WorldWideScience

Sample records for airborne particulates

  1. Airborne Particulate Threat Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  2. Airborne particulate discriminator

    Science.gov (United States)

    Creek, Kathryn Louise; Castro, Alonso; Gray, Perry Clayton

    2009-08-11

    A method and apparatus for rapid and accurate detection and discrimination of biological, radiological, and chemical particles in air. A suspect aerosol of the target particulates is treated with a taggant aerosol of ultrafine particulates. Coagulation of the taggant and target particles causes a change in fluorescent properties of the cloud, providing an indication of the presence of the target.

  3. Modelling airborne dispersion of coarse particulate material

    International Nuclear Information System (INIS)

    Methods of modelling the airborne dispersion and deposition of coarse particulates are presented, with the emphasis on the heavy particles identified as possible constituents of releases from damaged AGR fuel. The first part of this report establishes the physical characteristics of the irradiated particulate in airborne emissions from AGR stations. The second part is less specific and describes procedures for extending current dispersion/deposition models to incorporate a coarse particulate component: the adjustment to plume spread parameters, dispersion from elevated sources and dispersion in conjunction with building effects and plume rise. (author)

  4. Polarization signatures of airborne particulates

    Science.gov (United States)

    Raman, Prashant; Fuller, Kirk A.; Gregory, Don A.

    2013-07-01

    Exploratory research has been conducted with the aim of completely determining the polarization signatures of selected particulates as a function of wavelength. This may lead to a better understanding of the interaction between electromagnetic radiation and such materials, perhaps leading to the point detection of bio-aerosols present in the atmosphere. To this end, a polarimeter capable of measuring the complete Mueller matrix of highly scattering samples in transmission and reflection (with good spectral resolution from 300 to 1100 nm) has been developed. The polarization properties of Bacillus subtilis (surrogate for anthrax spore) are compared to ambient particulate matter species such as pollen, dust, and soot. Differentiating features in the polarization signatures of these samples have been identified, thus demonstrating the potential applicability of this technique for the detection of bio-aerosol in the ambient atmosphere.

  5. Analysis of the origin and composition of airborne particulate pollution

    International Nuclear Information System (INIS)

    Methods were developed for determination of airborne particulate pollution sources and origins from airborne particulate measurements, analyses of particulate constituents and routine meteorological measurements. The results obtained provide the basis for quantification of the long- and short-time impacts of these pollution sources on immission. The methods were tested in a densely populated urban area (West Berlin) and in a rural district (Waldhof, District of Uelzen) by collecting airborne particulates (fine and coarse particulates) at six measuring points by use of dichotomous collectors and high-volume collectors. The measurements were taken twice a day from November 1989 to November 1990. Analyses were made of the compounds and of the constituents Al, Fe, Si, Ca, Mg, K, Na, As, Cd, Cu, Ni, Sb, Se, V, Zn, Cl-, NO-3, SO2-4, NH+4, organic carbons (OC) and inorganic elementary (EC) carbons. (orig.). 104 refs., 66 tabs., 79 figs

  6. Evaluation of principal cannabinoids in airborne particulates

    Energy Technology Data Exchange (ETDEWEB)

    Balducci, C., E-mail: balducci@iia.cnr.it [Italian National Research Council, Institute for Atmospheric Pollution (CNR-IIA), Monterotondo Stazione (Italy); Nervegna, G.; Cecinato, A. [Italian National Research Council, Institute for Atmospheric Pollution (CNR-IIA), Monterotondo Stazione (Italy)

    2009-05-08

    The determination of delta(9)-tetrahydrocannabinol ({Delta}{sup 9}-THC), cannabidiol (CND) and cannabinol (CNB), primary active components in cannabis preparation, was carried out on airborne particulates by applying a specific procedure consisting of soot extraction by ultrasonic bath, purification by solvent partitioning, derivatization with N-(t-butyldimethylsilyl)-N-methyl-trifluoroacetamide, and separation/detection through gas chromatography coupled with tandem mass spectrometry. The optimized procedure was found suitable for measuring the three psychotropic substances at concentrations ranging from ca. 0.001 to ca. 5.0 ng cm{sup -3} of air, with recoveries always higher than 82%, accuracy >7.3% and precision >90%. Application of the procedure performed on field in Rome and Bari, Italy, demonstrated that all three compounds contaminate the air in Italian cities whereas in Algiers, Algeria, only cannabinol, the most stable in the atmosphere, exceeded the limit of quantification of the method. The relative percentages of the three cannabinoids in general reproduced those typical of the Cannabis sativa plant and were very different from those found in human blood, urine and sweat.

  7. Health Effects of Airborne Particulate Matter Trace Elements

    Institute of Scientific and Technical Information of China (English)

    XIANG GAO; QI YU; LI-MIN CHEN

    2005-01-01

    The effects of airborne particulate matter (PM) trace elements on health are widely concerned nowadays. Many achievements have been made while many unknowns exist. This article reports the recent research progresses, describes the effects of exposure to PM trace elements on health epidemiological evidence, toxicology findings, and raises some questions for future studies.

  8. Small-angle light scattering by airborne particulates: Environnement S.A. continuous particulate monitor

    Science.gov (United States)

    Renard, Jean-Baptiste; Thaury, Claire; Mineau, Jean-Luc; Gaubicher, Bertrand

    2010-08-01

    Airborne particulate matter may have an effect on human health. It is therefore necessary to determine and control in real time the evolution of the concentration and mass of particulates in the ambient air. These parameters can be obtained using optical methods. We propose here a new instrument, 'CPM' (continuous particulate monitor), for the measurement of light scattered by ambient particulates at small angles. This geometry allows simultaneous and separate detections of PM10, PM2.5 and PM1 fractions of airborne particulate matter, with no influence of their chemical nature and without using theoretical calculations. The ambient air is collected through a standard sampling head (PM10 inlet according to EN 12341, PM2.5 inlet according to EN 14907; or PM1, TSP inlets, standard US EPA inlets). The analysis of the first measurements demonstrates that this new instrument can detect, for each of the seven defined size ranges, real-time variations of particulate content in the ambient air. The measured concentrations (expressed in number per liter) can be converted into total mass concentrations (expressed in micrograms per cubic meter) of all fractions of airborne particulate matters sampled by the system. Periodic comparison with a beta-attenuation mass monitor (MP101M Beta Gauge Analyzer from Environnement S.A. company) allows the calculation of a calibration factor as a function of the mean particulate density that is used for this conversion. It is then possible to provide real-time relative variations of aerosol mass concentration.

  9. Small-angle light scattering by airborne particulates: Environnement S.A. continuous particulate monitor

    International Nuclear Information System (INIS)

    Airborne particulate matter may have an effect on human health. It is therefore necessary to determine and control in real time the evolution of the concentration and mass of particulates in the ambient air. These parameters can be obtained using optical methods. We propose here a new instrument, 'CPM' (continuous particulate monitor), for the measurement of light scattered by ambient particulates at small angles. This geometry allows simultaneous and separate detections of PM10, PM2.5 and PM1 fractions of airborne particulate matter, with no influence of their chemical nature and without using theoretical calculations. The ambient air is collected through a standard sampling head (PM10 inlet according to EN 12341, PM2.5 inlet according to EN 14907; or PM1, TSP inlets, standard US EPA inlets). The analysis of the first measurements demonstrates that this new instrument can detect, for each of the seven defined size ranges, real-time variations of particulate content in the ambient air. The measured concentrations (expressed in number per liter) can be converted into total mass concentrations (expressed in micrograms per cubic meter) of all fractions of airborne particulate matters sampled by the system. Periodic comparison with a beta-attenuation mass monitor (MP101M Beta Gauge Analyzer from Environnement S.A. company) allows the calculation of a calibration factor as a function of the mean particulate density that is used for this conversion. It is then possible to provide real-time relative variations of aerosol mass concentration

  10. Dispersion model for airborne particulates inside a building

    International Nuclear Information System (INIS)

    An empirical model has been developed for the spread of airborne radioactive particles after they are released inside a building. The model has been useful in performing safety analyses of actinide materials facilities at the Savannah River Plant (SRP). These facilities employ the multiple-air-zone concept; that is, ventilation air flows from rooms or areas of least radioactive material hazard, through zones of increasing hazard, to a treatment system. A composite of the data for dispersion of airborne activity during 12 actual case incidents at SRP forms the basis for this model. These incidents occurred during approximately 90 plant-years of experience at SRP with the chemical and metallurgical processing of purified neptunium and plutonium after their recovery from irradiated uranium. The model gives ratios of the airborne activity concentrations in rooms and corridors near the site of the release. The multiple-air-zone concept has been applied to many designs of nuclear facilities as a safety feature to limit the spread of airborne activity from a release. The model illustrates the limitations of this concept: it predicts an apparently anomalous behavior of airborne particulates; namely, a small migration against the flow of the ventilation air

  11. Source apportionment of airborne particulates through receptor modeling: Indian scenario

    Science.gov (United States)

    Banerjee, Tirthankar; Murari, Vishnu; Kumar, Manish; Raju, M. P.

    2015-10-01

    Airborne particulate chemistry mostly governed by associated sources and apportionment of specific sources is extremely essential to delineate explicit control strategies. The present submission initially deals with the publications (1980s-2010s) of Indian origin which report regional heterogeneities of particulate concentrations with reference to associated species. Such meta-analyses clearly indicate the presence of reservoir of both primary and secondary aerosols in different geographical regions. Further, identification of specific signatory molecules for individual source category was also evaluated in terms of their scientific merit and repeatability. Source signatures mostly resemble international profile while, in selected cases lack appropriateness. In India, source apportionment (SA) of airborne particulates was initiated way back in 1985 through factor analysis, however, principal component analysis (PCA) shares a major proportion of applications (34%) followed by enrichment factor (EF, 27%), chemical mass balance (CMB, 15%) and positive matrix factorization (PMF, 9%). Mainstream SA analyses identify earth crust and road dust resuspensions (traced by Al, Ca, Fe, Na and Mg) as a principal source (6-73%) followed by vehicular emissions (traced by Fe, Cu, Pb, Cr, Ni, Mn, Ba and Zn; 5-65%), industrial emissions (traced by Co, Cr, Zn, V, Ni, Mn, Cd; 0-60%), fuel combustion (traced by K, NH4+, SO4-, As, Te, S, Mn; 4-42%), marine aerosols (traced by Na, Mg, K; 0-15%) and biomass/refuse burning (traced by Cd, V, K, Cr, As, TC, Na, K, NH4+, NO3-, OC; 1-42%). In most of the cases, temporal variations of individual source contribution for a specific geographic region exhibit radical heterogeneity possibly due to unscientific orientation of individual tracers for specific source and well exaggerated by methodological weakness, inappropriate sample size, implications of secondary aerosols and inadequate emission inventories. Conclusively, a number of challenging

  12. Approach to predict partitioning of organic compounds from air into airborne particulate

    Institute of Scientific and Technical Information of China (English)

    SUN Cong; FENG Liu

    2005-01-01

    Based on the theoretical linear solvation energy relationship and quantum chemical descriptors computed by AM1 Hamiltonian, a new approach was developed to predict the partitioning of some organic compounds between the airborne particulate and air. It could be successfully used to study the partitioning of organic compounds from air into airborne particulate, and evaluate the potential risk of organic compounds.

  13. ASSESSMENT OF BAGGING OPERATORS EXPOSURE TO WITH PVC AIRBORNE PARTICULATES

    Directory of Open Access Journals (Sweden)

    H. Asilian, M. Nasseri Nejad, S. B. Mortazavi, M. J. Jafari, A. Khavanin, A. R. Dehdashti

    2008-07-01

    Full Text Available Dust consists of tiny solid particles carried by air currents. These particles are formed by many different processes. One of these processes is polymerization of inert plastic such as Polyvinyl Chloride production plant. According to the Occupational Health and Safety Assessment Series requirements, section 4.4.6, occupational health and safety risks must be defined and controlled where needed. This field study was conducted to evaluate the occupational exposure of packaging operators to airborne polyvinyl chloride dust in order to health risk assessment and recommend feasible controlling methods. The mass concentration of polyvinyl chloride particulate was measured in two fractions according to the particle size that expressed as total and respirable particulates. The Air Sampling Methods, Methods for the Determination of Hazardous Substances 14/3, of Health and Safety Executive were used as a standard sampling protocol. The average mass concentrations for respirable and total particulates were measured 3.54±0.3 mg/m3 and 11.89±0.8 mg/m3 respectively. Also health risks of studied condition were estimated as significant level, category one, therefore the risk must be reduced below the standard level. According to the work requirements to reduce the emission rate and mitigate the health risk exposure, a local exhaust ventilation system design was recommended for bag-filters of hopper tank.

  14. Health effects of particulate air pollution and airborne desert dust

    Science.gov (United States)

    Lelieveld, J.; Pozzer, A.; Giannadaki, D.; Fnais, M.

    2013-12-01

    Air pollution by fine particulate matter (PM2.5) has increased strongly with industrialization and urbanization. In the past decades this increase has taken place at a particularly high pace in South and East Asia. We estimate the premature mortality and the years of human life lost (YLL) caused by anthropogenic PM2.5 and airborne desert dust (DU2.5) on regional and national scales (Giannadaki et al., 2013; Lelieveld et al., 2013). This is based on high-resolution global model calculations that resolve urban and industrial regions in relatively great detail. We apply an epidemiological health impact function and find that especially in large countries with extensive suburban and rural populations, air pollution-induced mortality rates have been underestimated given that previous studies largely focused on the urban environment. We calculate a global premature mortality by anthropogenic aerosols of 2.2 million/year (YLL ≈ 16 million/year) due to lung cancer and cardiopulmonary disease. High mortality rates by PM2.5 are found in China, India, Bangladesh, Pakistan and Indonesia. Desert dust DU2.5 aerosols add about 0.4 million/year (YLL ≈ 3.6 million/year). Particularly significant mortality rates by DU2.5 occur in Pakistan, China and India. The estimated global mean per capita mortality caused by airborne particulates is about 0.1%/year (about two thirds of that caused by tobacco smoking). We show that the highest premature mortality rates are found in the Southeast Asia and Western Pacific regions (about 25% and 46% of the global rate, respectively) where more than a dozen of the most highly polluted megacities are located. References: Giannadaki, D., A. Pozzer, and J. Lelieveld, Modeled global effects of airborne desert dust on air quality and premature mortality, Atmos. Chem. Phys. Discuss. (submitted), 2013. Lelieveld, J., C. Barlas, D. Giannadaki, and A. Pozzer, Model calculated global, regional and megacity premature mortality due to air pollution by ozone

  15. Transport of airborne particulate matters originating from Mentougou, Beijing, China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this study, a coupled regional air quality modeling system is applied to investigate the time spatial variations in airborne particulate matters (PM10), originating from Mentougou to Beijing municipal area in the period of April 1-7, 2004, and the influences of complex terrain and meteorological conditions upon boundary layer structure and PMio concentration distributions. An intercomparison of the performance with CALPUFF against the observed data is presented and an examination of scatter plots is provided. The statistics show that the correlation coefficient and STD between the modeled and observed data are 0.86 and 0.03, respectively. Analysis of model results illustrates that the pollutants emitted from Mentougou can be transported to Beijing municipal area along certain transport pathways, and PMio concentration distributions show heterogeneity characteristics. Contributions of the Mentougou sources to the PMio concentrations in Beijing municipal area are up to 0.1-15 μg/m3.

  16. Airborne particulate soiling of terrestrial photovoltaic modules and cover materials

    Science.gov (United States)

    Hoffman, A. R.; Maag, C. R.

    1980-01-01

    Results are presented for the first phase of a photovoltaic-module soiling study that was carried out with NASA participation to investigate the problem of the electrical performance degradation of flat-plate photovoltaic modules exposed at outdoor sites that is due to the accumulation of airborne particulates on sensitive optical surfaces. The results were obtained in both field and laboratory soiling experiments, as well as in materials field experiments using candidate encapsulants and top covers. It is concluded that: (1) the electrical performance degradation shows a significant time and site dependence, ranging from 2% to 60% power loss; (2) the rate of particulate accumulation appears to be largely material independent when natural removal processes do not dominate; (3) the effectiveness of natural removal processes, especially rain, is strongly material dependent; (4) top-cover materials of glass and plexiglass retain fewer particles than silicone rubber; and (5) high module voltages relative to ground do not appear to affect the rate of dirt accumulation on modules.

  17. Trace elements in airborne particulates in South Africa

    International Nuclear Information System (INIS)

    Airborne particulate materials were monitored continously with calendar month sampling periods at 5 rural/background, 4 rural/developing/peri-urban, 6 urban and 7 industrial sites in South Africa. Concentrations of Al, Br, Ca, Cs, Cd, Cl, Co, Cr, Cu, Eu, Fe, K, Mg, Mn, Na, Ni, Pb, Rb, S, Sb, Sc, Se, Ti, V and Zn were determined with neutron activation analysis (NAA), atomic absorption spectroscopy (AAS) and particle-induced X-ray emission spectroscopy (PIXE) employed on a complementary basis. A review of sources of airborne trace elements is given. The monitoring program, sampling, sample-handling procedures, as well as the analytical methods used, are discussed in detail. The results of related studies, i.e. effects of filter materials; sampling rates and geometry; determinations of collection efficiencies; particle size ranges; effects of internal flux monitors on the precision and accuracy of NAA; trace impurities in blank materials; quality control by routine analysis of reference materials; comparison of results obtained by NAA, AAS, and PIXE analysis; are given, as is a review of air-pollution control and research policy in South Africa and of ambient air quality standards. Results are discussed in terms of general patterns in trace-element concentrations and enrichments, the general pattern in population centres, the variability of monthly concentrations, and in terms of long-term trends at background, rural, developing, peri-urban, urban and industrial sites. Cases of concern in respect of increasing concentrations are pointed out, as are the constantly high Pb levels at urban sites

  18. Mutagenicity of airborne particulates in the rubber industry.

    Science.gov (United States)

    Barański, B; Indulski, J; Janik-Spiechowicz, E; Palus, J

    1989-12-01

    The aim of this work was to evaluate the mutagenic activity of airborne particulate matter in the rubber industry. Air was sucked through Whatman glass-fibre filters with Staplex pumps and adsorbed substances and fume particles were extracted with acetone or toluene for 2 h in a ultrasonic cleaner. After separation of the insoluble solid phase by filtration, solvent was evaporated at a temperature of 70 degrees C in an argon atmosphere. The residue was stored at -20 degrees C. Mutagenicity was determined by the Salmonella plate incorporation assay with the tester strain TA98 and activity is related either to the weight of aerosol (rev mg-1) or to the volume of atmospheric sample (rev m-3). The fumes emitted from the tyre tread line, calender feeding, and tyre vulcanizing processes, showed the highest mutagenic activity (55-211 rev mg-1, + S9). At these and at other workplaces (extruder mill, carbon black station, mixer loading), mutagenic activity related to the volume of air was in the range of 22-158 rev m-3, + S9. The results indicate the need to reduce and monitor mutagenic contamination in order to increase the safety of work in the rubber industry. PMID:2693511

  19. Skin Damage Mechanisms Related to Airborne Particulate Matter Exposure.

    Science.gov (United States)

    Magnani, Natalia D; Muresan, Ximena M; Belmonte, Giuseppe; Cervellati, Franco; Sticozzi, Claudia; Pecorelli, Alessandra; Miracco, Clelia; Marchini, Timoteo; Evelson, Pablo; Valacchi, Giuseppe

    2016-01-01

    Epidemiological studies suggest a correlation between increased airborne particulate matter (PM) and adverse health effects. The mechanisms of PM-health effects are believed to involve oxidative stress and inflammation. To evaluate the ability of PM promoting skin tissue damage, one of the main organs exposed to outdoor pollutants, we analyzed the effect of concentrated ambient particles (CAPs) in a reconstructed human epidermis (RHE) model. RHE tissues were exposed to 25 or 100 µg/ml CAPs for 24 or 48 h. Data showed that RHE seems to be more susceptible to CAPs-induced toxicity after 48 h exposure than after 24 h. We found a local reactive O(2) species (ROS) production increase generated from metals present on the particle, which contributes to lipids oxidation. Furthermore, as a consequence of altered redox status, NFkB nucleus translocation was increase upon CAPs exposure, as well as cyclooxygenase 2 and cytochrome P450 levels, which may be involved in the inflammatory response initiated by PM. CAPs also triggered an apoptotic process in skin. Surprisingly, by transition electron microscopy analysis we showed that CAPs were able to penetrate skin tissues. These findings contribute to the understanding of the cutaneous pathophysiological mechanisms initiated by CAPs exposure, where oxidative stress and inflammation may play predominant roles. PMID:26507108

  20. Magnetic Approaches to Measuring and Mitigating Airborne Particulate Pollution

    Science.gov (United States)

    Maher, B.

    2014-12-01

    Human exposure to airborne particulate matter (PM) generates adverse human health impacts at all life stages from the embryonic to the terminal, including damage to respiratory and cardiovascular health, and neurodevelopment and cognitive function. Detailed understanding of the causal links between PM exposure and specific health impacts, and possible means to reduce PM exposure require knowledge of PM concentrations, compositions and sources at the fine-scale; i.e. beyond the current resolution of spatially-sparse conventional PM monitoring, non-unique elemental analyses, or poorly-validated PM modelling. Magnetically-ordered iron oxide minerals appear to be a ubiquitous component of urban PM. These minerals derive partly from the presence of iron impurities in fuels, which form, upon combustion, a non-volatile residue, often dominated by magnetite, within glassy, spherical condensates. Iron-rich, magnetic PM also arises from abrasion from vehicle components, including disk brakes, and road dust. The ubiquity and diversity of these magnetic PM phases, and the speed and sensitivity of magnetic analyses (down to trace concentrations), makes possible rapid, cost-effective magnetic characterization and quantification of PM, a field of study which has developed rapidly across the globe over the last 2 decades. Magnetic studies of actively-sampled PM, on filters, and passively-sampled PM, on tree leaves and other depositional surfaces, can be used to: monitor and map at high spatial resolution ambient PM concentrations; address the controversial issue of the efficacy of PM capture by vegetation; and add a new, discriminatory dimension to PM source apportionment.

  1. Toxicity to chicken embryos of organic extracts from airborne particulates separated into five sizes

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, H.

    1988-07-01

    The chicken embryo assay has been used for research on the toxicity of complex extracts derived from different environmental sources, as well as of individual compounds. However, only a few studies have been made on the toxicological effects of extracts derived from airborne particulate matter in chicken embryo. These studies showed that the toxic effect was due to the polycyclic aromatic hydrocarbons (PAHs) in the particles, although their structure and quantity were the factors determining the extent of the toxicity. Airborne particulate matter is composed of particles of different sizes, which can be separated into five classes according to their size by an Andersen high-volume sampler. Each class contained many kinds of compounds such as PAHs. In this study, airborne particulate matter was extracted according to particle size, the extracts analyzed for PAHs, and tested for embryotoxicity.

  2. Development of analytical methods for polycyclic aromatic hydrocarbons (PAHs) in airborne particulates:A review

    Institute of Scientific and Technical Information of China (English)

    LIU Li-bin; LIU Yan; LIN Jin-ming; TANG Ning; HAYAKAWA Kazuichi; MAEDA Tsuneaki

    2007-01-01

    In the present work,the different sample collection, pretreatment and analytical methods for polycyclic aromatic hydrocarbons (PAHs) in airborne particulates is systematacially reviewed, and the applications of these pretreatment and analytical methods for PAHs are compared in detail. Some comments on the future expectation are also presented.

  3. Application of 2D-GCMS reveals many industrial chemicals in airborne particulate matter

    Science.gov (United States)

    Alam, Mohammed S.; West, Charles E.; Scarlett, Alan G.; Rowland, Steven J.; Harrison, Roy M.

    2013-02-01

    Samples of airborne particulate matter (PM2.5) have been collected in Birmingham, UK and extracted with dichloromethane prior to analysis by two-dimensional GC separation and TOFMS analysis. Identification of compounds using the NIST spectral library has revealed a remarkable diversity of compounds, some of which have not been previously reported in airborne analyses. Groups of compounds identified in this study include a large number of oxygenated VOC including linear and branched compounds, substituted aromatic compounds and alicyclic compounds, oxygenated polycyclic aromatic and alicyclic compounds, organic nitrogen compounds, branched chain VOC and substituted aromatic VOC, phthalates, organo-phosphates and organo-sulphate compounds. Many of the compounds identified are mass production chemicals, which due to their semi-volatility enter the atmosphere and subsequently partition onto pre-existing aerosol. Their contribution to the toxicity of airborne particulate matter is currently unknown but might be significant. The diverse industrial uses and potential sources of the identified compounds are reported.

  4. Ecological effect of airborne particulate matter on plants

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Prajapati

    2012-03-01

    Full Text Available Atmospheric particulate matter is a mixture of diverse elements. Deposition of particulate matter to vegetated surfaces depends on the size distribution of these particles and, to a lesser extent, on the chemistry. Effects of particulate matter on vegetation may be associated with the reduction in light required for photosynthesis and an increase in leaf temperature due to changed surface optical properties. Changes in energy exchange are more important than the diffusion of gases into and out of leaves which is influenced by dust load, color and particle size. Alkaline dust materials may cause leaf surface injury while other materials may be taken up across the cuticle. A more probable route for metabolic uptake and impact on vegetation and ecosystems is through the rhizosphere. Interception of dusts by vegetation makes an important contribution to the improvement of air quality in the vicinity of vegetation. Although the effect of particulate matter on ecosystem is linked to climate change, there is little threat due to un-speciated particulate matter on a regional scale.

  5. Assessment of inhalation dose sensitivity by physicochemical properties of airborne particulates containing naturally occurring radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Si Young; Choi, Cheol Kyu; Kim, Yong Geon; Choi, Won Chul; Kim, Kwang Pyo [Kyung Hee University, Seoul (Korea, Republic of)

    2015-12-15

    Facilities processing raw materials containing naturally occurring radioactive materials (NORM) may give rise to enhanced radiation dose to workers due to chronic inhalation of airborne particulates. Internal radiation dose due to particulate inhalation varies depending on particulate properties, including size, shape, density, and absorption type. The objective of the present study was to assess inhalation dose sensitivity to physicochemical properties of airborne particulates. Committed effective doses to workers resulting from inhalation of airborne particulates were calculated based on International Commission on Radiological Protection 66 human respiratory tract model. Inhalation dose generally increased with decreasing particulate size. Committed effective doses due to inhalation of 0.01μm sized particulates were higher than doses due to 100μm sized particulates by factors of about 100 and 50 for {sup 238}U and {sup 230}Th, respectively. Inhalation dose increased with decreasing shape factor. Shape factors of 1 and 2 resulted in dose difference by about 18 %. Inhalation dose increased with particulate mass density. Particulate mass densities of 11 g·cm{sup -3} and 0.7 g·cm{sup -3} resulted in dose difference by about 60 %. For {sup 238}U, inhalation doses were higher for absorption type of S, M, and F in that sequence. Committed effective dose for absorption type S of {sup 238}U was about 9 times higher than dose for absorption F. For {sup 230}Th, inhalation doses were higher for absorption type of F, M, and S in that sequence. Committed effective dose for absorption type F of {sup 230}Th was about 16 times higher than dose for absorption S. Consequently, use of default values for particulate properties without consideration of site specific physiochemical properties may potentially skew radiation dose estimates to unrealistic values up to 1-2 orders of magnitude. For this reason, it is highly recommended to consider site specific working materials and

  6. Mineralogical characterization of airborne individual particulates in Beijing PM10

    Institute of Scientific and Technical Information of China (English)

    LU Sen-lin; SHAO Long-yi; WU Ming-hong; JIAO Zheng

    2006-01-01

    This work mainly focuses on the mineralogical study of particulate matter(PM10) in Beijing. Samples were collected on polycarbonate filter from April, 2002 to March, 2003 in Beijing urban area. Scanning electronic microscopy coupled with energy dispersive X-ray(SEM/EDX) was used to investigate individual mineral particles in Beijing PM10. 1454 individual mineral particulates from 48 samples were analysed by SEM/EDX. The results revealed that mineral particulates were complex and heterogeneous. 38kinds of minerals in PM10 were identified. The clay minerals, of annual average percentage of 30.1% , were the main composition among the identified minerals, and illite/smectite was the main composition in clay minerals, reaching up to 35%. Annual average percentage of quartz, calcite, compound particulates, carbonates were 13.5%, 10.9%, 11.95%, 10.31%, respectively. Annual average percentage less than 10% were gypsum, feldspar, dolomite, and so on. Fluorite, apatite, halite, barite and chloridize zinc (ZnCl2) were firstly identified in Beijing PM10. Sulfurization was found on surface of mineral particles, suggested extensive atmospheric reaction in air during summer.

  7. Real-world exposure of airborne particulate matter triggers oxidative stress in an animal model

    OpenAIRE

    Wan, Guohui; Rajagopalan, Sanjay; Sun, Qinghua; Zhang, Kezhong

    2010-01-01

    Epidemiological studies have shown a strong link between air pollution and the increase of cardio-pulmonary mortality and morbidity. In particular, inhaled airborne particulate matter (PM) exposure is closely associated with the pathogenesis of air pollution-induced systemic diseases. In this study, we exposed C57BIV6 mice to environmentally relevant PM in fine and ultra fine ranges (diameter < 2.5 μm, PM2.5) using a “real-world” airborne PM exposure system. We investigated the pathophysiolog...

  8. Elemental Composition In Airborne Particulate Sample Of Bandung and Lembang Region In 1999

    International Nuclear Information System (INIS)

    Concentration of airborne particulate of Bandung higher than that of Lembang. The PM2.5 fraction was in the range of 4,3 μg/m3 to 21,1 μg/m3 for Bandung area, and 2,9 μg/m3 to 19,2 μg/m3 for Lembang area for 24 hours sampling time. The PM10 fraction of Bandung area was in the range of 12,1 μg/m3 to 44, 1 μg/m3, where a s the PM10 fraction of Lembang area was in the range of 5,2 μg/m3 to 30,6 μg/m3. The data much lower than that of National ambient air quality standard for 24 hours, 65 μg/m3 and 150 μg/m3 for PM2.5 fraction and PM10 fraction respectively. No clear correlation either concentration of fine or coarse particulate to rainfall. For teen elements, which were Al, Br, Ca, Ce, CI, Cr, Fe, I, Mn, Na, Sb, Sc, V and Zn, were detected. The elements of Br, Ce, CI, Cr, I, Sb and Zn were enriched in fine and coarse of Bandung and Lembang samples, where as AI, Ca, Mn, Na and V were not enriched. The special element of Fe was enriched in fine particulate of Lembang, where as in particulate of Bandung was not enriched. Analysis of coarse particulate samples indicated the similar results to fine particulate except for Ce. The results of analysis explained that pollutant source of Bandung and Lembang were the same. Some elements such as Br, CI and I possibly come from organic material burning; Br and CI could be from motor vehicle; Cr, and Zn could be from paint factory; Zn and Sb could be from refuse incineration; while Ce could be from electronic factory. The calculation results indicated that enrichment factor of elements in fine particulate higher than that of coarse particulate. Furthermore the enrichment factor of element in airborne particulate of Bandung area was higher than that of airborne particulate of Lembang

  9. Collaborative monitoring study of airborne particulate matters among seven Asian countries

    International Nuclear Information System (INIS)

    Seven Asian countries have been collaborating in collecting airborne particulate matter (APM) in their individual countries and analyzing them by neutron activation analysis as a common analytical tool. APM samples were collected into two fractions of fine and coarse grains (PM2 and PM2- 10, respectively). Analytical data were compared from several viewpoints such as particulate sizes, locality of sampling sites (either urban or rural) and geographical location of participating countries. Chemical composition and their monthly variations as well as mass concentrations appear to be highly characteristic for individual sampling sites, suggesting that NAA data are suitable for evaluating the air quality in each site. (author)

  10. Fe, Ni and Zn speciation, in airborne particulate matter

    Science.gov (United States)

    Thiodjio Sendja, Bridinette; Aquilanti, Giuliana; Vassura, Ivano; Giorgetti, Marco

    2016-05-01

    The study of elemental speciation in atmospheric particulate matter is important for the assessment of the source of the particle as well for the evaluation of its toxicity. XANES data at Fe, Ni, and Zn K-edges are recorded on a sample of urban dust (from the Rimini area of Emilia Romagna region, Italy) deposited on a filter and on the NIST standard reference material 1648. Using linear combination fitting we give an indication of the chemical species of the three metals present in the samples.

  11. PM 2.5 Airborne Particulates Near Frac Sand Operations.

    Science.gov (United States)

    Walters, Kristin; Jacobson, Jeron; Kroening, Zachary; Pierce, Crispin

    2015-11-01

    The rapid growth of hydraulic fracturing for oil and gas extraction in the U.S. has led to 135 active "frac" sand mines, processing plants, and rail transfer stations in Wisconsin. Potential environmental health risks include increased truck traffic, noise, ecosystem loss, and groundwater, light, and air pollution. Emitted air contaminants include fine particulate matter (PM2.5) and respirable crystalline silica. Inhalation of fine dust particles causes increased mortality, cardiovascular disease, lung disease, and lung cancer. In the authors' pilot study, use of a filter-based ambient particulate monitor found PM2.5 levels of 5.82-50.8 µg/m3 in six 24-hour samples around frac sand mines and processing sites. Enforcement of the existing U.S. Environmental Protection Agency annual PM2.5 standard of 12 µg/m3 is likely to protect the public from silica exposure risks as well. PM2.5 monitoring around frac sand sites is needed to ensure regulatory compliance, inform nearby communities, and protect public health.

  12. PM 2.5 Airborne Particulates Near Frac Sand Operations.

    Science.gov (United States)

    Walters, Kristin; Jacobson, Jeron; Kroening, Zachary; Pierce, Crispin

    2015-11-01

    The rapid growth of hydraulic fracturing for oil and gas extraction in the U.S. has led to 135 active "frac" sand mines, processing plants, and rail transfer stations in Wisconsin. Potential environmental health risks include increased truck traffic, noise, ecosystem loss, and groundwater, light, and air pollution. Emitted air contaminants include fine particulate matter (PM2.5) and respirable crystalline silica. Inhalation of fine dust particles causes increased mortality, cardiovascular disease, lung disease, and lung cancer. In the authors' pilot study, use of a filter-based ambient particulate monitor found PM2.5 levels of 5.82-50.8 µg/m3 in six 24-hour samples around frac sand mines and processing sites. Enforcement of the existing U.S. Environmental Protection Agency annual PM2.5 standard of 12 µg/m3 is likely to protect the public from silica exposure risks as well. PM2.5 monitoring around frac sand sites is needed to ensure regulatory compliance, inform nearby communities, and protect public health. PMID:26638669

  13. Sampling and analytical methodologies for energy dispersive X-ray fluorescence analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    The present document represents an attempt to summarize the most important features of the different forms of ED-XFR as applied to the analysis of airborne particulate matter. It is intended to serve as a set of guidelines for use by participants in the IAEA's own programmes, and other scientists, who are not yet fully experienced in the application of ED-XRF to airborne particulate samples, and who wish either to make a start on using this technique or to improve their existing procedures. The methodologies for sampling described in this document are of rather general applicability. Emphasis is also placed on the sources of errors affecting the sampling of airborne particulate matter. The analytical part of the document describes the different forms of ED-XRF and their potential applications. Spectrum evaluation, a key step in X-ray spectrometry, is covered in depth, including discussion on several calibration and peak fitting techniques and computer programs especially designed for this purpose. 148 refs, 25 figs, 13 tabs

  14. Qualitative and quantitative determination of water in airborne particulate matter

    Directory of Open Access Journals (Sweden)

    S. Canepari

    2012-10-01

    Full Text Available This paper describes the optimization and validation of a new simple method for the quantitative determination of water in atmospheric particulate matter (PM. The analyses are performed by using a coulometric Karl-Fisher system equipped with a controlled heating device; different water contributions are separated by the application of an optimized thermal ramp (three heating steps: 50–120 °C, 120–180 °C, 180–250 °C.

    The analytical performance of the method was verified by using standard materials containing 5.55% and 1% by weight of water. The recovery was greater than 95%; the detection limit was about 20 μg. The method was then applied to NIST reference materials (NIST1649a, urban particulate matter and to real PM10 samples collected in different geographical areas. In all cases the repeatability was satisfactory (10–15%.

    When analyzing the reference material, the separation of four different types of water was obtained. In real PM10 samples the amount of water and its thermal profile differed as a function of the chemical composition of the dust. Mass percentages of 3–4% of water were obtained in most samples, but values up to about 15% were reached in areas where the chemical composition of PM is dominated by secondary inorganic ions and organic matter. High percentages of water were also observed in areas where PM is characterized by the presence of desert dust.

    A possible identification of the quality of water released from the samples was tried by applying the method to some hygroscopic compounds that are likely contained in PM (pure SiO2, Al2O3, ammonium salts, carbohydrates and dicarboxylic acids and by comparing the results with those obtained from field samples.

  15. Collection of airborne particulate matter for a subsequent analysis by total reflection X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Klockenkaemper, R.; Bayer, H.; Bohlen, A. von; Schmeling, M.; Klockow, D. [Institut fuer Spektrochemie und Angewandte Spektroskopie, Dortmund (Germany)

    1995-06-01

    The collection of airborne particulate matter by filtration and impaction was adapted to total reflection X-ray fluorescence analysis (TXRF). Cellulose nitrate filters were used for collecting in a Berner impactor. Single filter spots were punched out, placed on quartz-glass carriers, dissolved by tetrahydrofuran and re-precipitated prior to element determinations by TXRF. In a Battelle-type impactor, airborne dust was collected on Plexiglass carriers coated with medical Vaseline. The loaded carriers were directly analyzed by TXRF. In both cases, quantification was simply performed by the addition of an internal standard after sampling. Impactors were made of a suitable material in order to investigate high blank values, collection losses and memory effects. It could be shown that stainless steel, even coated with TiN, is less suitable and should be avoided as an impactor material. Although aluminum is partly recommendable, titanium and the polymer Makrolon are quite appropriate. By using an impactor made of these materials, a reliable multielement determination in airborne dust is made possible with low detection limits as low as 1 ng/m{sup 3} and a satisfactory repeatability of a few %. Short sampling times of only 1 h or less can be realized. The total procedure is simple and time-saving, and can be recommended for routine investigations of airborne particulate matter. (author).

  16. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Buggiano, Valeria; Petrillo, Ezequiel; Alló, Mariano; Lafaille, Celina [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); Redal, María Ana [Instituto de Ciencias Básicas y Medicina Experimental, Hospital Italiano de Buenos Aires (Argentina); Alghamdi, Mansour A. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Khoder, Mamdouh I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah (Saudi Arabia); Shamy, Magdy [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Muñoz, Manuel J., E-mail: mmunoz@fbmc.fcen.uba.ar [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); and others

    2015-07-15

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5′ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: • Airborne particulate matter (PM10) affects alternative splicing in colon cells. • PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. • This variant has a longer 5′ unstranslated region and introduces an upstream AUG. • By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. • BMP-4 downregulation was previously reported to be associated to colon cancer.

  17. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells

    International Nuclear Information System (INIS)

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5′ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: • Airborne particulate matter (PM10) affects alternative splicing in colon cells. • PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. • This variant has a longer 5′ unstranslated region and introduces an upstream AUG. • By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. • BMP-4 downregulation was previously reported to be associated to colon cancer

  18. Characterization of airborne particulates in Bangkok urban area by neutron activation analysis.

    Science.gov (United States)

    Nouchpramool, S; Sumitra, T; Leenanuphunt, V

    1999-01-01

    Samples of airborne particulates were collected in a residential area and in an area near a busy highway in Bangkok during the period from January 1997 to May 1998. A stacked filter system was used for the former site and a Partisol 2000 was used for the latter site. Both 2.5 microns and 10-micron particulates were collected every week. The total suspended particulate matters were also collected at the latter site. The samples were analyzed by neutron activation analysis utilizing neutron flux from a 2-MW TRIGA MARK III research reactor. The elements most frequently detected in the airborne particulates were Al, As, Br, Ca, Ce, Cl, Co, Cr, Cs, Fe, I, K, La, Mg, Mn, Na, Rb, Sb, Sc, Sm, Th, Ti, V, and Zn. The enrichment factor and factor analysis were used to investigate trends, sources, and origin of the atmospheric aerosols. Anthropogenic elements in road dust, construction dust, motor vehicles emission, and other combustion components were identified. A comparative study of data between both sites was performed and it was found that the mass concentration in the area close to the highway was about three times higher than in the residential area. PMID:10676491

  19. On the removal of airborne particulate radioactivity under accident conditions

    International Nuclear Information System (INIS)

    In the case of an accident, the filter elements in the ventilation systems of a nuclear facility may become a part of the remaining fission product barrier. Within the framework of the Project Nuclear Safety of the Karlsruhe Nuclear Research Center, contributions are made to an increase in reliability of the air cleaning systems under accident conditions. These include the development and verification of computer programs for the estimation of those conditions prevailing inside the air cleaning systems in the case of an accident. Experimental investigations into the response of HEPA filters to differential pressures involving both dry and moist air have demonstrated the occurence of structural failures with subsequent loss of efficiency at relatively low values of differential pressures. With regard to further investigations, a new test facility was put into operation for the realization of superimposed challenges. A new method for testing particulate removal efficiency under high temperature or high humidity was developed. Finally, first results of code development work and of the corresponding verification experiments are reported on. (orig.)

  20. Standard Practice for Sampling Airborne Particulate Contamination in Cleanrooms for Handling Aerospace Fluids

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This practice covers a procedure for sampling airborne particulate matter larger than 5 m in size. The method is designed to be used in specific areas, commonly called cleanrooms in the aerospace industry, where aerospace fluids are handled. Note 1 Practice F 50 is an alternative procedure. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  1. Determination of basic azaarenes and polynuclear aromatic hydrocarbons in airborne particulate matter by gas chromatography

    DEFF Research Database (Denmark)

    Nielsen, Torben; Clausen, Peraxel; Jensen, Finn Palmgren

    1986-01-01

    phase (adjusted to pH 14 with potassium hydroxide) with dichloromethane, and determined by capillary gas chromatography (g.c.) with a nitrogen-sensitive detector. The PAH in the toluene phase are isolated by means of semipreparative high-performance liquid chromatography and liquid-liquid extraction......Polynuclear aromatic hydrocarbons (PAH) and their nitrogen analogs, basic azaarenes, are extracted from samples of airborne particulate matter by toluene with ultrasonic treatment. The basic azaarenes are extracted from the toluene phase with phosphoric acid, re-extracted from the phosphoric acid...

  2. Characterization of airborne particulate matter in the metropolitan region of Belo Horizonte

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Fernanda V.F.; Ardisson, Jose Domingos; Rodrigues, Paulo Cesar H.; Brito, Walter de; Macedo, Waldemar Augusto A.; Jacomino, Vanusa Maria F., E-mail: ferufv@yahoo.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    In this work soil samples, iron ore and airborne atmospheric particulate matter (PM) in the Metropolitan Region of Belo Horizonte (MRBH), State of Minas Gerais, Brazil, are investigated with the aim of identifying if the sources of the particulate matter are of natural origin, such as, resuspension of particles from soil, or due to anthropogenic origins from mining and processing of iron ore. Samples were characterized by powder X-ray diffraction, X-ray fluorescence and {sup 57}Fe-Moessbauer spectroscopy. The results showed that soil samples studied are rich in quartz and have low contents of iron mainly iron oxide with low crystallinity. The samples of iron ore and PM have high concentration of iron, predominantly well crystallized hematite. {sup 57}Fe-Moessbauer spectroscopy confirmed the presence of similar iron oxides in samples of PM and in the samples of iron ore, indicating the anthropogenic origin in the material present in atmosphere of the study area. (author)

  3. Accuracy of chemical analysis of airborne particulates: results of an intercomparison exercise

    International Nuclear Information System (INIS)

    Since suitable standard reference materials for chemical analysis of airborne particulates are not available, an intercomparison exercise was carried out among 40 interested laboratories in order to evaluate the accuracy of various trace analysis techniques for this specific application. Six hundred grams of airborne particulates were collected from the inlet filters of the air conditioning installation of a hotel in the center of Milan. The sample was sieved to remove coarser particles, thoroughly mixed, and distributed in 1 to 5 gram aliquots. The homogeneity was checked by relative measurements carried out by three independent techniques. For 40 elements no inhomogeneity was found to exceed the analytical error, which was estimated to be approximately 10 percent. The data of the analytical exercise are being collected and evaluated. Results are available for 56 elements, but to date only 33 have been determined by more than one technique. Activation analysis, emission spectroscopy, atomic absorption, x-ray fluorescence and various wet chemical methods contributed to the intercomparison. No result was received from mass spectroscopic methods and, although analyses were specifically encouraged, very few results were received on the organic components. From a first approximate evaluation a good agreement was found for Al, Fe, Zn, Mn, Ca, Pb, Cl, S, Si, Ti, Mn, while for the other elements no definite conclusion can yet be drawn. An attempt will be made to interpret important cases of systematic errors, a few of which are already evident

  4. First study of airborne particulate pollution using PIXE analysis in Habana city, Cuba

    International Nuclear Information System (INIS)

    The present work reports the results of a first study of elemental composition in airborne particulate matter (fine and coarse) collected at the Municipality of Centro Habana, Havana City, Cuba, using the PIXE technique. At present, there is not any information available about element contents in airborne particulate from this region. A five months sampling campaign was carried out, collecting the samples under an air flux of 20 l/min with a Gent SFU Sampler equipped with a system which allows the aerosol collection in both size fractions simultaneously. A total of 144 aerosol samples were collected. For the PIXE analysis, the samples were irradiated by 2.0 MeV energy protons from a 2 MV Tandetron Accelerator. A total of 14 elements (S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br and Pb) were consistently detected with minimum detection limits from 1 ng/m3 to 10 ng/m3 for most of the elements. Enrichment factors were also calculated for both fractions in order to identify the natural and anthropogenic group of elements. The quantitative results obtained have revealed important information that has been used in a first attempt to understand and to characterize the atmospheric pollution of this area. (author)

  5. Morphology, chemical composition, and bacterial concentration of airborne particulate matter in rabbit farms

    Directory of Open Access Journals (Sweden)

    Elisa Adell

    2012-12-01

    Full Text Available Livestock houses are major sources of airborne particulate matter (PM, which can originate from manure, feed, feathers, skin and bedding and may contain and transport microorganisms. Improved knowledge of particle size, morphology, chemical and microbiological composition of PM in livestock houses can help identify major sources of PM and contribute to the development of appropriate source-specific reduction techniques. In rabbit production systems, however, there is limited information on specific particle characteristics. The objective of this study was to characterise airborne PM in rabbit farms in terms of morphology, chemical compositions and bacterial concentration in different size fractions. Size-fractioned PM was sampled in the air of 2 rabbit farms, 1 for fattening rabbits and 1 for reproductive does, using a virtual cascade impactor, which simultaneously collected total suspended PM (TSP, PM10 and PM2.5 size fractions. Airborne PM samples were examined by light microscopy and scanning electron microscopy combined with energy dispersive X-ray analysis. Representative samples from potential sources of PM were also collected and examined. Additionally, a methodology to extract bacteria from the collected samples of airborne PM was developed to determine the bacterial concentration per PM size fraction. Results showed that airborne PM in rabbit farms is highly complex in particle morphology, especially in size. Broken skin flakes, disintegrated particles from feed or faecal material from mechanical fracture are the main sources of airborne PM in rabbit farms. Major elements found in rabbit airborne PM were S, Ca, Mg, Na and Cl. Bacterial concentrations ranged from 1.7×104 to 1.6×106 colony forming units (CFU/m3 (TSP; from 3.6×103 to 3.0×104 CFU/m3 (PM10; and from 3.1×103 to 1.6×104 CFU/m3 (PM2.5. Our results will improve the knowledge on essential particle characteristics necessary to understand PM’s origin in rabbit farms and

  6. Honey Bees (Apis mellifera, L. as Active Samplers of Airborne Particulate Matter.

    Directory of Open Access Journals (Sweden)

    Ilaria Negri

    Full Text Available Honey bees (Apis mellifera L. are bioindicators of environmental pollution levels. During their wide-ranging foraging activity, these hymenopterans are exposed to pollutants, thus becoming a useful tool to trace the environmental contaminants as heavy metals, pesticides, radionuclides and volatile organic compounds. In the present work we demonstrate that bees can also be used as active samplers of airborne particulate matter. Worker bees were collected from hives located in a polluted postmining area in South West Sardinia (Italy that is also exposed to dust emissions from industrial plants. The area is included in an official list of sites of national interest for environmental remediation, and has been characterized for the effects of pollutants on the health of the resident population. The head, wings, hind legs and alimentary canal of the bees were investigated with Scanning Electron Microscopy coupled with X-ray spectroscopy (SEM-EDX. The analyses pointed to specific morphological and chemical features of the particulate, and resulted into the identification of three categories of particles: industry-, postmining-, and soil-derived. With the exception of the gut, all the analyzed body districts displayed inorganic particles, mostly concentrated in specific areas of the body (i.e. along the costal margin of the fore wings, the medial plane of the head, and the inner surface of the hind legs. The role of both past mining activities and the industrial activity close to the study area as sources of the particulate matter is also discussed. We conclude that honey bees are able to collect samples of the main airborne particles emitted from different sources, therefore could be an ideal tool for monitoring such a kind of pollutants.

  7. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Erin N., E-mail: Erin.Haynes@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Chen, Aimin, E-mail: Aimin.Chen@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Ryan, Patrick, E-mail: Patrick.Ryan@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Succop, Paul, E-mail: Paul.Succop@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Wright, John, E-mail: John.Wright@uc.edu [College of Education, Criminal Justice, and Human Services, University of Cincinnati, Cincinnati, OH 45221 (United States); Dietrich, Kim N., E-mail: Kim.Dietrich@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States)

    2011-11-15

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter ({<=}2.5 {mu}m) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban-rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003-2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3-4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter {<=}2.5 and {<=}10 {mu}m emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical

  8. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    International Nuclear Information System (INIS)

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter (≤2.5 μm) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban–rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003–2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3–4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter ≤2.5 and ≤10 μm emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical

  9. Elemental analysis of airborne particulate by using thermal and epithermal neutron activation

    International Nuclear Information System (INIS)

    Thermal neutron activation analysis was used to determine Al, Br, Ca, Cl, Mn, Na, V, and Ti concentrations, whereas epithermal neutron activation analysis was used to determine Cu, I and Si concentrations. Counting by Compton suppression both in thermal neutron activation and epithermal neutron activation analysis showed the significantly different on detection limit of element compare with normal counting system. It revealed counting by Compton suppression gave better result. The enrichment factor of elements indicated that V and Mn were enriched in several fine particulate samples. Ca, Si and Na were not enriched, whereas Br, I and Cl were enriched in fine airborne particulate or in coarse one. It was found that Cl and Na did not have correlation, while Br and I showed the same enrichment the same enrichment trend and high correlation (0,9). It means that Br and I were from the same pollutant source. It could concluded that the thermal neutron and epithermal neutron activations analysis combined with counting by Compton suppression could enhance sensitivity of analysis of elemental air bone particulate that was very useful in air pollution study. Key words : activation analysis, thermal neutron, epithermal neutron, Compton

  10. Assessment of Elemental Content in Airborne Particulate Matter in Bratislava Atmosphere using INAA and AAS

    Science.gov (United States)

    Meresova, J.; Florek, M.; Frontasyeva, M. V.; Pavlov, S. S.; Holy, K.; Sykora, I.

    2007-11-01

    The wide range concentration of elements including heavy metals, halogens and rare earths in airborne particulate matter were investigated. Sixteen samples were collected on filters in Meteorological station, Comenius University Bratislava (Slovak Republic) in different seasons. Using instrumental neutron activation analysis (INAA) the concentrations of 29 elements (Na, Al, Cl, K, Ca, Sc, Ti, V, Mn, Fe, Ga, As, Se, Br, Rb, In, Sb, I, Cs, Ba, La, Sm, Dy, Tm, W, Au, Hg, Th, U) were determined. The concentrations of other 6 elements (Cr, Ni, Cu, Zn, Cd, Pb) were measured by atomic absorption spectrometry (AAS). The obtained results allow us to better understand the dynamic processes in the atmosphere and to quantify the air pollution and its trends.

  11. Trace element determination in the airborne particulate matter of Bangkok and Samutprakan by INAA

    International Nuclear Information System (INIS)

    During October 1995 - January 1996, 66 samples of airborne particulate matter were collected from Bangkok and Samutprakan provinces. Samples of the particle sizes of 2.5 - 10 microns (33 samples) and less than 2.5 microns (33 samples) were determined for elemental concentration of 34 elements. A comparative study of the data from both sampling size was initiated to investigate the trends, source and origin of the aerosols by comparing the concentration, enrichment factor (E F) and coarse/ fine ratio. The results show Al, Fe, Sc are from crustal elements, Ca, K, Mn, V has moderate high E F and As, Br, Cd, Cu, Ni, Sb, Se and Zn has rather high E F. Comparison between the two sites yields higher levels of As and Sb at Samutprakan appearly due to smelting or other industries nearby. Higher level of Br might be due to the heavier of transportation of trucks in and out of the city

  12. Analytical Methods INAA and PIXE Applied to Characterization of Airborne Particulate Matter in Bandung, Indonesia

    Directory of Open Access Journals (Sweden)

    D.D. Lestiani

    2011-08-01

    Full Text Available Urbanization and industrial growth have deteriorated air quality and are major cause to air pollution. Air pollution through fine and ultra-fine particles is a serious threat to human health. The source of air pollution must be known quantitatively by elemental characterization, in order to design the appropriate air quality management. The suitable methods for analysis the airborne particulate matter such as nuclear analytical techniques are hardly needed to solve the air pollution problem. The objectives of this study are to apply the nuclear analytical techniques to airborne particulate samples collected in Bandung, to assess the accuracy and to ensure the reliable of analytical results through the comparison of instrumental neutron activation analysis (INAA and particles induced X-ray emission (PIXE. Particle samples in the PM2.5 and PM2.5-10 ranges have been collected in Bandung twice a week for 24 hours using a Gent stacked filter unit. The result showed that generally there was a systematic difference between INAA and PIXE results, which the values obtained by PIXE were lower than values determined by INAA. INAA is generally more sensitive and reliable than PIXE for Na, Al, Cl, V, Mn, Fe, Br and I, therefore INAA data are preffered, while PIXE usually gives better precision than INAA for Mg, K, Ca, Ti and Zn. Nevertheless, both techniques provide reliable results and complement to each other. INAA is still a prospective method, while PIXE with the special capabilities is a promising tool that could contribute and complement the lack of NAA in determination of lead, sulphur and silicon. The combination of INAA and PIXE can advantageously be used in air pollution studies to extend the number of important elements measured as key elements in source apportionment.

  13. Impact of banning of two-stroke engines on airborne particulate matter concentrations in Dhaka, Bangladesh.

    Science.gov (United States)

    Begum, Bilkis A; Biswas, Swapan K; Hopke, Philip K

    2006-01-01

    Vehicular air pollution is common in growing metropolitan areas throughout the world. Vehicular emissions of fine particles are particularly harmful because they occur near ground level, close to where people live and work. Two-stroke engines represented an important contribution to the motor vehicle emissions where they constitute approximately half of the total vehicle fleet in Dhaka city. Two-stroke engines have lower fuel efficiency than four-stroke engines, and they emit as much of an order of magnitude and more particulate matter (PM) than four-stroke engines of similar size. To eliminate their impact on air quality, the government of Bangladesh promulgated an order banning all two-stroke engines from the roads in Dhaka starting on December 31, 2002. The effect of the banning of two-stroke engines on airborne PM was studied at the Farm Gate air quality-monitoring station in Dhaka (capital of Bangladesh), a hot spot with very high-pollutant concentrations because of its proximity to major roadways. The samples were collected using a "Gent" stacked filter unit in two fractions of 0-2.2 microm and 2.2-10 microm sizes. Samples of fine and coarse fractions of airborne PM collected from 2000 to 2004 were studied. It has been found that the fine PM and black carbon concentrations decreased from the previous years because of the banning of two-stroke engine baby taxies.

  14. Real-world exposure of airborne particulate matter triggers oxidative stress in an animal model

    Science.gov (United States)

    Wan, Guohui; Rajagopalan, Sanjay; Sun, Qinghua; Zhang, Kezhong

    2010-01-01

    Epidemiological studies have shown a strong link between air pollution and the increase of cardio-pulmonary mortality and morbidity. In particular, inhaled airborne particulate matter (PM) exposure is closely associated with the pathogenesis of air pollution-induced systemic diseases. In this study, we exposed C57BIV6 mice to environmentally relevant PM in fine and ultra fine ranges (diameter < 2.5 μm, PM2.5) using a “real-world” airborne PM exposure system. We investigated the pathophysiologic impact of PM2.5 exposure in the animal model and in cultured primary pulmonary macrophages. We demonstrated that PM2.5 exposure increased the production of reactive oxygen species (ROS) in blood vessels in vivo. Furthermore, in vitro PM2.5 exposure experiment suggested that PM2.5 could trigger oxidative stress response, reflected by an increased expression of the anti-oxidative stress enzymes superoxide dismutase-1 (SOD-1) and heme oxygenase-1(HO-1), in mouse primary macrophages. Together, the results obtained through our “real-world” PM exposure approach demonstrated the pathophysiologic effect of ambient PM2.5 exposure on triggering oxidative stress in the specialized organ and cell type of an animal model. Our results and approach will be informative for the research in air pollution-associated physiology and pathology. PMID:21383899

  15. Genotoxicity of organic extracts of urban airborne particulate matter: an assessment within a personal exposure study.

    Science.gov (United States)

    Abou Chakra, Oussama R; Joyeux, Michel; Nerrière, Eléna; Strub, Marie-Pierre; Zmirou-Navier, Denis

    2007-01-01

    Airborne particulate matter, PM(10) and PM(2.5), are associated with a range of health effects including lung cancer. Their complex organic fraction contains genotoxic and carcinogenic compounds such as polycyclic aromatic hydrocarbons (PAHs) and their derivatives. This study evaluates the genotoxicity of the PM(10) and PM(2.5) organic extracts that were sampled in the framework of a personal exposure study in three French metropolitan areas (Paris, Rouen and Strasbourg), using the comet assay, performed on HeLa S3 cells. In each city, 60-90 non-smoking volunteers composed of two groups of equal size (adults and children) carried the personal Harvard Chempass multi-pollutant sampler during 48h along two different seasons ('hot' and 'cold'). Volunteers were selected so as to live (home and work/school) in 3 different urban sectors contrasted in terms of air pollution within each city (one highly exposed to traffic emissions, one influenced by local industrial sources, and a background urban environment). Genotoxic effects are stronger for PM(2.5) extracts than for PM(10), and greater in winter than in summer. Fine particles collected by subjects living within the traffic proximity sector present the strongest genotoxic responses, especially in the Paris metropolitan area. This work confirms the genotoxic potency of particulate matter (PM(10) and PM(2.5)) organic extracts to which urban populations are exposed. PMID:16901531

  16. Airborne particulate matter, platinum group elements and human health: a review of recent evidence.

    Science.gov (United States)

    Wiseman, Clare L S; Zereini, Fathi

    2009-04-01

    Environmental concentrations of the platinum group elements (PGE) platinum (Pt), palladium (Pd) and rhodium (Rh) have been on the rise, due largely to the use of automobile catalytic converters which employ these metals as exhaust catalysts. It has generally been assumed that the health risks associated with environmental exposures to PGE are minimal. More recent studies on PGE toxicity, environmental bioavailability and concentrations in biologically relevant media indicate however that environmental exposures to these metals may indeed pose a health risk, especially at a chronic, subclinical level. The purpose of this paper is to review the most recent evidence and provide an up-to-date assessment of the risks related to environmental exposures of PGE, particularly in airborne particulate matter (PM). This review concludes that these metals may pose a greater health risk than once thought for several reasons. First, emitted PGE may be easily mobilised and solubilised by various compounds commonly present in the environment, thereby enhancing their bioavailability. Second, PGE may be transformed into more toxic species upon uptake by organisms. The presence of chloride in lung fluids, for instance, may lead to the formation of halogenated PGE complexes that have a greater potential to induce cellular damage. Third, a significant proportion of PGE found in airborne PM is present in the fine fraction that been found to be associated with increases in morbidity and mortality. PGE are also a concern to the extent that they contribute to the suite of metals found in fine PM suspected of eliciting a variety of health effects, especially in vulnerable populations. All these factors highlight the need to monitor environmental levels of PGE and continue research on their bioavailability, behaviour, speciation and associated toxicity to enable us to better assess their potential to elicit health effects in humans. PMID:19181366

  17. Evaluation of Airborne Particulate Matter and Metals Data in Personal, Indoor and Outdoor Environments using ED-XRF and ICP-MS and Co-located Duplicate Samples

    Science.gov (United States)

    Factors and sources affecting measurement uncertainty in airborne particulate matter (PM) gravimetric measurements and elemental analyses were investigated as part of the Windsor Ontario Exposure Assessment Study (WOEAS). The assessment was made using co-located duplicate sample...

  18. Diversity and Composition of Airborne Fungal Community Associated with Particulate Matters in Beijing during Haze and Non-haze Days.

    Science.gov (United States)

    Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2016-01-01

    To assess the diversity and composition of airborne fungi associated with particulate matters (PMs) in Beijing, China, a total of 81 PM samples were collected, which were derived from PM2.5, PM10 fractions, and total suspended particles during haze and non-haze days. The airborne fungal community in these samples was analyzed using the Illumina Miseq platform with fungi-specific primers targeting the internal transcribed spacer 1 region of the large subunit rRNA gene. A total of 797,040 reads belonging to 1633 operational taxonomic units were observed. Of these, 1102 belonged to Ascomycota, 502 to Basidiomycota, 24 to Zygomycota, and 5 to Chytridiomycota. The dominant orders were Pleosporales (29.39%), Capnodiales (27.96%), Eurotiales (10.64%), and Hypocreales (9.01%). The dominant genera were Cladosporium, Alternaria, Fusarium, Penicillium, Sporisorium, and Aspergilus. Analysis of similarities revealed that both particulate matter sizes (R = 0.175, p = 0.001) and air quality levels (R = 0.076, p = 0.006) significantly affected the airborne fungal community composition. The relative abundance of many fungal genera was found to significantly differ among various PM types and air quality levels. Alternaria and Epicoccum were more abundant in total suspended particles samples, Aspergillus in heavy-haze days and PM2.5 samples, and Malassezia in PM2.5 samples and heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature (p < 0.01), NO2 (p < 0.01), PM10 (p < 0.01), SO2(p < 0.01), CO (p < 0.01), and relative humidity (p < 0.05) were significant factors that determine airborne fungal community composition. The results suggest that diverse airborne fungal communities are associated with particulate matters and may provide reliable data for studying the responses of human body to the increasing level of air pollution in Beijing.

  19. Natural and anthropogenic radionuclides in airborne particulate samples collected in Barcelona (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Valles, I. [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain)], E-mail: isabel.valles@upc.edu; Camacho, A.; Ortega, X.; Serrano, I.; Blazquez, S.; Perez, S. [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain)

    2009-02-15

    Results for naturally occurring {sup 7}Be, {sup 210}Pb, {sup 40}K, {sup 214}Bi, {sup 214}Pb, {sup 212}Pb, {sup 228}Ac and {sup 208}Tl and anthropogenic {sup 137}Cs in airborne particulate matter in the Barcelona area during the period from January 2001 to December 2005 are presented and discussed. The {sup 212}Pb and {sup 208}Tl, {sup 214}Bi and {sup 214}Pb, {sup 7}Be and {sup 210}Pb radionuclide levels showed a significant correlation with each other, with correlation coefficients of 0.99, 0.78 and 0.69, respectively, suggesting similar origin/behaviour of these radionuclides in the air. Caessium-137 and Potassium-40 were transported to the air as resuspended particle from the soil. The {sup 7}Be and {sup 210}Pb concentrations showed similar seasonal variations, with a tendency for maximum concentrations during the summer months. An inverse relationship was observed between the {sup 7}Be, {sup 210}Pb, {sup 40}K and {sup 137}Cs concentrations and weekly rainfall, indicating washout of atmospheric aerosols carrying these radionuclides.

  20. Correlation analysis of size-resolved airborne particulate matter with classified meteorological conditions

    Science.gov (United States)

    Nguyen, Minh-Viet; Park, Gee-Hyeong; Lee, Byeong-Kyu

    2016-05-01

    This study analyzed correlations between classified meteorological conditions and size-resolved particulate matter (PM) concentrations over year. Seasonal measurements of airborne PM were conducted on the roof of a university building located in an urban residential area in Ulsan, Korea. A total of 267 daily PM samples were obtained using a nine-stage cascade impactor during the 12-month sampling period (March 2011-March 2012). Among this period, the average PM1.0, PM2.5, PM2.5-10, and PM10 concentrations were the lowest during the summer. The highest and lowest monthly average PM concentrations for all particle size ranges were observed in dry April and humid July, respectively. The PM1.0, PM2.5, PM2.5-10, and PM10 concentrations were negatively correlated (p 80 %) and under moderate humidity conditions (50-80 %) only during the winter season. PM concentrations also negatively correlated with precipitation (p 30 mm) and moderate (10-30 mm) rainfall conditions and only under light rainfall (speed [strong (>7 m/s) and moderate (3-7 m/s) wind]. Most PM concentrations correlated positively with ambient temperature, however, only on days with an average temperature above 20 °C. High and moderate temperatures negatively correlated with high and moderate humid conditions, while low and extra low temperatures in winter period showed positive correlation with high and moderate humidity.

  1. The Effects of Bus Ridership on Airborne Particulate Matter (PM10 Concentrations

    Directory of Open Access Journals (Sweden)

    Jaeseok Her

    2016-07-01

    Full Text Available Air pollution caused by rapid urbanization and the increased use of private vehicles seriously affects citizens’ health. In order to alleviate air pollution, many cities have replaced diesel buses with compressed natural gas (CNG buses that emit less exhaust gas. Urban planning strategies such as transit-oriented development (TOD posit that reducing private vehicle use and increasing public transportation use would reduce air pollution levels. The present study examined the effects of bus ridership on airborne particulate matter (PM10 concentrations in the capital region of Korea. We interpolated the levels of PM10 from 128 air pollution monitoring stations, utilizing the Kriging method. Spatial regression models were used to estimate the impact of bus ridership on PM10 levels, controlling for physical environment attributes and socio-economic factors. The analysis identified that PM10 concentration levels tend to be lower in areas with greater bus ridership. This result implies that urban and transportation policies designed to promote public transportation may be effective strategies for reducing air pollution.

  2. Study on the behavior of trace elements and radionuclides in airborne particulate matters

    International Nuclear Information System (INIS)

    Airborne particulate matters (PM) are collected by HV-1000 high volume air sampler in Musashi Institute of Technology in Japan from October, 2002, to November, 2003. The elements were determined by a neutron activation analysis and radioactive nuclides were detected by γ-ray spectrometry. The concentration of PM decreased with increasing amount of precipitation. The amount of PM was affected by wash out depend on rain a day before. 12 to 17 kinds of elements are determined in the samples. The correlation coefficient of Br and Sb was 0.81 of the concentration of element and 0.60 of concentration of composition. The same tendency was observed among Sc, Fe and La. Na is thought to be affected by sea salt particles. Sc and Th in PM were originated by wikipedia in Asia. The concentration of Sc, V, La and Th are smaller than the earth's crust. However, its Br and Sb were larger than it. Pb-210 and Be-7 are determined and both average concentrations were increased by north wind. (S.Y.)

  3. Embryotoxicity of organic extracts from airborne particulates in ambient air in the chicken embryo

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, H.; Kashimoto, T.

    1986-07-01

    A fraction containing polycyclic aromatic hydrocarbons (PAHs), prepared from an organic extract of airborne particulate matter, was separated into nine subfractions by high pressure liquid chromatography (HPLC). The embryotoxicity of each of these fractions was investigated and analysis for PAHs by capillary gas chromatography-mass spectrometry (GC-MS) was performed. The ninth subfraction, with coronene as its main component, had the strongest toxic effects on chicken embryos per m/sup 3/ of air. Of the remaining eight subfractions, three had the greatest toxicity: the second fraction with benzofluoranthenes and benzo(e)pyrene as the main components, the fourth fraction having PAH-estimated compounds in small amounts, and the fifth fraction with indeno(1,2,3-cd)pyrene and benzo(ghi)perylene as the main ingredients had the greatest toxicity. These findings indicate PAHs to be responsible for embryotoxicity but the total amounts were not necessarily proportional to it. For further characterization of toxicity, the effects of each PAH and/or quantification of other embryotoxic compounds possibly present in small amounts should be investigated.

  4. Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas.

    Science.gov (United States)

    Gandolfi, I; Bertolini, V; Bestetti, G; Ambrosini, R; Innocente, E; Rampazzo, G; Papacchini, M; Franzetti, A

    2015-06-01

    The study of spatio-temporal variability of airborne bacterial communities has recently gained importance due to the evidence that airborne bacteria are involved in atmospheric processes and can affect human health. In this work, we described the structure of airborne microbial communities in two urban areas (Milan and Venice, Northern Italy) through the sequencing, by the Illumina platform, of libraries containing the V5-V6 hypervariable regions of the 16S rRNA gene and estimated the abundance of airborne bacteria with quantitative PCR (qPCR). Airborne microbial communities were dominated by few taxa, particularly Burkholderiales and Actinomycetales, more abundant in colder seasons, and Chloroplasts, more abundant in warmer seasons. By partitioning the variation in bacterial community structure, we could assess that environmental and meteorological conditions, including variability between cities and seasons, were the major determinants of the observed variation in bacterial community structure, while chemical composition of atmospheric particulate matter (PM) had a minor contribution. Particularly, Ba, SO4 (2-) and Mg(2+) concentrations were significantly correlated with microbial community structure, but it was not possible to assess whether they simply co-varied with seasonal shifts of bacterial inputs to the atmosphere, or their variation favoured specific taxa. Both local sources of bacteria and atmospheric dispersal were involved in the assembling of airborne microbial communities, as suggested, to the one side by the large abundance of bacteria typical of lagoon environments (Rhodobacterales) observed in spring air samples from Venice and to the other by the significant effect of wind speed in shaping airborne bacterial communities at all sites. PMID:25592734

  5. Study on the Adsorption Capacities for Airborne Particulates of Landscape Plants in Different Polluted Regions in Beijing (China

    Directory of Open Access Journals (Sweden)

    Wei-Kang Zhang

    2015-08-01

    Full Text Available Urban landscape plants are an important component of the urban ecosystem, playing a significant role in the adsorption of airborne particulates and air purification. In this study, six common landscape plants in Beijing were chosen as research subjects, and the adsorption capacities for each different plant leaf and the effects of the leaf structures for the adsorption capacities for particulates were determined. Preliminary results show that needle-leaved tree species adsorbed more airborne particulates than broad-leaved tree species for the same leaf area. Pinus tabuliformis exhibits the highest adsorption capacity, at 3.89 ± 0.026 μg·cm−2, almost two times as much as that of Populus tomentosa (2.00 ± 0.118 μg·cm−2. The adsorption capacities for PM10 of the same tree species leaves, in different polluted regions had significant differences, and the adsorption capacities for PM10 of the tree species leaf beside the Fifth Ring Road were higher than those of the tree species leaves in the Botanical Garden, although the adsorption capacities for PM2.5 of the same tree species in different polluted regions had no significant differences. By determining the soluble ion concentrations of the airborne particulates in two regions, it is suggested that the soluble ion concentrations of PM10 in the atmosphere in the Botanical Garden and beside the Fifth Ring Road have significant differences, while those of PM2.5 in the atmosphere had no significant differences. In different polluted regions there are significant adaptive changes to the leaf structures, and when compared with slightly polluted region, in the seriously polluted region the epidermis cells of the plant leaves shrinked, the surface textures of the leaves became rougher, and the stomas’ frequency and the pubescence length increased. Even though the plant leaves exposed to the seriously polluted region changed significantly, these plants can still grow normally and healthily.

  6. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    Directory of Open Access Journals (Sweden)

    A. Mahmud

    2012-02-01

    Full Text Available The effect of climate change on population-weighted concentrations of particulate matter (PM during extreme events was studied using the Parallel Climate Model (PCM, the Weather Research and Forecasting (WRF model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44 global emissions scenario was dynamically downscaled for the entire state of California between the years 2000–2006 and 2047–2053. Air quality simulations were carried out for 1008 days in each of the present-day and future climate conditions using year-2000 emissions. Population-weighted concentrations of PM0.1, PM2.5, and PM10 total mass, components species, and primary source contributions were calculated for California and three air basins: the Sacramento Valley air basin (SV, the San Joaquin Valley air basin (SJV and the South Coast Air Basin (SoCAB. Results over annual-average periods were contrasted with extreme events.

    Climate change between 2000 vs. 2050 did not cause a statistically significant change in annual-average population-weighted PM2.5 mass concentrations within any major sub-region of California in the current study. Climate change did alter the annual-average composition of the airborne particles in the SoCAB, with notable reductions of elemental carbon (EC; −3% and organic carbon (OC; −3% due to increased annual-average wind speeds that diluted primary concentrations from gasoline combustion (−3% and food cooking (−4%. In contrast, climate change caused significant increases in population-weighted PM2.5 mass concentrations in central California during extreme events. The maximum 24-h average PM2.5 concentration experienced by an average person during a ten-year period in the SJV increased by 21% due to enhanced production of secondary particulate matter (manifested as NH4NO3. In general, climate change caused increased

  7. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    Directory of Open Access Journals (Sweden)

    A. Mahmud

    2012-08-01

    Full Text Available The effect of climate change on population-weighted concentrations of particulate matter (PM during extreme pollution events was studied using the Parallel Climate Model (PCM, the Weather Research and Forecasting (WRF model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44 global emissions scenario was dynamically downscaled for the entire state of California between the years 2000–2006 and 2047–2053. Air quality simulations were carried out for 1008 days in each of the present-day and future climate conditions using year-2000 emissions. Population-weighted concentrations of PM0.1, PM2.5, and PM10 total mass, components species, and primary source contributions were calculated for California and three air basins: the Sacramento Valley air basin (SV, the San Joaquin Valley air basin (SJV and the South Coast Air Basin (SoCAB. Results over annual-average periods were contrasted with extreme events.

    The current study found that the change in annual-average population-weighted PM2.5 mass concentrations due to climate change between 2000 vs. 2050 within any major sub-region in California was not statistically significant. However, climate change did alter the annual-average composition of the airborne particles in the SoCAB, with notable reductions of elemental carbon (EC; −3% and organic carbon (OC; −3% due to increased annual-average wind speeds that diluted primary concentrations from gasoline combustion (−3% and food cooking (−4%. In contrast, climate change caused significant increases in population-weighted PM2.5 mass concentrations in central California during extreme events. The maximum 24-h average PM2.5 concentration experienced by an average person during a ten-yr period in the SJV increased by 21% due to enhanced production of secondary particulate matter (manifested as NH4NO3. In general, climate

  8. Airborne Fine Particulate Matter Induces Oxidative Stress and Inflammation in Human Nasal Epithelial Cells.

    Science.gov (United States)

    Hong, Zhicong; Guo, Zhiqiang; Zhang, Ruxin; Xu, Jian; Dong, Weiyang; Zhuang, Guoshun; Deng, Congrui

    2016-01-01

    Airborne fine particulate matter with an aerodynamic diameter equal to or smaller than 2.5 μm is abbreviated as PM2.5, which is one of the main components in air pollution. Exposure to PM2.5 is associated with increased risk of many human diseases, including chronic and allergic rhinitis, but the underlying molecular mechanism for its toxicity has not been fully elucidated. We have hypothesized that PM2.5 may cause oxidative stress and enhance inflammatory responses in nasal epithelial cells. Accordingly, we used human RPMI 2650 cells, derived from squamous cell carcinoma of the nasal septum, as a model of nasal epithelial cells, and exposed them to PM2.5 that was collected at Fudan University (31.3°N, 121.5°E) in Shanghai, China. PM2.5 exposure decreased the viability of RPMI 2650 cells, suggesting that PM2.5 may impair the barrier function of nasal epithelial cells. Moreover, PM2.5 increased the levels of intracellular reactive oxygen species (ROS) and the nuclear translocation of NF-E2-related factor-2 (Nrf2). Importantly, PM2.5 also decreased the activities of superoxide dismutase, catalase and glutathione peroxidase. Pretreatment with N-Acetyl-L-cysteine (an anti-oxidant) reduced the degree of the PM2.5-induced oxidative stress in RPMI 2650 cells. In addition, PM2.5 increased the production of granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-α, interleukin-13 and eotaxin (C-C motif chemokine ligand 11), each of which initiates and/or augments local inflammation. These results suggest that PM2.5 may induce oxidative stress and inflammatory responses in human nasal epithelial cells, thereby leading to nasal inflammatory diseases. The present study provides insights into cellular injury induced by PM2.5.

  9. Airborne particulate matter and mitochondrial damage: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Hou Lifang

    2010-08-01

    Full Text Available Abstract Background Oxidative stress generation is a primary mechanism mediating the effects of Particulate Matter (PM on human health. Although mitochondria are both the major intracellular source and target of oxidative stress, the effect of PM on mitochondria has never been evaluated in exposed individuals. Methods In 63 male healthy steel workers from Brescia, Italy, studied between April and May 2006, we evaluated whether exposure to PM was associated with increased mitochondrial DNA copy number (MtDNAcn, an established marker of mitochondria damage and malfunctioning. Relative MtDNAcn (RMtDNAcn was determined by real-time PCR in blood DNA obtained on the 1st (time 1 and 4th day (time 2 of the same work week. Individual exposures to PM10, PM1, coarse particles (PM10-PM1 and airborne metal components of PM10 (chromium, lead, arsenic, nickel, manganese were estimated based on measurements in the 11 work areas and time spent by the study subjects in each area. Results RMtDNAcn was higher on the 4th day (mean = 1.31; 95%CI = 1.22 to 1.40 than on the 1st day of the work week (mean = 1.09; 95%CI = 1.00 to 1.17. PM exposure was positively associated with RMtDNAcn on either the 4th (PM10: β = 0.06, 95%CI = -0.06 to 0.17; PM1: β = 0.08, 95%CI = -0.08 to 0.23; coarse: β = 0.06, 95%CI = -0.06 to 0.17 or the 1st day (PM10: β = 0.18, 95%CI = 0.09 to 0.26; PM1: β = 0.23, 95%CI = 0.11 to 0.35; coarse: β = 0.17, 95%CI = 0.09 to 0.26. Metal concentrations were not associated with RMtDNAcn. Conclusions PM exposure is associated with damaged mitochondria, as reflected in increased MtDNAcn. Damaged mitochondria may intensify oxidative-stress production and effects.

  10. The exposure assessment of airborne particulates matter (PM10 & PM2.5) towards building occupants: A case study at KL Sentral, Kuala Lumpur, Malaysia

    Science.gov (United States)

    Mohddin, S. A.; Aminuddin, N. M.

    2014-02-01

    Airborne particulates have been recognized as a crucial pollutant of indoor air. These pollutants can contribute towards poor indoor air quality (IAQ), which may affect human health in immediate or long term. This study aims to determine the level of IAQ and the effects of particulate towards occupants of office buildings (the office buildings selected for the case study are SSM, KTMB and MRCB at KL Sentral). The objectives of study are (i) to measure the level of airborne particulates that contribute to the IAQ during working hours, (ii) to compare the level of airborne particulates with the existing guidelines and standards of IAQ in Malaysia and other Asian countries and (iii) to assess the symptoms associated with airborne particulates among the building occupants, which were achieved through primary data collection (case study or site survey, structured interview and questionnaire survey) and supported by literature reviews. The results showed that the mass concentration level of airborne particulates within the areas has exceeded the allowable limit of 0.15mg/m3 by IAQ Code of Practice, 2005 of the Department of Safety and Health (DOSH), Malaysia and 0.05mg/m3 by the Department of Environmental (DOE) (outdoor) of 8 hours continuous sampling. Based on the findings, the highest mass concentration values measured is 2.581 mg/m3 at lobby of SSM building which is the highest recorded 17 times higher from the maximum limit recommended by DOSH than the others. This is due to the nearby construction works and the high numbers of particulates are generated from various types of vehicles for transportation surrounding KL Sentral. Therefore, the development of Malaysian Ambient Air Quality Guidelines on PM2.5 as one of the crucial parameters is highly recommended.

  11. Tonopah Test Range Air Monitoring: CY2012 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Miller, Julianne J

    2013-07-01

    401. This difference may be the result of using filter media at Station 400 with a smaller pore size than the media used at the other two stations. Average annual gamma exposure at Station 401 is slightly greater than at Station 400 and 402. Average annual gamma exposure at all three TTR stations are in the upper range to slightly higher than values reported for the CEMP stations surrounding the TTR. At higher wind speeds, the saltation counts are greater at Station 401 than at Station 402 while the suspended particulate concentrations are greater at Station 402 than at Statin 401. Although these observations seem counterintuitive, they are likely the result of differences in the soil material present at the two sites. Station 401 is located on an interfluve elevated above two adjacent drainage channels where the soil surface is likely to be composed of coarser material. Station 402 is located in finer sediments at the playa edge and is also subject to dust from a dirt road only 500 m to the north. During prolonged high wind events, suspended dust concentrations at Station 401 peaked with the initial winds then decreased whereas dust concentrations at Station 402 peaked with each peak in the wind speed. This likely reflects a limited PM10 source that is quickly expended at Station 401 relative to an abundant PM10 source at Station 402. In CY2013, to facilitate comparisons between radiological analyses of collected dust, the filter media at all three stations will be standardized. In addition, a sequence of samples will be collected at Station 400 using both types of filter media to enable development of a mathematical relationship between the results derived from the two filter types. Additionally, having acquired approximately four years of observations at Stations 400 and 401 and a year of observations at Station 402, a period-of-record analysis of the radiological and airborne dust conditions will be undertaken.

  12. Mutagenic activity of airborne particulate matter from the urban area of Porto Alegre, Brazil

    Directory of Open Access Journals (Sweden)

    Vera Maria Ferrão Vargas

    1998-06-01

    Full Text Available The mutagenic activity of airborne particulate matter collected from three different sites within the urban area of Porto Alegre, Brazil, was investigated using a Salmonella/microsome assay. Samples were extracted by sonication, sequentially, with cyclohexane (CX, and dichloromethane (DCM, for a rough fractionation by polarity. The different fractions were tested for mutagenicity using Salmonella typhimurium strains TA98, with and without metabolic activation (S9 mix fraction, and TA98NR and TA98/1,8-DNP6, without metabolic activation. Mutagenic response was observed for frameshift strain TA98 in assays with and without metabolization for two sites (sites 2 and 3, which had considerable risk of environmental contamination by nonpolar (CX and/or moderately polar (DCM compounds. However, the values of revertants/m3 (rev/m3 were highest on the site subject to automobile exhaust (site 3 in assays without (9.56 rev/m3 and with metabolization (5.08 rev/m3. Maximum mutagenic activity was detected in the moderately polar fraction, decreasing after metabolization. Nevertheless, the nonpolar fractions (CX gave higher mutagenic activity in the presence of metabolization than in the absence of the S9 mix fraction. The responses observed for TA98NR and TA98/1,8-DNP6 strains suggest the activity of nitrocompounds.Foi investigada a atividade mutagênica de material particulado de amostras de ar coletadas em três diferentes locais dentro da área urbana da cidade de Porto Alegre, Brasil, através do ensaio Salmonella/microssoma. As amostras foram extraídas, em ultra-som, por fracionamento seqüencial de acordo com a polaridade, utilizando os solventes ciclohexano (CX e diclorometano (DCM. As diferentes frações foram testadas para mutagenicidade com as linhagens de Salmonella typhimurium TA98, em presença e ausência de ativação metabólica, e TA98NR e TA98/1,8-DNP6 em ausência de metabolização. Observou-se resposta mutagênica positiva, do tipo erro

  13. Preliminary studies of airborne particulate emmisions from the Ampellum S.A. copper smelter, Zlatna, Romania

    Directory of Open Access Journals (Sweden)

    Ben J. Williamson

    2003-04-01

    Full Text Available Preliminary studies have been carried on the characterization of particulate emissions from the Ampellum S.A. copper smelter in the town of Zlatna, Romania. The particulates studied were collected on polycarbonate filters using air pump apparatus and on the surfaces of lichens. Mass of total suspended particulates (TSP and PM10 varied from 19 to 230 μg/m3 and 3 to 146 μg/m3, respectively (PM10/TSP = 0.14 to 1.0, depending on wind direction and proximity to the smelter. Particulates on collection filters from a site directly downwind from the smelter have a mean equivalent spherical diameter (ESD of 0.94 μm (s.d. 1.1 and are dominantly made up of material with the composition of anglesite (PbSO4. The remainder of the material is a heterogeneous mixture of silicates and Fe-, Pb- and Cu-bearing phases. Particulates > 5 μm ESD are rare on the TSP filters, mainly due to the restricted sampling durations possible with the equipment used (<3 hours. Particulates have therefore been studied in the lichen Acarospora smaragdula, which was growing on posts downwind from the smelter and which was found to contain high levels and a broader range of particulates compared with the filters (<5 to 100 μm in diameter. Larger particles include 20-30 μm diameter Fe-rich spherules, which occasionally have Pb- and S-rich encrustations on their surfaces. The nature and possible health effects of the particulates are discussed and recommendations made for future studies.

  14. A new approach for determination of soluble trace metal fractions in airborne particulate matter using a dynamic extraction procedure coupled to ICP-AES

    International Nuclear Information System (INIS)

    Complete text of publication follows. The current interest in atmospheric particulate matter (PM) is mainly due to its effect on human health. A fraction that is associated with several adverse health effects - including cancer - is the metallic portion. For this reason, a great deal of research has focused on the metal composition of airborne particulate matter. Until now in most studies total elemental concentrations were determined. However, toxic effects of trace metals in airborne PM are only expected if the metals are biologically available. Thus for risk assessment detailed knowledge about the solubility of the investigated metals is required since bioavailability depends thereon. Recently various extraction schemes have been developed for batch-wise fractionation of various metals in airborne particulate matter. Although these batch-wise liquid/solid extraction methods have gained widespread acceptance in literature the eco-toxicological relevance of the information provided with these techniques is questionable, since naturally occurring processes occur always under dynamic conditions. In this study a procedure for the sequential extraction of airborne particulate matter with various leaching solutions and the subsequent on-line ICP-AES measurement of selected trace metals in the derived extracts is presented. For analysis several punches of the filter substrate were packed into indigenously developed micro-columns and treated successively with the different extraction solutions. Evaluation of the derived elution profiles provided information about the kinetics of the extraction process and allowed differentiation between individual soluble fractions.

  15. Mutagenic and recombinagenic activity of airborne particulates, PM10 and TSP, organic extracts in the Drosophila wing-spot test

    International Nuclear Information System (INIS)

    The genotoxicity associated with air pollution in the city of Canoas, Rio Grande do Sul (Brazil), was assessed in November (spring) and January (summer). We applied the somatic mutation and recombination test (SMART) in Drosophila melanogaster in its standard version with normal bioactivation (ST) and in its variant with increased cytochrome P450-dependent biotransformation capacity (HB). The data indicated the genotoxicity of TSP and PM10 collected in November, in both ST and HB crosses. The genotoxic activity of the PM10 material in the spring sample was exclusively associated with the induction of mitotic recombination, whereas the TSP genetic toxicity was due to both recombinational as well as point and/or chromosomal mutation events. Considering PM10 collected in January, a positive response-100% (17.10 m3/ml) concentration-was observed in the HB cross, which was not detected in the ST cross. - Drosophila Wing-Spot Test can be used for detection of airborne particulates mutagenesis

  16. Extensive 1-year survey of trace elements and compounds in the airborne suspended particulate matter in Cleveland, Ohio

    Science.gov (United States)

    King, R. B.; Fordyce, J. S.; Antoine, A. C.; Leibecki, H. F.; Neustadter, H. E.; Sidik, S. M.

    1976-01-01

    Concentrations of 75 chemical constituents in the airborne particulate matter were measured in Cleveland, Ohio, during 1971 and 1972. Values covering a 1-year period (45 to 50 sampling days) at each of 16 sites are presented for 60 elements. A lesser number of values is given for sulfate, nitrate, fluoride, acidity, 10 polynuclear aromatic hydrocarbon compounds, and the aliphatic hydrocarbon compounds as a group. Methods used included instrumental neutron activation, emission spectroscopy, gas chromatography, combustion techniques, and colorimetry. Uncertainties in the concentrations associated with the sampling procedures, the analysis methods, the use of several analytical facilities, and samples with concentrations below the detection limits are evaluated in detail. The data is discussed in relation to other studies and source origins. The trace constituent concentrations as a function of wind direction are used to suggest a practical method for air pollution source identification.

  17. Stopped-flow injection liquid-liquid extraction spectrophotometric determination of palladium in airborne particulate matter and automobile catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Anthemidis, A.N.; Themelis, D.G.; Stratis, J.A. [Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54006 Thessaloniki (Greece)

    2001-03-30

    A stopped-flow injection liquid-liquid extraction (SF-EX-FIA) spectrophotometric method is reported for the determination of palladium(II), using the 2,2'-dipyridyl-2-pyridylhydrazone (DPPH) as a color forming reagent. The colored complex Pd(II)-DPPH was extracted in CHCl{sub 3} and the absorbance was monitored at 560 nm. An injection valve was used as a commutator in order to combine the stopped-flow technique with liquid-liquid extraction FI system. The calibration graph was linear up to 12 mg l{sup -1} (s{sub r}=0.27%; r=0.9999) with a detection limit of c{sub L}=0.007 mg l{sup -1}. The sampling rate was 20 injections per hour. The proposed method has been successfully applied to the determination of palladium in airborne particulate matter (APM) and in automobile exhaust gas converter catalysts.

  18. A new approach for the determination of silicon in airborne particulate matter using electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Mukhtar, A; Limbeck, A

    2009-07-30

    In this work a new procedure for element specific analysis of silicon in airborne particulate matter is presented. The method is based on a preliminary treatment of the aerosol samples with nitric acid and perchloric acid leading to a mineralization of the organic sampling substrate, dissolution of soluble material and a homogeneous suspension of the remaining non-soluble sample fraction. ETAAS measurement of the derived slurries was performed using a Zr-treated graphite tube which prevents the formation of stable silicon carbide during sample measurement. Losses of volatile silicon species during sample pyrolysis were overcome by using Co(II) as matrix modifier and a pyrolysis temperature of only 300 degrees C. Furthermore this low pyrolysis temperature prevents charring of organic material which enables accurate ETAAS analysis. The method including the developed pretreatment procedure was evaluated using the Standard reference material 2709 (San Joaquin Soil) from NIST (National Institute of Standards and Technology, Gaithersburg, MD, USA). Suitability for measurement of Si in airborne particulate matter with an aerodynamic diameter aerosol samples and comparison of derived results with the findings obtained for the same samples after microwave digestion and subsequent ETAAS measurement. Finally the developed procedure was applied for the analysis of silicon in PM10 collected at an urban site in Vienna (Austria). Matrix matched calibration has been used for quantification of derived absorption signals. With the use of 20 microL sample injection volume for ETAAS analysis an instrumental detection limit of 52.2 microg L(-1) was obtained, which translates to method detection limits of approximately 0.52 microg m(-3) when considering the volumes of air collected per investigated aerosol sample. The reproducibility of analysis given as the relative standard deviation was 4.4% (n=12). Derived concentrations for Si in PM10 varied between 0.8 and 7.2 microg m(-3) which

  19. Airborne Particulate Matter in Two Multi-Family Green Buildings: Concentrations and Effect of Ventilation and Occupant Behavior.

    Science.gov (United States)

    Patton, Allison P; Calderon, Leonardo; Xiong, Youyou; Wang, Zuocheng; Senick, Jennifer; Sorensen Allacci, MaryAnn; Plotnik, Deborah; Wener, Richard; Andrews, Clinton J; Krogmann, Uta; Mainelis, Gediminas

    2016-01-01

    There are limited data on air quality parameters, including airborne particulate matter (PM) in residential green buildings, which are increasing in prevalence. Exposure to PM is associated with cardiovascular and pulmonary diseases, and since Americans spend almost 90% of their time indoors, residential exposures may substantially contribute to overall airborne PM exposure. Our objectives were to: (1) measure various PM fractions longitudinally in apartments in multi-family green buildings with natural (Building E) and mechanical (Building L) ventilation; (2) compare indoor and outdoor PM mass concentrations and their ratios (I/O) in these buildings, taking into account the effects of occupant behavior; and (3) evaluate the effect of green building designs and operations on indoor PM. We evaluated effects of ventilation, occupant behaviors, and overall building design on PM mass concentrations and I/O. Median PMTOTAL was higher in Building E (56 µg/m³) than in Building L (37 µg/m³); I/O was higher in Building E (1.3-2.0) than in Building L (0.5-0.8) for all particle size fractions. Our data show that the building design and occupant behaviors that either produce or dilute indoor PM (e.g., ventilation systems, combustion sources, and window operation) are important factors affecting residents' exposure to PM in residential green buildings. PMID:26805862

  20. Airborne Particulate Matter in Two Multi-Family Green Buildings: Concentrations and Effect of Ventilation and Occupant Behavior

    Directory of Open Access Journals (Sweden)

    Allison P. Patton

    2016-01-01

    Full Text Available There are limited data on air quality parameters, including airborne particulate matter (PM in residential green buildings, which are increasing in prevalence. Exposure to PM is associated with cardiovascular and pulmonary diseases, and since Americans spend almost 90% of their time indoors, residential exposures may substantially contribute to overall airborne PM exposure. Our objectives were to: (1 measure various PM fractions longitudinally in apartments in multi-family green buildings with natural (Building E and mechanical (Building L ventilation; (2 compare indoor and outdoor PM mass concentrations and their ratios (I/O in these buildings, taking into account the effects of occupant behavior; and (3 evaluate the effect of green building designs and operations on indoor PM. We evaluated effects of ventilation, occupant behaviors, and overall building design on PM mass concentrations and I/O. Median PMTOTAL was higher in Building E (56 µg/m3 than in Building L (37 µg/m3; I/O was higher in Building E (1.3–2.0 than in Building L (0.5–0.8 for all particle size fractions. Our data show that the building design and occupant behaviors that either produce or dilute indoor PM (e.g., ventilation systems, combustion sources, and window operation are important factors affecting residents’ exposure to PM in residential green buildings.

  1. APPLYING DATA ASSIMILATION AND ADJOINT SENSITIVITY TO EPIDEMIOLOGICAL AND POLICY STUDIES OF AIRBORNE PARTICULATE MATTER

    Science.gov (United States)

    Source-resolved fine particulate matter (PM) concentrations are needed at high spatial and temporal resolutions for epidemiological studies aimed at identifying more- and less-harmful types of PM. Building on recent advances in air quality modeling, data assimilation, and s...

  2. Evaluation of airborne respirable particulate matter and polycyclic aromatic hydrocarbon exposure of asphalt workers

    Directory of Open Access Journals (Sweden)

    Teresa Cirillo

    2007-12-01

    Full Text Available

    Introduction: Assessment of exposure to the airborne respirable particles (PM10 and polycyclic aromatic hydrocarbons (PAHs of asphalt manufacturing and road paving workers in the Campania region (Italy.

    Materials and Methods: A study was carried out during 2006 and involved 5 firms producing and employing bitumen in road paving activities. The workers studied were categorized on the basis of their job as workers in bitumen manufacturing, in road paving and in workers not exposed at bitumen fume considered like controls.

    Results: In the manufacturing plants the average concentrations of airborne PM10 were 1125±445 ìg/m3 in the HMA manufacturing workers’ areas; 314±81 ìg/m3 in the process surveyors’ cabins and 92±27 ìg/m3 in the controls’ areas (administrative offices. Within the breathing zones of the worker, the average PAHs levels in air were as follows: 367±198 ng/m3 for HMA manufacturing workers; 348±172 ng/m3 for process surveyors; 21±2 ng/m3 for the controls. At the road paving sites the average airborne PM10 levels were 1435±325 ìg/m3 for roller operators; 1610±356 ìg/m3 for paver operators; 319±108 ìg/m for the controls (traffic controllers. PAHs in the breathing zones were 1220±694 ng/m3 for the paver operators; 1360±575 ng/m3 for the roller operators’ and 139±135 ng/m3 for the traffic controllers’. The results show that the more consistent hazard for asphalt workers’ health is derived from exposure to airborne PM10 both in exposed and in non-exposed (controls workers.

  3. Second generation dichotomous sampler for large-scale monitoring of airborne particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Loo, B.W.; Adachi, R.S.; Cork, C.P.; Goulding, F.S.; Jaklevic, J.M.; Landis, D.A.; Searles, W.L.

    1979-01-01

    The differences which exist between fine (< 2.5 ..mu..m) and coarse (> 2.5 ..mu..m) airborne particles with respect to their origin, chemical properties, and environmental impact, call for their separate collection and analysis. An automated dichotomous sampler (ADS), equipped with a high efficiency single-stage virtual impactor and a microprocessor-based controller to self-correct fault conditions including filter overload, has been developed as a model for commercial production.

  4. Analysis of Airborne Particulate Matter (PM2.5 over Hong Kong Using Remote Sensing and GIS

    Directory of Open Access Journals (Sweden)

    Yuanling Zhao

    2012-05-01

    Full Text Available Airborne fine particulates (PM2.5; particulate matter with diameter less than 2.5 µm are receiving increasing attention for their potential toxicities and roles in visibility and health. In this study, we interpreted the behavior of PM2.5 and its correlation with meteorological parameters in Hong Kong, during 2007–2008. Significant diurnal variations of PM2.5 concentrations were observed and showed a distinctive bimodal pattern with two marked peaks during the morning and evening rush hour times, due to dense traffic. The study observed higher PM2.5 concentrations in winter when the northerly and northeasterly winds bring pollutants from the Chinese mainland, whereas southerly monsoon winds from the sea bring fresh air to the city in summer. In addition, higher concentrations of PM2.5 were observed in rush hours on weekdays compared to weekends, suggesting the influence of anthropogenic activities on fine particulate levels, e.g., traffic-related local PM2.5 emissions. To understand the spatial pattern of PM2.5 concentrations in the context of the built-up environment of Hong Kong, we utilized MODerate Resolution Imaging Spectroradiometer (MODIS Aerosol Optical Thickness (AOT 500 m data and visibility data to derive aerosol extinction profile, then converted to aerosol and PM2.5 vertical profiles. A Geographic Information Systems (GIS prototype was developed to integrate atmospheric PM2.5 vertical profiles with 3D GIS data. An example of the query function in GIS prototype is given. The resulting 3D database of PM2.5 concentrations provides crucial information to air quality regulators and decision makers to comply with air quality standards and in devising control strategies.

  5. Analysis of airborne particulate matter (PM2.5) over Hong Kong using remote sensing and GIS.

    Science.gov (United States)

    Shi, Wenzhong; Wong, Man Sing; Wang, Jingzhi; Zhao, Yuanling

    2012-01-01

    Airborne fine particulates (PM(2.5); particulate matter with diameter less than 2.5 μm) are receiving increasing attention for their potential toxicities and roles in visibility and health. In this study, we interpreted the behavior of PM(2.5) and its correlation with meteorological parameters in Hong Kong, during 2007-2008. Significant diurnal variations of PM(2.5) concentrations were observed and showed a distinctive bimodal pattern with two marked peaks during the morning and evening rush hour times, due to dense traffic. The study observed higher PM(2.5) concentrations in winter when the northerly and northeasterly winds bring pollutants from the Chinese mainland, whereas southerly monsoon winds from the sea bring fresh air to the city in summer. In addition, higher concentrations of PM(2.5) were observed in rush hours on weekdays compared to weekends, suggesting the influence of anthropogenic activities on fine particulate levels, e.g., traffic-related local PM(2.5) emissions. To understand the spatial pattern of PM(2.5) concentrations in the context of the built-up environment of Hong Kong, we utilized MODerate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Thickness (AOT) 500 m data and visibility data to derive aerosol extinction profile, then converted to aerosol and PM(2.5) vertical profiles. A Geographic Information Systems (GIS) prototype was developed to integrate atmospheric PM(2.5) vertical profiles with 3D GIS data. An example of the query function in GIS prototype is given. The resulting 3D database of PM(2.5) concentrations provides crucial information to air quality regulators and decision makers to comply with air quality standards and in devising control strategies.

  6. DISTRIBUTION AND CHARACTERIZATION OF POLYCYCLIC AROMATIC HYDROCARBON COMPOUNDS IN AIRBORNE PARTICULATES OF EAST ASIA

    Institute of Scientific and Technical Information of China (English)

    Yan Liu; Libin Liu; Jin-Ming Lin; Ning Tang; Kazuichi Hayakawa

    2006-01-01

    A review is presented on the distribution and characterization of polycyclic aromatic hydrocarbons (PAHs)and their derivatives, including nitro-PAHs and hydro-PAHs, on atmospheric particulates of East Asia. Generally, PAH compounds with two or three aromatic rings are released mainly into the gas phase, while those containing three or more aromatic rings are associated with particulate matter (PM) emission. Particle-associated PAHs are primarily adsorbed on fine particles, and little associated with coarse particles. Investigation into the concentration level of PAHs in different areas can serve not only to reflect the pollutant status and sources but also to lead to the formulation of control strategies.The results of the present study show that China has more severe PAH pollution than such East Asian countries as Japan and Korea.

  7. Characterization of airborne particulates by pyrolysis/mass spectrometry and carbon-14 analysis

    Energy Technology Data Exchange (ETDEWEB)

    Voorhees, K.J. (Colorado School of Mines, Golden); Durfee, S.L.; Currie, L.A.; Klouda, G.A.

    1981-08-01

    Pyrolysis/mass spectrometry (Py/MS) has been used to characterize the composition of organics in an ambient air particulate sample from the eastern Utah oil shale lands. The procedure involved collection of the individual contributors, pyrolysis of these samples, and finally a least-squares fitting of the individual contributor spectra to the pyrolysis mass spectrum of the ambient sample. The Py/MS results were verified by using /sup 14/C analysis.

  8. Piezoelectric properties of quartz and cristobalite airborne particulates as a cause of adverse health effects

    Science.gov (United States)

    Williamson, B. J.; Pastiroff, S.; Cressey, G.

    Inhalation of quartz and cristobalite dusts is commonly linked with health effects although the mechanisms involved are poorly understood. Grinding of these piezoelectric silica polymorphs produces particulates with transient piezoelectric charges. This is likely to cause vigorous reaction with atmospheric gases and, through interaction with surface charges and 'dangling bonds', may lead to the formation of highly deleterious ozonide, superoxide and hydroxyl radicals. It is hoped that this study will encourage experimental work to quantify piezoelectric effects in silica dusts and to develop a method for their neutralisation during cutting and grinding processes.

  9. Composition of airborne particulate matter in the industrial area versus mountain area

    Directory of Open Access Journals (Sweden)

    Barbora Sýkorová

    2016-03-01

    Full Text Available The paper deals with research of air pollution in two different locations on the Moravian-Silesian Region, Czech Republic. These are the sites Ostrava-Radvanice, which is located in the area affected by the industry and Ostravice in the mountains (without significant effect of the industry. The dust particles collected at these locations were subjected to a wide range of analyses. The mass concentration, the mass-size distribution, mineralogical composition, the concentration of PAHs (polycyclic aromatic hydrocarbons, and the concentrations of selected metals (Cd, Pb, Zn, Fe, Mn, As, Ni, Co, and Cr were observed at the particulate matter.

  10. Elemental composition of airborne particulate matter from Santiago City, Chile, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Prendez, M.; Ortiz, J.L.; Cortes, E.; Cassorla, V.

    1984-01-01

    In Chile, the State Public Health Office (Ministerio de Salud Publica) is responsible for pollution control and for air quality. This office has been monitoring only toxic gases and total suspended particulate matter. The present work is the first study in Chile designed to determine trace elements and their concentrations in particulate matter in the air. By use of enrichment factors, 25 trace elements were classified according to natural or anthropogenic origin. There were two sampling periods: July (winter) and September (spring) 1976. Four sites were studied, located about 6 km north, south, west and east of downtown Santiago. The south, north and west sites are urban and 55 m above sea level. The east site is suburban and approximately 270 m higher than the others. Twenty-four-hour samples were collected on Whatman-41 cellulose filter paper, in a modified stainless steel Buchner funnel. Approximately 10 m/sup 3/ were used at the urban sites and 200 m/sup 3/ at the suburban site. Instrumental neutron activation analysis (INAA) was used as the analytical technique.

  11. Trace element composition of airborne particulate matter in urban and rural areas of Bangladesh

    International Nuclear Information System (INIS)

    Size fractionated aerosol samples were collected at an urban site (Dhaka) in Bangladesh for a period of 17 months and at a rural site for six months. The samples were collected using a 'Gent' stacked filter unit in two fractions of 0-2 μm and 2-10 μm sizes. Proton induced x-ray emission (PIXE) spectroscopy has been used to determine the concentrations of 18 elements in the range of ng/m3. The elements range from Si to Sr and include Pb. The results of analysis of 292 air particulate samples of course and fine types from the urban site are presented. The results are discussed in the context of air pollution specially that of Pb. 6 refs., 7 tables., 2 figs

  12. Mutagenic and recombinagenic activity of airborne particulates, PM10 and TSP, organic extracts in the Drosophila wing-spot test

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues Dihl, Rafael [Programa de Pos Graduacao em Genetica e Biologia Molecular (PPGBM), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Grazielli Azevedo da Silva, Carla [Instituto de Quimica, Departamento de Quimica Organica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Souza do Amaral, Viviane; Reguly, Maria Luiza [Laboratorio de Diagnostico da Toxicidade Genetica (TOXIGEN), Programa de Pos Graduacao em Genetica e Toxicologia Aplicada (PPGGTA), Universidade Luterana do Brasil - ULBRA, Avenida Farroupilha 8001, 92420280 Canoas, RS (Brazil); Rodrigues de Andrade, Heloisa Helena [Laboratorio de Diagnostico da Toxicidade Genetica (TOXIGEN), Programa de Pos Graduacao em Genetica e Toxicologia Aplicada (PPGGTA), Universidade Luterana do Brasil -ULBRA, Avenida Farroupilha 8001, 92420280 Canoas, RS (Brazil)], E-mail: heloisa@ulbra.br

    2008-01-15

    The genotoxicity associated with air pollution in the city of Canoas, Rio Grande do Sul (Brazil), was assessed in November (spring) and January (summer). We applied the somatic mutation and recombination test (SMART) in Drosophila melanogaster in its standard version with normal bioactivation (ST) and in its variant with increased cytochrome P450-dependent biotransformation capacity (HB). The data indicated the genotoxicity of TSP and PM10 collected in November, in both ST and HB crosses. The genotoxic activity of the PM10 material in the spring sample was exclusively associated with the induction of mitotic recombination, whereas the TSP genetic toxicity was due to both recombinational as well as point and/or chromosomal mutation events. Considering PM10 collected in January, a positive response-100% (17.10 m{sup 3}/ml) concentration-was observed in the HB cross, which was not detected in the ST cross. - Drosophila Wing-Spot Test can be used for detection of airborne particulates mutagenesis.

  13. Observations of the effect of atmospheric processes on the genotoxic potency of airborne particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Feilberg, A.; Nielsen, T.; Poulsen, M.W.B. [Riso National Laboratory, Roskilde (Denmark); Binderup, M.-L. [Institute of Food Safety and Toxicology, Danish Veterinary and Food Administration, Soeborg (Denmark); Skov, H. [National Environmental Research Institute, Roskilde (Denmark)

    2002-10-01

    In this study, the relationship between genotoxic potency and the occurrence of polycyclic aromatic hydrocarbons (PAH), including benzo(a)pyrene (BaP), and nitro-PAH in urban and semi-rural air masses has been investigated. The Salmonella/microsome assay has been used as a measure of genotoxic potency. We find that the ratios of BaP/mutagenicity and PAH/mutagenicity are highly variable. The processes responsible for the variation are formation and degradation of mutagens and transport of polluted air masses from heavily industrialized regions. Air masses from Central Europe are shown to be highly enriched in mutagens as well as in PAH and nitro-PAH. However, the mutagenic activity is much more elevated than the PAH levels when these air masses are mixed with local urban air. Part of the variation in the PAH/mutagenicity ratio can be explained by photochemical transformation. Since BaP has been used in the past as an indicator of the carcinogenic risk of airborne particles, it is suggested that the cancer risk of air pollution has to be re-evaluated. (author)

  14. Analytical in vitro approach for studying cyto- and genotoxic effects of particulate airborne material.

    Science.gov (United States)

    Aufderheide, Michaela; Scheffler, Stefanie; Möhle, Niklas; Halter, Beat; Hochrainer, Dieter

    2011-12-01

    In the field of inhalation toxicology, progress in the development of in vitro methods and efficient exposure strategies now offers the implementation of cellular-based systems. These can be used to analyze the hazardous potency of airborne substances like gases, particles, and complex mixtures (combustion products). In addition, the regulatory authorities require the integration of such approaches to reduce or replace animal experiments. Although the animal experiment currently still has to provide the last proof of the toxicological potency and classification of a certain compound, in vitro testing is gaining more and more importance in toxicological considerations. This paper gives a brief characterization of the CULTEX® Radial Flow System exposure device, which allows the exposure of cultivated cells as well as bacteria under reproducible and stable conditions for studying cellular and genotoxic effects after the exposure at the air-liquid or air-agar interface, respectively. A commercial bronchial epithelial cell line (16HBE14o-) as well as Salmonella typhimurium tester strains were exposed to smoke of different research and commercial available cigarettes. A dose-dependent reduction of cell viability was found in the case of 16HBE14o- cells; S. typhimurium responded with a dose-dependent induction of revertants. The promising results recommend the integration of cellular studies in the field of inhalation toxicology and their regulatory acceptance by advancing appropriate validation studies.

  15. Cleanroom airborne particulate limits and 70% isopropyl alcohol: a lingering problem for pharmaceutical manufacturing?

    Science.gov (United States)

    Eaton, Tim

    2009-01-01

    Seventy percent isopropyl alcohol (70% IPA) in water for injection is extensively utilised within pharmaceutical cleanrooms for glove and surface disinfection. When supplied in pressurised containers and delivered as an aerosol, it has been demonstrated that large quantities of 70% IPA particles are generated that remain airborne for substantial periods of time. Within non-unidirectional airflow cleanroom areas, such particles are likely to be recorded by the particle monitoring system. Consequently, the derived operational limits for particles will almost certainly be at "artificially high" levels and any particle generating activities with contamination potential may be masked. These high particle levels may not comply with the requirements of Annex 1 of the European Unions Guide to Good Manufacturing Practices (EU GGMP) and the United States Food and Drug Administration (FDA) Aseptic Processing Guideline. This is the case predominantly for the larger particles (> or =5 microm), the monitoring of which is exclusively required by the Annex 1 guide. However, by using canisters that deliver the 70% IPA as a stream, large quantities of particles are not generated and more meaningful and compliant operational levels can be obtained. Additionally, the EU GGMP's Annex 1 continuing requirement to monitor particles > or =5 microm appears to have little value or scientific justification and restricts further harmonisation of the European guide with the US FDA Aseptic Processing Guideline.

  16. Confinement of airborne particulate radioactivity in the case of an accident

    International Nuclear Information System (INIS)

    In the case of an accident, the filter elements on the inlets and exhausts of the air-cleaning systems of a nuclear facility may become a part of the remaining fission product barrier. Among others, the Project Nuclear Safety is pursuing the information necessary to insure safe operation of air-cleaning systems under accident conditions. Experimental investigations into the response of HEPA filters to differential presssures involving both dry and moist air have demonstrated the occurrence of structural failure with subsequent loss of efficiency at low values of differential pressures. Contributions are being made to the development and verification of computer codes used to calculate those fluid-dynamic and thermodynamic conditions expected to prevail in an air-cleaning system as a result of potential accident situations. With regard to further investigations, a new test facility was put into operation for the realization of superimposed challenges and a new method for testing particulate removal efficiency under high temperature or high humidity was developed. (orig./HP)

  17. Dust storm contributions to airborne particulate matter in Reykjavík, Iceland

    Science.gov (United States)

    Thorsteinsson, Throstur; Gísladóttir, Guđrún; Bullard, Joanna; McTainsh, Grant

    2011-10-01

    Episodes of high levels of particulate matter (PM) in Reykjavík occur several times a year. The main sources of daily variation in PM are traffic or highly localized (e.g. construction) sources, however several episodes have been identified where these are not the cause. Examining PM10 (diameter 50-100 μg m-3; 30-min average), demonstrates that dust storms are the source of these increased levels of PM10. Since satellite coverage is sparse, visual confirmation of many such peaks in PM10 cannot be achieved. The level of pollution measured in Reykjavík during dust storms indicates that at least 200 kg s-1 of PM10 sized material is being eroded and transported away from sand plains ˜110 km away - this equates to an emission rate of 35 g m2 h-1. The source regions for dust storms in Iceland are the sandur areas on the southern coast of Iceland, and regions close to the glaciers. With climate warming, and fast retreating glaciers, the potential source regions in Iceland are rapidly increasing.

  18. Air pollution and skin diseases: Adverse effects of airborne particulate matter on various skin diseases.

    Science.gov (United States)

    Kim, Kyung Eun; Cho, Daeho; Park, Hyun Jeong

    2016-05-01

    Environmental air pollution encompasses various particulate matters (PMs). The increased ambient PM from industrialization and urbanization is highly associated with morbidity and mortality worldwide, presenting one of the most severe environmental pollution problems. This article focuses on the correlation between PM and skin diseases, along with related immunological mechanisms. Recent epidemiological studies on the cutaneous impacts of PM showed that PM affects the development and exacerbation of skin diseases. PM induces oxidative stress via production of reactive oxygen species and secretion of pro-inflammatory cytokines such as TNF-α, IL-1α, and IL-8. In addition, the increased production of ROS such as superoxide and hydroxyl radical by PM exposure increases MMPs including MMP-1, MMP-2, and MMP-9, resulting in the degradation of collagen. These processes lead to the increased inflammatory skin diseases and skin aging. In addition, environmental cigarette smoke, which is well known as an oxidizing agent, is closely related with androgenetic alopecia (AGA). Also, ultrafine particles (UFPs) including black carbon and polycyclic aromatic hydrocarbons (PAHs) enhance the incidence of skin cancer. Overall, increased PM levels are highly associated with the development of various skin diseases via the regulation of oxidative stress and inflammatory cytokines. Therefore, anti-oxidant and anti-inflammatory drugs may be useful for treating PM-induced skin diseases. PMID:27018067

  19. Implications of ammonia emissions from post-combustion carbon capture for airborne particulate matter.

    Science.gov (United States)

    Heo, Jinhyok; McCoy, Sean T; Adams, Peter J

    2015-04-21

    Amine scrubbing, a mature post-combustion carbon capture and storage (CCS) technology, could increase ambient concentrations of fine particulate matter (PM2.5) due to its ammonia emissions. To capture 2.0 Gt CO2/year, for example, it could emit 32 Gg NH3/year in the United States given current design targets or 15 times higher (480 Gg NH3/year) at rates typical of current pilot plants. Employing a chemical transport model, we found that the latter emission rate would cause an increase of 2.0 μg PM2.5/m(3) in nonattainment areas during wintertime, which would be troublesome for PM2.5-burdened areas, and much lower increases during other seasons. Wintertime PM2.5 increases in nonattainment areas were fairly linear at a rate of 3.4 μg PM2.5/m(3) per 1 Tg NH3, allowing these results to be applied to other CCS emissions scenarios. The PM2.5 impacts are modestly uncertain (±20%) depending on future emissions of SO2, NOx, and NH3. The public health costs of CCS NH3 emissions were valued at $31-68 per tonne CO2 captured, comparable to the social cost of carbon itself. Because the costs of solvent loss to CCS operators are lower than the social costs of CCS ammonia, there is a regulatory interest to limit ammonia emissions from CCS.

  20. Concentrations, sources and geochemistry of airborne particulate matter at a major European airport.

    Science.gov (United States)

    Amato, Fulvio; Moreno, Teresa; Pandolfi, Marco; Querol, Xavier; Alastuey, Andrés; Delgado, Ana; Pedrero, Manuel; Cots, Nuria

    2010-04-01

    Monitoring of aerosol particle concentrations (PM(10), PM(2.5), PM(1)) and chemical analysis (PM(10)) was undertaken at a major European airport (El Prat, Barcelona) for a whole month during autumn 2007. Concentrations of airborne PM at the airport were close to those at road traffic hotspots in the nearby Barcelona city, with means measuring 48 microg PM(10)/m(3), 21 microg PM(2.5)/m(3) and 17 microg PM(1)/m(3). Meteorological controls on PM at El Prat are identified as cleansing daytime sea breezes with abundant coarse salt particles, alternating with nocturnal land-sourced winds which channel air polluted by industry and traffic (PM(1)/PM(10) ratios > 0.5) SE down the Llobregat Valley. Chemical analyses of the PM(10) samples show that crustal PM is dominant (38% of PM(10)), followed by total carbon (OC + EC, 25%), secondary inorganic aerosols (SIA, 20%), and sea salt (6%). Local construction work for a new airport terminal was an important contributor to PM(10) crustal levels. Source apportionment modelling PCA-MLRA identifies five factors: industrial/traffic, crustal, sea salt, SIA, and K(+) likely derived from agricultural biomass burning. Whereas most of the atmospheric contamination concerning ambient air PM(10) levels at El Prat is not attributable directly to aircraft movement, levels of carbon are unusually high (especially organic carbon), as are metals possibly sourced from tyre detritus/smoke in runway dust (Ba, Zn, Mo) and from brake dust in ambient PM(10) (Cu, Sb), especially when the airport is at its most busy. We identify microflakes of aluminous alloys in ambient PM(10) filters derived from corroded fuselage and wings as an unequivocal and highly distinctive tracer for aircraft movement. PMID:20383366

  1. Tonopah Test Range Air Monitoring: CY2013 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A [DRI; Nikolich, George [DRI; Shadel, Craig [DRI; McCurdy, Greg [DRI; Etyemezian, Vicken [DRI; Miller, Julianne J [DRI

    2014-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during on-going monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2013 monitoring include: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2012 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations (this was the latest documented data available at the time of this writing); (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. However, differences in the observed dust concentrations are likely due to differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  2. Temperature-induced volatility of molecular markers in ambient airborne particulate matter

    Directory of Open Access Journals (Sweden)

    C. R. Ruehl

    2010-08-01

    Full Text Available Molecular markers are organic compounds used to represent known sources of particulate matter (PM in statistical source apportionment studies. The utility of molecular markers depends on, among other things, their ability to represent PM volatility under realistic atmospheric conditions. We measured the particle-phase concentrations and temperature-induced volatility of commonly-used molecular markers in California's heavily polluted San Joaqin Valley. Concentrations of elemental carbon, organic carbon, levoglucosan, and polycyclic aromatic hydrocarbons were not reduced by mild (~10 K heating. In contrast, both hopane/sterane and n-alkane concentrations were reduced, especially during the summer sampling events at the urban site. These results suggest that hopanes and steranes have effective saturation concentrations ~1 μg m−3, and therefore can be considered semi-volatile in realistic ambient conditions. The volatility behavior of n-alkanes during the urban summer is consistent with that predicted for absorption by suberic acid (a C8 diacid using a group contribution modelling method. Observations can also be matched by an absorbent whose composition is based on recently-obtained high-resolution aerosol mass spectrometer factors (approximately 33% "hydrocarbon-like" and 67% oxygenated organic aerosol. The diminished volatility of the n-alkanes, hopanes, and steranes during rural and/or winter experiments could be explained by a more oxygenated absorbing phase along with a non-absorptive partitioning mechanism, such as adsorption to soot. This suggests that the temperature-induced volatility of large hydrocarbons in PM is most important if a relatively non-polar absorbing organic phase exists. While the activity coefficients of most organic aerosol compounds may be close to unity, the assumption of ideality for large hydrocarbons (e.g., hopanes may result in large errors in partitioning calculations.

  3. Tonopah Test Range Air Monitoring. CY2014 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Nikoloch, George [Desert Research Inst. (DRI), Las Vegas, NV (United States); Shadel, Craig [Desert Research Inst. (DRI), Las Vegas, NV (United States); Chapman, Jenny [Desert Research Inst. (DRI), Las Vegas, NV (United States); Mizell, Steve A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Las Vegas, NV (United States); Etyemezian, Vicken [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J. [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2015-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2014 monitoring are: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2014 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations; (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. Differences in the observed dust concentrations are likely the result of differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  4. Analysis of traffic and meteorology on airborne particulate matter in Münster, northwest Germany.

    Science.gov (United States)

    Gietl, Johanna K; Klemm, Otto

    2009-07-01

    The importance of street traffic and meteorological conditions on the concentrations of particulate matter (PM) with an aerodynamic diameter smaller than 10 microm (PM10) was studied in the city of Münster in northwest Germany. The database consisted of meteorological data, data of PM10 mass concentrations and fine particle number (6-225 nm diameter) concentrations, and traffic intensity data as counted with tally hand counters at a four- to six-lane road. On working days, a significant correlation could be found between the diurnal mean PM10 mass concentration and vehicle number. The lower number of heavy-duty vehicles compared with passenger cars contributed more to the particle number concentration on working days than on weekend days. On weekends, when the vehicle number was very low, the correlation between PM10 mass concentration and vehicle number changed completely. Other sources of PM and the meteorology dominated the PM concentration. Independent of the weekday, by decreasing the traffic by approximately 99% during late-night hours, the PM10 concentration was reduced by 12% of the daily mean value. A correlation between PM10 and the particle number concentration was found for each weekday. In this study, meteorological parameters, including the atmospheric stability of the boundary layer, were also accounted for. The authors deployed artificial neural networks to achieve more information on the influence of various meteorological parameters, traffic, and the day of the week. A multilayer perceptron network showed the best results for predicting the PM10 concentration, with the correlation coefficient being 0.72. The influence of relative humidity, temperature, and wind was strong, whereas the influence of atmospheric stability and the traffic parameters was weak. Although traffic contributes a constant amount of particles in a daily and weekly cycle, it is the meteorology that drives most of the variability.

  5. Chemical characteristics and causes of airborne particulate pollution in warm seasons in Wuhan, central China

    Science.gov (United States)

    Lyu, Xiaopu; Chen, Nan; Guo, Hai; Zeng, Lewei; Zhang, Weihao; Shen, Fan; Quan, Jihong; Wang, Nan

    2016-08-01

    Continuous measurements of airborne particles and their chemical compositions were conducted in May, June, October, and November 2014 at an urban site in Wuhan, central China. The results indicate that particle concentrations remained at a relatively high level in Wuhan, with averages of 135.1 ± 4.4 (mean ± 95 % confidence interval) and 118.9 ± 3.7 µg m-3 for PM10 and 81.2 ± 2.6 and 85.3 ± 2.6 µg m-3 for PM2.5 in summer and autumn, respectively. Moreover, PM2.5 levels frequently exceeded the National Standard Level II (i.e., daily average of 75 µg m-3), and six PM2.5 episodes (i.e., daily PM2.5 averages above 75 µg m-3 for 3 or more consecutive days) were captured during the sampling campaign. Potassium was the most abundant element in PM2.5, with an average concentration of 2060.7 ± 82.3 ng m-3; this finding indicates intensive biomass burning in and around Wuhan during the study period, because almost no correlation was found between potassium and mineral elements (iron and calcium). The source apportionment results confirm that biomass burning was the main cause of episodes 1, 3, and 4, with contributions to PM2.5 of 46.6 % ± 3.0 %, 50.8 % ± 1.2 %, and 44.8 % ± 2.6%, respectively, whereas fugitive dust was the leading factor in episode 2. Episodes 5 and 6 resulted mainly from increases in vehicular emissions and secondary inorganic aerosols, and the mass and proportion of NO3- both peaked during episode 6. The high levels of NOx and NH3 and the low temperature during episode 6 were responsible for the increase of NO3-. Moreover, the formation of secondary organic carbon was found to be dominated by aromatics and isoprene in autumn, and the contribution of aromatics to secondary organic carbon increased during the episodes.

  6. Temperature-induced volatility of molecular markers in ambient airborne particulate matter

    Directory of Open Access Journals (Sweden)

    C. R. Ruehl

    2011-01-01

    Full Text Available Molecular markers are organic compounds used to represent known sources of particulate matter (PM in statistical source apportionment studies. The utility of molecular markers depends on, among other things, their ability to represent PM volatility under realistic atmospheric conditions. We measured the particle-phase concentrations and temperature-induced volatility of commonly-used molecular markers in California's heavily polluted San Joaqin Valley. Concentrations of elemental carbon, organic carbon, levoglucosan, and polycyclic aromatic hydrocarbons were not reduced by mild (~10 K heating. In contrast, both hopane/sterane and n-alkane concentrations were reduced, especially during the summer sampling events at the urban site. These results suggest that hopanes and steranes have effective saturation concentrations ~1 μg m−3, and therefore can be considered semi-volatile. The volatility of an individual compound depends both on its inherent properties (primarily vapour pressure and the interactions between itself and any potential absorbing phase. The volatility behavior of n-alkanes during the urban summer is consistent with that predicted for absorption by suberic acid (a C8 diacid using a group contribution modelling method. Observations can also be matched by an absorbent whose composition is based on recently-obtained high-resolution aerosol mass spectrometer factors (approximately 33% "hydrocarbon-like" and 67% oxygenated organic aerosol. The reduced evaporation of the n-alkanes, hopanes, and steranes with mild heating during rural and/or winter experiments could be explained by a more oxygenated absorbing phase along with a non-absorptive partitioning mechanism, such as adsorption to soot. This suggests that the temperature-induced volatility of large hydrocarbons in PM is most important if a relatively non-polar absorbing organic phase exists. While the activity coefficients of most organic

  7. Chemical composition and size distribution of airborne particulate matters in Beijing during the 2008 Olympics

    Science.gov (United States)

    Li, Xingru; Wang, Lili; Wang, Yuesi; Wen, Tianxue; Yang, Yongjie; Zhao, Yanan; Wang, Yingfeng

    2012-04-01

    burning. The concentrations of atmospheric pollutants declined during the 2008 Olympic Games, indicating that the pollution control measures were effective in decreasing particulate air pollution in Beijing.

  8. Airborne particulate endocrine disrupting compounds in China: Compositions, size distributions and seasonal variations of phthalate esters and bisphenol A

    Science.gov (United States)

    Li, Jianjun; Wang, Gehui

    2015-03-01

    Phthalate esters and bisphenol A (BPA) are endocrine disrupting compounds (EDCs) and ubiquitously occur in the environment. In the past decade we have characterized atmospheric organic aerosols from various environments (e.g., urban, rural, mountain and marine) of East Asia on a molecular level, but not investigated EDCs in the samples. In the current study we re-analyzed our database for concentrations, compositions and size distributions of phthalates and BPA and compared with those in the literature to improve the understanding on air pollution status in China. Our results showed that airborne particulate phthalates and BPA are 63-1162 ng m- 3 and 1.0-20 ng m- 3 in the urban regions in China, respectively, being one to two orders of magnitude higher than those in the developed countries. Among the detected phthalates in Chinese urban areas, bis(2-ethylhexyl) phthalate (BEHP) is the predominant congener, contributing to 23-79% (ave. 53 ± 15%) of the total phthalates. Concentrations of phthalates and bisphenol A in Shanghai and Xi'an (two mega-cities in China) in 2009 were 3-84% lower than those in 2003, probably indicating a positive effect of the government's air pollution control in the recent years. Phthalates are higher in summer than in winter, because they are not chemically bonded to the polymeric matrix and more easily evaporate into the air under higher temperature conditions. Based on the size distribution observation, we found that diisobutyl and dibutyl phthalates mainly exist in coarse particles because of high volatilities, in contrast to BEHP and BPA, which are dominant in fine particles due to less volatility. Our results also indicate that BPA is mostly derived from the open burning of solid waste while phthalates are derived from both direct evaporation from the matrix and solid waste combustion.

  9. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hong [Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY (United States); Shamy, Magdy [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Kluz, Thomas; Muñoz, Alexandra B.; Zhong, Mianhua; Laulicht, Freda [Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY (United States); Alghamdi, Mansour A.; Khoder, Mamdouh I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Chen, Lung-Chi [Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY (United States); Costa, Max, E-mail: Max.Costa@nyumc.org [Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY (United States)

    2012-12-01

    Epidemiological studies have established a positive correlation between human mortality and increased concentration of airborne particulate matters (PM). However, the mechanisms underlying PM related human diseases, as well as the molecules and pathways mediating the cellular response to PM, are not fully understood. This study aims to investigate the global gene expression changes in human cells exposed to PM{sub 10} and to identify genes and pathways that may contribute to PM related adverse health effects. Human bronchial epithelial cells were exposed to PM{sub 10} collected from Saudi Arabia for 1 or 4 days, and whole transcript expression was profiled using the GeneChip human gene 1.0 ST array. A total of 140 and 230 genes were identified that significantly changed more than 1.5 fold after PM{sub 10} exposure for 1 or 4 days, respectively. Ingenuity Pathway Analysis revealed that different exposure durations triggered distinct pathways. Genes involved in NRF2-mediated response to oxidative stress were up-regulated after 1 day exposure. In contrast, cells exposed for 4 days exhibited significant changes in genes related to cholesterol and lipid synthesis pathways. These observed changes in cellular oxidative stress and lipid synthesis might contribute to PM related respiratory and cardiovascular disease. -- Highlights: ► PM exposure modulated gene expression and associated pathways in BEAS-2B cells. ► One-day exposure to PM induced genes involved in responding to oxidative stress. ► 4-day exposure to PM changed genes associated to cholesterol and lipid synthesis.

  10. Multi-element analysis of airborne particulate matter from different work tasks during subsea tunnel rehabilitation work.

    Science.gov (United States)

    Weggeberg, Hanne; Føreland, Solveig; Buhagen, Morten; Hilt, Bjørn; Flaten, Trond Peder

    2016-10-01

    Tunnel rehabilitation work involves exposure to various air contaminants, including airborne particulate matter (APM). Little is known on the contents of different chemical components of APM generated during tunnel work. The objective of the present study was to characterize exposure to APM and various elements for different job categories in different size fractions of APM during a subsea tunnel rehabilitation project carried out in Western Norway. Personal as well as stationary samples of inhalable, thoracic and respirable dust were collected from workers divided into 11 different job categories based on work operations performed, and air concentrations of a range of elements were determined using high-resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS). Overall, APM concentrations were low, but with some measurements exceeding the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV) for inhalable particles, and considerable proportions of respirable and especially inhalable APM exceeding 10% of the TLVs. For most elements, air concentrations measured were quite low, in the ng/m(3) range, except for the major crustal elements Si, Fe, Al, and Mg, which were found to be in the µg/m(3) range. Asphalt millers overall had the highest exposure levels for APM and most measured elements; for instance, mean concentrations of V, Rb, and Mn were 380, 210, and 2000 ng/m(3) in inhalable and 33, 44, and 310 ng/m(3) in respirable APM. Mounting PVC membrane seemed to generate elevated levels of Cr, Zn, Sn, Pb, Sb, As, Mn, Fe, and Ni, whereas typical bedrock elements were elevated during drilling activities compared to the low exposed categories lead car drivers, foremen/surveyors, drivers of heavy-duty vehicles, and electricians. Overall, stationary samples contained lower amounts of dust and elemental constituents compared to personal samples. Elemental air concentrations were highly variable with occasional elevated

  11. Climate impact on airborne particulate matter concentrations in California using seven year analysis periods

    Directory of Open Access Journals (Sweden)

    A. Mahmud

    2010-11-01

    Full Text Available The effect of global climate change on the annual average concentration of fine particulate matter (PM2.5 in California was studied using a climate-air quality modeling system composed of global through regional models. Output from the NCAR/DOE Parallel Climate Model (PCM generated under the "business as usual" global emissions scenario was downscaled using the Weather Research and Forecasting (WRF model followed by air quality simulations using the UCD/CIT airshed model. The system represents major atmospheric processes acting on gas and particle phase species including meteorological effects on emissions, advection, dispersion, chemical reaction rates, gas-particle conversion, and dry/wet deposition. The air quality simulations were carried out for the entire state of California with a resolution of 8-km for the years 2000–2006 (present climate with present emissions and 2047–2053 (future climate with present emissions. Each of these 7-year analysis periods was analyzed using a total of 1008 simulated days to span a climatologically relevant time period with a practical computational burden. The 7-year windows were chosen to properly account for annual variability with the added benefit that the air quality predictions under the present climate could be compared to actual measurements. The climate-air quality modeling system successfully predicted the spatial pattern of present climate PM2.5 concentrations in California but the absolute magnitude of the annual average PM2.5 concentrations were under-predicted by ~4–39% in the major air basins. The majority of this under-prediction was caused by excess ventilation predicted by PCM-WRF that should be present to the same degree in the current and future time periods so that the net bias introduced into the comparison is minimized.

    Surface temperature, relative humidity (RH, rain rate, and wind speed were predicted to increase in the future climate

  12. Climate impact on airborne particulate matter concentrations in California using seven year analysis periods

    Science.gov (United States)

    Mahmud, A.; Hixson, M.; Hu, J.; Zhao, Z.; Chen, S.-H.; Kleeman, M. J.

    2010-11-01

    The effect of global climate change on the annual average concentration of fine particulate matter (PM2.5) in California was studied using a climate-air quality modeling system composed of global through regional models. Output from the NCAR/DOE Parallel Climate Model (PCM) generated under the "business as usual" global emissions scenario was downscaled using the Weather Research and Forecasting (WRF) model followed by air quality simulations using the UCD/CIT airshed model. The system represents major atmospheric processes acting on gas and particle phase species including meteorological effects on emissions, advection, dispersion, chemical reaction rates, gas-particle conversion, and dry/wet deposition. The air quality simulations were carried out for the entire state of California with a resolution of 8-km for the years 2000-2006 (present climate with present emissions) and 2047-2053 (future climate with present emissions). Each of these 7-year analysis periods was analyzed using a total of 1008 simulated days to span a climatologically relevant time period with a practical computational burden. The 7-year windows were chosen to properly account for annual variability with the added benefit that the air quality predictions under the present climate could be compared to actual measurements. The climate-air quality modeling system successfully predicted the spatial pattern of present climate PM2.5 concentrations in California but the absolute magnitude of the annual average PM2.5 concentrations were under-predicted by ~4-39% in the major air basins. The majority of this under-prediction was caused by excess ventilation predicted by PCM-WRF that should be present to the same degree in the current and future time periods so that the net bias introduced into the comparison is minimized. Surface temperature, relative humidity (RH), rain rate, and wind speed were predicted to increase in the future climate while the ultra violet (UV) radiation was predicted to decrease

  13. Airborne particulates. European directives and standardization; Matieres particulaires dans l`air ambiant directives europeennes et normalisation

    Energy Technology Data Exchange (ETDEWEB)

    Houdret, J.L. [Ecole Nationale Superieure des Mines, 59 - Douai (France)

    1996-12-31

    The development of future European directives concerning atmospheric dusts and particulates, organization of the in-charge committee, measurement requirements and limit value determination processes are presented. Various measuring methods and instruments used for particulate and aerosol measurements are reviewed

  14. Assessing deposition of airborne particulates and gases in the Selkirk area using lichens growing on tree trunks : non-technical summary

    International Nuclear Information System (INIS)

    An independent study was conducted to address the public concern regarding airborne emissions from Manitoba Hydro's coal-fired electricity generating station located in the Selkirk area. This document is a non-technical summary of the report issued by Ecostem Ltd. Since there are no air quality monitoring stations in the study area which covers more than 1,000 square km, Ecostem used lichens as biological indicators of historical deposition of airborne dust and gases. The sources of airborne dust and gases include urban centres, agriculture, pesticides, fertilizers, waste burning, vehicle use and manufacturing. Lichens have been commonly used as indicators since 1866. They provide useful information because they are long-lived, are not mobile, acquire most of their nutrients from the atmosphere, retain the airborne deposition they initially trap, and they can accumulate airborne particles year round. It is possible to obtain a record of the chemicals that have been present in the air by simply analyzing the lichen tissue. This study used the concentrations of various chemical elements in lichen tissue and the distribution and abundance of lichen species to see if airborne particulates were substantially elevated in the Selkirk area and if so, to determine if the coal-fired generating station was the apparent source of the pollution. A total of 62 stations and lichens on more than 400 trees were sampled. Sulphur, a fingerprint for gaseous emissions from the generating station, had tissue concentrations that were 1.32 times higher. Statistical analysis suggests that barium, boron and strontium were the clearest fingerprint elements for generating station emissions. Tissue concentrations of antimony, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, molybdenum, nickel, selenium, silver, thallium, tin, vanadium and zinc were examined further because they are considered to be toxic. It was noted that a conclusion regarding human health cannot be made

  15. Monitoring and Method development of Hg in Istanbul Airborne Particulates by Solid Sampling Continuum Source-High Resolution Electrothermal Atomic Absorption Spectromerty

    Directory of Open Access Journals (Sweden)

    Soydemir E.

    2014-07-01

    Full Text Available In this work, a method has been developed and monitoring for the determination of mercury in PM2.5 airborne particulates by solid sampling high-resolution continuum source electrothermal atomic absorption spectrometry. The PM2.5 airborne particulates were collected on quartz filters using high volume samplers (500 L/min in Istanbul (Turkey for 96 hours every month in one year. At first, experimental conditions as well as the validation tests were optimized using collected filter. For this purpose, the effects of atomization temperature, amount of sample intoduced in to the furnace, addition of acids and/or KMnO4 on the sample, covering of graphite tube and platform or using of Ag nanoparticulates, Au nanoparticulates, and Pd solutions on the accuracy and precision were investigated. After optimization of the experimental conditions, the mercury concentrations were determined in the collected filter. The filters with PM2.5 airborne particulates were dried, divided into small fine particles and then Hg concentrations were determined directly. In order to eliminate any error due to the sensitivity difference between aqueous standards and solid samples, the quantification was performed using solid calibrants. The limit of detection, based on three times the standard deviations for ten atomizations of an unused filter, was 30 ng/g. The Hg content was dependent on the sampling site, season etc, ranging from

  16. Determination of heavy metals concentrations in airborne particulates matter (APM) from Manjung district, Perak using energy dispersive X-ray fluorescence (EDXRF) spectrometer

    Science.gov (United States)

    Arshad, Nursyairah; Hamzah, Zaini; Wood, Ab. Khalik; Saat, Ahmad; Alias, Masitah

    2015-04-01

    Airborne particulates trace metals are considered as public health concern as it can enter human lungs through respiratory system. Generally, any substance that has been introduced to the atmosphere that can cause severe effects to living things and the environment is considered air pollution. Manjung, Perak is one of the development districts that is active with industrial activities. There are many industrial activities surrounding Manjung District area such as coal fired power plant, quarries and iron smelting which may contribute to the air pollution into the environment. This study was done to measure the concentrations of Hg, U, Th, K, Cu, Fe, Cr, Zn, As, Se, Pb and Cd in the Airborne Particulate Matter (APM) collected at nine locations in Manjung District area within 15 km radius towards three directions (North, North-East and South-East) in 5 km intervals. The samples were collected using mini volume air sampler with cellulose filter through total suspended particulate (TSP). The sampler was set up for eight hours with the flow rate of 5 L/min. The filter was weighed before and after sample collection using microbalance, to get the amount of APM and kept in desiccator before analyzing. The measurement was done using calibrated Energy Dispersive X-Ray Fluorescence (EDXRF) Spectrometer. The air particulate concentrations were found below the Malaysia Air Quality Guidelines for TSP (260 µg/m3). All of the metals concentrations were also lower than the guidelines set by World Health Organization (WHO), Ontario Ministry of the Environment and Argonne National Laboratory, USA NCRP (1975). From the concentrations, the enrichment factor were calculated.

  17. A pilot study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain.

    Science.gov (United States)

    Bhatt, Dhaval P; Puig, Kendra L; Gorr, Matthew W; Wold, Loren E; Combs, Colin K

    2015-01-01

    Exposure to air pollutants, including particulate matter, results in activation of the brain inflammatory response and Alzheimer disease (AD)-like pathology in dogs and humans. However, the length of time required for inhalation of ambient particulate matter to influence brain inflammation and AD pathology is less clear. Here, we studied the effect of 3 and 9 months of air particulate matter (PM2.5) exposure on brain inflammatory phenotype and pathological hallmarks of AD in C57BL/6 mice. Using western blot, ELISA, and cytokine array analysis we quantified brain APP, beta-site APP cleaving enzyme (BACE), oligomeric protein, total Aβ 1-40 and Aβ 1-42 levels, inducible nitric oxide synthase (iNOS), nitrotyrosine-modified proteins, HNE-Michael adducts, vascular cell adhesion molecule 1 (VCAM-1), glial markers (GFAP, Iba-1), pre- and post- synaptic markers (synaptophysin and PSD-95), cyclooxygenase (COX-1, COX-2) levels, and the cytokine profile in PM2.5 exposed and filtered air control mice. Only 9 month PM2.5 exposure increased BACE protein levels, APP processing, and Aβ 1-40 levels. This correlated with a concomitant increase in COX-1 and COX-2 protein levels and a modest alteration in the cytokine profile. These data support the hypothesis that prolonged exposure to airborne particulate matter has the potential to alter brain inflammatory phenotype and promote development of early AD-like pathology.

  18. A pilot study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Dhaval P Bhatt

    Full Text Available Exposure to air pollutants, including particulate matter, results in activation of the brain inflammatory response and Alzheimer disease (AD-like pathology in dogs and humans. However, the length of time required for inhalation of ambient particulate matter to influence brain inflammation and AD pathology is less clear. Here, we studied the effect of 3 and 9 months of air particulate matter (<2.5 μm diameter, PM2.5 exposure on brain inflammatory phenotype and pathological hallmarks of AD in C57BL/6 mice. Using western blot, ELISA, and cytokine array analysis we quantified brain APP, beta-site APP cleaving enzyme (BACE, oligomeric protein, total Aβ 1-40 and Aβ 1-42 levels, inducible nitric oxide synthase (iNOS, nitrotyrosine-modified proteins, HNE-Michael adducts, vascular cell adhesion molecule 1 (VCAM-1, glial markers (GFAP, Iba-1, pre- and post- synaptic markers (synaptophysin and PSD-95, cyclooxygenase (COX-1, COX-2 levels, and the cytokine profile in PM2.5 exposed and filtered air control mice. Only 9 month PM2.5 exposure increased BACE protein levels, APP processing, and Aβ 1-40 levels. This correlated with a concomitant increase in COX-1 and COX-2 protein levels and a modest alteration in the cytokine profile. These data support the hypothesis that prolonged exposure to airborne particulate matter has the potential to alter brain inflammatory phenotype and promote development of early AD-like pathology.

  19. The “geotoxicology” of airborne particulate matter: implications for public health, public policy, and environmental security (Invited)

    Science.gov (United States)

    Plumlee, G. S.; Morman, S. A.

    2009-12-01

    Exposures to airborne particulate matter (PM) have been documented and hypothesized as the cause of a wide variety of adverse health effects. Most attention has focused on potential health effects of occupational and environmental exposures to many types of anthropogenic PM, such as mineral dusts or combustion byproducts of fossil fuels. However, geogenic PM (produced from the Earth by natural processes) and geoanthropogenic PM (produced from natural sources but modified by human activities) are also increasingly of concern as potential agents of toxicity and disease, via both environmental and occupational exposures. Geotoxicology can be defined as the study of the toxicological characteristics and potential health effects of geogenic and geoanthropogenic earth materials. Acute exposures to high PM concentrations are associated with exacerbated asthma, other pulmonary inflammatory responses, cardiovascular problems, and other issues. Some diseases can result from inhalation of dust-borne pathogens. PM can contain bioaccessible (readily dissolved in the body’s fluids) contaminants that, if absorbed in sufficient doses, can trigger toxicity. Acutely bioreactive PM, such as alkaline wildfire ash or acidic volcanic fog, can trigger acute irritation or damage of the respiratory tract, eyes, and skin. Biodurable PM such as asbestos fibers and crystalline silica are poorly cleared by lung macrophages, do not readily dissolve in the fluids lining the lungs, and can therefore persist in the lungs for decades. In sufficient dose, pneumoconioses can result from exposure to biodurable minerals, and chronic fluid-mineral reactions in the body (such as redox cycling and formation of free radicals) are thought to help promote cancers such as lung cancer and (in the case of asbestos) mesothelioma. Many key research questions remain, such as the exact mechanisms by which many types of PM cause disease, or the levels of exposure above which various types of PM begin to pose a

  20. RECOVERY OF SEMI-VOLATILE ORGANIC COMPOUNDS DURING SAMPLE PREPARATION: IMPLICATIONS FOR CHARACTERIZATION OF AIRBORNE PARTICULATE MATTER

    Science.gov (United States)

    Semi-volatile compounds present special analytical challenges not met by conventional methods for analysis of ambient particulate matter (PM). Accurate quantification of PM-associated organic compounds requires validation of the laboratory procedures for recovery over a wide v...

  1. The use of nuclear and related techniques for the studies of airborne particulate matter in workplace including tissue analysis and possible impacts on human health in a metal industry

    International Nuclear Information System (INIS)

    Various processes in a metal industry may produce gases and fine airborne particulate matter that hazardous to human health. The present study deals with assessment of levels and health effects of airborne particulate matter in a metal industry. The objective is achieved by determination of elemental levels in blood, nail and hair of workers and airborne particulate matter that are collected from their workplace. The elemental levels in blood, nail and hair of the workers will be compared to those of control. Their health condition are examined by medical examination and biochemical analysis of their blood. The blood was drawn following an overnight fast before breakfast, by means of I.V. catheter into three polyethylene tubes. The blood samples in the first tubes were sent to clinical laboratory for biochemical examination. Those in the second and third tubes, which are considered free from metal contamination by the needle of the catheter, are used for trace element study. Sera in the polyethylene tubes were separated from erythrocyte by centrifugation, then cooled by liquid nitrogen and freeze dried. Approximately 1 g of toe nail and hair samples were taken respectively from every worker. To eliminate grease and surface contamination the hair samples were rinse with acetone. Airborne particulate samples were collected from the workplace using Gent sampler. These samples are ready for elemental analysis. Results of biochemical analysis and medical examinations of the workers are presented in this report. The correlation among various parameters will be determined by statistical analysis. (author)

  2. Measurement of airborne 131I, 134Cs, and 137Cs nuclides due to the Fukushima reactors accident in air particulate in Milan (Italy)

    CERN Document Server

    Clemenza, Massimiliano; Previtali, Ezio; Sala, Elena

    2011-01-01

    After the earthquake and the tsunami occurred in Japan on 11th March 2011, four of the Fukushima reactors had released in air a large amount of radioactive isotopes that had been diffused all over the world. The presence of airborne 131I, 134Cs, and 137Cs in air particulate due to this accident has been detected and measured in the Low Radioactivity Laboratory operating in the Department of Environmental Sciences of the University of Milano-Bicocca. The sensitivity of the detecting apparatus is of 0.2 \\mu Bq/m3 of air. Concentration and time distribution of these radionuclides were determined and some correlations with the original reactor releases were found. Radioactive contaminations ranging from a few to 400 \\mu Bq/m3 for the 131I and of a few tens of \\mu Bq/m3 for the 137Cs and 134Cs have been detected

  3. Tillandsia stricta Sol (Bromeliaceae) leaves as monitors of airborne particulate matter-A comparative SEM methods evaluation: Unveiling an accurate and odd HP-SEM method.

    Science.gov (United States)

    de Oliveira, Martha Lima; de Melo, Edésio José Tenório; Miguens, Flávio Costa

    2016-09-01

    Airborne particulate matter (PM) has been included among the most important air pollutants by governmental environment agencies and academy researchers. The use of terrestrial plants for monitoring PM has been widely accepted, particularly when it is coupled with SEM/EDS. Herein, Tillandsia stricta leaves were used as monitors of PM, focusing on a comparative evaluation of Environmental SEM (ESEM) and High-Pressure SEM (HPSEM). In addition, specimens air-dried at formaldehyde atmosphere (AD/FA) were introduced as an SEM procedure. Hydrated specimen observation by ESEM was the best way to get information from T. stricta leaves. If any artifacts were introduced by AD/FA, they were indiscernible from those caused by CPD. Leaf anatomy was always well preserved. PM density was determined on adaxial and abaxial leaf epidermis for each of the SEM proceedings. When compared with ESEM, particle extraction varied from 0 to 20% in air-dried leaves while 23-78% of particles deposited on leaves surfaces were extracted by CPD procedures. ESEM was obviously the best choice over other methods but morphological artifacts increased in function of operation time while HPSEM operation time was without limit. AD/FA avoided the shrinkage observed in the air-dried leaves and particle extraction was low when compared with CPD. Structural and particle density results suggest AD/FA as an important methodological approach to air pollution biomonitoring that can be widely used in all electron microscopy labs. Otherwise, previous PM assessments using terrestrial plants as biomonitors and performed by conventional SEM could have underestimated airborne particulate matter concentration. PMID:27357408

  4. Tillandsia stricta Sol (Bromeliaceae) leaves as monitors of airborne particulate matter-A comparative SEM methods evaluation: Unveiling an accurate and odd HP-SEM method.

    Science.gov (United States)

    de Oliveira, Martha Lima; de Melo, Edésio José Tenório; Miguens, Flávio Costa

    2016-09-01

    Airborne particulate matter (PM) has been included among the most important air pollutants by governmental environment agencies and academy researchers. The use of terrestrial plants for monitoring PM has been widely accepted, particularly when it is coupled with SEM/EDS. Herein, Tillandsia stricta leaves were used as monitors of PM, focusing on a comparative evaluation of Environmental SEM (ESEM) and High-Pressure SEM (HPSEM). In addition, specimens air-dried at formaldehyde atmosphere (AD/FA) were introduced as an SEM procedure. Hydrated specimen observation by ESEM was the best way to get information from T. stricta leaves. If any artifacts were introduced by AD/FA, they were indiscernible from those caused by CPD. Leaf anatomy was always well preserved. PM density was determined on adaxial and abaxial leaf epidermis for each of the SEM proceedings. When compared with ESEM, particle extraction varied from 0 to 20% in air-dried leaves while 23-78% of particles deposited on leaves surfaces were extracted by CPD procedures. ESEM was obviously the best choice over other methods but morphological artifacts increased in function of operation time while HPSEM operation time was without limit. AD/FA avoided the shrinkage observed in the air-dried leaves and particle extraction was low when compared with CPD. Structural and particle density results suggest AD/FA as an important methodological approach to air pollution biomonitoring that can be widely used in all electron microscopy labs. Otherwise, previous PM assessments using terrestrial plants as biomonitors and performed by conventional SEM could have underestimated airborne particulate matter concentration.

  5. Fractionation of airborne particulate-bound elements in haze-fog episode and associated health risks in a megacity of southeast China.

    Science.gov (United States)

    Li, Huiming; Wang, Qin'geng; Shao, Min; Wang, Jinhua; Wang, Cheng; Sun, Yixuan; Qian, Xin; Wu, Hongfei; Yang, Meng; Li, Fengying

    2016-01-01

    Haze caused by high particulate matter loadings is an important environmental issue. PM2.5 was collected in Nanjing, China, during a severe haze-fog event and clear periods. The particulate-bound elements were chemically fractionated using sequential extractions. The average PM2.5 concentration was 3.4 times higher during haze-fog (96-518 μg/m(3)) than non-haze fog periods (49-142 μg/m(3)). Nearly all elements showed significantly higher concentrations during haze-fog than non-haze fog periods. Zn, As, Pb, Cd, Mo and Cu were considered to have higher bioavailability and enrichment degree in the atmosphere. Highly bioavailable fractions of elements were associated with high temperatures. The integrated carcinogenic risk for two possible scenarios to individuals exposed to metals was higher than the accepted criterion of 10(-6), whereas noncarcinogenic risk was lower than the safe level of 1. Residents of a city burdened with haze will incur health risks caused by exposure to airborne metals.

  6. Analysis of palladium concentrations in airborne particulate matter with reductive co-precipitation, He collision gas, and ID-ICP-Q-MS

    Energy Technology Data Exchange (ETDEWEB)

    Alsenz, H.; Zereini, F.; Puettmann, W. [J.W. Goethe-University, Institute for Atmospheric and Environmental Sciences, Department of Environmental Analytical Chemistry, Frankfurt/Main (Germany); Wiseman, C.L.S. [University of Toronto, Centre for Environment, Toronto, ON (Canada)

    2009-11-15

    The concentration of platinum group elements (PGE) in the environment has increased significantly in the last 20 years mainly due to their use as catalysts in automotive catalytic converters. The quantitation of these metals in different environmental compartments is, however, challenging due to their very low concentrations and the presence of interfering matrix constituents when inductively coupled plasma-mass spectrometry (ICP-MS) is used for analysis. Previously, the research focus was on the analysis of platinum (Pt) and rhodium (Rh). However, due to the increasing use of palladium (Pd) in automotive catalytic converters, quantitation of this element in airborne particulate matter (PM) is also needed. Compared to Pt and Rh, measurements of Pd using ICP-MS are plagued by greater molecular interferences arising from elements such as copper (Cu), zinc (Zn) strontium (Sr), yttrium (Y), and zirconium (Zr). The aim of this study was to evaluate the applicability of reductive co-precipitation procedures using both mercury (Hg) and tellurium (Te) for the pre-concentration of Pd from airborne PM. Furthermore, helium (He) was tested as a collision gas for isotope dilution-inductively coupled plasma-quadrupole-mass spectrometry (ID-ICP-Q-MS) to measure Pd in the Hg and Te precipitates. Airborne PM samples (PM{sub 10}) were collected from Neuglobsow (Brandenburg, north-eastern Germany) and Deuselbach (Rhineland-Palatinate, south-western Germany), considered to represent background levels, and from the city Frankfurt am Main (Hesse, Germany), a high-traffic area. Samples were first digested with aqua regia in a high-pressure asher (HPA) at 320 C and 130 bar prior to the application of reductive co-precipitation procedures. The method was validated with road dust reference material BCR-723 and the CANMET-CCRMP reference material TDB-1 and WPR-1. In airborne PM collected at the background areas Neuglobsow and Deuselbach, Pd was detected with median concentrations values of 0

  7. Analysis of palladium concentrations in airborne particulate matter with reductive co-precipitation, He collision gas, and ID-ICP-Q-MS.

    Science.gov (United States)

    Alsenz, H; Zereini, F; Wiseman, C L S; Püttmann, W

    2009-11-01

    The concentration of platinum group elements (PGE) in the environment has increased significantly in the last 20 years mainly due to their use as catalysts in automotive catalytic converters. The quantitation of these metals in different environmental compartments is, however, challenging due to their very low concentrations and the presence of interfering matrix constituents when inductively coupled plasma-mass spectrometry (ICP-MS) is used for analysis. Previously, the research focus was on the analysis of platinum (Pt) and rhodium (Rh). However, due to the increasing use of palladium (Pd) in automotive catalytic converters, quantitation of this element in airborne particulate matter (PM) is also needed. Compared to Pt and Rh, measurements of Pd using ICP-MS are plagued by greater molecular interferences arising from elements such as copper (Cu), zinc (Zn) strontium (Sr), yttrium (Y), and zirconium (Zr). The aim of this study was to evaluate the applicability of reductive co-precipitation procedures using both mercury (Hg) and tellurium (Te) for the pre-concentration of Pd from airborne PM. Furthermore, helium (He) was tested as a collision gas for isotope dilution-inductively coupled plasma-quadrupole-mass spectrometry (ID-ICP-Q-MS) to measure Pd in the Hg and Te precipitates. Airborne PM samples (PM10) were collected from Neuglobsow (Brandenburg, north-eastern Germany) and Deuselbach (Rhineland-Palatinate, south-western Germany), considered to represent background levels, and from the city Frankfurt am Main (Hesse, Germany), a high-traffic area. Samples were first digested with aqua regia in a high-pressure asher (HPA) at 320 degrees C and 130 bar prior to the application of reductive co-precipitation procedures. The method was validated with road dust reference material BCR-723 and the CANMET-CCRMP reference material TDB-1 and WPR-1. In airborne PM collected at the background areas Neuglobsow and Deuselbach, Pd was detected with median concentrations values of

  8. Polycyclic aromatic hydrocarbons in the airborne particulate matter at a location 40 km north of Bangkok, Thailand

    Science.gov (United States)

    Kim Oanh, N. T.; Bætz Reutergårdh, L.; Dung, N. Tr.; Yu, M.-H.; Yao, W.-X.; Co, H. X.

    Total suspended particulate matter in ambient air was sampled by high-volume samplers at four sites at the Asian Institute of Technology campus, west of the Phahonyothin Road, Phathumthani Province, 40 km North of Bangkok, Thailand. The concentrations of 18 polycyclic aromatic hydrocarbons (PAH), were measured by gas chromatography with flame ionisation and/or liquid chromatography with fluorescence detection. The PAH profile with relatively high concentrations of benzo(ghi)perylene and coronene, decreasing with the distance from the road, suggested a substantial contribution from the traffic. The concentrations in the core of the campus were in the same range as those reported for residential areas in the Bangkok Metropolitan.

  9. Assessment of levels and 'health-effects' of airborne particulate matter in mining, metal refining and metal working industries using nuclear and related analytical techniques

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) has been supporting, over the years, several coordinated research programmes (CRPs) on various research topics related to environmental issues impacting human health. The primary aim of these CRPs has been to help enhance the research and development capabilities in the Member States, particularly among developing countries; to identify the sources of various environmental contaminants and evaluate their fate; and to provide for the basis of improved health among human populations by the use of nuclear and related analytical techniques. The CRP on Assessment of Levels and Health-Effects of Airborne Particulate Matter in Mining, Metal Refining and Metal Working Industries using nuclear and related analytical techniques focused on improving the competence for research on workplace monitoring in a variety of industrial environments. The personal monitoring of the APM (airborne particulate matter) of the exposed workforce was carried out for the first time by many participants. Nuclear and related analytical techniques, including the application of proton micro-beam, were used to generate the trace element concentration profiles in various biomarkers tissues of the exposed workers. The quality assurance/quality control (QA/QC) aspects related to the CRP were addressed through intercomparison analyses of APM on filter paper samples and freeze dried human urine samples to generate validated data. These data have helped to generate correlations between the occupational exposure measured and the magnitude of the biological response. Such new information is essential to evolve procedures to considerably reduce/eliminate the pollutants in the workplace environment and to make informed decisions on the evolution of standards in working environments aimed at preserving the health of workers. The purpose of this TECDOC is to provide an overview of the activities performed under the CRP by the participants. The overall achievements

  10. Determination of water-soluble inorganic species in airborne atmospheric particulate matter in an Urban Area in Jordan

    International Nuclear Information System (INIS)

    Major water soluble cations and anions in inhalable (INP) and noninhalable (Nip) airbome particulate matter samples have been determined in an urban area of Amman city of Jordan during Winter, 1996 by ion chromatography. The total average level of F-, CI+, NO3+, SO42- and total suspended particles (Tsp) were 1.48, 3.84, 6.40, 45.85 and 221μg/m3, respectively. For cations, the total average levels were 25.42, 6.68, 4.06, 5.84, and 25.05 μg/m3 for Na+, NH4+, Mg2+, and Ca2+, respectively. This study show ss that the concentrations of FΛ, NO3Λ, SO42, Na+, K+, Mg2+, and Ca2+ in the INP fraction were significantly greater than in the Nip fraction while the CI+ and NH4+ levels are greater than in the Nip, In the same sampling site, it was found that the nitrate and sulfate concentrations in air particulate matter are significantly higher in winter, 1996 than in summer season, 1995. However, the levels of fluoride and chloride are greater in summer than in winter. (authors). 24 refs., 5 figs., 2 table

  11. Determination of mercury in airborne particulate matter collected on glass fiber filters using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Rennan G.O., E-mail: rgoa01@terra.com.br [Laboratorio de Quimica Analitica Ambiental, Departamento de Quimica, Universidade Federal de Sergipe, Campus Sao Cristovao, 49.100-000, Sao Cristovao, SE (Brazil); Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Vignola, Fabiola; Castilho, Ivan N.B. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Borges, Daniel L.G.; Welz, Bernhard [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Vale, Maria Goreti R. [Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Instituto de Quimica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS (Brazil); Smichowski, Patricia [Comision Nacional de Energia Atomica (CNEA) and Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina); Ferreira, Sergio L.C. [Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Instituto de Quimica, Universidade Federal da Bahia, 40170-290, Salvador, BA (Brazil); Becker-Ross, Helmut [Leibniz-Institut fuer Analytische Wissenschaften-ISAS-e.V., Department Berlin, 12489 Berlin (Germany)

    2011-05-15

    A study has been undertaken to assess the capability of high-resolution continuum source graphite furnace atomic absorption spectrometry for the determination of mercury in airborne particulate matter (APM) collected on glass fiber filters using direct solid sampling. The main Hg absorption line at 253.652 nm was used for all determinations. The certified reference material NIST SRM 1648 (Urban Particulate Matter) was used to check the accuracy of the method, and good agreement was obtained between published and determined values. The characteristic mass was 22 pg Hg. The limit of detection (3{sigma}), based on ten atomizations of an unexposed filter, was 40 ng g{sup -1}, corresponding to 0.12 ng m{sup -3} in the air for a typical air volume of 1440 m{sup 3} collected within 24 h. The limit of quantification was 150 ng g{sup -1}, equivalent to 0.41 ng m{sup -3} in the air. The repeatability of measurements was better than 17% RSD (n = 5). Mercury concentrations found in filter samples loaded with APM collected in Buenos Aires, Argentina, were between < 40 ng g{sup -1} and 381 {+-} 24 ng g{sup -1}. These values correspond to a mercury concentration in the air between < 0.12 ng m{sup -3} and 1.47 {+-} 0.09 ng m{sup -3}. The proposed procedure was found to be simple, fast and reliable, and suitable as a screening procedure for the determination of mercury in APM samples.

  12. [In vitro study of genotoxic and oxidative effects induced on human pulmonary cells by exposure to PAHs extracted from airborne particulate matter collected in a coke plant].

    Science.gov (United States)

    Cavallo, D; Ursini, C L; Pira, E; Romano, C; Ciervo, A; Maiello, R; Caglieri, A; Iavicoli, S

    2007-01-01

    Genotoxic and oxidative effect of airborne particulate matter collected in a coke plant were evaluated on lung epithelial cells (A549). We aimed to clarify the mechanism of action of complex mixtures of PAHs and to identify biomarkers of effect of lung cancer. Particulate matter was analysed by GC/MS. Genotoxic and oxidative effects induced by the exposure to the extract were evaluated by Fpg comet assay. The cells were exposed for 30 min, 2h and 4h to 0.01%, 0.02% and 0.05% of the extract. We evaluated comet percentage and analysed tail moment values of exposed and unexposed cells treated with Fpg enzyme (TMenz) and untreated (TM) that indicate respectively oxidative and direct DNA damage. We found 0.328 ng/m3 of pyrene, 0.33 ng/m3 of benzo(a)anthracene, 1.073 ng/m3 of benzo(b)fluoranthene, 0.22 ng/m3 of benzo(k)fluoranthene, 0.35 ng/m3 of benzo(a)pyrene, 0.079 ng/m3 of dibenzo(a,h)anthracene and 0.40 ng/m3 of benzo(g,h,i)perylene. A dose-dependent increase, although not significant, of TM and TMenz in the exposed cells in respect to controls was found that indicates a slight increase of both direct and oxidative damage in exposed cells. A slight increase of comet percentage was found at the highest dose. We show the high sensibility of comet assay to measure early DNA damage also at low doses suggesting the use of such test on A549 to evaluate on target organ the effects of complex mixtures of genotoxic substances. PMID:18409689

  13. Spatial and temporal variations in airborne particulate matter (PM 10 and PM 2.5) across Spain 1999-2005

    Science.gov (United States)

    Querol, X.; Alastuey, A.; Moreno, T.; Viana, M. M.; Castillo, S.; Pey, J.; Rodríguez, S.; Artiñano, B.; Salvador, P.; Sánchez, M.; Garcia Dos Santos, S.; Herce Garraleta, M. D.; Fernandez-Patier, R.; Moreno-Grau, S.; Negral, L.; Minguillón, M. C.; Monfort, E.; Sanz, M. J.; Palomo-Marín, R.; Pinilla-Gil, E.; Cuevas, E.; de la Rosa, J.; Sánchez de la Campa, A.

    Average ranges of particulate matter (PM 10 and PM 2.5) concentrations and chemical composition in Spain show significant variations across the country, with current PM 10 levels at several industrial and traffic hotspots exceeding recommended pollution limits. Such variations and exceedances are linked to patterns of anthropogenic and natural PM emissions, climate, and reactivity/stability of particulate species. PM 10 and PM 2.5 concentrations reach 14-22 μg PM 10 m -3 and 8-12 μg PM 2.5 m -3 at most rural/regional background sites, 25-30 μg PM 10 m -3 and 15-20μg PM 2.5 m -3 at suburban sites, 30-46 μg PM 10 m -3 and 20-30 μg PM 2.5 m -3 at urban background and industrial sites, and 46-50 μg PM 10 m -3 and 30-35 μg PM 2.5 m -3 at heavy traffic hotpots. Spatial distributions show sulphate and carbon particle levels reach maxima in industrialised areas and large cities (where traffic emissions are higher), and nitrate levels increase from the Atlantic to the Mediterranean (independent of the regional NO x emissions). African dust outbreaks have an influence on the number of exceedances of the daily limit value, but its additional load on the mean annual PM 10 levels is only highly significant in Southern Iberia and Canary and Balearic islands. The marine aerosol contribution is near one order of magnitude higher in the Canaries compared to the other regions. Important temporal influences include PM intrusion events from Africa (more abundant in February-March and spring-summer), regional-scale pollution episodes, and weekday versus weekend activity. Higher summer insolation enhances (NH 4) 2SO 4 but depletes particulate NO 3- (as a consequence of the thermal instability of ammonium nitrate in summer) and Cl - (due to HCl volatilisation resulting from the interaction of gaseous HNO 3 with the marine NaCl), as well as generally increasing dry dust resuspension under a semi-arid climate. Average trace metal concentrations rise with the highest levels at

  14. Characterization and source identification of trace elements in airborne particulates at urban and suburban atmospheres of Tabriz, Iran.

    Science.gov (United States)

    Gholampour, Akbar; Nabizadeh, Ramin; Hassanvand, Mohammad Sadegh; Taghipour, Hasan; Rafee, Mohammad; Alizadeh, Zahra; Faridi, Sasan; Mahvi, Amir Hossein

    2016-01-01

    Concentration of particulate matter (PM10 and total suspended particulate (TSP)) and their elemental constituents were measured to identify the major sources of elements in urban and industrial suburban sites in Tabriz, Iran, from September 2012 to June 2013. TSP and PM10 samples were collected using high-volume samplers. Concentrations of 31 elements in aerosols and crustal soil were determined by ICPMS. The most abundant detected metals in the urban sampling sites were Al (217.5-4019.9 ng m(-3)), Fe (272.5-7658.0 ng m(-3)), Pt (4.7-1994.4 ng m(-3)), and P (13.6-2054.8 ng m(-3) (for TSP and Al (217.6-3687.3 ng m(-3)), Fe (197.1-3724.9 ng m(-3)), Pt (65.9-2054.5 ng m(-3)), and P (11.0-756.6 ng m(-3)( for PM10. In the suburban sampling site, the most abundant detected metals were Al (2083.0-9664.0 ng m(-3)), Fe (360.0-7221.5 ng m(-3)), P (229.4-870.5 ng m(-3)), and Ti (137.3-849.7 ng m(-3)) for TSP and Al (218.5-4179.6 ng m(-3)), Fe (106.3-2005.1 ng m(-3)), P (251.9-908.4 ng m(-3)), and Ba (10.6-584.9 ng m(-3)) for PM10. For the crustal soil, the most abundant detected elements included Al (60,088-60,694 ppm), Fe (19,886-20,474 ppm), Ti (894-3481 ppm), and Si (365-4246 ppm). Key emission sources were identified, and the concentrations contributed from individual sources were estimated. Enrichment factor (EF) explaining a preponderance of the variance in the data was applied to the datasets. EF calculations revealed that non-crustal trace elements were more enriched in the urban than suburban sampling sites. Results of the factor analysis on the elements showed that emissions from road traffic (involving oil and fuel combustions by vehicles, platinum group elements from vehicle exhaust, and resuspension of particulate matter from polluted soil) and construction dust from nearby construction sites and electricity generation plant were the major contributors of anthropogenic metals at ambient atmosphere in Tabriz. Results of this study elucidated the need for

  15. Occupational exposure to polycyclic aromatic hydrocarbons in airborne particulate matter: validation and application of a gas chromatography-mass spectrometry analytical method.

    Science.gov (United States)

    Fioretti, Marzia; Catrambone, Tamara; Gordiani, Andrea; Cabella, Renato

    2010-12-01

    This study concerns the validation of an analytical method for the measurement of occupational exposure to trace levels of polycyclic aromatic hydrocarbons (PAHs) in airborne particulate matter (APM). Personal exposure to selected PAHs of five workers occupationally exposed to urban pollution in Rome, Italy, was evaluated. The samples were collected over 10 days evenly distributed during winter and summer of 2008. Polycyclic aromatic hydrocarbons were collected by a sampling pump and trapped in polytetrafluoroethylene filters; ultrasonic extraction was applied to extract PAH species from the matrix with toluene, and the concentrated extract was quantitatively analyzed by GC/MS. The analytical method was optimized and validated using a standard reference material of urban dust (SRM 1649a). Detection limits ranged from 0.8 ng per sample for indeno [1,2,3-cd] pyrene to 20.4 ng for sample for anthracene. Experimental results of the 50 personal samples collected showed that phenanthrene was the predominant polycyclic aromatic hydrocarbon [95% CI (32.42-41.13 ng m(-3))]; the highest benzo[a]pyrene concentration was 2.58 ng m(-3), approximately 2-fold higher than European annual target values (1 ng m(-3)). Seasonal variations of personal exposure to selected PAHs suggested higher emissions and reduced atmospheric reactivity of PAH compounds in winter. The analytical method was a suitable procedure for the determination of 13 of the 16 priority PAHs in APM personal samples and can be considered a useful tool to evaluate occupational exposure to low PAH levels.

  16. Comparison of the extraction efficiencies of different leaching agents for reliable assessment of bio-accessible trace metal fractions in airborne particulate matter

    Directory of Open Access Journals (Sweden)

    Mukhtar A.

    2013-04-01

    Full Text Available In present study, an in-vitro physiologically based extraction test has been applied for extraction of bio-accessible trace metal fractions in airborne particulate matter (APM samples collected from different urban sites in Austria and Pakistan using the leaching agents H2O, sodium chloride, ammonium acetate, ammonium citrate, synthetic gastric juice and artificial lung fluids. Obtained extracts were then measured using an ETV-ICP-OES procedure which allowed highly sensitive measurement of dissolved analytes even in the presence of leaching agents. Derived results indicated that the investigated leaching agents extract different amounts of trace metals. In general, leaching agents with organic nature yielded comparatively greater extractable and thus bio-accessible trace metal fractions to that of simple solvents like H2O or aqueous NaCl solution. With water, only 26.3±4.0% of Cd was found to be bio-accessible whereas 88.4±24.8 of Cd was obtained as bio-accessible fraction with the use of synthetic gastric juice. The concentrations of bio-accessible metal fractions varied from 0.4 ng m−3 (Cd to 714 ng m−3 (Zn and 0.3 ng m−3 (Cd to 190 ng m−3 (Zn for PM10 samples collected from Karachi (Pakistan and Graz (Austria respectively.

  17. Assessment of levels and 'health-effects' of airborne particulate matter in mining, metal refining and metal working industries using nuclear and related analytical techniques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-01-15

    The International Atomic Energy Agency (IAEA) has been supporting, over the years, several coordinated research programmes (CRPs) on various research topics related to environmental issues impacting human health. A variety of industrial environments such as: galvanisation, iron and steel production, steel construction, coal fired thermal power plants, mining and mineral beneficiation of monazite, zinc smelters, and phosphate fertilizer production plants were included in this CRP. Toxic elements specific for particular industries as potential pollutants were monitored within individual projects. The CRP focussed on the use of nuclear and related analytical techniques for studies of exposure to inorganic constituents and radionuclides from naturally occurring radioactive materials (NORMs), in the workplaces and their impacts on the health of the workers. The objectives were to: develop strategies and techniques for sampling of workplace airborne particulate matter (APM) and of bio-markers (e.g. hair, blood, nails, teeth, urine, breath) of exposed and non-exposed individuals; develop reliable analytical procedures for the analysis of such samples, using nuclear and related analytical techniques; carry out workplace and personal monitoring surveys, and assess workers' exposure to toxic elements on the basis of measurements results. This document provides an overview of the activities performed under the CRP by the participants. The overall achievements are summarized and those aspects that require a further deeper look are also pointed out. The individual country reports include details on the progress made by the respective participants during the CRP period.

  18. Chemical characterization of a polar portion in the neutral fraction derived from airborne particulate extracts responsible for the embryotoxicity in the chicken embryo

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, H.

    1988-01-01

    Airborne particulate matter was collected with a high-volume air sampler between June 1984 and May 1985 on the roof top of the authors institute. The tar material extracted was separated into six fractions by liquid-liquid partition and silica gel column chromatography. These fractions were then tested for their embryotoxicities by a chicken embryo assay. A moderately polar fraction per weight and a fraction containing polycyclic aromatic hydrocarbons (PAHs) had the greatest toxicity for chicken embryos. When the polar fraction was purified by high-pressure liquid chromatography, the purified fraction was 3.7 times more toxic than the original polar fraction. To determine the responsible components for the toxicity, the purified fraction as well as the original fraction was analyzed by capillary gas chromatography and gas chromatography-mass spectrometry. The characterized components were classified into oxygenated PAHs (containing ketones, quinones, and aldehydes), nitrogen-containing PAHS, diphenyl-substituted aliphatic ketones (or diketones), and esters of aliphatic acids.

  19. Air pollution and stillbirth risk: exposure to airborne particulate matter during pregnancy is associated with fetal death.

    Directory of Open Access Journals (Sweden)

    Emily DeFranco

    Full Text Available To test the hypothesis that exposure to fine particulate air pollution (PM2.5 is associated with stillbirth.Geo-spatial population-based cohort study using Ohio birth records (2006-2010 and local measures of PM2.5, recorded by the EPA (2005-2010 via 57 monitoring stations across Ohio. Geographic coordinates of the mother's residence for each birth were linked to the nearest PM2.5 monitoring station and monthly exposure averages calculated. The association between stillbirth and increased PM2.5 levels was estimated, with adjustment for maternal age, race, education level, quantity of prenatal care, smoking, and season of conception.There were 349,188 live births and 1,848 stillbirths of non-anomalous singletons (20-42 weeks with residence ≤10 km of a monitor station in Ohio during the study period. The mean PM2.5 level in Ohio was 13.3 μg/m3 [±1.8 SD, IQR(Q1: 12.1, Q3: 14.4, IQR: 2.3], higher than the current EPA standard of 12 μg/m3. High average PM2.5 exposure through pregnancy was not associated with a significant increase in stillbirth risk, adjOR 1.21(95% CI 0.96,1.53, nor was it increased with high exposure in the 1st or 2nd trimester. However, exposure to high levels of PM2.5 in the third trimester of pregnancy was associated with 42% increased stillbirth risk, adjOR 1.42(1.06,1.91.Exposure to high levels of fine particulate air pollution in the third trimester of pregnancy is associated with increased stillbirth risk. Although the risk increase associated with high PM2.5 levels is modest, the potential impact on overall stillbirth rates could be robust as all pregnant women are potentially at risk.

  20. Population vulnerability due to the exposure to radon and airborne particulate matter (PM{sub 10}), in Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, G., E-mail: espinosa@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20364, 01000 Mexico, D.F. (Mexico); Golzarri, J.I. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20364, 01000 Mexico, D.F. (Mexico); Ponciano-Rodriguez, G. [Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Gaso, M.I. [Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027, 11801 Mexico, D.F. (Mexico); Mena, M.; Segovia, N. [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Vazquez-Lopez, C. [Departamento de Fisica, CINVESTAV (Mexico); Sajo-Bohus, L. [Departamento de Fisica, Universidad Simon Bolivar (Venezuela, Bolivarian Republic of)

    2009-10-15

    Exposure to indoor radon and suspended particulate matter (SPM) is considered a high risk in lung cancer aetiology. In this paper indoor radon and SPM concentration measurements and their correlations, associated with lung cancer cases are given. Mexico City suffers high concentration of SPM as well as other photochemical pollutants such as ozone. During the last decade in Mexico City, radon and SPM have been monitored. The indoor radon measurements were done using the Nuclear Track Methodology, basically the close-end-cup device with polyallyldiglycol carbonate as detector material, followed of an established chemical etching protocol, and automatic digital image analyzer system for counting. SPM size and concentration were obtained from monitoring stations located along the city. The results show that the central-north part of Mexico City has a large concentration of SPM and the vulnerable population (older than 65 years and younger than 14 years) is located essentially in the same region. In this area, a large number of lung cancer cases were found, even if indoor radon levels were below the recommended limits.

  1. The Effect of Seasonal Variations in Airborne Particulate Matter on Asthma-Related Airway Inflammation in Mice

    Science.gov (United States)

    Kurai, Jun; Watanabe, Masanari; Sano, Hiroyuki; Hantan, Degejirihu; Shimizu, Eiji

    2016-01-01

    This study aimed to investigate the effects of winter and spring particulate matter (PM) on airway inflammation and allergies in a mouse asthma model. PM was collected during 7–28 February 2013 (winter) and during 7–28 April 2013 (spring) in Yonago, Japan. NC/Nga mice were co-sensitized using intranasal instillation of the PMs and Dermatophagoides farinae (Df) for 5 consecutive days, and were subsequently challenged using intranasal Df at 7 days after the last sensitization. At 24 h after the challenge, serum immunoglobulin levels, differential leukocyte counts, and inflammatory cytokines levels were measured in the mice’s bronchoalveolar lavage fluid (BALF). Compared to co-sensitization using spring PM and Df, winter PM and Df induced greater increases in the BALF neutrophil and eosinophil counts and total serum IgE and IgG2a levels. Furthermore, winter PM-sensitized mice exhibited higher BALF levels of interleukin-5, interleukin-13, interleukin-6, and keratinocyte-derived chemokine. Therefore, we observed seasonal variations in the effects of PM on asthma-related airway inflammation. These findings suggest that the compositions of PM vary according to season, and that it is important to evaluate PM compositions in order to understand the associations between asthma and PM. PMID:27294946

  2. Cocaine and other illicit drugs in airborne particulates in urban environments: A reflection of social conduct and population size

    International Nuclear Information System (INIS)

    Levels of cocaine and other psychoactive substances in atmospheric particulate matter (PM) were determined in urban environments representing distinct social behaviours with regard to drug abuse: night-life, university and residential areas. Three cities (with population >1 million and 3 for cocaine, 23-34 pg/m3 for cannabinoids, and 5-90 pg/m3 for heroin. The highest levels were recorded on weekends, with factors with respect to weekdays of 1-3 for cocaine, 1-2 for cannabinoids and 1.1-1.7 for heroin. Higher levels were detected in the night-life areas, pointing towards consumption and trafficking as major emission sources, and possibly ruling out drug manufacture. The similarities in temporal trends at all sites suggested a city-scale transport of psychoactive substances. Correlations were detected between cocaine and amphetamine consumption (r2 = 0.98), and between heroin and cannabinoids (r2>0.82). - Highlights: → Cocaine, heroin, cannabis and related illicit drugs are found in detectable amounts in urban air. → Illicit drug consumption and small-scale trafficking are the major emission sources. → Illicit drugs remain in atmospheric particles and are transported across cities during at least 5 days. → Levels of illicit drugs increase from residential to night-life areas, and maximise on weekends. → Correlations between illicit drugs were detected, suggesting differences in consumer groups. - The presence of illicit drugs in atmospheric particles can be used to track illicit drug abuse.

  3. Cocaine and other illicit drugs in airborne particulates in urban environments: A reflection of social conduct and population size

    Energy Technology Data Exchange (ETDEWEB)

    Viana, M., E-mail: mar.viana@idaea.csic.es [Institute for Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona (Spain); Postigo, C., E-mail: cprqam@cid.csic.es [Institute for Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona (Spain); Querol, X., E-mail: xavier.querol@idaea.csic.es [Institute for Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona (Spain); Alastuey, A., E-mail: andres.alastuey@idaea.csic.es [Institute for Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona (Spain); Lopez de Alda, M.J., E-mail: mlaqam@cid.csic.es [Institute for Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona (Spain); Barcelo, D., E-mail: dbcqam@cid.csic.es [Institute for Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona (Spain); King Saud University, Box 2454, Riyadh 11451 (Saudi Arabia); Artinano, B., E-mail: b.artinano@ciemat.es [Centre for Energy, Environment and Technology Research (CIEMAT), Av. Complutense 22, 28040 Madrid (Spain); Lopez-Mahia, P., E-mail: purmahia@udc.es [Department of Analytical Chemistry, University of A Coruna, Campus A Zapateira, 15071 A Coruna (Spain); Garcia Gacio, D., E-mail: dgarcia@udc.es [Department of Analytical Chemistry, University of A Coruna, Campus A Zapateira, 15071 A Coruna (Spain); Cots, N., E-mail: nuria.cots@gencat.ca [Department of the Environment, Catalonia Regional Government, Av. Diagonal 525, 08193 Barcelona (Spain)

    2011-05-15

    Levels of cocaine and other psychoactive substances in atmospheric particulate matter (PM) were determined in urban environments representing distinct social behaviours with regard to drug abuse: night-life, university and residential areas. Three cities (with population >1 million and <0.3 million inhabitants) were selected. Mean daily levels of drugs in PM were 11-336 pg/m{sup 3} for cocaine, 23-34 pg/m{sup 3} for cannabinoids, and 5-90 pg/m{sup 3} for heroin. The highest levels were recorded on weekends, with factors with respect to weekdays of 1-3 for cocaine, 1-2 for cannabinoids and 1.1-1.7 for heroin. Higher levels were detected in the night-life areas, pointing towards consumption and trafficking as major emission sources, and possibly ruling out drug manufacture. The similarities in temporal trends at all sites suggested a city-scale transport of psychoactive substances. Correlations were detected between cocaine and amphetamine consumption (r{sup 2} = 0.98), and between heroin and cannabinoids (r{sup 2}>0.82). - Highlights: > Cocaine, heroin, cannabis and related illicit drugs are found in detectable amounts in urban air. > Illicit drug consumption and small-scale trafficking are the major emission sources. > Illicit drugs remain in atmospheric particles and are transported across cities during at least 5 days. > Levels of illicit drugs increase from residential to night-life areas, and maximise on weekends. > Correlations between illicit drugs were detected, suggesting differences in consumer groups. - The presence of illicit drugs in atmospheric particles can be used to track illicit drug abuse.

  4. Comparative toxicity of size-fractionated airborne particulate matter obtained from different cities in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, M.I.; McGee, J.; Duvall, R.M.; Dailey, L.; Daniels, M.; Boykin, E.; Cho, S.H.; Doerfler, D.; Gordon, T.; Devlin, R.B. [US EPA, Research Triangle Park, NC (United States)

    2007-07-01

    Hundreds of epidemiological studies have shown that exposure to ambient particulate matter (PM) is associated with dose-dependent increases in morbidity and mortality. While early reports focused on PM less than 10 {mu}m (PM10), numerous studies have since shown that the effects can occur with PM stratified into ultrafine (UF), fine (FI), and coarse (CO) size modes despite the fact that these materials differ significantly in both evolution and chemistry. Furthermore the chemical makeup of these different size fractions can vary tremendously depending on location, meteorology, and source profile. For this reason, high-volume three-stage particle impactors with the capacity to collect UF, FI, and CO particles were deployed to four different locations in the United States (Seattle, WA; Salt Lake City, UT; Sterling Forest and South Bronx, NY), and weekly samples were collected for 1 mo in each place. The particles were extracted, assayed for a standardized battery of chemical components, and instilled into mouse lungs (female BALB/c) at doses of 25 and 100 {mu}g. Eighteen hours later animals were euthanized and parameters of injury and inflammation were monitored in the bronchoalveolar lavage fluid and plasma. Of the four locations, the South Bronx coarse fraction was the most potent sample in both pulmonary and systemic biomarkers. Receptor source modeling on the PM2.5 samples showed that the South Bronx sample was heavily influenced by emissions from coal fired power plants (31%) and mobile sources (22%). Further studies will assess how source profiles correlate with the observed effects for all locations and size fractions.

  5. Nuclear and atomic techniques in air pollution studies by transplant lichen exposure, bulk deposition and airborne particulate matter collection after 6 month exposure

    International Nuclear Information System (INIS)

    This work presents the preliminary results obtained in the study 'Air pollution monitoring by sampling airborne particulate matter combined with lichen bioaccumulator exposure', in progress at IDRANAP Center of Excellence EU Project, ICA1-CT-2000-70023, WP2. Transplants of Evernia prunastri and Pseudevernia furfuracea lichen species from the Italian Prealps were exposed for 6 and 12 months at six locations with different degrees and types of industrial activity, as well as on a background site with relatively clean air (Fundata). At each investigated location, bulk deposition was collected for the same periods, while airborne particulate matter was sequentially collected during 2 months, in parallel with those at a reference station (Afumati). Pollution in the investigated areas is mainly due to the following industrial activities: steel manufacturing (Galati); non-ferrous ore processing (Baia Mare); chemicals and non-ferrous industry (Copsa Mica); coal-fired power plant and cement factory (Deva); traffic, coal-fired power plants, inorganic dyes and galvanic treatment factories (Oradea); agriculture, mixed industry and traffic (Afumati). The lichen material was analyzed by INAA, XRFA, and ICP-MS, while the aerosol filters were analyzed by INAA and XRFA. The bulk deposition was analyzed only by INAA. XRFA was carried out at Stuttgart, ICP-MS at Trondheim, while INAA at Bucharest (long lifetime radionuclides) and Delft (short lifetime radionuclides, and, in the case of bulk deposition, short and long lifetime radionuclides). The investigated elements having relevant role in environmental studies were: As, Br, Ca, Cd, Co, Cr, Cu, Fe, K, Mn, Ni, Pb, S, Sb, Sc, Se, V, and Zn. Cd, Co, Sb, and Sc could only be determined by INAA and ICP-MS, while Pb and S only by XRFA and ICP-MS. After 6-month exposure, both lichen species showed significant enrichment factors (relative to 'zero level', before exposure) for all the measured elements, except Br, Ca, K, and Mn. Small lichen

  6. Electrospray Collection of Airborne Contaminants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In stark contrast to current stagnation-based methods for capturing airborne particulates and biological aerosols, our demonstrated, cost-effective electrospray...

  7. Ground-level airborne particulate matter near important Portuguese Cultural Heritage sites in high polluted (Lisbon) and low polluted (Evora) urban environments

    Science.gov (United States)

    Schiavon, N.; Wagner, F.; Candeias, A.; Kandler, K.; Tobias, L.; Mirao, J.

    2012-04-01

    As part of a wider project on aerosol composition in the Southwestern part of the Iberian peninsula, an intensive field monitoring/sampling/analytical campaign has been conducted in August and December 2011 to assess indoor and outdoor atmospheric aerosol optical and microphysical parameters (Nephelometry), number/mass/size distribution (TEOM, MAAP, OPS) and single particle minero-chemical composition on filter collected samples (VP-SEM+EDS, XRD) at several sheltered and unsheltered locations close to important Cultural Heritage monuments in Evora and Lisbon, Portugal. Sites investigated included the Igreja do S. Francisco in Evora, the Cristo Rei sanctuary, Jeronimos Monastery, and Lisbon Castle in Lisbon. At Cristo Rei measurements at sea level, around 100m and around 180m were carried out in order to determine the vertical profile of the particle size distribution. Measurements were taken at different times of day reflecting changes in atmospheric mixing and air pollution levels. Measurements were also performed near an air quality monitoring station at Avenida de Libertade (the busiest traffic artery in Lisbon city center) during traffic peak hour. One of the aims of the campaign was to determine differences in airborne particulate matter compositions and concentrations between an urban coastal high pollution (Lisbon) and a low pollution (Evora) environments and how these could affect the nature of decay patterns and processes in the building materials of the monuments under investigation. Preliminary results indicate significant differences in particle properties between the 2 cities as well as between indoor and outdoor locations. One interesting result was the detection of considerable amounts of particle of oceanic origin (such as sodium chloride) in the Evora site even at 130 km away from the coast. Despite its relatively unpolluted location, single particle analysis by SEM+EDS at the Evora site reveals the presence of significant numbers of particle of

  8. Local and non-local sources of airborne particulate pollution at Beijing--The ratio of Mg/Al as an element tracer for estimating the contributions of mineral aerosols from outside Beijing

    Institute of Scientific and Technical Information of China (English)

    HAN Lihui; ZHUANG Guoshun; SUN Yele; WANG Zifa

    2005-01-01

    A new element tracer technique has firstly been established to estimate the contributions of mineral aerosols from both inside and outside Beijing. The ratio of Mg/Al in aerosol is a feasible element tracer to distinguish between the sources of inside and outside Beijing. Mineral aerosol, inorganic pollution aerosol mainly as sulfate and nitrate, and organic aerosol are the major components of airborne particulates in Beijing, of which mineral aerosol accounted for 32%―67% of total suspended particles (TSP), 10%―70% of fine particles (PM2.5), and as high as 74% and 90% of TSP and PM2.5, respectively, in dust storm. The sources from outside Beijing contributed 62% (38%―86%) of the total mineral aerosols in TSP, 69% (52%―90%) in PM10, and 76% (59%―93%) in PM2.5 in spring, and 69% (52%―83%), 79% (52%―93%), and 45% (7%―79%) in TSP, PM10, and PM2.5, respectively, in winter, while only ~20% in summer and autumn. The sources from outside Beijing contributed as high as 97% during dust storm and were the dominant source of airborne particulates in Beijing. The contributions from outside Beijing in spring and winter are higher than those in summer, indicating clearly that it was related to the various meteorological factors.

  9. Evaluating airborne and ground based gamma spectrometry methods for detecting particulate radioactivity in the environment: A case study of Irish Sea beaches

    International Nuclear Information System (INIS)

    In several places, programmes are in place to locate and recover radioactive particles that have the potential to cause detrimental health effects in any member of the public who may encounter them. A model has been developed to evaluate the use of mobile gamma spectrometry systems within such programmes, with particular emphasis on large volume (16 l) NaI(Tl) detectors mounted in low flying helicopters. This model uses a validated Monte Carlo code with assessment of local geochemistry and natural and anthropogenic background radiation concentrations and distributions. The results of the model, applied to the example of particles recovered from beaches in the vicinity of Sellafield, clearly show the ability of rapid airborne surveys conducted at 75 m ground clearance and 120 kph speeds to demonstrate the absence of sources greater than 5 MBq 137Cs within large areas (10–20 km2 h−1), and identify areas requiring further ground based investigation. Lowering ground clearance for airborne surveys to 15 m whilst maintaining speeds covering 1–2 km2 h−1 can detect buried 137Cs sources of 0.5 MBq or greater activity. A survey design to detect 100 kBq 137Cs sources at 10 cm depth has also been defined, requiring surveys at −1 ground speed. The response of airborne systems to the Sellafield particles recovered to date has also been simulated, and the proportion of the existing radiocaesium background in the vicinity of the nuclear site has been established. Finally the rates of area coverage and sensitivities of both airborne and ground based approaches are compared, demonstrating the ability of airborne systems to increase the rate of particle recovery in a cost effective manner. The potential for equipment and methodological developments to improve performance are discussed. -- Highlights: ► Validated Monte Carlo simulations used to model mobile gamma spectrometry response to radioactive particless. ► Detection limits for airborne and ground based surveys

  10. Environmental Public Health Survelliance for Exposure to Respiratory Health Hazards: A Joint NASA/CDC Project to Use Remote Sensing Data for Estimating Airborne Particulate Matter Over the Atlanta, Georgia Metropolitan Area

    Science.gov (United States)

    Quattrochi, Dale A.; Rickman, Douglas; Mohammad, Al-Hamdan; Crosson, William; Estes, Maurice, Jr.; Limaye, Ashutosh; Qualters, Judith

    2008-01-01

    Describes the public health surveillance efforts of NASA, in a joint effort with the Center for Disease Control (CDC). NASA/MSFC and the CDC are partners in linking nvironmental and health data to enhance public health surveillance. The use of NASA technology creates value - added geospatial products from existing environmental data sources to facilitate public health linkages. The venture sought to provide remote sensing data for the 5-country Metro-Atlanta area and to integrate this environmental data with public health data into a local network, in an effort to prevent and control environmentally related health effects. Remote sensing data used environmental data (Environmental Protection Agency [EPA] Air Quality System [AQS] ground measurements and MODIS Aerosol Optical Depth [AOD]) to estimate airborne particulate matter over Atlanta, and linked this data with health data related to asthma. The study proved the feasibility of linking environmental data (MODIS particular matter estimates and AQS) with health data (asthma). Algorithms were developed for QC, bias removal, merging MODIS and AQS particulate matter data, as well as for other applications. Additionally, a Business Associate Agreement was negotiated for a health care provider to enable sharing of Protected Health Information.

  11. Concentrations of Platinum Group Elements (Pt, Pd, Rh in Airborne Particulate Matter (PM2.5 and PM10-2.5 Collected at Selected Canadian Urban Sites: a Case Study

    Directory of Open Access Journals (Sweden)

    Celo V.

    2013-04-01

    Full Text Available Increasing environmental concentrations of platinum group elements (PGEs, in particular platinum (Pt, palladium (Pd and rhodium (Rh, from catalytic converters has been reported worldwide. Initially it was believed that the emitted PGEs remain in the roadside environment, but recent studies have shown that fine PGE-containing particles can be transported and distributed at regional and long-range levels. Therefore, the monitoring of PGEs in airborne particulate matter (PM is important for the estimation of potential risks to human health and to the ecosystem. The aim of this study is to present the first results from an analysis on the concentration and distribution of Pt, Pd and Rh in PM collected on Teflon filters at two selected urban sites (Toronto, Ontario; Edmonton, Alberta collected within the Canadian National Air Pollution Surveillance (NAPS network. In this work, a quadruple inductively coupled plasma mass spectrometry (ICP-MS, combined with microwave assisted acid digestion using aqua regia was used. A cation exchange separation was used to alleviate the matrix-induced spectral and nonspectral interferences prior to ICP-MS analysis. To obtain sufficient material needed for PGEs analysis, fine PM (particles with aerodynamic diameter less than 2.5 mm; PM2.5 and coarse PM (with aerodynamic diameter between 2.5 and 10 mm; PM10-2.5 samples were combined into composite samples on a seasonal basis. The obtained results will be discussed and compared with literature data.

  12. Quantification of PAHs and oxy-PAHs on airborne particulate matter in Chiang Mai, Thailand, using gas chromatography high resolution mass spectrometry

    Science.gov (United States)

    Walgraeve, Christophe; Chantara, Somporn; Sopajaree, Khajornsak; De Wispelaere, Patrick; Demeestere, Kristof; Van Langenhove, Herman

    2015-04-01

    An analytical method using gas chromatography high resolution mass spectrometry was developed for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) and 12 oxygenated PAHs (of which 4 diketones, 3 ketones, 4 aldehydes and one anhydride) on atmospheric particulate matter with an aerodynamic diameter less than 10 μm (PM10). The magnetic sector mass spectrometer was run in multiple ion detection mode (MID) with a mass resolution above 10 000 (10% valley definition) and allows for a selective accurate mass detection of the characteristic ions of the target analytes. Instrumental detection limits between 0.04 pg and 1.34 pg were obtained for the PAHs, whereas for the oxy-PAHs they ranged between 0.08 pg and 2.13 pg. Pressurized liquid extraction using dichloromethane was evaluated and excellent recoveries ranging between 87% and 98% for the PAHs and between 74% and 110% for 10 oxy-PAHs were obtained, when the optimum extraction temperature of 150 °C was applied. The developed method was finally used to determine PAHs and oxy-PAHs concentration levels from particulate matter samples collected in the wet season at 4 different locations in Chiang Mai, Thailand (n = 72). This study brings forward the first concentration levels of oxy-PAHs in Thailand. The median of the sum of the PAHs and oxy-PAHs concentrations was 3.4 ng/m3 and 1.1 ng/m3 respectively, which shows the importance of the group of the oxy-PAHs as PM10 constituents. High molecular weight PAHs contributed the most to the ∑PAHs. For example, benzo[ghi]perylene was responsible for 30-44% of the ∑PAHs. The highest contribution to ∑oxy-PAHs came from 1,8-napthalic anhydride (26-78%), followed by anthracene-9,10-dione (4-27%) and 7H-benzo[de]anthracene-7-one (6-26%). Indications of the degradation of PAHs and/or formation of oxy-PAHs were observed.

  13. Sub-parts-per-billion determination of nitro-substituted polynuclear aromatic hydrocarbons in airborne particulate matter and soil by electron capture-Tandem mass spectrometry.

    Science.gov (United States)

    Vincenti, M; Minero, C; Pelizzetti, E; Fontana, M; De Maria, R

    1996-12-01

    A procedure for the determination of nitro-substiruted polynuclear aromatic hydrocarbons (nitro-PAH) on crude air-particulate and soil extracts is introduced. Elimination of purification and fractionation procedures was made possible by the use of both a selective ionization method, such as electron-capture chemical ionization, and a specific fragmentation process, in an experiment of tandem mass spectrometry (gas chromatography-electron capture tandem mass spectrometry). Different mass spectrometric procedures were compared. The best performance was observed when the nitro-PAH molecular ions [M](-) were mass-selected by the first analyzer under multiple reaction monitoring conditions and then fragmented to NO 2 (-) (m/z 46). Detection limits were on the order of hundreds of femtograms, as determined in extracts of real environmental samples. This corresponds approximately to 5-15 pg of nitro-PAH per cubic meter of air sampled. Calibration curves were linear over 3 orders of magnitude. Applications to contamination from motor vehicle combustion and the iron industry are briefly discussed.

  14. [Chemical characteristics in airborne particulate matter (PM10) during a high pollution spring dust storm episode in Beijing, Tianjin and Zhangjiakou, China].

    Science.gov (United States)

    Liu, Qing-Yang; Liu, Yan-Ju; Zhao, Qiang; Zhang, Ting-Ting; Zhang, Mei-Gen; Wang, Cun-Mei

    2014-08-01

    Atmospheric particulate matter (PM10) was collected at sampling locations of Beijing, Tianjin and Zhangjiakou from April 1st to May 24th, 2012. The mass concentration of PM10 and concentrations of ions, elemental carbon (EC) and organic carbon (OC) in PM10 were determined. The results showed that average mass concentration of PM10 were 233.82 microg x m(-3) for Beijing, 279.64 microg x (-3) for Tianjin and 238.13 microg x m(-3) for Zhangjiakou, respectively. Backward trajectories results confirmed dust storm events occurred from 27th to 29th April. The maximum daily mass concentrations of PM10 were 755.54 microg x m(-3) for Beijing, 831.32 microg x m(-3) for Tianjin and 582.82 microg x m(-3) for Zhangjiakou during the dust storm episodes, respectively. Water-soluble ions (Na+, NH4+, Ca2+, K+, F-, Cl-, NO3-, SO4(2-)), organic carbon (OC) and elemental carbon (EC) were major aerosol components during the dust storm episodes, and their concentrations were higher than non-dust storm days. In addition, dust storm caused increases in NO3-, SO4(2-) and enrichment of secondary organic carbon (SOC) concentration relative to OC, suggesting that chemical reaction processes involving gas-particle conversion occurred during the long-distance transport of aerosol particles. PMID:25338350

  15. Mutagenicity profile of atmospheric particulate matter in a small urban center subjected to airborne emission from vehicle traffic and sugar cane burning.

    Science.gov (United States)

    Alves, Debora Kristina M; Kummrow, Fábio; Cardoso, Arnaldo A; Morales, Daniel A; Umbuzeiro, Gisela A

    2016-01-01

    Atmospheric particulate matter (PM) is genotoxic and recently was classified as carcinogenic to humans by the International Agency for Research on Cancer. PM chemical composition varies depending on source and atmospheric conditions. The Salmonella/microsome assay is the most used mutagenicity test and can identify the major chemical classes responsible for observed mutagenicity. The objective of this work was to characterize the mutagenicity of PM samples from a countryside city, Limeira, Brazil, which is influenced by heavy traffic and sugar cane biomass burning. Six samples of total PM were collected. Air mass backward trajectories were calculated. Organic extracts were assayed using the Salmonella/microsome microsuspension mutagenicity assay using TA98, YG1041, and TA1538, with and without metabolic activation (S9). YG1041 was the most sensitive strain and mutagenicity reached 9,700 revertants per m(3) without metabolic activation. Potency for TA1538 was higher than TA98, indicating that this strain should be considered in air mutagenicity studies. The increased response to YG1041 relative to TA98, and the decreased response with S9, suggests that nitroaromatics are the major contributors. Limeira is among the most mutagenic cities in the world. High mutagenicity in Limeira seems to occur when the air mass from the area of sugarcane production is mixed with air from the region impacted by anthropogenic activities such as traffic. An increase in the formation of nitro-polycyclic aromatic hydrocarbons may result from longer contact time between the aromatic compounds and the atmosphere with high NOx and ozone concentration, although more studies are required to confirm this hypothesis.

  16. Airborne particulate matter PM2.5 from Mexico City affects the generation of reactive oxygen species by blood neutrophils from asthmatics: an in vitro approach

    Directory of Open Access Journals (Sweden)

    Ceballos Guillermo

    2009-06-01

    Full Text Available Abstract Background The Mexico City Metropolitan Area is densely populated, and toxic air pollutants are generated and concentrated at a higher rate because of its geographic characteristics. It is well known that exposure to particulate matter, especially to fine and ultra-fine particles, enhances the risk of cardio-respiratory diseases, especially in populations susceptible to oxidative stress. The aim of this study was to evaluate the effect of fine particles on the respiratory burst of circulating neutrophils from asthmatic patients living in Mexico City. Methods In total, 6 subjects diagnosed with mild asthma and 11 healthy volunteers were asked to participate. Neutrophils were isolated from peripheral venous blood and incubated with fine particles, and the generation of reactive oxygen species was recorded by chemiluminescence. We also measured plasma lipoperoxidation susceptibility and plasma myeloperoxidase and paraoxonase activities by spectrophotometry. Results Asthmatic patients showed significantly lower plasma paraoxonase activity, higher susceptibility to plasma lipoperoxidation and an increase in myeloperoxidase activity that differed significantly from the control group. In the presence of fine particles, neutrophils from asthmatic patients showed an increased tendency to generate reactive oxygen species after stimulation with fine particles (PM2.5. Conclusion These findings suggest that asthmatic patients have higher oxidation of plasmatic lipids due to reduced antioxidant defense. Furthermore, fine particles tended to increase the respiratory burst of blood human neutrophils from the asthmatic group. On the whole, increased myeloperoxidase activity and susceptibility to lipoperoxidation with a concomitant decrease in paraoxonase activity in asthmatic patients could favor lung infection and hence disrupt the control of asthmatic crises.

  17. Mutagenicity profile of atmospheric particulate matter in a small urban center subjected to airborne emission from vehicle traffic and sugar cane burning.

    Science.gov (United States)

    Alves, Debora Kristina M; Kummrow, Fábio; Cardoso, Arnaldo A; Morales, Daniel A; Umbuzeiro, Gisela A

    2016-01-01

    Atmospheric particulate matter (PM) is genotoxic and recently was classified as carcinogenic to humans by the International Agency for Research on Cancer. PM chemical composition varies depending on source and atmospheric conditions. The Salmonella/microsome assay is the most used mutagenicity test and can identify the major chemical classes responsible for observed mutagenicity. The objective of this work was to characterize the mutagenicity of PM samples from a countryside city, Limeira, Brazil, which is influenced by heavy traffic and sugar cane biomass burning. Six samples of total PM were collected. Air mass backward trajectories were calculated. Organic extracts were assayed using the Salmonella/microsome microsuspension mutagenicity assay using TA98, YG1041, and TA1538, with and without metabolic activation (S9). YG1041 was the most sensitive strain and mutagenicity reached 9,700 revertants per m(3) without metabolic activation. Potency for TA1538 was higher than TA98, indicating that this strain should be considered in air mutagenicity studies. The increased response to YG1041 relative to TA98, and the decreased response with S9, suggests that nitroaromatics are the major contributors. Limeira is among the most mutagenic cities in the world. High mutagenicity in Limeira seems to occur when the air mass from the area of sugarcane production is mixed with air from the region impacted by anthropogenic activities such as traffic. An increase in the formation of nitro-polycyclic aromatic hydrocarbons may result from longer contact time between the aromatic compounds and the atmosphere with high NOx and ozone concentration, although more studies are required to confirm this hypothesis. PMID:26289646

  18. Co-ordinated research project on assessment of levels and health-effects of airborne particulate matter in mining, metal refining and metal working industries using nuclear and related analytical techniques. Report on the second research co-ordination meeting

    International Nuclear Information System (INIS)

    Overall objectives: To demonstrate the applicability of nuclear and related techniques in studies that may impact on human health, giving emphasis to the solution of problems that have been identified to be of high priority in national and international programmes for sustainable development. Specific objectives: To develop strategies and techniques for sampling of workplace airborne particulate matter (APM) and of human tissues and body fluids (hair, blood, etc.) of exposed and non-exposed persons; To development suitable analytical procedures for analysis of such types of samples, using nuclear and related analytical techniques; To carry out workplace and personal monitoring of APM and characterise the health effects of such exposure in terms of the observed elemental concentration; To carry out tissue analyses of the workers so exposed for biological monitoring and the health effects studies. Achievements: a) Specific industries not previously monitored in individual countries have been targeted in respect of pollution assessment. Some examples are: Stainless steel processing and construction; Galvanising industry; Zinc smelting operations; Mineral fertiliser industry. b) Validation of analytical techniques through quality control exercises: NAT-3 Interlaboratory comparison for the determination of trace and minor elements in urban dust artificially loaded on air filters; NAT-4 Proficiency test on selected trace elements in lyophilised urine and air filters. c) Capacity building through the establishment of new multidisciplinary teams, personnel training and laboratory expertise. d) The sampling procedures have been harmonised through: The application of the ''Gent'' sampler for APM collection, IAEA procedures and IUPAC guidelines for sampling and sample handling of hair, blood and urine. e) All participants performed surveys on targeted industries and selected pollutants. f) The scientific output of the CRP is materialised in various national and international

  19. Co-ordinated research project on assessment of levels and health-effects of airborne particulate matter in mining, metal refining and metal working industries using nuclear and related analytical techniques. Report on the first research co-ordination meeting (RCM)

    International Nuclear Information System (INIS)

    The objectives of the CRP are to: (1) improve competence for research on workplace monitoring in terms of proper sampling and analytical procedures, (2) obtain relevant and reliable data on sources and levels of workplace pollution in various countries, (3) promote a better understanding of methods for the interpretation of such data including occupational heath studies, and (4) encourage closer collaboration between analytical scientists and researchers in the field of occupational health in the countries concerned. The CRP focuses on the use of nuclear and related analytical techniques for the following kinds of studies: (1) strategies and techniques for sampling of workplace airborne particulate matter and of human tissues and body fluids (hair, blood, etc.) sampling of exposed and non-exposed persons; (2) development of suitable analytical procedures for analysis of such types of samples; (3) workplace and personal monitoring of airborne particulate matter in the mining, refining and metal working industries, and the health effects of such exposure; and (4) tissue analysis of the workers exposed for biological monitoring and the health effects studies. This report includes the core and supplementary programme of the CRP; technical aspects of sampling, analysis, data processing, and quality assurance; and organizational aspects. The report includes also 10 papers contributed by the participants. Each individual contribution was indexed and provided with an abstract

  20. Mutagenicity of airborne particles.

    Science.gov (United States)

    Chrisp, C E; Fisher, G L

    1980-09-01

    The physical and chemical properties of airborne particles are important for the interpretation of their potential biologic significance as genotoxic hazards. For polydisperse particle size distributions, the smallest, most respirable particles are generally the most mutagenic. Particulate collection for testing purposes should be designed to reduce artifact formation and allow condensation of mutagenic compounds. Other critical factors such as UV irradiation, wind direction, chemical reactivity, humidity, sample storage, and temperature of combustion are important. Application of chemical extraction methods and subsequent class fractionation techniques influence the observed mutagenic activity. Particles from urban air, coal fly ash, automobile and diesel exhaust, agricultural burning and welding fumes contain primarily direct-acting mutagens. Cigarette smoke condensate, smoke from charred meat and protein pyrolysates, kerosene soot and cigarette smoke condensates contain primarily mutagens which require metabolic activation. Fractionation coupled with mutagenicity testing indicates that the most potent mutagens are found in the acidic fractions of urban air, coal fly ash, and automobile diesel exhaust, whereas mutagens in rice straw smoke and cigarette smoke condensate are found primarily in the basic fractions. The interaction of the many chemical compounds in complex mixtures from airborne particles is likely to be important in determining mutagenic or comutagenic potentials. Because the mode of exposure is generally frequent and prolonged, the presence of tumor-promoting agents in complex mixtures may be a major factor in evaluation of the carcinogenic potential of airborne particles.

  1. Concentration, spatial and size distribution of airborne aerobic mesophilic bacteria in broiler farms

    NARCIS (Netherlands)

    Adell, E.; Moset, V.; Yang Zhao, Yang; Cerisuelo, A.; Cambra-Lopez, M.

    2011-01-01

    In livestock houses, particulate matter (PM) and airborne microorganism are two of the most relevant air pollutants. Particulate matter may carry microorganisms, the inhalation of which can cause detrimental health effects. The aim of this study was to study the spatial distribution of airborne aero

  2. The Characteristics of deposition of airborne particulate matters with different size on certain plants%园林植物滞留不同粒径大气颗粒物的特征及规律

    Institute of Scientific and Technical Information of China (English)

    赵松婷; 李新宇; 李延明

    2014-01-01

    为研究常用园林植物滞留大气颗粒物的能力,本文以北京市常用园林植物为例,应用直接采样、电镜分析和统计分析的方法,对选定园林植物滞留不同粒径大气颗粒物的特征及规律进行了系统分析。结果表明:(1)园林植物滞留的颗粒物形状为不规则块体、球体和聚合体,通过对比分析得出,滞留大气颗粒物能力由高到低的微形态结构依次是蜡质结构>绒毛>沟槽>条状突起,并且这些微形态结构越密集、深浅差别越大,越有利于滞留大气颗粒物。(2)以园林植物叶片滞留颗粒物的数量进行统计时,得出园林植物叶片表面大部分为PM10(Dp≤10μm),均在98%以上,而PM2.5(Dp≤2.5μm)均在90%以上,粗颗粒物(Dp>10μm)的数量对总体数量的贡献非常小,均在2%以下;以体积进行统计时,得出PM10的体积在总体积中的比例在50%以上,对颗粒物总体积贡献最大,滞留的PM2.5体积占总体积8.5%-17.6%,粗颗粒物(Dp>10μm)体积占总体积20%以上。(3)对园林植物滞留颗粒物累积规律分析得出:在相同观测叶面积下,园林植物滞尘10 d的叶表面颗粒物数量较滞尘5 d的叶表面颗粒物数量均有所增加,增幅最大的是小叶黄杨(Buxus microphylla),增幅最小的是月季(Rosa chinensis),通过方差分析得出绦柳(Salix matsudana f.pendula)叶表面颗粒物数量显著低于除银杏(Ginkgo biloba)之外的其它7种树种,大叶黄杨(Euonymus japonicus)、小叶黄杨和国槐( Sophora japonica)叶表面滞留颗粒物的数量较多,并且显著高于月季、银杏和绦柳叶表面滞留的颗粒物数量;滞尘10 d后园林植物叶表面滞留的颗粒物的总面积均未超过观测叶面积的25%,至于叶片持续滞留颗粒物多少天后达到饱和状态仍需进一步研究。%In order to research retention capacity of airborne

  3. Indoor and outdoor airborne particles. An in vitro study on mutagenic potential and toxicological implications.

    OpenAIRE

    Houdt, van, R.

    1988-01-01

    IntroductionAir pollution components are present as gases and as particulate matter. As particle deposition takes place in various parts of the respiratory system particulate matter may have other toxicological implications than gaseous pollutants, which all may penetrate in the lower part of the respiratory tract. In addition, suspended particulate matter represents a group of pollutants of variable physical as well as chemical composition. Therefore airborne particulate matter cannot be reg...

  4. Attenuation of airborne debris from LMFBR accidents

    International Nuclear Information System (INIS)

    Experimental and theoretical studies have been performed to characterize the behavior of airborne particulates (aerosols) expected to be produced by hypothetical core disassembly accidents (HCDA's) in liquid metal fast breeder reactors (LMFBR's). These aerosol studies include work on aerosol transport in a 20-m high, 850-m3 closed vessel at moderate concentrations; aerosol transport in a small vessel under conditions of high concentration (approximately 1,000 g/m3), high turbulence, and high temperature (approximately 20000C); and aerosol transport through various leak paths. These studies have shown that tittle, if any, airborne debris from LMFBR HCDA's would reach the atmosphere exterior to an intact reactor containment building. (author)

  5. Attenuation of airborne debris from LMFBR accidents

    International Nuclear Information System (INIS)

    Experimental and theoretical studies have been performed to characterize the behavior of airborne particulates (aerosols) expected to be produced by hypothetical core disassembly accidents (HCDA's) in liquid metal fast breeder reactors (LMFBR's). These aerosol studies include work on aerosol transport in a 20-m high, 850-m3 closed vessel at moderate concentrations; aerosol transport in a small vessel under conditions of high concentration (approx. 1000 g/m3), high turbulence, and high temperature (approx. 20000C); and aerosol transport through various leak paths. These studies have shown that little, if any, airborne debris from LMFBR HCDA's would reach the atmosphere exterior to an intact reactor containment building

  6. Carbon in Atmospheric Particulate Matter

    International Nuclear Information System (INIS)

    Carbon compounds account for a large fraction of airborne particulate matter ('carbonaceous aerosols'). Their presence raises a number of scientific questions dealing with climate issues and possible effects on human health. This review describes the current state of knowledge with respect to the ambient concentrations levels (elemental carbon, organic carbon and organic matter) and the various emission sources, and summarizes the role of atmospheric carbon in the various environmental issues. The report finishes by identifying the actual gaps in knowledge and gives (related) suggestions for future research

  7. 公路两侧大气颗粒物中的重金属污染特征及其影响因素%Pollution characterization and controlling factors of heavy metals in airborne particulate matter near expressway

    Institute of Scientific and Technical Information of China (English)

    邵莉; 肖化云

    2012-01-01

    Metal concentrations were measured in different size airborne particles collected near two expressways with different traffic densities from April 2009 to June 2009.The pollution characterization and distribution mode of Zn,Pb,Mn,Cu,Cd,Sb in airborne particles were studied to discuss the influence of traffic volume,particle size,weather and distance.The results show that Zn concentration in airborne particles was the highest,followed by Pb,Mn,Cu,Cd,and Sb concentration was the lowest.The metal concentration was highly dependent on traffic volume,indicating that traffic was the main source of these metals.The high concentrations of Zn and Mn in PM10(possibly originated from gas exhaust) and 10 μmDa50≤100 μm particles(possibly associated with tire wear) suggest that gas exhaust and tire wear were the main sources of Zn and Mn.Antimony(Sb) existed mostly in PM10 and originated mainly from the wear of brake linings.The concentration of Cu was high in both PM10 and 10 μmDa50≤100 μm particles,suggesting that Cu had other sources than the wear of brake linings.Lead(Pb) and Cd existed mainly in PM10.Weather mainly influenced the Zn concentration,but not other metals.Within 10 meters from the expressway,the metal concentration decreased little.The concentrations of Pb,Sb in the countryside was noticeably lower as compared with their concentrations near the expressway,which may be explained by the fact that the main source of airborne Pb,Sb was traffic.%选择昌九高速公路(赣粤高速公路南昌至九江段)、昌樟高速公路(赣粤高速公路南昌至樟树段)为研究对象,采集了公路两侧10μm

  8. Modeling for Airborne Contamination

    International Nuclear Information System (INIS)

    The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of sufficient thickness to simulate the drift

  9. Characterization of airborne uranium from test firing of XM774 ammunition

    International Nuclear Information System (INIS)

    Pacific Northwest Laboratory conducted experiments at Aberdeen Proving Grounds, Maryland, to characterize the airborne depleted uranium (DU) resulting from the test firings of 105-mm, APFSDS-T XM774 ammunition. The goal was to obtain data pertinent to evaluations of human inhalation exposure to the airborne DU. Data was desired concerning the following: (1) size distribution of airborne DU; (2) quantity of airborne DU; (3) dispersion of airborne DU from the target vicinity; (4) amount of DU deposited on the ground; (5) solubility of airborne DU compounds in lung fluid; and (6) oxide forms of airborne and fallout DU. The experiments involved extensive air sampling for total airborne DU particulates and respirable DU particles both above the targets and at distances downwind. Fallout and fragments were collected around the target area. High-speed movies of the smoke generated from the impact of the penetrators were taken to estimate the cloud volumes. Results of the experiments are presented

  10. Pavement wear and airborne dust pollution in Norway

    OpenAIRE

    Snilsberg, Brynhild

    2008-01-01

    In several large cities in Norway the traffic volume is high. The use of studded tires and other friction enhancing measures during winter leads to significant pavement wear, which in turn leads to an increase in the amount of airborne particulate matter, often exceeding the limits set in the ambient air regulation. This represents a nuisance or health risk for people being exposed to the pollution. According to regulations set by the European Union particulate matter is measured and regulate...

  11. Determination of arsenic in air particulates and diesel exhaust particulates by spectrophotometry

    Institute of Scientific and Technical Information of China (English)

    S. M. Talebi; M. Abedi

    2005-01-01

    A method was developed for the determination of trace arsenic by spectrophotometry. The proposed method is rapid, simple,and inexpensive. This method can be used for sensitive determination of trace arsenic in environmental samples and especially in air particulates. The results obtained by this method as a proposed method were compared with those obtained by hydride generation atomic absorption spectrometry as a popular reported method for the determination of arsenic and an excellent agreement was found between them. The method was also used for determination of arsenic associated with airborne particulate matter and diesel exhaust particulates.The results showed that considerable amount of arsenic are associated with diesel engine particulates. The variation in concentration of arsenic was also investigated. The atmospheric concentration of arsenic was different in different sampling stations was dependent to the traffic density.

  12. Environmental Public Health Surveillance for Exposure to Respiratory Health Hazards: A Joint NASA/CDC Project to Use Remote Sensing Data for Estimating Airborne Particulate Matter Over the Atlanta, Georgia Metropolitan Area

    Science.gov (United States)

    Quattrochi, Dale A.; Al-Hamdan, Mohammad; Estes, Maurice; Crosson, William

    2007-01-01

    As part of the National Environmental Public Health Tracking Network (EPHTN) the National Center for Environmental Health (NCEH) at the Centers for Disease Control and Prevention (CDC) is leading a project called Health and Environment Linked for Information Exchange (HELiX-Atlanta). The goal of developing the National Environmental Public Health Tracking Network is to improve the health of communities. Currently, few systems exist at the state or national level to concurrently track many of the exposures and health effects that might be associated with environmental hazards. An additional challenge is estimating exposure to environmental hazards such as particulate matter whose aerodynamic diameter is less than or equal to 2.5 micrometers (PM2.5). HELIX-Atlanta's goal is to examine the feasibility of building an integrated electronic health and environmental data network in five counties of Metropolitan Atlanta, GA. NASA Marshall Space Flight Center (NASA/MSFC) is collaborating with CDC to combine NASA earth science satellite observations related to air quality and environmental monitoring data to model surface estimates of PM2.5 concentrations that can be linked with clinic visits for asthma. While use of the Air Quality System (AQS) PM2.5 data alone could meet HELIX-Atlanta specifications, there are only five AQS sites in the Atlanta area, thus the spatial coverage is not ideal. We are using NASA Moderate Resolution Imaging Spectroradiometer (MODIS) satellite Aerosol Optical Depth (AOD) data for estimating daily ground level PM2.5 at 10 km resolution over the metropolitan Atlanta area supplementing the AQS ground observations and filling their spatial and temporal gaps.

  13. Exposure to particulate hexavalent chromium exacerbates allergic asthma pathology

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Brent C. [Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC 20037 (United States); Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States); Constant, Stephanie L. [Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC 20037 (United States); Patierno, Steven R. [Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States); GW Cancer Institute, The George Washington University, Washington, DC 20037 (United States); Jurjus, Rosalyn A. [Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037 (United States); Ceryak, Susan M., E-mail: phmsmc@gwumc.edu [Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States)

    2012-02-15

    Airborne hexavalent chromate, Cr(VI), has been identified by the Environmental Protection Agency as a possible health threat in urban areas, due to the carcinogenic potential of some of its forms. Particulate chromates are produced in many different industrial settings, with high levels of aerosolized forms historically documented. Along with an increased risk of lung cancer, a high incidence of allergic asthma has been reported in workers exposed to certain inhaled particulate Cr(VI) compounds. However, a direct causal association between Cr(VI) and allergic asthma has not been established. We recently showed that inhaled particulate Cr(VI) induces an innate neutrophilic inflammatory response in BALB/c mice. In the current studies we investigated how the inflammation induced by inhaled particulate Cr(VI) might alter the pathology of an allergic asthmatic response. We used a well-established mouse model of allergic asthma. Groups of ovalbumin protein (OVA)-primed mice were challenged either with OVA alone, or with a combination of OVA and particulate zinc chromate, and various parameters associated with asthmatic responses were measured. Co-exposure to particulate Cr(VI) and OVA mediated a mixed form of asthma in which both eosinophils and neutrophils are present in airways, tissue pathology is markedly exacerbated, and airway hyperresponsiveness is significantly increased. Taken together these findings suggest that inhalation of particulate forms of Cr(VI) may augment the severity of ongoing allergic asthma, as well as alter its phenotype. Such findings may have implications for asthmatics in settings in which airborne particulate Cr(VI) compounds are present at high levels. -- Highlights: ► Allergic asthma correlated with exposure to certain inhaled particulate chromates. ► Direct causal association between Cr(VI) and allergic asthma not established. ► Cr exacerbated pathology and airway hyperresponsiveness in an OVA-challenged mouse. ► Particulate Cr

  14. Exposure to particulate hexavalent chromium exacerbates allergic asthma pathology

    International Nuclear Information System (INIS)

    Airborne hexavalent chromate, Cr(VI), has been identified by the Environmental Protection Agency as a possible health threat in urban areas, due to the carcinogenic potential of some of its forms. Particulate chromates are produced in many different industrial settings, with high levels of aerosolized forms historically documented. Along with an increased risk of lung cancer, a high incidence of allergic asthma has been reported in workers exposed to certain inhaled particulate Cr(VI) compounds. However, a direct causal association between Cr(VI) and allergic asthma has not been established. We recently showed that inhaled particulate Cr(VI) induces an innate neutrophilic inflammatory response in BALB/c mice. In the current studies we investigated how the inflammation induced by inhaled particulate Cr(VI) might alter the pathology of an allergic asthmatic response. We used a well-established mouse model of allergic asthma. Groups of ovalbumin protein (OVA)-primed mice were challenged either with OVA alone, or with a combination of OVA and particulate zinc chromate, and various parameters associated with asthmatic responses were measured. Co-exposure to particulate Cr(VI) and OVA mediated a mixed form of asthma in which both eosinophils and neutrophils are present in airways, tissue pathology is markedly exacerbated, and airway hyperresponsiveness is significantly increased. Taken together these findings suggest that inhalation of particulate forms of Cr(VI) may augment the severity of ongoing allergic asthma, as well as alter its phenotype. Such findings may have implications for asthmatics in settings in which airborne particulate Cr(VI) compounds are present at high levels. -- Highlights: ► Allergic asthma correlated with exposure to certain inhaled particulate chromates. ► Direct causal association between Cr(VI) and allergic asthma not established. ► Cr exacerbated pathology and airway hyperresponsiveness in an OVA-challenged mouse. ► Particulate Cr

  15. Upper Atmospheric Particulate Monitoring and Sample Return

    Science.gov (United States)

    Liddell, Alan; Sohl, John E.

    2010-10-01

    H.A.R.B.O.R. (High Altitude Reconnaissance Balloon for Outreach and Research) is a student-run program in which high-altitude balloon systems are designed, constructed, and flown by students conducting individual or group research projects. One area of interest is in the sampling of particles in the upper atmosphere. Collecting airborne particulates and studying them under an SEM can answer questions on the origins of airborne particulate matter. We could find explanations for climate change or directly measure pollution caused by smokestacks. The SEM has the capacity to capture images of particulates and determine their composition. I am building a system capable of sampling air up to 30km (100,000 ft). The system will contain a servo-controlled filter system for sampling air captured by the ascent of the balloon. Currently, filter types are being evaluated for capture rate and air flow resistance. A circuit has been built to test the mass throughput of the airflow as the balloon travels its course. A vacuum chamber is being built to simulate the nearspace environment. Testing and simulation should be complete in time to fly a finalized sample return mission in spring 2011.

  16. Microwaves in Airborne Surveillance

    OpenAIRE

    Christopher, S.

    2013-01-01

    The use of microwave spectrum is widespread due to its convenience. Therefore, enormous amount of information is available in the free space channel. Obviously, mining this channel for surveillance is quite common. Airborne surveillance offers significant advantages in military operations. This paper talks of the usage of microwaves in airborne surveillance systems, in general, and in the Indian airborne early warning and control (AEW&C) System, in particular. It brings out the multiple s...

  17. Expert workshop traffic-caused airborne particles in urban areas; Experten-Workshop 'Verkehrsbedingte Feinstaeube in der Stadt'

    Energy Technology Data Exchange (ETDEWEB)

    Lanzendorf, Martin; Birmili, Wolfram; Franke, Patrick

    2006-07-15

    The proceedings of the expert workshop on traffic-caused airborne particulates in urban regions include the following contributions: epidemiology of ultra-fine particulates, ultra-fine particulates and their impacts in human health, environmental particulates in the urban atmosphere: properties and future requirement of measuring methods; ultra-fine particulates from traffic emissions - problems of measuring site selection for the evaluation of human exposure, modeling of PMx emissions in the context of environmental compatibility assessments and mitigation planning, traffic-caused particulates - need for action and remedial actions from the sight of the Federal environment Agency, traffic-related measures for the reduction of urban particulate exposure and their impact on the planning of air pollution prevention, strategic environmental assessment as an instrument for the airborne particulate consideration within the traffic and regional planning.

  18. Particulate Matter (PM) Pollution

    Science.gov (United States)

    ... Environmental Protection Agency Search Search Particulate Matter (PM) Pollution Share Facebook Twitter Google+ Pinterest Contact Us Most ... issues final PM Implementation Rule Particulate Matter (PM) Pollution PM Basics What is PM, and how does ...

  19. Chemical and biological characterization of urban particulate matter

    International Nuclear Information System (INIS)

    Airborne particulate matter has been collected on glass fiber filter by high volume sampling in the Goeteborg urban area. The samples were, after extraction with respect to organic components, tested for biological effect in the Salmonella mutagenicity assay, affinity to the cytosol TCDD receptor and toxicity towards a mammalian cell system and analysed chemically for selected polycyclic aromatic compounds. A series of samples collected simultaneously at a street level location and a rooftop site showed that most parameters associated with the organic compounds adsorbed to airborne particulate matter has similar concentrations at the two levels. The differences observed for the mutagenic effect in different strains and conditions showed that the rooftop samples had a different composition compared to the street samples indicating that atmospheric transformations have occurred. Chemical fractionation of representative samples showed that the distribution of mutagenic activity among different fractions is dissimilar to the distribution obtained in the fractionation of both gasoline and diesel engine exhaust particles. Partial least squares regression analysis showed qualitatively that diesel exhaust is a major source of airborne particulate mutagenic activity and source apportionment with chemical mass balance and multilinear regression corroborated this quantitatively. The multilinear regression analysis gave the result that the airborne activity in Salmonella TA90-S9 originated to 54±4% from diesel exhaust and to 26±3% from gasoline exhaust. The contribution is more equal for the activity measured with TA98+S9. The usefulness of short-term bioassays as an addition to chemical analysis of airborne particulate matter depends on whether only polycylic aromatic hydrocarbons (PAH) are major carcinogens, as has been suggested in the literature, or whether also other polycyclic aromatic compound (PAC) are of importance. (au)

  20. Interaction between ozone and airborne particulate matter in office air

    DEFF Research Database (Denmark)

    Mølhave, Lars; Kjærgaard, Søren K.; Sigsgaard, Torben;

    2005-01-01

    This study investigated the hypotheses that humans are affected by air pollution caused by ozone and house dust, that the effect of simultaneous exposure to ozone and dust in the air is larger than the effect of these two pollutants individually, and that the effects can be measured as release of...

  1. Airborne wind energy

    CERN Document Server

    Ahrens, Uwe; Schmehl, Roland

    2013-01-01

    This reference offers an overview of the field of airborne wind energy. As the first book of its kind, it provides a consistent compilation of the fundamental theories, a compendium of current research and development activities as well as economic and regulatory aspects. In five parts, the book demonstrates the relevance of Airborne Wind Energy and the role that this emerging field of technology can play for the transition towards a renewable energy economy. Part I on 'Fundamentals' contains seven general chapters explaining the principles of airborne wind energy and its different variants, o

  2. Comprehensive Simultaneous Shipboard and Airborne Characterization of Exhaust from a Modern Container Ship at Sea

    OpenAIRE

    Murphy, Shane M.; Agrawal, Harshit; Sorooshian, Armin; Padro, Luz T.; Gates, Harmony; S. Hersey; Welch, W. A.; Jung, H.; Miller, J. W.; Cocker, David R.; Nenes, Athanasios; Jonsson, H.; R. C. Flagan; Seinfeld, J. H.

    2009-01-01

    We report the first joint shipboard and airborne study focused on the chemical composition and water-uptake behavior of particulate ship emissions. The study focuses on emissions from the main propulsion engine of a Post-Panamax class container ship cruising off the central coast of California and burning heavy fuel oil. Shipboard sampling included micro-orifice uniform deposit impactors (MOUDI) with subsequent off-line analysis, whereas airborne measurements involved a number of real-time an...

  3. Heavy metal composition of particulate matter in rural and urban residential built environments in Pakistan

    OpenAIRE

    Nasar, ZA; Colbeck, I.; Ali, Z; Ahmed, S

    2015-01-01

    Heavy metals in outdoor and indoor airborne particulate matter (PM) and dust in different residential built environmentsat two rural and one urban site in Pakistan were analysed. An eight stage non-viable impactor (Thermo Fisher Scientific Inc., USA) loaded with EMP 2000 glass microfiber filter papers (Whatman, England) was used to collect airborne PM.The indoordust samples (settled dust) were collected from different indoor surfaces (floor, cupboards) in living rooms and kitchens...

  4. Characterization of the particulate air pollution in contrasted mega cities

    International Nuclear Information System (INIS)

    This work aims at characterizing the physics and the chemistry that govern particulate air pollution in two mega cities (Paris and Cairo) for which the size distribution and the chemical composition of airborne particles were poorly documented. Seasonal variations of the main aerosol sources and transformation processes are investigated in these two urban centres, with a particular attention to semi-volatile material and secondary organic aerosols. Short-term health effects of Paris size-segregated aerosols, as well as particulate pollution during the Cairo 'Black Cloud' season, are also emphasized here. Finally, the comparison of results obtained for the two mega cities and for another one (Beijing) allows investigating main factors responsible for particulate air pollution in urban centres with contrasted climatic conditions and development levels. Notably, this work also allows the build-up of an experimental dataset which is now available for the modelling of urban air quality and of environmental impacts of mega city air pollution. (author)

  5. Savannah River Site Ingestion Pathway Methodology Manual for Airborne Radioactive Releases

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, A.W. III

    2001-01-03

    This manual documents a recommended methodology for determining the ingestion pathway consequences of hypothetical accidental airborne radiological releases from facilities at the Savannah River Site. Both particulate and tritiated radioactive contaminants are addressed. Other approaches should be applied for evaluation of routine releases.

  6. Toxic effects of indoor and outdoor airborne particles relevant to carcinogenesis.

    NARCIS (Netherlands)

    Heussen, G.A.H.

    1993-01-01

    The mutagenicity of indoor and outdoor airborne particulate matter (APM) has been demonstrated by previous in vitro studies (Alink et al., 1983; Van Houdt et al., 1984, 1986, 1987). The aim of the present thesis was to contribute to a better understanding of the mode of action of AIM in the pathogen

  7. Airborne Fraunhofer Line Discriminator

    Science.gov (United States)

    Gabriel, F. C.; Markle, D. A.

    1969-01-01

    Airborne Fraunhofer Line Discriminator enables prospecting for fluorescent materials, hydrography with fluorescent dyes, and plant studies based on fluorescence of chlorophyll. Optical unit design is the coincidence of Fraunhofer lines in the solar spectrum occurring at the characteristic wavelengths of some fluorescent materials.

  8. Microwaves in Airborne Surveillance

    Directory of Open Access Journals (Sweden)

    S. Christopher

    2013-03-01

    Full Text Available The use of microwave spectrum is widespread due to its convenience. Therefore, enormous amount of information is available in the free space channel. Obviously, mining this channel for surveillance is quite common. Airborne surveillance offers significant advantages in military operations. This paper talks of the usage of microwaves in airborne surveillance systems, in general, and in the Indian airborne early warning and control (AEW&C System, in particular. It brings out the multiple sub-systems onboard the aircraft comprising the AEW&C system and their spectral coverage. Co-location of several systems has its own problems and resolving them in terms of geometric location, frequency band and time of operation are covered. AEW&C, being an airborne system, has several other requirements  including minimal weight, volume and power considerations, lightning protection, streamlining, structural integrity, thermal management, vibration tolerance, corrosion prevention, erosion resistance, static charge discharge capability, bird strike resilience, etc. The methods adopted to cater to all these requirements in the microwave systems that are used in the AEW&C system are discussed. Paper ultimately speaks of the microwave systems that are designed and developed for the Indian AEW&C system to surmount these unusual constraints.Defence Science Journal, 2013, 63(2, pp.138-144, DOI:http://dx.doi.org/10.14429/dsj.63.4255

  9. International Symposium on Airborne Geophysics

    Science.gov (United States)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  10. Krypton-85 and other airborne radioactivity measurements throughout Ireland

    International Nuclear Information System (INIS)

    In compliance with articles 35 and 36 of the EURATOM Treaty, the Radiological Protection Institute of Ireland (RPII) undertakes a comprehensive programme of radioactivity monitoring in the Irish terrestrial environment. Radioactivity is present in the terrestrial environment due to natural processes, the testing of nuclear weapons in the atmosphere, accidents such as the Chernobyl accident and the routine discharge of radionuclides from nuclear installations. The RPII monitors airborne radioactivity concentrations at ten stations throughout Ireland, of which, nine are equipped with low volume particulate samplers and one, in Dublin, with a high volume particulate sampler. The low volume particulate samples are assessed for total beta activity and high volume samples for gamma emitting radionuclides such as caesium-137 and beryllium-7. In addition, air sampled at the RPII laboratory in Dublin, is monitored for krypton-85, a radioactive noble gas, released into the environment primarily as a result of the reprocessing of nuclear fuel at installations such as Sellafield in the UK and La Hague in France. Since the inception of the krypton measurements in 1993 a trend of increasing atmospheric concentrations has been observed. The results of the krypton-85 monitoring, as well as the airborne radioactivity concentration measurements, will be presented and discussed in this paper. (author)

  11. New Methods for Personal Exposure Monitoring for Airborne Particles.

    Science.gov (United States)

    Koehler, Kirsten A; Peters, Thomas M

    2015-12-01

    Airborne particles have been associated with a range of adverse cardiopulmonary outcomes, which has driven its monitoring at stationary central sites throughout the world. Individual exposures, however, can differ substantially from concentrations measured at central sites due to spatial variability across a region and sources unique to the individual, such as cooking or cleaning in homes, traffic emissions during commutes, and widely varying sources encountered at work. Personal monitoring with small, battery-powered instruments enables the measurement of an individual's exposure as they go about their daily activities. Personal monitoring can substantially reduce exposure misclassification and improve the power to detect relationships between particulate pollution and adverse health outcomes. By partitioning exposures to known locations and sources, it may be possible to account for variable toxicity of different sources. This review outlines recent advances in the field of personal exposure assessment for particulate pollution. Advances in battery technology have improved the feasibility of 24-h monitoring, providing the ability to more completely attribute exposures to microenvironment (e.g., work, home, commute). New metrics to evaluate the relationship between particulate matter and health are also being considered, including particle number concentration, particle composition measures, and particle oxidative load. Such metrics provide opportunities to develop more precise associations between airborne particles and health and may provide opportunities for more effective regulations. PMID:26385477

  12. Airborne silica levels in an urban area

    International Nuclear Information System (INIS)

    In order to evaluate the exposure levels of the general population we studied the concentrations of silica particles in the inhalable particulate fraction (PM10) in different meteorological-climate periods in an urban area of Rome. In order to determine the concentration and the granulometric spectrum of silica particles, PM10 sampled by a cascade impactor was analysed by X-ray diffractometry (XRD) and by scanning electron microscopy equipped with a thin-window system for X-ray microanalysis (SEM/EDX). Over the period September 2004-October 2005 the abundance of silica particles as evaluated by SEM/EDX ranged from 1.6 to 10.4% of the total PM10 particulate, with a weight concentration of free crystalline silica, evaluated by XRD, in the range 0.25-2.87 μg/m3. The mean diameter of silica particles ranged from 0.3 to 10.5 μm, with more than 87% of particles having a diameter of less than 2.5 μm. The correlations between SEM/EDX and XRD data seem to suggest that the airborne silica particles in the urban location studied were mainly in the form crystalline silica. A strong relationship was found between the meteorological-climate conditions and the concentration level of free crystalline silica. This result suggests that the Southern winds from the Sahara desert carry an important amount of silica particles into Mediterranean Europe

  13. Univers de Particules

    CERN Multimedia

    CERN Video Productions

    2010-01-01

    Dans l’Univers, tout est fait de particules. Mais d’où viennent-elles? Quelle est l’origine des lois de la nature? Au rez-de-chaussée du Globe de la science et de l’innovation, l’exposition permanente « Univers de particules » vous invite à un voyage vers le Big Bang en explorant le CERN. Avec à la clé des réponses aux questions: pourquoi cette recherche ? Comment accélérer des particules ? Comment les détecter ? Quelles sont les théories sur la matière et sur l’Univers aujourd’hui ? Quelles retombées pour notre vie quotidienne ?

  14. MLS airborne antenna research

    Science.gov (United States)

    Yu, C. L.; Burnside, W. D.

    1975-01-01

    The geometrical theory of diffraction was used to analyze the elevation plane pattern of on-aircraft antennas. The radiation patterns for basic elements (infinitesimal dipole, circumferential and axial slot) mounted on fuselage of various aircrafts with or without radome included were calculated and compared well with experimental results. Error phase plots were also presented. The effects of radiation patterns and error phase plots on the polarization selection for the MLS airborne antenna are discussed.

  15. Microwave regenerated particulate trap

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, A.C. Jr.; Yonushonis, T.M. [Cummins Engine Co., Inc., Columbus, IN (United States); Haberkamp, W.C.; Mako, F.; Len, L.K,; Silberglitt, R.; Ahmed, I. [FM Technologies, Inc., Fairfax, VA (United States)

    1997-12-31

    It has been demonstrated that a fibrous particulate filter can extract particulate matter from the diesel exhaust. However, additional engineering efforts remains to achieve the design target of 90%. It has also be shown that with minor modifications magnetrons produced for home ovens can endure a simulated diesel operating environment. Much work remains to develop a robust product ready to complete extensive engine testing and evaluation. These efforts include: (1) additional environmental testing of magnetrons; (2) vibration testing of the filter in the housing; (3) evaluating alternative methods/designs to seal the center bore; and (4) determining the optimum coating thickness that provides sufficient structural integrity while maintaining rapid heating rates.

  16. Airborne wireless communication systems, airborne communication methods, and communication methods

    Science.gov (United States)

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  17. Bioaccessibility of palladium and platinum in urban aerosol particulates

    Science.gov (United States)

    Puls, Christoph; Limbeck, Andreas; Hann, Stephan

    2012-08-01

    To evaluate potential health hazards caused by environmental Platinum Group Elements (PGEs), bioaccessibility of the metals in question needs to be assessed. To gain appropriate data, airborne particulate matter samples of different size fractions (total suspended particles as well as PM10 and PM2.5) were taken in downtown Vienna, an urban site primarily polluted by traffic. Total PGE concentrations in these samples were in the low picogram per cubic meter range, as determined by ID-ICP-MS after microwave digestion. For elimination of elements interfering with the accurate quantification, the digested samples were subjected to a cleaning procedure involving cation exchange. For determination of the bioaccessible fraction, it was assumed that inhaled particles are removed from the respiratory system by mucociliary clearance and subsequently ingested. Accordingly, the solubility of PGE in synthetic gastric juice was investigated by batch extraction of particulate matter samples followed by microwave assisted UV-digestion, cation exchange cleanup and ID-ICP-MS. The acquired data was used to calculate the bioaccessible fraction of Pd and Pt in airborne particulate matter. Average GIT-extractable fractions for Pd and Pt in TSP were 41% and 27%, in PM10 34% and 26%, respectively, thus exceeding previously determined values for bioaccessibility of PGE from ground catalyst materials by up to an order of magnitude.

  18. Methods to assess airborne concentrations of cotton dust.

    Science.gov (United States)

    Corn, M

    1987-01-01

    Assessment of concentrations of airborne cotton dust in the factory is necessary to determine adherence to applicable Permissible Exposure Limits (PELs) on a day-to-day basis, as well as for investigatory studies of an epidemiological nature. The latter are required on an ongoing basis to determine the adequacy of PELs to prevent disease in the exposed population. A strategy of sampling includes considerations of the numbers of samples to be obtained for statistical validity and the locations of samples. Current practice is to obtain more "personal samples" of exposure wherever possible, but with regard to cotton dust, instrumentation is not available for such sampling. In the U.S., the vertical elutriator is the instrument of choice for determining the concentrations of cotton dust in air. Results are expressed as milligrams of airborne particulate (cotton dust) per cubic meter. PMID:3434562

  19. Population exposure to airborne thorium at the high natural radiation areas in India

    International Nuclear Information System (INIS)

    High natural radiation areas in the coastal and peninsular India were studied for airborne thorium and resultant population exposure due to inhalation. Four locations covering three states viz., Ayiramthengu and Neendakara in Kerala, Kudiraimozhi in Tamil Nadu and Bhimilipatnam in Andhra Pradesh were investigated. External gamma radiation fields 1 m above the monazite ore bodies ranged from 200 to 3000 nGy h-1. Soil samples showed 232Th specific activity varying from 0·1 to 1·5 Bq g-1 with surface alpha activity in the range of 1·0-12·5 Bq cm-2. Suspended particulates in the samples ranged from 60-140 μg m-3 with 232Th showing a wider variation of -3. There was poor correlation between suspended particulates and long-lived alpha airborne activity (r=-0·3). The resuspension factors for 232Th were in the range of 1·5x10-8-7·9x10-7 cm-1. Higher resuspension was correlated with dry sand dunes. The upper limits for Committed Effective Dose (CED) due to inhalation of airborne 232Th at the respective high natural radiation areas were estimated to range from 50±30 to 300±130 μSv (5-30 mrem) per year per adult member of public assuming an activity median aerodynamic diameter of 1 μm for the airborne particulates. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. Indoor and outdoor concentrations of Japanese cedar pollens and total suspended particulates: A case study at a kindergarten in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Naomichi [Department of Nursing, School of Health Sciences, Tokai University, Bohseidai, Isehara-shi, Kanagawa 259-1193 (Japan); Japan Society for the Promotion of Science (JSPS), Ichiban-cho 8, Chiyoda-ku, Tokyo 102-8472 (Japan); Nishikawa, Junko; Sakamoto, Miho; Shimizu, Tomomi; Matsuki, Hideaki [Department of Nursing, School of Health Sciences, Tokai University, Bohseidai, Isehara-shi, Kanagawa 259-1193 (Japan)

    2010-03-15

    Japanese cedar pollinosis (JCP) caused by allergenic cedar and cypress pollens is one of major economic and health issues in Japan. The present study reported here aimed to provide basic data to understand the status of early life exposures to airborne cedar and cypress pollens in school settings. In particular, the study investigated relationships between indoor and outdoor concentrations of airborne cedar and cypress pollens and total suspended particulates (TSP) in a kindergarten in Japan. Overall, outdoor concentrations of the airborne pollens and TSP were higher than the indoor concentrations, i.e., indoor to outdoor (I/O) ratios of 0.043-0.055 and 0.545 for the airborne pollens and TSP, respectively. The smaller I/O ratios for the pollens were expected because the larger pollen grains (20-30 {mu}m in diameter) were less likely penetrated to indoor environment than for smaller airborne particulates. The present study also found increased TSP concentrations during the pollen season was likely attributed to increased airborne pollen concentrations. By understanding the status of indoor and outdoor concentrations of airborne cedar and cypress pollens in school settings, early life exposures to these allergenic pollens should be effectively minimized to prevent subsequent progression to JCP symptoms. (author)

  1. Analysis of the dynamic interaction between SVOCs and airborne particles

    DEFF Research Database (Denmark)

    Liu, Cong; Shi, Shanshan; Weschler, Charles J.;

    2013-01-01

    A proper quantitative understanding of the dynamic interaction between gas-phase semivolatile organic compounds (SVOCs) and airborne particles is important for human exposure assessment and risk evaluation. Questions regarding how to properly address gas/particle interactions have introduced...... be reasonably neglected for particles with diameters between 0.01 and 10 μm if the particulate organic matter is in the liquid phase. A lumped description therefore can be applied to determine, with greater accuracy than in previous studies, the timescale required to attain gas/particle equilibrium...

  2. Characterization of particulate matter concentrations and bioaerosol on each floor at a building in Seoul, Korea.

    Science.gov (United States)

    Oh, Hyeon-Ju; Jeong, Na-Na; Chi, Woo-Bae; Seo, Ji-Hoon; Jun, Si-Moon; Sohn, Jong-Ryeul

    2015-10-01

    Particulate matter (PM) in buildings are mostly sourced from the transport of outdoor particles through a heating, ventilation, and air conditioning (HVAC) system and generation of particle within the building itself. We investigated the concentrations and characteristic of indoor and outdoor particles and airborne bacteria concentrations across four floors of a building located in a high-traffic area. In all the floors we studied (first, second, fifth, and eighth), the average concentrations of particles less than 10 μm (PM10) in winter for were higher than those in summer. On average, a seasonal variation in the PM10 level was found for the first, fifth, and eighth floors, such that higher values occurred in the winter season, compared to the summer season. In addition, in winter, the indoor concentrations of PM10 on the first, fifth, and eighth floors were higher than those of the outdoor PM10. The maximum level of airborne bacteria concentration was found in a fifth floor office, which held a private academy school consisting of many students. Results indicated that the airborne bacteria remained at their highest concentration throughout the weekday period and varied by students' activity. The correlation coefficient (R (2)) and slope of linear approximation for the concentrations of particulate matter were used to evaluate the relationship between the indoor and outdoor particulate matter. These results can be used to predict both the indoor particle levels and the risk of personal exposure to airborne bacteria. PMID:26062466

  3. Airborne field strength monitoring

    Directory of Open Access Journals (Sweden)

    J. Bredemeyer

    2007-06-01

    Full Text Available In civil and military aviation, ground based navigation aids (NAVAIDS are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000 by the International Civil Aviation Organization (ICAO. One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz, the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA accelerated method of moments (MoM using a complex geometric model of the aircraft. First results will be presented in this paper.

  4. Activation analysis of particulates emitted from aircraft jet engines

    International Nuclear Information System (INIS)

    Particulate matter in emission gas from aircraft jet engines was subjected to instrumental neutron activation analysis and the compositions of trace elements, such as Na, Al, Cl, Sc, V, Cr, Mn, Fe, Co, Cu, Zn, Br, Sb and Th were determined. For comparison, airborne dust samples collected in and around the airport and a soot sample collected in a jet nozzle were also analyzed. The analytical results obtained involve some ambiguous points mainly resulting from the imperfect sampling method. The analytical sensitivity was insufficient because of the too small amount of collected samples. These should be improved in future studies. (auth.)

  5. Particulate matter and health - from air to human lungs

    International Nuclear Information System (INIS)

    The aim of this project is to search for respiratory system particular aggressors to which workers are submitted in their labouring activity. The work plan under the current IAEA contract comprise a prospective study to identify particulate matter deposited in the human respiratory ducts and lung tissue and workers respiratory health status survey at a steel plant, Siderurgia Nacional (SN). So far, the selection of areas of interest at SN, workers exposed, airborne particulate monitoring sites according to the periodicity of labouring cycles, and the beginning of workers medical survey have been achieved and/or initiated. The SN selected area, where steel is processed and steel casting is achieved, involve approximately 80 workers, most of them working at that location for more than 15 years. Blood elemental content data determined by PIXE and INAA and a preliminary health status evaluation from 32 of the 80 workers included in this survey are presented and discussed. (author)

  6. Study for particulate sampling, sizing and analysis for composition

    Energy Technology Data Exchange (ETDEWEB)

    King, A.M.; Jones, A.M. [IMC Technical Services Ltd., Burton-on-Trent (United Kingdom); Dorling, S.R. [University of East Angila (United Kingdom); Merefield, J.R.; Stone, I.M. [Exeter Univ. (United Kingdom); Hall, K.; Garner, G.V.; Hall, P.A. [Hall Analytical Labs., Ltd. (United Kingdom); Stokes, B. [CRE Group Ltd. (United Kingdom)

    1999-07-01

    This report summarises the findings of a study investigating the origin of particulate matter by analysis of the size distribution and composition of particulates in rural, semi-rural and urban areas of the UK. Details are given of the sampling locations; the sampling; monitoring, and inorganic and organic analyses; the review of archive material. The analysis carried out at St Margaret's/Stoke Ferry, comparisons of data with other locations, and the composition of ambient airborne matter are discussed, and recommendations are given. Results of PM2.5/PM10 samples collected at St Margaret's and Stoke Ferry in 1998, and back trajectories for five sites are considered in appendices.

  7. Particulate matter dynamics

    CERN Document Server

    Cionco, Rodolfo G; Caligaris, Marta G

    2012-01-01

    A substantial fraction of the particulate matter released into the atmosphere by industrial or natural processes corresponds to particles whose aerodynamic diameters are greater than 50 mm. It has been shown that, for these particles, the classical description of Gaussian plume diffusion processes, is inadequate to describe the transport and deposition. In this paper we present new results concerning the dispersion of coarse particulate matter. The simulations are done with our own code that uses the Bulirsch Stoer numerical integrator to calculate threedimensional trajectories of particles released into the environment under very general conditions. Turbulent processes are simulated by the Langevin equation and weather conditions are modeled after stable (Monin-Obukhov length L> 0) and unstable conditions (L <0). We present several case studies based on Monte Carlo simulations and discusses the effect of weather on the final deposition of these particles.

  8. Airborne monitoring system

    International Nuclear Information System (INIS)

    A complete system for tracking, mapping, and performing a composition analysis of a radioactive plume and contaminated area was developed at the NRCN. The system includes two major units : An airborne unit for monitoring and a ground station for analyzing. The airborne unit is mounted on a helicopter and includes file following. Four radiation sensor, two 2'' x 2'' Nal (Tl) sensors horizontally separated by lead shield for mapping and spectroscopy, and two Geiger Mueller (GM) tubes as part of the safety system. A multichannel analyzer card is used for spectroscopy. A navigation system, based on GPS and a barometric altitude meter, is used to locate the plume or ground data. The telemetry system, consisting of a transceiver and a modem, transfers all the data in real time to the ground station. An industrial PC (Field Works) runs a dedicated C++ Windows application to manage the acquired data. An independent microprocessor based backup system includes a recorder, display, and key pad. The ground station is based on an industrial PC, a telemetry system, a color printer and a modem to communicate with automatic meteorology stations in the relevant area. A special software controls the ground station. Measurement results are analyzed in the ground station to estimate plume parameters including motion, location, size, velocity, and perform risk assessment. (authors)

  9. ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Stanley J. Miller; Grant L. Schelkoph; Grant E. Dunham

    2000-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and recollection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hour parametric tests and 100-hour proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency.

  10. Airborne Cloud Computing Environment (ACCE)

    Science.gov (United States)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  11. Compositae dermatitis from airborne parthenolide

    DEFF Research Database (Denmark)

    Paulsen, E.; Christensen, Lars Porskjær; Andersen, K.E.

    2007-01-01

    suspected of causing airborne contact allergy, and its most important allergen is the sesquiterpene lactone (SQL) parthenolide (PHL). OBJECTIVES: The aims of this study were to (i) assess the allergenicity of feverfew-derived monoterpenes and sesquiterpenes and their oxidized products in feverfew......-allergic patients and (ii) re-assess the role of PHL and other SQLs in airborne contact allergy. PATIENTS AND METHODS: Feverfew-allergic patients were patch tested with extracts and fractions containing volatile monoterpenes and sesquiterpenes as well as extracts of airborne particles from flowering feverfew plants...

  12. Physical‐chemical and microbiological characterization, and mutagenic activity of airborne PM sampled in a biomass‐fueled electrical production facility

    DEFF Research Database (Denmark)

    Cohn, Corey A.; Lemieux, Christine L.; Long, Alexandra S.;

    2011-01-01

    Biomass combustion is used in heating and electric power generation in many areas of the world. Airborne particulate matter (PM) is released when biomass is brought to a facility, stored, and combusted. Occupational exposure to airborne PM within biomass‐fueled facilities may lead to health...... includes PM from biomass combustion as well as internal combustion vehicles, may contribute to an elevated risk of adverse health effects. Environ. Mol. Mutagen., 2011. © 2010 Wiley‐Liss, Inc....

  13. Particulate contamination in ampoules.

    Science.gov (United States)

    Alexander, D M; Veltman, A M

    1985-01-01

    The particulate contamination in 19 formulations of solutions in ampoules supplied by eight South African manufacturers, thirty-three batches in all, was analysed using a HIAC PC 320 light blockage particle analyser linked to a CMB 60 sensor. Results showed that the level of contamination was generally low and that, where comparisons could be made, manufacturers both of the ampoules and the solutions maintained similarly high standards. Problems in this field appeared to be related to the formulation or the quality of the raw material. PMID:2858528

  14. The input of gaseous and particulate sulfur to a forest ecosystem

    OpenAIRE

    EATON, JOHN S.; Likens, Gene E.; Bormann, F.Herbert

    2011-01-01

    Sulfate is the predominant anion in precipitation entering the Hubbard Brook Experimental Forest, a northern hardwood forest in north-central New Hampshire. Sulfur is also the dominant element in airborne particulate matter. Losses of sulfur from the ecosystem in stream water exceed inputs in precipitation plus that released from weathering. Using the ecosystem method, it is possible to estimate (by difference) that 6.1 kg/ha/yr of sulfur is obtained from dry deposition on the ecosystem. The ...

  15. DETERMINATION OF MOBILITY AND BIOAVAILABILITY OF HEAVY METALS IN THE URBAN AIR PARTICULATES MATTER OF ISFAHAN

    OpenAIRE

    Kalantari, A.; M. Talebi; B BINA

    2001-01-01

    Introduction: In addition to, Carbohyrates, Lipids, Amino acids and vitamins, some of the trace metals are known vital for biological activity. But some of them not only are not necessary, but also they are very toxic and carcinogen. In this research the rate of Mobility and Bioavailability of heavy metals associated with airborne particulates matter such as Zn, Pb, Cd, Cu, Fe, Ni and Cr have been measured. Methods: The sequential extraction has been used for releasing of heavy metales f...

  16. Beryllium Concentrations at European Workplaces: Comparison of ‘Total’ and Inhalable Particulate Measurements

    OpenAIRE

    Kock, Heiko; Civic, Terence; Koch, Wolfgang

    2015-01-01

    A field study was carried out in order to derive a factor for the conversion of historic worker exposure data on airborne beryllium (Be) obtained by sampling according to the 37-mm closed faced filter cassette (CFC) ‘total’ particulate method into exposure concentration values to be expected when sampling using the ‘Gesamtstaubprobenahmesystem’ (GSP) inhalable sampling convention. Workplaces selected to represent the different copper Be work processing operations that typically occur in Germa...

  17. Diversity and seasonal dynamics of airborne archaea

    Science.gov (United States)

    Fröhlich-Nowoisky, J.; Ruzene Nespoli, C.; Pickersgill, D. A.; Galand, P. E.; Müller-Germann, I.; Nunes, T.; Gomes Cardoso, J.; Almeida, S. M.; Pio, C.; Andreae, M. O.; Conrad, R.; Pöschl, U.; Després, V. R.

    2014-11-01

    Archaea are widespread and abundant in many terrestrial and aquatic environments, and are thus outside extreme environments, accounting for up to ~10% of the prokaryotes. Compared to bacteria and other microorganisms, however, very little is known about the abundance, diversity, and dispersal of archaea in the atmosphere. By means of DNA analysis and Sanger sequencing targeting the 16S rRNA (435 sequences) and amoA genes in samples of air particulate matter collected over 1 year at a continental sampling site in Germany, we obtained first insights into the seasonal dynamics of airborne archaea. The detected archaea were identified as Thaumarchaeota or Euryarchaeota, with soil Thaumarchaeota (group I.1b) being present in all samples. The normalized species richness of Thaumarchaeota correlated positively with relative humidity and negatively with temperature. This together with an increase in bare agricultural soil surfaces may explain the diversity peaks observed in fall and winter. The detected Euryarchaeota were mainly predicted methanogens with a low relative frequency of occurrence. A slight increase in their frequency during spring may be linked to fertilization processes in the surrounding agricultural fields. Comparison with samples from the Cape Verde islands (72 sequences) and from other coastal and continental sites indicates that the proportions of Euryarchaeota are enhanced in coastal air, which is consistent with their suggested abundance in marine surface waters. We conclude that air transport may play an important role in the dispersal of archaea, including assumed ammonia-oxidizing Thaumarchaeota and methanogens.

  18. Guidelines for calculating radiation doses to the public from a release of airborne radioactive material under hypothetical accident conditions in nuclear reactors

    International Nuclear Information System (INIS)

    This Standard provides guidelines and a methodology for calculating effective doses and thyroid doses to people (either individually or collectively) in the path of airborne radioactive material released from a nuclear facility following a hypothetical accident. The specific radionuclides considered in the Standard are those associated with substances having the greatest potential for becoming airborne in reactor accidents (eg, tritium (HTO), noble gases and their daughters (Kr-Rb, Xe-Cs), and radioiodines (I)); and certain radioactive particulates (eg, Cs, Ru, Sr, Te) that may become airborne under exceptional circumstances

  19. South African Airborne Operations

    Directory of Open Access Journals (Sweden)

    McGill Alexander

    2012-02-01

    Full Text Available Airborne operations entail the delivery of ground troops and their equipment by air to their area of operations. They can also include the subsequent support of these troops and their equipment by air. Historically, and by definition, this would encompass delivery by fixed-wing powered aircraft, by glider, by parachute or by helicopter. Almost any troops can be delivered by most of these means. However, the technical expertise and physical as well as psychological demands required by parachuting have resulted in specialist troops being selected and trained for this role. Some of the material advantages of using parachute troops, or paratroops, are: the enormous strategic reach provided by the long-distance transport aircraft used to convey them; the considerable payload which these aircraft are capable of carrying; the speed with which the parachute force can deploy; and the fact that no infrastructure such as airfields are required for their arrival. Perhaps most attractively to cash-strapped governments, the light equipment scales of parachute units’ makes them economical to establish and maintain. There are also less tangible advantages: the soldiers selected are invariably volunteers with a willingness or even desire to tackle challenges; their selection and training produces tough, confident and aggressive troops, psychologically geared to face superior odds and to function independently from other units; and their initiative and self-reliance combined with a high level of physical fitness makes them suitable for a number of different and demanding roles.

  20. Microdosimetry of internal, particulate sources

    International Nuclear Information System (INIS)

    The theory of microdosimetry is extended to include particulate and non-uniformly distributed sources typical of internally deposited radioisotopes. An example is presented in which stationary particulates of 239Pu of negligible physical size are distributed at random in a tissue in which the sensitive sites are also assumed to be randomly distributed. Preliminary calculations are reported for this model of the probability density in specific energy of all the sites and of the fraction of sites in which no energy is deposited for particulates that emit between 1 and 100,000 alpha particles

  1. ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert

    2001-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m{sup 3}/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be

  2. Spacecraft Cabin Particulate Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design, build and test an optical extinction monitor for the detection of spacecraft cabin particulates. This monitor will be sensitive to particle...

  3. Spacecraft Cabin Particulate Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We have built and tested an optical extinction monitor for the detection of spacecraft cabin particulates. This sensor sensitive to particle sizes ranging from a...

  4. Electrically heated particulate filter restart strategy

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-07-12

    A control system that controls regeneration of a particulate filter is provided. The system generally includes a propagation module that estimates a propagation status of combustion of particulate matter in the particulate filter. A regeneration module controls current to the particulate filter to re-initiate regeneration based on the propagation status.

  5. Airborne gamma-ray spectrometry

    DEFF Research Database (Denmark)

    Hovgaard, Jens

    A new method - Noise Adjusted Singular Value Decomposition, NASVD - for processing gamma-ray spectra has been developed as part of a Ph.D. project. By using this technique one is able to decompose a large set of data - for example from airborne gamma-ray surveys - into a few spectral components. ...

  6. Microorganisms associated particulate matter: a preliminary study.

    Science.gov (United States)

    Alghamdi, Mansour A; Shamy, Magdy; Redal, Maria Ana; Khoder, Mamdouh; Awad, Abdel Hameed; Elserougy, Safaa

    2014-05-01

    This study aims to determine the microbiological quality of particulate matter (PM) in an urban area in Jeddah, Saudi Arabia, during December 2012 to April 2013. This was achieved by the determination of airborne bacteria, fungi, and actinobacteria associated PM10 and PM2.5, as well as their relationships with gaseous pollutants, O3, SO2 and NO2, and meteorological factors (T°C, RH% and Ws). High volume samplers with PM10 and PM2.5 selective sizes, and glass fiber filters were used to collect PM10 and PM2.5, respectively. The filters were suspended in buffer phosphate and aliquots were spread plated onto the surfaces of trypticase soy agar, malt extract agar, and starch casein agar media for counting of bacteria, fungi and actinobacteria-associated PM, respectively. PM10 and PM2.5 concentrations averaged 159.9 μg/m(3) and 60 μg/m(3), respectively, with the ratio of PM2.5/PM10 averaged ~0.4. The concentrations of O3, SO2 and NO2 averaged 35.73 μg/m(3), 38.1μg/m(3) and 52.5 μg/m(3), respectively. Fungi and actinobacteria associated PM were found in lower concentrations than bacteria. The sum of microbial loads was higher in PM10 than PM2.5, however a significant correlation (r=0.57, P ≤ 0.05) was found between the sum of microbial loads associated PM10 and PM2.5. Aspergillus fumigatus and Aspergillus niger were the common fungal types associated PM. Temperature significantly correlated with both PM10 (r=0.44), and PM2.5 (r=0.5). Significant negative correlations were found between O3 and PM2.5 (r=-0.47), and between SO2 with PM10 (r=-0.48). Wind speed positively correlated with airborne microorganisms associated PM. The regression model showed that the inverse PM2.5 concentration (1/PM2.5) was a significant determinant of fungal count associated PM. Chemical processes and environmental factors could affect properties of PM and in turn its biological quality.

  7. Routing architecture and security for airborne networks

    Science.gov (United States)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  8. Particulate matter and health - From air to human lungs

    International Nuclear Information System (INIS)

    This work reports on the environmental influence in the respiratory health of workers exposed to metal pollutants in their labour activities (metal processing industry). The clinical, respiratory functional and morphological changes were related with blood elemental concentrations in order to evaluate the influence of exposure to inhaled metal airborne particles. In addition, the deposition of particulate matter in the respiratory system was assessed in humans and in an animal model to infer possible mechanisms of interaction of metals with the respiratory tissue. The respiratory affections encountered for the exposure group through clinical, functional and morphological data are related with the number of years of exposure and with high levels of Zn in blood. Methodologies applied have into account the quality of results produced. Interlaboratory checks were carried out using certified reference materials and standard procedures were initiated to assure traceability in chemical analysis of biological matrices using analytical techniques based on X ray spectrometry. (author)

  9. Airborne polarized lidar detection of scattering layers in the ocean.

    Science.gov (United States)

    Vasilkov, A P; Goldin, Y A; Gureev, B A; Hoge, F E; Swift, R N; Wright, C W

    2001-08-20

    A polarized lidar technique based on measurements of waveforms of the two orthogonal-polarized components of the backscattered light pulse is proposed to retrieve vertical profiles of the seawater scattering coefficient. The physical rationale for the polarized technique is that depolarization of backscattered light originating from a linearly polarized laser beam is caused largely by multiple small-angle scattering from particulate matter in seawater. The magnitude of the small-angle scattering is determined by the scattering coefficient. Therefore information on the vertical distribution of the scattering coefficient can be derived potentially from measurements of the time-depth dependence of depolarization in the backscattered laser pulse. The polarized technique was verified by field measurements conducted in the Middle Atlantic Bight of the western North Atlantic Ocean that were supported by in situ measurements of the beam attenuation coefficient. The airborne polarized lidar measured the time-depth dependence of the backscattered laser pulse in two orthogonal-polarized components. Vertical profiles of the scattering coefficient retrieved from the time-depth depolarization of the backscattered laser pulse were compared with measured profiles of the beam attenuation coefficient. The comparison showed that retrieved profiles of the scattering coefficient clearly reproduce the main features of the measured profiles of the beam attenuation coefficient. Underwater scattering layers were detected at depths of 20-25 m in turbid coastal waters. The improvement in dynamic range afforded by the polarized lidar technique offers a strong potential benefit for airborne lidar bathymetric applications. PMID:18360476

  10. Airborne Measurements of Coarse Mode Aerosol Composition and Abundance

    Science.gov (United States)

    Froyd, K. D.; Murphy, D. M.; Brock, C. A.; Ziemba, L. D.; Anderson, B. E.; Wilson, J. C.

    2015-12-01

    Coarse aerosol particles impact the earth's radiative balance by direct scattering and absorption of light and by promoting cloud formation. Modeling studies suggest that coarse mode mineral dust and sea salt aerosol are the dominant contributors to aerosol optical depth throughout much of the globe. Lab and field studies indicate that larger aerosol particles tend to be more efficient ice nuclei, and recent airborne measurements confirm the dominant role of mineral dust on cirrus cloud formation. However, our ability to simulate coarse mode particle abundance in large scale models is limited by a lack of validating measurements above the earth's surface. We present airborne measurements of coarse mode aerosol abundance and composition over several mid-latitude, sub-tropical, and tropical regions from the boundary layer to the stratosphere. In the free troposphere the coarse mode constitutes 10-50% of the total particulate mass over a wide range of environments. Above North America mineral dust typically dominates the coarse mode, but biomass burning particles and sea salt also contribute. In remote environments coarse mode aerosol mainly consists of internally mixed sulfate-organic particles. Both continental and marine convection can enhance coarse aerosol mass through direct lofting of primary particles and by secondary accumulation of aerosol material through cloud processing.

  11. Exposures to airborne particulate matter and adverse perinatal outcomes: a biologically plausible mechanistic framework for exploring potential Exposição à matéria particulada aérea e efeitos perinatais adversos: referencial mecanístico biologicamente plausível para exploração de potenciais

    Directory of Open Access Journals (Sweden)

    Srimathi Kannan

    2007-12-01

    Full Text Available This article has three objectives: to describe the biologically plausible mechanistic pathways by which exposure to particulate matter (PM may lead to adverse perinatal outcomes of low birth weight (LBW, intrauterine growth retardation (IUGR, and preterm delivery (PTD; review evidence showing that nutrition affects biologic pathways; and explain mechanisms by which nutrition may modify the impact of PM exposure on perinatal outcomes. We propose an interdisciplinary framework that brings together maternal and infant nutrition, air pollution exposure assessment, and cardiopulmonary and perinatal epidemiology. Five possible biologic mechanisms have been put forth in the emerging environmental sciences literature and provide corollaries for the proposed framework. The literature indicates that the effects of PM on LBW, PTD, and IUGR may manifest through the cardiovascular mechanisms of oxidative stress, inflammation, coagulation, endothelial function, and hemodynamic responses. PM exposure studies relating mechanistic pathways to perinatal outcomes should consider the likelihood that biologic responses and adverse birth outcomes may be derived from both PM and non-PM sources. We present strategies for empirically testing the proposed model and developing future research efforts.São três os objetivos deste artigo: descrever rotas mecanísticas biologicamente plausíveis pelas quais a exposição à matéria particulada (MP pode levar a efeitos perinatais adversos, como baixo peso ao nascer (BPN, retardo do crescimento intra-uterino (RCIU e nascimentos pré-termo (NPT; fazer uma revisão de evidências mostrando que a nutrição afeta rotas biológicas; explicar os mecanismos através dos quais a nutrição pode modificar o impacto da exposição a MP nos efeitos perinatais adversos. Propomos um referencial interdisciplinar que aproxime nutrição materna e infantil, avaliação de poluição do ar e epidemiologia cardiopulmonar e perinatal

  12. SAFETY HEALTH IMPACTS OF PARTICULATE MATTER FROM EXCAVATION WORK SITES

    Directory of Open Access Journals (Sweden)

    Giuseppe Pizzo

    2012-01-01

    Full Text Available Epidemiological studies have shown a linear relationship between airborne particulates and effects on human health. This study examines the risk that can be run by populations which are exposed to significant pollutant sources such as excavation in urban areas for renovation work. The health risk assessment methodology defined by the WHO air quality guidelines for Europe was applied to assess the possible health effects from exposure to PM10 for daily average concentrations greater than 50 µg m-3 and greater than 100 µg m-3 for three consecutive days and for increments of 10 µg m-3. The methodology adopted was based on daily average concentrations detected in a monitoring period of 8 months in different areas in and around the excavation work site with concentrations of PM10 below or above the legal limits. The exposure estimates calculated show that urban areas with excavation work sites are damaging to human health, due to the large number of people exposed and the already high concentrations of PM10 within cities. It was found that even when in parts of a work site legal limits of PM10 are not exceeded, adverse effects on health still occur. The application, in the present study, of the WHO methodology of exposure assessment indicates the risk ratio for effects on human health. Epidemiological data do not suggest exposition threshold values below which there are no adverse health effects. It is not possible to identify a PM10 concentration value, attributable to an additional source, such as an excavation work site, below which there is no damage. The purpose of this research is therefore to stimulate debate and decisions by public authorities, in order to deepen knowledge and to address issues related to airborne particulates.

  13. Chemical characterization of urban air particulate matter of Kuala Lumpur 2002-2004

    International Nuclear Information System (INIS)

    Urban air particulate samples of Kuala Lumpur ambient air have been collected characterize according to fine and coarse airborne particulates. The air filters containing particulate matter were collected using GENT stack filter unit fitted with appropriate polycarbonate filters. The sampling location site (Lat: 03deg 10'30''; Long: 101deg 43'24.2'') is approximately 1 km from the Kuala Lumpur city center. All the sampling conducted from January 2002 until October 2004 was included in the analysis and results were reported. The mass loading for finest air particulate matter (PM 2.5) in Kuala Lumpur are 199±55 μg (2002), 171±53 μg (2003), and 171±61 μg (2004), respectively. The mass loading for coarse air particulate matter (PM 10) in Kuala Lumpur were 125±29 μg (2002), 134±48 μg (2003), and 137 ± 57 μg (2004), respectively. The elemental concentration of the air filters were determined using INAA technique utilizing both short and long irradiation facilities at MINT's TRIGA MKII reactor. Upon irradiation the air filters were counted at suitable counting time using HPGe gamma-ray detectors. The elements reported for this monitoring are Al, As, Br, Co, Cr, K, Lu, Mn, Na, Sb, Sc, Ti, V, and Zn. Certified reference materials were also included in the sample analysis function as quality control materials. (author)

  14. Protective coatings for commercial particulates

    DEFF Research Database (Denmark)

    Kindl, B.; Teng, Y.H.; Liu, Y.L.

    1994-01-01

    of alumina and zirconia on SiC particulates by sol-gel techniques. Aqueous and organic precursors have been used. The extent of the reaction, i.e., the Si and Al4C3 content in the matrix, was determined by differential thermal analysis and X-ray diffraction. The reaction rates of some coated particulates...... in liquid Al are decreased by as much as one order of magnitude during the first 15 min of immersion. Pretreatments of the SiC surface, the composition and thickness of the coating interphase and heat treatments of the coated materials have been studied, and are discussed in relation to their effect...

  15. The distribution features of the airborne fine particulate matter (PM2.5) ingredients and source analysis in Urumqi%乌鲁木齐市大气细颗粒物(PM2.5)污染成分特征

    Institute of Scientific and Technical Information of China (English)

    玛依热·热夏提; 晓开提·依不拉音; 康宏; 徐涛; 纪元

    2016-01-01

    目的:分析研究乌鲁木齐市2014-2015年空气大气细颗粒物(PM2.5)样品中主要的重金属和离子的浓度及分布特征。方法利用智能大流量PM2.5空气颗粒物采样器采集61个大气细颗粒物样品,对其主要的重金属和阴离子浓度的分布特征进行研究分析。结果所采集的样品中 PM2.5超标率高达100%,且采暖期 PM2.5浓度高于非采暖期。成分分析发现 Na、K、Mg、Ca、Pb、Zn、Fe 和 Cu 是 PM2.5中主要的重金属污染物,其中 Na、Mg、Ca、Zn、Fe 5种重金属相对比较固定,且所占比例最高,占总成分的90%以上。非采暖期这5种重金属污染浓度依次为Ca>Fe>Zn>Mg>Na;采暖期为 Ca>Zn>Fe>Na>Mg。PM2.5中的主要阴离子为 F-、Cl-、NO-3和SO2-4。在不同月份检测的细颗粒物阴离子中,不同阴离子所占比例相对比较稳定,且均为 SO2-4>NO-3>Cl->F-。结论乌鲁木齐市大气污染浓度较高,大气中 PM2.5超标严重。污染来源主要与交通尾气排放和含硫燃煤的燃烧有关,应加强大气中PM2.5污染的治理。%Objective To investigate the space distribution features of major heavy metals and ions as well as their concentration in atmospheric fine particles (PM2.5 )by collecting samples of atmospheric fine parti-cles (PM2.5 )in Urumqi from 2014 to 2015.Methods 63 atmospheric fine particle samples were collected by using TH-1000CII type intelligent flow PM2.5 particulate air sampler.Results Firstly,among the sam-ples of atmospheric fine particles (PM2.5 ),the over standard rate reaches 100%.Secondly,the concentra-tions of the atmospheric fine particles (PM2.5 )was higher in heating period than that in non-heating period. Thirdly,the results showed that Na,K,Mg,Ca,Pb,Zn,Fe and Cu are the main pollution elements of PM2.5 .Among those mental pollutants,Na,Mg,Ca,Zn and Fe were relatively fixed and they had the highest proportion

  16. Particulate Emission Abatement for Krakow Boilerhouses

    International Nuclear Information System (INIS)

    Environmental clean-up and pollution control are considered the foremost national priorities in Poland. The target of this cleanup is the Polish coal industry, which supplies the fuel to generate over 78% of Poland's primary energy production. This project addresses the problem of airborne dust and uncontrolled particulate emissions from boilerhouses, which represent a large fraction of the total in Poland. In Krakow alone, there are more than 2,000 uncontrolled boilers accounting for about half the total fuel use. The large number of low-capacity boilers poses both technical and economic challenges, since the cost of control equipment is a significant factor in the reduction of emissions. A new concept in dust collection, called a Core Separator, is proposed for this important application. The Core Separator is an advanced technology developed through research sponsored by the Department of Energy. It utilizes a highly efficient collector, which functions on the principle of inertial separation. The system is able to control fine particulate matter, as in the PMIO regulations, which limit the emission of dust particles below 10 microns in diameter. Its dust removal performance has been shown to be comparable to that of a medium-efficiency electrostatic precipitator (ESP). Yet, its cost is substantially lower than that of either an ESP or fabric filter. While the Core Separator achieves high efficiency, its power consumption is just slightly higher than that of a cyclone. It functions dry and without the aid of energy-consuming enhancements. It is simple, reliable, and unlike the ESP and fabric filter, easy to maintain. This combination of features make it ideal for the small boiler market in the City of Krakow. A highly qualified team has been assembled to execute this project. LSR Technologies, Inc., a technology-based company located in Acton, Massachusetts, is the developer of the Core Separator and holder of its patent rights. LSR has sold several of these

  17. Monitoring and evaluation techniques for airborne contamination

    Energy Technology Data Exchange (ETDEWEB)

    Xia Yihua [China Inst. of Atomic Energy, Beijing (China)

    1997-06-01

    Monitoring and evaluation of airborne contamination are of great importance for the purpose of protection of health and safety of workers in nuclear installations. Because airborne contamination is one of the key sources to cause exposure to individuals by inhalation and digestion, and to cause diffusion of contaminants in the environment. The main objectives of monitoring and evaluation of airborne contamination are: to detect promptly a loss of control of airborne material, to help identify those individuals and predict exposure levels, to assess the intake and dose commitment to the individuals, and to provide sufficient documentation of airborne radioactivity. From the viewpoint of radiation protection, the radioactive contaminants in air can be classified into the following types: airborne aerosol, gas and noble gas, and volatile gas. In this paper, the following items are described: sampling methods and techniques, measurement and evaluation, and particle size analysis. (G.K.)

  18. Laser shock cleaning of radioactive particulates from glass surface

    Science.gov (United States)

    Kumar, Aniruddha; Prasad, Manisha; Bhatt, R. B.; Behere, P. G.; Afzal, Mohd.; Kumar, Arun; Nilaya, J. P.; Biswas, D. J.

    2014-06-01

    Efficient removal of Uranium-di-oxide (UO2) particulates from glass surface was achieved by Nd-YAG laser induced airborne plasma shock waves. The velocity of the generated shock wave was measured by employing the photo-acoustic probe deflection method. Experiments were carried out to study the effect of laser pulse energy, number of laser exposures and the separation between the substrate surface and the onset point of the shock wave on the de-contamination efficiency. The efficacy of the process was estimated monitoring the alpha activity of the samples before and after laser shock cleaning using a ZnS (Ag) scintillation detector. Significant cleaning efficiency could be achieved when the substrate was exposed to multiple laser shocks that could be further improved by geometrically confining the plasma. No visual damage or loss in optical quality was observed when the shock cleaned surfaces were analysed by optical microscopy and spectrophotometry. The area cleaned by laser shock cleaning was found to be significantly larger than that possible by conventional laser cleaning. Theoretical estimate of the shock force generated has been found to exceed the van der Waal`s binding force for spherical contaminant particulate.

  19. Resuspension of particulate matter and PAHs from street dust

    Science.gov (United States)

    Martuzevicius, D.; Kliucininkas, L.; Prasauskas, T.; Krugly, E.; Kauneliene, V.; Strandberg, B.

    2011-01-01

    Winter street sanding activities in northern countries are often associated with elevated pollution by particulate matter. There are indications that street dust may act as a source of particle-bound PAHs. However, very few studies have addressed the resuspension potential of PAHs from street dust. The purpose of this study was to quantitatively assess emissions of particulate matter and PAHs from street dust by laboratory-scale simulation of particle resuspension. Increases in air velocity caused proportional increases in air-borne PM 2.5, PM 10 and PM total concentrations, while the concentrations of PAHs associated with resuspended particles did not show clear statistically significant dependence on air velocity. A substantial difference in particle and PAH resuspension was observed between dust from the city center street and dust from the connecting street. The data obtained in the present study indicate that street dust may be a significant source not only of PMs but also of particle-bound PAHs in ambient air.

  20. CDC WONDER: Daily Fine Particulate Matter

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Daily Fine Particulate Matter data available on CDC WONDER are geographically aggregated daily measures of fine particulate matter in the outdoor air, spanning...

  1. Direct Measurement of Atmospheric Ammonia from an Airborne Miniature Chemical Ionization Mass Spectrometer (miniCIMS)

    Science.gov (United States)

    Casados, K.; Schill, S.; Freeman, S.; Zoerb, M.; Bertram, T. H.; Lefer, B. L.

    2015-12-01

    Ammonia is emitted into the atmosphere from a variety of sources such as trees, ocean, diary fields, biomass burning, and fuel emissions. Previous studies have investigated the environmental impacts of atmospheric ammonia which can include chemical reactivity, nucleation of fine particulate matter 2.5 (PM 2.5 ), and implications for human health, but its chemical nature and relatively short lifetime make direct measurement of atmospheric ammonia difficult. During the 2015 NASA Student Airborne Research Program (SARP) an airborne miniature Chemical Ionization Mass Spectrometer (miniCIMS) was deployed on the NASA DC-8 flying laboratory in the Southern California region. The spatial and temporal variability of measured atmospheric ammonia concentrations will be discussed.

  2. Particulate matter and preterm birth

    Science.gov (United States)

    Particulate matter (PM) has been variably associated with preterm birth (PTB) (gestation <37 weeks), but the role played by specific chemical components of PM has been little studied. We examined the association between ambient PM <2.5 micrometers in aerodynamic diameter (PM2.S) ...

  3. Transport phenomena in particulate systems

    CERN Document Server

    Freire, José Teixeira; Ferreira, Maria do Carmo

    2012-01-01

    This volume spans 10 chapters covering different aspects of transport phenomena including fixed and fluidized systems, spouted beds, electrochemical and wastewater treatment reactors. This e-book will be valuable for students, engineers and researchers aiming to keep updated on the latest developments on particulate systems.

  4. Distribution of particulate carbohydrate species in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Khodse, V.B.; Bhosle, N.B.; Gopalakrishna, V.V.

    Suspended particulate matter (SPM) of surface seawaters was collected during December 2003 to October 2004 at 10 stations in the Bay of Bengal, and analyzed for particulate organic carbon (POC), total particulate nitrogen (TPN), total particulate...

  5. Accident Generated Particulate Materials and Their Characteristics -- A Review of Background Information

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, S. L.

    1982-05-01

    Safety assessments and environmental impact statements for nuclear fuel cycle facilities require an estimate of the amount of radioactive particulate material initially airborne (source term) during accidents. Pacific Northwest Laboratory (PNL) has surveyed the literature, gathering information on the amount and size of these particles that has been developed from limited experimental work, measurements made from operational accidents, and known aerosol behavior. Information useful for calculating both liquid and powder source terms is compiled in this report. Potential aerosol generating events discussed are spills, resuspension, aerodynamic entrainment, explosions and pressurized releases, comminution, and airborne chemical reactions. A discussion of liquid behavior in sprays, sparging, evaporation, and condensation as applied to accident situations is also included.

  6. Capability of a Portable Chromatic Unit for Monitoring Airborne Particles over Wide Urban Areas

    Directory of Open Access Journals (Sweden)

    M. A. Aceves-Fernandez

    2009-01-01

    Full Text Available Investigations are described into the use of a compact, portable unit, using polychromatic scattered light, for the preliminary monitoring airborne PM 2–10 particulates over widespread urban areas subjected to vehicular traffic. The monitoring unit has been used at a city centre bus terminus, at sites along an urban bus corridor and outside a local school adjacent to an air quality monitoring station. Holistic results are presented which demonstrate the use of the unit for the preliminary identification of locations and conditions with elevated levels of PM 2–10 particles which can be investigated in greater detail with particle-specific, high-precision instruments.

  7. Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE-A)

    Science.gov (United States)

    Kaufman, Y. J.; Setzer, A.; Ward, D.; Tanre, D.; Holben, B. N.; Menzel, P.; Pereira, M. C.; Rasmussen, R.

    1992-01-01

    Results are presented on measurements of the trace gas and particulate matter emissions due to biomass burning during deforestation and grassland fires in South America, conducted as part of the Biomass Burning Airborne and Spaceborne Experiment in the Amazonas in September 1989. Field observations by an instrumented aircraft were used to estimate concentrations of O3, CO2, CO, CH4, and particulate matter. Fires were observed from satellite imagery, and the smoke optical thickness, particle size, and profiles of the extinction coefficient were measured from the aircraft and from the ground. Four smoke plumes were sampled, three vertical profiles were measured, and extensive ground measurements of smoke optical characteristics were carried out for different smoke types. The simultaneous measurements of the trace gases, smoke particles, and the distribution of fires were used to correlate biomass burning with the elevated levels of ozone.

  8. Requirements for airborne vector gravimetry

    Science.gov (United States)

    Schwarz, K. P.; Colombo, O.; Hein, G.; Knickmeyer, E. T.

    1992-01-01

    The objective of airborne vector gravimetry is the determination of the full gravity disturbance vector along the aircraft trajectory. The paper briefly outlines the concept of this method using a combination of inertial and GPS-satellite data. The accuracy requirements for users in geodesy and solid earth geophysics, oceanography and exploration geophysics are then specified. Using these requirements, accuracy specifications for the GPS subsystem and the INS subsystem are developed. The integration of the subsystems and the problems connected with it are briefly discussed and operational methods are indicated that might reduce some of the stringent accuracy requirements.

  9. Geophex Airborne Unmanned Survey System

    Energy Technology Data Exchange (ETDEWEB)

    Won, I.J.; Keiswetter, D. [Geophex, Ltd., Raleigh, NC (United States)

    1995-10-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits rapid geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected.

  10. Airborne Research Experience for Educators

    Science.gov (United States)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  11. Chemical Microsensor Instrument for UAV Airborne Atmospheric Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) proposes to develop a miniaturized Airborne Chemical Microsensor Instrument (ACMI) suitable for real-time, airborne measurements of...

  12. Dispersion and Deposition of Fine Particulates, Heavy Metals and Nitrogen in Urban Landscapes

    Science.gov (United States)

    Whitlow, T. H.; Tong, Z.

    2015-12-01

    Cities are characterized by networks of heavily trafficked roads, abrupt environmental gradients and local sources of airborne pollutants. Because urban dwellers are inevitably in close proximity to near ground pollution, there has been recent interest in using trees and green roofs to reduce human exposure yet there have been few empirical studies documenting the effect of vegetation and spatial heterogeneity on pollution concentration, human exposure and food safety. In this paper we describe the results of 2 studies in the New York metropolitan area. The first describes the effect of roadside trees on the concentration of fine particulates downwind of a major highway. The second examines vertical attenuation of fine particulates between street level and a rooftop vegetable farm and the deposition of nitrogen and heavy metals to vegetables and soil on the roof.

  13. Fogging formulations for fixation of particulate contamination in ductwork and enclosures

    Energy Technology Data Exchange (ETDEWEB)

    Maresca, Jr., Joseph W.; Kostelnik, Lori M.; Kriskivich, James R.; Demmer, Rick L.; Tripp, Julia L.

    2015-09-08

    A method and an apparatus using aqueous fixatives for fogging of ventilation ductwork, enclosures, or buildings containing dust, lint, and particulates that may be contaminated by radionuclides and other dangerous or unsafe particulate contaminants, which method and apparatus are capable of (1) obtaining full coverage within the ductwork and (2) penetrating and fixing the lint, dust and large particles present in the ductwork so that no airborne particles are released during or after the application of the fixative. New aqueous fogging solutions outperform conventional glycerin-based solutions. These aqueous solutions will fog using conventional methods of application and contain a surfactant to aid wetting and penetration of the lint and dust, a binder to stabilize loose or respirable particles, and an agent to aid in fogging and enhance adhesiveness. The solutions are safe and easy to use.

  14. SIMULATION STUDY ON AIRBORNE SAR ECHO SIGNAL

    Institute of Scientific and Technical Information of China (English)

    Bao Houbing; Liu Zhao

    2004-01-01

    Through analyzing the influence on echo signal by factors of kinematical parameters of airborne SAR platform and radar antenna direction, this letter, on the basis of classical SAR echo signal analogue algorithm, puts forward certain airborne SAR echo signal analogue algorithm of distance directional frequency domain pulse coherent accumulation, and goes through simulation. The simulation results have proved the effectiveness of this algorithm.

  15. The Continuous wavelet in airborne gravimetry

    Science.gov (United States)

    Liang, X.; Liu, L.

    2013-12-01

    Airborne gravimetry is an efficient method to recover medium and high frequency band of earth gravity over any region, especially inaccessible areas, which can measure gravity data with high accuracy,high resolution and broad range in a rapidly and economical way, and It will play an important role for geoid and geophysical exploration. Filtering methods for reducing high-frequency errors is critical to the success of airborne gravimetry due to Aircraft acceleration determination based on GPS.Tradiontal filters used in airborne gravimetry are FIR,IIR filer and so on. This study recommends an improved continuous wavelet to process airborne gravity data. Here we focus on how to construct the continuous wavelet filters and show their working principle. Particularly the technical parameters (window width parameter and scale parameter) of the filters are tested. Then the raw airborne gravity data from the first Chinese airborne gravimetry campaign are filtered using FIR-low pass filter and continuous wavelet filters to remove the noise. The comparison to reference data is performed to determinate external accuracy, which shows that continuous wavelet filters applied to airborne gravity in this thesis have good performances. The advantages of the continuous wavelet filters over digital filters are also introduced. The effectiveness of the continuous wavelet filters for airborne gravimetry is demonstrated through real data computation.

  16. Resuscitation effects of catalase on airborne bacteria.

    OpenAIRE

    Marthi, B; Shaffer, B. T.; Lighthart, B; Ganio, L

    1991-01-01

    Catalase incorporation into enumeration media caused a significant increase (greater than 63%) in the colony-forming abilities of airborne bacteria. Incubation for 30 to 60 min of airborne bacteria in collection fluid containing catalase caused a greater than 95% increase in colony-forming ability. However, catalase did not have any effects on enumeration at high relative humidities (80 to 90%).

  17. A Simple Method for Collecting Airborne Pollen

    Science.gov (United States)

    Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.

    2006-01-01

    Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…

  18. A system for airborne SAR interferometry

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang; Skou, Niels; Granholm, Johan;

    1996-01-01

    Interferometric synthetic aperture radar (INSAR) systems have already demonstrated that elevation maps can be generated rapidly with single pass airborne across-track interferometry systems (XTT), and satellite repeat track interferometry (RTT) techniques have been used to map both elevation......) the status of the airborne interferometry activities at DCRS, including the present system configuration, recent results, and some scientific applications of the system....

  19. Material Instabilities in Particulate Systems

    Science.gov (United States)

    Goddard, J. D.

    1999-01-01

    Following is a brief summary of a theoretical investigation of material (or constitutive) instability associated with shear induced particle migration in dense particulate suspensions or granular media. It is shown that one can obtain a fairly general linear-stability analysis, including the effects of shear-induced anisotropy in the base flow as well as Reynolds dilatancy. A criterion is presented here for simple shearing instability in the absence of inertia and dilatancy.

  20. Emissivity of rocket plume particulates.

    OpenAIRE

    Whisman, Curtis D.

    1992-01-01

    The optical properties of motor aluminum oxide are required inputs to current plume signature prediction codes, such as SIRRM. Accurate predictions are possible only if variations in the particle emissivity due to changes in particle size, contamination, and changing temperature, etc. , are known . This investigation demonstrated a simplified method for determination of the emissivity of rocket motor generated alumina. Plume particulate material was collected on ...

  1. Black carbon and elemental concentration of ambient particulate matter in Makassar Indonesia

    International Nuclear Information System (INIS)

    Airborne particulate matter with aerodynamic diameter of less or equal to 10 um or PM10, has been collected on a weekly basis for one year from February 2012 to January 2013 at one site of Makassar, Province of South Sulawesi Indonesia. The samples were collected using a size selective high volume air sampler sited at Daya, a mixed urban, commercial and industrial area in the city of Makassar. The concentration of black carbon (BC) along with a total of 14 elements (i.e Al, Ba, Ca, Cr, Fe, K, Mg, Ba, Na, Ni, Pb, Si, Ti and Zn) were determined from the sample. Results showed that the average particulate mass concentration was 32.9 ± 11.6 μg/m3 with BC and elemental concentration constituted 6.1% and 10.6% of the particulate concentration, respectively. Both BC and elemental constituents contributed 16.7% while 83.3% of the particulate matter remained to be counted for. The black carbon concentration was higher during the dry months which may be attributed to rampant biomass burning during hot and dry weather conditions, apart from other possible sources. Most of the elements were enriched relative to soil origin illustrating of their possible associations with other sources such as marine and anthropogenic derived aerosols, particularly Cr, Ni, Pb, and Zn, which are known to originate from man-made activities

  2. Atmospheric Light Detection and Ranging (LiDAR) Coupled With Point Measurement Air Quality Samplers to Measure Fine Particulate Matter (PM) Emissions From Agricultural Operations: The Los Banos CA Fall 2007 Tillage Campaign.

    Science.gov (United States)

    Airborne particles, especially fine particulate matter 2.5 micrometers (μm) or less in aerodynamic diameter (PM2.5), are microscopic solids or liquid droplets that can cause serious health problems, including increased respiratory symptoms such as coughing or difficulty breathing...

  3. Cardiovascular changes in workers exposed to fine particulate dust

    Directory of Open Access Journals (Sweden)

    Alicja Bortkiewicz

    2014-02-01

    Full Text Available Objectives: Epidemiological studies provide evidence that airborne particulate matter may contribute to the increased incidence and mortality rates due to pulmonary and cardiovascular diseases. Only some of them address the problem of occupational exposure to particulate air pollution. The aim of our study was to assess cardiovascular reaction and autonomic regulation in workers exposed to fine particles. Materials and Methods: All workers had medical examination, resting ECG with heart rate variability analysis (HRV, 24-h ECG, and ambulatory blood pressure monitoring (ABPM performed. The subjects were 20 male workers (mean age: 32.14.0 year of a ceramic ware factory exposed to the dust and 20 workers who were not exposed (mean age: 39.4±7.8 year. The period of employment under exposure amounted to 5.6±2.1 year. Dust exposure was measured using individual dosimeters. Results: The geometric mean total dust concentration was 44±1.5 mg/m3 and the FPD (fine particulate dust concentration amounted to 11.5±1.6 mg/m3. No abnormalities were noted in the resting ECG in both groups, in 24-h ECG 2 subjects, both from exposed and control groups, had ventricular heart rhythm and repolarization disturbances. Blood pressure in ABPM, both systolic as well as diastolic, was normal and did not differ between the groups. Resting heart rate in the exposed group was significantly lower (p = 0.038 than in the control group. In the exposed group STD R-R from short-term records was significantly higher (p = 0.01. Fast Fourier Transform (FFT analysis showed that the low frequency power spectrum (LF did not differ in the exposed and the control group, while high frequency (HF was significantly higher in the exposed group. LF/HF ratio was significantly lower in the exposed in comparison with the control group. Conclusions: Although we did not reveal significant abnormalities in ECG as well as in ABPM in the exposed group, it seems that neurovegetative disturbances

  4. Total exposure to airborne particulate matter in cities: the effect of biomass combustion.

    Science.gov (United States)

    Sarigiannis, Dimosthenis Α; Karakitsios, Spyros P; Kermenidou, Marianthi; Nikolaki, Spyridoula; Zikopoulos, Dimitrios; Semelidis, Stauros; Papagiannakis, Apostolos; Tzimou, Roxani

    2014-09-15

    The study deals with the seasonal variability of PM exposure and the effect that biomass combustion has upon it in the urban environment. The study is based on measurements, chemical analyses and modeling results performed in Thessaloniki (Greece). The measurements campaign included the assessment of outdoor and indoor air quality and the evaluation of biomass use for domestic heating. The outdoor measurements highlighted a significant increase of PM10 (from 30.1 to 73.1 μg/m(3)) and PM2.5 (from 19.4 to 62.7 μg/m(3)) concentrations during the transition from the warm to the cold period of the year 2012 compared to 2011. The increase in ambient air PM during the winter was attributed to the use of biomass burning for space heating. The latter was verified by the presence of levoglucosan in the PM (concentrations up to 8 μg/m(3)), especially for samples taken from the urban background site. Outdoor PM concentrations were also modeled using an artificial neural network model taking into account major meteorological parameters; the latter explained more than 90% of PM10 and PM2.5 day-to-day variability. Indoor concentrations followed a similar pattern, while in the case of fireplace use, average daily concentrations rise to 10 μg/m(3) and 14 μg/m(3) for PM2.5 and PM10 respectively. Indoor air concentrations were affected the most by the ambient air particle infiltration. Indoor air quality went down after 3h of open fire biomass combustion for space heating. Personal exposure was significantly determined by overall indoor air quality. Yet, dynamic exposure analysis revealed that peaks of intake do not correspond to peaks of ambient air PM concentrations altering thus total exposure patterns. Thus, cost-effective public health protection has to aim at reducing the exposure profile of susceptible population sub-groups combining awareness raising, emission reduction measures and financial incentives to influence the choice of space heating systems. PMID:25000575

  5. An airborne assessment of atmospheric particulate emissions from the processing of Athabasca oil sands

    Directory of Open Access Journals (Sweden)

    S. G. Howell

    2013-08-01

    Full Text Available During the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS campaign, two NASA research aircraft, a DC-8 and a P-3B, were outfitted with extensive trace gas (the DC-8 and aerosol (both aircraft instrumentation. Each aircraft spent about a half hour sampling air around the oil sands mining and upgrading facilities near Ft. McMurray, Alberta, Canada. The DC-8 circled the area, while the P-3B flew directly over the upgrading plants, sampling close to the exhaust stacks, then headed downwind to monitor the aerosol as it aged. At short range, the plume from the oil sands is a complex mosaic of freshly nucleated ultrafine particles from a SO2 and NO2-rich plume, fly ash and soot from industrial processes, and dust from dirt roads and mining operations. Shortly downwind, organic aerosol appears in quantities that rival SO4=, either as volatile organic vapors condense or as they react with the H2SO4. The DC-8 pattern allowed us to integrate total flux from the oil sands facilities within about a factor of two uncertainty that spanned values consistent with 2008 estimates from reported SO2 and NO2 emissions. In contrast, CO fluxes exceeded reported regional emissions, due either to variability in production or sources missing from the emissions inventory. The conversion rate of SO2 to aerosol SO4= of ~6% per hour is consistent with earlier reports, though OH concentrations are insufficient to accomplish this. Other oxidation pathways must be active. Altogether, organic aerosol and black carbon emissions from the oil sands operations are small compared with the forest fires present in the region during the summer. The oil sands do contribute significant sulfate and exceed fire production of SO2 by an order of magnitude.

  6. Genotoxicity biomarkers for airborne particulate matter (PM2.5) in an area under petrochemical influence.

    Science.gov (United States)

    Lemos, Andréia Torres; Lemos, Clarice Torres de; Flores, Andressa Negreiros; Pantoja, Eduarda Ozório; Rocha, Jocelita Aparecida Vaz; Vargas, Vera Maria Ferrão

    2016-09-01

    The effects of fine inhalable particles (PM2.5) were evaluated in an area under the influence of a petrochemical industry, investigating the sensitivity of different genotoxicity biomarkers. Organic extracts were obtained from PM2.5 samples at two sites, positioned in the first and second preferential wind direction in the area. The extracts were evaluated with Salmonella/microsome assay, microsuspension method, strains TA98, YG1021 and YG1024. The mammalian metabolization fraction (S9) was used to evaluate metabolite mutagenicity. The Comet Assay (CA) and Micronuclei Test were used in a Chinese hamster lung cell line (V79). All extracts showed mutagenicity in Salmonella, and nitrogenated compounds were strongly present. Genotoxicity were found in CA in almost all extracts and the micronuclei induction at the Site in the first (Autumn 1, Winter 1), and in the second (Spring 2) wind direction. V79 showed cytotoxicity in all samples. The three biomarkers were concordant in characterization Site NO with worse quality, compatible with the greater pollutants dispersion in the first wind direction. All PM2.5 concentrations were lower than those recommended by air quality standards but genotoxic effects were detected in all samples, corroborating that these standards are inadequate as quality indicators. The Salmonella/microsome assay proved sensitive to PM2.5 mutagenicity, with an outstanding influence of nitroarenes and aromatic amines. Analyses using CA and the micronucleus test broadened the levels of response that involve different damage induction mechanisms. Results show that the complex PM2.5 composition can provoke various genotoxic effects and the use of different bioassays is essential to understand its effects. PMID:27343868

  7. Stable isotopes of lead and strontium as tracers of sources of airborne particulate matter in Kyrgyzstan.

    Science.gov (United States)

    Central Asia is dominated by an arid climate and desert-like conditions, leading to the potential of long-range transport of desert dust. One potential source of dust to Central Asia is the Aral Sea, the surface area of which has receded in size from 68,000 km2 to 14,280 km2, lar...

  8. Stable Isotopes of Sr and Pb as Tracers of Sources of Airborne Particulate Matter in Kyrgyzstan

    Science.gov (United States)

    ConclusionsElemental concentrations were higher at the LIDAR site compared to the Bishkek site. Also, concentrations were higher during dust than non-dust events at both sites.The Sr isotopic ratios suggest dust from another region, such as from Western China, Africa, or Middle E...

  9. Observations of the effect of atmospheric processes on the genotoxic potency of airborne particulate matter

    DEFF Research Database (Denmark)

    Feilberg, Anders; Nielsen, Torben; Binderup, Mona-Lise;

    2002-01-01

    In this study, the relationship between genotoxic potency and the occurrence of polycyclic aromatic hydrocarbons (PAH), including benzo(a)pyrene (BaP), and nitro-PAH in urban and semi-rural air masses has been investigated. The Salmonella/microsome assay has been used as a measure of genotoxic...... potency. We find that the ratios of BaP/ mutagenicity and PAH/mutagenicity are highly variable. The processes responsible for the variation are formation and degradation of mutagens and transport of polluted air masses from heavily industrialized regions, Air masses from Central Europe are shown...... to be highly enriched in mutagens as well as in PAH and nitro-PAH. However, the mutagenic activity is much more elevated than the PAH levels when these air masses are mixed with local urban air. Part of the variation in the PAH/mutagenicity ratio can be explained by photochemical transformation. Since BaP has...

  10. Design procedure for sizing a submerged-bed scrubber for airborne particulate removal

    International Nuclear Information System (INIS)

    Performance correlations to design and operate the submerged bed scrubber were developed for various applications. Structural design procedure outlined in this report focuses on off-gas scrubbing for HLW vitrification applications; however, the method is appropriate for other applications

  11. Biomonitoring of airborne particulate matter emitted from a cement plant and comparison with dispersion modelling results

    Science.gov (United States)

    Abril, Gabriela A.; Wannaz, Eduardo D.; Mateos, Ana C.; Pignata, María L.

    2014-01-01

    The influence of a cement plant that incinerates industrial waste on the air quality of a region in the province of Córdoba, Argentina, was assessed by means of biomonitoring studies (effects of immission) and atmospheric dispersion (effects of emission) of PM10 with the application of the ISC3 model (Industrial Source Complex) developed by the USEPA (Environmental Protection Agency). For the biomonitoring studies, samples from the epiphyte plant Tillandsia capillaris Ruíz & Pav. f. capillaris were transplanted to the vicinities of the cement plant in order to determine the physiological damage and heavy metal accumulation (Ca, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb). For the application of the ISC3 model, point and area sources from the cement plant were considered to obtain average PM10 concentration results from the biomonitoring exposure period. This model permitted it to be determined that the emissions from the cement plant (point and area sources) were confined to the vicinities, without significant dispersion in the study area. This was also observed in the biomonitoring study, which identified Ca, Cd and Pb, pH and electric conductivity (EC) as biomarkers of this cement plant. Vehicular traffic emissions and soil re-suspension could be observed in the biomonitors, giving a more complete scenario. In this study, biomonitoring studies along with the application of atmospheric dispersion models, allowed the atmospheric pollution to be assessed in more detail.

  12. Total reflection X-ray fluorescence analysis of airborne particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Klockenkaemper, R.; Bayer, H.; Bohlen, A. von [Institut fuer Spektrochemie und Angewandte Spektroskopie, Dortmund (Germany)

    1995-03-01

    The collection of air dust by a `Berner`- and a `Battelle`-impactor was adapted to the subsequent analysis by Total reflection X-Ray Fluorescence (TXRF). A suitable impactor material has to be chosen in order to avoid high blank values, collection losses and memory effects. Stainless steel even coated by TiN is not at all suitable. Titanium and aluminium are less favourable than makrolon or another high polymer which may even be antistatic. Small sampling volumes of only 1 m{sup 3} and short sampling times of about 1 h are sufficient for a multielement analysis by TXRF. Low detection limits of ng/m{sup 3} and a repeatability of some % can be realized. (author).

  13. Tonopah Test Range Air Monitoring: CY2015 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Nikolich, George [Nevada University, Reno, NV (United States). Desert Research Inst.; Shadel, Craig [Nevada University, Reno, NV (United States). Desert Research Inst.; Chapman, Jenny [Nevada University, Reno, NV (United States). Desert Research Inst.; McCurdy, Greg [Nevada University, Reno, NV (United States). Desert Research Inst.; Etyemezian, Vicken [Nevada University, Reno, NV (United States). Desert Research Inst.; Miller, Julianne J. [Nevada University, Reno, NV (United States). Desert Research Inst.; Mizell, Steve [Nevada University, Reno, NV (United States). Desert Research Inst.

    2016-09-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). The operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites.

  14. Biomonitoring of toxic compounds of airborne particulate matter in urban and industriel areas

    DEFF Research Database (Denmark)

    Klumpp, Andreas; Ro-Poulsen, Helge

    2010-01-01

    on man and environment. Two widely applied biomonitoring procedures, namely the standardised ryegrass exposure for monitoring of trace metals, and the standardised exposure of curly kale for monitoring of PAH compounds, is presented taking examples from a Europe-wide biomonitoring study conducted in 11...

  15. Airborne gamma ray spectrometer surveying

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) in its role as collector and disseminator of information on nuclear techniques has long had an interest in gamma ray spectrometer methods and has published a number of Technical Reports on various aspects of the subject. At an Advisory Group Meeting held in Vienna in November 1986 to review appropriate activities the IAEA could take following the Chernobyl accident, it was recommended that preparation begin on a new Technical Report on airborne gamma ray spectrometer surveying, taking into account the use of the technique for environmental monitoring as well as for nuclear emergency response requirements. Shortly thereafter the IAEA became the lead organization in the Radioelement Geochemical Mapping section of the International Geological Correlation Programme/United Nations Educational, Scientific and Cultural Organization (UNESCO) Project on International Geochemical Mapping. These two factors led to the preparation of the present Technical Report. 18 figs, 4 tabs

  16. Predictors of airborne endotoxin in the home.

    OpenAIRE

    Park, J. H.; Spiegelman, D L; Gold, D R; Burge, H A; Milton, D K

    2001-01-01

    We identified home characteristics associated with the level of airborne endotoxin in 111 Boston-area homes enrolled in a cohort study of home exposures and childhood asthma, and we developed a predictive model to estimate airborne endotoxin. We measured endotoxin in family-room air and in dust from the baby's bed, family room, bedroom, and kitchen floor. Level of airborne endotoxin was weakly correlated (r < 0.3) with level of endotoxin in each of the four types of dust samples and was signi...

  17. Comprehensive airborne characterization of aerosol from a major bovine source

    Directory of Open Access Journals (Sweden)

    H. Jonsson

    2008-09-01

    Full Text Available We report an extensive airborne characterization of aerosol downwind of a massive bovine source in the San Joaquin Valley (California on two flights during July 2007. The Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS Twin Otter probed chemical composition, particle size distribution, mixing state, sub- and supersaturated water uptake behavior, light scattering properties, and the interrelationship between these parameters and meteorology. Total PM1.0 levels and concentrations of organics, nitrate, and ammonium were enhanced in the plume from the source as compared to the background aerosol. Organics dominated the plume aerosol mass (~56–64%, followed either by sulfate or nitrate, and then ammonium. Particulate amines were detected in the plume aerosol by a particle-into-liquid sampler (PILS and via mass spectral markers in the Aerodyne C-ToF-AMS. Amines were found to be a significant atmospheric base even in the presence of ammonia; particulate amine concentrations are estimated as at least 14–23% of that of ammonium in the plume. Enhanced sub- and supersaturated water uptake and reduced refractive indices were coincident with lower organic mass fractions, higher nitrate mass fractions, and the detection of amines. The likelihood of suppressed droplet growth owing to kinetic limitations from hydrophobic organic material is explored. After removing effects associated with size distribution and mixing state, the normalized activated fraction of cloud condensation nuclei (CCN increased as a function of the subsaturated hygroscopic growth factor, with the highest activated fractions being consistent with relatively lower organic mass fractions and higher nitrate mass fractions. Subsaturated hygroscopic growth factors for the organic fraction of the aerosol are estimated based on employing the Zdanovskii-Stokes Robinson (ZSR mixing rule. Representative values for a parameterization treating particle water

  18. Comprehensive airborne characterization of aerosol from a major bovine source

    Directory of Open Access Journals (Sweden)

    A. Sorooshian

    2008-06-01

    Full Text Available We report an extensive airborne characterization of aerosol downwind of a massive bovine source in the San Joaquin Valley (California on two flights during July 2007. The Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS Twin Otter probed chemical composition, particle size distribution, mixing state, sub- and supersaturated water uptake behavior, light scattering properties, and the interrelationship between these parameters and meteorology. Total PM1.0 levels and concentrations of organics, nitrate, and ammonium were enhanced in the plume from the source as compared to the background aerosol. Organics dominated the plume aerosol mass (~56–64%, followed either by sulfate or nitrate, and then ammonium. Particulate amines were detected in the plume aerosol by a particle-into-liquid sampler (PILS and via mass spectral markers in the Aerodyne cToF-AMS. Amines were found to be a significant atmospheric base even in the presence of ammonia; particulate amine concentrations are estimated as at least 14–23% of that of ammonium in the plume. Enhanced sub- and supersaturated water uptake and reduced refractive indices were coincident with lower organic mass fractions, higher nitrate mass fractions, and the detection of amines. Kinetic limitations due to hydrophobic organic material are shown to have likely suppressed droplet growth. After removing effects associated with size distribution and mixing state, the normalized activated fraction of cloud condensation nuclei (CCN increased as a function of the subsaturated hygroscopic growth factor, with the highest activated fractions being consistent with relatively lower organic mass fractions and higher nitrate mass fractions. Subsaturated hygroscopic growth factors for the organic fraction of the aerosol are estimated based on employing the Zdanovskii-Stokes Robinson (ZSR mixing rule. Representative values for a parameterization treating particle water uptake in both the

  19. Zone heated diesel particulate filter electrical connection

    Science.gov (United States)

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2010-03-30

    An electrical connection system for a particulate filter is provided. The system includes: a particulate filter (PF) disposed within an outer shell wherein the PF is segmented into a plurality of heating zones; an outer mat disposed between the particulate filter and the outer shell; an electrical connector coupled to the outer shell of the PF; and a plurality of printed circuit connections that extend along the outer surface of the PF from the electrical connector to the plurality of heating zones.

  20. Particulate Organic Matter (POM) Separation

    International Nuclear Information System (INIS)

    Information on soil organic matter (SOM) pools is of vital importance for studying the impact of soil management and environmental factors on soil organic carbon, an important part of the global carbon cycle. Several conceptual SOM pools with different turnover rates are available to feed models or to study carbon cycles. The fractionation scheme of Zimmermann allows isolating the labile particulate organic matter (POM) pool. Besides its use in conventional soil organic carbon dynamics studies and modelling, this pool can be determining as well in the evaluation of soil organic carbon stability based on the use of stable 15N and 13C isotopes

  1. Environmental assessment of three egg production systems - Part III: Airborne bacteria concentrations and emissions.

    Science.gov (United States)

    Zhao, Y; Zhao, D; Ma, H; Liu, K; Atilgan, A; Xin, H

    2016-07-01

    Airborne microorganism level is an important indoor air quality indicator, yet it has not been well documented for laying-hen houses in the United States. As a part of the Coalition for Sustainable Egg Supply (CSES) environmental monitoring project, this study comparatively monitored the concentrations and emissions of airborne total and Gram-negative (Gram(-)) bacteria in three types of commercial laying-hen houses, i.e., conventional cage (CC), aviary (AV), and enriched colony (EC) houses, over a period of eight months covering the mid and late stages of the flock cycle. It also delineated the relationship between airborne total bacteria and particulate matter smaller than 10 μm in aerodynamic diameter (PM10). The results showed airborne total bacteria concentrations (log CFU/m(3)) of 4.7 ± 0.3 in CC, 6.0 ± 0.8 in AV, and 4.8 ± 0.3 in EC, all being higher than the level recommended for human environment (3.0 log CFU/m(3)). The much higher concentrations in AV arose from the presence of floor litter and hen activities on it, as evidenced by the higher concentrations in the afternoon (with litter access) than in the morning (without litter access). The overall means and standard deviation of airborne total bacteria emission rates, in log CFU/[h-hen] (or log CFU/[h-AU], AU = animal unit or 500 kg live weight) were 4.8 ± 0.4 (or 7.3 ± 0.4) for CC, 6.1 ± 0.7 (or 8.6 ± 0.7) for AV, and 4.8 ± 0.5 (or 7.3 ± 0.5) for EC. Both concentration and emission rate of airborne total bacteria were positively related to PM10 Gram(-) bacteria were present at low concentrations in all houses; and only 2 samples (6%) in CC, 7 (22%) samples in AV, and 2 (6%) samples in EC out of 32 air samples collected in each house were found positive with Gram(-) bacteria. The concentration of airborne Gram(-) bacteria was estimated to be hen houses, especially in AV houses. PMID:26994201

  2. Particulate residue separators for harvesting devices

    Science.gov (United States)

    Hoskinson, Reed L.; Kenney, Kevin L.; Wright, Christopher T.; Hess, John R.

    2010-06-29

    A particulate residue separator and a method for separating a particulate residue stream may include a plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams which are formed by the harvesting device and which travel, at least in part, along the plenum and in a direction of the second, exhaust end; and a baffle assembly which is located in partially occluding relation relative to the plenum, and which substantially separates the first and second particulate residue air streams.

  3. Methods of separating particulate residue streams

    Science.gov (United States)

    Hoskinson, Reed L.; Kenney, Kevin L.; Wright, Christopher T.; Hess, J. Richard

    2011-04-05

    A particulate residue separator and a method for separating a particulate residue stream may include an air plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams that are formed by the harvesting device and that travel, at least in part, along the air plenum and in a direction of the second, exhaust end; and a baffle assembly that is located in partially occluding relation relative to the air plenum and that substantially separates the first and second particulate residue air streams.

  4. Human health risk evaluation of selected VOC, SVOC and particulate emissions from scented candles.

    Science.gov (United States)

    Petry, Thomas; Vitale, Danielle; Joachim, Fred J; Smith, Ben; Cruse, Lynn; Mascarenhas, Reuben; Schneider, Scott; Singal, Madhuri

    2014-06-01

    Airborne compounds in the indoor environment arise from a wide variety of sources such as environmental tobacco smoke, heating and cooking, construction materials as well as outdoor sources. To understand the contribution of scented candles to the indoor load of airborne substances and particulate matter, candle emission testing was undertaken in environmentally controlled small and large emission chambers. Candle emission rates, calculated on the basis of measured chamber concentrations of volatile and semi-volatile organic compounds (VOC, SVOC) and particulate matter (PM), were used to predict their respective indoor air concentrations in a standard EU-based dwelling using 2 models: the widely accepted ConsExpo 1-box inhalation model and the recently developed RIFM 2-box indoor air dispersion model. The output from both models has been used to estimate more realistic consumer exposure concentrations of specific chemicals and PM in candle emissions. Potential consumer health risks associated with the candle emissions were characterized by comparing the exposure concentrations with existing indoor or ambient air quality guidelines or, where not existent, to established toxicity thresholds. On the basis of this investigation it was concluded that under normal conditions of use scented candles do not pose known health risks to the consumer.

  5. Human health risk evaluation of selected VOC, SVOC and particulate emissions from scented candles.

    Science.gov (United States)

    Petry, Thomas; Vitale, Danielle; Joachim, Fred J; Smith, Ben; Cruse, Lynn; Mascarenhas, Reuben; Schneider, Scott; Singal, Madhuri

    2014-06-01

    Airborne compounds in the indoor environment arise from a wide variety of sources such as environmental tobacco smoke, heating and cooking, construction materials as well as outdoor sources. To understand the contribution of scented candles to the indoor load of airborne substances and particulate matter, candle emission testing was undertaken in environmentally controlled small and large emission chambers. Candle emission rates, calculated on the basis of measured chamber concentrations of volatile and semi-volatile organic compounds (VOC, SVOC) and particulate matter (PM), were used to predict their respective indoor air concentrations in a standard EU-based dwelling using 2 models: the widely accepted ConsExpo 1-box inhalation model and the recently developed RIFM 2-box indoor air dispersion model. The output from both models has been used to estimate more realistic consumer exposure concentrations of specific chemicals and PM in candle emissions. Potential consumer health risks associated with the candle emissions were characterized by comparing the exposure concentrations with existing indoor or ambient air quality guidelines or, where not existent, to established toxicity thresholds. On the basis of this investigation it was concluded that under normal conditions of use scented candles do not pose known health risks to the consumer. PMID:24582651

  6. Airborne Digital Camera. A digital view from above; Airborne Digital Camera. Der digitale Blick von oben

    Energy Technology Data Exchange (ETDEWEB)

    Roeser, H.P. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Berlin (Germany). Inst. fuer Weltraumsensorik und Planetenerkundung

    1999-09-01

    The Airborne Digital Camera is based on the WAOSS camera of the MARS-96 mission. The camera will provide a new basis for airborne photogrammetry and remote exploration. The ADC project aims at the development of the first commercial digital airborne camera. [German] Die Wurzeln des Projektes Airborne Digital Camera (ADC) liegen in der Mission MARS-96. Die hierfuer konzipierte Marskamera WAOSS lieferte die Grundlage fuer das innovative Konzept einer digitalen Flugzeugkamera. Diese ist auf dem Weg, die flugzeuggestuetzte Photogrammetrie und Fernerkundung auf eine technologisch voellig neue Basis zu stellen. Ziel des Projektes ADC ist die Entwicklung der ersten kommerziellen digitalen Luftbildkamera. (orig.)

  7. Interim report: airborne plutonium studies for the HEDL Plutonium Fuels Laboratory

    International Nuclear Information System (INIS)

    This report describes data and findings for two studies. The objective of the first is to provide a valid estimate of the alpha activity concentration of the gaseous effluents emitted from the Plutonium Fuels Laboratory. Particulates from large volume samples (millions of cubic ft.) continuously extracted from the E4 duct have shown the alpha activity concentrations to be greater than 2 orders of magnitude below the most restrictive limits for plutonium isotopes listed in Appendix B 10 CFR 20. Currently, samples are continuously extracted at approximately 50 cm for 90 days and indicate alpha activity concentrations of around 5 x 10-6 dpm per ft3. The second study proposes to evaluate the behavior of particles airborne in ''inerted'' gloveboxes. The size distributions and alpha activity concentrations of airborne activity in the Mixing-Blending glovebox have been evaluated during selected fuel fabrication operations. Samples were collected by inserting the collection equipment (cascade impactors or filters) into the glovebox. Samples were collected during mixing blending operations during 2 periods with varying enrichment levels. A maximum airborne concentration of 2.4 x 108 dpm/ft3 was measured with concentrations decaying to 102 to 103 dpm/ft3 after a few days of inactivity

  8. Turbulent dispersivity under conditions relevant to airborne disease transmission between laboratory animals

    Science.gov (United States)

    Halloran, Siobhan; Wexler, Anthony; Ristenpart, William

    2014-11-01

    Virologists and other researchers who test pathogens for airborne disease transmissibility often place a test animal downstream from an inoculated animal and later determine whether the test animal became infected. Despite the crucial role of the airflow in modulating the pathogen transmission, to date the infectious disease community has paid little attention to the effect of airspeed or turbulence intensity on the probability of transmission. Here we present measurements of the turbulent dispersivity under conditions relevant to experimental tests of airborne disease transmissibility between laboratory animals. We used time lapse photography to visualize the downstream transport and turbulent dispersion of smoke particulates released from a point source downstream of a standard axial fan, thus mimicking the release and transport of expiratory aerosols exhaled by an inoculated animal. We demonstrate that the fan speed counterintuitively has no effect on the downstream plume width, a result replicated with a variety of different fan types and configurations. The results point toward a useful simplification in modeling of airborne disease transmission via fan-generated flows.

  9. Determination of airborne cadmium in environmental tobacco smoke by instrumental neutron activation analysis with a compton suppression system.

    Science.gov (United States)

    Landsberger, S; Larson, S; Wu, D

    1993-06-01

    Concentrations of cadmium, a toxic trace element, were measured in the indoor air of several public places where environmental tobacco smoke was present. Particulate-phase cadmium concentrations were determined by analyzing air filter samples using epithermal instrumental neutron activation analysis in conjunction with a Compton suppression gamma-ray detection system, in which the detection limit for cadmium was reduced to a few nanograms per filter. A cascade impactor and a personal filter sampler were used to collect the indoor suspended particulate matter for size-fractionated mass as well as total mass, respectively. Results show that where environmental tobacco smoke is present, cadmium concentrations are significantly higher than background and that about 80% of the cadmium found in indoor airborne particulate matter is associated with particles with aerodynamic diameters less than 1.8 microns. In one instance, airborne cadmium concentrations in a music club were found to be 38 ng/m, which is at least 30 times higher than background. PMID:8328669

  10. Miniaturized Airborne Imaging Central Server System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a miniaturized airborne imaging central server system (MAICSS). MAICSS is designed as a high-performance computer-based electronic backend that...

  11. Miniaturized Airborne Imaging Central Server System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a miniaturized airborne imaging central server system (MAICSS). MAICSS is designed as a high-performance-computer-based electronic backend that...

  12. Regenerable Lunar Airborne Dust Filter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Effective methods are needed to control pervasive Lunar Dust within spacecraft and surface habitations. Once inside, airborne transmission is the primary mode of...

  13. Airborne Multi-Gas Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mesa Photonics proposes to develop an Airborne Multi-Gas Sensor (AMUGS) based upon two-tone, frequency modulation spectroscopy (TT-FMS). Mesa Photonics has...

  14. Reconfigurable Weather Radar for Airborne Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Automation, Inc (IAI) and its university partner, University of Oklahoma (OU), Norman, propose a forward-looking airborne environment sensor based on...

  15. Software for airborne radiation monitoring system

    International Nuclear Information System (INIS)

    The Airborne Radiation Monitoring System monitors radioactive contamination in the air or on the ground. The contamination source can be a radioactive plume or an area contaminated with radionuclides. This system is composed of two major parts: Airborne Unit carried by a helicopter, and Ground Station carried by a truck. The Airborne software is intended to be the core of a computerized airborne station. The software is written in C++ under MS-Windows with object-oriented methodology. It has been designed to be user-friendly: function keys and other accelerators are used for vital operations, a help file and help subjects are available, the Human-Machine-Interface is plain and obvious. (authors)

  16. Airborne Infrared Search and Track Systems

    Directory of Open Access Journals (Sweden)

    Hari Babu Srivastava

    2007-09-01

    Full Text Available Infrared search and track (IRST systems are required for fighter aircraft to enable them to passively search, detect, track, classify, and prioritise multiple airborne targets under all aspects, look-up, look-down, and co-altitude conditions and engage them at as long ranges as possible. While the IRST systems have been proven in performance for ground-based and naval-based platforms, it is still facing some technical problems for airborne applications. These problems arise from uncertainty in target signature, atmospheric effects, background clutter (especially dense and varying clouds, signal and data processing algorithms to detect potential targets at long ranges and some hardware limitations such as large memory requirement to store and process wide field of view data. In this paper, an overview of airborne IRST as a system has been presented with detailed comparative simulation results of different detectionitracking algorithms and the present status of airborne IRSTs

  17. Dans le tourbillon des particules

    CERN Document Server

    Zito, Marco

    2015-01-01

    Accélérateurs géants, détecteurs complexes, particules énigmatiques... La physique subatomique peut sembler bien intimidante pour le novice. Et pourtant, qui n a jamais entendu parler du boson de Higgs et du CERN, le laboratoire européen où il a été découvert en 2012 ? Nul besoin d être un spécialiste pour comprendre de quoi il s agit. Aujourd hui, une théorie extraordinairement élégante, le Modèle Standard, décrit tous les résultats des expériences dans le domaine. Trente-sept particules élémentaires et quatre forces fondamentales : c est tout ce dont nous avons besoin pour expliquer la matière et l Univers ! Ce livre, destiné à un large public, raconte sans équations le long parcours qui a abouti au Modèle Standard. Ce parcours, parfois sinueux, a été entamé lorsque les Grecs anciens, et peut-être d autres avant eux, ont imaginé que la matière est composée de petites « billes ». Il faudra attendre plusieurs siècles pour qu on réalise que la matière, à l échelle micros...

  18. The JAC airborne EM system : AEM-05

    OpenAIRE

    Levaniemi, H.; Beamish, D; Hautaniemi, H.; Kurimo, M.; Suppala, I.; Vironmaki, J.; Cuss, R.J.; Lahti, M; Tartaras, E.

    2009-01-01

    This paper describes the airborne electromagnetic (AEM) system operated by the Joint Airborne geoscience Capability (JAC), a partnership between the Finnish and British Geological Surveys. The system is a component of a 3-in-1, fixed-wing facility acquiring magnetic gradiometer and full spectrum radiometric data alongside the wing-tip, frequency-domain AEM measurements. The AEM system has recently (2005) been upgraded from 2 to 4 frequencies and now provides a bandwidth from 900 Hz to 25 kHz....

  19. Challenges and Opportunities of Airborne Metagenomics

    KAUST Repository

    Behzad, H.

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles.

  20. Airborne infections and modern building technology

    Energy Technology Data Exchange (ETDEWEB)

    LaForce, F.M.

    1986-01-01

    Over the last 30 yr an increased appreciation of the importance of airborne infection has evolved. The concept of droplet nuclei, infectious particles from 0.5 to 3 ..mu.. which stay suspended in air for long periods of time, has been accepted as an important determinant of infectivity. Important airborne pathogens in modern buildings include legionella pneumophila, Aspergillus sp., thermophilic actinomycetes, Mycobacterium tuberculosis, measles, varicella and rubella. Perhaps, the most important microbiologic threat to most buildings is L. pneumophila. This organism can multiply in water cooling systems and contaminate effluent air which can be drawn into a building and efficiently circulated throughout by existing ventilation systems. Hospitals are a special problem because of the concentration of immunosuppressed patients who are uniquely susceptible to airborne diseases such as aspergillosis, and the likelihood that patients ill from diseases that can be spread via the airborne route will be concentrated. Humidifiers are yet another problem and have been shown to be important in several outbreaks of allergic alveolitis and legionellosis. Control of airborne infections is largely an effort at identifying and controlling reservoirs of infection. This includes regular biocide treatment of cooling towers and evaporative condensers and identification and isolation of patients with diseases that may be spread via the airborne route.

  1. Downscaling of Airborne Wind Energy Systems

    Science.gov (United States)

    Fechner, Uwe; Schmehl, Roland

    2016-09-01

    Airborne wind energy systems provide a novel solution to harvest wind energy from altitudes that cannot be reached by wind turbines with a similar nominal generator power. The use of a lightweight but strong tether in place of an expensive tower provides an additional cost advantage, next to the higher capacity factor and much lower total mass. This paper investigates the scaling effects of airborne wind energy systems. The energy yield of airborne wind energy systems, that work in pumping mode of operation is at least ten times higher than the energy yield of conventional solar systems. For airborne wind energy systems the yield is defined per square meter wing area. In this paper the dependency of the energy yield on the nominal generator power for systems in the range of 1 kW to 1 MW is investigated. For the onshore location Cabauw, The Netherlands, it is shown, that a generator of just 1.4 kW nominal power and a total system mass of less than 30 kg has the theoretical potential to harvest energy at only twice the price per kWh of large scale airborne wind energy systems. This would make airborne wind energy systems a very attractive choice for small scale remote and mobile applications as soon as the remaining challenges for commercialization are solved.

  2. Challenges and opportunities of airborne metagenomics.

    Science.gov (United States)

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles.

  3. Externality costs by emission. E. Particulates

    International Nuclear Information System (INIS)

    Fossil-fuel-fired electricity generating systems, particularly coal and oil-fired facilities, are significant emitters of particulate matter. The major components of particulate emissions from a power plant include ash, which is made up of heavy metals, radioactive isotopes and hydrocarbons, and sulfates (SO4) and nitrates (NO3), which are formed by reaction of sulfur dioxide (SO2) and nitrogen oxides (NOx) in the atmosphere. The smallest ash particulates (including sulfates and nitrates) cause human respiratory effects and impaired visibility. Other effects may include materials damage due to soiling and possibly corrosion, damage to domestic and wild flora through deposition of particulates on foliage, and possible health effects on domestic animals and wild fauna. Several studies focus on the direct effects of high ambient levels of small particulates. This chapter reviews the available literature on the effects of particulate emissions on humans and their environment, and attempts to assign a cost figure to the environmental effects and human health impairments associated with particulate matter emissions. Specifically, this report focuses on the effects of particulates related to human health, visibility, flora, fauna and materials

  4. Advanced Fine Particulate Characterization Methods

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and

  5. Association of the mutagenicity of airborne particles with the direct emission from combustion processes investigated in Osaka, Japan

    Science.gov (United States)

    Kameda, Takayuki; Sanukida, Satoshi; Inazu, Koji; Hisamatsu, Yoshiharu; Maeda, Yasuaki; Takenaka, Norimichi; Bandow, Hiroshi

    The association of the direct-acting mutagenicity of soluble organic fraction of airborne particles toward Salmonella typhimurium YG1024 strain with the direct emission was investigated at a roadside and at a residential area in Osaka, Japan. The direct-acting mutagenicity was evaluated as mutagenic activity per unit volume of ambient air (rev m -3) and/or that per airborne particulate weight collected on a filter (rev mg -1). The annual or diurnal changes of the mutagenicity of airborne particles at the residential site showed similar patterns to those of some gaseous pollutants such as NO 2 and SO 2, which were emitted from combustion processes. This result indicates that the mutagenicity is mainly attributable to the primary emissions. From the analysis of the relationship between the wind sector and the mutagenic intensity, rev m -3 and rev mg -1 values were strongly affected by the emissions from the fixed sources and from the mobile sources, respectively. The rev m -3 value and concentration of 1-nitropyrene (1-NP) in unit per m 3 at the roadside were a factor of 2.6 and 2.8 higher than those at the residential site, respectively, but the rev mg -1 value and concentration of 1-NP in unit per mg at the roadside were substantially comparable to those at the residential area. These observations suggest that the characteristics of the airborne particles can be attributed to the automotive emissions even at the suburban area.

  6. Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles

    Science.gov (United States)

    Hagino, Hiroyuki; Oyama, Motoaki; Sasaki, Sousuke

    2016-04-01

    To measure driving-distance-based mass emission factors for airborne brake wear particulate matter (PM; i.e., brake wear particles) related to the non-asbestos organic friction of brake assembly materials (pads and lining), and to characterize the components of brake wear particles, a brake wear dynamometer with a constant-volume sampling system was developed. Only a limited number of studies have investigated brake emissions under urban city driving cycles that correspond to the tailpipe emission test (i.e., JC08 or JE05 mode of Japanese tailpipe emission test cycles). The tests were performed using two passenger cars and one middle-class truck. The observed airborne brake wear particle emissions ranged from 0.04 to 1.4 mg/km/vehicle for PM10 (particles up to 10 μm (in size), and from 0.04 to 1.2 mg/km/vehicle for PM2.5. The proportion of brake wear debris emitted as airborne brake wear particles was 2-21% of the mass of wear. Oxygenated carbonaceous components were included in the airborne PM but not in the original friction material, which indicates that changes in carbon composition occurred during the abrasion process. Furthermore, this study identified the key tracers of brake wear particles (e.g., Fe, Cu, Ba, and Sb) at emission levels comparable to traffic-related atmospheric environments.

  7. Methods for Coating Particulate Material

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2013-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  8. Particulate filtration in nuclear facilities

    International Nuclear Information System (INIS)

    The removal of particulate radioactive material from exhaust air or gases is an essential feature of virtually all nuclear facilities. Recent IAEA publications have covered the broad designs of off-gas and air cleaning systems for the range of nuclear power plants and other facilities. This report is a complementary guidebook that examines in detail the latest developments in the design, operation, maintenance and testing of fibrous air filters. The original draft of the report was prepared by three consultants, M.W. First, of the School of Public Health, Harvard University, United States of America, K.S. Robinson, from the UKAEA Harwell Laboratory, United Kingdom, and H.G. Dillmann, of the Kernforschungzentrum, Karlsruhe, Germany. The Technical Committee Meeting (TCM), at which the report was reviewed and much additional information contributed, was attended by 11 experts and was held in Vienna, from 30 May to 3 June 1988. 64 refs, 41 figs, 10 tabs

  9. PRODUCT ENGINEERING OF PARTICULATE SOLIDS

    Institute of Scientific and Technical Information of China (English)

    Wolfgang Peukert

    2005-01-01

    An important development in Particle Technology is directed towards tailored product properties, i.e. product engineering. Product properties are strongly related to the disperse properties of the particles, i.e. their size, shape, morphology and surface. We discuss some general applicable principles in product engineering and give various examples. Strongly related to this approach are methods to characterize and to tailor product and particle properties. For systems which are controlled by the interfaces (e.g. particles in the micron size range and below) we apply a multi-scale approach from the particulate interfaces over particle interactions to the macroscopic properties. Thus, we tailor macroscopic product properties through microscopic control of the interfaces. This approach must be complemented by methods to characterize particle and product properties. It is shown that by careful consideration of the underlying physical processes considerable progress can be achieved.

  10. Beryllium Concentrations at European Workplaces: Comparison of 'Total' and Inhalable Particulate Measurements.

    Science.gov (United States)

    Kock, Heiko; Civic, Terence; Koch, Wolfgang

    2015-07-01

    A field study was carried out in order to derive a factor for the conversion of historic worker exposure data on airborne beryllium (Be) obtained by sampling according to the 37-mm closed faced filter cassette (CFC) 'total' particulate method into exposure concentration values to be expected when sampling using the 'Gesamtstaubprobenahmesystem' (GSP) inhalable sampling convention. Workplaces selected to represent the different copper Be work processing operations that typically occur in Germany and the EU were monitored revealing a broad spectrum of prevailing Be size distributions. In total, 39 personal samples were taken using a 37-mm CFC and a GSP worn side by side for simultaneous collection of the 'total' dust and the inhalable particulates, respectively. In addition, 20 static general area measurements were carried out using GSP, CFC, and Respicon samplers in parallel, the latter one providing information on the extra-thoracic fraction of the workplace aerosol. The study showed that there is a linear relationship between the concentrations measured with the CFC and those measured with the GSP sampler. The geometric mean value of the ratios of time-weighted average concentrations determined from GSP and CFC samples of all personal samples was 2.88. The individual values covered a range between 1 and 17 related to differences in size distributions of the Be-containing particulates. This was supported by the area measurements showing that the conversion factor increases with increasing values of the extra-thoracic fraction covering a range between 0 and 79%. PMID:25808693

  11. Toxicogenomic analysis of susceptibility to inhaled urban particulate matter in mice with chronic lung inflammation

    Directory of Open Access Journals (Sweden)

    Yauk Carole L

    2009-03-01

    Full Text Available Abstract Background Individuals with chronic lung disease are at increased risk of adverse health effects from airborne particulate matter. Characterization of underlying pollutant-phenotype interactions may require comprehensive strategies. Here, a toxicogenomic approach was used to investigate how inflammation modifies the pulmonary response to urban particulate matter. Results Transgenic mice with constitutive pulmonary overexpression of tumour necrosis factor (TNF-α under the control of the surfactant protein C promoter and wildtype littermates (C57BL/6 background were exposed by inhalation for 4 h to particulate matter (0 or 42 mg/m3 EHC-6802 and euthanized 0 or 24 h post-exposure. The low alveolar dose of particles (16 μg did not provoke an inflammatory response in the lungs of wildtype mice, nor exacerbate the chronic inflammation in TNF animals. Real-time PCR confirmed particle-dependent increases of CYP1A1 (30–100%, endothelin-1 (20–40%, and metallothionein-II (20–40% mRNA in wildtype and TNF mice (p Conclusion Our data support the hypothesis that health effects of acute exposure to urban particles are dominated by activation of specific physiological response cascades rather than widespread changes in gene expression.

  12. Monitoring of airborne PM2.5 in the 3d and 4th industrial complex area of Daejeon city in Korea

    International Nuclear Information System (INIS)

    The aim of this research is to enhance the use of a nuclear analytical technique (instrumental neutron activation analysis) in the field of air pollution studies through a routine and long-term monitoring. For the collection of fine airborne particulate matter (<2.5 μm EAD), the Gent stacked filter unit (a low volume sampler) and polycarbonate membrane filters were employed. Samples were collected with selected sampling dates at the 3rd and 4th industrial complex of Daejeon city in Korea. Mass concentration of the air particulates was measured and the elemental content in the samples collected were analyzed by using INAA. Variations of the concentrations of the particulate matter and the enrichment factors for the elements analyzed were determined. From the monitoring data, a factor analysis was performed to identify and to classify the emission sources. (author)

  13. Determination of chemical composition of individual airborne particles by SEM/EDX and micro-Raman spectrometry: A review

    Science.gov (United States)

    Stefaniak, E. A.; Buczynska, A.; Novakovic, V.; Kuduk, R.; Van Grieken, R.

    2009-04-01

    The strategies for sampling and analysis by SEM/EDX and micro-Raman spectrometry for individual airborne particles analysis as applied at the University of Antwerp (Belgium) by the MITAC group have been reviewed. Microbeam techniques provide detailed information concerning the origin, formation, transport, reactivity, transformation reactions and environmental impact of particulate matter. Moreover, some particles of certain chemical properties have been recognized as a threat for human health and cultural heritage objects. However, the small sizes of particles result in specific problems with respect to single particle analysis. Development of equipment and software for improvement of analysis and quantification are reported.

  14. Mapping permafrost with airborne electromagnetics

    Science.gov (United States)

    Minsley, B. J.; Ball, L. B.; Bloss, B. R.; Kass, A.; Pastick, N.; Smith, B. D.; Voss, C. I.; Walsh, D. O.; Walvoord, M. A.; Wylie, B. K.

    2014-12-01

    Permafrost is a key characteristic of cold region landscapes, yet detailed assessments of how the subsurface distribution of permafrost impacts the environment, hydrologic systems, and infrastructure are lacking. Data acquired from several airborne electromagnetic (AEM) surveys in Alaska provide significant new insight into the spatial extent of permafrost over larger areas (hundreds to thousands of square kilometers) than can be mapped using ground-based geophysical methods or through drilling. We compare several AEM datasets from different areas of interior Alaska, and explore the capacity of these data to infer geologic structure, permafrost extent, and related hydrologic processes. We also assess the impact of fires on permafrost by comparing data from different burn years within similar geological environments. Ultimately, interpretations rely on understanding the relationship between electrical resistivity measured by AEM surveys and the physical properties of interest such as geology, permafrost, and unfrozen water content in the subsurface. These relationships are often ambiguous and non-unique, so additional information is useful for reducing uncertainty. Shallow (upper ~1m) permafrost and soil characteristics identified from remotely sensed imagery and field observations help to constrain and aerially extend near-surface AEM interpretations, where correlations between the AEM and remote sensing data are identified using empirical multivariate analyses. Surface nuclear magnetic resonance (sNMR) measurements quantify the contribution of unfrozen water at depth to the AEM-derived electrical resistivity models at several locations within one survey area. AEM surveys fill a critical data gap in the subsurface characterization of permafrost environments and will be valuable in future mapping and monitoring programs in cold regions.

  15. Evaluation of particulate filtration efficiency of retrofit particulate filters for light duty vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Van Asch, R.; Verbeek, R.

    2009-10-15

    In the light of the currently running subsidy programme for particulate filters in the Netherlands, the Dutch ministry of spatial planning and environment (VROM) asked TNO to execute a desk study to evaluate the particulates filtration efficiency of retrofit particulate filters for light duty vehicles (passenger cars and vans). The typical retrofit particulate filters for light duty vehicles are also called 'open' or 'half-open' filters, because a part of the exhaust gas can pass through the particulate filter unfiltered. From design point they are very different from the majority of the factory installed particulate filters, which are also called wall-flow or 'closed' particulate filters. Due to these differences there is a large difference in filtration efficiency. Whereas the 'dosed' particulate filters show a filtration efficiency of larger than 90%, the filtration efficiency of 'open' particulate filters is generally lower (type approval minimum 30%), and strongly dependent on the conditions of use. The objective of the current project was to assess the average filtration efficiency of retrofit (open) particulate fillters on light duty vehicles in real world day to day driving, based on available literature data. Also, the reasons of a possible deviation with the type approval test results (minimum filtration efficiency of 30%) was investigated.

  16. Electrically heated particulate filter enhanced ignition strategy

    Science.gov (United States)

    Gonze, Eugene V; Paratore, Jr., Michael J

    2012-10-23

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating applied to at least one of the PF and the grid. A control module estimates a temperature of the grid and controls the engine to produce a desired exhaust product to increase the temperature of the grid.

  17. ADVANCED HYBRID PARTICULATE COLLECTOR; FINAL

    International Nuclear Information System (INIS)

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m(sup 3)/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m(sup 3)/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be

  18. Airborne exposure and estimated bioavailability of arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Yager, J.W. [Electric Power Research Inst., Madison, WI (United States); Clewell, H.J. III [ICF Consulting, Fairfax, VA (United States); Hicks, J. [Geomatrix, (United States)

    2000-07-01

    A pilot group of workers were used in a study to determine the relationship between exposure to arsenic present in fly ash particles and urinary excretion of inorganic arsenic and its methylated metabolites. Arsenic was measured in the breathing zone of workers during full shift work schedules and daily urine samples were collected to determine the concentration of arsenic and its metabolites. Airborne particle size distribution samples were collected on six-stage personal cascade impactors. Previous studies of airborne exposure to arsenic in copper smelters predict urinary values nearly three times higher than those seen in exposure to arsenic in fly ash. The results suggest that differences in biological uptake of airborne arsenic probably depend on characteristics such as solubility, particle size and distribution and matrix composition of the arsenic compounds.

  19. Airborne Microalgae: Insights, Opportunities, and Challenges.

    Science.gov (United States)

    Tesson, Sylvie V M; Skjøth, Carsten Ambelas; Šantl-Temkiv, Tina; Löndahl, Jakob

    2016-04-01

    Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concentration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment, possibly influencing their deposition rates. This minireview presents a summary of these studies and traces the possible route, step by step, from established ecosystems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition, and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and the environment and state-of-the-art techniques to detect and model airborne microalga dispersal. More-detailed studies on the microalga atmospheric cycle, including, for instance, ice nucleation activity and transport simulations, are crucial for improving our understanding of microalga ecology, identifying microalga interactions with the environment, and preventing unwanted contamination events or invasions. PMID:26801574

  20. Airborne space laser communication system and experiments

    Science.gov (United States)

    Li, Xiao-Ming; Zhang, Li-zhong; Meng, Li-Xin

    2015-11-01

    Airborne space laser communication is characterized by its high speed, anti-electromagnetic interference, security, easy to assign. It has broad application in the areas of integrated space-ground communication networking, military communication, anti-electromagnetic communication. This paper introduce the component and APT system of the airborne laser communication system design by Changchun university of science and technology base on characteristic of airborne laser communication and Y12 plan, especially introduce the high communication speed and long distance communication experiment of the system that among two Y12 plans. In the experiment got the aim that the max communication distance 144Km, error 10-6 2.5Gbps - 10-7 1.5Gbps capture probability 97%, average capture time 20s. The experiment proving the adaptability of the APT and the high speed long distance communication.

  1. Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit

    Science.gov (United States)

    Licina, Dusan; Bhangar, Seema; Brooks, Brandon; Baker, Robyn; Firek, Brian; Tang, Xiaochen; Morowitz, Michael J.; Banfield, Jillian F.; Nazaroff, William W.

    2016-01-01

    Premature infants in neonatal intensive care units (NICUs) have underdeveloped immune systems, making them susceptible to adverse health consequences from air pollutant exposure. Little is known about the sources of indoor airborne particles that contribute to the exposure of premature infants in the NICU environment. In this study, we monitored the spatial and temporal variations of airborne particulate matter concentrations along with other indoor environmental parameters and human occupancy. The experiments were conducted over one year in a private-style NICU. The NICU was served by a central heating, ventilation and air-conditioning (HVAC) system equipped with an economizer and a high-efficiency particle filtration system. The following parameters were measured continuously during weekdays with 1-min resolution: particles larger than 0.3 μm resolved into 6 size groups, CO2 level, dry-bulb temperature and relative humidity, and presence or absence of occupants. Altogether, over sixteen periods of a few weeks each, measurements were conducted in rooms occupied with premature infants. In parallel, a second monitoring station was operated in a nearby hallway or at the local nurses’ station. The monitoring data suggest a strong link between indoor particle concentrations and human occupancy. Detected particle peaks from occupancy were clearly discernible among larger particles and imperceptible for submicron (0.3–1 μm) particles. The mean indoor particle mass concentrations averaged across the size range 0.3–10 μm during occupied periods was 1.9 μg/m3, approximately 2.5 times the concentration during unoccupied periods (0.8 μg/m3). Contributions of within-room emissions to total PM10 mass in the baby rooms averaged 37–81%. Near-room indoor emissions and outdoor sources contributed 18–59% and 1–5%, respectively. Airborne particle levels in the size range 1–10 μm showed strong dependence on human activities, indicating the importance of indoor

  2. Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit.

    Directory of Open Access Journals (Sweden)

    Dusan Licina

    Full Text Available Premature infants in neonatal intensive care units (NICUs have underdeveloped immune systems, making them susceptible to adverse health consequences from air pollutant exposure. Little is known about the sources of indoor airborne particles that contribute to the exposure of premature infants in the NICU environment. In this study, we monitored the spatial and temporal variations of airborne particulate matter concentrations along with other indoor environmental parameters and human occupancy. The experiments were conducted over one year in a private-style NICU. The NICU was served by a central heating, ventilation and air-conditioning (HVAC system equipped with an economizer and a high-efficiency particle filtration system. The following parameters were measured continuously during weekdays with 1-min resolution: particles larger than 0.3 μm resolved into 6 size groups, CO2 level, dry-bulb temperature and relative humidity, and presence or absence of occupants. Altogether, over sixteen periods of a few weeks each, measurements were conducted in rooms occupied with premature infants. In parallel, a second monitoring station was operated in a nearby hallway or at the local nurses' station. The monitoring data suggest a strong link between indoor particle concentrations and human occupancy. Detected particle peaks from occupancy were clearly discernible among larger particles and imperceptible for submicron (0.3-1 μm particles. The mean indoor particle mass concentrations averaged across the size range 0.3-10 μm during occupied periods was 1.9 μg/m3, approximately 2.5 times the concentration during unoccupied periods (0.8 μg/m3. Contributions of within-room emissions to total PM10 mass in the baby rooms averaged 37-81%. Near-room indoor emissions and outdoor sources contributed 18-59% and 1-5%, respectively. Airborne particle levels in the size range 1-10 μm showed strong dependence on human activities, indicating the importance of indoor

  3. Comprehensive simultaneous shipboard and airborne characterization of exhaust from a modern container ship at sea.

    Science.gov (United States)

    Murphy, Shane M; Agrawal, Harshit; Sorooshian, Armin; Padró, Luz T; Gates, Harmony; Hersey, Scott; Welch, W A; Lung, H; Miller, J W; Cocker, David R; Nenes, Athanasios; Jonsson, Haflidi H; Flagan, Richard C; Seinfeld, John H

    2009-07-01

    We report the first joint shipboard and airborne study focused on the chemical composition and water-uptake behavior of particulate ship emissions. The study focuses on emissions from the main propulsion engine of a Post-Panamax class container ship cruising off the central coast of California and burning heavy fuel oil. Shipboard sampling included micro-orifice uniform deposit impactors (MOUDI) with subsequent off-line analysis, whereas airborne measurements involved a number of real-time analyzers to characterize the plume aerosol, aged from a few seconds to over an hour. The mass ratio of particulate organic carbon to sulfate at the base of the ship stack was 0.23 +/- 0.03, and increased to 0.30 +/- 0.01 in the airborne exhaust plume, with the additional organic mass in the airborne plume being concentrated largely in particles below 100 nm in diameter. The organic to sulfate mass ratio in the exhaust aerosol remained constant during the first hour of plume dilution into the marine boundary layer. The mass spectrum of the organic fraction of the exhaust aerosol strongly resembles that of emissions from other diesel sources and appears to be predominantly hydrocarbon-like organic (HOA) material. Background aerosol which, based on air mass back trajectories, probably consisted of aged ship emissions and marine aerosol, contained a lower organic mass fraction than the fresh plume and had a much more oxidized organic component. A volume-weighted mixing rule is able to accurately predict hygroscopic growth factors in the background aerosol but measured and calculated growth factors do not agree for aerosols in the ship exhaust plume. Calculated CCN concentrations, at supersaturations ranging from 0.1 to 0.33%, agree well with measurements in the ship-exhaust plume. Using size-resolved chemical composition instead of bulk submicrometer composition has little effect on the predicted CCN concentrations because the cutoff diameter for CCN activation is larger than the

  4. Particulate contamination in plastic ampoules.

    Science.gov (United States)

    Oppenheim, R C; Gillies, I R

    1986-05-01

    Plastic ampoules of Water for Injections, JP, and Injection Sodium Chloride, JP, were investigated to determine their particle load. Four batches were studied. The ampoules were twist-opened as they would be in the clinical setting and the total particle load, both inherent and that created in opening, was determined by reading the contents with a HIAC 420 particle counter with a CMB 60 sensor. The total particle content was found to be minimal, easily complying with world L.V.P. standards and the S.V.P. standard of the USP XXI. The number of particles found in these opened plastic ampoules was significantly lower than that found in clinically snap-opened glass ampoules and also slightly lower than that found in laboratory heat-opened glass ampoules. Whilst the plastic ampoule has a restricted application because it is not suitable for all drugs, it is concluded that when they are used as the immediate container for Water for Injections and Injection Sodium Chloride they are highly effective in reducing the particulate contamination generated in opening. PMID:2872309

  5. Sandia Multispectral Airborne Lidar for UAV Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, J.W.; Hargis,Jr. P.J.; Henson, T.D.; Jordan, J.D.; Lang, A.R.; Schmitt, R.L.

    1998-10-23

    Sandia National Laboratories has initiated the development of an airborne system for W laser remote sensing measurements. System applications include the detection of effluents associated with the proliferation of weapons of mass destruction and the detection of biological weapon aerosols. This paper discusses the status of the conceptual design development and plans for both the airborne payload (pointing and tracking, laser transmitter, and telescope receiver) and the Altus unmanned aerospace vehicle platform. Hardware design constraints necessary to maintain system weight, power, and volume limitations of the flight platform are identified.

  6. Detection and enumeration of airborne biocontaminants.

    Science.gov (United States)

    Stetzenbach, Linda D; Buttner, Mark P; Cruz, Patricia

    2004-06-01

    The sampling and analysis of airborne microorganisms has received attention in recent years owing to concerns with mold contamination in indoor environments and the threat of bioterrorism. Traditionally, the detection and enumeration of airborne microorganisms has been conducted using light microscopy and/or culture-based methods; however, these analyses are time-consuming, laborious, subjective and lack sensitivity and specificity. The use of molecular methods, such as quantitative polymerase chain reaction amplification, can enhance monitoring strategies by increasing sensitivity and specificity, while decreasing the time required for analysis.

  7. Airborne radioactivity surveys in geologic exploration

    Science.gov (United States)

    Moxham, R.M.

    1958-01-01

    The value of airborne radioactivity surveys in guiding uranium exploration has been well established. Recent improvements in circuitry and development of semiquantitative analytical techniques permit a more comprehensive evaluation of the geologic distribution of radioactive materials that may prove useful in exploration for other minerals and in regional geologic studies. It is shown that placer deposits of heavy minerals can be detected from the air, and that the geometric configuration and average grade of the surficial part of the deposit can be approximated. Uranium-bearing phosphorite deposits may be similarly evaluated. Airborne surveys over the Coastal Plain area, Texas, show that

  8. Heat and mass transfer in particulate suspensions

    CERN Document Server

    Michaelides, Efstathios E (Stathis)

    2013-01-01

    Heat and Mass Transfer in Particulate Suspensions is a critical review of the subject of heat and mass transfer related to particulate Suspensions, which include both fluid-particles and fluid-droplet Suspensions. Fundamentals, recent advances and industrial applications are examined. The subject of particulate heat and mass transfer is currently driven by two significant applications: energy transformations –primarily combustion – and heat transfer equipment. The first includes particle and droplet combustion processes in engineering Suspensions as diverse as the Fluidized Bed Reactors (FBR’s) and Internal Combustion Engines (ICE’s). On the heat transfer side, cooling with nanofluids, which include nanoparticles, has attracted a great deal of attention in the last decade both from the fundamental and the applied side and has produced several scientific publications. A monograph that combines the fundamentals of heat transfer with particulates as well as the modern applications of the subject would be...

  9. Self-Cleaning Particulate Air Filter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA requires an innovative solution to the serious issue of particulate fouling on air revitalization component surfaces in order to address the potential for...

  10. Particulate products tailoring properties for optimal performance

    CERN Document Server

    Merkus, Henk G

    2013-01-01

    In this book, experts in different product fields provide information on which particulate aspects are most relevant for behavior and performance of specified industrial products and how optimum results can be obtained.

  11. Johns Hopkins Particulate Matter Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Johns Hopkins Particulate Matter Research Center will map health risks of PM across the US based on analyses of national databases on air pollution, mortality,...

  12. Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic.

    Science.gov (United States)

    Valavanidis, Athanasios; Iliopoulos, Nikiforos; Gotsis, George; Fiotakis, Konstantinos

    2008-08-15

    The production and use of polymeric materials worldwide has reached levels of 150 million tonnes per year, and the majority of plastic materials are discarded in waste landfills where are burned generating toxic emissions. In the present study we conducted laboratory experiments for batch combustion/burning of commercial polymeric materials, simulating conditions of open fire combustion, with the purpose to analyze their emissions for chemical characteristics of toxicological importance. We used common types of plastic materials: poly(vinyl chloride) (PVC), low and high density poly(ethylene) (LDPE, HDPE), poly(styrene) (PS), poly(propylene) (PP) and poly(ethylene terephthalate) (PET). Samples of particulate smoke (soot) collected on filters and residue solid ash produced by controlled burning conditions at 600-750 degrees C are used for analysis. Emissions of particulate matter, persistent free radicals embedded in the carbonaceous polymeric matrix, heavy metals, other elements and PAHs were determined in both types of samples. Results showed that all plastics burned easily generating charred residue solid ash and black airborne particulate smoke. Persistent carbon- and oxygen-centered radicals, known for their toxic effects in inhalable airborne particles, were detected in both particulate smoke emissions and residue solid ash. Concentrations of heavy metals and other elements (determined by Inductively Coupled Plasma Emission Spectrometry, ICP, method) were measured in the airborne soot and residue ash. Toxic heavy metals, such as Pb, Zn, Cr, Ni, and Cd were relatively at were found at low concentrations. High concentrations were found for some lithophilic elements, such as Na, Ca, Mg, Si and Al in particulate soot and residue solid ash. Measurements of PAHs showed that low molecular weight PAHs were at higher concentrations in the airborne particulate soot than in the residue solid ash for all types of plastic. Higher-ringed PAHs were detected at higher

  13. 40 CFR 60.422 - Standards for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Manufacture § 60.422 Standards for particulate matter. On or after the date on which the performance test... sulfate dryer, particulate matter at an emission rate exceeding 0.15 kilogram of particulate per...

  14. Particulate emissions from biodiesel fuelled CI engines

    International Nuclear Information System (INIS)

    Highlights: • Physical and chemical characterization of biodiesel particulates. • Toxicity of biodiesel particulate due to EC/OC, PAHs and BTEX. • Trace metals and unregulated emissions from biodiesel fuelled diesel engines. • Influence of aftertreatment devices and injection strategy on biodiesel particulates. • Characterization of biodiesel particulate size-number distribution. - Abstract: Compression ignition (CI) engines are the most popular prime-movers for transportation sector as well as for stationary applications. Petroleum reserves are rapidly and continuously depleting at an alarming pace and there is an urgent need to find alternative energy resources to control both, the global warming and the air pollution, which is primarily attributed to combustion of fossil fuels. In last couple of decades, biodiesel has emerged as the most important alternative fuel candidate to mineral diesel. Numerous experimental investigations have confirmed that biodiesel results in improved engine performance, lower emissions, particularly lower particulate mass emissions vis-à-vis mineral diesel and is therefore relatively more environment friendly fuel, being renewable in nature. Environmental and health effects of particulates are not simply dependent on the particulate mass emissions but these change depending upon varying physical and chemical characteristics of particulates. Particulate characteristics are dependent on largely unpredictable interactions between engine technology, after-treatment technology, engine operating conditions as well as fuel and lubricating oil properties. This review paper presents an exhaustive summary of literature on the effect of biodiesel and its blends on exhaust particulate’s physical characteristics (such as particulate mass, particle number-size distribution, particle surface area-size distribution, surface morphology) and chemical characteristics (such as elemental and organic carbon content, speciation of polyaromatic

  15. Airborne Vertical Profiling of Mercury Speciation near Tullahoma, TN, USA

    Directory of Open Access Journals (Sweden)

    Steve Brooks

    2014-08-01

    Full Text Available Atmospheric transport and in situ oxidation are important factors influencing mercury concentrations at the surface and wet and dry deposition rates. Contributions of both natural and anthropogenic processes can significantly impact burdens of mercury on local, regional and global scales. To address these key issues in atmospheric mercury research, airborne measurements of mercury speciation and ancillary parameters were conducted over a region near Tullahoma, Tennessee, USA, from August 2012 to June 2013. Here, for the first time, we present vertical profiles of Hg speciation from aircraft for an annual cycle over the same location. These airborne measurements included gaseous elemental mercury (GEM, gaseous oxidized mercury (GOM and particulate bound mercury (PBM, as well as ozone (O3, sulfur dioxide (SO2, condensation nuclei (CN and meteorological parameters. The flights, each lasting ~3 h, were conducted typically one week out of each month to characterize seasonality in mercury concentrations. Data obtained from 0 to 6 km altitudes show that GEM exhibited a relatively constant vertical profile for all seasons with an average concentration of 1.38 ± 0.17 ng∙m−3. A pronounced seasonality of GOM was observed, with the highest GOM concentrations up to 120 pg∙m−3 in the summer flights and lowest (0–20 pg∙m−3 in the winter flights. Vertical profiles of GOM show the maximum levels at altitudes between 2 and 4 km. Limited PBM measurements exhibit similar levels to GOM at all altitudes. HYSPLIT back trajectories showed that the trajectories for elevated GOM (>70 pg∙m−3 or PBM concentrations (>30 pg∙m−3 were largely associated with air masses coming from west/northwest, while events with low GOM (<20 pg∙m−3 or PBM concentrations (<5 pg∙m−3 were generally associated with winds from a wider range of wind directions. This is the first set of speciated mercury vertical profiles collected in a single location over the course

  16. Complexity analysis in particulate matter measurements

    Directory of Open Access Journals (Sweden)

    Luciano Telesca

    2011-09-01

    Full Text Available We investigated the complex temporal fluctuations of particulate matter data recorded in London area by using the Fisher-Shannon (FS information plane. In the FS plane the PM10 and PM2.5 data are aggregated in two different clusters, characterized by different degrees of order and organization. This results could be related to different sources of the particulate matter.

  17. CERN: le Mondial de la particule

    CERN Multimedia

    Favier, R

    1998-01-01

    Avec le LEP (acc\\’{e}l\\’{e}rateur de particules), le CERN est devenu le v\\’{e}ritable phare de la science europ\\’{e}enne. Notamment pour la physique des particules. Riche de multiples exp\\’{e}riences r\\’{e}ussies, mais aussi de quelques prix Nobel, le CERN est en train de vivre une nouvelle aventure scientifique, en lan

  18. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a... conditions that can be detected with airborne weather radar equipment, may reasonably be expected along...

  19. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  20. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  1. Spectral variability of the particulate backscattering ratio

    Science.gov (United States)

    Whitmire, A. L.; Boss, E.; Cowles, T. J.; Pegau, W. S.

    2007-05-01

    The spectral dependency of the particulate backscattering ratio is relevant in the fields of ocean color inversion, light field modeling, and inferring particle properties from optical measurements. Aside from theoretical predictions for spherical, homogeneous particles, we have very limited knowledge of the actual in situ spectral variability of the particulate backscattering ratio. This work presents results from five research cruises that were conducted over a three-year period. Water column profiles of physical and optical properties were conducted across diverse aquatic environments that offered a wide range of particle populations. The main objective of this research was to examine the behavior of the spectral particulate backscattering ratio in situ, both in terms of its absolute magnitude and its variability across visible wavelengths, using over nine thousand 1-meter binned data points for each of five wavelengths of the spectral particulate backscattering ratio. Our analysis reveals no spectral dependence of the particulate backscattering ratio within our measurement certainty, and a geometric mean value of 0.013 for this dataset. This is lower than the commonly used value of 0.0183 from Petzold’s integrated volume scattering data. Within the first optical depth of the water column, the mean particulate backscattering ratio was 0.010.

  2. Airborne Gravity: NGS' Airborne Gravity Data for AN01 (2009-2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2009-2010 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  3. Precision Rectification of Airborne SAR Image

    DEFF Research Database (Denmark)

    Dall, Jørgen; Liao, M.; Zhang, Zhe;

    1997-01-01

    A simple and direct procedure for the rectification of a certain class of airborne SAR data is presented. The relief displacements of SAR data are effectively removed by means of a digital elevation model and the image is transformed to the ground coordinate system. SAR data from the Danish EMISAR...

  4. Experimental airborne transmission of PRRS virus

    DEFF Research Database (Denmark)

    Kristensen, C.S.; Bøtner, Anette; Takai, H.;

    2004-01-01

    A series of three experiments, differing primarily in airflow volume, were performed to evaluate the likelihood of airborne transmission of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) from infected to non-infected pigs. Pigs were housed in two units (unit A and unit B) located 1 m...

  5. Topology optimized cloak for airborne sound

    DEFF Research Database (Denmark)

    Andkjær, Jacob Anders; Sigmund, Ole

    2013-01-01

    Directional acoustic cloaks that conceal an aluminum cylinder for airborne sound waves are presented in this paper. Subwavelength cylindrical aluminum inclusions in air constitute the cloak design to aid practical realizations. The positions and radii of the subwavelength cylinders are determined...

  6. Airborne Soil Organic Particles Generated by Precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingbing; Harder, Henning T.; Kelly, Stephen T.; Piens, Dominique` Y.; China, Swarup; Kovarik, Libor; Keiluweit, Marco; Arey, Bruce W.; Gilles, Mary K.; Laskin, Alexander

    2016-05-02

    Airborne organic particles play a critical role in the Earth’s climate1, public health2, air quality3, and hydrological and carbon cycles4. These particles exist in liquid, amorphous semi-solid, or solid (glassy) phase states depending on their composition and ambient conditions5. However, sources and formation mechanisms for semi- solid and solid organic particles are poorly understood and typically neglected in atmospheric models6. Here we report field evidence for airborne solid organic particles generated by a “raindrop” mechanism7 pertinent to atmosphere – land surface interactions (Fig. 1). We find that after rain events at Southern Great Plains, Oklahoma, USA, submicron solid particles, with a composition consistent with soil organic matter, contributed up to 60% of atmospheric particles in number. Subsequent experiments indicate that airborne soil organic particles are ejected from the surface of soils caused by intensive rains or irrigation. Our observations suggest that formation of these particles may be a widespread phenomenon in ecosystems where soils are exposed to strong, episodic precipitation events such as agricultural systems and grasslands8. Chemical imaging and micro-spectroscopy analysis of their physico-chemical properties suggests that airborne soil organic particles may have important impacts on cloud formation and efficiently absorb solar radiation and hence, are an important type of particles.

  7. Use of airborne vehicles as research platforms

    OpenAIRE

    Gratton, GB

    2012-01-01

    This is the accepted version of the following chapter: Gratton, G. 2012. Use of Airborne Vehicles as Research Platforms. Encyclopedia of Aerospace Engineering, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/9780470686652.eae604/full. Copyright @ John Wiley & Sons 2012.

  8. First Study Of HEPA Filter Prototype Performance To Control The Airborne Pollution

    International Nuclear Information System (INIS)

    This paper will report the efficiency test result of the filtration tool prototype of High Efficiency Particulate Air (HEPA filter) for low temperature, to control the airborne pollution of aerosol particle of solid and liquid. The prototype design of HEPA filter was based on the characteristic data of filter material (fibrous diameter, density, filter thickness), flow rate of air and first pressure drop. From the result of laboratory scale test, using DOP/PSL aerosol with 0,3 mum diameter and the flow rate of 3,78 m exp.3/min, was obtained filtration efficiency revolve between 89,90 and 99,94 % for the filter prototype of A, B, C, and D. the efficiency estimation of theory with filtration programme and the experiment was different amount 1 %. The value of the prototype efficiency of D filter was not far different with AAF-USA filter and its price is cheaper 30 % than the price of AAF-USA filter

  9. Airborne laser sensors and integrated systems

    Science.gov (United States)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  10. Regional airborne flux measurements in Europe

    Science.gov (United States)

    Gioli, B.; Miglietta, F.; Vaccari, F. P.; Zaldei, A.; Hutjes, R. W. A.

    2003-04-01

    The problem of identifying the spatial and temporal distribution of sources and sinks of atmospheric CO2 is the subject of considerable scientific and political debate. Even if it is now possible to estimate within reasonable accuracy the sink strength of European forests at the local scale, difficulties still exist in determining the partitioning of the sinks at the global and regional scales. The aim of the EU-project RECAB (Regional Assessment of the Carbon Balance in Europe) that is coordinated by Alterra, Wageningen (NL), is to bridge the gap between local scale flux measurements and continental scale inversion models by a generic modelling effort and measurement program, focussing on a limited number of selected regions in Europe for which previous measurements exists. This required the establishment of a European facility for airborne measurement of surface fluxes of CO2 at very low altitude, and a research aircraft capable of performing airborne eddy covariance measurements has been acquired by this project and used on several occasions at the different RECAB sites. The aircraft is the italian Sky Arrows ERA (Environmental Research Aircraft) equipped with the NOAA/ARA Mobile Flux Platform (MFP), and a commercial open-path infrared gas analyser. Airborne eddy covariance measurements were made from June 2001 onwards in Southern Spain near Valencia (June and December 2001), in Central Germany near Jena (July 2001), in Sweden near Uppsala (August 2001), in The Netherlands near Wageningen (January and July 2002) and in Italy near Rome (June 2002). Flux towers were present at each site to provide a validation of airborne eddy covariance measurements. This contribution reports some validation results based on the comparison between airborne and ground based flux measurements and some regional scale results for different locations and different seasons, in a wide range of meteorological and ecological settings.

  11. Advanced Hybrid Particulate Collector Project Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.J.

    1995-11-01

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  12. Estimation of inhalation doses from airborne releases using gross monitors

    International Nuclear Information System (INIS)

    Monitoring programs at most nuclear facilities involve continuous gross measurements supplemented by periodic isotopic analyses of release samples. The isotopic measurements are required to accurately assess the potential dose from the various effluent streams, but in between these measurements, one depends on the gross monitors to provide approximate indications of the dose. The effluent streams release a variety of nuclides, each with its own dose factor. This means that the relationship between the counting rate in a gross monitor and the potential dose of the effluent being monitored will depend on the isotopic composition of this release. If this composition changes, then the dose indicated by the gross monitor (calibrated for the original group of isotopes) may be significantly in error. The problem of indicating inhalation doses from gross monitoring of airborne releases is considered. In order for this type of monitor to accurately indicate dose, regardless of the isotopic makeup of a release, the analysis shows that its response to each isotope should be proportional to the dose factor of that isotope. These ideas are applied to the monitoring of air particulates using gross beta and gross gamma monitors. The study shows that the former more closely satisfies this condition and as a result, satisfactorily indicates the actual dose from reactor effluents, as determined from detailed isotopic data published in the literature. On the other hand, the gross gamma monitor, with its poorer fit to the condition, provided less than satisfactory accuracy in its dose estimates. In addition, a variety of other mathematical response functions were considered but their dose estimation capabilities were not much better than the straight beta response. The study shows that reasonably accurate dose estimates can be made using properly selected gross monitors, but that significant errors can result with improper ones. (author)

  13. The Airborne Cloud-Aerosol Transport System. Part I; Overview and Description of the Instrument and Retrival Algorithms

    Science.gov (United States)

    Yorks, John E.; Mcgill, Matthew J.; Scott, V. Stanley; Kupchock, Andrew; Wake, Shane; Hlavka, Dennis; Hart, William; Selmer, Patrick

    2014-01-01

    The Airborne Cloud-Aerosol Transport System (ACATS) is a multi-channel Doppler lidar system recently developed at NASA Goddard Space Flight Center (GSFC). A unique aspect of the multi-channel Doppler lidar concept such as ACATS is that it is also, by its very nature, a high spectral resolution lidar (HSRL). Both the particulate and molecular scattered signal can be directly and unambiguously measured, allowing for direct retrievals of particulate extinction. ACATS is therefore capable of simultaneously resolving the backscatterextinction properties and motion of a particle from a high altitude aircraft. ACATS has flown on the NASA ER-2 during test flights over California in June 2012 and science flights during the Wallops Airborne Vegetation Experiment (WAVE) in September 2012. This paper provides an overview of the ACATS method and instrument design, describes the ACATS retrieval algorithms for cloud and aerosol properties, and demonstrates the data products that will be derived from the ACATS data using initial results from the WAVE project. The HSRL retrieval algorithms developed for ACATS have direct application to future spaceborne missions such as the Cloud-Aerosol Transport System (CATS) to be installed on the International Space Station (ISS). Furthermore, the direct extinction and particle wind velocity retrieved from the ACATS data can be used for science applications such 27 as dust or smoke transport and convective outflow in anvil cirrus clouds.

  14. Characterization of particulate matter for three sites in Kuwait.

    Science.gov (United States)

    Brown, Kathleen Ward; Bouhamra, Walid; Lamoureux, Denise P; Evans, John S; Koutrakis, Petros

    2008-08-01

    Many studies have shown strong associations between particulate matter (PM) levels and a variety of health outcomes, leading to changes in air quality standards in many regions, especially the United States and Europe. Kuwait, a desert country located on the Persian Gulf, has a large petroleum industry with associated industrial and urban land uses. It was marked by environmental destruction from the 1990 Iraqi invasion and subsequent oil fires. A detailed particle characterization study was conducted over 12 months in 2004-2005 at three sites simultaneously with an additional 6 months at one of the sites. Two sites were in urban areas (central and southern) and one in a remote desert location (northern). This paper reports the concentrations of particles less than 10 microm in diameter (PM10) and fine PM (PM2.5), as well as fine particle nitrate, sulfate, elemental carbon (EC), organic carbon (OC), and elements measured at the three sites. Mean annual concentrations for PM10 ranged from 66 to 93 microg/m3 across the three sites, exceeding the World Health Organization (WHO) air quality guidelines for PM10 of 20 microg/m3. The arithmetic mean PM2.5 concentrations varied from 38 and 37 microg/m3 at the central and southern sites, respectively, to 31 microg/m3 at the northern site. All sites had mean PM2.5 concentrations more than double the U.S. National Ambient Air Quality Standard (NAAQS) for PM2.5. Coarse particles comprised 50-60% of PM10. The high levels of PM10 and large fraction of coarse particles comprising PM10 are partially explained by the resuspension of dust and soil from the desert crust. However, EC, OC, and most of the elements were significantly higher at the urbanized sites, compared with the more remote northern site, indicating significant pollutant contributions from local mobile and stationary sources. The particulate levels in this study are high enough to generate substantial health impacts and present opportunities for improving public

  15. Particulate matter concentrations and emissions in rabbit farms

    Directory of Open Access Journals (Sweden)

    Elisa Adell

    2012-04-01

    Full Text Available The extent of the potential health hazards of particulate matter (PM inside rabbit farms and the magnitude of emission levels to the outside environment are still unknown, as data on PM concentrations and emissions in and from such buildings is scarce.  The purpose of this study was to quantify airborne PM10 and PM2.5 concentrations and emissions on two rabbit farms in Mediterranean conditions and identify the main factors related with farm activities influencing PM generation.  Concentrations of PM10 and PM2.5 were determined continuously using a tapered element oscillating microbalance (TEOM in one farm with fattening rabbits and one reproductive doe farm in autumn.  At the same time as PM sampling, the time and type of human farm activity being performed was recorded. Additionally, temperature, relative humidity and ventilation rate were recorded continuously.  Emissions were calculated using a mass balance on each farm.  Results showed PM concentrations in rabbit farms are low compared with poultry and pig farms.  Average PM10 concentrations were 0.082±0.059 mg/m3 (fattening rabbits, and 0.048 ±0.058 mg/m3 (reproductive does. Average PM2.5 concentrations were 0.012±0.016 mg/m3 (fattening rabbits, and 0.012±0.035 mg/m3 (reproductive does. Particulate matter concentrations were significantly influenced by the type of human farm activity carried out in the building rather than by animal activity.  The main PM-generating activity on the fattening rabbit farm was sweeping, and the major PM-generating activity in reproductive does was sweeping and burning hair from the cages.  Average PM10 emissions were 5.987±6.144 mg/place/day (fattening rabbits, and 14.9±31.5 mg/place/day (reproductive does.  Average PM2.5 emissions were 0.20±1.26 mg/place/day (fattening rabbits, and 2.83±19.54 mg/place/day (reproductive does.  Emission results indicate that rabbit farms can be considered relevant point sources of PM emissions, comparable to

  16. [Suspended particulates and lung health].

    Science.gov (United States)

    Neuberger, Manfred; Moshammer, Hanns

    2004-01-01

    Based on several severe air pollution episodes, a temporal correlation between high concentrations of particulate matter (PM) and SO2 pollution and acute increases in respiratory and cardiopulmonary mortality had been established in Vienna for the 1970's. After air pollution had decreased in Austria in the 1980's--as documented by data on SO2, and total suspended particles (TSP)--no such associations between day-to-day changes of SO2 and TSP and mortality have been documented any more, however, traffic related pollutants like fine particles and NO2 remained a problem. Therefore, short term effects of PM on lung function, morbidity and mortality were investigated in Vienna, Linz, Graz and a rural control area. Long-term exposure and chronic disease--even more important for public health--were studied in repeated cross-sectional, a mixed longitudinal and a birth cohort study on school children in the city of Linz. Lung function growth was found impaired from long-term exposure to air pollutants and improved in districts where ambient air pollution had decreased. Where only TSP and SO2 had decreased, no continuous improvement of small airway function was found and end-expiratory flow rates stayed impaired where NO2-reduction from technical improvements of cars and industry was counterbalanced by increase of motorized (diesel) traffic. Remaining acute effects of ambient air pollution in 2001 from PM, NO2 and co-pollutants found in a time series study also show that continuing efforts are necessary. Active surface of particles inhaled several hours to days before spirometry was found related to short-term reductions in forced vital capacity-FVC (prate at 50% of vital capacity-MEF50 (psleep, cough at night (pcancer. In a prospective cohort study on 1630 dust-exposed and 1630 non dust-exposed workers matched for smoking we found an increase of lung cancer related to nonfibrous insoluble PM. Other studies were able to relate lung cancer to specific particles like those

  17. Comparison of particulate verification techniques study

    Science.gov (United States)

    Rivera, Rachel

    2006-08-01

    The efficacy of five particulate verification techniques on four types of materials was studied. Statistical Analysis Software/JMP 6.0 was used to create a statistically valid design of experiments. In doing so, 35 witness coupons consisting of the four types of materials being studied, were intentionally contaminated with particulate fallout. Image Analysis was used to characterize the extent of particulate fallout on the coupons and was used to establish a baseline, or basis of comparison, against the five techniques that were studied. The five particulate verification techniques were the Tapelift, the Particulate Solvent Rinse, the GelPak lift, an in-line vacuum filtration probe, and the Infinity Focusing Microscope (IFM). The four types of materials consisted of magnesium flouride (MgF II) coated mirrors, composite coated silver aluminum (CCAg), Z93 and NS43G coated aluminum, and silicon (si) wafers. The vacuum probe was determined to be most effective for Z93, the tapelift or vacuum probe for MgF2, and the GelPak Lift for CCAg and si substrates. A margin of error for each technique, based on experimental data from two experiments, for si wafer substrates, yielded the following: Tapelift - 67%, Solvent Rinse - 58%, GelPak- 26%, Vacuum Probe - 93%, IFM-to be determined.

  18. The correlation and quantification of airborne spectroradiometer data to turbidity measurements at Lake Powell, Utah

    Science.gov (United States)

    Merry, C. J.

    1979-01-01

    A water sampling program was accomplished at Lake Powell, Utah, during June 1975 for correlation to multispectral data obtained with a 500-channel airborne spectroradiometer. Field measurements were taken of percentage of light transmittance, surface temperature, pH and Secchi disk depth. Percentage of light transmittance was also measured in the laboratory for the water samples. Analyses of electron micrographs and suspended sediment concentration data for four water samples located at Hite Bridge, Mile 168, Mile 150 and Bullfrog Bay indicated differences in the composition and concentration of the particulate matter. Airborne spectroradiometer multispectral data were analyzed for the four sampling locations. The results showed that: (1) as the percentage of light transmittance of the water samples decreased, the reflected radiance increased; and (2) as the suspended sediment concentration (mg/l) increased, the reflected radiance increased in the 1-80 mg/l range. In conclusion, valuable qualitative information was obtained on surface turbidity for the Lake Powell water spectra. Also, the reflected radiance measured at a wavelength of 0.58 micron was directly correlated to the suspended sediment concentration.

  19. Comparative performance of two air samplers for monitoring airborne fungal propagules

    Directory of Open Access Journals (Sweden)

    L.G.F. Távora

    2003-05-01

    Full Text Available Many studies have attempted to evaluate the importance of airborne fungi in the development of invasive fungal infection, especially for immunocompromised hosts. Several kinds of instruments are available to quantitate fungal propagule levels in air. We compared the performance of the most frequently used air sampler, the Andersen sampler with six stages, with a portable one, the Reuter centrifugal sampler (RCS. A total of 84 samples were analyzed, 42 with each sampler. Twenty-eight different fungal genera were identified in samples analyzed with the Andersen instrument. In samples obtained with the RCS only seven different fungal genera were identified. The three most frequently isolated genera in samples analyzed with both devices were Penicillium, Aspergillus and Cladophialophora. In areas supplied with a high efficiency particulate air filter, fungal spore levels were usually lower when compared to areas without these filters. There was a significant correlation between total fungal propagule measurements taken with both devices on each sampling occasion (Pearson coefficient = 0.50. However, the Andersen device recovered a broader spectrum of fungi. We conclude that the RCS can be used for quantitative estimates of airborne microbiological concentrations. For qualitative studies, however, this device cannot be recommended.

  20. Analysis of Potentially Toxic Metals in Airborne Cement Dust Around Sagamu, Southwestern Nigeria

    Science.gov (United States)

    Gbadebo, A. M.; Bankole, O. D.

    This study analyzed the concentration levels of potentially toxic and harmful elements contained in the airborne cement dust generated in the vicinity and farther away 500 m in the conventional four cardinal directions from the West African Portland Cement Company (WAPCO) factory mill, Sagamu. The results indicated that the concentration range of these toxic elements fall between 40.0 and 280,000 μg g-1 in the cement dust samples. Also, the concentration range of these toxic elements in 1 L of air samples varies between 0.01 μg g-1 and 29.92 μg L-1. The results generally show elevated concentrations of all the elements when compared with USA threshold limit of particulate mental concentration (e.g., Pb (1.5 g m-3); Cd (0.004-0.026 g m-3) in the air. These elements in the airborne cement dusts may pose a great threat to the health of plants, animals and residents in and around the factory and also to workers and visitors to the factory.

  1. Characterisation of airborne particles and associated organic components produced from incense burning.

    Science.gov (United States)

    Chuang, Hsiao-Chi; Jones, Tim; Chen, Yang; Bell, Jennifer; Wenger, John; BéruBé, Kelly

    2011-12-01

    Airborne particles generated from the burning of incense have been characterized in order to gain an insight into the possible implications for human respiratory health. Physical characterization performed using field-emission scanning electron microscopy showed incense particulate smoke mainly consisted of soot particles with fine and ultrafine fractions in various aggregated forms. A range of organic compounds present in incense smoke have been identified using derivatisation reactions coupled with gas chromatography-mass spectrometry analysis. A total of 19 polar organic compounds were positively identified in the samples, including the biomass burning markers levoglucosan, mannosan and galactosan, as well as a number of aromatic acids and phenols. Formaldehyde was among 12 carbonyl compounds detected and predominantly associated with the gas phase, whereas six different quinones were also identified in the incense particulate smoke. The nano-structured incense soot particles intermixed with organics (e.g. formaldehyde and quinones) could increase the oxidative capacity. When considering the worldwide prevalence of incense burning and resulting high respiratory exposures, the oxygenated organics identified in this study have significant human health implications, especially for susceptible populations.

  2. A real-time monitoring system for airborne particle shape and size analysis

    Science.gov (United States)

    Kaye, P. H.; Alexander-Buckley, K.; Hirst, E.; Saunders, S.; Clark, J. M.

    1996-08-01

    This paper describes a new instrument for the study of airborne particles. The instrument performs a rapid analysis of the transient spatial intensity distribution of laser-light scattered by individual aerosol particles drawn from an ambient environment and uses this to characterize the particles in terms of both size and shape parameters. Analyses are carried out at peak particle throughput rates of up to 10,000 particles per second, and semiquantitative data relating to the size and shape (or more correctly asymmetry) spectra of the sampled particles are provided to the user via a graphical display which is refreshed or updated at 5-s intervals. In addition to the real-time display of data, continuous data recording allows subsequent replay of measurements at either normal or high speed. Preliminary experimental results are given for aerosols of both spherical and nonspherical particle types, and these suggest the instrument may find use in environmental monitoring of aerosols or clouds where some real-time semiquantitative assessment of particulate size and shape spectra may be desirable as an aid to characterizing the aerosol and its constituent particulate species.

  3. Alternate particle removal technologies for the Airborne Activity Confinement System at the Savannah River Site

    International Nuclear Information System (INIS)

    This report presents a review of the filtration technologies available for the removal of particulate material from a gas stream. It was undertaken to identify alternate filtration technologies that may be employed in the Airborne Activity Confinement System (AACS) at the Savannah River Plant. This report is organized into six sections: (1) a discussion of the aerosol source term and its definition, (2) a short discussion of particle and gaseous contaminant removal mechanisms, (3) a brief overview of particle removal technologies, (4) a discussion of the existing AACS and its potential shortcomings, (5) an enumeration of issues to be addressed in upgrading the AACS, and, (6) a detailed discussion of the identified technologies. The purpose of this report is to identity available options to the existing particle removal system. This system is in continuous operation during routine operation of the reactor. As will be seen, there are a number of options and the selection of any technology or combination of technologies will depend on the design aerosol source term (yet to be appropriately defined) as well as the flow requirements and configuration. This report does not select a specific technology. It focuses on particulate removal and qualitatively on the removal of radio-iodine and mist elimination. Candidate technologies have been selected from industrial and nuclear gas cleaning applications

  4. Alternate particle removal technologies for the Airborne Activity Confinement System at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Brockmann, J.E.; Adkins, C.L.J.; Gelbard, F. (Sandia National Labs., Albuquerque, NM (United States))

    1991-09-01

    This report presents a review of the filtration technologies available for the removal of particulate material from a gas stream. It was undertaken to identify alternate filtration technologies that may be employed in the Airborne Activity Confinement System (AACS) at the Savannah River Plant. This report is organized into six sections: (1) a discussion of the aerosol source term and its definition, (2) a short discussion of particle and gaseous contaminant removal mechanisms, (3) a brief overview of particle removal technologies, (4) a discussion of the existing AACS and its potential shortcomings, (5) an enumeration of issues to be addressed in upgrading the AACS, and, (6) a detailed discussion of the identified technologies. The purpose of this report is to identity available options to the existing particle removal system. This system is in continuous operation during routine operation of the reactor. As will be seen, there are a number of options and the selection of any technology or combination of technologies will depend on the design aerosol source term (yet to be appropriately defined) as well as the flow requirements and configuration. This report does not select a specific technology. It focuses on particulate removal and qualitatively on the removal of radio-iodine and mist elimination. Candidate technologies have been selected from industrial and nuclear gas cleaning applications.

  5. Surface and airborne measurements of organosulfur and methanesulfonate over the western United States and coastal areas

    Science.gov (United States)

    Sorooshian, Armin; Crosbie, Ewan; Maudlin, Lindsay C.; Youn, Jong-Sang; Wang, Zhen; Shingler, Taylor; Ortega, Amber M.; Hersey, Scott; Woods, Roy K.

    2015-08-01

    This study reports on ambient measurements of organosulfur (OS) and methanesulfonate (MSA) over the western United States and coastal areas. Particulate OS levels are highest in summertime and generally increase as a function of sulfate (a precursor) and sodium (a marine tracer) with peak levels at coastal sites. The ratio of OS to total sulfur is also highest at coastal sites, with increasing values as a function of normalized difference vegetation index and the ratio of organic carbon to elemental carbon. Correlative analysis points to significant relationships between OS and biogenic emissions from marine and continental sources, factors that coincide with secondary production, and vanadium due to a suspected catalytic role. A major OS species, methanesulfonate (MSA), was examined with intensive field measurements, and the resulting data support the case for vanadium's catalytic influence. Mass size distributions reveal a dominant MSA peak between aerodynamic diameters of 0.32-0.56 µm at a desert and coastal site with nearly all MSA mass (≥84%) in submicrometer sizes; MSA:non-sea-salt sulfate ratios vary widely as a function of particle size and proximity to the ocean. Airborne data indicate that relative to the marine boundary layer, particulate MSA levels are enhanced in urban and agricultural areas and also the free troposphere when impacted by biomass burning. Some combination of fires and marine-derived emissions leads to higher MSA levels than either source alone. Finally, MSA differences in cloud water and out-of-cloud aerosol are discussed.

  6. Particulate matter sensor with a heater

    Science.gov (United States)

    Hall, Matthew

    2011-08-16

    An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.

  7. Particulate hot gas stream cleanup technical issues

    Energy Technology Data Exchange (ETDEWEB)

    Pontius, D.H.; Snyder, T.R.

    1999-09-30

    The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

  8. RESEARCH ON THE CYLINDRICAL PARTICULATE FLOWS

    Institute of Scientific and Technical Information of China (English)

    LIN Jian-zhong

    2005-01-01

    The study of cylindrical particulate flows has wide industrial applicability and hence received much attention. The purpose of the present paper is to provide a review on the motion of cylindrical particles in shear layer, converging channel and jet flows, the dynamic of cylindrical particles sedimentation in a Newtonian fluid, the characterization of turbulent cylindrical particulate flows, the property of interaction between the particles, the structural feature and rheology of suspensions, the analysis of hydrodynamic instability of cylindrical particle suspensions. Finally, the concluding remarks are given.

  9. Analyzing Options for Airborne Emergency Wireless Communications

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schmitt; Juan Deaton; Curt Papke; Shane Cherry

    2008-03-01

    In the event of large-scale natural or manmade catastrophic events, access to reliable and enduring commercial communication systems is critical. Hurricane Katrina provided a recent example of the need to ensure communications during a national emergency. To ensure that communication demands are met during these critical times, Idaho National Laboratory (INL) under the guidance of United States Strategic Command has studied infrastructure issues, concerns, and vulnerabilities associated with an airborne wireless communications capability. Such a capability could provide emergency wireless communications until public/commercial nodes can be systematically restored. This report focuses on the airborne cellular restoration concept; analyzing basic infrastructure requirements; identifying related infrastructure issues, concerns, and vulnerabilities and offers recommended solutions.

  10. Geoid of Nepal from airborne gravity survey

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Einarsson, Indriði;

    2011-01-01

    An airborne gravity survey of Nepal was carried out December 2010 in a cooperation between DTU-Space, Nepal Survey Department, and NGA, USA. The entire country was flown with survey lines spaced 6 nm with a King Air aircraft, with a varying flight altitude from 4 to 10 km. The survey operations...... were a major challenge due to excessive jet streams at altitude as well as occasional excessive mountain waves. Despite the large 400 mGal+ range of gravity anomaly changes from the Indian plains to the Tibetan Plateau, results appear accurate to a few mGal, with proper evaluation from cross...... as well as recent GPS-heights of Mt. Everest. The new airborne data also provide an independent validation of GOCE gravity field results at the local ~100 km resolution scale....

  11. Comprehensive characterization of indoor airborne bacterial profile

    Institute of Scientific and Technical Information of China (English)

    P.L.Chan; P.H.F.Yu; Y.W.Cheng; C.Y.Chan; P.K.Wong

    2009-01-01

    This is the first detailed characterization of the air-borne bacterial profiles in indoor environments and two restaurants were selected for this study.Fifteen genera of bacteria were isolated from each restaurant and identified by three different bacterial identification systems including MIDI, Biolog and Riboprinter?.The dominant bacteria of both restaurants were Gram-positive bacteria in which Micrococcus and Bacillus species were the most abundant species.Most bacteria identified were representative species of skin and respiratory tract of human, and soil.Although the bacterial levels in these restaurants were below the limit of the Hong Kong Indoor Air Quality Objective (HKIAQO) Level 1 standard (i.e., < 500 cfu/m3), the majority of these bacteria were opportunistic pathogens.These results suggested that the identity of airborne bacteria should also be included in the IAQ to ensure there is a safety guideline for the public.

  12. Simulating City-level Airborne Infectious Diseases

    CERN Document Server

    Shan, Mei; Yifan, Zhu; Zhenghu, Zu; Tao, Zheng; Boukhanovsky, A V; Sloot, P M A

    2012-01-01

    With the exponential growth in the world population and the constant increase in human mobility, the danger of outbreaks of epidemics is rising. Especially in high density urban areas such as public transport and transfer points, where people come in close proximity of each other, we observe a dramatic increase in the transmission of airborne viruses and related pathogens. It is essential to have a good understanding of the `transmission highways' in such areas, in order to prevent or to predict the spreading of infectious diseases. The approach we take is to combine as much information as is possible, from all relevant sources and integrate this in a simulation environment that allows for scenario testing and decision support. In this paper we lay out a novel approach to study Urban Airborne Disease spreading by combining traffic information, with geo-spatial data, infection dynamics and spreading characteristics.

  13. Simulating city-level airborne infectious diseases

    OpenAIRE

    Mei, S.; Chen, B; Zhu, Y; Lees, M.H.; Boukhanovsky, A.V.; Sloot, P.M.A.

    2015-01-01

    With the exponential growth in the world population and the constant increase in human mobility, the possible impact of outbreaks of epidemics on cities is increasing, especially in high-density urban areas such as public transportation and transfer points. The volume and proximity of people in these areas can lead to an observed dramatic increase in the transmission of airborne viruses and related pathogens. Due to the critical role these areas play in transmission, it is vital that we have ...

  14. Airborne Chemical Sensing with Mobile Robots

    Science.gov (United States)

    Lilienthal, Achim J.; Loutfi, Amy; Duckett, Tom

    2006-01-01

    Airborne chemical sensing with mobile robots has been an active research area since the beginning of the 1990s. This article presents a review of research work in this field, including gas distribution mapping, trail guidance, and the different subtasks of gas source localisation. Due to the difficulty of modelling gas distribution in a real world environment with currently available simulation techniques, we focus largely on experimental work and do not consider publications that are purely based on simulations.

  15. Airborne laser altimeter measurements of landscape topography

    International Nuclear Information System (INIS)

    Measurements of topography can provide a wealth of information on landscape properties for managing hydrologic and geologic systems and conserving natural and agricultural resources. This article discusses the application of an airborne laser altimeter to measure topography and other landscape surface properties. The airborne laser altimeter makes 4000 measurements per second with a vertical recording resolution of 5 cm. Data are collected digitally with a personal computer. A video camera, borehole sighted with the laser, records an image for locating flight lines. GPS data are used to locate flight line positions on the landscape. Laser data were used to measure vegetation canopy topography, height, cover, and distribution and to measure microtopography of the land surface and gullies with depths of 15–20 cm. Macrotopography of landscape profiles for segments up to 4 km were in agreement with available topographic maps but provided more detail. Larger gullies with and without vegetation, and stream channel cross sections and their associated floodplains have also been measured and reported in other publications. Landscape segments for any length could be measured for either micro- or macrotopography. Airborne laser altimeter measurements of landscape profiles can provide detailed information on landscape properties or specific needs that will allow better decisions on the design and location of structures (i.e., roads, pipe, and power lines) and for improving the management and conservation of natural and agricultural landscapes. (author)

  16. Airborne multispectral detection of regrowth cotton fields

    Science.gov (United States)

    Westbrook, John K.; Suh, Charles P.-C.; Yang, Chenghai; Lan, Yubin; Eyster, Ritchie S.

    2015-01-01

    Effective methods are needed for timely areawide detection of regrowth cotton plants because boll weevils (a quarantine pest) can feed and reproduce on these plants beyond the cotton production season. Airborne multispectral images of regrowth cotton plots were acquired on several dates after three shredding (i.e., stalk destruction) dates. Linear spectral unmixing (LSU) classification was applied to high-resolution airborne multispectral images of regrowth cotton plots to estimate the minimum detectable size and subsequent growth of plants. We found that regrowth cotton fields can be identified when the mean plant width is ˜0.2 m for an image resolution of 0.1 m. LSU estimates of canopy cover of regrowth cotton plots correlated well (r2=0.81) with the ratio of mean plant width to row spacing, a surrogate measure of plant canopy cover. The height and width of regrowth plants were both well correlated (r2=0.94) with accumulated degree-days after shredding. The results will help boll weevil eradication program managers use airborne multispectral images to detect and monitor the regrowth of cotton plants after stalk destruction, and identify fields that may require further inspection and mitigation of boll weevil infestations.

  17. MITAS: multisensor imaging technology for airborne surveillance

    Science.gov (United States)

    Thomas, John D.

    1991-08-01

    MITAS, a unique and low-cost solution to the problem of collecting and processing multisensor imaging data for airborne surveillance operations has been developed, MITAS results from integrating the established and proven real-time video processing, target tracking, and sensor management software of TAU with commercially available image exploitation and map processing software. The MITAS image analysis station (IAS) supports airborne day/night reconnaissance and surveillance missions involving low-altitude collection platforms employing a suite of sensors to perform reconnaissance functions against a variety of ground and sea targets. The system will detect, locate, and recognize threats likely to be encountered in support of counternarcotic operations and in low-intensity conflict areas. The IAS is capable of autonomous, near real-time target exploitation and has the appropriate communication links to remotely located IAS systems for more extended analysis of sensor data. The IAS supports the collection, fusion, and processing of three main imaging sensors: daylight imagery (DIS), forward looking infrared (FLIR), and infrared line scan (IRLS). The MITAS IAS provides support to all aspects of the airborne surveillance mission, including sensor control, real-time image enhancement, automatic target tracking, sensor fusion, freeze-frame capture, image exploitation, target data-base management, map processing, remote image transmission, and report generation.

  18. Cryospheric Applications of Modern Airborne Photogrammetry

    Science.gov (United States)

    Nolan, M.

    2014-12-01

    Airborne photogrammetry is undergoing a renaissance. Lower-cost equipment, more powerful software, and simplified methods have lowered the barriers-to-entry significantly and now allow repeat-mapping of cryospheric dynamics that were previously too expensive to consider. The current state-of-the-art is the ability to use an airborne equipment package costing less than $20,000 to make topographic maps on landscape-scales at 10 cm pixel size with a vertical repeatability of about 10 cm. Nearly any surface change on the order of decimeters can be measured using these techniques through analysis of time-series of such maps. This presentation will discuss these new methods and their application to cryospheric dynamics such as the measurement of snow depth, coastal erosion, valley-glacier volume-change, permafrost thaw, frost heave of infrastructure, river bed geomorphology, and aufeis melt. Because of the expense of other airborne methods, by necessity measurements of these dynamics are currently most often made on the ground along benchmark transects that are then extrapolated to the broader scale. The ability to directly measure entire landscapes with equal or higher accuracy than transects eliminates the need to extrapolate them and the ability to do so at lower costs than transects may revolutionize the way we approach studying change in the cryosphere, as well as our understanding of the cryosphere itself.

  19. Airborne Tactical Free-Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, Roy; Neil, George

    2007-02-01

    The goal of 100 kilowatts (kW) of directed energy from an airborne tactical platform has proved challenging due to the size and weight of most of the options that have been considered. However, recent advances in Free-Electron Lasers appear to offer a solution along with significant tactical advantages: a nearly unlimited magazine, time structures for periods from milliseconds to hours, radar like functionality, and the choice of the wavelength of light that best meets mission requirements. For an Airborne Tactical Free-Electron Laser (ATFEL) on a platforms such as a Lockheed C-130J-30 and airships, the two most challenging requirements, weight and size, can be met by generating the light at a higher harmonic, aggressively managing magnet weights, managing cryogenic heat loads using recent SRF R&D results, and using FEL super compact design concepts that greatly reduce the number of components. The initial R&D roadmap for achieving an ATFEL is provided in this paper. Performing this R&D is expected to further reduce the weight, size and power requirements for the FELs the Navy is currently developing for shipboard applications, as well as providing performance enhancements for the strategic airborne MW class FELs. The 100 kW ATFEL with its tactical advantages may prove sufficiently attractive for early advancement in the queue of deployed FELs.

  20. Climate change, aeroallergens, natural particulates, and human health in Australia: state of the science and policy.

    Science.gov (United States)

    Beggs, Paul John; Bennett, Charmian Margaret

    2011-03-01

    The objective of this article is to systematically review and assess what is known about the impacts of climate change on aeroallergens and other naturally derived particulates, and the associated human health impacts, and to examine responses to these in Australia, focusing on adaptation. Prior research was searched using several general and discipline-specific research databases. The review concludes that whereas there is little original research on the impacts of climate change on aeroallergens and other naturally derived particulates in Australia, or the human health consequences of these, research from overseas suggests that these impacts may be adverse and of considerable magnitude. More research is required to assess the impacts of climate change on these airborne particles and associated diseases in Australia and other parts of the Asia-Pacific. There are important policy implications of this review. There is a need for enhanced monitoring of the atmospheric environment and associated health conditions in Australia. Education about climate change and human health in general, and air quality and related diseases specifically, is required for the community, health professionals, and others. Improvements are needed in the preparedness of infrastructure, such as health care facilities and early warning systems, particularly for aeroallergens, and all of these adaptive policy responses require further research.

  1. Dust particulate absorption by ivy (Hedera helix L) on historic walls in urban environments

    Energy Technology Data Exchange (ETDEWEB)

    Sternberg, Troy, E-mail: troy.sternberg@geog.ox.ac.uk [School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY UK (United Kingdom); Viles, Heather, E-mail: heather.viles@ouce.ox.ac.uk [School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY UK (United Kingdom); Cathersides, Alan, E-mail: alan.cathersides@english-heritage.org.uk [Conservation Department, English Heritage, Kemble Drive, Swindon, SN2 2GZ UK (United Kingdom); Edwards, Mona, E-mail: mona.edwards@ouce.ox.ac.uk [School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY UK (United Kingdom)

    2010-12-01

    The potential bio-protective role of urban greenery and how it interacts with airborne dust and pollutants has been the subject of much recent research. As particulate pollution has been implicated in both the deterioration of building materials and in damaging human health, understanding how it interacts with urban greenery is of great applied interest. Common or English Ivy (Hedera helix L) grows widely on urban walls in many parts of the world, and thus any bio-protective role it might play is of broad relevance. Using Scanning Electron Microscopy ivy leaves collected on roadways were examined to determine if ivy can absorb dust and pollutants that can instigate decay processes on stone walls and impact human health in urban environments. Results showed that ivy acts as a 'particle sink', absorbing particulate matter, particularly in high-traffic areas. It was effective in adhering fine (< 2.5 {mu}m) and ultra-fine (< 1 {mu}m) particles at densities of up to 2.9 x 10{sup 10} per m{sup 2}. Our findings suggest that through absorbing pollutant particles ivy can retard bio-deteriorative processes on historic walls and reduce human exposure to respiratory problems caused by vehicle pollutants.

  2. METALLURGICAL COKE INDUSTRY PARTICULATE EMISSIONS: SOURCE CATEGORY REPORT

    Science.gov (United States)

    The report gives results of a study to develop particulate emission factors based on cutoff size for inhalable particles for the metallurgical coke industry. After a review of available information characterizing particulate emissions from metallurgical coke plants, the data were...

  3. PARTICULATE EMISSION PROFILE OF A COTTON GIN

    Science.gov (United States)

    PARTICULATE MATTER (PM) IS ONE OF SIX CRITERIA POLLUTANTS REGULATED BY THE ENVIRONMENTAL PROTECTION AGENCY (EPA) WITH NATIONAL AMBIENT AIR QUALITY STANDARDS (NAAQS). IN GENERAL, PM IS THE ONLY AIR POLLUTANT OF CONCERN EMITTED FROM COTTON GINS. THE EPA HAS NAAQS FOR PM10 (PARTICLES WITH AN AERODYNA...

  4. Particulate contamination of sterile syringes and needles.

    Science.gov (United States)

    Taylor, S A

    1982-08-01

    Commercially available sterile needles and syringes have been examined for particulate contamination using the Hiac light blockage technique. The number of particles delivered was small compared with the total number permitted for large volume parenterals. Where syringes are used in particle counting techniques, the contribution of particles should be taken into account. PMID:6126558

  5. Aerotrace. Measurement of particulates from an engine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, C.D. [DRA, Farnborough (United Kingdom)

    1997-12-31

    The effect of gas turbine operating conditions, inlet temperature, pressure and overall air fuel ratio, on particulate number density has been measured. Particulate number density was found to be proportional to combustor inlet pressure and decrease with increasing combustor inlet temperature. The relationship with air fuel ratio is more complex. The mechanism of particulate loss down sample lines has been elucidated and equations are presented to predict particulate losses for stainless steel and PTFE sample lines. (author) 3 refs.

  6. Guidelines for calculating radiation doses to the public from a release of airborne radioactive material under hypothetical accident conditions in nuclear reactors

    International Nuclear Information System (INIS)

    This standard provides guidelines and a methodology for calculating effective doses and thyroid doses to people (either individually or collectively) in the path of airborne radioactive material released from a nuclear facility following a hypothetical accident. The radionuclides considered are those associated with substances having the greatest potential for becoming airborne in reactor accidents: tritium (HTO), noble gases and their daughters, radioiodines, and certain radioactive particulates (Cs, Ru, Sr, Te). The standard focuses on the calculation of radiation doses for external exposures from radioactive material in the cloud; internal exposures for inhalation of radioactive material in the cloud and skin penetration of tritium; and external exposures from radionuclides deposited on the ground. It uses as modified Gaussian plume model to evaluate the time-integrated concentration downwind. (52 refs., 12 tabs., 21 figs.)

  7. Airborne EM applied to environmental geoscience in the UK

    OpenAIRE

    Beamish, D

    2002-01-01

    The British Geological Survey (BGS) has been highlighting the need for modern, multi-sensor airborne geophysical data in the UK. Here David Beamish, geophysicist with the BGS, describes the first trial airborne electromagnetic data acquired and its relevance to environmental geoscience. The lack of modern, multi-sensor (magnetic, radiometric and electromagnetic) data represents one of the most serious gaps in the geoscience knowledge base of the UK, and a national, high resolution airborne su...

  8. Particulate organic constituents of surface waters of east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sreepada, R.A.; Bhat, K.L.; Parulekar, A.H.

    Particulate matter collected from surface seawater (approx 1 m) samples from 11 coastal (depth less than 200 m) and 40 oceanic (depth > 200 m ) stations was studied for particulate organic carbon (POC), particulate carbohydrate (PCHO), particulate...

  9. 40 CFR 60.402 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... which: (i) Contain particulate matter in excess of 0.030 kilogram per megagram of phosphate rock feed (0...) Contain particulate matter in excess of 0.12 kilogram per megagram of phosphate rock feed (0.23 lb/ton... beneficiated rock any gases which: (i) Contain particulate matter in excess of 0.055 kilogram per megagram...

  10. 40 CFR 60.92 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.92... Facilities § 60.92 Standard for particulate matter. (a) On and after the date on which the performance test... which: (1) Contain particulate matter in excess of 90 mg/dscm (0.04 gr/dscf). (2) Exhibit 20...

  11. 40 CFR 60.182 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.182... Smelters § 60.182 Standard for particulate matter. (a) On and after the date on which the performance test... furnace, or sintering machine discharge end any gases which contain particulate matter in excess of 50...

  12. 40 CFR 60.382 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard...

  13. 40 CFR 60.472 - Standards for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Processing and Asphalt Roofing Manufacture § 60.472 Standards for particulate matter. (a) On and after the...) Particulate matter in excess of: (i) 0.04 kg/Mg (0.08 lb/ton) of asphalt shingle or mineral-surfaced...

  14. 40 CFR 60.142a - Standards for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... 20, 1983 § 60.142a Standards for particulate matter. (a) Except as provided under paragraphs (b) and...-blown BOPF and contain particulate matter in excess of 23 mg/dscm (0.010 gr/dscf). (3) Exit from...

  15. 40 CFR 60.342 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.342... Manufacturing Plants § 60.342 Standard for particulate matter. (a) On and after the date on which the... gases which: (1) Contain particulate matter in excess of 0.30 kilogram per megagram (0.60 lb/ton)...

  16. 40 CFR 60.532 - Standards for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Wood Heaters § 60.532 Standards for particulate matter. Unless exempted under § 60.530, each affected... comply with the following particulate matter emission limits as determined by the test methods...

  17. 40 CFR 52.2584 - Control strategy; Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy; Particulate matter... Control strategy; Particulate matter. (a) Part D—Disapproval—USEPA disapproves Regulation NR 154.11(7)(b... control strategy to attain and maintain the standards for particulate matter, because it does not...

  18. 40 CFR 60.302 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.302... § 60.302 Standard for particulate matter. (a) On and after the 60th day of achieving the maximum... a grain dryer any process emission which: (1) Contains particulate matter in excess of 0.023...

  19. 40 CFR 60.172 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.172... Smelters § 60.172 Standard for particulate matter. (a) On and after the date on which the performance test... contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  20. 40 CFR 60.142 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.142....142 Standard for particulate matter. (a) Except as provided under paragraph (b) of this section, on... the atmosphere from any affected facility any gases which: (1) Contain particulate matter in excess...

  1. 40 CFR 60.52 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.52... § 60.52 Standard for particulate matter. (a) On and after the date on which the initial performance... atmosphere from any affected facility any gases which contain particulate matter in excess of 0.18 g/dscm...

  2. 40 CFR 60.682 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.682... Insulation Manufacturing Plants § 60.682 Standard for particulate matter. On and after the date on which the... gases which contain particulate matter in excess of 5.5 kg/Mg (11.0 1b/ton) of glass pulled....

  3. 40 CFR 52.1476 - Control strategy: Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter... strategy: Particulate matter. (a) The requirements of subpart G of this chapter are not met since the plan does not provide for the attainment and maintenance of the national standards for particulate matter...

  4. 40 CFR 60.282 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.282... § 60.282 Standard for particulate matter. (a) On and after the date on which the performance test...: (i) Contain particulate matter in excess of 0.10 g/dscm (0.044 gr/dscf) corrected to 8 percent...

  5. High-Performance Airborne Optical Carbon Dioxide Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental species measurement on airborne atmospheric research craft is a demanding application for optical sensing techniques. Yet optical techniques offer...

  6. Note on the sanitary impact of diesel particulates; Note sur l'impact sanitaire des particules diesel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-10-15

    In the actual situation of scientific works, the epidemiology studies on environment do not allow to say the carcinogen contribution of diesel particulates at the concentration levels measured in the urban air. But according to the experimental data for the rat and the data observed for the personnel exposed to diesel particulates these particulates are classified as probably carcinogen. (N.C.)

  7. Contributions Of Black Carbon Concentration To Atmospheric Particulate Matter Levels In Navrongo Senior High School. October 2010-March 2011.

    Directory of Open Access Journals (Sweden)

    Abdul-Razak Fuseini

    2015-03-01

    Full Text Available ABSTRACT The objective of this research was to assess the black carbon concentration in air borne particulate matter in ambient air due to the use of biomass for cooking in the Navrongo Senior High School. The Gent air sampler was used to sample airborne particulate matter in the Navrongo Senior High School. These particulates were collected on nuclepore polycarbonate filters for a period of six months. In addition to determination of particulate mass in the two fractions by gravimetric method the aerosol filters were also analyzed for black carbon BC concentration levels using the black smoke reflectometer method. The average fine fraction mass concentration determined was 134.59gm-3 with a minimum of 9.28gm-3 and a maximum of 338.11gm-3 and that of coarse fraction CF was 355.04gm-3 with a minimum of 61.73gm-3 and a maximum of 1117.43gm-3. The black carbon concentration in fine average was 7.62gm-3 with a minimum of 1.68gm-3 and a maximum of 35.35gm-3 and that of the coarse was 6.92gm-3 with a minimum of 1.76gm-3 and a maximum of 22.61gm-3. The results of this research were compared to other works in the country. It was however realized that the values of this research were about twice as much as the other works. This was due to the fact that biomass burning is generally used for cooking in the study area which is usual of Northern Ghana and so produces a lot of black carbon as compared to the other area which are semi-urban areas in the southern part of the country. The values obtained for coarse to fine particulate matter ratio suggest that the particulates were not only largely made up of combustion generated carbonaceous particles but also particulate matter emissions from natural activities.

  8. Chemical Speciation of Thorium in Marine Biogenic Particulate Matter

    OpenAIRE

    Katsumi Hirose

    2004-01-01

    Concentrations of particulate thorium in seawater were determined together with the strong organic ligand (SOL) and uranium in particulate matter (PM). The concentrations of particulate Th in surface waters of the western North Pacific and the Sea of Japan ranged from 0.05 to 1.5 pM (1 x 10−12 M), and showed relatively large temporal and spatial variations. In order to chemically characterize the particulate Th in seawater, the relationship between particulate Th and SOL concentrations in sur...

  9. Even Shallower Exploration with Airborne Electromagnetics

    Science.gov (United States)

    Auken, E.; Christiansen, A. V.; Kirkegaard, C.; Nyboe, N. S.; Sørensen, K.

    2015-12-01

    Airborne electromagnetics (EM) is in many ways undergoing the same type rapid technological development as seen in the telecommunication industry. These developments are driven by a steadily increasing demand for exploration of minerals, groundwater and geotechnical targets. The latter two areas demand shallow and accurate resolution of the near surface geology in terms of both resistivity and spatial delineation of the sedimentary layers. Airborne EM systems measure the grounds electromagnetic response when subject to either a continuous discrete sinusoidal transmitter signal (frequency domain) or by measuring the decay of currents induced in the ground by rapid transmission of transient pulses (time domain). In the last decade almost all new developments of both instrument hardware and data processing techniques has focused around time domain systems. Here we present a concept for measuring the time domain response even before the transient transmitter current has been turned off. Our approach relies on a combination of new instrument hardware and novel modeling algorithms. The newly developed hardware allows for measuring the instruments complete transfer function which is convolved with the synthetic earth response in the inversion algorithm. The effect is that earth response data measured while the transmitter current is turned off can be included in the inversion, significantly increasing the amount of available information. We demonstrate the technique using both synthetic and field data. The synthetic examples provide insight on the physics during the turn off process and the field examples document the robustness of the method. Geological near surface structures can now be resolved to a degree that is unprecedented to the best of our knowledge, making airborne EM even more attractive and cost-effective for exploration of water and minerals that are crucial for the function of our societies.

  10. Cardiovascular and lung function in relation to outdoor and indoor exposure to fine and ultrafine particulate matter in middle-aged subjects

    DEFF Research Database (Denmark)

    Karottki, Dorina Gabriela; Bekö, Gabriel; Clausen, Geo;

    2014-01-01

    This cross-sectional study investigated the relationship between exposure to airborne indoor and outdoor particulate matter (PM) and cardiovascular and respiratory health in a population-based sample of 58 residences in Copenhagen, Denmark. Over a 2-day period indoor particle number concentrations...... period, we measured microvascular function (MVF) and lung function and collected blood samples for biomarkers related to inflammation, in 78 middle-aged residents. Bacteria, endotoxin and fungi were analyzed in material from electrostatic dust fall collectors placed in the residences for 4 weeks. Data...

  11. Airborne Pollen Grains Of Afyon, Turkey

    Institute of Scientific and Technical Information of China (English)

    Adem BICAKCI; Süheyla ERGUN; Sevcan TATLIDIL; Hulusi MALYER; Sabri OZYURT; Ahmet AKKAYA; Nihat SAPAN

    2002-01-01

    The airborne pollen grains of Afyon have been studied for a two-year period (1999-2000) with a Durham sampler. A total of 14 367 pollen grains belonging to 40 taxa have been identified and recorded with some unidentified ones. Of them, 6 732 were identified in 1999 and 7 635 in 2000. Of the total pollen grains, 69.67% were arboreal, 26.64% non-arboreal and 3.68 % unidentified. The majority of the investigated pollen grains were from Pinus, Gramineae, Cupressaceae, Platanus, Chenopodiaceae/Amaranthaceae, Quercus, Ailanthus, Moraceae, Juglans, Salix, Cedrus and Rosaceae. The highest level of pollen grains was in May.

  12. Voxel inversion of airborne EM data

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca G.; Auken, Esben; Christiansen, Anders Vest C A.V.C.;

    2013-01-01

    We present a geophysical inversion algorithm working directly in a voxel grid disconnected from the actual measuring points, which allows for straightforward integration of different data types in joint inversion, for informing geological/hydrogeological models directly and for easier incorporation...... for jointly inverting airborne and ground-based geophysical data. Furthermore, geological and groundwater models most often refer to a regular voxel grid not correlated to the geophysical model space, and incorporating the geophysical data into the geological/hydrological modelling grids is problematic. We...... present a voxel grid inversion routine that overcomes these problems and we discuss in detail the algorithm implementation....

  13. 1. Airborne 2. Hangár

    OpenAIRE

    Johnson, Christy

    2008-01-01

    Hangár, Bakelit Multi Art Center 7th L1 Dance Festival, Budapest, Hungary Installation, 2008 AIRBORNE (projection-sound-monitor installation) was sited in the Hangár, B.A.C. as part of the 7th L1 Dance Festival in Budapest, Hungary (March 2008). This work continues Johnson's interest in and use of 'found' material (16mm wind tunnel footage), and performative methods (sound recording of Channel 9 on United Airlines). This immersive work explores the turbulence of suspension and sets ...

  14. Analysis of airborne pollen grains in Denizli

    OpenAIRE

    GÜVENSEN, Aykut; ÇELİK, Ali; TOPUZ, Bülent; ÖZTÜRK, Münir

    2013-01-01

    Airborne pollen distribution in Denizli Province was measured volumetrically during 2 consecutive years, 2005 and 2006, on a weekly basis. A total of 11,981 pollen grains/m3 belonging to 42 taxa were determined. In 2005 the total was 5368 pollen grains/m3 and in 2006 it was 6613 pollen grains/m3. Among the taxa recorded, 26 belonged to arboreal and 16 to nonarboreal taxa. At the end of the 2 years total pollen counts comprised 79.68% arboreal, 19.48% nonarboreal, and 0.84% unidentified taxa. ...

  15. NICKEL SPECIATION OF URBAN PARTICULATE MATTER

    Energy Technology Data Exchange (ETDEWEB)

    Kevin C. Galbreath; Charlene R. Crocker; Carolyn M. Nyberg; Frank E. Huggins; Gerald P. Huffman

    2003-10-01

    A four-step sequential Ni extraction method, summarized in Table AB-1, was evaluated for identifying and quantifying the Ni species occurring in urban total suspended particulate (TSP) matter and fine particulate matter (<10 {micro}m [PM{sub 10}] and <2.5 {micro}m [PM{sub 2.5}] in aerodynamic diameter). The extraction method was originally developed for quantifying soluble, sulfidic, elemental, and oxidic forms of Ni that may occur in industrial atmospheres. X-ray diffraction (XRD) and x-ray absorption fine structure (XAFS) spectroscopy were used to evaluate the Ni species selectivity of the extraction method. Uncertainties in the chemical speciation of Ni in urban PM{sub 10} and PM{sub 2.5} greatly affect inhalation health risk estimates, primarily because of the large variability in acute, chronic, and cancer-causing effects for different Ni compounds.

  16. Face crack reduction strategy for particulate filters

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI

    2012-01-31

    A system comprises a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and at least one portion. A control module initiates combustion of PM in the PM filter using a heater and selectively adjusts oxygen levels of the exhaust gas to adjust a temperature of combustion adjacent to the at least one portion of the PM filter. A method comprises providing a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and at least one portion; initiating combustion of PM in the PM filter using a heater; selectively adjusting oxygen levels of the exhaust gas to adjust a temperature of combustion adjacent to the at least one portion of the PM filter.

  17. Adsorption of aluminium by stream particulates.

    Science.gov (United States)

    Tipping, E; Ohnstad, M; Woof, C

    1989-01-01

    An experimental study was made of the adsorption of aluminium by fine particulates from Whitray Beck, a hill stream in NW England. Adsorption increased with Al(3) activity, pH and concentration of particles, and could be quantitatively described by the empirical equation: [Formula: see text] [particles] where square brackets indicate concentrations, curly brackets, activities, and alpha, beta and gamma are constants with values of 5.14x10(-10) (mol litre(-1))(2.015) (g particles litre(-1))(-1), 0.457, and 1.472, respectively. For the experimental data, the equation gave a correlation ratio of 0.99. The equation accounts reasonably well for the adsorption of Al by particulates from seven other streams. In applying the equation, it must be borne in mind that the desorption kinetics of Al depend on pH, and rapid reversibility (or=10%) of total monomeric Al. PMID:15092454

  18. Measuring airborne microorganisms and dust from livestock houses

    NARCIS (Netherlands)

    Yang Zhao, Yang

    2011-01-01

      Airborne transmission has been suspected to be responsible for epidemics of highly infectious disease in livestock production. In such transmission, the pathogenic microorganisms may associate with dust particles. However, the extent to which airborne transmission plays a role in the spread

  19. Moving Target Indication for Multi-channel Airborne Radar Systems

    NARCIS (Netherlands)

    Lidicky, L.

    2010-01-01

    Moving target indication (MTI) using radar is of great interest in civil and military applications. Its uses include airborne or space-borne surveillance of ground moving vehicles (cars, trains) or ships at sea, for instance. Airborne (space-borne) radar offers several advantages when compared to op

  20. Monitoring of airborne radioactivity (radon, thoron and daughters; radioactive dust)

    International Nuclear Information System (INIS)

    The processes resulting in airborne radioactivity from uranium and thorium ores are discussed. Measurement methods for radioactive dust, radon and thoron gas and radon and thoron daughters are described and assessed. The monitoring equipment required for measurement of airborne radioactivity is described

  1. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne thunderstorm detection equipment... Aircraft and Equipment § 135.173 Airborne thunderstorm detection equipment requirements. (a) No person may... the aircraft is equipped with either approved thunderstorm detection equipment or approved...

  2. Detection in Urban Scenario Using Combined Airborne Imaging Sensors

    NARCIS (Netherlands)

    Renhorn, I.; Axelsson, M.; Benoist, K.W.; Bourghys, D.; Boucher, Y.; Xavier Briottet, X.; Sergio De CeglieD, S. De; Dekker, R.J.; Dimmeler, A.; Dost, R.; Friman, O.; Kåsen, I.; Maerker, J.; Persie, M. van; Resta, S.; Schwering, P.B.W.; Shimoni, M.; Vegard Haavardsholm, T.

    2012-01-01

    The EDA project “Detection in Urban scenario using Combined Airborne imaging Sensors” (DUCAS) is in progress. The aim of the project is to investigate the potential benefit of combined high spatial and spectral resolution airborne imagery for several defense applications in the urban area. The proje

  3. Detection in Urban Scenario using Combined Airborne Imaging Sensors

    NARCIS (Netherlands)

    Renhorn, I.; Axelsson, M.; Benoist, K.W.; Bourghys, D.; Boucher, Y.; Xavier Briottet, X.; Sergio De CeglieD, S. De; Dekker, R.J.; Dimmeler, A.; Dost, R.; Friman, O.; Kåsen, I.; Maerker, J.; Persie, M. van; Resta, S.; Schwering, P.B.W.; Shimoni, M.; Vegard Haavardsholm, T.

    2012-01-01

    The EDA project “Detection in Urban scenario using Combined Airborne imaging Sensors” (DUCAS) is in progress. The aim of the project is to investigate the potential benefit of combined high spatial and spectral resolution airborne imagery for several defense applications in the urban area. The proje

  4. SOFIA's Airborne Astronomy Ambassadors: An External Evaluation of Cycle 1

    Science.gov (United States)

    Phillips, Michelle

    2015-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) represents a partnership between NASA and the German Aerospace Center (DLR). The observatory itself is a Boeing 747 SP that has been modified to serve as the world's largest airborne research observatory. The SOFIA Airborne Astronomy Ambassadors (AAA) program is a component of SOFIA's…

  5. Particulate Debris Osteolysis Simulating Malignant Tumor

    OpenAIRE

    Brand, Richard A.; Marsh, J. Lawrence

    2004-01-01

    Osteolysis induced by particulate debris from total joint implants is typically confined to bone and benign in radiographic appearance even when extensive. However, they can extend well beyond bone in which case they can simulate malignancies owing either to mass effects and pressure on adjacent tissues or owing to the radiographic appearance. We report two cases which presented as possible malignancy, and review the literature on extensive osteolysis. Recognition of this possibility may aid ...

  6. Chemical profile of fugitive particulate emissions

    International Nuclear Information System (INIS)

    Fugitive emissions pose problems both for general air quality management as well as for the operational management of the facilities. In harbours, activities such loading, unloading and transport of dusty materials are important sources of particulate fugitive emissions. Therefore, there is a growing concern about air quality in these areas as a result of the high impact of the operations on human health and environment. The objectives of this study were to estimate the impact of harbour activities on air particulate matter (APM) levels and to compile an inventory of chemical profiles of harbour particulate fugitive emissions. This preliminary work was based on experimental campaigns carried out in a Portuguese harbour when different types of bulk materials were handled. High time resolution monitors were installed close to the unloaded area and recorded APM concentrations and meteorological variables. PM2.5 and PM2.5-10 were collected during unloading operations and a complete chemical characterization of collected samples was made by the techniques k 0-instrumental neutron activation analysis and particle induced X-ray emission. Results showed that manipulation of materials during harbour operations resulted in high emissions of particles, especially from the coarse fraction. These emissions were very affected by the granulometry and chemical composition of the handled materials and by the meteorological conditions. (author)

  7. Stellar Occultations from Airborne Platforms: 1988 to 2016

    Science.gov (United States)

    Bosh, Amanda S.; Dunham, Edward W.; Zuluaga, Carlos; Levine, Stephen; Person, Michael J.; Van Cleve, Jeffrey E.

    2016-10-01

    Observing a stellar occultation by a solar system body with an airborne telescope requires precise positioning of the observer within the shadow cast onto the Earth. For small bodies like Pluto and Kuiper Belt objects, smaller than the Earth, the challenge is particularly intense, with the accuracy of the astrometric and flight planning determining whether the observation succeeds or fails. From our first airborne occultation by Pluto in 1988 aboard the Kuiper Airborne Observatory (KAO), to our most recent event by Pluto in 2015 aboard the Stratospheric Observatory for Infrared Astronomy (SOFIA), we have refined our astrometric and flight planning systems to the point where we can now place an airborne observer into the small central flash zone. We will discuss the history of airborne observation of occultations while detailing the improvements in the astrometric processes. Support for this work was provided by NASA SSO grant NNX15AJ82G to Lowell Observatory.

  8. Airborne gamma radiation soil moisture measurements over short flight lines

    Science.gov (United States)

    Peck, Eugene L.; Carrol, Thomas R.; Lipinski, Daniel M.

    1990-01-01

    Results are presented on airborne gamma radiation measurements of soil moisture condition, carried out along short flight lines as part of the First International Satellite Land Surface Climatology Project Field Experiment (FIFE). Data were collected over an area in Kansas during the summers of 1987 and 1989. The airborne surveys, together with ground measurements, provide the most comprehensive set of airborne and ground truth data available in the U.S. for calibrating and evaluating airborne gamma flight lines. Analysis showed that, using standard National Weather Service weights for the K, Tl, and Gc radiation windows, the airborne soil moisture estimates for the FIFE lines had a root mean square error of no greater than 3.0 percent soil moisture. The soil moisture estimates for sections having acquisition time of at least 15 sec were found to be reliable.

  9. Calibration Matters: Advances in Strapdown Airborne Gravimetry

    Science.gov (United States)

    Becker, D.

    2015-12-01

    Using a commercial navigation-grade strapdown inertial measurement unit (IMU) for airborne gravimetry can be advantageous in terms of cost, handling, and space consumption compared to the classical stable-platform spring gravimeters. Up to now, however, large sensor errors made it impossible to reach the mGal-level using such type IMUs as they are not designed or optimized for this kind of application. Apart from a proper error-modeling in the filtering process, specific calibration methods that are tailored to the application of aerogravity may help to bridge this gap and to improve their performance. Based on simulations, a quantitative analysis is presented on how much IMU sensor errors, as biases, scale factors, cross couplings, and thermal drifts distort the determination of gravity and the deflection of the vertical (DOV). Several lab and in-field calibration methods are briefly discussed, and calibration results are shown for an iMAR RQH unit. In particular, a thermal lab calibration of its QA2000 accelerometers greatly improved the long-term drift behavior. Latest results from four recent airborne gravimetry campaigns confirm the effectiveness of the calibrations applied, with cross-over accuracies reaching 1.0 mGal (0.6 mGal after cross-over adjustment) and DOV accuracies reaching 1.1 arc seconds after cross-over adjustment.

  10. CO2 Budget and Rectification Airborne Study

    Science.gov (United States)

    Grainger, C. A.

    2004-01-01

    The main purpose of this award was to supply a platform for the airborne measurements of gases associated with the CO2 Budget and Regional Airborne Study (COBRA). The original program was to consist of three field programs: the first was to be in 1999, the second in 2000, and the third in 2001. At the end of the second field program, it was agreed that the science could better be served by making the measurements in northern Brazil, rather than in North America. The final North American program would be postponed until after two field programs in Brazil. A substantial amount of effort was diverted into making plans and preparations for the Brazil field programs. The Brazil field programs were originally scheduled to take place in the Fall of 2002 and Spring of 2003. Carrying out the field program in Brazil was going to logistically much more involved than a program in the US. Shipping of equipment, customs, and site preparations required work to begin many months prior to the actual measurement program. Permission to fly in that country was also not trivial and indeed proved to be a major obstacle. When we were not able to get permission to fly in Brazil for the 2002 portion of the experiment, the program was pushed back to 2003. When permission by the Brazilian government was not given in time for a Spring of 2003 field program, the experiment was postponed again to begin in the Fall of 2003.

  11. Architecture and Algorithms for an Airborne Network

    CERN Document Server

    Sen, Arunabha; Silva, Tiffany; Das, Nibedita; Kundu, Anjan

    2010-01-01

    The U.S. Air Force currently is in the process of developing an Airborne Network (AN) to provide support to its combat aircrafts on a mission. The reliability needed for continuous operation of an AN is difficult to achieve through completely infrastructure-less mobile ad hoc networks. In this paper we first propose an architecture for an AN where airborne networking platforms (ANPs - aircrafts, UAVs and satellites) form the backbone of the AN. In this architecture, the ANPs can be viewed as mobile base stations and the combat aircrafts on a mission as mobile clients. The combat aircrafts on a mission move through a space called air corridor. The goal of the AN design is to form a backbone network with the ANPs with two properties: (i) the backbone network remains connected at all times, even though the topology of the network changes with the movement of the ANPs, and (ii) the entire 3D space of the air corridor is under radio coverage at all times by the continuously moving ANPs. In addition to proposing an...

  12. Laser Systems For Use With Airborne Platforms

    Science.gov (United States)

    Jepsky, Joseph

    1984-10-01

    This paper describes a family of airborne laser systems in use for terrain profiling, surveying, mapping, altimetry, collision avoidance and shipboard landing systems using fixed and rotary wing aircraft as the platforms. The laser altimeter has also been used in systems compatible with the Army T-16 and. T-22 carrier missiles (platform). Both pulsed gallium arsenide and Nd:YAG (neodymium-doped, yttrium-aluminum-garnet) laser rangefinders have been used for these applications. All of these systems use ACCI's advanced measurement techniques that permit range accuracies of 8 cm, single shot, 1 cm averaged, to be achieved. Pulse rates up to 4 Khz are employed for airborne profiling. This high data density rate provides 1 data point every 2" along the aircraft flight line at aircraft speed of 500 knots. Scanning modes for some applications are employed. Systems have been integrated with all current inertial navigation systems (Litton, Ferranti and Honeywell), as well as a number of microwave positioning systems. Removal of aircraft motion from the laser range measurements by use of an accelerometer is described. Flight data from a number of program performed by U.S. and Canadian Federal Agencies, in addition to those of commercial surveying and mapping companies are described.

  13. Airborne multidimensional integrated remote sensing system

    Science.gov (United States)

    Xu, Weiming; Wang, Jianyu; Shu, Rong; He, Zhiping; Ma, Yanhua

    2006-12-01

    In this paper, we present a kind of airborne multidimensional integrated remote sensing system that consists of an imaging spectrometer, a three-line scanner, a laser ranger, a position & orientation subsystem and a stabilizer PAV30. The imaging spectrometer is composed of two sets of identical push-broom high spectral imager with a field of view of 22°, which provides a field of view of 42°. The spectral range of the imaging spectrometer is from 420nm to 900nm, and its spectral resolution is 5nm. The three-line scanner is composed of two pieces of panchromatic CCD and a RGB CCD with 20° stereo angle and 10cm GSD(Ground Sample Distance) with 1000m flying height. The laser ranger can provide height data of three points every other four scanning lines of the spectral imager and those three points are calibrated to match the corresponding pixels of the spectral imager. The post-processing attitude accuracy of POS/AV 510 used as the position & orientation subsystem, which is the aerial special exterior parameters measuring product of Canadian Applanix Corporation, is 0.005° combined with base station data. The airborne multidimensional integrated remote sensing system was implemented successfully, performed the first flying experiment on April, 2005, and obtained satisfying data.

  14. Auxiliary DCP data acquisition system. [airborne system

    Science.gov (United States)

    Snyder, R. V.

    1975-01-01

    An airborne DCP Data Aquisition System has been designed to augment the ERTS satellite data recovery system. The DCP's are data collection platforms located at pertinent sites. With the appropriate sensors they are able to collect, digitally encode and transmit environmental parameters to the ERTS satellite. The satellite in turn relays these transmissions to a ground station for processing. The satellite is available for such relay duty a minimum of two times in a 24-hour period. The equipment is to obtain continuous DCP data during periods of unusual environmental activity--storms, floods, etc. Two circumstances contributed to the decision to design such a system; (1) Wallops Station utilizes surveillance aircraft in support of rocket launches and also in support of earth resources activities; (2) the area in which Wallops is located, the Delaware and Chesapeake Bay areas, are fertile areas for DCP usage. Therefore, by developing an airborne DCP receiving station and installing it on aircraft more continuous DCP data can be provided from sites in the surrounding areas at relatively low cost.

  15. Airborne soil organic particles generated by precipitation

    Science.gov (United States)

    Wang, Bingbing; Harder, Tristan H.; Kelly, Stephen T.; Piens, Dominique S.; China, Swarup; Kovarik, Libor; Keiluweit, Marco; Arey, Bruce W.; Gilles, Mary K.; Laskin, Alexander

    2016-06-01

    Airborne organic particles play a critical role in Earth's climate, public health, air quality, and hydrological and carbon cycles. However, sources and formation mechanisms for semi-solid and solid organic particles are poorly understood and typically neglected in atmospheric models. Laboratory evidence suggests that fine particles can be formed from impaction of mineral surfaces by droplets. Here, we use chemical imaging of particles collected following rain events in the Southern Great Plains, Oklahoma, USA and after experimental irrigation to show that raindrop impaction of soils generates solid organic particles. We find that after rain events, sub-micrometre solid particles, with a chemical composition consistent with soil organic matter, contributed up to 60% of atmospheric particles. Our irrigation experiments indicate that intensive water impaction is sufficient to cause ejection of airborne soil organic particles from the soil surface. Chemical imaging and micro-spectroscopy analysis of particle physico-chemical properties suggest that these particles may have important impacts on cloud formation and efficiently absorb solar radiation. We suggest that raindrop-induced formation of solid organic particles from soils may be a widespread phenomenon in ecosystems such as agricultural systems and grasslands where soils are exposed to strong, episodic precipitation events.

  16. APEX - the Hyperspectral ESA Airborne Prism Experiment

    Directory of Open Access Journals (Sweden)

    Koen Meuleman

    2008-10-01

    Full Text Available The airborne ESA-APEX (Airborne Prism Experiment hyperspectral mission simulator is described with its distinct specifications to provide high quality remote sensing data. The concept of an automatic calibration, performed in the Calibration Home Base (CHB by using the Control Test Master (CTM, the In-Flight Calibration facility (IFC, quality flagging (QF and specific processing in a dedicated Processing and Archiving Facility (PAF, and vicarious calibration experiments are presented. A preview on major applications and the corresponding development efforts to provide scientific data products up to level 2/3 to the user is presented for limnology, vegetation, aerosols, general classification routines and rapid mapping tasks. BRDF (Bidirectional Reflectance Distribution Function issues are discussed and the spectral database SPECCHIO (Spectral Input/Output introduced. The optical performance as well as the dedicated software utilities make APEX a state-of-the-art hyperspectral sensor, capable of (a satisfying the needs of several research communities and (b helping the understanding of the Earth’s complex mechanisms.

  17. The Next Generation Airborne Polarimetric Doppler Radar

    Science.gov (United States)

    Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.

    2013-04-01

    NCAR's Electra Doppler radar (ELDORA) with a dual-beam slotted waveguide array using dual-transmitter, dual-beam, rapid scan and step-chirped waveform significantly improved the spatial scale to 300m (Hildebrand et al. 1996). However, ELDORA X-band radar's penetration into precipitation is limited by attenuation and is not designed to collect polarimetric measurements to remotely estimate microphysics. ELDORA has been placed on dormancy because its airborne platform (P3 587) was retired in January 2013. The US research community has strongly voiced the need to continue measurement capability similar to the ELDORA. A critical weather research area is quantitative precipitation estimation/forecasting (QPE/QPF). In recent years, hurricane intensity change involving eye-eyewall interactions has drawn research attention (Montgomery et al., 2006; Bell and Montgomery, 2006). In the case of convective precipitation, two issues, namely, (1) when and where convection will be initiated, and (2) determining the organization and structure of ensuing convection, are key for QPF. Therefore collocated measurements of 3-D winds and precipitation microphysics are required for achieving significant skills in QPF and QPE. Multiple radars in dual-Doppler configuration with polarization capability estimate dynamical and microphysical characteristics of clouds and precipitation are mostly available over land. However, storms over complex terrain, the ocean and in forest regions are not observable by ground-based radars (Bluestein and Wakimoto, 2003). NCAR/EOL is investigating potential configurations for the next generation airborne radar that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. ELDORA's slotted waveguide array radar is not compatible for dual-polarization measurements. Therefore, the new design has to address both dual-polarization capability and platform requirements to replace the ELDORA system. NCAR maintains a C-130

  18. MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller

    2005-05-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control

  19. Development of a Low-Cost Particulate Matter Monitor

    Energy Technology Data Exchange (ETDEWEB)

    White, Richard M.; Apte, Michael G.; Gundel, Lara A.; Black, Justin

    2008-08-01

    We describe a small, inexpensive portable monitor for airborne particulates, composed of the following elements: a. A simple size-selective inlet (vertical elutriator) that permits only particles below a pre-set diameter to pass and enter the measurement section; b. A measurement section in which passing particles are deposited thermophoretically on a micro-fabricated resonant piezoelectric mass sensor; c. An optical characterization module co-located with the mass sensor module that directs infrared and ultraviolet beams through the deposit. The emergent optical beams are detected by a photodiode. The optical absorption of the deposit can be measured in order to characterize the deposit, and determine how much is due to diesel exhaust and/or environmental tobacco smoke; and d. A small pump that moves air through the device, which may also be operated in a passive mode. The component modules were designed by the project team, and fabricated at UCB andLBNL. Testing and validation were performed in a room-sized environmental chamber at LBNL in to which was added either environmental tobacco smoke (ETS, produced by a cigarette smoking machine) or diesel exhaust (from a conventional diesel engine). Two pilot field tests in a dwelling compared the monitor with existing aerosol instruments during exposure to infiltrated ambient air to which cigarette smoke, diesel exhaust, wood smoke and cooking fumes were added. The limit of detection (LOD) derived from statistical analysis of field data is 18 mu g m-3, at the 99percent confidence level. The monitor weighs less than 120 g and has a volume of roughly 250 cm3. Power consumption is approximately 100 milliwatts. During this study, the optical component of the device was not fully implemented and has been left for future efforts. Suggested improvements in the current prototype include use of integrated thermal correction, reconfiguration of the resonator for increased particle collection area, increased thermophoretic

  20. Quantitative DNA Analyses for Airborne Birch Pollen.

    Directory of Open Access Journals (Sweden)

    Isabell Müller-Germann

    Full Text Available Birch trees produce large amounts of highly allergenic pollen grains that are distributed by wind and impact human health by causing seasonal hay fever, pollen-related asthma, and other allergic diseases. Traditionally, pollen forecasts are based on conventional microscopic counting techniques that are labor-intensive and limited in the reliable identification of species. Molecular biological techniques provide an alternative approach that is less labor-intensive and enables identification of any species by its genetic fingerprint. A particularly promising method is quantitative Real-Time polymerase chain reaction (qPCR, which can be used to determine the number of DNA copies and thus pollen grains in air filter samples. During the birch pollination season in 2010 in Mainz, Germany, we collected air filter samples of fine (<3 μm and coarse air particulate matter. These were analyzed by qPCR using two different primer pairs: one for a single-copy gene (BP8 and the other for a multi-copy gene (ITS. The BP8 gene was better suitable for reliable qPCR results, and the qPCR results obtained for coarse particulate matter were well correlated with the birch pollen forecasting results of the regional air quality model COSMO-ART. As expected due to the size of birch pollen grains (~23 μm, the concentration of DNA in fine particulate matter was lower than in the coarse particle fraction. For the ITS region the factor was 64, while for the single-copy gene BP8 only 51. The possible presence of so-called sub-pollen particles in the fine particle fraction is, however, interesting even in low concentrations. These particles are known to be highly allergenic, reach deep into airways and cause often severe health problems. In conclusion, the results of this exploratory study open up the possibility of predicting and quantifying the pollen concentration in the atmosphere more precisely in the future.

  1. Airborne Biogenic Particles in the Snow of the Cities of the Russian Far East as Potential Allergic Compounds

    Directory of Open Access Journals (Sweden)

    Kirill S. Golokhvast

    2014-01-01

    Full Text Available This paper presents an analysis of airborne biogenic particles (1 mkm–1 mm found in the snow in several cities of the Russian Far East during 2010–2013. The most common was vegetational terraneous detritus (fragments of tree and grass leaves followed by animal hair, small insects and their fragments, microorganisms of aeroplankton, and equivocal biological garbage. Specific components were found in samples from locations close to bodies of water such as fragments of algae and mollusc shells and, marine invertebrates (needles of sea urchins and shell debris of arthropods. In most locations across the Far East (Vladivostok, Khabarovsk, Blagoveshchensk, and Ussuriysk, the content of biogenic particles collected in the winter did not exceed 10% of the total particulate matter, with the exception of Birobidzhan and the nature reserve Bastak, where it made up to 20%. Most of all biogenic compounds should be allergic: hair, fragments of tree and grass leaves, insects, and microorganisms.

  2. Airborne biogenic particles in the snow of the cities of the Russian Far East as potential allergic compounds.

    Science.gov (United States)

    Golokhvast, Kirill S

    2014-01-01

    This paper presents an analysis of airborne biogenic particles (1 mkm-1 mm) found in the snow in several cities of the Russian Far East during 2010-2013. The most common was vegetational terraneous detritus (fragments of tree and grass leaves) followed by animal hair, small insects and their fragments, microorganisms of aeroplankton, and equivocal biological garbage. Specific components were found in samples from locations close to bodies of water such as fragments of algae and mollusc shells and, marine invertebrates (needles of sea urchins and shell debris of arthropods). In most locations across the Far East (Vladivostok, Khabarovsk, Blagoveshchensk, and Ussuriysk), the content of biogenic particles collected in the winter did not exceed 10% of the total particulate matter, with the exception of Birobidzhan and the nature reserve Bastak, where it made up to 20%. Most of all biogenic compounds should be allergic: hair, fragments of tree and grass leaves, insects, and microorganisms. PMID:25140327

  3. Simultaneous two-color, two-dimensional angular optical scattering patterns from airborne particulates: Scattering results and exploratory analysis

    Science.gov (United States)

    Holler, Stephen; Fuerstenau, Stephen D.; Skelsey, Charles R.

    2016-07-01

    Light scattering from non-spherical particles and aggregates exhibits complex structure that is revealed only when observed in two angular dimensions (θ, ϕ). However, due to variations in shape, packing, and orientation of such aerosols, the structure of two-dimensional angular optical scattering (TAOS) patterns varies among particles. The spectral dependence of scattering contributes further to the observed complexity, but offers another facet to consider. By leveraging multispectral TAOS data from flowing aerosols, we have identified novel morphological descriptors that may be employed in multivariate statistical algorithms for "unknown" particle classification.

  4. Characteristics of an airborne demonstrator for MERLIN

    Science.gov (United States)

    Amediek, A.; Büdenbender, C.; Ehret, G.; Fix, A.; Kiemle, C.; Quatrevalet, M.; Wirth, M.; Dieter, H.; Löhring, J.; Klein, V.

    2012-12-01

    After three years development time, first test measurements on DLR's (Deutsches Zentrum für Luft- und Raumfahrt) CO2 and CH4 airborne Lidar have started. It is an integrated path differential absorption (IPDA) lidar for the simultaneous measurement of CO2 and CH4 columns, designed for operation onboard the new German research aircraft HALO. In the framework of the project "CHARM-F", funded by the German ministry of education and research, the lidar was developed in collaboration with Fraunhofer Institut für Lasertechnik and Kayser-Threde. Due to the special features of the aircraft, such as the maximum flight altitude of 15 km and its long range, as well as the special design of the lidar, the system is particularly suitable to be an airborne demonstrator for the French-German MERLIN project, a spaceborne IPDA lidar sounder for methane. The layout of the receiver optics allows a large field of view, i.e. a large laser footprint on ground is possible, comparable to the size obtained by a spaceborne system. So, important features that come along with ground reflectivity issues, such as albedo variations on different spatial scales, can be taken into account in the same way and can be investigated in detail. Furthermore, two detector types are used, PIN photodiodes and APDs, each with specially adapted telescopes, to compare their respective properties. The basic design of the transmitter is identical to the one envisaged for MERLIN. Also important subsystems of the presented lidar, like wavelengths stabilization and output power monitoring, can serve as demonstrators for the satellite system. The main features of the airborne system are: Two almost identical laser systems for CH4 and CO2. Nd:YAG lasers serve as the pump sources for optical parametric oscillators (OPO), injection seeded by laser diodes, to generate the desired online and offline wavelengths in single mode operation. The online wavelength is tuned to an absorption line of the measured trace gas, the

  5. THE 2011 JUNE 23 STELLAR OCCULTATION BY PLUTO: AIRBORNE AND GROUND OBSERVATIONS

    International Nuclear Information System (INIS)

    On 2011 June 23, stellar occultations by both Pluto (this work) and Charon (future analysis) were observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 with the Kuiper Airborne Observatory resulted in the best occultation chords recorded for the event, in three visible wavelength bands. The data obtained from SOFIA are combined with chords obtained from the ground at the IRTF, the U.S. Naval Observatory Flagstaff Station, and Leeward Community College to give the detailed state of the Pluto-Charon system at the time of the event with a focus on Pluto's atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee or kink in the light curve separating them as was observed in 1988, rather than the smoothly transitioning bowl-shaped light curves of recent years. The upper atmosphere is analyzed by fitting a model to all of the light curves, resulting in a half-light radius of 1288 ± 1 km. The lower atmosphere is analyzed using two different methods to provide results under the differing assumptions of particulate haze and a strong thermal gradient as causes for the lower atmospheric diminution of flux. These results are compared with those from past occultations to provide a picture of Pluto's evolving atmosphere. Regardless of which lower atmospheric structure is assumed, results indicate that this part of the atmosphere evolves on short timescales with results changing the light curve structures between 1988 and 2006, and then reverting these changes in 2011 though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again except for the overall pressure changes. No evidence of onset of atmospheric collapse predicted by frost migration models is seen, and the atmosphere appears to be remaining at a stable pressure level, suggesting it should persist

  6. Alternative analysis of airborne laser data collected within conventional multi-parameter airborne geophysical surveys

    Science.gov (United States)

    Ahl, Andreas; Supper, R.; Motschka, K.; Schattauer, I.

    2010-05-01

    For the interpretation of airborne gamma-ray spectrometry as well as airborne electromagnetics it is of great importance to determine the distance between the geophysical sensor and the ground surface. Since radar altimeters do not penetrate vegetation, laser altimeters became popular in airborne geophysics over the past years. Currently the airborne geophysical platform of the Geological Survey of Austria (GBA) is equipped with a Riegl LD90-3800VHS-FLP high resolution laser altimeter, measuring the distances according to the first and the last reflected pulse. The goal of the presented study was to explore the possibilities of deriving additional information about the survey area from the laser data and to determine the accuracy of such results. On one hand the difference between the arrival time of the first and the last reflected pulse can be used to determine the height of the vegetation. This parameter is for example important for the correction of damping effects on airborne gamma-ray measurements caused by vegetation. Moreover especially for groundwater studies at catchment scale, this parameter can also be applied to support the spatial assessment of evapotranspiration. In combination with the altitude above geoid, determined by a GPS receiver, a rough digital elevation model of the survey area can be derived from the laser altimetry. Based on a data set from a survey area in the northern part of Austria, close to the border with the Czech Republic, the reliability of such a digital elevation model and the calculated vegetation height was tested. In this study a mean deviation of -1.4m, with a standard deviation of ±3.4m, between the digital elevation model from Upper Austria (25m spatial resolution) and the determined elevation model was determined. We also found an obvious correlation between the calculated vegetation heights greater 15m and the mapped forest published by the ‘Department of Forest Inventory' of the ‘Federal Forest Office' of Austria

  7. Assessment of Contribution of Contemporary Carbon Sources to Size-Fractionated Particulate Matter and Time-Resolved Bulk Particulate Matter Using the Measurement of Radiocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, H M; Young, T M; Buchholz, B A

    2009-04-16

    This study was motivated by a desire to improve understanding of the sources contributing to the carbon that is an important component of airborne particulate matter (PM). The ultimate goal of this project was to lay a ground work for future tools that might be easily implemented with archived or routinely collected samples. A key feature of this study was application of radiocarbon measurement that can be interpreted to indicate the relative contributions from fossil and non-fossil carbon sources of atmospheric PM. Size-resolved PM and time-resolved PM{sub 10} collected from a site in Sacramento, CA in November 2007 (Phase I) and March 2008 (Phase II) were analyzed for radiocarbon and source markers such as levoglucosan, cholesterol, and elemental carbon. Radiocarbon data indicates that the contributions of non-fossil carbon sources were much greater than that from fossil carbon sources in all samples. Radiocarbon and source marker measurements confirm that a greater contribution of non-fossil carbon sources in Phase I samples was highly likely due to residential wood combustion. The present study proves that measurement of radiocarbon and source markers can be readily applied to archived or routinely collected samples for better characterization of PM sources. More accurate source apportionment will support ARB in developing more efficient control strategies.

  8. Airborne laser: a tool to study landscape surface features

    International Nuclear Information System (INIS)

    Landscape surface features related to erosion and hydrology were measured using an airborne laser profiler. The airborne laser profiler made 4,000 measurements per second with a recording accuracy of 5 cm (1.9 inches) on a single measurement. Digital data from the laser are recorded and analyzed with a personal computer. These airborne laser profiles provide information on surface landscape features. Topography and canopy heights, cover, and distribution of natural vegetation were determined in studies in South Texas. Laser measurements of shrub cover along flightlines were highly correlated (R2 = 0.98) with ground measurements made with line-intercept methods. Stream channel cross sections on Goodwin Creek in Mississippi were measured quickly and accurately with airborne laser data. Airborne laser profile data were used to measure small gullies in a level fallow field and in field with mature soybeans. While conventional ground-based techniques can be used to make these measurements, airborne laser profiler techniques allow data to be collected quickly, at a high density, and in areas that are essentially inaccessible for ground surveys. Airborne laser profiler data can quantify landscape features related to erosion and runoff, and the laser proler has the potential to be a useful tool for providing other data for studying and managing natural resources

  9. Methods and apparatus for handling or treating particulate material

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2009-01-01

    An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.

  10. Airborne radioactivity surveys for phosphate in Florida

    Science.gov (United States)

    Moxham, Robert M.

    1954-01-01

    Airborne radioactivity surveys totaling 5, 600 traverse miles were made in 10 areas in Florida, which were thought to be geologically favorable for deposits of uraniferous phosphate. Abnormal radioactivity was recorded in 8 of the 10 areas surveyed. The anomalies are located in Bradford, Clay, Columbia, DeSoto, Dixie, Lake, Marion, Orange, Sumter, Taylor, and Union Counties. Two of the anomalies were investigated briefly on the ground. One resulted from a deposit of river-pebble phosphate in the Peace River valley; the river-pebble samples contain an average of 0.013 percent equivalent uranium. The other anomaly resulted from outcrops of leached phosphatic rock containing as much as 0. 016 percent equivalent uranium. Several anomalies in other areas were recorded at or near localities where phosphate deposits have been reported.

  11. Airborne gravimetry, altimetry, and GPS navigation errors

    Science.gov (United States)

    Colombo, Oscar L.

    1992-01-01

    Proper interpretation of airborne gravimetry and altimetry requires good knowledge of aircraft trajectory. Recent advances in precise navigation with differential GPS have made it possible to measure gravity from the air with accuracies of a few milligals, and to obtain altimeter profiles of terrain or sea surface correct to one decimeter. These developments are opening otherwise inaccessible regions to detailed geophysical mapping. Navigation with GPS presents some problems that grow worse with increasing distance from a fixed receiver: the effect of errors in tropospheric refraction correction, GPS ephemerides, and the coordinates of the fixed receivers. Ionospheric refraction and orbit error complicate ambiguity resolution. Optimal navigation should treat all error sources as unknowns, together with the instantaneous vehicle position. To do so, fast and reliable numerical techniques are needed: efficient and stable Kalman filter-smoother algorithms, together with data compression and, sometimes, the use of simplified dynamics.

  12. Wavelet Based Fractal Analysis of Airborne Pollen

    CERN Document Server

    Degaudenzi, M E

    1999-01-01

    The most abundant biological particles in the atmosphere are pollen grains and spores. Self protection of pollen allergy is possible through the information of future pollen contents in the air. In spite of the importance of airborne pol len concentration forecasting, it has not been possible to predict the pollen concentrations with great accuracy, and about 25% of the daily pollen forecasts have resulted in failures. Previous analysis of the dynamic characteristics of atmospheric pollen time series indicate that the system can be described by a low dimensional chaotic map. We apply the wavelet transform to study the multifractal characteristics of an a irborne pollen time series. We find the persistence behaviour associated to low pollen concentration values and to the most rare events of highest pollen co ncentration values. The information and the correlation dimensions correspond to a chaotic system showing loss of information with time evolution.

  13. Spatial dynamics of airborne infectious diseases

    CERN Document Server

    Robinson, M; Drossinos, Y

    2011-01-01

    Disease outbreaks, such as those of Severe Acute Respiratory Syndrome in 2003 and the 2009 pandemic A(H1N1) influenza, have highlighted the potential for airborne transmission in indoor environments. Respirable pathogen-carrying droplets provide a vector for the spatial spread of infection with droplet transport determined by diffusive and convective processes. An epidemiological model describing the spatial dynamics of disease transmission is presented. The effects of an ambient airflow, as an infection control, are incorporated leading to a delay equation, with droplet density dependent on the infectious density at a previous time. It is found that small droplets ($\\sim 0.4\\ \\mu$m) generate a negligible infectious force due to the small viral load and the associated duration they require to transmit infection. In contrast, larger droplets ($\\sim 4\\ \\mu$m) can lead to an infectious wave propagating through a fully susceptible population or a secondary infection outbreak for a localised susceptible population...

  14. Digital Logarithmic Airborne Gamma Ray Spectrometer

    CERN Document Server

    Zeng, GuoQiang; Li, Chen; Tan, ChengJun; Ge, LiangQuan; Gu, Yi; Cheng, Feng

    2014-01-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range, because the low-energy pulse signal has a larger gain than the high-energy pulse signal. The spectrometer can clearly distinguish the photopeaks at 239, 352, 583, and 609keV in the low-energy spectral sections after the energy calibration. The photopeak energy resolution of 137Cs improves to 6.75% from the original 7.8%. Furthermore, the energy resolution of three photopeaks, namely, K, U, and Th, is maintained, and the overall stability of the energy spectrum is increased through potassium peak spectrum stabilization. Thus, effectively measuring energy from 20keV to 10MeV is possible.

  15. Determination of airborne nanoparticles from welding operations.

    Science.gov (United States)

    Gomes, João Fernando Pereira; Albuquerque, Paula Cristina Silva; Miranda, Rosa Maria Mendes; Vieira, Maria Teresa Freire

    2012-01-01

    The aim of this study is to assess the levels of airborne ultrafine particles emitted in welding processes (tungsten inert gas [TIG], metal active gas [MAG] of carbon steel, and friction stir welding [FSW] of aluminum) in terms of deposited area in pulmonary alveolar tract using a nanoparticle surface area monitor (NSAM) analyzer. The obtained results showed the dependence of process parameters on emitted ultrafine particles and demonstrated the presence of ultrafine particles compared to background levels. Data indicated that the process that resulted in the lowest levels of alveolar deposited surface area (ADSA) was FSW, followed by TIG and MAG. However, all tested processes resulted in significant concentrations of ultrafine particles being deposited in humans lungs of exposed workers.

  16. Managing particulates in cell therapy: Guidance for best practice.

    Science.gov (United States)

    Clarke, Dominic; Stanton, Jean; Powers, Donald; Karnieli, Ohad; Nahum, Sagi; Abraham, Eytan; Parisse, Jean-Sebastien; Oh, Steve

    2016-09-01

    The intent of this article is to provide guidance and recommendations to cell therapy product sponsors (including developers and manufacturers) and their suppliers in the cell therapy industry regarding particulate source, testing, monitoring and methods for control. This information is intended to help all parties characterize the processes that generate particulates, understand product impact and provide recommendations to control particulates generated during manufacturing of cell therapy products. PMID:27426934

  17. 40 CFR 60.62 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.62... Plants § 60.62 Standard for particulate matter. (a) On and after the date on which the performance test... particulate matter in excess of 0.15 kg per metric ton of feed (dry basis) to the kiln (0.30 lb per ton)....

  18. 40 CFR 60.152 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry...

  19. Experimental examination of effectiveness of vegetation as bio-filter of particulate matters in the urban environment.

    Science.gov (United States)

    Chen, Lixin; Liu, Chenming; Zou, Rui; Yang, Mao; Zhang, Zhiqiang

    2016-01-01

    Studies focused on pollutants deposition on vegetation surfaces or aerodynamics of vegetation space conflict in whether vegetation planting can effectively reduce airborne particulate matter (PM) pollution. To achieve a more comprehensive understanding of the conflict, we conducted experiments during 2013 and 2014 in Beijing, China to evaluate the importance of vegetation species, planting configurations and wind in influencing PM concentration at urban and street scales. Results showed that wind field prevailed over the purification function by vegetation at urban scale. All six examined planting configurations reduced total suspended particle along horizontal but not vertical direction. Shrubs and trees-grass configurations performed most effectively for horizontal PM2.5 reduction, but adversely for vertical attenuation. Trapping capacity of PMs was species-specific, but species selection criteria could hardly be generalized for practical use. Therefore, design of planting configuration is practically more effective than tree species selection in attenuating the ambient PM concentrations in urban settings.

  20. Immunity-Related Protein Expression and Pathological Lung Damage in Mice Poststimulation with Ambient Particulate Matter from Live Bird Markets.

    Science.gov (United States)

    Meng, Kai; Wu, Bo; Gao, Jing; Cai, Yumei; Yao, Meiling; Wei, Liangmeng; Chai, Tongjie

    2016-01-01

    The objective of this study was to obtain insight into the adverse health effects of airborne particulate matter (PM) collected from live bird markets and to determine whether biological material in PM accounts for immune-related inflammatory response. Mice were exposed to a single or repeated dose of PM, after which the expression of toll-like receptors (TLRs), cytokines, and chemokines in the lungs of infected mice were examined by enzyme-linked immunosorbent assay and histopathological analysis. Results after single and repeated PM stimulation with [Formula: see text] indicated that TLR2 and TLR4 played a dominant role in the inflammatory responses of the lung. Further analysis demonstrated that the expression levels of IL-1β, TNF-α, IFN-γ, IL-8, IP-10, and MCP-1 increased significantly, which could eventually contribute to lung injury. Moreover, biological components in PM were critical in mediating immune-related inflammatory responses and should therefore not be overlooked.

  1. Photothermal Infrared Spectroscopy of Airborne Samples with Mechanical String Resonators

    DEFF Research Database (Denmark)

    Yamada, Shoko; Schmid, Silvan; Larsen, Tom;

    2013-01-01

    -scale airborne samples. Airborne sample material is directly collected on the microstring with an efficient nondiffusion limited sampling method based on inertial impaction. Resonance frequency shifts, proportional to the absorbed heat in the microstring, are recorded as monochromatic IR light is scanned over...... the mid-infrared range. As a proof-of-concept, we sample and analyze polyvinylpyrrolidone (PVP) and the IR spectrum measured by photothermal spectroscopy matches the reference IR spectrum measured by an FTIR spectrometer. We further identify the organic surface coating of airborne TiO2 nanoparticles...

  2. NASA Langley Airborne High Spectral Resolution Lidar Instrument Description

    Science.gov (United States)

    Harper, David B.; Cook, Anthony; Hostetler, Chris; Hair, John W.; Mack, Terry L.

    2006-01-01

    NASA Langley Research Center (LaRC) recently developed the LaRC Airborne High Spectral Resolution Lidar (HSRL) to make measurements of aerosol and cloud distribution and optical properties. The Airborne HSRL has undergone as series of test flights and was successfully deployed on the Megacity Initiative: Local and Global Research Observations (MILAGRO) field mission in March 2006 (see Hair et al. in these proceedings). This paper provides an overview of the design of the Airborne HSRL and descriptions of some key subsystems unique to this instrument.

  3. Control of Airborne Infectious Diseases in Ventilated Spaces

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    2009-01-01

    We protect ourselves from airborne cross-infection in the indoor environment by supplying fresh air to a room by natural or mechanical ventilation. The air is distributed in the room according to different principles: mixing ventilation, displacement ventilation, etc. A large amount of air...... is supplied to the room to ensure a dilution of airborne infection. Analyses of the flow in the room show that there are a number of parameters that play an important role in minimizing airborne cross-infection. The air flow rate to the room must be high, and the air distribution pattern can be designed...

  4. The characterization of airborne occupational safety and health hazards in selected small businesses; manufacturing wood pallets.

    Science.gov (United States)

    Malkin, Robert; Lentz, Thomas J; Topmiller, Jennifer; Hudock, Stephen D; Niemeier, Richard W

    2006-01-01

    Researchers from the National Institute for Occupational Safety and Health (NIOSH) investigated occupational safety and health concerns in the small business wood pallet manufacturing industry because of an injury rate (2000) 226% greater than that for general industry. NIOSH investigators conducted walk-through evaluations at seven wood pallet manufacturing companies, and returned to four of them to take environmental measurements. Carbon monoxide (CO) levels, noise levels, and total particulate were measured, ergonomic observations made, and occupational safety practices analyzed at each of the four facilities where measurements were taken. The focus of this study is the evaluation of airborne particulate and carbon monoxide exposures for the purpose of determining areas of potentially high exposures. This knowledge can guide the plant owner or health professional to determine whether further measurements are necessary and where they might be needed. Safety factors and physical stressors (noise and ergonomic stressors) were described in a previously published companion paper. Although we did not take 8 h samples, we did find certain exposures that were potentially of concern to the small business owner. The main findings of this investigation were as follows: 1) CO levels in three plants, for the time periods measured, were less than the OSHA permissible exposure limit (PEL) of 50 parts per million (ppm) for an 8-h TWA. Three measurements, all from one plant, were due to a older and defective forklift and were above 50 ppm. 2) Total dust measures ranged from 0.86 to 1.67 mg/m3, taken adjacent to an operating machine cutting hardwood and measured up to 6 min. The American Conference of Governmental Industrial Hygienists (ACGIH) guideline for hardwood dust is 1.0 mg/m3, again for an 8-h TWA. PMID:16610535

  5. Activation analysis of air particulate matter

    International Nuclear Information System (INIS)

    This review on activation analysis of air particulate matter is an extended and updated version of a review given by the same authors in 1985. The main part is aimed at the analytical scheme and refers to rules and techniques for sampling, sample and standard preparation, irradiation and counting procedures, as well as data processing, - evaluation, and - presentation. Additional chapters deal with relative and monostandard methods, the use of activation analysis for atmosphere samples in various localities, and level of toxic and other elements in the atmosphere. The review contains 190 references. (RB)

  6. Particulate methane monooxygenase genes in methanotrophs.

    OpenAIRE

    Semrau, J. D.; Chistoserdov, A; Lebron, J.; Costello, A; Davagnino, J.; Kenna, E; Holmes, A. J.; Finch, R; Murrell, J.C.; Lidstrom, M E

    1995-01-01

    A 45-kDa membrane polypeptide that is associated with activity of the particulate methane monooxygenase (pMMO) has been purified from three methanotrophic bacteria, and the N-terminal amino acid sequence was found to be identical in 17 of 20 positions for all three polypeptides and identical in 14 of 20 positions for the N terminus of AmoB, the 43- kDa subunit of ammonia monooxygenase. DNA from a variety of methanotrophs was screened with two probes, an oligonucleotide designed from the N-ter...

  7. Electrically heated particulate filter with reduced stress

    Science.gov (United States)

    Gonze, Eugene V.

    2013-03-05

    A system comprises a particulate matter (PM) filter comprising an inlet for receiving exhaust gas. A zoned heater is arranged in the inlet and comprises a resistive heater comprising N zones, where N is an integer greater than one. Each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates others of the N zones.

  8. Discours rapporté et particules

    OpenAIRE

    Peuvergne, Julie

    2011-01-01

    Cet article concerne l’observation d’occurrences de discours rapporté (DR) extraites d’un corpus recueilli au Cameroun. Cette étude s’inscrit dans un questionnement plus large sur le morphème que. Son extrême fréquence dans le DR en fait un lieu d’observation privilégié. Le fonctionnement de que ne peut se comprendre indépendamment du faisceau d’indices au sein duquel il intervient : verbes de parole, pauses, prosodie, particules. Ces dernières en particulier jouent des rôles multiples, struc...

  9. Effect of three surface conditioning methods to improve bond strength of particulate filler resin composites.

    Science.gov (United States)

    Ozcan, M; Alander, P; Vallittu, P K; Huysmans, M-C; Kalk, W

    2005-01-01

    The use of resin-based composite materials in operative dentistry is increasing, including applications in stress-bearing areas. However, composite restorations, in common with all restorations, suffer from deterioration and degradation in clinical service. Durable repair alternatives by layering a new composite onto such failed composite restorations, will eliminate unnecessary loss of tooth tissue and repeated insults to the pulp. The objective of this study was to evaluate the effect of three surface conditioning methods on the repair bond strength of a particulate filler resin-composite (PFC) to 5 PFC substrates. The specimens were randomly assigned to one of the following surface conditioning methods: (1) Hydrofluoric (HF) acid gel (9.5%) etching, (2) Air-borne particle abrasion (50 microm Al2O3), (3) Silica coating (30 microm SiOx, CoJet-Sand). After each conditioning method, a silane coupling agent was applied. Adhesive resin was then applied in a thin layer and light polymerized. The low-viscosity diacrylate resin composite was bonded to the conditioned substrates in polyethylene molds. All specimens were tested in dry and thermocycled (6.000, 5-55 degrees C, 30 s) conditions. One-way ANOVA showed significant influence of the surface conditioning methods (p acid etched specimens (5.7-14.3 MPa) and those treated with either air-borne particle abrasion (13.0-22.5 MPa) or silica coating (25.5-41.8 MPa) in dry conditions (ANOVA, p < 0.001). After thermocycling, the silica coating process resulted in the highest bond values in all material groups (17.2-30.3 MPa).

  10. Level, potential sources of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM10) in Naples

    Science.gov (United States)

    Di Vaio, Paola; Cocozziello, Beatrice; Corvino, Angela; Fiorino, Ferdinando; Frecentese, Francesco; Magli, Elisa; Onorati, Giuseppe; Saccone, Irene; Santagada, Vincenzo; Settimo, Gaetano; Severino, Beatrice; Perissutti, Elisa

    2016-03-01

    In Naples, particulate matter PM10 associated with polycyclic aromatic hydrocarbons (PAHs) in ambient air were determined in urban background (NA01) and urban traffic (NA02) sites. The principal objective of the study was to determine the concentration and distribution of PAHs in PM10 for identification of their possible sources (through diagnostic ratio - DR and principal component analysis - PCA) and an estimation of the human health risk (from exposure to airborne TEQ). Airborne PM10 samples were collected on quartz filters using a Low Volume Sampler (LVS) for 24 h with seasonal samples (autumn, winter, spring and summer) of about 15 days each between October 2012 and July 2013. The PM10 mass was gravimetrically determined. The PM10 levels, in all seasons, were significantly higher (P agents, (i.e Benzo[a]Pyrene, Indeno[1,2,3-cd]Pyrene, Benzo[b]Fluoranthene, Benzo[k]Fluoranthene and Benzo[g,h,i]Perylene), had a large contribution (∼50-55%) of total PAHs concentration in PM10 in two sites and in each of the campaigns. Diagnostic ratio analysis and PCA suggested a substantial contributions from traffic emission with minimal influence from coal combustion and natural gas emissions. In particular diesel vehicular emissions were the major source of PAHs at the studied sites. The use of Toxicity Equivalence Quantity (TEQ) concentration provide a better estimation of carcinogenicity activities; health risk to adults and children associated with PAHs inhalation was assessed by taking into account the lifetime average daily dose and corresponding incremental lifetime cancer risk (ILCR). The ILCR was within the acceptable range (10-6-10-4), indicating a low health risk to residents in these areas.

  11. Assessment of oxidative DNA damage formation by organic complex mixtures from airborne particles PM(10).

    Science.gov (United States)

    Gábelová, Alena; Valovicová, Zuzana; Lábaj, Juraj; Bacová, Gabriela; Binková, Blanka; Farmer, Peter B

    2007-07-01

    The free radical generating activity of airborne particulate matter (PM(10)) has been proposed as a primary mechanism in biological activity of ambient air pollution. In an effort to determine the impact of the complex mixtures of extractable organic matter (EOM) from airborne particles on oxidative damage to DNA, the level of 8-oxo-2'-deoxyguanosine (8-oxodG), the most prevalent and stable oxidative lesion, was measured in the human metabolically competent cell line Hep G2. Cultured cells were exposed to equivalent EOM concentrations (5-150microg/ml) and oxidative DNA damage was analyzed using a modified single cell gel electrophoresis (SCGE), which involves the incubation of whole cell DNA with repair specific DNA endonuclease, which cleaves oxidized DNA at the sites of 8-oxodG. EOMs were extracted from PM(10) collected daily (24h intervals) in three European cities: Prague (Czech Republic, two monitoring sites, Libus and Smíchov), Kosice (Slovak Republic) and Sofia (Bulgaria) during 3-month sampling periods in the winter and summer seasons. No substantial time- and dose-dependent increase of oxidative DNA lesions was detected in EOM-treated cells with the exception of the EOM collected at the monitoring site Kosice, summer sampling. In this case, 2h cell exposure to EOM resulted in a slight but significant increase of oxidative DNA damage at three from total of six concentrations. The mean 8-oxodG values at these concentrations ranged from 15.3 to 26.1 per 10(6) nucleotides with a value 3.5 per 10(6) nucleotides in untreated cells. B[a]P, the positive control, induced a variable but insignificant increase of oxidative DNA damage in Hep G2 cell (approximately 1.6-fold increase over control value). Based on these data we believe that EOM samples extracted from airborne particle PM(10) play probably only a marginal role in oxidative stress generation and oxidative lesion formation to DNA. However, adsorbed organic compounds can undergo various interactions

  12. DETERMINATION OF MOBILITY AND BIOAVAILABILITY OF HEAVY METALS IN THE URBAN AIR PARTICULATES MATTER OF ISFAHAN

    Directory of Open Access Journals (Sweden)

    A KALANTARI

    2001-06-01

    Full Text Available Introduction: In addition to, Carbohyrates, Lipids, Amino acids and vitamins, some of the trace metals are known vital for biological activity. But some of them not only are not necessary, but also they are very toxic and carcinogen. In this research the rate of Mobility and Bioavailability of heavy metals associated with airborne particulates matter such as Zn, Pb, Cd, Cu, Fe, Ni and Cr have been measured. Methods: The sequential extraction has been used for releasing of heavy metales from solid samples as airborne particulates matter on the paper filter samples. Five stages in the sequential extraction procedure developed by Tessier, et al, was first used for extraction and determination of the concentration and percentages of heavy metals which could be released in each stage. In the 1st stage, exchangable metals were released. The sample was extracted with 10 ml of ammonium acetat, pH=7 for 1h. Then the sample was centrifuged at 2000 rpm. The solution of extraction, was analysed for Zn, Pb, Cd, Cu, Fe, Ni and Cr. In the 2nd stage, heavy metals bound to carbonates which were sensitive to pH were extracted. The residue from stage 1, with 10 ml of sodium acetate 1 M the pH was adjusted to 5 with acetic acid. Then the sample was centrifuged as stage 1. In the third stage heavy metals bound to iron and manganese oxides were extracted. The residue from stage 2 was reacted with 10 ml hydroxyl amine hydrochloride at 25% v/v. In the 4th stage metals bound to sulfides and organic compounds were extracted. The residue from stage 3 with 5 ml nitric acid and 5 ml hydrogen peroxide 30% and heated at 85° C. Finally in the 5th stage residual heavy metals were extracted. the residue from fraction 4 with 10 ml nitric acid and 3 ml hydroflouric acid were extracted. The concentrations of Pb and Cd in some fractions of sequential extraction were too low, so, we carried out preconcentration method for these two elements. Results and Discussion: The results

  13. The physicochemical characterisation of microscopic airborne particles in south Wales: A review of the locations and methodologies

    International Nuclear Information System (INIS)

    As part of the NERC-URGENT thematic programme, research was undertaken into the physicochemistry and bioreactivity of microscopic airborne particulate matter in south Wales. This paper reviews the collecting and characterisation methods used in the research; some of the results obtained are shown as examples. Four main collecting locations were chosen: Cardiff (urban); Port Talbot (urban/industrial); Park Slip West coal opencast pit (industrial/rural); the Black Mountains (rural/background). Collections initially used a 30-l/min Negretti PM1 filter collection system, however in the later stages of the project increased use was made of a 1100-l/min impaction system (nicknamed the super-sucker). This latter device was developed at Harvard University USA, however was adapted and optimised at Cardiff University. Methods for the extraction of PM1 off polycarbonate filters and polyurethane substrates were developed, with particular attention being paid to minimise physical or chemical changes during the extraction, and the extracts being in an appropriate state for bioreactivity assessment. Physicochemical characterisation of the PM1 included the empirical measurement of shape and size using electron microscopy and semi-automated image analysis. The determinations of the water-soluble and -insoluble chemical components were undertaken by ion chromatography and inductive coupled plasma-mass spectrometry. The bioreactivity of south Wales airborne particles is not covered by this review

  14. Reducing diesel exhaust particulates by retrofitting tractors with particulate filters; Reduktion der Dieselrussemissionen von Traktoren durch die Nachruestung mit Partikelfiltern

    Energy Technology Data Exchange (ETDEWEB)

    Landis, M.; Schiess, I.; Wolfensberger, U. [Forschungsanstalt Agroscope Reckenholz-Taenikon (Switzerland). Forschungsgruppe Agrartechnische Systeme

    2008-08-15

    Current knowledge indicates that the soot particles produced by diesel engines are among the constituents of PM-10 particulate, which are most detrimental to health. Although individual particles are so small - 0.1 mm on the average - they can penetrate the pulmonary alveoli. In Switzerland around 400 tonnes of diesel exhaust particulate are emitted by agricultural machinery every year [1]. Exhaust Gas Stage 3B will initiate more stringent mass-related particulate limits, but since it is not scheduled for introduction until 2011 and agricultural vehicles have a long service life, it seemed advisable to investigate retrofitting agricultural machinery with particulate filters. (orig.)

  15. Rheological properties of asphalts with particulate additives

    Energy Technology Data Exchange (ETDEWEB)

    Shashidhar, N. [EBA Engineering, Baltimore, MD (United States); Chollar, B.H. [Federal Highway Administration, McLean, VA (United States)

    1996-12-31

    The Superpave asphalt binder specifications are performance-based specifications for purchasing asphalt binders for the construction of roads. This means that the asphalt is characterized by fundamental material (rheological) properties that relate to the distress modes of the pavements. The distress modes addressed are primarily rutting, fatigue cracking and low temperature cracking. For example, G*/sin({delta}) is designed to predict the rutting potential of pavements, where G* is the magnitude of the complex shear modulus and 6 is the phase angle. The binder for a road that is situated in a certain climatic zone requires the binder to have a minimum G*/sin({delta}) of 2200 Pa at the highest consecutive 7-day average pavement temperature the road had experienced. Implicit in such a performance based specification is that the fundamental property, G*/sin({delta}), of the binder correlates with rutting potential of the pavement regardless of the nature of the binder. In other words, the specification is transparent to the fact that the binder can simply be an asphalt, or an asphalt modified by polymers, particulates and other materials that can form a two-phase mixture. This paper discusses the asphalt-particulate system.

  16. Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome.

    Directory of Open Access Journals (Sweden)

    Lisa Kish

    Full Text Available BACKGROUND: Particulate matter (PM is a key pollutant in ambient air that has been associated with negative health conditions in urban environments. The aim of this study was to examine the effects of orally administered PM on the gut microbiome and immune function under normal and inflammatory conditions. METHODS: Wild-type 129/SvEv mice were gavaged with Ottawa urban PM10 (EHC-93 for 7-14 days and mucosal gene expression analyzed using Ingenuity Pathways software. Intestinal permeability was measured by lactulose/mannitol excretion in urine. At sacrifice, segments of small and large intestine were cultured and cytokine secretion measured. Splenocytes were isolated and incubated with PM10 for measurement of proliferation. Long-term effects of exposure (35 days on intestinal cytokine expression were measured in wild-type and IL-10 deficient (IL-10(-/- mice. Microbial composition of stool samples was assessed using terminal restriction fragment length polymorphism. Short chain fatty acids were measured in caecum. RESULTS: Short-term treatment of wild-type mice with PM10 altered immune gene expression, enhanced pro-inflammatory cytokine secretion in the small intestine, increased gut permeability, and induced hyporesponsiveness in splenocytes. Long-term treatment of wild-type and IL-10(-/- mice increased pro-inflammatory cytokine expression in the colon and altered short chain fatty acid concentrations and microbial composition. IL-10(-/- mice had increased disease as evidenced by enhanced histological damage. CONCLUSIONS: Ingestion of airborne particulate matter alters the gut microbiome and induces acute and chronic inflammatory responses in the intestine.

  17. Advances and perspectives in bathymetry by airborne lidar

    Science.gov (United States)

    Zhou, Guoqing; Wang, Chenxi; Li, Mingyan; Wang, Yuefeng; Ye, Siqi; Han, Caiyun

    2015-12-01

    In this paper, the history of the airborne lidar and the development stages of the technology are reviewed. The basic principle of airborne lidar and the method of processing point-cloud data were discussed. At present, single point laser scanning method is widely used in bathymetric survey. Although the method has high ranging accuracy, the data processing and hardware system is too much complicated and expensive. For this reason, this paper present a kind of improved dual-frequency method for bathymetric and sea surface survey, in this method 176 units of 1064nm wavelength laser has been used by push-broom scanning and due to the airborne power limits still use 532nm wavelength single point for bathymetric survey by zigzag scanning. We establish a spatial coordinates for obtaining the WGS-84 of point cloud by using airborne POS system.

  18. Airborne Gravity: NGS' Gravity Data for CN02 (2013 & 2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Nebraska collected in 2013 & 2014 over 3 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical...

  19. Airborne Gravity: NGS' Gravity Data for EN06 (2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Maine, Canada, and the Atlantic Ocean collected in 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the...

  20. Thermal Mapping Airborne Simulator for Small Satellite Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A high performance, inexpensive, airborne simulator that will serve as the prototype for a small satellite based imaging system capable of mapping thermal anomalies...

  1. A Web-Based Airborne Remote Sensing Telemetry Server Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Web-based Airborne Remote Sensing Telemetry Server (WARSTS) is proposed to integrate UAV telemetry and web-technology into an innovative communication, command,...

  2. Airborne Magnetic Trackline and Survey Data (Vector and Scalar Observations)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA National Centers for Environmental Information (formerly National Geophysical Data Center) receive airborne magnetic survey data from US and non-US...

  3. Research on airborne infrared leakage detection of natural gas pipeline

    Science.gov (United States)

    Tan, Dongjie; Xu, Bin; Xu, Xu; Wang, Hongchao; Yu, Dongliang; Tian, Shengjie

    2011-12-01

    An airborne laser remote sensing technology is proposed to detect natural gas pipeline leakage in helicopter which carrying a detector, and the detector can detect a high spatial resolution of trace of methane on the ground. The principle of the airborne laser remote sensing system is based on tunable diode laser absorption spectroscopy (TDLAS). The system consists of an optical unit containing the laser, camera, helicopter mount, electronic unit with DGPS antenna, a notebook computer and a pilot monitor. And the system is mounted on a helicopter. The principle and the architecture of the airborne laser remote sensing system are presented. Field test experiments are carried out on West-East Natural Gas Pipeline of China, and the results show that airborne detection method is suitable for detecting gas leak of pipeline on plain, desert, hills but unfit for the area with large altitude diversification.

  4. Airborne Wide Area Imager for Wildfire Mapping and Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An autonomous airborne imaging system for earth science research, disaster response, and fire detection is proposed. The primary goal is to improve information to...

  5. Airborne Wide Area Imager for Wildfire Mapping and Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An advanced airborne imaging system for fire detection/mapping is proposed. The goal of the project is to improve control and management of wildfires in order to...

  6. Airborne Gravity: NGS' Gravity Data for ES03 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Maryland, Pennsylvania, New Jersey, West Virginia, Virginia, Delaware, and the Atlantic Ocean collected in 2013 over 1 survey. This data...

  7. Airborne Gravity: NGS' Gravity Data for EN08 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Vermont, New Hampshire, Massachusettes, Maine, and Canada collected in 2013 over 1 survey. This data set is part of the Gravity...

  8. Airborne Gravity: NGS' Gravity Data for TS01 (2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Puerto Rico and the Virgin Islands collected in 2009 over 1 survey. This data set is part of the Gravity for the Re-definition of the...

  9. Airborne Gravity: NGS' Gravity Data for ES01 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Florida, the Bahamas, and the Atlantic Ocean collected in 2013 over 1 survey. This data set is part of the Gravity for the Re-definition...

  10. Airborne Gravity: NGS' Gravity Data for CN03 (2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Nebraska collected in 2014 over one survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  11. Airborne Gravity: NGS' Gravity Data for EN05 (2012)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Minnesota, Wisconsin, and Michigan collected in 2012 over 1 survey. This data set is part of the Gravity for the Re-definition of the...

  12. Airborne Gravity: NGS' Gravity Data for CS06 (2012 & 2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2012 & 2013 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical...

  13. Airborne Gravity: NGS' Gravity Data for EN09 (2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Massachusetts, Connecticut, Rhode Island, New Hampshire, New York, and the Atlantic Ocean collected in 2012 over 1 survey. This data set...

  14. Airborne Gravity: NGS' Gravity Data for AN03 (2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 and 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical...

  15. Airborne Gravity: NGS' Gravity Data for EN04 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Michigan and Lake Huron collected in 2012 over 1 survey. This data set is part of the Gravity for the Re-definition of the American...

  16. Airborne Gravity: NGS' Gravity Data for AS02 (2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  17. Airborne Gravity: NGS' Gravity Data for EN10 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Pennsylvania, New Jersey, Connecticut and the Atlantic Ocean collected in 2013 over 1 survey. This data set is part of the...

  18. Airborne Gravity: NGS' Gravity Data for CS03 (2009)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas and Louisiana collected in 2009 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical...

  19. Airborne Gravity: NGS' Gravity Data for EN01 (2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Canada, and Lake Ontario collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the...

  20. Airborne Gravity: NGS' Gravity Data for CS01 (2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alabama and Florida collected in 2008 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical...