight maneuvers. The new platform was used on 22-26th of June, 2011, to create spatial and temporal profiles of CO2 and CH4 over a playa in Railroad Valley, Nevada, USA. The playa is a flat, dry lakebed with virtually no vegetation, approximately 15 km x 15 km in size, 1434 m in elevation and 110 km southwest of the nearest city (Ely, Nevada). The time and location of flights were selected to coincide with the overpass of Greenhouse Gases Observing Satellite (GOSAT). Airborne (Alpha Jet) in-situ measurements of CO2 and CH4 were collected to support the vicarious calibration experiment to validate column-averaged dry air mole fractions of CO2 and CH4 (XCO2 and

  9. A new method for measuring lung deposition efficiency of airborne nanoparticles in a single breath

    Science.gov (United States)

    Jakobsson, Jonas K. F.; Hedlund, Johan; Kumlin, John; Wollmer, Per; Löndahl, Jakob

    2016-11-01

    Assessment of respiratory tract deposition of nanoparticles is a key link to understanding their health impacts. An instrument was developed to measure respiratory tract deposition of nanoparticles in a single breath. Monodisperse nanoparticles are generated, inhaled and sampled from a determined volumetric lung depth after a controlled residence time in the lung. The instrument was characterized for sensitivity to inter-subject variability, particle size (22, 50, 75 and 100 nm) and breath-holding time (3–20 s) in a group of seven healthy subjects. The measured particle recovery had an inter-subject variability 26–50 times larger than the measurement uncertainty and the results for various particle sizes and breath-holding times were in accordance with the theory for Brownian diffusion and values calculated from the Multiple-Path Particle Dosimetry model. The recovery was found to be determined by residence time and particle size, while respiratory flow-rate had minor importance in the studied range 1–10 L/s. The instrument will be used to investigate deposition of nanoparticles in patients with respiratory disease. The fast and precise measurement allows for both diagnostic applications, where the disease may be identified based on particle recovery, and for studies with controlled delivery of aerosol-based nanomedicine to specific regions of the lungs.

  10. Airborne Lidar Measurements of Pollution above the Oil Sands Region in Northern Alberta

    Directory of Open Access Journals (Sweden)

    Aggarwal Monika

    2016-01-01

    Full Text Available Lidar measurements of ozone and aerosol were conducted from a Twin Otter aircraft above the oil sands region of northern Alberta. For the majority of the flights, significant amounts of aerosol were observed within the boundary layer, up to an altitude of 2.0 km above sea level (ASL, while the ozone concentration remained at background levels (30-45 ppb downwind of the industry. On August 24th the lidar measured a separated layer of aerosol above the boundary layer, at a height of 2.0 km ASL, in which the ozone mixing ratio increased to 70 ppb. Backward trajectory calculations revealed that the air containing this separated aerosol layer had passed over an area of forest fires. Directly below the layer of forest fire smoke, pollution from the oil sands industry was observed. Measurements of the backscatter linear depolarization ratio were obtained with a ground based lidar operated by Environment Canada within the oil sands region. The depolarization measurements aided in discriminating between the separate sources of pollution from industry and forest fires. The depolarization ratio was 5-6% in forest fire smoke and 7-10% in the industrial pollution.

  11. Measurement of airborne carbonyls using an automated sampling and analysis system.

    Science.gov (United States)

    Aiello, Mauro; McLaren, Robert

    2009-12-01

    Based upon the well established method of derivitization with 2,4-dinitrophenylhydrazine, an instrument was developed for ambient measurement of carbonyls with significantly improved temporal resolution and detection limits through automation, direct injection, and continuous use of a single microsilica DNPH cartridge. Kinetic experiments indicate that the derivitization reaction on the cartridge is fast enough for continuous measurements with 50 min air sampling. Reaction efficiencies measured on the cartridge were 100% for the carbonyls tested, including formaldehyde, acetaldehyde, propanal, acetone, and benzaldehyde. Transmission of the carbonyls through an ozone scrubber (KI) were in the range of 97-101%. Blank levels and detection limits were lower than those obtainable with conventional DNPH methods by an order of magnitude or greater. Mixing ratio detection limits of carbonyls in ambient air were 38-73 ppt for a 50 min air sample (2.5 L). The instrument made continuous measurements of carbonyls on a 2 h cycle over a period of 10 days during a field study in southwestern Ontario. Median mixing ratios were 0.58 ppb formaldehyde; 0.29 ppb acetaldehyde; 1.14 ppb acetone; and 0.45 ppb glyoxal. Glyoxal shows a significant correlation with ozone and zero intercept, consistent with a secondary source and minor direct source to the atmosphere. The method should easily be extendable to the detection of other low molecular weight carbonyls that have been previously reported using the DNPH technique.

  12. Effective aerodynamic roughness estimated from airborne laser altimeter measurements of surface features

    NARCIS (Netherlands)

    De Vries, AC; Kustas, WP; Ritchie, JC; Klaassen, W; Menenti, M; Rango, A; Prueger, JH

    2003-01-01

    Aerodynamic roughness length (z(0)) and displacement height (d(0)) are important surface parameters for estimating surface fluxes in numerical models. These parameters are generally determined from wind flow characteristics using logarithmic wind profiles measured at a meteorological tower or by bal

  13. Airborne Lidar Measurements of Pollution above the Oil Sands Region in Northern Alberta

    Science.gov (United States)

    Aggarwal, Monika; Whiteway, James; Seabrook, Jeffrey; Gray, Lawrence; Strawbridge, Kevin B.

    2016-06-01

    Lidar measurements of ozone and aerosol were conducted from a Twin Otter aircraft above the oil sands region of northern Alberta. For the majority of the flights, significant amounts of aerosol were observed within the boundary layer, up to an altitude of 2.0 km above sea level (ASL), while the ozone concentration remained at background levels (30-45 ppb) downwind of the industry. On August 24th the lidar measured a separated layer of aerosol above the boundary layer, at a height of 2.0 km ASL, in which the ozone mixing ratio increased to 70 ppb. Backward trajectory calculations revealed that the air containing this separated aerosol layer had passed over an area of forest fires. Directly below the layer of forest fire smoke, pollution from the oil sands industry was observed. Measurements of the backscatter linear depolarization ratio were obtained with a ground based lidar operated by Environment Canada within the oil sands region. The depolarization measurements aided in discriminating between the separate sources of pollution from industry and forest fires. The depolarization ratio was 5-6% in forest fire smoke and 7-10% in the industrial pollution.

  14. Airborne Measurements of Hydrocarbons and Aerosols in the Puget Sound Airshed

    Science.gov (United States)

    Jobson, T.; Laulainen, N.; Laskin, A.; Cowin, J.; Barchet, R.; Barrie, L.; Westberg, H.; Covert, D.; Alexander, M.; Spicer, C.; Joseph, D.

    2002-12-01

    In August 2001, a gas and aerosol measurement campaign was undertaken in Puget Sound from south of Seattle north to the Canadian border. The US DOE Gulfstream 1 aircraft was used to measure meteorological parameters, aerosols and their gaseous precursors. The objectives of this study were to better understand the transport and formation of ozone and particulate matter in the Puget Sound airshed and to develop air quality and meteorological databases for evaluating air quality models used in predicting air quality within this area. The study was coordinated with the Canadian Pacific 2001 study. Real time measurements were made of aerosol number distributions from 3 to 3000 nm diameter and of selected gaseous precursors using standard instrumentation as well as a new proton transfer reaction mass spectrometer. Reactive hydrocarbon compounds, nitrogen oxides, sulphur dioxide, carbon monoxide and ozone were measured on horizontal transects and vertical profiles around Puget Sound in morning and afternoon. Using these observations, this paper will highlight common air quality features as well as some of the complexities related to air quality in a mountain-ringed basin.

  15. Modified cavity attenuated phase shift (CAPS) method for airborne aerosol light extinction measurement

    Science.gov (United States)

    Perim de Faria, Julia; Bundke, Ulrich; Freedman, Andrew; Petzold, Andreas

    2015-04-01

    Monitoring the direct impact of aerosol particles on climate requires the consideration of at least two major factors: the aerosol single-scattering albedo, defined as the relation between the amount of energy scattered and extinguished by an ensemble of aerosol particles; and the aerosol optical depth, calculated from the integral of the particle extinction coefficient over the thickness of the measured aerosol layer. Remote sensing networks for measuring these aerosol parameters on a regular basis are well in place (e.g., AERONET, ACTRIS), whereas the regular in situ measurement of vertical profiles of atmospheric aerosol optical properties remains still an important challenge in quantifying climate change. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. Recently, a compact and robust family of optical instruments based on the cavity attenuated phase shift (CAPS) technique has become available for measuring aerosol light extinction. In particular, the CAPS PMex particle optical extinction monitor has demonstrated sensitivity of less than 2 Mm-1 in 1 second sampling period; with a 60 s averaging time, a detection limit of less than 0.3 Mm-1 can be achieved. While this technique was successfully deployed for ground-based atmospheric measurements under various conditions, its suitability for operation aboard aircraft in the free and upper free troposphere still has to be demonstrated. Here, we report on the modifications of a CAPS PMex instrument for measuring aerosol light extinction on aircraft, and subsequent laboratory tests for evaluating the modified instrument prototype: (1) In a

  16. ANALYZING SPECTRAL CHARACTERISTICS OF SHADOW AREA FROM ADS-40 HIGH RADIOMETRIC RESOLUTION AERIAL IMAGES

    Directory of Open Access Journals (Sweden)

    Y.-T. Hsieh

    2016-06-01

    Full Text Available The shadows in optical remote sensing images are regarded as image nuisances in numerous applications. The classification and interpretation of shadow area in a remote sensing image are a challenge, because of the reduction or total loss of spectral information in those areas. In recent years, airborne multispectral aerial image devices have been developed 12-bit or higher radiometric resolution data, including Leica ADS-40, Intergraph DMC. The increased radiometric resolution of digital imagery provides more radiometric details of potential use in classification or interpretation of land cover of shadow areas. Therefore, the objectives of this study are to analyze the spectral properties of the land cover in the shadow areas by ADS-40 high radiometric resolution aerial images, and to investigate the spectral and vegetation index differences between the various shadow and non-shadow land covers. According to research findings of spectral analysis of ADS-40 image: (i The DN values in shadow area are much lower than in nonshadow area; (ii DN values received from shadowed areas that will also be affected by different land cover, and it shows the possibility of land cover property retrieval as in nonshadow area; (iii The DN values received from shadowed regions decrease in the visible band from short to long wavelengths due to scattering; (iv The shadow area NIR of vegetation category also shows a strong reflection; (v Generally, vegetation indexes (NDVI still have utility to classify the vegetation and non-vegetation in shadow area. The spectral data of high radiometric resolution images (ADS-40 is potential for the extract land cover information of shadow areas.

  17. Analyzing Spectral Characteristics of Shadow Area from ADS-40 High Radiometric Resolution Aerial Images

    Science.gov (United States)

    Hsieh, Yi-Ta; Wu, Shou-Tsung; Chen, Chaur-Tzuhn; Chen, Jan-Chang

    2016-06-01

    The shadows in optical remote sensing images are regarded as image nuisances in numerous applications. The classification and interpretation of shadow area in a remote sensing image are a challenge, because of the reduction or total loss of spectral information in those areas. In recent years, airborne multispectral aerial image devices have been developed 12-bit or higher radiometric resolution data, including Leica ADS-40, Intergraph DMC. The increased radiometric resolution of digital imagery provides more radiometric details of potential use in classification or interpretation of land cover of shadow areas. Therefore, the objectives of this study are to analyze the spectral properties of the land cover in the shadow areas by ADS-40 high radiometric resolution aerial images, and to investigate the spectral and vegetation index differences between the various shadow and non-shadow land covers. According to research findings of spectral analysis of ADS-40 image: (i) The DN values in shadow area are much lower than in nonshadow area; (ii) DN values received from shadowed areas that will also be affected by different land cover, and it shows the possibility of land cover property retrieval as in nonshadow area; (iii) The DN values received from shadowed regions decrease in the visible band from short to long wavelengths due to scattering; (iv) The shadow area NIR of vegetation category also shows a strong reflection; (v) Generally, vegetation indexes (NDVI) still have utility to classify the vegetation and non-vegetation in shadow area. The spectral data of high radiometric resolution images (ADS-40) is potential for the extract land cover information of shadow areas.

  18. Comparison of measurements and model results for airborne sulphur and nitrogen components with kriging

    Energy Technology Data Exchange (ETDEWEB)

    Schaug, J.; Iversen, T.; Pedersen, U. (Norwegian Institute for Air Research, Lillestroem (Norway). Chemical Coordinating Centre of EMEP)

    1993-04-01

    Comparisons have been made between calculations from the Lagrangian model for acid deposition at Meteorological Synthesizing Centre-West (MSC-W) of EMEP and measurements at EMEP sites. Annual averages of aerosol sulphate, sulphate in precipitation and nitrate in precipitation were calculated and compared for selected sites. Site selection was based on data completeness and on results from EMEP interlaboratory exercises. The comparison for sulphates in precipitation and air led to a model underestimation in the north and model overestimation in a belt through the major source regions in central Europe. The comparisons also indicate irregularities at some sites which may be due to influence from local sources, or the data quality, although this is not substantiated. The model estimates of nitrate in precipitation compare well with the measurements, although some characteristic differences occur also for this component. 21 refs., 11 figs., 2 tabs.

  19. Ozone and aerosol distributions measured by airborne lidar during the 1988 Arctic Boundary Layer Experiment

    Science.gov (United States)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Consideration is given to O3 and aerosol distributions measured from an aircraft using a DIAL system in order to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during summer 1988. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere.

  20. Airborne In-Situ Measurements of Formaldehyde over California: First Results from the COFFEE Instrument

    Science.gov (United States)

    Marrero, Josette; St. Clair, Jason; Yates, Emma; Swanson, Andrew; Gore, Warren; Iraci, Laura; Hanisco, Thomas

    2016-04-01

    Formaldehyde (HCHO) is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere, playing a role multiple atmospheric processes. Measurements of HCHO can be used to help quantify convective transport, the abundance of VOCs, and ozone production in urban environments. The Compact Formaldehyde FluorescencE Experiment (COFFEE) instrument uses Non-Resonant Laser Induced Fluorescence (NR-LIF) to detect trace concentrations of HCHO as part of the Alpha Jet Atmospheric eXperiment (AJAX) payload. Developed at NASA GSFC, COFFEE is a small, low maintenance instrument with a sensitivity of 100 pptv and a quick response time (1 sec). The COFFEE instrument has been customized to fit in an external wing pod on the Alpha Jet aircraft based at NASA ARC. The instrument can operate over a broad range of altitudes, from boundary layer to lower stratosphere, making it well suited for the Alpha Jet, which can access altitudes from the surface up to 40,000 ft. We will present results from flights performed over the Central Valley of California, including boundary layer measurements and vertical profiles in the tropospheric column. This region is of particular interest, due to its elevated levels of HCHO, revealed in satellite images, as well as its high ozone concentrations. In addition to HCHO, the AJAX payload includes measurements of atmospheric ozone, methane, and carbon dioxide. These results will be presented in conjunction with formaldehyde. Targets in the Central Valley consist of an oil field, agricultural areas, and highways, each of which can emit HCHO primarily and generate HCHO through secondary production. Formaldehyde is one of the few urban pollutants that can be measured from space. Plans to compare in-situ COFFEE data with satellite-based HCHO observations such as those from OMI (Aura) and OMPS (SuomiNPP) will also be presented.

  1. Adaption of the MODIS aerosol retrieval algorithm by airborne spectral surface reflectance measurements over urban areas: a case study

    Directory of Open Access Journals (Sweden)

    E. Jäkel

    2015-07-01

    Full Text Available MODIS retrievals of the aerosol optical depth (AOD are biased over urban areas, where surface reflectance is not well characterized. Since the operational MODIS aerosol retrieval for dark targets assumes fixed spectral slopes to calculate the surface reflectance at 0.47 μm, the algorithm may fail in urban areas with different spectral characteristics of the surface reflectance. To investigate this bias we have implemented variable spectral slopes into the operational MODIS aerosol algorithms of Collection 5 (C5 and C6. The variation of slopes is based on airborne measurements of surface reflectances over the city of Zhongshan, China. AOD retrieval results of the operational and the modified algorithms were compared for a MODIS measurement over Zhongshan. For this case slightly lower AOD values were derived using the modified algorithm. The retrieval methods were additionally applied to MODIS data of the Beijing area for a period between 2010–2014 when also AERONET data were available. A reduction of the differences between the AOD retrieved using the modified C5 algorithm and AERONET was found, whereby the mean difference from 0.31 ± 0.11 for the operational C5 and 0.18 ± 0.12 for the operational C6 where reduced to a mean difference of 0.09 ± 0.18 by using the modified C5 retrieval. Furthermore, the sensitivity of the MODIS AOD retrieval for several surface types was investigated. Radiative transfer simulations were performed to model reflectances at top of atmosphere for predefined aerosol properties. The reflectances were used as input for the retrieval methods. It is shown that the operational MODIS AOD retrieval over land reproduces the AOD reference input of 0.85 for dark surface types [retrieved AOD = 0.87 (C5]. An overestimation of AOD = 0.99 is found for urban surfaces, whereby the modified C5 algorithm shows a good performance with a retrieved value of AOD = 0.86.

  2. Airborne measurements of aerosol optical properties related to early spring transport of mid-latitude sources into the Arctic

    Directory of Open Access Journals (Sweden)

    R. Adam de Villiers

    2009-12-01

    Full Text Available Airborne lidar and in-situ measurements of the aerosol properties were conducted between Svalbard Island and Scandinavia in April 2008. Evidence of aerosol transport from Europe and Asia is given. The analysis of the aerosol optical properties based on a multiwavelength lidar (355, 532, 1064 nm including depolarization at 355 nm aims at distinguishing the role of the different aerosol sources (Siberian wild fires, Eastern Asia and European anthropogenic emissions. Combining, first aircraft measurements, second FLEXPART simulations with a calculation of the PBL air fraction originating from the three different mid-latitude source regions, and third level-2 CALIPSO data products (i.e. backscatter coefficient, depolarisation and color ratio in aerosol layers along the transport pathways, appears a valuable approach to identify the role of the different aerosol sources even after a transport time larger than 4 days. Above Asia, CALIPSO data indicate more depolarisation (up to 15% and largest color ratio (>0.5 for the northeastern Asia emissions (i.e. an expected mixture of Asian pollution and dust, while low depolarisation together with smaller and quasi constant color ratio (≈0.3 are observed for the Siberian biomass burning emissions. A similar difference is visible between two layers observed by the aircraft above Scandinavia. The analysis of the time evolution of the aerosol optical properties revealed by CALIPSO between Asia and Scandinavia shows a gradual decrease of the aerosol backscatter, depolarisation ratio and color ratio which suggests the removal of the largest particles in the accumulation mode. A similar study conducted for a European plume has shown aerosol optical properties intermediate between the two Asian sources with color ratio never exceeding 0.4 and moderate depolarisation ratio being always less than 8%, i.e. less aerosol from the accumulation mode.

  3. Measuring landscape-scale spread and persistence of an invaded submerged plant community from airborne remote sensing.

    Science.gov (United States)

    Santos, Maria J; Khanna, Shruti; Hestir, Erin L; Greenberg, Jonathan A; Ustin, Susan L

    2016-09-01

    Processes of spread and patterns of persistence of invasive species affect species and communities in the new environment. Predicting future rates of spread is of great interest for timely management decisions, but this depends on models that rely on understanding the processes of invasion and historic observations of spread and persistence. Unfortunately, the rates of spread and patterns of persistence are difficult to model or directly observe, especially when multiple rates of spread and diverse persistence patterns may be co-occurring over the geographic distribution of the invaded ecosystem. Remote sensing systematically acquires data over large areas at fine spatial and spectral resolutions over multiple time periods that can be used to quantify spread processes and persistence patterns. We used airborne imaging spectroscopy data acquired once a year for 5 years from 2004 to 2008 to map an invaded submerged aquatic vegetation (SAV) community across 2220 km(2) of waterways in the Sacramento-San Joaquin River Delta, California, USA, and measured its spread rate and its persistence. Submerged aquatic vegetation covered 13-23 km(2) of the waterways (6-11%) every year. Yearly new growth accounted for 40-60% of the SAV area, ~50% of which survived to following year. Spread rates were overall negative and persistence decreased with time. From this dataset, we were able to identify both radial and saltatorial spread of the invaded SAV in the entire extent of the Delta over time. With both decreasing spread rate and persistence, it is possible that over time the invasion of this SAV community could decrease its ecological impact. A landscape-scale approach allows measurements of all invasion fronts and the spatial anisotropies associated with spread processes and persistence patterns, without spatial interpolation, at locations both proximate and distant to the focus of invasion at multiple points in time.

  4. Long-term airborne black carbon measurements on a Lufthansa passenger aircraft

    Science.gov (United States)

    Ditas, Jeannine; Su, Hang; Scharffe, Dieter; Wang, Siwen; Zhang, Yuxuan; Brenninkmeijer, Carl; Pöschl, Ulrich; Cheng, Yafang

    2016-04-01

    Aerosol particles containing black carbon are the most absorbing component of incoming solar radiation and exert a significant positive radiative forcing thus forming next to CO² the strongest component of current global warming (Bond, 2013). Nevertheless, the role of black carbon particles and especially their complex interaction with clouds needs further research which is hampered by the limited experimental data, especially observations in the free and upper troposphere, and in the UTLS (upper troposphere and lower stratosphere). Many models underestimate the global atmospheric absorption attributable to black carbon by a factor of almost 3 (Bond, 2013). In August 2014, a single particle soot photometer was included in the extensive scientific payload of the CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) project. CARIBIC is in operation since 1997 (with an interruption for 2002-2005) and carries out systematic observations at 10-12 km altitude. For this a special air freight container combining different instruments is transported on a monthly basis using a Lufthansa Airbus A340-600 passenger aircraft with destinations from 120°W to 120°E and 10°N to 75°N. The container has equipment for trace gas analyses and sampling and aerosol analyses and sampling and is connected to an inlet system that is part of the aircraft which contains a camera and DOAS remote sensing system. The integration of a single particle soot photometer (SP2) offers the possibility for the first long-term measurement of global distribution of black carbon and so far flights up to November 2015 have been conducted with more than 400 flight hours. So far the SP2 measurements have been analysed for flights over four continents from Munich to San Francisco, Sao Paulo, Tokyo, Beijing, Cape Town, Los Angeles and Hong Kong). The first measurements show promising results of black carbon measurements. Background concentrations in the UTLS

  5. Airborne multi-axis DOAS measurements of atmospheric trace gases on CARIBIC long-distance flights

    Directory of Open Access Journals (Sweden)

    B. Dix

    2009-11-01

    Full Text Available A DOAS (Differential Optical Absorption Spectroscopy instrument was implemented and operated onboard a long-distance passenger aircraft within the framework of the CARIBIC project (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container. The instrument was designed to keep weight, size and power consumption low and to comply with civil aviation regulations. It records spectra of scattered light from three viewing directions (nadir, 10° above and below horizon using a miniaturized telescope system. The telescopes are integrated in the main pylon of the inlet system which is mounted at the belly of the aircraft. Fibre bundles transmit light from the telescopes to spectrograph-detector units inside the DOAS container instrument. The latter is part of the removable CARIBIC instrument container, which is installed monthly on the aircraft for a series of measurement flights.

    During 30 flight operations within three years, measurements of HCHO, HONO, NO2, BrO, O3 and the oxygen dimer O4 were conducted. All of these trace gases except BrO could be analysed with a 30 s time resolution. HONO was detected for the first time in a deep convective cloud over central Asia, while BrO, NO2 and O3 could be observed in tropopause fold regions. Biomass burning signatures over South America could be seen and measurements during ascent and descent provided information on boundary layer trace gas profiles (e.g. NO2 or HCHO.

  6. An Overview of Measurement Comparisons from the INTEX-B/MILAGRO Airborne Field Campaign

    Science.gov (United States)

    Kleb, Mary M.; Chen, Gao; Crawford, James H.; Flocke, Frank M.; Brown, Clyde C.

    2011-01-01

    As part of the NASA's INTEX-B mission, the NASA DC-8 and NSF C-130 conducted three wing-tip to wing-tip comparison flights. The intercomparison flights sampled a variety of atmospheric conditions (polluted urban, non-polluted, marine boundary layer, clean and polluted free troposphere). These comparisons form a basis to establish data consistency, but also should also be viewed as a continuation of efforts aiming to better understand and reduce measurement differences as identified in earlier field intercomparison exercises. This paper provides a comprehensive overview of 140 intercomparisons of data collected as well as a record of the measurement consistency demonstrated during INTEX-B. It is the primary goal to provide necessary information for the future research to determine if the observations from different INTEX-B platforms/instrument are consistent within the PI reported uncertainties and used in integrated analysis. This paper may also contribute to the formulation strategy for future instrument developments. For interpretation and most effective use of these results, the reader is strongly urged to consult with the instrument principle investigator.

  7. Thermal Discrimination Technique for Airborne Measurement of Sulfuric Acid on Atmospheric Aerosol: Calibration and Performance

    Science.gov (United States)

    Schmid, O.; Hagen, D. E.; Whitefield, P. D.

    2001-12-01

    The thermal discrimination or volatility technique has been widely used to determine the number fraction of volatile atmospheric aerosol (e.g. Hagen et al., 1998). Here we extend this method to measure both number and volume fraction of upper-tropospheric/lower-stratospheric aerosol with particular concern for the conditions in aircraft and rocket plumes. The volatility method infers the amount of volatile aerosol material from the change in aerosol volume under heated conditions. Accurate measurements require size resolved volatility data, corrected for possible systematic effects due to particle wall losses, incomplete evaporation, and recondensation of evaporated material. A tandem differential mobility analyzer was employed to investigate these effects for mixed H2SO4/H2O aerosol conditioned by a thermal discriminator that had been used by the University of Missouri-Rolla for several field studies in the past including the recent ACCENT mission. For an operating temperature of 300 \\deg C and an aerosol residence time of 0.25 s, we found that complete evaporation of H2SO4/H2O aerosol occurred up to diameters of at least 2 micron. This is consistent with the theoretically estimated upper diameter limit for complete evaporation of about 10 micron. No evidence for recondensation was found for H2SO4 abundances occurring in the atmosphere. We also showed that for a given set of discriminator parameters, wall losses depend only on charge state and particle diameter downstream of the discriminator. Based on these findings an improved volatility method with analytical correction for wall losses is described and its accuracy is tested with mixed H2SO4/H2O-NaCl aerosol of known composition. The observed accuracy is consistent with the estimated accuracy of the system parameters. Finally, some results from atmospheric measurements are presented. Hagen, D., Whitefield, P., Paladino, J., Trueblood, M., and Lilenfeld, H. Particulate Sizing and Emission Indices for a Jet

  8. An overview of measurement comparisons from the INTEX-B/MILAGRO airborne field campaign

    Directory of Open Access Journals (Sweden)

    M. M. Kleb

    2010-05-01

    Full Text Available As part of the NASA's INTEX-B mission, the NASA DC-8 and NSF C-130 conducted three wing-tip to wing-tip comparison flights. The intercomparison flights sampled a variety of atmospheric conditions (polluted urban, non-polluted, marine boundary layer, clean and polluted free troposphere. These comparisons form a basis to establish data consistency, but also should also be viewed as a continuation of efforts aiming to better understand and reduce measurement differences as identified in earlier field intercomparison exercises. This paper provides a comprehensive overview of 140 intercomparisons of data collected during INTEX-B. For interpretation and most effective use of these results, the reader is strongly urged to consult with the instrument principle investigator.

  9. French airborne lidar measurements for Eyjafjallajökull ash plume survey

    Directory of Open Access Journals (Sweden)

    P. Chazette

    2012-03-01

    Full Text Available An Ultra-Violet Rayleigh-Mie lidar has been integrated aboard the French research aircraft Falcon 20 in order to monitor the ash plume emitted by the Eyjafjallajökul volcano in April–May 2010. Three operational flights were carried out on 21 April, 12 and 16 May 2010 inside French, Spanish and British air spaces, respectively. The original purpose of the flights was to provide the French civil aviation authorities with objective information on the presence and location of the ash plume. The present paper presents the results of detailed analyses elaborated after the volcano crisis. They bear on the structure of the ash clouds and their optical properties such as ash extinction coefficient and lidar ratio. Lidar ratios were measured in the range of 33 to 48 sr, in good agreement with the ratios derived from ground-based lidar measurements performed near Paris (France in April 2010 (∼47 sr. The ash signature in terms of particulate depolarization was consistent around 45 ± 7% during all flights. Such a value seems to be a good identification parameter for ash. Using specific cross-sections between 0.29 and 1.1 m2 g−1, the minimum (maximal mass concentrations in the ash plumes are derived for the flights on 12 and 16 May. They were 190 (2300 and 270 (1600 μg m−3, respectively. It may be rather less than, or of the order of the critical level of damage (2 mg m−3 for the aircraft engines, but well above the 200 μg m−3 warning level.

  10. ESA CryoVEx 2014 - Airborne ASIRAS radar and laser scanner measurements during 2014 CryoVEx campaign in the Arctic

    DEFF Research Database (Denmark)

    Hvidegaard, S. M.; Nielsen, J. E.; Sørensen, L. Sandberg;

    This report outlines the airborne field operations with the ESA airborne Ku‐band interferometric radar (ASIRAS), coincident airborne laser scanner (ALS) and vertical photography to acquire data over sea‐ and land ice along validation sites and CryoSat‐2 ground tracks. The airborne campaign was co...

  11. High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI

    Directory of Open Access Journals (Sweden)

    J. P. Lawrence

    2015-06-01

    Full Text Available Nitrogen Dioxide is both a primary pollutant with direct health effects and a key precursor of the secondary pollutant ozone. This paper reports on the development, characterisation and test flight of the Atmospheric Nitrogen Dioxide Imager (ANDI remote sensing system. The ANDI system includes an imaging (UV-vis grating spectrometer able to capture scattered sunlight spectra for the determination of tropospheric nitrogen dioxide (NO2 concentrations by way of DOAS slant column density and vertical column density measurements. Results are shown for an ANDI test flight over Leicester City in the UK. Retrieved NO2 columns at a surface resolution of 80 m x 20 m revealed hot spots in a series of locations around Leicester City, including road junctions, the train station, major car parks, areas of heavy industry, a nearby airport (East Midlands and a power station (Ratcliffe-on-Soar. In the city centre the dominant source of NO2 emissions was identified as road traffic, contributing to a background concentration as well as producing localised hot spots. Quantitative analysis revealed a significant urban increment over the city centre which increased throughout the flight.

  12. Airborne measurements of carbonaceous aerosols in southern Africa during the dry, biomass burning season

    Energy Technology Data Exchange (ETDEWEB)

    Kirchstetter, Thomas W.; Novakov, T.; Hobbs, Peter V.; Magi, Brian

    2002-06-17

    Particulate matter collected aboard the University of Washington's Convair-580 research aircraft over southern Africa during the dry, biomass burning season was analyzed for total carbon, organic carbon, and black carbon contents using thermal and optical methods. Samples were collected in smoke plumes of burning savanna and in regional haze. A known artifact, produced by the adsorption of organic gases on the quartz filter substrates used to collect the particulate matter samples, comprised a significant portion of the total carbon collected. Consequently, conclusions derived from the data are greatly dependent on whether or not organic carbon concentrations are corrected for this artifact. For example, the estimated aerosol co-albedo (1 - single scattering albedo), which is a measure of aerosol absorption, of the biomass smoke samples is 60 percent larger using corrected organic carbon concentrations. Thus, the corrected data imply that the biomass smoke is 60 percent more absorbing than do the uncorrected data. The black carbon to (corrected) organic carbon mass ratio (BC/OC) of smoke plume samples (0.18/2610.06) is lower than that of samples collected in the regional haze (0.25/2610.08). The difference may be due to mixing of biomass smoke with background air characterized by a higher BC/OC ratio. A simple source apportionment indicates that biomass smoke contributes about three-quarters of the aerosol burden in the regional haze, while other sources (e.g., fossil fuel burning) contribute the remainder.

  13. First Results from the COFFEE Instrument: Airborne In-Situ Measurements of Formaldehyde over California

    Science.gov (United States)

    Iraci, L. T.; St Clair, J.; Marrero, J. E.; Gore, W.; Swanson, A. K.; Hanisco, T. F.

    2015-12-01

    The Compact Formaldehyde Fluorescence Experiment (COFFEE) instrument uses Non-Resonant Laser Induced Fluorescence (NR-LIF) to detect trace concentrations of formaldehyde as part of the Alpha Jet Atmospheric eXperiment (AJAX) payload. COFFEE, developed at NASA-GSFC, has a sensitivity of 100 pptv (1 sec) and can operate over a wide range of altitudes from the boundary layer to the lower stratosphere. It is mounted in an external wing pod on the Alpha Jet aircraft based at NASA-ARC, which can access altitudes from the surface up to 40,000 ft. We will present results from test flights performed in Fall 2015 over the Central Valley of California. Targets include an oil field, agricultural areas, and highways. Formaldehyde is one of the few urban pollutants that can be measured from space, and we will present plans to compare COFFEE in-situ data with space-based formaldehyde observations such as those from OMI (Aura) and OMPS (SuomiNPP).

  14. The marine atmospheric boundary layer under strong wind conditions: Organized turbulence structure and flux estimates by airborne measurements

    Science.gov (United States)

    Brilouet, Pierre-Etienne; Durand, Pierre; Canut, Guylaine

    2017-02-01

    During winter, cold air outbreaks take place in the northwestern Mediterranean sea. They are characterized by local strong winds (Mistral and Tramontane) which transport cold and dry continental air across a warmer sea. In such conditions, high values of surface sensible and latent heat flux are observed, which favor deep oceanic convection. The HyMeX/ASICS-MED field campaign was devoted to the study of these processes. Airborne measurements, gathered in the Gulf of Lion during the winter of 2013, allowed for the exploration of the mean and turbulent structure of the marine atmospheric boundary layer (MABL). A spectral analysis based on an analytical model was conducted on 181 straight and level runs. Profiles of characteristic length scales and sharpness parameter of the vertical wind spectrum revealed larger eddies along the mean wind direction associated with an organization of the turbulence field into longitudinal rolls. These were highlighted by boundary layer cloud bands on high-resolution satellite images. A one-dimensional description of the vertical exchanges is then a tricky issue. Since the knowledge of the flux profile throughout the entire MABL is essential for the estimation of air-sea exchanges, a correction of eddy covariance turbulent fluxes was developed taking into account the systematic and random errors due to sampling and data processing. This allowed the improvement of surface fluxes estimates, computed from the extrapolation of the stacked levels. A comparison between those surface fluxes and bulk fluxes computed at a moored buoy revealed considerable differences, mainly regarding the latent heat flux under strong wind conditions.

  15. Techniques for Estimating Emissions Factors from Forest Burning: ARCTAS and SEAC4RS Airborne Measurements Indicate which Fires Produce Ozone

    Science.gov (United States)

    Chatfield, Robert B.; Andreae, Meinrat O.

    2016-01-01

    Previous studies of emission factors from biomass burning are prone to large errors since they ignore the interplay of mixing and varying pre-fire background CO2 levels. Such complications severely affected our studies of 446 forest fire plume samples measured in the Western US by the science teams of NASA's SEAC4RS and ARCTAS airborne missions. Consequently we propose a Mixed Effects Regression Emission Technique (MERET) to check techniques like the Normalized Emission Ratio Method (NERM), where use of sequential observations cannot disentangle emissions and mixing. We also evaluate a simpler "consensus" technique. All techniques relate emissions to fuel burned using C(burn) = delta C(tot) added to the fire plume, where C(tot) approximately equals (CO2 = CO). Mixed-effects regression can estimate pre-fire background values of C(tot) (indexed by observation j) simultaneously with emissions factors indexed by individual species i, delta, epsilon lambda tau alpha-x(sub I)/C(sub burn))I,j. MERET and "consensus" require more than emissions indicators. Our studies excluded samples where exogenous CO or CH4 might have been fed into a fire plume, mimicking emission. We sought to let the data on 13 gases and particulate properties suggest clusters of variables and plume types, using non-negative matrix factorization (NMF). While samples were mixtures, the NMF unmixing suggested purer burn types. Particulate properties (b scant, b abs, SSA, AAE) and gas-phase emissions were interrelated. Finally, we sought a simple categorization useful for modeling ozone production in plumes. Two kinds of fires produced high ozone: those with large fuel nitrogen as evidenced by remnant CH3CN in the plumes, and also those from very intense large burns. Fire types with optimal ratios of delta-NOy/delta- HCHO associate with the highest additional ozone per unit Cburn, Perhaps these plumes exhibit limited NOx binding to reactive organics. Perhaps these plumes exhibit limited NOx binding to

  16. Evaluation of ECMWF water vapour analyses by airborne differential absorption lidar measurements: a case study between Brasil and Europe

    Directory of Open Access Journals (Sweden)

    H. Flentje

    2007-03-01

    Full Text Available Airborne Differential Absorption Lidar (DIAL observations of tropospheric water vapour over Brazil and between Brazil and south Europe in March 2004 are compared to 1-hourly short-range forecasts of the European Centre for Medium Range Weather Forecasts (ECMWF. On three along-flight sections across the tropical and sub-tropical Atlantic between 28° S and 37° N humidity fields are observed which represent typical low latitude conditions. H2O mixing ratios vary between q≈0.01–0.1 g/kg in the upper troposphere (UT, in subsiding air layers and a stratospheric intrusion. They reach up to 0.5 g/kg at UT levels inside the Intertropical Convergence Zone (ITCZ and exceed 10 g/kg at lower levels. Back-trajectories reveal that the humidity fields are largely determined by transport.

    The observed water vapour distributions are properly reproduced by 1-hourly ECMWF Integrated Forecasting System (IFS short-range forecasts at T799/L91 spectral resolution. As transport largely determines the water vapour fields, the IFS skill is to a large extend based on a good representation of the dynamics. The mean relative bias accounts to few percent (0%, 3% and 6% for the three sections being about or even below the accuracy of the DIAL measurements of 5%. The larger deviations between analyses and observations on small scales are due to relative spatial shifts of features with large gradients. The correlation is quite high, ranging between 0.71 and 0.88. Over sea the analyses tend to underestimate the PBL height. At mid-levels near deep convection the mid-troposphere tends to be analyzed too humid indicating shortcomings in the convection parameterization. Humid tendencies are also found in the upper troposphere, particularly in tropical regions.

  17. Spatially explicit modelling of forest structure and function using airborne lidar and hyperspectral remote sensing data combined with micrometeorological measurements

    Science.gov (United States)

    Thomas, Valerie Anne

    This research models canopy-scale photosynthesis at the Groundhog River Flux Site through the integration of high-resolution airborne remote sensing data and micrometeorological measurements collected from a flux tower. Light detection and ranging (lidar) data are analysed to derive models of tree structure, including: canopy height, basal area, crown closure, and average aboveground biomass. Lidar and hyperspectral remote sensing data are used to model canopy chlorophyll (Chl) and carotenoid concentrations (known to be good indicators of photosynthesis). The integration of lidar and hyperspectral data is applied to derive spatially explicit models of the fraction of photosynthetically active radiation (fPAR) absorbed by the canopy as well as a species classification for the site. These products are integrated with flux tower meteorological measurements (i.e., air temperature and global solar radiation) collected on a continuous basis over 2004 to apply the C-Fix model of carbon exchange to the site. Results demonstrate that high resolution lidar and lidar-hyperspectral integration techniques perform well in the boreal mixedwood environment. Lidar models are well correlated with forest structure, despite the complexities introduced in the mixedwood case (e.g., r2=0.84, 0.89, 0.60, and 0.91, for mean dominant height, basal area, crown closure, and average aboveground biomass). Strong relationships are also shown for canopy scale chlorophyll/carotenoid concentration analysis using integrated lidar-hyperspectral techniques (e.g., r2=0.84, 0.84, and 0.82 for Chl(a), Chl(a+b), and Chl(b)). Examination of the spatially explicit models of fPAR reveal distinct spatial patterns which become increasingly apparent throughout the season due to the variation in species groupings (and canopy chlorophyll concentration) within the 1 km radius surrounding the flux tower. Comparison of results from the modified local-scale version of the C-Fix model to tower gross ecosystem

  18. RADIOMETRIC TECHNIQUES IN HEAVY MINERAL EXPLORATION AND EXPLOITATION

    NARCIS (Netherlands)

    DEMEIJER, RJ; TANCZOS, IC; STAPEL, C

    1994-01-01

    In recent years the Environmental Research Group of the KVI has been developing a number of radiometric techniques that may be employed in mineral sand exploration. These techniques involve: radiometric fingerprinting for assessing sand provenances and mineralogical composition; thermoluminescence f

  19. French airborne lidar measurements for Eyjafjallajökull ash plume survey

    Directory of Open Access Journals (Sweden)

    P. Chazette

    2012-08-01

    Full Text Available An Ultra-Violet Rayleigh-Mie lidar has been integrated aboard the French research aircraft Falcon20 in order to monitor the ash plume emitted by the Eyjafjallajökul volcano in April–May 2010. Three operational flights were carried out on 21 April, 12 and 16 May 2010 inside French, Spanish and British air spaces, respectively. The original purpose of the flights was to provide the French civil aviation authorities with objective information on the presence and location of the ash plume. The present paper presents the results of detailed analyses elaborated after the volcano crisis. They bear on the structure of the ash clouds and their optical properties such as the extinction coefficient and the lidar ratio. Lidar ratios were measured in the range of 43 to 50 sr, in good agreement with the ratios derived from ground-based lidar near Paris (France in April 2010 (~48 sr. The ash signature in terms of particulate depolarization was consistent during all flights (between 34 ± 3 % and 38 ± 3%. Such a value seems to be a good identification parameter for volcanic ash. Using specific cross-sections between 0.19 and 1.1 m2 g−1, the minimum (maximal mass concentrations in the ash plumes derived for the flights on 12 and 16 May were 140 (2300 and 250 (1500 μg m−3, respectively. It may be rather less than, or of the order of the critical level of damage (2 mg m−3 for the aircraft engines, but well above the 200 μg m−3 warning level.

  20. Airborne measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia

    Science.gov (United States)

    Guyon, P.; Frank, G. P.; Welling, M.; Chand, D.; Artaxo, P.; Rizzo, L.; Nishioka, G.; Kolle, O.; Fritsch, H.; Silva Dias, M. A. F.; Gatti, L. V.; Cordova, A. M.; Andreae, M. O.

    2005-11-01

    As part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke, Aerosols, Clouds, Rainfall, and Climate) 2002 campaign, we studied the emission of carbon monoxide (CO), carbon dioxide (CO2), and aerosol particles from Amazonian deforestation fires using an instrumented aircraft. Emission ratios for aerosol number (CN) relative to CO (ERCN/CO) fell in the range 14-32 cm-3 ppb-1 in most of the investigated smoke plumes. Particle number emission ratios have to our knowledge not been previously measured in tropical deforestation fires, but our results are in agreement with values usually found from tropical savanna fires. The number of particles emitted per amount biomass burned was found to be dependent on the fire conditions (combustion efficiency). Variability in ERCN/CO between fires was similar to the variability caused by variations in combustion behavior within each individual fire. This was confirmed by observations of CO-to-CO2 emission ratios (ERCO/CO2), which stretched across the same wide range of values for individual fires as for all the fires observed during the sampling campaign, reflecting the fact that flaming and smoldering phases are present simultaneously in deforestation fires. Emission factors (EF) for CO and aerosol particles were computed and a correction was applied for the residual smoldering combustion (RSC) fraction of emissions that are not sampled by the aircraft, which increased the EF by a factor of 1.5-2.1. Vertical transport of smoke from the boundary layer (BL) to the cloud detrainment layer (CDL) and the free troposphere (FT) was found to be a very common phenomenon. We observed a 20% loss in particle number as a result of this vertical transport and subsequent cloud processing, attributable to in-cloud coagulation. This small loss fraction suggests that this mode of transport is very efficient in terms of particle numbers and occurs mostly via non-precipitating clouds. The detrained aerosol particles

  1. Airborne Measurements of Aerosol Emissions From the Alberta Oil Sands Complex

    Science.gov (United States)

    Howell, S. G.; Clarke, A. D.; McNaughton, C. S.; Freitag, S.

    2012-12-01

    The Alberta oil sands contain a vast reservoir of fossil hydrocarbons. The extremely viscous bitumen requires significant energy to extract and upgrade to make a fluid product suitable for pipelines and further refinement. The mining and upgrading process constitute a large industrial complex in an otherwise sparsely populated area of Canada. During the ARCTAS project in June/July 2008, while studying forest fire plumes, the NASA DC-8 and P-3B flew through the plume a total of 5 times. Once was a coordinated visit by both aircraft; the other 3 were fortuitous passes downwind. One study has been published about gas emissions from the complex. Here we concentrate on aerosol emissions and aging. As previously reported, there appear to be at least 2 types of plumes produced. One is an industrial-type plume with vast numbers of ultrafine particles, SO2, sulfate, black carbon (BC), CO, and NO2. The other, probably from the mining, has more organic aerosol and BC together with dust-like aerosols at 3 μm and a 1 μm mode of unknown origin. The DC-8 crossed the plume about 10 km downwind of the industrial site, giving time for the boundary layer to mix and enabling a very crude flux calculation suggesting that sulfate and organic aerosols were each produced at about 500 g/s (estimated errors are a factor of 2, chiefly due to concerns about vertical mixing). Since this was a single flight during a project dedicated to other purposes and operating conditions and weather may change fluxes considerably, this may not be a typical flux. As the plume progresses downwind, the ultrafine particles grow to sizes effective as cloud condensation nucei (CCN), SO2 is converted to sulfate, and organic aerosol is produced. During fair weather in the summer, as was the case during these flights, cloud convection pumps aerosol above the mixed layer. While the aerosol plume is difficult to detect from space, NO2 is measured by the OMI instrument an the Aura satellite and the oil sands plume

  2. Development of a fast GC/MS-system for airborne measurements of Volatile Organic Compounds

    Science.gov (United States)

    Wenk, Ann-Kathrin; Wegener, Robert; Hofzumahaus, Andreas; Wahner, Andreas

    2010-05-01

    is heated up to separate the components. The air sample is adsorbed at ambient temperature on graphite based adsorbents in the adsorption unit. Using graphite based adsorbents offers the opportunity to trap even components with high volatility at ambient temperature. Heating the adsorption unit desorbs the concentrated sample. A focus trap with a very low volume and a high heating rate was inserted before the column. This allows a fast injection and separation of very volatile compounds. For gas chromatographic separation a polar DB-Wax column of 20 m length and an inner diameter of 0.18 mm was chosen to provide a good peak resolution. As a compromise between peak resolution and response in the mass spectrometer a column flow of 1.0 ml per minute was taken. Finally the mass spectrometric detector serves for quantification and qualification of the single compounds. This new GC/MS system enables fast in situ measurements with cycling times of 3 to 4 minutes. 30 components can be quantified. The DB-WAX column is suitable for lower hydrocarbons, alcohols, acetates, aldehydes and ketones with up to 7 carbon atoms. Also, some aromatic compounds can be separated with this setup. The precision of ¼ of these 30 components is better than 3%, while for 2/3 of the components the precision is better than 8 %. The detection limit of a single compound depends on its chromatographic and mass spectrometric properties and possible blank values. The detection limit can be estimated to be lower than 10 ppt.

  3. Stable isotope measurements of carbon fractions (OC/EC) in airborne particulate: A new dimension for source characterization and apportionment

    Science.gov (United States)

    Huang, L.; Brook, J. R.; Zhang, W.; Li, S. M.; Graham, L.; Ernst, D.; Chivulescu, A.; Lu, G.

    A method to measure 13C/ 12C ratios of individual carbon fractions of airborne particular matter (PM) from filter samples using a stepwise thermal desorption/combustion OC/EC analyzer (via thermal optical transmission, (TOT) coupled with gas chromatography separation, followed by isotopic ratio mass spectrometer (GC-IRMS) analysis has been developed. In the TOT instrument, carbon fractions are released at different temperature ranges and different redox conditions. Organic carbon fraction (OC) was released at a relatively low temperature ( T=550 °C), whereas, elemental carbon or black carbon fraction (EC or BC) was released at a high temperature ( T>800 °C) via combustion. A temperature step of 870 °C without oxygen was chosen to remove the impact of carbonate carbon (CC) and possible cross-impact from OC and EC. All the fractions were collected cryogenically and subject to carbon isotope measurements via GC-IRMS. To evaluate the precision, accuracy and linearity range of the measurements, the different types of blanks and standards were investigated, including OC (i.e. glucose, sucrose, n-Alkanes and polycyclic aromatic hydrocarbons (PAHs), CC (i.e. carbonates) and EC (i.e. carbon black and graphite). The overall precision and the accuracy of the method is ˜0.3‰. The method was applied to Pacific2001 aerosol samples from the Greater Vancouver area in Canada. The results show that good baseline separations in thermographs can be achieved for individual carbon fractions (i.e. OC and EC) using optimized temperature plateau and retention times; relative small difference in carbon isotopic composition between OC and EC ( ΔC=δ13C-δ13C) were found in tunnel samples, whereas, the largest Δ 13C OC-EC were obtained in forest air samples; the Δ 13C OC-EC in ambient PM is likely dependant upon the dominant sources present in the vicinity of the sampling sites; the distribution of 13C/ 12C ratios of OC/EC can provide useful information for source characterization

  4. Adaption of the MODIS aerosol retrieval algorithm using airborne spectral surface reflectance measurements over urban areas: a case study

    Science.gov (United States)

    Jäkel, E.; Mey, B.; Levy, R.; Gu, X.; Yu, T.; Li, Z.; Althausen, D.; Heese, B.; Wendisch, M.

    2015-12-01

    MODIS (MOderate-resolution Imaging Spectroradiometer) retrievals of aerosol optical depth (AOD) are biased over urban areas, primarily because the reflectance characteristics of urban surfaces are different than that assumed by the retrieval algorithm. Specifically, the operational "dark-target" retrieval is tuned towards vegetated (dark) surfaces and assumes a spectral relationship to estimate the surface reflectance in blue and red wavelengths. From airborne measurements of surface reflectance over the city of Zhongshan, China, were collected that could replace the assumptions within the MODIS retrieval algorithm. The subsequent impact was tested upon two versions of the operational algorithm, Collections 5 and 6 (C5 and C6). AOD retrieval results of the operational and modified algorithms were compared for a specific case study over Zhongshan to show minor differences between them all. However, the Zhongshan-based spectral surface relationship was applied to a much larger urban sample, specifically to the MODIS data taken over Beijing between 2010 and 2014. These results were compared directly to ground-based AERONET (AErosol RObotic NETwork) measurements of AOD. A significant reduction of the differences between the AOD retrieved by the modified algorithms and AERONET was found, whereby the mean difference decreased from 0.27±0.14 for the operational C5 and 0.19±0.12 for the operational C6 to 0.10±0.15 and -0.02±0.17 by using the modified C5 and C6 retrievals. Since the modified algorithms assume a higher contribution by the surface to the total measured reflectance from MODIS, consequently the overestimation of AOD by the operational methods is reduced. Furthermore, the sensitivity of the MODIS AOD retrieval with respect to different surface types was investigated. Radiative transfer simulations were performed to model reflectances at top of atmosphere for predefined aerosol properties. The reflectance data were used as input for the retrieval methods. It

  5. Airborne measurements of the spatial distribution of aerosol chemical composition across Europe and evolution of the organic fraction

    Directory of Open Access Journals (Sweden)

    W. T. Morgan

    2009-12-01

    Full Text Available The spatial distribution of aerosol chemical composition and the evolution of the Organic Aerosol (OA fraction is investigated based upon airborne measurements of aerosol chemical composition in the planetary boundary layer across Europe. Sub-micron aerosol chemical composition was measured using a compact Time-of-Flight Aerosol Mass Spectrometer (cToF-AMS. A range of sampling conditions were evaluated, including relatively clean background conditions, polluted conditions in North-Western Europe and the near-field to far-field outflow from such conditions. Ammonium nitrate and OA were found to be the dominant chemical components of the sub-micron aerosol burden, with mass fractions ranging from 20–50% each. Ammonium nitrate was found to dominate in North-Western Europe during episodes of high pollution, reflecting the enhanced NOx and ammonia sources in this region. OA was ubiquitous across Europe and concentrations generally exceeded sulphate by 50–100%. A factor analysis of the OA burden was performed in order to probe the evolution across this large range of spatial and temporal scales. Two separate Oxygenated Organic Aerosol (OOA components were identified; one representing an aged-OOA, termed Low Volatility-OOA and another representing fresher-OOA, termed Semi Volatile-OOA on the basis of their mass spectral similarity to previous studies. The factors derived from different flights were not chemically the same but rather reflect the range of OA composition sampled during a particular flight. Significant chemical processing of the OA was observed downwind of major sources in North-Western Europe, with the LV-OOA component becoming increasingly dominant as the distance from source and photochemical processing increased. The measurements suggest that the aging of OA can be viewed as a continuum, with a progression from a less oxidised, semi-volatile component to a highly oxidised, less-volatile component. Substantial amounts of

  6. An airborne infrared laser spectrometer for in-situ trace gas measurements: application to tropical convection case studies

    Directory of Open Access Journals (Sweden)

    V. Catoire

    2015-09-01

    Full Text Available A three-channel laser absorption spectrometer called SPIRIT (SPectromètre InfraRouge In situ Toute altitude has been developed for airborne measurements of trace gases in the troposphere and lower stratosphere. More than three different species can be measured simultaneously with high time resolution (each 1.6 s using three individual CW-DFB-QCLs (Continuous Wave Distributed FeedBack Quantum Cascade Lasers coupled to a single Robert multipass optical cell. The lasers are operated in a time-multiplexed mode. Absorption of the mid-infrared radiations occur in the cell (2.8 L with effective path lengths of 134 to 151 m at reduced pressure, with detection achieved using a HgCdTe detector cooled by Stirling cycle. The performances of the instrument are described, in particular precisions of 1, 1 and 3 %, and volume mixing ratio (vmr sensitivities of 0.4, 6 and 2.4 ppbv are determined at 1.6 s for CO, CH4 and N2O, respectively (at 1σ confidence level. Estimated accuracies without calibration are about 6 %. Dynamic measuring ranges of about four decades are established. The first deployment of SPIRIT was realized aboard the Falcon-20 research aircraft operated by DLR (Deutsches Zentrum für Luft- und Raumfahrt within the frame of the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere European project in November-December 2011 over Malaysia. The convective outflows from two large convective systems near Borneo Island (6.0° N–115.5° E and 5.5° N–118.5° E were sampled above 11 km in altitude on 19 November and 9 December, respectively. Correlated enhancements in CO and CH4 vmr were detected when the aircraft crossed the outflow anvil of both systems. These enhancements were interpreted as the fingerprint of transport from the boundary layer up through the convective system and then horizontal advection in the outflow. Using these observations, the fraction of boundary layer air contained in fresh convective outflow was

  7. Passive remote sensing of large-scale methane emissions from Oil Fields in California's San Joaquin Valley and validation by airborne in-situ measurements - Results from COMEX

    Science.gov (United States)

    Gerilowski, Konstantin; Krautwurst, Sven; Thompson, David R.; Thorpe, Andrew K.; Kolyer, Richard W.; Jonsson, Haflidi; Krings, Thomas; Frankenberg, Christian; Horstjann, Markus; Leifer, Ira; Eastwood, Michael; Green, Robert O.; Vigil, Sam; Fladeland, Matthew; Schüttemeyer, Dirk; Burrows, John P.; Bovensmann, Heinrich

    2016-04-01

    The CO2 and MEthane EXperiment (COMEX) was a NASA and ESA funded campaign in support of the HyspIRI and CarbonSat mission definition activities. As a part of this effort, seven flights were performed between June 3 and September 4, 2014 with the Methane Airborne MAPper (MAMAP) remote sensing instrument (operated by the University of Bremen in cooperation with the German Research Centre for Geosciences - GFZ) over the Kern River, Kern Front, and Poso Creek Oil Fields located in California's San Joaquin Valley. MAMAP was installed for the flights aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft, together with: a Picarro fast in-situ greenhouse gas (GHG) analyzer operated by the NASA Ames Research Center, ARC; a 5-hole turbulence probe; and an atmospheric measurement package operated by CIRPAS measuring aerosols, temperature, dew-point, and other atmospheric parameters. Three of the flights were accompanied by the Next Generation Airborne Visual InfraRed Imaging Spectrometer (AVIRIS-NG), operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology, installed aboard a second Twin Otter aircraft. Large-scale, high-concentration CH4 plumes were detected by the MAMAP instrument over the fields and tracked over several kilometers. The spatial distribution of the MAMAP observed plumes was compared to high spatial resolution CH4 anomaly maps derived by AVIRIS-NG imaging spectroscopy data. Remote sensing data collected by MAMAP was used to infer CH4 emission rates and their distributions over the three fields. Aggregated emission estimates for the three fields were compared to aggregated emissions inferred by subsequent airborne in-situ validation measurements collected by the Picarro instrument. Comparison of remote sensing and in-situ flux estimates will be presented, demonstrating the ability of airborne remote sensing data to provide accurate emission estimates for concentrations above the

  8. Urban Tree Classification Using Full-Waveform Airborne Laser Scanning

    Science.gov (United States)

    Koma, Zs.; Koenig, K.; Höfle, B.

    2016-06-01

    Vegetation mapping in urban environments plays an important role in biological research and urban management. Airborne laser scanning provides detailed 3D geodata, which allows to classify single trees into different taxa. Until now, research dealing with tree classification focused on forest environments. This study investigates the object-based classification of urban trees at taxonomic family level, using full-waveform airborne laser scanning data captured in the city centre of Vienna (Austria). The data set is characterised by a variety of taxa, including deciduous trees (beeches, mallows, plane trees and soapberries) and the coniferous pine species. A workflow for tree object classification is presented using geometric and radiometric features. The derived features are related to point density, crown shape and radiometric characteristics. For the derivation of crown features, a prior detection of the crown base is performed. The effects of interfering objects (e.g. fences and cars which are typical in urban areas) on the feature characteristics and the subsequent classification accuracy are investigated. The applicability of the features is evaluated by Random Forest classification and exploratory analysis. The most reliable classification is achieved by using the combination of geometric and radiometric features, resulting in 87.5% overall accuracy. By using radiometric features only, a reliable classification with accuracy of 86.3% can be achieved. The influence of interfering objects on feature characteristics is identified, in particular for the radiometric features. The results indicate the potential of using radiometric features in urban tree classification and show its limitations due to anthropogenic influences at the same time.

  9. URBAN TREE CLASSIFICATION USING FULL-WAVEFORM AIRBORNE LASER SCANNING

    Directory of Open Access Journals (Sweden)

    Zs. Koma

    2016-06-01

    Full Text Available Vegetation mapping in urban environments plays an important role in biological research and urban management. Airborne laser scanning provides detailed 3D geodata, which allows to classify single trees into different taxa. Until now, research dealing with tree classification focused on forest environments. This study investigates the object-based classification of urban trees at taxonomic family level, using full-waveform airborne laser scanning data captured in the city centre of Vienna (Austria. The data set is characterised by a variety of taxa, including deciduous trees (beeches, mallows, plane trees and soapberries and the coniferous pine species. A workflow for tree object classification is presented using geometric and radiometric features. The derived features are related to point density, crown shape and radiometric characteristics. For the derivation of crown features, a prior detection of the crown base is performed. The effects of interfering objects (e.g. fences and cars which are typical in urban areas on the feature characteristics and the subsequent classification accuracy are investigated. The applicability of the features is evaluated by Random Forest classification and exploratory analysis. The most reliable classification is achieved by using the combination of geometric and radiometric features, resulting in 87.5% overall accuracy. By using radiometric features only, a reliable classification with accuracy of 86.3% can be achieved. The influence of interfering objects on feature characteristics is identified, in particular for the radiometric features. The results indicate the potential of using radiometric features in urban tree classification and show its limitations due to anthropogenic influences at the same time.

  10. Airborne measurements of aerosol optical properties related to early spring transport of mid-latitude sources into the Arctic

    Directory of Open Access Journals (Sweden)

    R. A. de Villiers

    2010-06-01

    Full Text Available Airborne lidar and in-situ measurements of the aerosol properties were conducted between Svalbard Island and Scandinavia in April 2008. Evidence of aerosol transport from Europe and Asia is given. The analysis of the aerosol optical properties based on a multiwavelength lidar (355, 532, 1064 nm including volume depolarization at 355 nm aims at distinguishing the role of the different aerosol sources (Siberian wild fires, Eastern Asia and European anthropogenic emissions. Combining, first aircraft measurements, second FLEXPART simulations with a calculation of the PBL air fraction originating from the three different mid-latitude source regions, and third level-2 CALIPSO data products (i.e. backscatter coefficient 532 nm,volume depolarization and color ratio between 1064 and 532 nm in aerosol layers along the transport pathways, appears a valuable approach to identify the role of the different aerosol sources even after a transport time larger than 4 days. Optical depth of the aerosol layers are always rather small (<4% while transported over the Arctic and ratio of the total attenuated backscatter (i.e. including molecular contribution provide more stable result than conventional aerosol backscatter ratio. Above Asia, CALIPSO data indicate more depolarization (up to 15% and largest color ratio (>0.5 for the northeastern Asia emissions (i.e. an expected mixture of Asian pollution and dust, while low depolarization together with smaller and quasi constant color ratio (≈0.3 are observed for the Siberian biomass burning emissions. A similar difference is visible between two layers observed by the aircraft above Scandinavia. The analysis of the time evolution of the aerosol optical properties revealed by CALIPSO between Asia and Scandinavia shows a gradual decrease of the aerosol backscatter, depolarization ratio and color ratio which suggests the removal of the largest particles in the accumulation mode. A similar study conducted for a European

  11. Microwave radiometric signatures of temperature anomalies in tissue

    Science.gov (United States)

    Kelly, Patrick; Sobers, Tamara; St. Peter, Benjamin; Siqueira, Paul; Capraro, Geoffrey

    2012-03-01

    Because of its ability to measure the temperature-dependent power of electromagnetic radiation emitted from tissue down to several centimeters beneath the skin, microwave radiometry has long been of interest as a means for identifying the internal tissue temperature anomalies that arise from abnormalities in physiological parameters such as metabolic and blood perfusion rates. However, the inherent lack of specificity and resolution in microwave radiometer measurements has limited the clinical usefulness of the technique. The idea underlying this work is to make use of information (assumed to be available from some other modality) about the tissue configuration in the volume of interest to study and improve the accuracy of anomaly detection and estimation from radiometric data. In particular, knowledge of the specific anatomy and the properties of the overall measurement system enable determination of the signatures of localized physiological abnormalities in the radiometry data. These signatures are used to investigate the accuracy with which the location of an anomaly can be determined from radiometric measurements. Algorithms based on matches to entries in a signature dictionary are developed for anomaly detection and estimation. The accuracy of anomaly identification is improved when the coupling of power from the body to the sensor is optimized. We describe the design of a radiometer waveguide having dielectric properties appropriate for biomedical applications.

  12. Aerosol scattering and absorption during the EUCAARI-LONGREX flights of the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146: can measurements and models agree?

    Science.gov (United States)

    Highwood, E. J.; Northway, M. J.; McMeeking, G. R.; Morgan, W. T.; Liu, D.; Osborne, S.; Bower, K.; Coe, H.; Ryder, C.; Williams, P.

    2012-08-01

    Scattering and absorption by aerosol in anthropogenically perturbed air masses over Europe has been measured using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM) on 14 flights during the EUCAARI-LONGREX campaign in May 2008. The geographical and temporal variations of the derived shortwave optical properties of aerosol are presented. Values of single scattering albedo of dry aerosol at 550 nm varied considerably from 0.86 to near unity, with a campaign average of 0.93 ± 0.03. Dry aerosol optical depths ranged from 0.030 ± 0.009 to 0.24 ± 0.07. An optical properties closure study comparing calculations from composition data and Mie scattering code with the measured properties is presented. Agreement to within measurement uncertainties of 30% can be achieved for both scattering and absorption, but the latter is shown to be sensitive to the refractive indices chosen for organic aerosols, and to a lesser extent black carbon, as well as being highly dependent on the accuracy of the absorption measurements. Agreement with the measured absorption can be achieved either if organic carbon is assumed to be weakly absorbing, or if the organic aerosol is purely scattering and the absorption measurement is an overestimate due to the presence of large amounts of organic carbon. Refractive indices could not be inferred conclusively due to this uncertainty, despite the enhancement in methodology compared to previous studies that derived from the use of the black carbon measurements. Hygroscopic growth curves derived from the wet nephelometer indicate moderate water uptake by the aerosol with a campaign mean f(RH) value (ratio in scattering) of 1.5 (range from 1.23 to 1.63) at 80% relative humidity. This value is qualitatively consistent with the major chemical components of the aerosol measured by the aerosol mass spectrometer, which are primarily mixed organics and

  13. What do we learn from EC (black carbon), OC and their Isotope Measurements in Fine Airborne PM over Canada?

    Science.gov (United States)

    Huang, L.; Zhang, W.; Sharma, S.; Brook, J.; Chan, T.; Leaitch, R.

    2009-04-01

    Elemental carbon and organic carbon (EC & OC) components in fine airborne carbonaceous particulate matter (PM) are major air pollutants existing in urban, rural and remote environments as well as key players in climate change (via radiative forcing). It is known that both EC (also called as black carbon or soot) and OC are released from various emission sources (e.g., fossil fuel combustion, biomass burning) and OC is also produced in the atmosphere through photochemical oxidations from gas phase organics. Tracking their spatial (e.g., from urban to rural to background air or latitudinal) and temporal (e.g. seasonal and inter-annual) distributions will provide valuable information to constraining emission sources and atmospheric transport/transformation mechanisms as well as to assessing effectiveness of mitigation for these pollutants. Sources/processes detecting and attributing are key aspects in both air quality and climate change research. Isotope measurements, as independent tools, can provide valuable insight to constrain those aspects. Duo to its inert nature, it is expected that the ^13C of EC won't be changed after emitting to the atmosphere, reflecting the signature of source, whereas the ^13Cof OC will have a various degree of changes through photochemical processes, depending on the history of the air mass. Therefore, an isotopic profile of ^13C in carbon components released at different temperature ranges can provide useful insight to the emission sources and formation processes in ambient PM. Quartz filter samples were collected at the five sites over Canada, from Toronto (a typical urban site), Egbert (a rural site, ~ 80 km northwest of Toronto), to Fraserdale, and Berm-TT (both are continental boreal forest sites), to Alert (an Arctic baseline site). EC and OC concentrations for those samples collected during the period (2006 - 2007) were determined using a thermal method (Totoal_900_EnCan) developed in Toronto lab at Environment Canada, which is

  14. Site characterization for calibration of radiometric sensors using vicarious method

    Science.gov (United States)

    Parihar, Shailesh; Rathore, L. S.; Mohapatra, M.; Sharma, A. K.; Mitra, A. K.; Bhatla, R.; Singh, R. S.; Desai, Yogdeep; Srivastava, Shailendra S.

    2016-05-01

    Radiometric performances of earth observation satellite/sensors vary from ground pre-launch calibration campaign to post launch period extended to lifetime of the satellite due to launching vibrations. Therefore calibration is carried out worldwide through various methods throughout satellite lifetime. In India Indian Space Research Organization (ISRO) calibrates the sensor of Resourcesat-2 satellite by vicarious method. One of these vicarious calibration methods is the reflectance-based approach that is applied in this study for radiometric calibration of sensors on-board Resouresat-2 satellite. The results of ground-based measurement of atmospheric conditions and surface reflectance are made at Bap, Rajasthan Calibration/Validation (Cal/Val) site. Cal/Val observations at site were carried out with hyper-spectral Spectroradiometer covering spectral range of 350nm- 2500nm for radiometric characterization of the site. The Sunphotometer/Ozonometer for measuring the atmospheric parameters has also been used. The calibrated radiance is converted to absolute at-sensor spectral reflectance and Top-Of-Atmosphere (TOA) radiance. TOA radiance was computed using radiative transfer model `Second simulation of the satellite signal in the solar spectrum' (6S), which can accurately simulate the problems introduced by the presence of the atmosphere along the path from Sun to target (surface) to Sensor. The methodology for band averaged reflectance retrieval and spectral reflectance fitting process are described. Then the spectral reflectance and atmospheric parameters are put into 6S code to predict TOA radiance which compare with Resourcesat-2 radiance. Spectral signature and its reflectance ratio indicate the uniformity of the site. Thus the study proves that the selected site is suitable for vicarious calibration of sensor of Resourcesat-2. Further the study demonstrates the procedure for similar exercise for site selection for Cal/Val analysis of other satellite over India

  15. Airborne aldehydes in cabin-air of commercial aircraft: Measurement by HPLC with UV absorbance detection of 2,4-dinitrophenylhydrazones.

    Science.gov (United States)

    Rosenberger, Wolfgang; Beckmann, Bibiana; Wrbitzky, Renate

    2016-04-15

    This paper presents the strategy and results of in-flight measurements of airborne aldehydes during normal operation and reported "smell events" on commercial aircraft. The aldehyde-measurement is a part of a large-scale study on cabin-air quality. The aims of this study were to describe cabin-air quality in general and to detect chemical abnormalities during the so-called "smell-events". Adsorption and derivatization of airborne aldehydes on 2,4-dinitrophenylhydrazine coated silica gel (DNPH-cartridge) was applied using tailor-made sampling kits. Samples were collected with battery supplied personal air sampling pumps during different flight phases. Furthermore, the influence of ozone was investigated by simultaneous sampling with and without ozone absorption unit (ozone converter) assembled to the DNPH-cartridges and found to be negligible. The method was validated for 14 aldehydes and found to be precise (RSD, 5.5-10.6%) and accurate (recovery, 98-103 %), with LOD levels being 0.3-0.6 μg/m(3). According to occupational exposure limits (OEL) or indoor air guidelines no unusual or noticeable aldehyde pollution was observed. In total, 353 aldehyde samples were taken from two types of aircraft. Formaldehyde (overall average 5.7 μg/m(3), overall median 4.9 μg/m(3), range 0.4-44 μg/m(3)), acetaldehyde (overall average 6.5 μg/m(3), overall median 4.6, range 0.3-90 μg/m(3)) and mostly very low concentrations of other aldehydes were measured on 108 flights. Simultaneous adsorption and derivatization of airborne aldehydes on DNPH-cartridges to the Schiff bases and their HPLC analysis with UV absorbance detection is a useful method to measure aldehydes in cabin-air of commercial aircraft.

  16. Radon potential mapping of the Tralee-Castleisland and Cavan areas (Ireland) based on airborne gamma-ray spectrometry and geology.

    Science.gov (United States)

    Appleton, J D; Doyle, E; Fenton, D; Organo, C

    2011-06-01

    The probability of homes in Ireland having high indoor radon concentrations is estimated on the basis of known in-house radon measurements averaged over 10 km × 10 km grid squares. The scope for using airborne gamma-ray spectrometer data for the Tralee-Castleisland area of county Kerry and county Cavan to predict the radon potential (RP) in two distinct areas of Ireland is evaluated in this study. Airborne data are compared statistically with in-house radon measurements in conjunction with geological and ground permeability data to establish linear regression models and produce radon potential maps. The best agreement between the percentage of dwellings exceeding the reference level (RL) for radon concentrations in Ireland (% > RL), estimated from indoor radon data, and modelled RP in the Tralee-Castleisland area is produced using models based on airborne gamma-ray spectrometry equivalent uranium (eU) and ground permeability data. Good agreement was obtained between the % > RL from indoor radon data and RP estimated from eU data in the Cavan area using terrain specific models. In both areas, RP maps derived from eU data are spatially more detailed than the published 10 km grid map. The results show the potential for using airborne radiometric data for producing RP maps.

  17. Radiometric Correction of Multitemporal Satellite Imagery

    Directory of Open Access Journals (Sweden)

    S. G. Biday,

    2010-01-01

    Full Text Available Problem statement: Repeated observation of a given area over time yields potential for many forms of change detection analysis. These repeated observations are confounded in terms of radiometric consistency due to changes in sensor calibration over time, differences in illumination, observation angles and variation in atmospheric effects. Also major problem with satellite images is that regions below clouds are not covered by sensor. Cloud detection, removal and data prediction in cloudy region is essential for image interpretation. Approach: This study demonstrated applicability of empirical relative radiometric normalization methods to a set of multitemporal cloudy images acquired by Resourcesat-1 LISS III sensor. Objective of this study was to detect and remove cloud cover and normalize an image radiometrically. Cloud detection was achieved by using Average Brightness Threshold (ABT algorithm. The detected cloud removed and replaced with data from another images of the same area. We proposed a new method in which cloudy pixels are replaced with predicted pixel values obtained by regression. After cloud removal, the proposed normalization method was applied to reduce the radiometric influence caused by non surface factors. This process identified landscape elements whose reflectance values are nearly constant over time, i.e., the subset of non-changing pixels are identified using frequency based correlation technique. Further, we proposed another method of radiometric correction in frequency domain, Pseudo-Invariant Feature regression and this process removed landscape elements such as vegetation whose reflectance values are not constant over time. It takes advantage of vegetation being typically high frequency area, can be removed by low pass filter. Results: The quality of radiometric normalization is statistically assessed by R2 value and Root Mean Square Error (RMSE between each pair of analogous band. Further we verified that difference

  18. ARM-ACME V: ARM Airborne Carbon Measurements V on the North Slope of Alaska Science and Implementation Plan

    Energy Technology Data Exchange (ETDEWEB)

    Biraud, S [Lawrence Berkeley National Laboratory

    2015-05-01

    Atmospheric temperatures are warming faster in the Arctic than predicted by climate models. The impact of this warming on permafrost degradation is not well understood, but it is projected to increase carbon decomposition and greenhouse gas production (CO₂ and/or CH₄) by arctic ecosystems. Airborne observations of atmospheric trace gases, aerosols, and cloud properties at the North Slope of Alaska are improving our understanding of global climate, with the goal of reducing the uncertainty in global and regional climate simulations and projections.

  19. Contribution of plated-out 218Po and 214Po to measurements of airborne 222Rn and daughters with plastic (CR-39) nuclear track detectors

    Science.gov (United States)

    Kahn, Bernd; Wang, Zuoyuan; Sensistaffar, Edwin

    1984-01-01

    The fraction of alpha-particle tracks due to radioactivity plated out on its surface was measured for CR-39 nuclear track detector foils used to determine working level values in air. Bare foils were exposed to known concentrations of airborne 222Rn and its short-lived daughters in a calibration chamber. The amounts of 218Po and 214Po on the foil surface were measured with a calibrated diffused junction detector-spectrometer system immediately after the foils were removed from the chamber. Deposition was mostly by 218Po, with some 214Pb but essentially no 214Bi. The track density due to the plated-out radionuclides and the 222Rn, 218Po, and 214Po in chamber air was calculated and compared to the value measured by electrochemical etching. The calculated values generally were slightly above the measured values. On the basis of these calculations, the deposited radioactivity contributed slightly less than one-half of the total tracks in one test and slightly more than two-thirds in another. This effect complicates calibration of the detector relative to airborne radon daughters.

  20. Vicarious absolute radiometric calibration of GF-2 PMS2 sensor using permanent artificial targets in China

    Science.gov (United States)

    Liu, Yaokai; Li, Chuanrong; Ma, Lingling; Wang, Ning; Qian, Yonggang; Tang, Lingli

    2016-10-01

    GF-2, launched on August 19 2014, is one of the high-resolution land resource observing satellite of the China GF series satellites plan. The radiometric performance evaluation of the onboard optical pan and multispectral (PMS2) sensor of GF-2 satellite is very important for the further application of the data. And, the vicarious absolute radiometric calibration approach is one of the most useful way to monitor the radiometric performance of the onboard optical sensors. In this study, the traditional reflectance-based method is used to vicarious radiometrically calibrate the onboard PMS2 sensor of GF-2 satellite using three black, gray and white reflected permanent artificial targets located in the AOE Baotou site in China. Vicarious field calibration campaign were carried out in the AOE-Baotou calibration site on 22 April 2016. And, the absolute radiometric calibration coefficients were determined with in situ measured atmospheric parameters and surface reflectance of the permanent artificial calibration targets. The predicted TOA radiance of a selected desert area with our determined calibrated coefficients were compared with the official distributed calibration coefficients. Comparison results show a good consistent and the mean relative difference of the multispectral channels is less than 5%. Uncertainty analysis was also carried out and a total uncertainty with 3.87% is determined of the TOA radiance.

  1. Reduction of Striping Noise in Overlapping LIDAR Intensity Data by Radiometric Normalization

    Science.gov (United States)

    Yan, Wai Yeung; Shaker, Ahmed

    2016-06-01

    To serve seamless mapping, airborne LiDAR data are usually collected with multiple parallel strips with one or two cross strip(s). Nevertheless, the overlapping regions of LiDAR data strips are usually found with unbalanced intensity values, resulting in the appearance of stripping noise. Despite that physical intensity correction methods are recently proposed, some of the system and environmental parameters are assumed as constant or not disclosed, leading to such an intensity discrepancy. This paper presents a new normalization technique to adjust the radiometric misalignment found in the overlapping LiDAR data strips. The normalization technique is built upon a second-order polynomial function fitted on the joint histogram plot, which is generated with a set of pairwise closest data points identified within the overlapping region. The method was tested on Teledyne Optech's Gemini dataset (at 1064 nm wavelength), where the LiDAR intensity data were first radiometrically corrected based on the radar (range) equation. Five land cover features were selected to evaluate the coefficient of variation (cv) of the intensity values before and after implementing the proposed method. Reduction of cv was found by 19% to 59% in the Gemini dataset, where the striping noise was significantly reduced in the radiometrically corrected and normalized intensity data. The Gemini dataset was also used to conduct land cover classification, and the overall accuracy yielded a notable improvement of 9% to 18%. As a result, LiDAR intensity data should be pre-processed with radiometric correction and normalization prior to any data manipulation.

  2. Ground-based multispectral measurements for airborne data verification in non-operating open pit mine "Kremikovtsi"

    Science.gov (United States)

    Borisova, Denitsa; Nikolov, Hristo; Petkov, Doyno

    2013-10-01

    The impact of mining industry and metal production on the environment is presented all over the world. In our research we set focus on the impact of already non-operating ferrous "Kremikovtsi"open pit mine and related waste dumps and tailings which we consider to be the major factor responsible for pollution of one densely populated region in Bulgaria. The approach adopted is based on correct estimation of the distribution of the iron oxides inside open pit mines and the neighboring regions those considered in this case to be the key issue for the ecological state assessment of soils, vegetation and water. For this study the foremost source of data are those of airborne origin and those combined with ground-based in-situ and laboratory acquired data were used for verification of the environmental variables and thus in process of assessment of the present environmental status influenced by previous mining activities. The percentage of iron content was selected as main indicator for presence of metal pollution since it could be reliably identified by multispectral data used in this study and also because the iron compounds are widely spread in the most of the minerals, rocks and soils. In our research the number of samples from every source (air, field, lab) was taken in the way to be statistically sound and confident. In order to establish relationship between the degree of pollution of the soil and mulspectral data 40 soil samples were collected during a field campaign in the study area together with GPS measurements for two types of laboratory measurements: the first one, chemical and mineralogical analysis and the second one, non-destructive spectroscopy. In this work for environmental variables verification over large areas mulspectral satellite data from Landsat instruments TM/ETM+ and from ALI/OLI (Operational Land Imager) were used. Ground-based (laboratory and in-situ) spectrometric measurements were performed using the designed and constructed in Remote

  3. Absolute airborne gravimetry

    Science.gov (United States)

    Baumann, Henri

    This work consists of a feasibility study of a first stage prototype airborne absolute gravimeter system. In contrast to relative systems, which are using spring gravimeters, the measurements acquired by absolute systems are uncorrelated and the instrument is not suffering from problems like instrumental drift, frequency response of the spring and possible variation of the calibration factor. The major problem we had to resolve were to reduce the influence of the non-gravitational accelerations included in the measurements. We studied two different approaches to resolve it: direct mechanical filtering, and post-processing digital compensation. The first part of the work describes in detail the different mechanical passive filters of vibrations, which were studied and tested in the laboratory and later in a small truck in movement. For these tests as well as for the airborne measurements an absolute gravimeter FG5-L from Micro-G Ltd was used together with an Inertial navigation system Litton-200, a vertical accelerometer EpiSensor, and GPS receivers for positioning. These tests showed that only the use of an optical table gives acceptable results. However, it is unable to compensate for the effects of the accelerations of the drag free chamber. The second part describes the strategy of the data processing. It is based on modeling the perturbing accelerations by means of GPS, EpiSensor and INS data. In the third part the airborne experiment is described in detail, from the mounting in the aircraft and data processing to the different problems encountered during the evaluation of the quality and accuracy of the results. In the part of data processing the different steps conducted from the raw apparent gravity data and the trajectories to the estimation of the true gravity are explained. A comparison between the estimated airborne data and those obtained by ground upward continuation at flight altitude allows to state that airborne absolute gravimetry is feasible and

  4. Revised landsat-5 thematic mapper radiometric calibration

    Science.gov (United States)

    Chander, G.; Markham, B.L.; Barsi, J.A.

    2007-01-01

    Effective April 2, 2007, the radiometric calibration of Landsat-5 (L5) Thematic Mapper (TM) data that are processed and distributed by the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) will be updated. The lifetime gain model that was implemented on May 5, 2003, for the reflective bands (1-5, 7) will be replaced by a new lifetime radiometric-calibration curve that is derived from the instrument's response to pseudoinvariant desert sites and from cross calibration with the Landsat-7 (L7) Enhanced TM Plus (ETM+). Although this calibration update applies to all archived and future L5 TM data, the principal improvements in the calibration are for the data acquired during the first eight years of the mission (1984-1991), where the changes in the instrument-gain values are as much as 15%. The radiometric scaling coefficients for bands 1 and 2 for approximately the first eight years of the mission have also been changed. Users will need to apply these new coefficients to convert the calibrated data product digital numbers to radiance. The scaling coefficients for the other bands have not changed. ?? 2007 IEEE.

  5. Geometric and Radiometric Evaluation of Rasat Images

    Science.gov (United States)

    Cam, Ali; Topan, Hüseyin; Oruç, Murat; Özendi, Mustafa; Bayık, Çağlar

    2016-06-01

    RASAT, the second remote sensing satellite of Turkey, was designed and assembled, and also is being operated by TÜBİTAK Uzay (Space) Technologies Research Institute (Ankara). RASAT images in various levels are available free-of-charge via Gezgin portal for Turkish citizens. In this paper, the images in panchromatic (7.5 m GSD) and RGB (15 m GSD) bands in various levels were investigated with respect to its geometric and radiometric characteristics. The first geometric analysis is the estimation of the effective GSD as less than 1 pixel for radiometrically processed level (L1R) of both panchromatic and RGB images. Secondly, 2D georeferencing accuracy is estimated by various non-physical transformation models (similarity, 2D affine, polynomial, affine projection, projective, DLT and GCP based RFM) reaching sub-pixel accuracy using minimum 39 and maximum 52 GCPs. The radiometric characteristics are also investigated for 8 bits, estimating SNR between 21.8-42.2, and noise 0.0-3.5 for panchromatic and MS images for L1R when the sea is masked to obtain the results for land areas. The analysis show that RASAT images satisfies requirements for various applications. The research is carried out in Zonguldak test site which is mountainous and partly covered by dense forest and urban areas.

  6. GEOMETRIC AND RADIOMETRIC EVALUATION OF RASAT IMAGES

    Directory of Open Access Journals (Sweden)

    A. Cam

    2016-06-01

    Full Text Available RASAT, the second remote sensing satellite of Turkey, was designed and assembled, and also is being operated by TÜBİTAK Uzay (Space Technologies Research Institute (Ankara. RASAT images in various levels are available free-of-charge via Gezgin portal for Turkish citizens. In this paper, the images in panchromatic (7.5 m GSD and RGB (15 m GSD bands in various levels were investigated with respect to its geometric and radiometric characteristics. The first geometric analysis is the estimation of the effective GSD as less than 1 pixel for radiometrically processed level (L1R of both panchromatic and RGB images. Secondly, 2D georeferencing accuracy is estimated by various non-physical transformation models (similarity, 2D affine, polynomial, affine projection, projective, DLT and GCP based RFM reaching sub-pixel accuracy using minimum 39 and maximum 52 GCPs. The radiometric characteristics are also investigated for 8 bits, estimating SNR between 21.8-42.2, and noise 0.0-3.5 for panchromatic and MS images for L1R when the sea is masked to obtain the results for land areas. The analysis show that RASAT images satisfies requirements for various applications. The research is carried out in Zonguldak test site which is mountainous and partly covered by dense forest and urban areas.

  7. The JAC airborne EM system: AEM-05

    Science.gov (United States)

    Leväniemi, H.; Beamish, D.; Hautaniemi, H.; Kurimo, M.; Suppala, I.; Vironmäki, J.; Cuss, R. J.; Lahti, M.; Tartaras, E.

    2009-03-01

    This paper describes the airborne electromagnetic (AEM) system operated by the Joint Airborne geoscience Capability (JAC), a partnership between the Finnish and British Geological Surveys. The system is a component of a 3-in-1, fixed-wing facility acquiring magnetic gradiometer and full spectrum radiometric data alongside the wing-tip, frequency-domain AEM measurements. The AEM system has recently (2005) been upgraded from 2 to 4 frequencies and now provides a bandwidth from 900 Hz to 25 kHz. The fixed-wing configuration of 4 dual vertical coplanar coils, offers a high signal/noise by virtue of the wingspan separation of the sensors. This unique configuration allows 3-in-1 surveys to be successfully performed at a variety of survey elevations when regulatory conditions are imposed. Its deployment on a twin-engine aircraft also permits low altitude surveying in countries, such as the UK, where this is a requirement. The development of the new AEM-05 system has been incremental and its history can be traced back over five decades. The AEM data acquired in the Finnish National Mapping project, and across northern Europe, have been used extensively in mineral exploration. More recent projects have investigated the application of the data to environmental, hydrogeological and land quality issues. These studies have been enhanced by reducing the flight line separation from 200 m (the national high-resolution scale) to 50 m. Our surveys also increasingly involve the application of AEM across populated areas often with extensive infrastructure. Additional secondary instrumentation has been introduced to provide an increased understanding of the data and the AEM responses observed. The secondary systems include an accurate, high sampling rate laser altimeter, a downward-looking digital camera to record the flight path, a 50/60 Hz power line monitor and a GPS gyroscope. The paper is intended as an overview and provides descriptions of the new AEM system, the secondary

  8. Radiometric survey in mammography: problems and challenges; Levantamento radiometrico em mamografia: problemas e desafios

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, M.V.T.; Navarro, V.C.C.; Garcia, I.F.M.; Ferreira, M.J.; Macedo, E.M., E-mail: navarro@ifba.edu.br [Instituto Federal da Bahia (LABPROSAUD/IFBA), Salvador, BA (Brazil). Laboratorio de Produtos para a Saude

    2015-07-01

    In addition to being mandatory, the radiometric survey is a necessity, especially in the Brazilian reality with the construction of smaller and smaller rooms. However, calibration conditions, the instrumentation and its use, can produce underestimated factors. Measures made at Labprosaud/IFBA, with five different instruments and the ISO N 25 radiation quality, show the possibility of the values presented in the radiometric surveys are underestimated by up to 10 times. The results indicate the need for meters to be calibrated in ISO N qualities, in mammography energy range, in integrated dose mode and exposure times shorter or equal to 1 s. (author)

  9. Calibration, Sensor Model Improvements and Uncertainty Budget of the Airborne Imaging Spectrometer APEX

    Science.gov (United States)

    Hueni, A.

    2015-12-01

    ESA's Airborne Imaging Spectrometer APEX (Airborne Prism Experiment) was developed under the PRODEX (PROgramme de Développement d'EXpériences scientifiques) program by a Swiss-Belgian consortium and entered its operational phase at the end of 2010 (Schaepman et al., 2015). Work on the sensor model has been carried out extensively within the framework of European Metrology Research Program as part of the Metrology for Earth Observation and Climate (MetEOC and MetEOC2). The focus has been to improve laboratory calibration procedures in order to reduce uncertainties, to establish a laboratory uncertainty budget and to upgrade the sensor model to compensate for sensor specific biases. The updated sensor model relies largely on data collected during dedicated characterisation experiments in the APEX calibration home base but includes airborne data as well where the simulation of environmental conditions in the given laboratory setup was not feasible. The additions to the model deal with artefacts caused by environmental changes and electronic features, namely the impact of ambient air pressure changes on the radiometry in combination with dichroic coatings, influences of external air temperatures and consequently instrument baffle temperatures on the radiometry, and electronic anomalies causing radiometric errors in the four shortwave infrared detector readout blocks. Many of these resolved issues might be expected to be present in other imaging spectrometers to some degree or in some variation. Consequently, the work clearly shows the difficulties of extending a laboratory-based uncertainty to data collected under in-flight conditions. The results are hence not only of interest to the calibration scientist but also to the spectroscopy end user, in particular when commercial sensor systems are used for data collection and relevant sensor characteristic information tends to be sparse. Schaepman, et al, 2015. Advanced radiometry measurements and Earth science

  10. 无人机航放测量新技术的示范应用%The applied demonstration of new drone aero-radiometric technique

    Institute of Scientific and Technical Information of China (English)

    高国林; 邱崇涛; 王景丹; 沈正新; 李江坤

    2016-01-01

    基于我国首套无人机平台的航放测量系统,简要介绍了无人机航放探测原理及校准、测量、数据处理等技术;通过在新疆克拉玛依和喀什等地区开展的应用示范工作,获取了内容丰富的无人机航放测量结果;结合地质、遥感资料以及岩石放射性参数、航放异常检查结果,对区域航放特征和局部航放异常进行综合分析评价,说明了该技术在基础地质调查、放射性矿产勘查和非放射性矿产调查中的有效性;最后对比有人机和无人机的航放测量效果并进行了简单评价.%Based on the first airborne gamma ray spectrometer on the drone in China,this paper briefly described related techniques such as principle,calibration, measurement,and data processing.Through the demonstration surveys in both Karamay and Kashi,rich re-sults of aero radiometric survey were obtained.Combined with regional geology,remote sensing data,radioactivity characteristics of rocks and the results of ground-checking,the authors analyzed and evaluated the regional features and the local anomalies of aero-radiometric survey comprehensively.The results show that the technique is an effective method in such aspects as basic geological investigation and exploration of radioactive and non-radioactive mineral resource.Finally,the measurement technique was evaluated briefly for the drone based on the fix-wing craft.

  11. Arrival time and magnitude of airborne fission products from the Fukushima, Japan, reactor incident as measured in Seattle, WA, USA

    CERN Document Server

    Leon, J Diaz; Knecht, A; Miller, M L; Robertson, R G H; Schubert, A G

    2011-01-01

    We report results of air monitoring started due to the recent natural catastrophe on March 11, 2011 in Japan and the severe ensuing damage to the Fukushima nuclear reactor complex. On March 17-18, 2011 we detected the first arrival of the airborne fission products 131-I, 132-I, 132-Te, 134-Cs, and 137-Cs in Seattle, WA, USA, by identifying their characteristic gamma rays using a germanium detector. The highest detected activity to date is <~32 mBq/m^3 of 131-I.

  12. Airborne observations of far-infrared upwelling radiance in the Arctic

    Science.gov (United States)

    Libois, Quentin; Ivanescu, Liviu; Blanchet, Jean-Pierre; Schulz, Hannes; Bozem, Heiko; Leaitch, W. Richard; Burkart, Julia; Abbatt, Jonathan P. D.; Herber, Andreas B.; Aliabadi, Amir A.; Girard, Éric

    2016-12-01

    The first airborne measurements of the Far-InfraRed Radiometer (FIRR) were performed in April 2015 during the panarctic NETCARE campaign. Vertical profiles of spectral upwelling radiance in the range 8-50 µm were measured in clear and cloudy conditions from the surface up to 6 km. The clear sky profiles highlight the strong dependence of radiative fluxes to the temperature inversion typical of the Arctic. Measurements acquired for total column water vapour from 1.5 to 10.5 mm also underline the sensitivity of the far-infrared greenhouse effect to specific humidity. The cloudy cases show that optically thin ice clouds increase the cooling rate of the atmosphere, making them important pieces of the Arctic energy balance. One such cloud exhibited a very complex spatial structure, characterized by large horizontal heterogeneities at the kilometre scale. This emphasizes the difficulty of obtaining representative cloud observations with airborne measurements but also points out how challenging it is to model polar clouds radiative effects. These radiance measurements were successfully compared to simulations, suggesting that state-of-the-art radiative transfer models are suited to study the cold and dry Arctic atmosphere. Although FIRR in situ performances compare well to its laboratory performances, complementary simulations show that upgrading the FIRR radiometric resolution would greatly increase its sensitivity to atmospheric and cloud properties. Improved instrument temperature stability in flight and expected technological progress should help meet this objective. The campaign overall highlights the potential for airborne far-infrared radiometry and constitutes a relevant reference for future similar studies dedicated to the Arctic and for the development of spaceborne instruments.

  13. Off-line radiometric analysis of Planck/LFI data

    CERN Document Server

    Tomasi, M; Galeotta, S; Lowe, S R; Mendes, L; Leonardi, R; Villa, F; Cappellini, B; Gregorio, A; Meinhold, P; Sandri, M; Cuttaia, F; Terenzi, L; Maris, M; Valenziano, L; Salmon, M J; Bersanelli, M; Binko, P; Butler, R C; D'Arcangelo, O; Fogliani, S; Frailis, M; Franceschi, E; Gasparo, F; Maggio, G; Maino, D; Malaspina, M; Mandolesi, N; Manzato, P; Meharga, M; Morgante, G; Morisset, N; Pasian, F; Perrotta, F; Rohlfs, R; Turler, M; Zacchei, A; Zonca, A; 10.1088/1748-0221/4/12/T12020

    2009-01-01

    The Planck Low Frequency Instrument (LFI) is an array of 22 pseudo-correlation radiometers on-board the Planck satellite to measure temperature and polarization anisotropies in the Cosmic Microwave Background (CMB) in three frequency bands (30, 44 and 70 GHz). To calibrate and verify the performances of the LFI, a software suite named LIFE has been developed. Its aims are to provide a common platform to use for analyzing the results of the tests performed on the single components of the instrument (RCAs, Radiometric Chain Assemblies) and on the integrated Radiometric Array Assembly (RAA). Moreover, its analysis tools are designed to be used during the flight as well to produce periodic reports on the status of the instrument. The LIFE suite has been developed using a multi-layered, cross-platform approach. It implements a number of analysis modules written in RSI IDL, each accessing the data through a portable and heavily optimized library of functions written in C and C++. One of the most important features ...

  14. Off-line radiometric analysis of Planck-LFI data

    Energy Technology Data Exchange (ETDEWEB)

    Tomasi, M; Mennella, A; Bersanelli, M [Dipartimento di Fisica, Universita degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Galeotta, S; Maris, M [LFI-DPC INAF-OATs, Via Tiepolo 11, 34131 Trieste (Italy); Lowe, S R [Jodrell Bank Centre for Astrophysics, The University of Manchester, Manchester, M13 9PL (United Kingdom); Mendes, L [Planck Science Office, European Space Agency, ESAC, P.O. box 78, 28691 Villanueva de la Canada, Madrid (Spain); Leonardi, R; Meinhold, P [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States); Villa, F; Sandri, M; Cuttaia, F; Terenzi, L; Valenziano, L; Butler, R C [INAF-IASF Bologna, Via Gobetti, 101, 40129, Bologna (Italy); Cappellini, B [INAF-IASF Milano, Via E. Bassini 15, 20133 Milano (Italy); Gregorio, A [Department of Physics, University of Trieste, Via Valerio, 2 Trieste I-34127 (Italy); Salmon, M J [Departamento de IngenierIa de Comunicaciones, Universidad de Cantabria, Avenida de los Castros s/n. 39005 Santander (Spain); Binko, P [ISDC Data Centre for Astrophysics, University of Geneva, ch. d' Ecogia 16, 1290 Versoix (Switzerland); D' Arcangelo, O, E-mail: tomasi@lambrate.inaf.i [IFP-CNR, Via Cozzi 53, Milano (Italy)

    2009-12-15

    The Planck Low Frequency Instrument (LFI) is an array of 22 pseudo-correlation radiometers on-board the Planck satellite to measure temperature and polarization anisotropies in the Cosmic Microwave Background (CMB) in three frequency bands (30, 44 and 70 GHz). To calibrate and verify the performances of the LFI, a software suite named LIFE has been developed. Its aims are to provide a common platform to use for analyzing the results of the tests performed on the single components of the instrument (RCAs, Radiometric Chain Assemblies) and on the integrated Radiometric Array Assembly (RAA). Moreover, its analysis tools are designed to be used during the flight as well to produce periodic reports on the status of the instrument. The LIFE suite has been developed using a multi-layered, cross-platform approach. It implements a number of analysis modules written in RSI IDL, each accessing the data through a portable and heavily optimized library of functions written in C and C++. One of the most important features of LIFE is its ability to run the same data analysis codes both using ground test data and real flight data as input. The LIFE software suite has been successfully used during the RCA/RAA tests and the Planck Integrated System Tests. Moreover, the software has also passed the verification for its in-flight use during the System Operations Verification Tests, held in October 2008.

  15. RADIOMETRIC AND GEOMETRIC ACCURACY ANALYSIS OF RASAT PAN IMAGERY

    Directory of Open Access Journals (Sweden)

    S. Kocaman

    2016-06-01

    Full Text Available RASAT is the second Turkish Earth Observation satellite which was launched in 2011. It operates with pushbroom principle and acquires panchromatic and MS images with 7.5 m and 15 m resolutions, respectively. The swath width of the sensor is 30 km. The main aim of this study is to analyse the radiometric and geometric quality of RASAT images. A systematic validation approach for the RASAT imagery and its products is being applied. RASAT image pair acquired over Kesan city in Edirne province of Turkey are used for the investigations. The raw RASAT data (L0 are processed by Turkish Space Agency (TUBITAK-UZAY to produce higher level image products. The image products include radiometrically processed (L1, georeferenced (L2 and orthorectified (L3 data, as well as pansharpened images. The image quality assessments include visual inspections, noise, MTF and histogram analyses. The geometric accuracy assessment results are only preliminary and the assessment is performed using the raw images. The geometric accuracy potential is investigated using 3D ground control points extracted from road intersections, which were measured manually in stereo from aerial images with 20 cm resolution and accuracy. The initial results of the study, which were performed using one RASAT panchromatic image pair, are presented in this paper.

  16. Radiometric calibration for MWIR cameras

    Science.gov (United States)

    Yang, Hyunjin; Chun, Joohwan; Seo, Doo Chun; Yang, Jiyeon

    2012-06-01

    Korean Multi-purpose Satellite-3A (KOMPSAT-3A), which weighing about 1,000 kg is scheduled to be launched in 2013 and will be located at a sun-synchronous orbit (SSO) of 530 km in altitude. This is Korea's rst satellite to orbit with a mid-wave infrared (MWIR) image sensor, which is currently being developed at Korea Aerospace Research Institute (KARI). The missions envisioned include forest re surveillance, measurement of the ocean surface temperature, national defense and crop harvest estimate. In this paper, we shall explain the MWIR scene generation software and atmospheric compensation techniques for the infrared (IR) camera that we are currently developing. The MWIR scene generation software we have developed taking into account sky thermal emission, path emission, target emission, sky solar scattering and ground re ection based on MODTRAN data. Here, this software will be used for generating the radiation image in the satellite camera which requires an atmospheric compensation algorithm and the validation of the accuracy of the temperature which is obtained in our result. Image visibility restoration algorithm is a method for removing the eect of atmosphere between the camera and an object. This algorithm works between the satellite and the Earth, to predict object temperature noised with the Earth's atmosphere and solar radiation. Commonly, to compensate for the atmospheric eect, some softwares like MODTRAN is used for modeling the atmosphere. Our algorithm doesn't require an additional software to obtain the surface temperature. However, it needs to adjust visibility restoration parameters and the precision of the result still should be studied.

  17. Observations of the moon by the global ozone monitoring experiment: radiometric calibration and lunar albedo

    NARCIS (Netherlands)

    Dobber, M.R.; Goede, A.P.H.; Burrows, J.P.

    1998-01-01

    The Global Ozone Monitoring Experiment (GOME) is a new instrument, which was launched aboard the second European Remoting Sensing satellite ESA-ERS2 in 1995. For its long-term radiometric and spectral calibration the GOME observes the sun and less frequently the moon on a regular basis. These measur

  18. Airborne measurements of CO2 and CH4 onboard the UK FAAM research aircraft using a, Los Gatos Research Inc, cavity enhanced absorption spectrometer

    Science.gov (United States)

    O'Shea, S.; Bauguitte, S.; Muller, J. B.; Le Breton, M.; Gallagher, M. W.; Allen, G.; Percival, C. J.

    2012-12-01

    Airborne measurements of CO2 and CH4 have been made using the UK Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft since spring 2011.The measurement system uses a commercially available analyser, based on the off-axis integrated cavity output spectroscopy technique, from Los Gatos Research Inc (FGGA, Model RMT-200). During the first year of operation (29 flights), 1 Hz measurements were found to be accurate to 0.07 ± 2.48ppbv for CH4 and -0.06± 0.66ppmv for CO2. In summer 2011, as part of the BORTAS project (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites), outflow from boreal forest fires was measured in Eastern Canada. A number of fresh and photochemically-aged plumes were identified using simultaneous HCN measurements, a widely used tracer for biomass burning. In the freshest plumes, strong relationships were found between CH4, CO2 and other tracers for biomass burning. From this we were able to estimate that 6.9±0.8 g of CH4 and 1551±213 g of CO2 were released into the atmosphere per kg of dry matter burnt. These emission factors are in good agreement with estimates from previous studies in boreal regions. However for aged plumes the correlations between CH4 and other biomass burning tracers were not as robust, most likely due to mixing from other CH4 emission sources, such as the wetland regions. The role of additional emission sources will be investigated using the UK Met Office NAME atmospheric dispersion model and the HYSPLIT trajectory model. Using tailored back trajectory analysis, we will present an interpretation of this new dataset in the context of air mass/fire origin, relating this to MODIS fire maps and source strength.

  19. Monitoring and evaluation techniques for airborne contamination

    Energy Technology Data Exchange (ETDEWEB)

    Xia Yihua [China Inst. of Atomic Energy, Beijing (China)

    1997-06-01

    Monitoring and evaluation of airborne contamination are of great importance for the purpose of protection of health and safety of workers in nuclear installations. Because airborne contamination is one of the key sources to cause exposure to individuals by inhalation and digestion, and to cause diffusion of contaminants in the environment. The main objectives of monitoring and evaluation of airborne contamination are: to detect promptly a loss of control of airborne material, to help identify those individuals and predict exposure levels, to assess the intake and dose commitment to the individuals, and to provide sufficient documentation of airborne radioactivity. From the viewpoint of radiation protection, the radioactive contaminants in air can be classified into the following types: airborne aerosol, gas and noble gas, and volatile gas. In this paper, the following items are described: sampling methods and techniques, measurement and evaluation, and particle size analysis. (G.K.)

  20. A multivariate spatial interpolation of airborne {\\gamma}-ray data using the geological constraints

    CERN Document Server

    Guastaldi, E; Bezzon, G P; Broggini, C; Buso, G P; Caciolli, A; L., Carmignani; Callegari, I; Colonna, T; Dule, K; Fiorentini, G; Xhixha, M Kaçeli; Mantovani, F; Massa, G; Menegazzo, R; Mou, L; Alvarez, C Rossi; Strati, V; Xhixha, G; Zanon, A

    2013-01-01

    In this paper we present maps of K, eU, and eTh abundances of Elba Island (Italy) obtained with a multivariate spatial interpolation of airborne {\\gamma}-ray data using the constraints of the geologic map. The radiometric measurements were performed by a module of four NaI(Tl) crystals of 16 L mounted on an autogyro. We applied the collocated cokriging (CCoK) as a multivariate estimation method for interpolating the primary under-sampled airborne {\\gamma}-ray data considering the well-sampled geological information as ancillary variables. A random number has been assigned to each of 73 geological formations identified in the geological map at scale 1:10,000. The non-dependency of the estimated results from the random numbering process has been tested for three distinct models. The experimental cross-semivariograms constructed for radioelement-geology couples show well-defined co-variability structures for both direct and crossed variograms. The high statistical correlations among K, eU, and eTh measurements a...

  1. INTRABAND RADIOMETRIC PERFORMANCE OF THE LANDSAT 4 THEMATIC MAPPER.

    Science.gov (United States)

    Kieffer, Hugh H.; Eliason, Eric M.; Chavez, Pat S.; ,

    1985-01-01

    This preliminary report examines those radiometric characteristics of the Landsat 4 Thematic Mapper (TM) that can be established without absolute calibration of spectral data. Analysis is based largely on radiometrically raw (B type) data of three daytime and two nighttime scenes; in most scenes, a set of 512 lines were examined on an individual-detector basis. Subscenes selected for uniform-radiance were used to characterize subtle radiometric differences and noise problems.

  2. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO airborne instrument: retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    Directory of Open Access Journals (Sweden)

    C. R. Nowlan

    2015-12-01

    Full Text Available The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO airborne instrument is a testbed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ Earth Venture Mission over Houston, Texas in September 2013. Measurements of backscattered solar radiation between 420–465 nm collected on four days during the campaign are used to determine slant column amounts of NO2 at 250 m × 250 m spatial resolution with a fitting precision of 2.2 × 1015 molecules cm−2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements, with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.91 for the most polluted day. NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS which flew on the NASA King Air B200 (r = 0.84, slope = 0.94. Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

  3. Evaluation on Radiometric Capability of Chinese Optical Satellite Sensors

    Science.gov (United States)

    Yang, Aixia; Zhong, Bo; Wu, Shanlong; Liu, Qinhuo

    2017-01-01

    The radiometric capability of on-orbit sensors should be updated on time due to changes induced by space environmental factors and instrument aging. Some sensors, such as Moderate Resolution Imaging Spectroradiometer (MODIS), have onboard calibrators, which enable real-time calibration. However, most Chinese remote sensing satellite sensors lack onboard calibrators. Their radiometric calibrations have been updated once a year based on a vicarious calibration procedure, which has affected the applications of the data. Therefore, a full evaluation of the sensors’ radiometric capabilities is essential before quantitative applications can be made. In this study, a comprehensive procedure for evaluating the radiometric capability of several Chinese optical satellite sensors is proposed. In this procedure, long-term radiometric stability and radiometric accuracy are the two major indicators for radiometric evaluation. The radiometric temporal stability is analyzed by the tendency of long-term top-of-atmosphere (TOA) reflectance variation; the radiometric accuracy is determined by comparison with the TOA reflectance from MODIS after spectrally matching. Three Chinese sensors including the Charge-Coupled Device (CCD) camera onboard Huan Jing 1 satellite (HJ-1), as well as the Visible and Infrared Radiometer (VIRR) and Medium-Resolution Spectral Imager (MERSI) onboard the Feng Yun 3 satellite (FY-3) are evaluated in reflective bands based on this procedure. The results are reasonable, and thus can provide reliable reference for the sensors’ application, and as such will promote the development of Chinese satellite data. PMID:28117745

  4. Absolute Radiometric Calibration of KOMPSAT-3A

    Science.gov (United States)

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-06-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  5. New Sentinel-2 radiometric validation approaches (SEOM program)

    Science.gov (United States)

    Bruniquel, Véronique; Lamquin, Nicolas; Ferron, Stéphane; Govaerts, Yves; Woolliams, Emma; Dilo, Arta; Gascon, Ferran

    2016-04-01

    SEOM is an ESA program element whose one of the objectives aims at launching state-of-the-art studies for the scientific exploitation of operational missions. In the frame of this program, ESA awarded ACRI-ST and its partners Rayference and National Physical Laboratory (NPL) early 2016 for a R&D study on the development and intercomparison of algorithms for validating the Sentinel-2 radiometric L1 data products beyond the baseline algorithms used operationally in the frame of the S2 Mission Performance Centre. In this context, several algorithms have been proposed and are currently in development: The first one is based on the exploitation of Deep Convective Cloud (DCC) observations over ocean. This method allows an inter-band radiometry validation from the blue to the NIR (typically from B1 to B8a) from a reference band already validated for example with the well-known Rayleigh method. Due to their physical properties, DCCs appear from the remote sensing point of view to have bright and cold tops and they can be used as invariant targets to monitor the radiometric response degradation of reflective solar bands. The DCC approach is statistical i.e. the method shall be applied on a large number of measurements to derive reliable statistics and decrease the impact of the perturbing contributors. The second radiometric validation method is based on the exploitation of matchups combining both concomitant in-situ measurements and Sentinel-2 observations. The in-situ measurements which are used here correspond to measurements acquired in the frame of the RadCalNet networks. The validation is performed for the Sentinel-2 bands similar to the bands of the instruments equipping the validation site. The measurements from the Cimel CE 318 12-filters BRDF Sun Photometer installed recently in the Gobabeb site near the Namib desert are used for this method. A comprehensive verification of the calibration requires an analysis of MSI radiances over the full dynamic range

  6. Large-scale variations in ozone and polar stratospheric clouds measured with airborne lidar during formation of the 1987 ozone hole over Antarctica

    Science.gov (United States)

    Browell, Edward V.; Poole, Lamont R.; Mccormick, M. Patrick; Ismail, Syed; Butler, Carolyn F.; Kooi, Susan A.; Szedlmayer, Margaret M.; Jones, Rod; Krueger, Arlin J.; Tuck, Adrian

    1988-01-01

    A joint field experiment between NASA and NOAA was conducted during August to September 1987 to obtain in situ and remote measurements of key gases and aerosols from aircraft platforms during the formation of the ozone (O3) hole over Antarctica. The ER-2 (advanced U-2) and DC-8 aircraft from the NASA Ames Research Center were used in this field experiment. The NASA Langley Research Center's airborne differential absorption lidar (DIAL) system was operated from the DC-8 to obtain profiles of O3 and polar stratospheric clouds in the lower stratosphere during long-range flights over Antarctica from August 28 to September 29, 1987. The airborne DIAL system was configured to transmit simultaneously four laser wavelengths (301, 311, 622, and 1064 nm) above the DC-8 for DIAL measurements of O3 profiles between 11 to 20 km ASL (geometric altitude above sea level) and multiple wavelength aerosol backscatter measurements between 11 to 24 km ASL. A total of 13 DC-8 flights were made over Antarctica with 2 flights reaching the South Pole. Polar stratospheric clouds (PSC's) were detected in multiple thin layers in the 11 to 21 km ASL altitude range with each layer having a typical thickness of less than 1 km. Two types of PSC's were found based on aerosol backscattering ratios: predominantly water ice clouds (type 2) and clouds with scattering characteristics consistent with binary solid nitric acid/water clouds (type 1). Large-scale cross sections of O3 distributions were obtained. The data provides additional information about a potentially important transport mechanism that may influence the O3 budget inside the vortex. There is also some evidence that strong low pressure systems in the troposphere are associated with regions of lower stratospheric O3. This paper discusses the spatial and temporal variations of O3 inside and outside the polar vortex region during the development of the O3 hole and relates these data to other measurements obtained during this field experiment.

  7. Airborne measurements of stratospheric constituents over Antarctica in the austral spring 1987. I - Method and ozone observations

    Science.gov (United States)

    Mankin, William G.; Coffey, M. T.

    1989-01-01

    A Fourier transform spectrometer was flown aboard a DC-8 on 10 flights over Antarctica during August and September, 1987, as part of the Airborne Antarctic Ozone Experiment (AAOE). Observing the sun at infrared wavelengths, it was possible to determine the integrated column amount above the flight altitude for ozone and a number of other chemical species that are believed to be important in the perturbed chemistry of the 'ozone hole'. The paper describes the method, the observations, the data analysis procedure, and the ozone results. During the observation period, ozone developed a steep gradient near the edge of the polar vortex; deep within the vortex, the average ozone column decreased by about 1.6 percent per day during September.

  8. Landsat-7 ETM+ radiometric calibration status

    Science.gov (United States)

    Barsi, Julia A.; Markham, Brian L.; Czapla-Myers, Jeffrey S.; Helder, Dennis L.; Hook, Simon J.; Schott, John R.; Haque, Md. Obaidul

    2016-09-01

    Now in its 17th year of operation, the Enhanced Thematic Mapper + (ETM+), on board the Landsat-7 satellite, continues to systematically acquire imagery of the Earth to add to the 40+ year archive of Landsat data. Characterization of the ETM+ on-orbit radiometric performance has been on-going since its launch in 1999. The radiometric calibration of the reflective bands is still monitored using on-board calibration devices, though the Pseudo-Invariant Calibration Sites (PICS) method has proven to be an effective tool as well. The calibration gains were updated in April 2013 based primarily on PICS results, which corrected for a change of as much as -0.2%/year degradation in the worst case bands. A new comparison with the SADE database of PICS results indicates no additional degradation in the updated calibration. PICS data are still being tracked though the recent trends are not well understood. The thermal band calibration was updated last in October 2013 based on a continued calibration effort by NASA/Jet Propulsion Lab and Rochester Institute of Technology. The update accounted for a 0.036 W/m2 sr μm or 0.26K at 300K bias error. The updated lifetime trend is now stable to within +/- 0.4K.

  9. Fusing enhanced radar precipitation, in-situ hydrometeorological measurements and airborne LIDAR snowpack estimates in a hyper-resolution hydrologic model to improve seasonal water supply forecasts

    Science.gov (United States)

    Gochis, D. J.; Busto, J.; Howard, K.; Mickey, J.; Deems, J. S.; Painter, T. H.; Richardson, M.; Dugger, A. L.; Karsten, L. R.; Tang, L.

    2015-12-01

    Scarcity of spatially- and temporally-continuous observations of precipitation and snowpack conditions in remote mountain watersheds results in fundamental limitations in water supply forecasting. These limitationsin observational capabilities can result in strong biases in total snowmelt-driven runoff amount, the elevational distribution of runoff, river basin tributary contributions to total basin runoff and, equally important for water management, the timing of runoff. The Upper Rio Grande River basin in Colorado and New Mexico is one basin where observational deficiencies are hypothesized to have significant adverse impacts on estimates of snowpack melt-out rates and on water supply forecasts. We present findings from a coordinated observational-modeling study within Upper Rio Grande River basin whose aim was to quanitfy the impact enhanced precipitation, meteorological and snowpack measurements on the simulation and prediction of snowmelt driven streamflow. The Rio Grande SNOwpack and streamFLOW (RIO-SNO-FLOW) Prediction Project conducted enhanced observing activities during the 2014-2015 water year. Measurements from a gap-filling, polarimetric radar (NOXP) and in-situ meteorological and snowpack measurement stations were assimilated into the WRF-Hydro modeling framework to provide continuous analyses of snowpack and streamflow conditions. Airborne lidar estimates of snowpack conditions from the NASA Airborne Snow Observatory during mid-April and mid-May were used as additional independent validations against the various model simulations and forecasts of snowpack conditions during the melt-out season. Uncalibrated WRF-Hydro model performance from simulations and forecasts driven by enhanced observational analyses were compared against results driven by currently operational data inputs. Precipitation estimates from the NOXP research radar validate significantly better against independent in situ observations of precipitation and snow-pack increases

  10. Airborne differential absorption lidar for water vapour measurements in the upper troposphere and lower stratosphere in the spectral region around 940 nm

    Energy Technology Data Exchange (ETDEWEB)

    Poberaj, G.

    2000-07-01

    Two all-solid-state laser systems were developed and studied in detail to optimise their performance for an airborne water vapour differential absorption lidar (DIAL). Their special features are high average output powers and excellent spectral properties in the 940-nm spectral region relevant for monitoring very low water vapour contents in the upper troposphere and lower stratosphere. One system is an injection-seeded pulsed Ti:sapphire ring laser with a spectral bandwidth of 105 MHz and an average power of 1.1 W. The other system is an injection-seeded optical parametric oscillator (OPO) in a ring configuration. Using KTP as nonlinear crystal, a signal output with a spectral bandwidth of 140 MHz and an average power of 1.2 W was achieved. Both systems, the Ti:sapphire ring laser and the KTP OPO, possess spectral purity values higher than 99%. The pump source for these systems is a frequency doubled diode-pumped Nd:YAG laser operating at a repetition rate of 100 Hz. The KTP OPO system has been used as a transmitter in a new airborne water vapour DIAL instrument. For the first time, measurements of two-dimensional water vapour distributions with a high vertical (500 m) and horizontal (20 km) resolution across several potential vorticity streamers were performed. Very low water vapour mixing ratios (10-50 ppmv) and strong gradients were observed in the tropopause region. The sensitivity of the DIAL instrument in the centre of a stratospheric intrusion ranges from 3% in the near field to 12% in the far field (4 km). The first comparison experiments with in situ measuring instruments show a good agreement. Considerable differences are found between DIAL measurements and data obtained from the ECMWF operational analyses and a mesoscale numerical model. (orig.)

  11. ROSCAM: a 95-GHz radiometric one-second camera

    Science.gov (United States)

    Smith, Roger M.; Sundstrom, Bryce M.; Belcher, Byron W.; Ewen, Doc

    1998-08-01

    -of-the-art radiometric receiver with a high-speed mechanical antenna scanning mechanism. One purpose of the initial measurement program described here, was to determine the ability of an existing high-speed raster scanning antenna to meet ROSCAM antenna requirements, specifically, a Field of View (FOV) consisting of 1,000 pixels scanned in a frame time of one second. A by- product of this investigation was the determination of the number of radiometer channels needed to generate a motion picture with a similar FOV. This paper includes: (1) Description of the ROSCAM Breadboard; (2) ROSCAM Performance Capabilities; (3) Measurement Results; (4) Conclusions.

  12. Measurement of airborne 131I, 134Cs, and 137Cs nuclides due to the Fukushima reactors accident in air particulate in Milan (Italy)

    CERN Document Server

    Clemenza, Massimiliano; Previtali, Ezio; Sala, Elena

    2011-01-01

    After the earthquake and the tsunami occurred in Japan on 11th March 2011, four of the Fukushima reactors had released in air a large amount of radioactive isotopes that had been diffused all over the world. The presence of airborne 131I, 134Cs, and 137Cs in air particulate due to this accident has been detected and measured in the Low Radioactivity Laboratory operating in the Department of Environmental Sciences of the University of Milano-Bicocca. The sensitivity of the detecting apparatus is of 0.2 \\mu Bq/m3 of air. Concentration and time distribution of these radionuclides were determined and some correlations with the original reactor releases were found. Radioactive contaminations ranging from a few to 400 \\mu Bq/m3 for the 131I and of a few tens of \\mu Bq/m3 for the 137Cs and 134Cs have been detected

  13. The Influence of Colour on Radiometric Performances of Agricultural Nets

    NARCIS (Netherlands)

    Castellano, S.; Hemming, S.; Russo, G.

    2008-01-01

    The whole construction parameters of the net, combined with the shape of the structure, the position of the sun and the sky conditions affect the radiometric performance of the permeable covering system. The radiometric properties of the permeable membrane influence the quality of the agricultural p

  14. Detecting subtle environmental change: a multi-temporal airborne imaging spectroscopy approach

    Science.gov (United States)

    Yule, Ian J.; Pullanagari, Reddy R.; Kereszturi, G.

    2016-10-01

    Airborne and satellite hyperspectral remote sensing is a key technology to observe finite change in ecosystems and environments. The role of such sensors will improve our ability to monitor and mitigate natural and agricultural environments on a much larger spatial scale than can be achieved using field measurements such as soil coring or proximal sensors to estimate the chemistry of vegetation. Hyperspectral sensors for commentarial and scientific activities are increasingly available and cost effective, providing a great opportunity to measure and detect changes in the environment and ecosystem. This can be used to extract critical information to develop more advanced management practices. In this research, we provide an overview of the data acquisition, processing and analysis of airborne, full-spectrum hyperspectral imagery from a small-scale aerial mapping project in hill-country farms in New Zealand, using an AISA Fenix sensor (Specim, Finland). The imagery has been radiometrically and atmospherically corrected, georectified and mosaicked. The hyperspectral data cube was then spectrally and spatially smoothed using Savitzky-Golay and median filter, respectively. The mosaicked imagery used to calculate bio-chemical properties of surface vegetation, such as pasture. Ground samples (n = 200) were collected a few days after the over-flight are used to develop a calibration model using partial least squares regression method. In-leaf nitrogen, potassium and phosphorous concentration were calculated using the reflectance values from the airborne hyperspectral imagery. In total, three surveys of an example property have been acquired that show changes in the pattern of availability of a major element in vegetation canopy, in this case nitrogen.

  15. Advances in High Energy Solid-State 2-micron Laser Transmitter Development for Ground and Airborne Wind and CO2 Measurements

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady; Beyon, Jeffrey

    2010-01-01

    Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  16. Advances in high-energy solid-state 2-micron laser transmitter development for ground and airborne wind and CO2 measurements

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady; Beyon, Jeffrey

    2010-10-01

    Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2- micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  17. Establishing metrological traceability for radiometric calibration of earth observation sensor in Malaysia

    Science.gov (United States)

    Ng, S. W.; Zulkifli, A.

    2016-10-01

    The space borne earth observation (EO) sensor provides a continuous large spatial coverage over the earth at relatively low cost (cost-effective) and can be practically accessible worldwide. The daily synoptic view offered by instrument in earth orbit is tremendously useful in various applications, particularly long term global monitoring that needs multi-disciplinary, multi-temporal and multi-sensor data. Due to the indirect measurement nature of the EO sensor, calibration and validation (cal/val) are essentially required to establish the linkage between the acquired raw data and the actual target of interest. Ultimately, EO sensor provider must strive to deliver “the right information, at the right time, to the right people”. This paper is authored with the main aim to report the process of establishing metrological traceability for radiometric calibration of EO sensor at Optical Calibration Laboratory (OCL), National Space Agency of Malaysia (ANGKASA). The paper is structured into six sections. The first section introduces the context of EO and background of radiometric calibration. The next section discusses the requirements for metrological traceability in radiometric calibration while the following third section outlines ANGKASA efforts in setting up the metrological traceability laboratory in radiometric calibration. Meanwhile, the uncertainty estimation results is reported in the fourth section and the fifth section explains some of the continuous efforts made in order to improve the current metrological traceability set up. Lastly, the summary of this paper is provided in the last section.

  18. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry

    Directory of Open Access Journals (Sweden)

    Ida Teresia Kero

    2016-09-01

    Full Text Available The aim of this study was to compare the applicability and the correlation between three commercially available instruments capable of detection, quantification, and characterization of ultrafine airborne particulate matter in the industrial setting of a tapping area in a silicon alloy production plant. The number concentration of ultrafine particles was evaluated using an Electric Low Pressure Impactor (ELPITM, a Fast Mobility Particle Sizer (FMPSTM, and a Condensation Particle Counter (CPC. The results are discussed in terms of particle size distribution and temporal variations linked to process operations. The instruments show excellent temporal covariation and the correlation between the FMPS and ELPI is good. The advantage of the FMPS is the excellent time- and size resolution of the results. The main advantage of the ELPI is the possibility to collect size-fractionated samples of the dust for subsequent analysis by, for example, electron microscopy. The CPC does not provide information about the particle size distribution and its correlation to the other two instruments is somewhat poor. Nonetheless, the CPC gives basic, real-time information about the ultrafine particle concentration and can therefore be used for source identification.

  19. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry.

    Science.gov (United States)

    Kero, Ida Teresia; Jørgensen, Rikke Bramming

    2016-01-01

    The aim of this study was to compare the applicability and the correlation between three commercially available instruments capable of detection, quantification, and characterization of ultrafine airborne particulate matter in the industrial setting of a tapping area in a silicon alloy production plant. The number concentration of ultrafine particles was evaluated using an Electric Low Pressure Impactor (ELPI(TM)), a Fast Mobility Particle Sizer (FMPS(TM)), and a Condensation Particle Counter (CPC). The results are discussed in terms of particle size distribution and temporal variations linked to process operations. The instruments show excellent temporal covariation and the correlation between the FMPS and ELPI is good. The advantage of the FMPS is the excellent time- and size resolution of the results. The main advantage of the ELPI is the possibility to collect size-fractionated samples of the dust for subsequent analysis by, for example, electron microscopy. The CPC does not provide information about the particle size distribution and its correlation to the other two instruments is somewhat poor. Nonetheless, the CPC gives basic, real-time information about the ultrafine particle concentration and can therefore be used for source identification.

  20. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry

    Science.gov (United States)

    Kero, Ida Teresia; Jørgensen, Rikke Bramming

    2016-01-01

    The aim of this study was to compare the applicability and the correlation between three commercially available instruments capable of detection, quantification, and characterization of ultrafine airborne particulate matter in the industrial setting of a tapping area in a silicon alloy production plant. The number concentration of ultrafine particles was evaluated using an Electric Low Pressure Impactor (ELPITM), a Fast Mobility Particle Sizer (FMPSTM), and a Condensation Particle Counter (CPC). The results are discussed in terms of particle size distribution and temporal variations linked to process operations. The instruments show excellent temporal covariation and the correlation between the FMPS and ELPI is good. The advantage of the FMPS is the excellent time- and size resolution of the results. The main advantage of the ELPI is the possibility to collect size-fractionated samples of the dust for subsequent analysis by, for example, electron microscopy. The CPC does not provide information about the particle size distribution and its correlation to the other two instruments is somewhat poor. Nonetheless, the CPC gives basic, real-time information about the ultrafine particle concentration and can therefore be used for source identification. PMID:27598180

  1. Airborne field strength monitoring

    Directory of Open Access Journals (Sweden)

    J. Bredemeyer

    2007-06-01

    Full Text Available In civil and military aviation, ground based navigation aids (NAVAIDS are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000 by the International Civil Aviation Organization (ICAO. One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz, the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA accelerated method of moments (MoM using a complex geometric model of the aircraft. First results will be presented in this paper.

  2. Aerial radiometric and magnetic survey: Millett National Topographic Map, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the Millett National Topographic Map NJ11-2 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included. Two sets profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included.

  3. JPSS-1 VIIRS pre-launch radiometric performance

    Science.gov (United States)

    Oudrari, Hassan; McIntire, Jeff; Xiong, Xiaoxiong; Butler, James; Efremova, Boryana; Ji, Qiang; Lee, Shihyan; Schwarting, Tom

    2015-09-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) on-board the first Joint Polar Satellite System (JPSS) completed its sensor level testing on December 2014. The JPSS-1 (J1) mission is scheduled to launch in December 2016, and will be very similar to the Suomi-National Polar-orbiting Partnership (SNPP) mission. VIIRS instrument was designed to provide measurements of the globe twice daily. It is a wide-swath (3,040 km) cross-track scanning radiometer with spatial resolutions of 370 and 740 m at nadir for imaging and moderate bands, respectively. It covers the wavelength spectrum from reflective to long-wave infrared through 22 spectral bands [0.412 μm to 12.01 μm]. VIIRS observations are used to generate 22 environmental data products (EDRs). This paper will briefly describe J1 VIIRS characterization and calibration performance and methodologies executed during the pre-launch testing phases by the independent government team, to generate the at-launch baseline radiometric performance, and the metrics needed to populate the sensor data record (SDR) Look-Up-Tables (LUTs). This paper will also provide an assessment of the sensor pre-launch radiometric performance, such as the sensor signal to noise ratios (SNRs), dynamic range, reflective and emissive bands calibration performance, polarization sensitivity, bands spectral performance, response-vs-scan (RVS), near field and stray light responses. A set of performance metrics generated during the pre-launch testing program will be compared to the SNPP VIIRS pre-launch performance.

  4. Evaluation of ECMWF water vapour fields by airborne differential absorption lidar measurements: a case study between Brazil and Europe

    Directory of Open Access Journals (Sweden)

    H. Flentje

    2007-10-01

    Full Text Available Three extended airborne Differential Absorption Lidar (DIAL sections of tropospheric water vapour across the tropical and sub-tropical Atlantic in March 2004 are compared to short-term forecasts of the European Centre for Medium Range Weather Forecasts (ECMWF. The humidity fields between 28° S and 36° N exhibit large inter air-mass gradients and reflect typical transport patterns of low- and mid-latitudes like convection (e.g. Hadley circulation, subsidence and baroclinic development with stratospheric intrusion. These processes re-distribute water vapour vertically such that locations with extraordinary dry/moist air-masses are observed in the lower/upper troposphere, respectively. The mixing ratios range over 3 orders of magnitude. Back-trajectories are used to trace and characterize the observed air-masses.

    Overall, the observed water vapour distributions are largely reproduced by the short-term forecasts at 0.25° resolution (T799/L91, the correlation ranges from 0.69 to 0.92. Locally, large differences occur due to comparably small spatial shifts in presence of strong gradients. Systematic deviations are found associated with specific atmospheric domains. The planetary boundary layer in the forecast is too moist and to shallow. Convective transport of humidity to the middle and upper troposphere tends to be overestimated. Potential impacts arising from data assimilation and model physics are considered. The matching of air-mass boundaries (transport is discussed with repect to scales and the representativity of the 2-D sections for the 3-D humidity field. The normalized bias of the model with respect to the observations is 6%, 11% and 0% (moist model biases for the three along-flight sections, whereby however the lowest levels are excluded.

  5. Comparison of Methods to Map and Measure River Terraces using High-Resolution Airborne LiDAR Data

    Science.gov (United States)

    Hopkins, A. J.; Snyder, N. P.

    2013-12-01

    Fluvial terraces are important recorders of land-use, climate, and tectonic history that form in both erosional and depositional landscapes and consist of a flat surface bounded by valley walls and a steep-sloping scarp adjacent to the river channel. Combining these defining characteristics with high-resolution digital elevation models (DEMs) derived from airborne light detection and ranging (lidar) surveys, several methods have been developed to identify and map terraces. The goals of this research are to compare some of these existing techniques and develop an objective approach to map terraces over entire watersheds using lidar DEMs. Additionally, we aim to quantify the thickness and volume of fill terrace deposits. Our preliminary application is to the Sheepscot River watershed, Maine, where strath and fill terraces are present and record Pleistocene deglaciation, Holocene eustatic forcing, and Anthropocene land-use change. We identify terraces along the longitudinal profile using an algorithm developed by Finnegan and Balco (2013), that computes the elevation frequency distribution at regularly spaced cross-sections normal to the channel. Next, we delineate terrace spatial extent using three separate methodologies: (1) image processing using Matlab, (2) feature classification algorithms developed by Wood (1996), and (3) image interpretation using manually placed points on known terraces to construct interpolated surfaces (Walter and Merritts, 2008). Lastly, we determine the thickness and volume of fill terrace sediments by subtracting an interpolated, adjacent water surface elevation from the defined terrace points. We compare our LiDAR-based results with field mapping, stratigraphic columns of terrace landforms, and ground penetrating radar over terrace surfaces. These findings suggest powerful new ways to rapidly analyze landscape history over large regions using high-resolution lidar DEMs, with less reliance on detailed and costly field data collection.

  6. Vertical mass impact and features of Saharan dust intrusions derived from ground-based remote sensing in synergy with airborne in-situ measurements

    Science.gov (United States)

    Córdoba-Jabonero, Carmen; Andrey-Andrés, Javier; Gómez, Laura; Adame, José Antonio; Sorribas, Mar; Navarro-Comas, Mónica; Puentedura, Olga; Cuevas, Emilio; Gil-Ojeda, Manuel

    2016-10-01

    A study of the vertical mass impact of Saharan dust intrusions is presented in this work. Simultaneous ground-based remote-sensing and airborne in-situ measurements performed during the AMISOC-TNF campaign over the Tenerife area (Canary Islands) in summertime from 01 July to 11 August 2013 were used for that purpose. A particular dusty (DD) case, associated to a progressively arriving dust intrusion lasting for two days on 31 July (weak incidence) and 01 August (strong incidence), is especially investigated. AERONET AOD and AEx values were ranging, respectively, from 0.2 to 1.4 and 0.35 to 0.05 along these two days. Vertical particle size distributions within fine and coarse modes (0.16-2.8 μm range) were obtained from aircraft aerosol spectrometer measurements. Extinction profiles and Lidar Ratio (LR) values were derived from MPLNET/Micro Pulse Lidar observations. MAXDOAS measurements were also used to retrieve the height-resolved aerosol extinction for evaluation purposes in comparison to Lidar-derived profiles. The synergy between Lidar observations and airborne measurements is established in terms of the Mass Extinction Efficiency (MEE) to calculate the vertical mass concentration of Saharan dust particles. Both the optical and microphysical profilings show dust particles mostly confined in a layer of 4.3 km thickness from 1.7 to 6 km height. LR ranged between 50 and 55 sr, typical values for Saharan dust particles. In addition, this 2-day dust event mostly affected the Free Troposphere (FT), being less intense in the Boundary Layer (BL). In particular, rather high Total Mass Concentrations (TMC) were found on the stronger DD day (01 August 2013): 124, 70 and 21 μg m-3 were estimated, respectively, at FT and BL altitudes and on the near-surface level. This dust impact was enhanced due to the increase of large particles affecting the FT, but also the BL, likely due to their gravitational settling. However, the use of an assumed averaged MEE value can be

  7. Airborne remote sensing of forest biomes

    Science.gov (United States)

    Sader, Steven A.

    1987-01-01

    Airborne sensor data of forest biomes obtained using an SAR, a laser profiler, an IR MSS, and a TM simulator are presented and examined. The SAR was utilized to investigate forest canopy structures in Mississippi and Costa Rica; the IR MSS measured forest canopy temperatures in Oregon and Puerto Rico; the TM simulator was employed in a tropical forest in Puerto Rico; and the laser profiler studied forest canopy characteristics in Costa Rica. The advantages and disadvantages of airborne systems are discussed. It is noted that the airborne sensors provide measurements applicable to forest monitoring programs.

  8. Assimilating airborne gas and aerosol measurements into HYSPLIT: a visualization tool for simultaneous assessment of air mass history and back trajectory reliability

    Directory of Open Access Journals (Sweden)

    S. Freitag

    2013-06-01

    Full Text Available Backward trajectories are commonly used to gain knowledge about the history of airborne observations in terms of possible processes along their path as well as feasible source regions. Here, we describe a refined approach that incorporates airborne gas, aerosol, and environmental data into back trajectories and show how this technique allows for simultaneous assessment of air mass history and back trajectory reliability without the need of calculating trajectory errors. We use the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT model and add a simple semi-automated computing routine to facilitate high-frequency coverage of back trajectories initiated along the flight track every 10 s. We integrate our in-situ physiochemical data by color-coding each of these trajectories with its corresponding in-situ tracer values measured at the back trajectory start points along the flight path. The unique color for each trajectory aids assessment of trajectory reliability through the visual clustering of air mass pathways of similar coloration. Moreover, marked changes in trajectories associated with marked changes evident in measured physiochemical or thermodynamic properties of an air mass add credence to trajectories, particularly when these air mass properties are linked to trajectory features characteristic of recognized sources or processes. This visual clustering of air mass pathways is of particular value for large-scale 3-D flight tracks common to aircraft experiments where air mass features of interest are often spatially distributed and temporally separated. The cluster-visualization tool used here reveals most back trajectories with pollution signatures measured in the Central Equatorial Pacific reach back to sources on the South American continent over 10 000 km away and 12 days back in time, e.g. the Amazonian basin. We also demonstrate the distinctions in air mass properties between these and trajectories that penetrate deep

  9. Preliminary hyperspectral volcano observations using Airborne Radiative Spectral Scanner (ARTS)

    Science.gov (United States)

    Jitsufuchi, T.

    2008-12-01

    Airborne-imaging spectral systems can often efficiently identify volcanic phenomena that are difficult to detect by satellite imagery. Since 1990, the National Research Institute for Earth Science and Disaster Prevention (NIED) has been developing our original airborne-imaging spectral systems for volcano observations. In 2006, we developed a new airborne hyperspectral sensor, the Airborne Radiative Transfer Spectral Scanner (ARTS), for hyperspectral volcano observations. ARTS is a push-broom imaging spectrometer covering wavelengths from 380 to 1100nm (VNIR; 288 bands), 950 to 2450nm (SWIR; 101 bands), and 8000 to 11500nm (LWIR; 32 bands) and has precise position and attitude measurement systems (GPS/IMU) to achieve direct geo-correction of the acquired image. The ARTS specifications were planned to provide hyperspectral images to support developing algorithms for remotely sensing the geothermal distribution, ash- fall areas, and content of volcanic gas columns. ARTS will also be useful for operational volcanic observations to assess volcanic activity and to mitigate volcanic disasters.Before beginning the operational use of ARTS, it is important to validate its in-flight performance. Therefore, we have been conducting validation on the B200 platform. In this study, we present the results of two experiment observations, the overflight of ARTS instrument at the NIED building site on April 5, 2007, and the volcano observations flight over active volcano (Sakurajima volcano) just after its eruption on April 8, 2008. At the NIED building site, we validated the radiometric fidelity of all bands and the accuracy of geo-corrections. At the Sakurajima volcano, we tried to demonstrate the functions of ARTS, especially those for volcano observation. At the NIED building site, the validation results indicate that the geo-correction accuracy is typically less than a two-pixel difference (RMS), and that there was good agreement between the predicted radiance at the sensor and

  10. Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget

    Directory of Open Access Journals (Sweden)

    U. Kuhn

    2007-01-01

    Full Text Available We estimated the isoprene and monoterpene source strengths of a pristine tropical forest north of Manaus in the central Amazon Basin using three different micrometeorological flux measurement approaches. During the early dry season campaign of the Cooperative LBA Airborne Regional Experiment (LBA-CLAIRE-2001, a tower-based surface layer gradient (SLG technique was applied simultaneously with a relaxed eddy accumulation (REA system. Airborne measurements of vertical profiles within and above the convective boundary layer (CBL were used to estimate fluxes on a regional scale by application of the mixed layer gradient (MLG technique. The mean daytime fluxes of organic carbon measured by REA were 2.1 mg C m−2 h−1 for isoprene, 0.20 mg C m−2 h−1 for α-pinene, and 0.39 mg C m−2 h−1 for the sum of monoterpenes. These values are in reasonable agreement with fluxes determined with the SLG approach, which exhibited a higher scatter, as expected for the complex terrain investigated. The observed VOC fluxes are in good agreement with simulations using a single-column chemistry and climate model (SCM.

    In contrast, the model-derived mixing ratios of VOCs were by far higher than observed, indicating that chemical processes may not be adequately represented in the model. The observed vertical gradients of isoprene and its primary degradation products methyl vinyl ketone (MVK and methacrolein (MACR suggest that the oxidation capacity in the tropical CBL is much higher than previously assumed. A simple chemical kinetics model was used to infer OH radical concentrations from the vertical gradients of (MVK+MACR/isoprene. The estimated range of OH concentrations during the daytime was 3–8×106 molecules cm−3, i.e., an order of magnitude higher than is estimated for the tropical CBL by current state-of-the-art atmospheric chemistry and transport models

  11. Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget

    Directory of Open Access Journals (Sweden)

    U. Kuhn

    2007-06-01

    Full Text Available We estimated the isoprene and monoterpene source strengths of a pristine tropical forest north of Manaus in the central Amazon Basin using three different micrometeorological flux measurement approaches. During the early dry season campaign of the Cooperative LBA Airborne Regional Experiment (LBA-CLAIRE-2001, a tower-based surface layer gradient (SLG technique was applied simultaneously with a relaxed eddy accumulation (REA system. Airborne measurements of vertical profiles within and above the convective boundary layer (CBL were used to estimate fluxes on a landscape scale by application of the mixed layer gradient (MLG technique. The mean daytime fluxes of organic carbon measured by REA were 2.1 mg C m−2 h−1 for isoprene, 0.20 mg C m−2 h−1 for α-pinene, and 0.39 mg C m−2 h−1 for the sum of monoterpenes. These values are in reasonable agreement with fluxes determined with the SLG approach, which exhibited a higher scatter, as expected for the complex terrain investigated. The observed VOC fluxes are in good agreement with simulations using a single-column chemistry and climate model (SCM.

    In contrast, the model-derived mixing ratios of VOCs were by far higher than observed, indicating that chemical processes may not be adequately represented in the model. The observed vertical gradients of isoprene and its primary degradation products methyl vinyl ketone (MVK and methacrolein (MACR suggest that the oxidation capacity in the tropical CBL is much higher than previously assumed. A simple chemical kinetics model was used to infer OH radical concentrations from the vertical gradients of (MVK+MACR/isoprene. The estimated range of OH concentrations during the daytime was 3–8×106 molecules cm−3, i.e., an order of magnitude higher than is estimated for the tropical CBL by current state-of-the-art atmospheric chemistry and transport models

  12. Aperture area measurement facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST has established an absolute aperture area measurement facility for circular and near-circular apertures use in radiometric instruments. The facility consists of...

  13. Indoor air quality in two urban elementary schools--measurements of airborne fungi, carpet allergens, CO2, temperature, and relative humidity.

    Science.gov (United States)

    Ramachandran, Gurumurthy; Adgate, John L; Banerjee, Sudipto; Church, Timothy R; Jones, David; Fredrickson, Ann; Sexton, Ken

    2005-11-01

    This article presents measurements of biological contaminants in two elementary schools that serve inner city minority populations. One of the schools is an older building; the other is newer and was designed to minimize indoor air quality problems. Measurements were obtained for airborne fungi, carpet loadings of dust mite allergens, cockroach allergens, cat allergens, and carpet fungi. Carbon dioxide concentrations, temperature, and relative humidity were also measured. Each of these measurements was made in five classrooms in each school over three seasons--fall, winter, and spring. We compared the indoor environments at the two schools and examined the variability in measured parameters between and within schools and across seasons. A fixed-effects, nested analysis was performed to determine the effect of school, season, and room-within-school, as well as CO2, temperature and relative humidity. The levels of all measured parameters were comparable for the two schools. Carpet culturable fungal concentrations and cat allergen levels in the newer school started and remained higher than in the older school over the study period. Cockroach allergen levels in some areas were very high in the newer school and declined over the study period to levels lower than the older school. Dust mite allergen and culturable fungal concentrations in both schools were relatively low compared with benchmark values. The daily averages for temperature and relative humidity frequently did not meet ASHRAE guidelines in either school, which suggests that proper HVAC and general building operation and maintenance procedures are at least as important as proper design and construction for adequate indoor air quality. The results show that for fungi and cat allergens, the school environment can be an important exposure source for children.

  14. Electronic Warfare Signature Measurement Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electronic Warfare Signature Measurement Facility contains specialized mobile spectral, radiometric, and imaging measurement systems to characterize ultraviolet,...

  15. Greenland annual accumulation along the EGIG line, 1959–2004, from ASIRAS airborne radar and detailed neutron-probe density measurements

    Directory of Open Access Journals (Sweden)

    T. B. Overly

    2015-12-01

    Full Text Available We report annual snow accumulation rates from 1959 to 2004 along a 250 km segment of the Expéditions Glaciologiques Internationales au Groenland (EGIG line across central Greenland using Airborne SAR/Interferometric Radar Altimeter System (ASIRAS radar layers and detailed neutron-probe (NP density profiles. ASIRAS-NP accumulation rates are not statistically different (C.I. 95 % from in situ EGIG accumulation measurements from 1985 to 2004. Below 3000 m elevation, ASIRAS-NP increases by 20 % for the period 1995 to 2004 compared to 1985 to 1994. Above 3000 m elevation, accumulation increases by 13 % for 1995–2004 compared to 1985–1994. Model snow accumulation results from the calibrated Fifth Generation Mesoscale Model modified for polar climates (Polar MM5 underestimate mean annual accumulation by 16 % compared to ASIRAS-NP from 1985 to 2004. We test radar-derived accumulation rates sensitivity to density using modelled density profiles in place of detailed NP data. ASIRAS radar layers combined with Herron and Langway (1980 model density profiles (ASIRAS-HL produce accumulation rates within 3.5 % of ASIRAS-NP estimates. We suggest using Herron and Langway (1980 density profiles to calibrate radar layers detected in dry snow regions of ice sheets lacking detailed in situ density measurements, such as those observed by the IceBridge campaign.

  16. Comparison of two direct-reading instruments (FM-7400 and Fibrecheck FC-2) with phase contrast optical microscopy to measure the airborne fibre number concentration.

    Science.gov (United States)

    Kauffer, E; Martin, P; Grzebyk, M; Villa, M; Vigneron, J C

    2003-07-01

    The use of direct-reading instruments to measure the airborne fibre number concentration is on the increase. The response of two of these instruments (FM-7400 and Fibrecheck FC-2) was compared with the conventional method of sampling on filters and counting by phase contrast microscopy. Four types of fibres were studied at different concentrations and relative humidity levels. The FM-7400 can be calibrated by the manufacturer for two different levels of sensitivity (standard and high). For the tests where it was set to the sensitivity level with which it had been calibrated, the ratio of the concentration measured by the instrument to the concentration obtained by the conventional method varied in the range 0.5-1 for the different types of fibres studied (chrysotile, glass wool and ceramic fibres). The Fibrecheck FC-2 is a much less versatile instrument. On the basis of a calibration allowing correct detection of asbestos fibres, it greatly overestimated the concentration of man-made mineral fibres. In its normal calibration state a fine chrysotile aerosol was poorly detected. For man-made mineral fibres, the response was highly dependent on the nature of the fibres. These instruments require calibration with the type of fibres to be studied. Unfortunately, this operation is not always accessible to the user and may require the services of a specialized laboratory, as the manufacturer is not always in a position to carry this out.

  17. Methodology for high-throughput field phenotyping of canopy temperature using airborne thermography

    Directory of Open Access Journals (Sweden)

    David Matthew Deery

    2016-12-01

    Full Text Available Lower canopy temperature (CT, resulting from increased stomatal conductance, has been associated with increased yield in wheat. Historically, CT has been measured with hand-held infrared thermometers. Using the hand-held CT method on large field trials is problematic, mostly because measurements are confounded by temporal weather changes during the time requiredto measure all plots. The hand-held CT method is laborious and yet the resulting heritability low, thereby reducing confidence in selection in large scale breeding endeavours.We have developed a reliable and scalable crop phenotyping method for assessing CT in large field experiments. The method involves airborne thermography from a manned helicopter using a radiometrically-calibrated thermal camera. Thermal image data is acquired from large experiments in the order of seconds, thereby enabling simultaneous measurement of CT on potentially 1,000s of plots. Effects of temporal weather variation when phenotyping large experiments using hand-held infrared thermometers are therefore reduced. The method is designed for cost-effective and large-scale use by the non-technical user and includes custom-developed software for data processing to obtain CT data on a single-plot basis for analysis.Broad-sense heritability was routinely greater than 0.50, and as high as 0.79, for airborne thermography CT measured near anthesis on a wheat experiment comprising 768 plots of size 2 x 6 m. Image analysis based on the frequency distribution of temperature pixels to remove the possible influence of background soil did not improve broad-sense heritability. Total imageacquisition and processing time was ca. 25 min and required only one person (excluding the helicopter pilot. The results indicate the potential to phenotype CT on large populations in genetics studies or for selection within a plant breeding program.

  18. Vertical distribution of trace gas species in the troposphere over the south of West Siberia: comparison of airborne in situ measurements and satellite data

    Science.gov (United States)

    Belan, Boris D.; Arshinov, Mikhail Yu.; Belov, Vladimir V.; Gridnev, Yurii V.; Davydov, Denis K.; Machida, Toshinobu; Paris, Jean-Daniel; Nédélec, Philippe; Fofonov, Alexander V.

    2014-05-01

    A comparison of the vertical distributions of O3, CO, CO2 and CH4 derived from the airborne in situ measurements and satellite observations over the southern part of West Siberia is presented. In this study we used data of monthly research flights of 'Optik' TU-134 aircraft laboratory carried out from 2012 to 2013 and data retrieved from measurements of the Infrared Atmospheric Sounding Interferometer (IASI) instrument on-board the MetOp satellite. It was found that differences in ozone mixing ratios between the airborne and satellite data can vary from +3 to +18 ppb at 0.5 km AGL and form -8 to -37 ppb at 7 km AGL, and relative ones ranged from +8 to +30 % and from -12 to -88 %, respectively. Differences in CO concentrations varied from +32 to +103 ppb at 0.5 km height and from -18 to +23 ppb at 3 km. Relative differences were in the range from -4 to +48 % at 0.5 km and from -8 to +20 % at 7 km. The maximal difference in all CH4 profiles reached 150 ppb in the atmospheric boundary layer, and the minimal one was -10 ppb. The average relative difference varied between +2.8 and -0.5 %. The average difference in CO2 concentration lies within ±1.5 ppm, while individual profiles are incommensurable. Maximal and minimal differences during the all flights were observed in the atmospheric boundary layer (+10 and -12 ppm or +2.3 and -3.3%, respectively). In the free troposphere, relative difference decreased down to ±1.0%. This work was funded by Research funds for Global Environmental Monitoring in NIES (Japan), CNRS (France), the French Ministry of Foreign Affairs, CEA (France), Presidium of RAS (Program No. 4), Brunch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5), Interdisciplinary integration projects of Siberian Branch of RAS (No. 35, No. 70, No. 131), Russian Foundation for Basic Research (grants No 14-05-00526, 14-05-00590).

  19. Multiangular L-band Datasets for Soil Moisture and Sea Surface Salinity Retrieval Measured by Airborne HUT-2D Synthetic Aperture Radiometer

    Science.gov (United States)

    Kainulainen, J.; Rautiainen, K.; Seppänen, J.; Hallikainen, M.

    2009-04-01

    SMOS is the European Space Agency's next Earth Explorer satellite due for launch in 2009. It aims for global monitoring of soil moisture and ocean salinity utilizing a new technology concept for remote sensing: two-dimensional aperture synthesis radiometry. The payload of SMOS is Microwave Imaging Radiometer by Aperture Synthesis, or MIRAS. It is a passive instrument that uses 72 individual L-band receivers for measuring the brightness temperature of the Earth. From each acquisition, i.e. integration time or snapshot, MIRAS provides two-dimensional brightness temperature of the scene in the instrument's field of view. Thus, consecutive snapshots provide multiangular measurements of the target once the instrument passes over it. Depending on the position of the target in instrument's swath, the brightness temperature of the target at incidence angles from zero up to 50 degrees can be measured with one overpass. To support the development MIRAS instrument, its calibration, and soil moisture and sea surface salinity retrieval algorithm development, Helsinki University of Technology (TKK) has designed, manufactured and tested a radiometer which operates at L-band and utilizes the same two-dimensional methodology of interferometery and aperture synthesis as MIRAS does. This airborne instrument, called HUT-2D, was designed to be used on board the University's research aircraft. It provides multiangular measurements of the target in its field of view, which spans up to 30 degrees off the boresight of the instrument, which is pointed to the nadir. The number of independent measurements of each target point depends on the flight speed and altitude. In addition to the Spanish Airborne MIRAS demonstrator (AMIRAS), HUT-2D is the only European airborne synthetic aperture radiometer. This paper presents the datasets and measurement campaigns, which have been carried out using the HUT-2D radiometer and are available for the scientific community. In April 2007 HUT-2D participated

  20. Data acquisition and processing - helicopter radiometric survey, Krageroe, 1998

    CERN Document Server

    Beard, L P

    2000-01-01

    On 07 October 1998 a helicopter radiometric survey was flown in the vicinity of Krageroe municipality. The purpose of the survey was to provide radiometric information to help assess radon hazard from radioactive rocks in the area. A total of 60 line-kilometres of radiometric data were acquired in a single flight, covering an area of approximately 3 square km with a 50-m line spacing. The data were collected by Geological Survey of Norway (NGU) personnel and processed at NGU. Radiometric data were reduced using the three-channel procedure recommended by the International Atomic Energy Association. All data were gridded using square cells with 30-m sides and geophysical maps were produced at a scale of 1:5000. This report covers aspects of data acquisition and processing (Author)

  1. Spectral and Radiometric Calibration using Tunable Lasers Project

    Data.gov (United States)

    National Aeronautics and Space Administration —  SIRCUS-based calibration relies on a set of monitoring radiometers and tunable laser sources to provide an absolute radiometric calibration that can approach...

  2. MISR radiometric camera-by-camera Cloud Mask V004

    Data.gov (United States)

    National Aeronautics and Space Administration — This file contains the Radiometric camera-by-camera Cloud Mask dataset. It is used to determine whether a scene is classified as clear or cloudy. A new parameter has...

  3. Underlying Surface Remote Sensing by the Microwave Radiometer with High Measurement Rate

    Directory of Open Access Journals (Sweden)

    Ubaichin Anton

    2016-01-01

    Full Text Available The paper describes a new approach to microwave radiometer design. The approach implies simultaneous using both modified zero measurement method and multi-receiver technique. Simultaneous using increases the operating characteristics of airborne microwave radiometers for aircrafts with self-contained power supply. The block diagram of the onboard Earth remote sensing microwave radiometric system is presented. The block diagram and operating timing diagrams of the designed radiometer are shown. An original technique to design a fiducial noise source for transfer characteristics is discussed. The advantages of the designed radiometer in comparison with the state of the art zero-type microwave radiometer are described.

  4. CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations

    Directory of Open Access Journals (Sweden)

    C. Clerbaux

    2007-10-01

    Full Text Available The Atmospheric Chemistry Experiment (ACE mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO, a good tracer of pollution plumes and atmospheric dynamics, is one of the key species provided by the primary instrument, the ACE-Fourier Transform Spectrometer (ACE-FTS. This instrument performs measurements in both the CO 1-0 and 2-0 ro-vibrational bands, from which vertically resolved CO concentration profiles are retrieved, from the mid-troposphere to the thermosphere. This paper presents an updated description of the ACE-FTS version 2.2 CO data product, along with a comprehensive validation of these profiles using available observations (February 2004 to December 2006. We have compared the CO partial columns with ground-based measurements using Fourier transform infrared spectroscopy and millimeter wave radiometry, and the volume mixing ratio profiles with airborne (both high-altitude balloon flight and airplane observations. CO satellite observations provided by nadir-looking instruments (MOPITT and TES as well as limb-viewing remote sensors (MIPAS, SMR and MLS were also compared with the ACE-FTS CO products. We show that the ACE-FTS measurements provide CO profiles with small retrieval errors (better than 5% from the upper troposphere to 40 km, and better than 10% above. These observations agree well with the correlative measurements, considering the rather loose coincidence criteria in some cases. Based on the validation exercise we assess the following uncertainties to the ACE-FTS measurement data: better than 15% in the upper troposphere (8–12 km, than 30% in the lower stratosphere (12–30 km, and than 25% from 30 to 100 km.

  5. CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations

    Directory of Open Access Journals (Sweden)

    C. Clerbaux

    2008-05-01

    Full Text Available The Atmospheric Chemistry Experiment (ACE mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO, a good tracer of pollution plumes and atmospheric dynamics, is one of the key species provided by the primary instrument, the ACE-Fourier Transform Spectrometer (ACE-FTS. This instrument performs measurements in both the CO 1-0 and 2-0 ro-vibrational bands, from which vertically resolved CO concentration profiles are retrieved, from the mid-troposphere to the thermosphere. This paper presents an updated description of the ACE-FTS version 2.2 CO data product, along with a comprehensive validation of these profiles using available observations (February 2004 to December 2006. We have compared the CO partial columns with ground-based measurements using Fourier transform infrared spectroscopy and millimeter wave radiometry, and the volume mixing ratio profiles with airborne (both high-altitude balloon flight and airplane observations. CO satellite observations provided by nadir-looking instruments (MOPITT and TES as well as limb-viewing remote sensors (MIPAS, SMR and MLS were also compared with the ACE-FTS CO products. We show that the ACE-FTS measurements provide CO profiles with small retrieval errors (better than 5% from the upper troposphere to 40 km, and better than 10% above. These observations agree well with the correlative measurements, considering the rather loose coincidence criteria in some cases. Based on the validation exercise we assess the following uncertainties to the ACE-FTS measurement data: better than 15% in the upper troposphere (8–12 km, than 30% in the lower stratosphere (12–30 km, and than 25% from 30 to 100 km.

  6. High-Performance Airborne Optical Carbon Dioxide Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental species measurement on airborne atmospheric research craft is a demanding application for optical sensing techniques. Yet optical techniques offer...

  7. High-Performance Airborne Optical Carbon Dioxide Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental species measurement on airborne atmospheric research craft is a demanding application for optical sensing techniques. Yet optical techniques offer many...

  8. Analysis methods for airborne radioactivity

    OpenAIRE

    Ala-Heikkilä, Jarmo J

    2008-01-01

    High-resolution gamma-ray spectrometry is an analysis method well suitable for monitoring airborne radioactivity. Many of the natural radionuclides and a majority of anthropogenic nuclides are prominent gamma-ray emitters. With gamma-ray spectrometry different radionuclides are readily observed at minute concentrations that are far from health hazards. The gamma-ray spectrometric analyses applied in air monitoring programmes can be divided into particulate measurements and gas measurements. I...

  9. Radiometric dating of the Siloam Tunnel, Jerusalem.

    Science.gov (United States)

    Frumkin, Amos; Shimron, Aryeh; Rosenbaum, Jeff

    2003-09-11

    The historical credibility of texts from the Bible is often debated when compared with Iron Age archaeological finds (refs. 1, 2 and references therein). Modern scientific methods may, in principle, be used to independently date structures that seem to be mentioned in the biblical text, to evaluate its historical authenticity. In reality, however, this approach is extremely difficult because of poor archaeological preservation, uncertainty in identification, scarcity of datable materials, and restricted scientific access into well-identified worship sites. Because of these problems, no well-identified Biblical structure has been radiometrically dated until now. Here we report radiocarbon and U-Th dating of the Siloam Tunnel, proving its Iron Age II date; we conclude that the Biblical text presents an accurate historic record of the Siloam Tunnel's construction. Being one of the longest ancient water tunnels lacking intermediate shafts, dating the Siloam Tunnel is a key to determining where and when this technological breakthrough took place. Siloam Tunnel dating also refutes a claim that the tunnel was constructed in the second century bc.

  10. The Radiometric Bode's Law and Extrasolar Planets

    CERN Document Server

    Lazio, T J W; Dietrick, J; Greenlees, E; Hogan, E; Jones, C; Hennig, L A

    2004-01-01

    We predict the radio flux densities of the extrasolar planets in the current census, making use of an empirical relation--the radiometric Bode's Law--determined from the five ``magnetic'' planets in the solar system (Earth and the four gas giants). Radio emission from these planets results from solar-wind powered electron currents depositing energy in the magnetic polar regions. We find that most of the known extrasolar planets should emit in the frequency range 10--1000 MHz and, under favorable circumstances, have typical flux densities as large as 1 mJy. We also describe an initial, systematic effort to search for radio emission in low radio frequency images acquired with the Very Large Array. The limits set by the VLA images (~ 300 mJy) are consistent with, but do not provide strong constraints on, the predictions of the model. Future radio telescopes, such as the Low Frequency Array (LOFAR) and the Square Kilometer Array (SKA), should be able to detect the known extrasolar planets or place austere limits ...

  11. Cavity Attenuated Phase Shift (CAPS) Method for Airborne Aerosol Light Extinction Measurement: Instrument Validation and First Results from Field Deployment

    Science.gov (United States)

    Petzold, A.; Perim de Faria, J.; Berg, M.; Bundke, U.; Freedman, A.

    2015-12-01

    Monitoring the direct impact of aerosol particles on climate requires the continuous measurement of aerosol optical parameters like the aerosol extinction coefficient on a regular basis. Remote sensing and ground-based networks are well in place (e.g., AERONET, ACTRIS), whereas the regular in situ measurement of vertical profiles of atmospheric aerosol optical properties remains still an important challenge in quantifying climate change. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. Recently, a compact and robust family of optical instruments based on the cavity attenuated phase shift (CAPS) technique has become available for measuring aerosol light extinction. While this technique was successfully deployed for ground-based atmospheric measurements under various conditions, its suitability for operation aboard aircraft in the free and upper free troposphere still has to be demonstrated. In this work, the modifications of a CAPS PMex instrument for measuring aerosol light extinction on aircraft, the results from subsequent laboratory tests for evaluating the modified instrument prototype, and first results from a field deployment aboard a research aircraft will be covered. In laboratory studies, the instrument showed excellent agreement (deviation < 5%) with theoretical values calculated from Rayleigh scattering cross-sections, when operated on pressurized air and CO2 at ambient and low pressure (~200 hPa). For monodisperse and polydisperse aerosols, reference aerosol extinction coefficients were calculated from measured size distributions and agreed with the CAPS PMex instrument

  12. Target detection algorithm for airborne thermal hyperspectral data

    Science.gov (United States)

    Marwaha, R.; Kumar, A.; Raju, P. L. N.; Krishna Murthy, Y. V. N.

    2014-11-01

    Airborne hyperspectral imaging is constantly being used for classification purpose. But airborne thermal hyperspectral image usually is a challenge for conventional classification approaches. The Telops Hyper-Cam sensor is an interferometer-based imaging system that helps in the spatial and spectral analysis of targets utilizing a single sensor. It is based on the technology of Fourier-transform which yields high spectral resolution and enables high accuracy radiometric calibration. The Hypercam instrument has 84 spectral bands in the 868 cm-1 to 1280 cm-1 region (7.8 μm to 11.5 μm), at a spectral resolution of 6 cm-1 (full-width-half-maximum) for LWIR (long wave infrared) range. Due to the Hughes effect, only a few classifiers are able to handle high dimensional classification task. MNF (Minimum Noise Fraction) rotation is a data dimensionality reducing approach to segregate noise in the data. In this, the component selection of minimum noise fraction (MNF) rotation transformation was analyzed in terms of classification accuracy using constrained energy minimization (CEM) algorithm as a classifier for Airborne thermal hyperspectral image and for the combination of airborne LWIR hyperspectral image and color digital photograph. On comparing the accuracy of all the classified images for airborne LWIR hyperspectral image and combination of Airborne LWIR hyperspectral image with colored digital photograph, it was found that accuracy was highest for MNF component equal to twenty. The accuracy increased by using the combination of airborne LWIR hyperspectral image with colored digital photograph instead of using LWIR data alone.

  13. Data processing of remotely sensed airborne hyperspectral data using the Airborne Processing Library (APL): Geocorrection algorithm descriptions and spatial accuracy assessment

    Science.gov (United States)

    Warren, Mark A.; Taylor, Benjamin H.; Grant, Michael G.; Shutler, Jamie D.

    2014-03-01

    Remote sensing airborne hyperspectral data are routinely used for applications including algorithm development for satellite sensors, environmental monitoring and atmospheric studies. Single flight lines of airborne hyperspectral data are often in the region of tens of gigabytes in size. This means that a single aircraft can collect terabytes of remotely sensed hyperspectral data during a single year. Before these data can be used for scientific analyses, they need to be radiometrically calibrated, synchronised with the aircraft's position and attitude and then geocorrected. To enable efficient processing of these large datasets the UK Airborne Research and Survey Facility has recently developed a software suite, the Airborne Processing Library (APL), for processing airborne hyperspectral data acquired from the Specim AISA Eagle and Hawk instruments. The APL toolbox allows users to radiometrically calibrate, geocorrect, reproject and resample airborne data. Each stage of the toolbox outputs data in the common Band Interleaved Lines (BILs) format, which allows its integration with other standard remote sensing software packages. APL was developed to be user-friendly and suitable for use on a workstation PC as well as for the automated processing of the facility; to this end APL can be used under both Windows and Linux environments on a single desktop machine or through a Grid engine. A graphical user interface also exists. In this paper we describe the Airborne Processing Library software, its algorithms and approach. We present example results from using APL with an AISA Eagle sensor and we assess its spatial accuracy using data from multiple flight lines collected during a campaign in 2008 together with in situ surveyed ground control points.

  14. Altitude Differentiated Aerosol Extinction Over Tenerife (North Atlantic Coast) During ACE-2 by Means of Ground and Airborne Photometry and Lidar Measurements

    Science.gov (United States)

    Formenti, P.; Elias, T.; Welton, J.; Diaz, J. P.; Exposito, F.; Schmid, B.; Powell, D.; Holben, B. N.; Smirnov, A.; Andreae, M. O.; Devaux, C.; Voss, K.; Lelieveld, J.; Livingston, J. M.; Russell, P. B.; Durkee, P. A.

    2000-01-01

    Retrievals of spectral aerosol optical depths (tau(sub a)) by means of sun photometers have been undertaken in Tenerife (28 deg 16' N, 16 deg 36' W) during ACE-2 (June-July 1997). Five ground-based sites were located at four different altitudes in the marine boundary layer and in the free troposphere, from 0 to 3570 m asl. The goal of the investigation was to provide estimates of the vertical aerosol extinction over the island, both under clean and turbid conditions. Inversion of spectral tau(sub a) allowed to retrieve size distributions, from which the single scattering albedo omega(sub 0) and the asymmetry factor g could be estimated as a function of altitude. These parameters were combined to calculate aerosol forcing in the column. Emphasis is put on episodes of increased turbidity, which were observed at different locations simultaneously, and attributed to outbreaks of mineral dust from North Africa. Differentiation of tau(sub a) as a function of altitude provided the vertical profile of the extinction coefficient sigma(sub e). For dust outbreaks, aerosol extinction is concentrated in two distinct layers above and below the strong subsidence inversion around 1200 m asl. Vertical profiles of tau(sub a) and sigma(sub e) are shown for July 8. In some occasions, vertical profiles are compared to LIDAR observations, performed both at sea level and in the low free troposphere, and to airborne measurements of aerosol optical depths.

  15. Contact sensitivity in mice evaluated by means of ear swelling and a radiometric test

    Energy Technology Data Exchange (ETDEWEB)

    Baeck, O.; Larsen, A.

    1982-04-01

    Contact sensitivity to picryl chloride was investigated by means of the ear swelling test and a radiometric test in order to establish optimal experimental conditions for these assays. Contact sensitivity was demonstrated as soon as 2 days after sensitization, with a maximum reaction 3-4 days after sensitization, when a 48 hr test reaction was registered. The test reaction was followed for 72 hr and maximum was arrived at after 24 hr and 48 hr for the ear swelling test and the radiometric test, respectively. Optimal sensitization was reached with a 7% solution of picryl chloride and a maximum test reaction was found with 0.75-1.0% picryl chloride. It is concluded that both assays measure contact sensitivity in quantitative terms and a future replacement of the guinea pig maximization test is discussed.

  16. Extreme Ultraviolet Variability Experiment (EVE) Multiple EUV Grating Spectrographs (MEGS): Radiometric Calibrations and Results

    Science.gov (United States)

    Hock, R. A.; Woods, T. N.; Crotser, D.; Eparvier, F. G.; Woodraska, D. L.; Chamberlin, P. C.; Woods, E. C.

    2010-01-01

    The NASA Solar Dynamics Observatory (SDO), scheduled for launch in early 2010, incorporates a suite of instruments including the Extreme Ultraviolet Variability Experiment (EVE). EVE has multiple instruments including the Multiple Extreme ultraviolet Grating Spectrographs (MEGS) A, B, and P instruments, the Solar Aspect Monitor (SAM), and the Extreme ultraviolet SpectroPhotometer (ESP). The radiometric calibration of EVE, necessary to convert the instrument counts to physical units, was performed at the National Institute of Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF III) located in Gaithersburg, Maryland. This paper presents the results and derived accuracy of this radiometric calibration for the MEGS A, B, P, and SAM instruments, while the calibration of the ESP instrument is addressed by Didkovsky et al. . In addition, solar measurements that were taken on 14 April 2008, during the NASA 36.240 sounding-rocket flight, are shown for the prototype EVE instruments.

  17. The airborne mass spectrometer AIMS – Part 2: Measurements of trace gases with stratospheric or tropospheric origin in the UTLS

    Directory of Open Access Journals (Sweden)

    T. Jurkat

    2016-04-01

    an isotopically labeled 34SO2 standard. In addition, we report on trace gas measurements of HONO, which is sensitive to the reaction with SF5−. The detection limit for the various trace gases is in the low 10 pptv range at a 1 s time resolution with an overall uncertainty of the measurement of the order of 20 %. AIMS has been integrated and successfully operated on the DLR research aircraft Falcon and HALO (High Altitude LOng range research aircraft. As an example, measurements conducted during the TACTS/ESMVal (Transport and Composition of the LMS/UT and Earth System Model Validation mission with HALO in 2012 are presented, focusing on a classification of tropospheric and stratospheric influences in the UTLS region. The combination of AIMS measurements with other measurement techniques yields a comprehensive picture of the sulfur, chlorine and reactive nitrogen oxide budget in the UTLS. The different trace gases measured with AIMS exhibit the potential to gain a better understanding of the trace gas origin and variability at and near the tropopause.

  18. Calibrated Full-Waveform Airborne Laser Scanning for 3D Object Segmentation

    Directory of Open Access Journals (Sweden)

    Fanar M. Abed

    2014-05-01

    Full Text Available Segmentation of urban features is considered a major research challenge in the fields of photogrammetry and remote sensing. However, the dense datasets now readily available through airborne laser scanning (ALS offer increased potential for 3D object segmentation. Such potential is further augmented by the availability of full-waveform (FWF ALS data. FWF ALS has demonstrated enhanced performance in segmentation and classification through the additional physical observables which can be provided alongside standard geometric information. However, use of FWF information is not recommended without prior radiometric calibration, taking into account all parameters affecting the backscatter energy. This paper reports the implementation of a radiometric calibration workflow for FWF ALS data, and demonstrates how the resultant FWF information can be used to improve segmentation of an urban area. The developed segmentation algorithm presents a novel approach which uses the calibrated backscatter cross-section as a weighting function to estimate the segmentation similarity measure. The normal vector and the local Euclidian distance are used as criteria to segment the point clouds through a region growing approach. The paper demonstrates the potential to enhance 3D object segmentation in urban areas by integrating the FWF physical backscattered energy alongside geometric information. The method is demonstrated through application to an interest area sampled from a relatively dense FWF ALS dataset. The results are assessed through comparison to those delivered from utilising only geometric information. Validation against a manual segmentation demonstrates a successful automatic implementation, achieving a segmentation accuracy of 82%, and out-performs a purely geometric approach.

  19. Airborne Measurements of CO2 Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar

    Directory of Open Access Journals (Sweden)

    James B. Abshire

    2013-12-01

    Full Text Available We have previously demonstrated a pulsed direct detection IPDA lidar to measure range and the column concentration of atmospheric CO2. The lidar measures the atmospheric backscatter profiles and samples the shape of the 1,572.33 nm CO2 absorption line. We participated in the ASCENDS science flights on the NASA DC-8 aircraft during August 2011 and report here lidar measurements made on four flights over a variety of surface and cloud conditions near the US. These included over a stratus cloud deck over the Pacific Ocean, to a dry lake bed surrounded by mountains in Nevada, to a desert area with a coal-fired power plant, and from the Rocky Mountains to Iowa, with segments with both cumulus and cirrus clouds. Most flights were to altitudes >12 km and had 5–6 altitude steps. Analyses show the retrievals of lidar range, CO2 column absorption, and CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, through thin clouds, between cumulus clouds, and to stratus cloud tops. The retrievals shows the decrease in column CO2 due to growing vegetation when flying over Iowa cropland as well as a sudden increase in CO2 concentration near a coal-fired power plant. For regions where the CO2 concentration was relatively constant, the measured CO2 absorption lineshape (averaged for 50 s matched the predicted shapes to better than 1% RMS error. For 10 s averaging, the scatter in the retrievals was typically 2–3 ppm and was limited by the received signal photon count. Retrievals were made using atmospheric parameters from both an atmospheric model and from in situ temperature and pressure from the aircraft. The retrievals had no free parameters and did not use empirical adjustments, and >70% of the measurements passed screening and were used in analysis. The differences between the lidar-measured retrievals and in situ measured average CO2 column concentrations were <1.4 ppm for flight measurement altitudes >6

  20. Airborne, Balloon-borne and ground network measurements of aerosol BC over Indian region: Current understanding and possible implications

    Science.gov (United States)

    Nair, Vijayakumar S.; Krishna Moorthy, K.; Babu, Suresh, S.; Manoj, M. R.; Gogoi, Mukunda

    2012-07-01

    Though the role of BC aerosols in direct and indirect aerosol climate forcing is now well accepted and being extensively investigated, there is a large knowledge gap on its vertical distribution. Large amounts of BC, if present above and within the clouds, could significantly modify the atmospheric heating due to aerosol absorption. In the back drop of some of the recent measurements of strong BC layers in the middle and upper troposphere and even in the stratosphere, the knowledge of vertical distribution of BC becomes all the more relevant, especially over the tropics, with significant solar heating, cloud cover and BC hotspots. With a view to addressing this issue from comprehensive measurements over Indian region, extensive measurements using aircrafts, balloons, and a large network of ground-based observatories have been made as a part of the Regional Aerosol Warming Experiment (RAWEX). These measurements were examined in the light of simulations made using the regional climate model (RegCM of ICTP) to understand the ability and biases of climate models. While the aircraft measurements revealed presence of strong BC layers above the atmospheric boundary layer, within which the BC concentration often exceeded those near the surface. These layers were more elevated and strong along the eastern coast and over Bay of Bengal, rather than on the west. The RegCM simulations were found to underestimate the BC concentrations, especially during the daytime probably owing to inadequate representation of ABL dynamics. The details would be presented and implications would be discussed

  1. Progress Report on the ASCII for Science Data, Airborne and Geospatial Working Groups of the 2014 ESDSWG for MEaSUREs

    Science.gov (United States)

    Evans, K. D.; Krotkov, N. A.; Mattmann, C. A.; Boustani, M.; Law, E.; Conover, H.; Chen, G.; Olding, S. W.; Walter, J.

    2014-12-01

    The Earth Science Data Systems Working Groups (ESDSWG) were setup by NASA HQ 10 years ago. The role of the ESDSWG is to make recommendations relevant to NASA's Earth science data systems from users experiences. Each group works independently focussing on a unique topic. Participation in ESDSWG groups comes from a variety of NASA-funded science and technology projects, NASA information technology experts, affiliated contractor staff and other interested community members from academia and industry. Recommendations from the ESDSWG groups will enhance NASA's efforts to develop long term data products. The ASCII for Science Data Working Group (WG) will define a minimum set of information that should be included in ASCII file headers so that the users will be able to access the data using only the header information. After reviewing various use cases, such as field data and ASCII data exported from software tools, and reviewing ASCII data guidelines documentation, this WG will deliver guidelines for creating ASCII files that contain enough header information to allow the user to access the science data. The Airborne WG's goal is to improve airborne data access and use for NASA science. The first step is to evaluate the state of airborne data and make recommendations focusing on data delivery to the DAACs (data centers). The long term goal is to improve airborne data use for Earth Science research. Many data aircraft observations are reported in ASCII format. The ASCII and Airborne WGs seem like the same group, but the Airborne WG is concerned with maintaining and using airborne for science research, not just the data format. The Geospatial WG focus is on the interoperability issues of Geospatial Information System (GIS) and remotely sensed data, in particular, focusing on DAAC(s) data from NASA's Earth Science Enterprise. This WG will provide a set of tools (GIS libraries) to use with training and/or cookbooks through the use of Open Source technologies. A progress

  2. Comparison of aerosol optical depths from the Ozone Monitoring Instrument (OMI on Aura with results from airborne sunphotometry, other space and ground measurements during MILAGRO/INTEX-B

    Directory of Open Access Journals (Sweden)

    J. M. Livingston

    2009-04-01

    Full Text Available Airborne sunphotometer measurements are used to evaluate retrievals of extinction aerosol optical depth (AOD from spatially coincident and temporally near-coincident measurements by the Ozone Monitoring Instrument (OMI aboard the Aura satellite during the March 2006 Megacity Initiative-Local And Global Research Observations/Phase B of the Intercontinental Chemical Transport Experiment (MILAGRO/INTEX-B. The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS flew on nine missions over the Gulf of Mexico and four in or near the Mexico City area. Retrievals of AOD from near-coincident AATS and OMI measurements are compared for three flights over the Gulf of Mexico for flight segments when the aircraft flew at altitudes 60–70 m a.s.l., and for one flight over Mexico City when the aircraft flew ~420–590 m a.g.l. OMI-measured top of atmosphere (TOA reflectances are routinely inverted to yield aerosol products such as AOD and aerosol absorption optical depth (AAOD using two different retrieval algorithms: a near-UV (OMAERUV and a multiwavelength (OMAERO technique. This study uses the archived Collection 3 data products from both algorithms. In particular, AATS and OMI AOD comparisons are presented for AATS data acquired in 20 OMAERUV retrieval pixels (15 over water and 19 OMAERO pixels (also 15 over water. At least four pixels for one of the over-water coincidences and all pixels for the over-land case were cloud-free. Coincident AOD retrievals from 17 pixels of the Moderate Resolution Imaging Spectroradiometer (MODIS aboard Aqua are available for two of the over-water flights and are shown to agree with AATS AODs to within root mean square (RMS differences of 0.00–0.06, depending on wavelength. Near-coincident ground-based AOD measurements from ground-based sun/sky radiometers operated as part of the Aerosol Robotic Network (AERONET at three sites in and near Mexico City are also shown and are generally consistent with the AATS AODs

  3. Comparison of aerosol optical depths from the Ozone Monitoring Instrument (OMI on Aura with results from airborne sunphotometry, other space and ground measurements during MILAGRO/INTEX-B

    Directory of Open Access Journals (Sweden)

    J. M. Livingston

    2009-09-01

    Full Text Available Airborne sunphotometer measurements are used to evaluate retrievals of extinction aerosol optical depth (AOD from spatially coincident and temporally near-coincident measurements by the Ozone Monitoring Instrument (OMI aboard the Aura satellite during the March 2006 Megacity Initiative-Local And Global Research Observations/Phase B of the Intercontinental Chemical Transport Experiment (MILAGRO/INTEX-B. The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS flew on nine missions over the Gulf of Mexico and four in or near the Mexico City area. Retrievals of AOD from near-coincident AATS and OMI measurements are compared for three flights over the Gulf of Mexico for flight segments when the aircraft flew at altitudes 60–70 m above sea level, and for one flight over the Mexico City area where the aircraft was restricted to altitudes ~320–800 m above ground level over the rural area and ~550–750 m over the city. OMI-measured top of atmosphere (TOA reflectances are routinely inverted to yield aerosol products such as AOD and aerosol absorption optical depth (AAOD using two different retrieval algorithms: a near-UV (OMAERUV and a multiwavelength (OMAERO technique. This study uses the archived Collection 3 data products from both algorithms. In particular, AATS and OMI AOD comparisons are presented for AATS data acquired in 20 OMAERUV retrieval pixels (15 over water and 19 OMAERO pixels (also 15 over water. At least four pixels for one of the over-water coincidences and all pixels for the over-land case were cloud-free. Coincident AOD retrievals from 17 pixels of the Moderate Resolution Imaging Spectroradiometer (MODIS aboard Aqua are available for two of the over-water flights and are shown to agree with AATS AODs to within root mean square (RMS differences of 0.00–0.06, depending on wavelength. Near-coincident ground-based AOD measurements from ground-based sun/sky radiometers operated as part of the Aerosol Robotic Network (AERONET

  4. Local-scale flood mapping on vegetated floodplains from radiometrically calibrated airborne LiDAR data

    DEFF Research Database (Denmark)

    Malinowski, Radoslaw; Höfle, Bernhard; König, Kristina

    2016-01-01

    that can be used for classification of water surfaces. Following the laser footprint analysis, three classifiers, namely AdaBoost with Decision Tree, Naïve Bayes and Random Forest, were utilised to classify laser points into flooded and non-flooded classes and to derive the map of flooding extent...

  5. Development of a measurement platformon a light airplane and analysis of airborne measurementsin the atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    D. Zardi

    2003-06-01

    Full Text Available In the present paper we provide an overview of a long term research project aimed at setting up a suitable platform for measurements in the atmospheric boundary layer on a light airplane along with some preliminary results obtained from fi eld campaigns at selected sites. Measurements of air pressure, temperature and relative humidity have been performed in various Alpine valleys up to a height of about 2500 m a.m.s.l. By means of GPS resources and specifi c post-processing procedures careful positioning of measurement points within the explored domain has been achieved. The analysis of collected data allowed detailed investigation of atmospheric vertical structures and dynamics typical of valley environment, such as morning transition from ground based inversion to fully developed well mixed convective boundary layer. Based on data collected along fl ights, 3D fi elds of the explored variables have been detected and identifi ed through application of geostatistical techniques (Kriging. The adopted procedures allowed evaluation of the intrinsic statistical structure of the spatial distribution of measured quantities and the estimate of the values of the same variable at unexplored locations by suitable weighted average of data recorded at close locations. Results thus obtained are presented and discussed.

  6. Long-term measurements of radon, thoron and their airborne progeny in 25 schools in Republic of Srpska.

    Science.gov (United States)

    Ćurguz, Z; Stojanovska, Z; Žunić, Z S; Kolarž, P; Ischikawa, T; Omori, Y; Mishra, R; Sapra, B K; Vaupotič, J; Ujić, P; Bossew, P

    2015-10-01

    This article reports results of the first investigations on indoor radon, thoron and their decay products concentration in 25 primary schools of Banja Luka, capital city of Republic Srpska. The measurements have been carried out in the period from May 2011 to April 2012 using 3 types of commercially available nuclear track detectors, named: long-term radon monitor (GAMMA 1)- for radon concentration measurements (C(Rn)); radon-thoron discriminative monitor (RADUET) for thoron concentration measurements (C(Tn)); while equilibrium equivalent radon concentration (EERC) and equilibrium equivalent thoron concentrations (EETC) measured by Direct Radon Progeny Sensors/Direct Thoron Progeny Sensors (DRPS/DTPS) were exposed in the period November 2011 to April 2012. In each school the detectors were deployed at 10 cm distance from the wall. The obtained geometric mean concentrations were C(Rn) = 99 Bq m(-3) and C(Tn) = 51 Bq m(-3) for radon and thoron gases respectively. Those for equilibrium equivalent radon concentration (EERC) and equilibrium equivalent thoron concentrations (EETC) were 11.2 Bq m(-3) and 0.4 Bq m(-3), respectively. The correlation analyses showed weak relation only between C(Rn) and C(Tn) as well as between C(Tn) and EETC. The influence of the school geographical locations and factors linked to buildings characteristic in relation to measured concentrations were tested. The geographical location and floor level significantly influence C(Rn) while C(Tn) depend only from building materials (ANOVA, p ≤ 0.05). The obtained geometric mean values of the equilibrium factors were 0.123 for radon and 0.008 for thoron.

  7. Sources of methane and nitrous oxide in California's Central Valley estimated through direct airborne flux and positive matrix factorization source apportionment of groundbased and regional tall tower measurements

    Science.gov (United States)

    Guha, Abhinav

    Methane (CH4) and nitrous oxide (N2O) are two major greenhouse gases that contribute significantly to the increase in anthropogenic radiative-forcing causing perturbations to the earth's climate system. In a watershed moment in the state's history of environmental leadership and commitment, California, in 2006, opted for sharp reductions in their greenhouse gas (GHG) emissions and adopted a long-term approach to address climate change that includes regulation of emissions from individual emitters and source categories. There are large CH4 and N2O emissions sources in the state, predominantly in the agricultural and waste management sector. While these two gases account for Transects) study. Next, a one-year continuous field campaign (WGC 2012-13, June 2012 - August 2013) was conducted at the Walnut Grove tall tower near the Sacramento-San Joaquin River Delta in the Central Valley. Through analysis of these field measurements, this dissertation presents the apportionment of observed CH4 and N2O concentration enhancements into major source categories along with direct emissions estimates from airborne observations. We perform high-precision measurements of greenhouse gases using gas analyzers based on absorption spectroscopy, and other source marker volatile organic compounds (VOCs) using state of the art VOC measurement systems (e.g. proton transfer reaction mass spectrometry). We combine these measurements with a statistical source apportionment technique called positive matrix factorization (PMF) to evaluate and investigate the major local sources of CH4 and N2O during CalNex and Walnut Grove campaigns. In the CABERNET study, we combine measurements with an airborne approach to a well-established micrometeorological technique (eddy-covariance method) to derive CH4 fluxes over different source regions in the Central Valley. In the CalNex experiments, we demonstrate that dairy and livestock remains the largest source sector of non-CO2 greenhouse gases in the San

  8. Airborne In-Situ Measurements of Formaldehyde Over California: First Results from the Compact Formaldehyde Fluorescence Experiment (COFFEE) Instrument

    Science.gov (United States)

    Marrero, Josette Elizabeth; Saint Clair, Jason; Yates, Emma L.; Gore, Warren; Swanson, Andrew K.; Iraci, Laura T.; Hanisco, Thomas F.

    2016-01-01

    Formaldehyde (HCHO) is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere, playing a role multiple atmospheric processes. Measurements of HCHO can be used to help quantify convective transport, the abundance of VOCs, and ozone production in urban environments. The Compact Formaldehyde FluorescencE Experiment (COFFEE) instrument uses Non-Resonant Laser Induced Fluorescence (NR-LIF) to detect trace concentrations of HCHO as part of the Alpha Jet Atmospheric eXperiment (AJAX) payload. Developed at NASA GSFC, COFFEE is a small, low maintenance instrument with a sensitivity of 100 pptv and a quick response time (1 sec). The COFFEE instrument has been customized to fit in an external wing pod on the Alpha Jet aircraft based at NASA ARC. The instrument can operate over a broad range of altitudes, from boundary layer to lower stratosphere, making it well suited for the Alpha Jet, which can access altitudes from the surface up to 40,000 ft. Results of the first COFFEE science flights preformed over the California's Central Valley will be presented. Boundary layer measurements and vertical profiles in the tropospheric column will both be included. This region is of particular interest, due to its elevated levels of HCHO, revealed in satellite images, as well as its high ozone concentrations. In addition to HCHO, the AJAX payload includes measurements of atmospheric ozone, methane, and carbon dioxide. Formaldehyde is one of the few urban pollutants that can be measured from space. Plans to compare in-situ COFFEE data with satellite-based HCHO observations such as those from OMI (Aura) and OMPS (SuomiNPP) will also be presented.

  9. Airborne hydrogen cyanide measurements using a chemical ionisation mass spectrometer for the plume identification of biomass burning forest fires

    Directory of Open Access Journals (Sweden)

    M. Le Breton

    2013-09-01

    Full Text Available A chemical ionisation mass spectrometer (CIMS was developed for measuring hydrogen cyanide (HCN from biomass burning events in Canada using I− reagent ions on board the FAAM BAe-146 research aircraft during the BORTAS campaign in 2011. The ionisation scheme enabled highly sensitive measurements at 1 Hz frequency through biomass burning plumes in the troposphere. A strong correlation between the HCN, carbon monoxide (CO and acetonitrile (CH3CN was observed, indicating the potential of HCN as a biomass burning (BB marker. A plume was defined as being 6 standard deviations above background for the flights. This method was compared with a number of alternative plume-defining techniques employing CO and CH3CN measurements. The 6-sigma technique produced the highest R2 values for correlations with CO. A normalised excess mixing ratio (NEMR of 3.68 ± 0.149 pptv ppbv−1 was calculated, which is within the range quoted in previous research (Hornbrook et al., 2011. The global tropospheric model STOCHEM-CRI incorporated both the observed ratio and extreme ratios derived from other studies to generate global emission totals of HCN via biomass burning. Using the ratio derived from this work, the emission total for HCN from BB was 0.92 Tg (N yr−1.

  10. Airborne hydrogen cyanide measurements using a chemical ionisation mass spectrometer for the plume identification of biomass burning forest fires

    Directory of Open Access Journals (Sweden)

    M. Le Breton

    2013-02-01

    Full Text Available A Chemical Ionisation Mass Spectrometer (CIMS was developed for measuring hydrogen cyanide (HCN from biomass burning events in Canada using I reagent ions on board the FAAM BAe-146 research aircraft during the BORTAS campaign in 2011. The ionisation scheme enabled highly sensitive measurements at 1 Hz frequency through biomass burning plumes in the troposphere.

    A strong correlation between the HCN, carbon monoxide (CO and acetonitrile (CH3CN was observed, indicating the potential of HCN as a biomass burning (BB marker. A plume was defined as being 6 standard deviations above background for the flights. This method was compared with a number of alternative plume defining techniques employing CO and CH3CN measurements. The 6 sigma technique produced the highest R2 values for correlations with CO. A Normalised Excess Mixing Ratio (NEMR of 3.76 ± 0.022 pptv ppbv−1 was calculated which is within the range quoted in previous research (Hornbrook et al., 2011. The global tropospheric model STOCHEM-CRI incorporated both the observed ratio and extreme ratios derived from other studies to generate global emission totals of HCN via biomass burning. Using the ratio derived from this work the emission total for HCN from BB was 0.92 Tg (N yr−1.

  11. Airborne geoid determination

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Bastos, L.

    2000-01-01

    Airborne geoid mapping techniques may provide the opportunity to improve the geoid over vast areas of the Earth, such as polar areas, tropical jungles and mountainous areas, and provide an accurate "seam-less" geoid model across most coastal regions. Determination of the geoid by airborne methods...

  12. Airborne Lidar Measurements of Below-canopy Surface Water Height , Slope and Optical Properties in the Florida Everglades Shark River Slough

    Science.gov (United States)

    Dabney, P.; Harding, D. J.; Valett, S. R.; Yu, A. W.; Feliciano, E. A.; Neuenschwander, A. L.; Pitts, K.

    2015-12-01

    Determining the presence, persistence, optical properties and variation in height and slope of surface water beneath the dense canopies of flooded forests and mangrove stands could contribute to studies of the acquisition of water and nutrients by plant roots. NASA's airborne Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) provides unique capabilities that can identify below-canopy surface water, measure its height with respect to vegetation constituents with sub-decimeter precision and quantify its slope. It also provides information on canopy structure and closure, the water column extinction profile as a proxy for turbidity and water depth, with the penetration depth constrained by turbidity. It achieves this by using four laser beams operating at two wavelengths with measurements of water surface elevation at 1064 nm (near infrared) and water column properties at 532 nm (green), analogous to a bathymetric lidar. Importantly the instrument adds a polarimetry function, like some atmospheric lidars, which measures the amount of depolarization determined by the degree to which the plane-parallel transmitted laser pulse energy is converted to the perpendicular state. The degree of depolarization is sensitive to the number of photon multiple-scattering events. For the water surface, which is specular consisting only of single-scattering events, the near-infrared received signal retains the parallel polarization state. Absence of the perpendicular signal uniquely identifies surface water. Penetration of green light and the depth profile of photons converted to the perpendicular state compared to those in the parallel state is a measure of water-column multiple scattering, providing a relative measure of turbidity. The amount of photons reflected from the canopy versus the water provides a wavelength-dependent measure of canopy closure. By rapidly firing laser pulses (11,400 pulses per second) with a narrow width (1 nsec) and detecting single photons

  13. NERO: General concept of a NEO radiometric observatory

    Science.gov (United States)

    Cellino, A.; Somma, R.; Tommasi, L.; Paolinetti, R.; Muinonen, K.; Virtanen, J.; Tedesco, E. F.

    NERO (Near-Earth Objects Radiometric Observatory) is one of the six studies for possible missions dedicated to near-Earth objects, that were funded by the ESA in 2002-2003. NERO is a further development of previous studies already submitted to ESA (Sysiphos,Spaceguard-1). The general concept is that a small satellite equipped with both a CCD for visible wavelengths and an array for thermal IR measurements around 10 microns would be an ideal platform for simultaneously obtaining two of the major objectives of current NEO science, namely the physical characterization of the objects and the discovery of NEOs which are difficult to detect because they have orbits entirely or partly interior to the Earth's orbit. The NERO study included a comprehensive analysis of the advantages and drawbacks of different orbital options for the satellite (including L2 of Earth and L2 of Venus) and a preliminary simulation of the effectiveness in deriving reliable orbits of the newly detected objects. The main results of this study, including also a preliminary design of the payload (optics, detectors, cooling system, etc.) are briefly summarized.

  14. Landsat-8 Operational Land Imager Radiometric Calibration and Stability

    Directory of Open Access Journals (Sweden)

    Brian Markham

    2014-12-01

    Full Text Available The Landsat-8 Operational Land Imager (OLI was radiometrically calibrated prior to launch in terms of spectral radiance, using an integrating sphere source traceable to National Institute of Standards and Technology (NIST standards of spectral irradiance. It was calibrated on-orbit in terms of reflectance using diffusers characterized prior to launch using NIST traceable standards. The radiance calibration was performed with an uncertainty of ~3%; the reflectance calibration to an uncertainty of ~2%. On-orbit, multiple calibration techniques indicate that the sensor has been stable to better than 0.3% to date, with the exception of the shortest wavelength band, which has degraded about 1.0%. A transfer to orbit experiment conducted using the OLI’s heliostat-illuminated diffuser suggests that some bands increased in sensitivity on transition to orbit by as much as 5%, with an uncertainty of ~2.5%. On-orbit comparisons to other instruments and vicarious calibration techniques show the radiance (without a transfer to orbit adjustment, and reflectance calibrations generally agree with other instruments and ground measurements to within the uncertainties. Calibration coefficients are provided with the data products to convert to either radiance or reflectance units.

  15. Deriving an atmospheric budget of total organic bromine using airborne in-situ measurements from the Western Pacific during SHIVA

    Science.gov (United States)

    Sala, S.; Bönisch, H.; Keber, T.; Oram, D. E.; Mills, G.; Engel, A.

    2014-02-01

    During the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) project an extensive dataset of all halogen species relevant for the atmospheric budget of total organic bromine has been collected in the West Pacific region using the FALCON aircraft operated by the German Aerospace agency DLR (Deutsches Zentrum für Luft- und Raumfahrt) covering a vertical range from the planetary boundary layer up to the ceiling altitude of the aircraft of 13 km. In total, more than 700 measurements were performed with the newly developed fully-automated in-situ instrument GHOST-MS (Gas cHromatograph for the Observation of Tracers - coupled with a Mass Spectrometer) by the Goethe University of Frankfurt (GUF) and with the onboard whole-air sampler WASP with subsequent ground based state-of-the-art GC/MS analysis by the University of East Anglia (UEA). Both instruments yield good agreement for all major (CHBr3 and CH2Br2) and minor (CHBrCl, CHBrCl2 and CHBr2Cl) VSLS (very short-lived substances), at least at the level of their 2 σ measurement uncertainties. In contrast to the suggestion that the Western Pacific could be a major source region for VSLS (Pyle et al., 2011), we found only slightly enhanced mixing ratios of brominated halogen source gases relative to the levels reported in Montzka et al. (2011) for other tropical regions. A budget for total organic bromine, including all four halons,CH3Br and the VSLS, is derived for the upper troposphere, the input region for the TTL and thus also for the stratosphere, compiled from the SHIVA dataset. With exception of the two minor VSLS CHBrCl2 and CHBr2Cl, excellent agreement with the values reported in Montzka et al. (2011) is found, while being slightly higher than previous studies from our group based on balloon-borne measurements.

  16. Physical and optical properties of 2010 Eyjafjallajökull volcanic eruption aerosol: ground-based, Lidar and airborne measurements in France

    Directory of Open Access Journals (Sweden)

    M. Hervo

    2012-02-01

    Full Text Available During the Eyjafjallajökull eruption (14 April to 24 May 2010, the volcanic aerosol cloud was observed across Europe by several airborne in situ and ground-based remote-sensing instruments. On 18 and 19 May, layers of depolarizing particles (i.e. non-spherical particles were detected in the free troposphere above the Puy de Dôme station, (PdD, France with a Rayleigh-Mie LIDAR emitting at a wavelength of 355 nm, with parallel and crossed polarization channels. These layers in the free troposphere (FT were also well captured by simulations with the Lagrangian particle dispersion model FLEXPART, which furthermore showed that the ash was eventually entrained into the planetary boundary layer (PBL. Indeed, the ash cloud was then detected and characterized with a comprehensive set of in situ instruments at the Puy de Dôme station (PdD. In agreement with the FLEXPART simulation, up to 65 μg m−3 of particle mass and 2.2 ppb of SO2 were measured at PdD, corresponding to concentrations higher than the 95 percentile of 2 yr of measurements at PdD. Moreover, the number concentration of particles increased to 24 000 cm−3, mainly in the submicronic mode, but a supermicronic mode was also detected with a modal diameter of 2 μm. The resulting optical properties of the ash aerosol were characterized by a low scattering Ångström exponent (0.98, showing the presence of supermicronic particles. For the first time to our knowledge, the combination of in situ optical and physical characterization of the volcanic ash allowed the calculation of the mass-to-extinction ratio (η with no assumptions on the aerosol density. The mass-to-extinction ratio was found to be significantly different from the background boundary layer aerosol (max: 1.57 g m−2 as opposed to 0.33 ± 0.03 g m−2. Using this ratio, ash mass concentration in the volcanic plume derived from LIDAR measurements was found to be 655 ± 23

  17. Impact of the cameras radiometric resolution on the accuracy of determining spectral reflectance coefficients

    Science.gov (United States)

    Orych, A.; Walczykowski, P.; Jenerowicz, A.; Zdunek, Z.

    2014-11-01

    Nowadays remote sensing plays a very important role in many different study fields, i.e. environmental studies, hydrology, mineralogy, ecosystem studies, etc. One of the key areas of remote sensing applications is water quality monitoring. Understanding and monitoring of the water quality parameters and detecting different water contaminants is an important issue in water management and protection of whole environment and especially the water ecosystem. There are many remote sensing methods to monitor water quality and detect water pollutants. One of the most widely used method for substance detection with remote sensing techniques is based on usage of spectral reflectance coefficients. They are usually acquired using discrete methods such as spectrometric measurements. These however can be very time consuming, therefore image-based methods are used more and more often. In order to work out the proper methodology of obtaining spectral reflectance coefficients from hyperspectral and multispectral images, it is necessary to verify the impact of cameras radiometric resolution on the accuracy of determination of them. This paper presents laboratory experiments that were conducted using two monochromatic XEVA video sensors (400-1700 nm spectral data registration) with two different radiometric resolutions (12 and 14 bits). In view of determining spectral characteristics from images, the research team used set of interferometric filters. All data collected with multispectral digital video cameras were compared with spectral reflectance coefficients obtained with spectroradiometer. The objective of this research is to find the impact of cameras radiometric resolution on reflectance values in chosen wavelength. The main topic of this study is the analysis of accuracy of spectral coefficients from sensors with different radiometric resolution. By comparing values collected from images acquired with XEVA sensors and with the curves obtained with spectroradiometer it

  18. Radiometric 81Kr dating identifies 120,000 year old ice at Taylor Glacier, Antarctica

    CERN Document Server

    Buizert, Christo; Jiang, Wei; Purtschert, Roland; Petrenko, Vasilii V; Lu, Zheng-Tian; Mueller, Peter; Kuhl, Tanner; Lee, James; Severinghaus, Jeffrey P; Brook, Edward J

    2014-01-01

    We present the first successful 81Kr-Kr radiometric dating of ancient polar ice. Krypton was extracted from the air bubbles in four ~350 kg polar ice samples from Taylor Glacier in the McMurdo Dry Valleys, Antarctica, and dated using Atom Trap Trace Analysis (ATTA). The 81Kr radiometric ages agree with independent age estimates obtained from stratigraphic dating techniques with a mean absolute age offset of 6 +/- 2.5 ka. Our experimental methods and sampling strategy are validated by 1) 85Kr and 39Ar analyses that show the samples to be free of modern air contamination, and 2) air content measurements that show the ice did not experience gas loss. We estimate the error in the 81Kr ages due to past geomagnetic variability to be below 3 ka. We show that ice from the previous interglacial period (MIS 5e, 130-115 ka before present) can be found in abundance near the surface of Taylor Glacier. Our study paves the way for reliable radiometric dating of ancient ice in blue ice areas and margin sites where large samp...

  19. Radiometric 81Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica.

    Science.gov (United States)

    Buizert, Christo; Baggenstos, Daniel; Jiang, Wei; Purtschert, Roland; Petrenko, Vasilii V; Lu, Zheng-Tian; Müller, Peter; Kuhl, Tanner; Lee, James; Severinghaus, Jeffrey P; Brook, Edward J

    2014-05-13

    We present successful (81)Kr-Kr radiometric dating of ancient polar ice. Krypton was extracted from the air bubbles in four ∼350-kg polar ice samples from Taylor Glacier in the McMurdo Dry Valleys, Antarctica, and dated using Atom Trap Trace Analysis (ATTA). The (81)Kr radiometric ages agree with independent age estimates obtained from stratigraphic dating techniques with a mean absolute age offset of 6 ± 2.5 ka. Our experimental methods and sampling strategy are validated by (i) (85)Kr and (39)Ar analyses that show the samples to be free of modern air contamination and (ii) air content measurements that show the ice did not experience gas loss. We estimate the error in the (81)Kr ages due to past geomagnetic variability to be below 3 ka. We show that ice from the previous interglacial period (Marine Isotope Stage 5e, 130-115 ka before present) can be found in abundance near the surface of Taylor Glacier. Our study paves the way for reliable radiometric dating of ancient ice in blue ice areas and margin sites where large samples are available, greatly enhancing their scientific value as archives of old ice and meteorites. At present, ATTA (81)Kr analysis requires a 40-80-kg ice sample; as sample requirements continue to decrease, (81)Kr dating of ice cores is a future possibility.

  20. Deriving an atmospheric budget of total organic bromine using airborne in situ measurements from the western Pacific area during SHIVA

    Science.gov (United States)

    Sala, S.; Bönisch, H.; Keber, T.; Oram, D. E.; Mills, G.; Engel, A.

    2014-07-01

    During the recent SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) project an extensive data set of all halogen species relevant for the atmospheric budget of total organic bromine was collected in the western Pacific region using the Falcon aircraft operated by the German Aerospace agency DLR (Deutsches Zentrum für Luft- und Raumfahrt) covering a vertical range from the planetary boundary layer up to the ceiling altitude of the aircraft of 13 km. In total, more than 700 measurements were performed with the newly developed fully automated in situ instrument GHOST-MS (Gas chromatograph for the Observation of Tracers - coupled with a Mass Spectrometer) by the Goethe University of Frankfurt (GUF) and with the onboard whole-air sampler WASP with subsequent ground-based state-of-the-art GC / MS analysis by the University of East Anglia (UEA). Both instruments yield good agreement for all major (CHBr3 and CH2Br2) and minor (CH2BrCl, CHBrCl2 and CHBr2Cl) VSLS (very short-lived substances), at least at the level of their 2σ measurement uncertainties. In contrast to the suggestion that the western Pacific could be a region of strongly increased atmospheric VSLS abundance (Pyle et al., 2011), we found only in the upper troposphere a slightly enhanced amount of total organic bromine from VSLS relative to the levels reported in Montzka and Reimann et al. (2011) for other tropical regions. From the SHIVA observations in the upper troposphere, a budget for total organic bromine, including four halons (H-1301, H-1211, H-1202, H-2402), CH3Br and the VSLS, is derived for the level of zero radiative heating (LZRH), the input region for the tropical tropopause layer (TTL) and thus also for the stratosphere. With the exception of the two minor VSLS CHBrCl2 and CHBr2Cl, excellent agreement with the values reported in Montzka and Reimann et al. (2011) is found, while being slightly higher than previous studies from our group based on balloon-borne measurements.

  1. Validation of high-resolution WRF-ARW model runs against airborne measurements over complex terrain in central Italy

    Science.gov (United States)

    Carotenuto, Federico; Gioli, Beniamino; Toscano, Piero; Gualtieri, Giovanni; Miglietta, Franco; Wohlfahrt, Georg

    2015-04-01

    An intensive aerial campaign was flown in the context of the CARBIUS project (Maselli et al., 2010) between July 2004 and December 2005. The flights covered, over more than 240 Km, a target area in central Italy (between the regions of Lazio and Tuscany) characterized by various land uses and topography, ranging from coastal zones to mountainous landscapes (Colline Metallifere, Tuscany). The aerial vector (Sky Arrow 650 ERA) was equipped for high frequency (50 Hz) measurements of the three components of mean wind and turbulence, as well as air temperature, CO2 and H2O concentrations. While the aim of the CARBIUS campaign was focused on GHG fluxes, the dataset is used in the present work as a benchmark to assess the capability of mesoscale models to correctly simulate transport fields. A first assessment has been done by comparing the dataset to a coupled WRF-NMM-CALMET system (Gioli et al., 2014), but the aim of the present work is to expand on those foundations by comparing the data to higher resolution WRF-ARW simulations. WRF-ARW outputs are, in fact, frequently used as inputs to multiple dispersion models and any misrepresentation of the "real" situation is therefore propagated through the modelling chain. Our aim is to assess these potential errors keeping into account different topographic situations and seasons thanks to the existent aerial dataset. Moreover the sensitivity of the WRF-ARW model to different initial and boundary conditions (ECMWF vs. CFSR) is explored, since also the initial forcing may influence the representation of the transport field. Results show that the model is generally capable of reproducing the main features of the mean wind field independently from the choice of the initial forcing. Terrain features still show an impact on the model outputs (especially on wind directions), moreover the performance of the model is also influenced by seasonal effects. Gioli B., Gualtieri G., Busillo C., Calastrini F., Gozzini B., Miglietta F. (2014

  2. LOAC (Light Optical Particle Counter): a new small aerosol counter with particle characterization capabilities for surface and airborne measurements

    Science.gov (United States)

    Renard, Jean-Baptiste; Berthet, Gwenael; Jégou, Fabrice; Jeannot, Matthieu; Jourdain, Line; Dulac, François; Mallet, Marc; Dupont, Jean-Charles; Thaury, Claire; Tonnelier, Thierry; Verdier, Nicolas; Charpentier, Patrick

    2013-04-01

    The determination of the size distribution of tropospheric and stratospheric aerosols with conventional optical counters is dif