WorldWideScience

Sample records for airborne particulates

  1. Airborne Particulate Threat Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  2. Polarization signatures of airborne particulates

    Science.gov (United States)

    Raman, Prashant; Fuller, Kirk A.; Gregory, Don A.

    2013-07-01

    Exploratory research has been conducted with the aim of completely determining the polarization signatures of selected particulates as a function of wavelength. This may lead to a better understanding of the interaction between electromagnetic radiation and such materials, perhaps leading to the point detection of bio-aerosols present in the atmosphere. To this end, a polarimeter capable of measuring the complete Mueller matrix of highly scattering samples in transmission and reflection (with good spectral resolution from 300 to 1100 nm) has been developed. The polarization properties of Bacillus subtilis (surrogate for anthrax spore) are compared to ambient particulate matter species such as pollen, dust, and soot. Differentiating features in the polarization signatures of these samples have been identified, thus demonstrating the potential applicability of this technique for the detection of bio-aerosol in the ambient atmosphere.

  3. Characterization of iron in airborne particulate matter

    Science.gov (United States)

    Tavares, F. V. F.; Ardisson, J. D.; Rodrigues, P. C. H.; Brito, W.; Macedo, W. A. A.; Jacomino, V. M. F.

    2014-01-01

    In this work soil samples, iron ore and airborne atmospheric particulate matter (PM) in the Metropolitan Region of Belo Horizonte (MRBH), State of Minas Gerais, Brazil, are investigated with the aim of identifying if the sources of the particulate matter are of natural origin, such as, resuspension of particles from soil, or due to anthropogenic origins from mining and processing of iron ore. Samples were characterized by powder X-ray diffraction, X-ray fluorescence and 57Fe-Mössbauer spectroscopy. The results showed that soil samples studied are rich in quartz and have low contents of iron mainly iron oxide with low crystallinity. The samples of iron ore and PM have high concentration of iron, predominantly well crystallized hematite. 57Fe-Mössbauer spectroscopy confirmed the presence of similar iron oxides in samples of PM and in the samples of iron ore, indicating the anthropogenic origin in the material present in atmosphere of the study area.

  4. Evaluation of principal cannabinoids in airborne particulates

    Energy Technology Data Exchange (ETDEWEB)

    Balducci, C., E-mail: balducci@iia.cnr.it [Italian National Research Council, Institute for Atmospheric Pollution (CNR-IIA), Monterotondo Stazione (Italy); Nervegna, G.; Cecinato, A. [Italian National Research Council, Institute for Atmospheric Pollution (CNR-IIA), Monterotondo Stazione (Italy)

    2009-05-08

    The determination of delta(9)-tetrahydrocannabinol ({Delta}{sup 9}-THC), cannabidiol (CND) and cannabinol (CNB), primary active components in cannabis preparation, was carried out on airborne particulates by applying a specific procedure consisting of soot extraction by ultrasonic bath, purification by solvent partitioning, derivatization with N-(t-butyldimethylsilyl)-N-methyl-trifluoroacetamide, and separation/detection through gas chromatography coupled with tandem mass spectrometry. The optimized procedure was found suitable for measuring the three psychotropic substances at concentrations ranging from ca. 0.001 to ca. 5.0 ng cm{sup -3} of air, with recoveries always higher than 82%, accuracy >7.3% and precision >90%. Application of the procedure performed on field in Rome and Bari, Italy, demonstrated that all three compounds contaminate the air in Italian cities whereas in Algiers, Algeria, only cannabinol, the most stable in the atmosphere, exceeded the limit of quantification of the method. The relative percentages of the three cannabinoids in general reproduced those typical of the Cannabis sativa plant and were very different from those found in human blood, urine and sweat.

  5. Small-angle light scattering by airborne particulates: Environnement S.A. continuous particulate monitor

    Science.gov (United States)

    Renard, Jean-Baptiste; Thaury, Claire; Mineau, Jean-Luc; Gaubicher, Bertrand

    2010-08-01

    Airborne particulate matter may have an effect on human health. It is therefore necessary to determine and control in real time the evolution of the concentration and mass of particulates in the ambient air. These parameters can be obtained using optical methods. We propose here a new instrument, 'CPM' (continuous particulate monitor), for the measurement of light scattered by ambient particulates at small angles. This geometry allows simultaneous and separate detections of PM10, PM2.5 and PM1 fractions of airborne particulate matter, with no influence of their chemical nature and without using theoretical calculations. The ambient air is collected through a standard sampling head (PM10 inlet according to EN 12341, PM2.5 inlet according to EN 14907; or PM1, TSP inlets, standard US EPA inlets). The analysis of the first measurements demonstrates that this new instrument can detect, for each of the seven defined size ranges, real-time variations of particulate content in the ambient air. The measured concentrations (expressed in number per liter) can be converted into total mass concentrations (expressed in micrograms per cubic meter) of all fractions of airborne particulate matters sampled by the system. Periodic comparison with a beta-attenuation mass monitor (MP101M Beta Gauge Analyzer from Environnement S.A. company) allows the calculation of a calibration factor as a function of the mean particulate density that is used for this conversion. It is then possible to provide real-time relative variations of aerosol mass concentration.

  6. Health Effects of Airborne Particulate Matter Trace Elements

    Institute of Scientific and Technical Information of China (English)

    XIANG GAO; QI YU; LI-MIN CHEN

    2005-01-01

    The effects of airborne particulate matter (PM) trace elements on health are widely concerned nowadays. Many achievements have been made while many unknowns exist. This article reports the recent research progresses, describes the effects of exposure to PM trace elements on health epidemiological evidence, toxicology findings, and raises some questions for future studies.

  7. Source apportionment of airborne particulates through receptor modeling: Indian scenario

    Science.gov (United States)

    Banerjee, Tirthankar; Murari, Vishnu; Kumar, Manish; Raju, M. P.

    2015-10-01

    Airborne particulate chemistry mostly governed by associated sources and apportionment of specific sources is extremely essential to delineate explicit control strategies. The present submission initially deals with the publications (1980s-2010s) of Indian origin which report regional heterogeneities of particulate concentrations with reference to associated species. Such meta-analyses clearly indicate the presence of reservoir of both primary and secondary aerosols in different geographical regions. Further, identification of specific signatory molecules for individual source category was also evaluated in terms of their scientific merit and repeatability. Source signatures mostly resemble international profile while, in selected cases lack appropriateness. In India, source apportionment (SA) of airborne particulates was initiated way back in 1985 through factor analysis, however, principal component analysis (PCA) shares a major proportion of applications (34%) followed by enrichment factor (EF, 27%), chemical mass balance (CMB, 15%) and positive matrix factorization (PMF, 9%). Mainstream SA analyses identify earth crust and road dust resuspensions (traced by Al, Ca, Fe, Na and Mg) as a principal source (6-73%) followed by vehicular emissions (traced by Fe, Cu, Pb, Cr, Ni, Mn, Ba and Zn; 5-65%), industrial emissions (traced by Co, Cr, Zn, V, Ni, Mn, Cd; 0-60%), fuel combustion (traced by K, NH4+, SO4-, As, Te, S, Mn; 4-42%), marine aerosols (traced by Na, Mg, K; 0-15%) and biomass/refuse burning (traced by Cd, V, K, Cr, As, TC, Na, K, NH4+, NO3-, OC; 1-42%). In most of the cases, temporal variations of individual source contribution for a specific geographic region exhibit radical heterogeneity possibly due to unscientific orientation of individual tracers for specific source and well exaggerated by methodological weakness, inappropriate sample size, implications of secondary aerosols and inadequate emission inventories. Conclusively, a number of challenging

  8. Approach to predict partitioning of organic compounds from air into airborne particulate

    Institute of Scientific and Technical Information of China (English)

    SUN Cong; FENG Liu

    2005-01-01

    Based on the theoretical linear solvation energy relationship and quantum chemical descriptors computed by AM1 Hamiltonian, a new approach was developed to predict the partitioning of some organic compounds between the airborne particulate and air. It could be successfully used to study the partitioning of organic compounds from air into airborne particulate, and evaluate the potential risk of organic compounds.

  9. Airborne endotoxin in fine particulate matter in Beijing

    Science.gov (United States)

    Guan, Tianjia; Yao, Maosheng; Wang, Junxia; Fang, Yanhua; Hu, Songhe; Wang, Yan; Dutta, Anindita; Yang, Junnan; Wu, Yusheng; Hu, Min; Zhu, Tong

    2014-11-01

    Endotoxin is an important biological component of particulate matter (PM) which, upon inhalation, can induce adverse health effects, and also possibly complicate the diseases in combination with other pollutants. From 1 March 2012 to 27 February 2013 we collected air samples using quartz filters daily for the quantification of airborne endotoxin and also fine PM (PM2.5) in Beijing, China. The geometric means for endotoxin concentration and the fraction of endotoxin in PM were 0.65 EU/m3 (range: 0.10-75.02) and 10.25 EU/mg PM2.5 (range: 0.38-1627.29), respectively. The endotoxin concentrations were shown to vary greatly with seasons, typically with high values in the spring and winter seasons. Temperature and relative humidity, as well as concentrations of sulfur dioxide and nitrogen oxides were found to be significantly correlated with airborne endotoxin concentrations (p endotoxin concentrations and natural sources of Na+, K+, Mg2+, and F-, while negative correlations were observed between endotoxin concentrations and anthropogenic sources of P, Co, Zn, As, and Tl. Oxidative potential analysis revealed that endotoxin concentrations were positively correlated with reactive oxygen species (ROS), but not dithiothreitol (DTT) of PM. This study provided the first continuous time series of airborne endotoxin concentrations in Beijing, and identifies its potential associations with atmospheric factors. The information developed here can assist in the assessment of health effects of air pollution in Beijing.

  10. ASSESSMENT OF BAGGING OPERATORS EXPOSURE TO WITH PVC AIRBORNE PARTICULATES

    Directory of Open Access Journals (Sweden)

    H. Asilian, M. Nasseri Nejad, S. B. Mortazavi, M. J. Jafari, A. Khavanin, A. R. Dehdashti

    2008-07-01

    Full Text Available Dust consists of tiny solid particles carried by air currents. These particles are formed by many different processes. One of these processes is polymerization of inert plastic such as Polyvinyl Chloride production plant. According to the Occupational Health and Safety Assessment Series requirements, section 4.4.6, occupational health and safety risks must be defined and controlled where needed. This field study was conducted to evaluate the occupational exposure of packaging operators to airborne polyvinyl chloride dust in order to health risk assessment and recommend feasible controlling methods. The mass concentration of polyvinyl chloride particulate was measured in two fractions according to the particle size that expressed as total and respirable particulates. The Air Sampling Methods, Methods for the Determination of Hazardous Substances 14/3, of Health and Safety Executive were used as a standard sampling protocol. The average mass concentrations for respirable and total particulates were measured 3.54±0.3 mg/m3 and 11.89±0.8 mg/m3 respectively. Also health risks of studied condition were estimated as significant level, category one, therefore the risk must be reduced below the standard level. According to the work requirements to reduce the emission rate and mitigate the health risk exposure, a local exhaust ventilation system design was recommended for bag-filters of hopper tank.

  11. Health effects of particulate air pollution and airborne desert dust

    Science.gov (United States)

    Lelieveld, J.; Pozzer, A.; Giannadaki, D.; Fnais, M.

    2013-12-01

    Air pollution by fine particulate matter (PM2.5) has increased strongly with industrialization and urbanization. In the past decades this increase has taken place at a particularly high pace in South and East Asia. We estimate the premature mortality and the years of human life lost (YLL) caused by anthropogenic PM2.5 and airborne desert dust (DU2.5) on regional and national scales (Giannadaki et al., 2013; Lelieveld et al., 2013). This is based on high-resolution global model calculations that resolve urban and industrial regions in relatively great detail. We apply an epidemiological health impact function and find that especially in large countries with extensive suburban and rural populations, air pollution-induced mortality rates have been underestimated given that previous studies largely focused on the urban environment. We calculate a global premature mortality by anthropogenic aerosols of 2.2 million/year (YLL ≈ 16 million/year) due to lung cancer and cardiopulmonary disease. High mortality rates by PM2.5 are found in China, India, Bangladesh, Pakistan and Indonesia. Desert dust DU2.5 aerosols add about 0.4 million/year (YLL ≈ 3.6 million/year). Particularly significant mortality rates by DU2.5 occur in Pakistan, China and India. The estimated global mean per capita mortality caused by airborne particulates is about 0.1%/year (about two thirds of that caused by tobacco smoking). We show that the highest premature mortality rates are found in the Southeast Asia and Western Pacific regions (about 25% and 46% of the global rate, respectively) where more than a dozen of the most highly polluted megacities are located. References: Giannadaki, D., A. Pozzer, and J. Lelieveld, Modeled global effects of airborne desert dust on air quality and premature mortality, Atmos. Chem. Phys. Discuss. (submitted), 2013. Lelieveld, J., C. Barlas, D. Giannadaki, and A. Pozzer, Model calculated global, regional and megacity premature mortality due to air pollution by ozone

  12. Transport of airborne particulate matters originating from Mentougou, Beijing, China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this study, a coupled regional air quality modeling system is applied to investigate the time spatial variations in airborne particulate matters (PM10), originating from Mentougou to Beijing municipal area in the period of April 1-7, 2004, and the influences of complex terrain and meteorological conditions upon boundary layer structure and PMio concentration distributions. An intercomparison of the performance with CALPUFF against the observed data is presented and an examination of scatter plots is provided. The statistics show that the correlation coefficient and STD between the modeled and observed data are 0.86 and 0.03, respectively. Analysis of model results illustrates that the pollutants emitted from Mentougou can be transported to Beijing municipal area along certain transport pathways, and PMio concentration distributions show heterogeneity characteristics. Contributions of the Mentougou sources to the PMio concentrations in Beijing municipal area are up to 0.1-15 μg/m3.

  13. Airborne particulate soiling of terrestrial photovoltaic modules and cover materials

    Science.gov (United States)

    Hoffman, A. R.; Maag, C. R.

    1980-01-01

    Results are presented for the first phase of a photovoltaic-module soiling study that was carried out with NASA participation to investigate the problem of the electrical performance degradation of flat-plate photovoltaic modules exposed at outdoor sites that is due to the accumulation of airborne particulates on sensitive optical surfaces. The results were obtained in both field and laboratory soiling experiments, as well as in materials field experiments using candidate encapsulants and top covers. It is concluded that: (1) the electrical performance degradation shows a significant time and site dependence, ranging from 2% to 60% power loss; (2) the rate of particulate accumulation appears to be largely material independent when natural removal processes do not dominate; (3) the effectiveness of natural removal processes, especially rain, is strongly material dependent; (4) top-cover materials of glass and plexiglass retain fewer particles than silicone rubber; and (5) high module voltages relative to ground do not appear to affect the rate of dirt accumulation on modules.

  14. Biomonitoring of toxic compounds of airborne particulate matter in urban and industriel areas

    DEFF Research Database (Denmark)

    Klumpp, Andreas; Ro-Poulsen, Helge

    2010-01-01

    The toxicity and ecotoxicity of airborne particulate matter is determined by its physical features, but also by its chemical composition. The standardised exposure of accumulative bioindicator plants is suggested as an efficient and reliable tool to assess and monitor effects of particulate matter...

  15. Toxicity to chicken embryos of organic extracts from airborne particulates separated into five sizes

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, H.

    1988-07-01

    The chicken embryo assay has been used for research on the toxicity of complex extracts derived from different environmental sources, as well as of individual compounds. However, only a few studies have been made on the toxicological effects of extracts derived from airborne particulate matter in chicken embryo. These studies showed that the toxic effect was due to the polycyclic aromatic hydrocarbons (PAHs) in the particles, although their structure and quantity were the factors determining the extent of the toxicity. Airborne particulate matter is composed of particles of different sizes, which can be separated into five classes according to their size by an Andersen high-volume sampler. Each class contained many kinds of compounds such as PAHs. In this study, airborne particulate matter was extracted according to particle size, the extracts analyzed for PAHs, and tested for embryotoxicity.

  16. Exposure to mutagenic airborne particulate in a rubber manufacturing plant.

    Science.gov (United States)

    Fracasso, M E; Franceschetti, P; Mossini, E; Tieghi, S; Perbellini, L; Romeo, L

    1999-04-26

    Epidemiological studies conducted in the 1980s revealed that people working in the rubber manufacturing industry had an increased risk of cancer. Even now, workers employed in rubber processing are still at risk despite the measures adopted to improve their working conditions. The aim of the study was to evaluate the presence of a genotoxic risk in a rubber industry and to verify whether or not it was possible to locate the most dangerous position among the different rubber-working processes. The mutagenic activity of airborne particulate was evaluated in samples collected in the mixing department of a rubber manufacturing plant. Ambient air samples were taken over 3-h period in two stable positions near the mixing (Banbury mixer) and calendering areas. Personal air samples were taken over 2-h period during a normal workday from five workers employed in different rubber processing operations (mixing, weighing, calendering, compounding and extruding). The mutagenic activity of the air samples was determined by plate incorporation assay using Salmonella typhimurium strains (TA 98, TA 98NR, TA 100, YG 1021) with and without metabolic activation. Polycyclic aromatic hydrocarbon (PAH) concentrations were determined by high-performance liquid chromatography (HPLC); the presence of other presumable contaminants were carried out by gas chromatography-mass spectrometry (GC-MS). The results showed substantial direct and indirect frameshift mutagenicity in both ambient and personal samples. No mutagenic activity was present in S. typhimurium TA 100, except in the personal sample from a worker employed on the Banbury mixer. HPLC analysis revealed very low concentrations of PAHs. GC-MS analysis showed the presence of compounds such as azulene derivative, 1,2-dihydro-2,2,4-trimethylquinoline, N-methyl N-phenylbenzenamine, diphenylamine, bis(2-ethylhexyl)phthalate and bis(methyl-propyl)phthalate. We conclude that the high levels of mutagenic activity in ambiental and personal

  17. Evaluation of airborne particulate matter pollution in Kenitra City Morocco

    OpenAIRE

    2013-01-01

    Two size fractions of atmospheric particulate matter < 2.5 µm and 2.5-10 µm were collected in Kenitra City from February 2007 to February 2008. The sampling was done using a Gent Stacked sampler on nuclepore polycarbonate filters and the collected filters were analyzed using Total Reflection X-Ray Fluorescence (TXRF) and Atomic Absorption Spectroscopy (AAS). The particulate matter trends show higher concentrations during the summer as compared to other seasons. The highest concentrations were...

  18. Development of analytical methods for polycyclic aromatic hydrocarbons (PAHs) in airborne particulates:A review

    Institute of Scientific and Technical Information of China (English)

    LIU Li-bin; LIU Yan; LIN Jin-ming; TANG Ning; HAYAKAWA Kazuichi; MAEDA Tsuneaki

    2007-01-01

    In the present work,the different sample collection, pretreatment and analytical methods for polycyclic aromatic hydrocarbons (PAHs) in airborne particulates is systematacially reviewed, and the applications of these pretreatment and analytical methods for PAHs are compared in detail. Some comments on the future expectation are also presented.

  19. Evaluation of airborne particulate matter pollution in Kenitra City, Morocco

    Directory of Open Access Journals (Sweden)

    Abdelfettah Benchrif

    2013-04-01

    Full Text Available Two size fractions of atmospheric particulate matter < 2.5 µm and 2.5-10 µm were collected in Kenitra City from February 2007 to February 2008. The sampling was done using a Gent Stacked sampler on nuclepore polycarbonate filters and the collected filters were analyzed using Total Reflection X-Ray Fluorescence (TXRF and Atomic Absorption Spectroscopy (AAS. The particulate matter trends show higher concentrations during the summer as compared to other seasons. The highest concentrations were obtained for Ca in coarse particles and Fe for fine particles. However, the lowest concentrations were observed for Cd in both particulate sizes. The principal component analysis (PCA based on multivariate study enabled the identification of soil, road dust and traffic emissions as common sources for coarse and fine particles.

  20. Assessment of inhalation dose sensitivity by physicochemical properties of airborne particulates containing naturally occurring radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Si Young; Choi, Cheol Kyu; Kim, Yong Geon; Choi, Won Chul; Kim, Kwang Pyo [Kyung Hee University, Seoul (Korea, Republic of)

    2015-12-15

    Facilities processing raw materials containing naturally occurring radioactive materials (NORM) may give rise to enhanced radiation dose to workers due to chronic inhalation of airborne particulates. Internal radiation dose due to particulate inhalation varies depending on particulate properties, including size, shape, density, and absorption type. The objective of the present study was to assess inhalation dose sensitivity to physicochemical properties of airborne particulates. Committed effective doses to workers resulting from inhalation of airborne particulates were calculated based on International Commission on Radiological Protection 66 human respiratory tract model. Inhalation dose generally increased with decreasing particulate size. Committed effective doses due to inhalation of 0.01μm sized particulates were higher than doses due to 100μm sized particulates by factors of about 100 and 50 for {sup 238}U and {sup 230}Th, respectively. Inhalation dose increased with decreasing shape factor. Shape factors of 1 and 2 resulted in dose difference by about 18 %. Inhalation dose increased with particulate mass density. Particulate mass densities of 11 g·cm{sup -3} and 0.7 g·cm{sup -3} resulted in dose difference by about 60 %. For {sup 238}U, inhalation doses were higher for absorption type of S, M, and F in that sequence. Committed effective dose for absorption type S of {sup 238}U was about 9 times higher than dose for absorption F. For {sup 230}Th, inhalation doses were higher for absorption type of F, M, and S in that sequence. Committed effective dose for absorption type F of {sup 230}Th was about 16 times higher than dose for absorption S. Consequently, use of default values for particulate properties without consideration of site specific physiochemical properties may potentially skew radiation dose estimates to unrealistic values up to 1-2 orders of magnitude. For this reason, it is highly recommended to consider site specific working materials and

  1. Mineralogical characterization of airborne individual particulates in Beijing PM10

    Institute of Scientific and Technical Information of China (English)

    LU Sen-lin; SHAO Long-yi; WU Ming-hong; JIAO Zheng

    2006-01-01

    This work mainly focuses on the mineralogical study of particulate matter(PM10) in Beijing. Samples were collected on polycarbonate filter from April, 2002 to March, 2003 in Beijing urban area. Scanning electronic microscopy coupled with energy dispersive X-ray(SEM/EDX) was used to investigate individual mineral particles in Beijing PM10. 1454 individual mineral particulates from 48 samples were analysed by SEM/EDX. The results revealed that mineral particulates were complex and heterogeneous. 38kinds of minerals in PM10 were identified. The clay minerals, of annual average percentage of 30.1% , were the main composition among the identified minerals, and illite/smectite was the main composition in clay minerals, reaching up to 35%. Annual average percentage of quartz, calcite, compound particulates, carbonates were 13.5%, 10.9%, 11.95%, 10.31%, respectively. Annual average percentage less than 10% were gypsum, feldspar, dolomite, and so on. Fluorite, apatite, halite, barite and chloridize zinc (ZnCl2) were firstly identified in Beijing PM10. Sulfurization was found on surface of mineral particles, suggested extensive atmospheric reaction in air during summer.

  2. Fe, Ni and Zn speciation, in airborne particulate matter

    Science.gov (United States)

    Thiodjio Sendja, Bridinette; Aquilanti, Giuliana; Vassura, Ivano; Giorgetti, Marco

    2016-05-01

    The study of elemental speciation in atmospheric particulate matter is important for the assessment of the source of the particle as well for the evaluation of its toxicity. XANES data at Fe, Ni, and Zn K-edges are recorded on a sample of urban dust (from the Rimini area of Emilia Romagna region, Italy) deposited on a filter and on the NIST standard reference material 1648. Using linear combination fitting we give an indication of the chemical species of the three metals present in the samples.

  3. PM 2.5 Airborne Particulates Near Frac Sand Operations.

    Science.gov (United States)

    Walters, Kristin; Jacobson, Jeron; Kroening, Zachary; Pierce, Crispin

    2015-11-01

    The rapid growth of hydraulic fracturing for oil and gas extraction in the U.S. has led to 135 active "frac" sand mines, processing plants, and rail transfer stations in Wisconsin. Potential environmental health risks include increased truck traffic, noise, ecosystem loss, and groundwater, light, and air pollution. Emitted air contaminants include fine particulate matter (PM2.5) and respirable crystalline silica. Inhalation of fine dust particles causes increased mortality, cardiovascular disease, lung disease, and lung cancer. In the authors' pilot study, use of a filter-based ambient particulate monitor found PM2.5 levels of 5.82-50.8 µg/m3 in six 24-hour samples around frac sand mines and processing sites. Enforcement of the existing U.S. Environmental Protection Agency annual PM2.5 standard of 12 µg/m3 is likely to protect the public from silica exposure risks as well. PM2.5 monitoring around frac sand sites is needed to ensure regulatory compliance, inform nearby communities, and protect public health.

  4. Characterization of cytotoxicity of airborne particulates from urban areas of Lahore

    Institute of Scientific and Technical Information of China (English)

    Badar Ghauri; M.Mansha; Christian Khalil

    2012-01-01

    A number of species (organic and inorganic) in airborne particulates cause the toxicity to living being.The potential of in vitro test methods were explored for toxicity assessment of trace toxic elements (inorganic species) present in ambient air on human being (lungs).A year long sampling of airborne particles (PM2.5) was carried (April 2008 to March 2009) in Lahore,Pakistan.A total of thirty nine samples were collected on 47 mm Zefluor Teflon filter membranes and each was analysed to characterize for the elements:Sb,As,Be,Cd,Cr,Co,Pb,Mn,Hg using ICP-MS in water extract and total acid digestate.The samples cytotoxicity was also established using lung derived cells and MTS colorimetric assays.This generated dose response curves and IC50 values for the elemental mixtures identified on the Teflon filter membrane.The results indicated that even at low concentrations airborne elemental mixtures displayed an additive toxic effect.

  5. Qualitative and quantitative determination of water in airborne particulate matter

    Directory of Open Access Journals (Sweden)

    S. Canepari

    2012-10-01

    Full Text Available This paper describes the optimization and validation of a new simple method for the quantitative determination of water in atmospheric particulate matter (PM. The analyses are performed by using a coulometric Karl-Fisher system equipped with a controlled heating device; different water contributions are separated by the application of an optimized thermal ramp (three heating steps: 50–120 °C, 120–180 °C, 180–250 °C.

    The analytical performance of the method was verified by using standard materials containing 5.55% and 1% by weight of water. The recovery was greater than 95%; the detection limit was about 20 μg. The method was then applied to NIST reference materials (NIST1649a, urban particulate matter and to real PM10 samples collected in different geographical areas. In all cases the repeatability was satisfactory (10–15%.

    When analyzing the reference material, the separation of four different types of water was obtained. In real PM10 samples the amount of water and its thermal profile differed as a function of the chemical composition of the dust. Mass percentages of 3–4% of water were obtained in most samples, but values up to about 15% were reached in areas where the chemical composition of PM is dominated by secondary inorganic ions and organic matter. High percentages of water were also observed in areas where PM is characterized by the presence of desert dust.

    A possible identification of the quality of water released from the samples was tried by applying the method to some hygroscopic compounds that are likely contained in PM (pure SiO2, Al2O3, ammonium salts, carbohydrates and dicarboxylic acids and by comparing the results with those obtained from field samples.

  6. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Buggiano, Valeria; Petrillo, Ezequiel; Alló, Mariano; Lafaille, Celina [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); Redal, María Ana [Instituto de Ciencias Básicas y Medicina Experimental, Hospital Italiano de Buenos Aires (Argentina); Alghamdi, Mansour A. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Khoder, Mamdouh I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah (Saudi Arabia); Shamy, Magdy [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Muñoz, Manuel J., E-mail: mmunoz@fbmc.fcen.uba.ar [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); and others

    2015-07-15

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5′ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: • Airborne particulate matter (PM10) affects alternative splicing in colon cells. • PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. • This variant has a longer 5′ unstranslated region and introduces an upstream AUG. • By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. • BMP-4 downregulation was previously reported to be associated to colon cancer.

  7. Characterization of airborne particulates in Bangkok urban area by neutron activation analysis.

    Science.gov (United States)

    Nouchpramool, S; Sumitra, T; Leenanuphunt, V

    1999-01-01

    Samples of airborne particulates were collected in a residential area and in an area near a busy highway in Bangkok during the period from January 1997 to May 1998. A stacked filter system was used for the former site and a Partisol 2000 was used for the latter site. Both 2.5 microns and 10-micron particulates were collected every week. The total suspended particulate matters were also collected at the latter site. The samples were analyzed by neutron activation analysis utilizing neutron flux from a 2-MW TRIGA MARK III research reactor. The elements most frequently detected in the airborne particulates were Al, As, Br, Ca, Ce, Cl, Co, Cr, Cs, Fe, I, K, La, Mg, Mn, Na, Rb, Sb, Sc, Sm, Th, Ti, V, and Zn. The enrichment factor and factor analysis were used to investigate trends, sources, and origin of the atmospheric aerosols. Anthropogenic elements in road dust, construction dust, motor vehicles emission, and other combustion components were identified. A comparative study of data between both sites was performed and it was found that the mass concentration in the area close to the highway was about three times higher than in the residential area.

  8. Production of potentially hazardous respirable silica airborne particulate from the burning of sugarcane

    Science.gov (United States)

    Le Blond, Jennifer S.; Williamson, Ben J.; Horwell, Claire J.; Monro, Alex K.; Kirk, Caroline A.; Oppenheimer, Clive

    In some areas of the world where agricultural burning is practised, the airborne particles produced have been linked to respiratory disease in humans. Here, we investigate the abundance and form of silica (SiO 2) minerals found within ash and aerosol produced by the experimental burning of sugarcane. Samples of sugarcane leaf were incinerated over a range of temperatures, time scales and airflow conditions, the latter to investigate the effects of wind and updrafts during natural fires. The silica content of the residual ash (from still air simulations) was measured using an improved wet chemical methodology, described here. This indicated that the release of silica from the plant material into the atmosphere increases with increasing temperature of combustion. Airborne particulate, sampled using air-pump-filter apparatus, was characterised using scanning electron microscopy (SEM) with automated image and elemental analysis. For airborne particulate formed at 1100 °C (with airflow), 17% of the particles are in the respirable size fraction (release of cristobalite to the atmosphere (as sampled on filters). This pilot study shows that potentially toxic particles could be released during sugarcane burning and reinforces the need for further study into the emissions and re-suspension of ash from the burning of biomass.

  9. Indoor and outdoor measurements of vertical concentration profiles of airborne particulate matter.

    Science.gov (United States)

    Micallef, A; Deuchar, C N; Colls, J J

    1998-05-04

    Vertical concentration profiles of various particle size ranges of airborne particulate matter were measured from ground level up to 3 m, in outdoor and indoor environments. Indoor measurements were carried out in an electronics workshop, while two outdoor environments were chosen: a street canyon cutting across a town and an open field situated in a semi-rural environment. The novel measurement technique employed in this experimental work, which can also be used to determine vertical concentration gradients of pollutants other than airborne particles in different environments, is given particular attention. Analyses of the collected data for the environments considered are presented and some conclusions and plausible explanations of the profiles are discussed. The workshop and street canyon environments exhibited larger concentrations and vertical concentration gradients as compared to the sports field. This indicates that people breathing at different heights are subjected to different concentrations of airborne particulate matter, which has implications for sitting air pollution monitors intended for protection of public health and estimation of human exposure.

  10. Standard Practice for Sampling Airborne Particulate Contamination in Cleanrooms for Handling Aerospace Fluids

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This practice covers a procedure for sampling airborne particulate matter larger than 5 m in size. The method is designed to be used in specific areas, commonly called cleanrooms in the aerospace industry, where aerospace fluids are handled. Note 1 Practice F 50 is an alternative procedure. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  11. Characterization of airborne particulate matter in the metropolitan region of Belo Horizonte

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Fernanda V.F.; Ardisson, Jose Domingos; Rodrigues, Paulo Cesar H.; Brito, Walter de; Macedo, Waldemar Augusto A.; Jacomino, Vanusa Maria F., E-mail: ferufv@yahoo.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    In this work soil samples, iron ore and airborne atmospheric particulate matter (PM) in the Metropolitan Region of Belo Horizonte (MRBH), State of Minas Gerais, Brazil, are investigated with the aim of identifying if the sources of the particulate matter are of natural origin, such as, resuspension of particles from soil, or due to anthropogenic origins from mining and processing of iron ore. Samples were characterized by powder X-ray diffraction, X-ray fluorescence and {sup 57}Fe-Moessbauer spectroscopy. The results showed that soil samples studied are rich in quartz and have low contents of iron mainly iron oxide with low crystallinity. The samples of iron ore and PM have high concentration of iron, predominantly well crystallized hematite. {sup 57}Fe-Moessbauer spectroscopy confirmed the presence of similar iron oxides in samples of PM and in the samples of iron ore, indicating the anthropogenic origin in the material present in atmosphere of the study area. (author)

  12. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from

  13. Characterization and source identification of trace metals in airborne particulates of Bangkok, Thailand.

    Science.gov (United States)

    Rungratanaubon, Thitima; Wangwongwatana, Supat; Panich, Noppaporn

    2008-10-01

    Airborne particulate samples were collected in Bangkok, Thailand, using high-volume air samplers from March 2006 to March 2007. The sampling sites were the Huay-Khwang Community Housing (HCH) and the Ratburana Post Office (RPO), represented as residential and industrial areas, respectively. The samples collected were analyzed by inductively coupled plasma-atomic emission spectrometry (ICP-AES) for elemental analysis. The study reveals that total suspended particulate (TSP) concentrations are higher in the RPO (144.47 microg/m(3)) than at the HCH (110.93 microg/m(3)) site. The results also indicate that most of the metals were highest in winter and lowest in the rainy season. Na, Al, K, and Fe are the elements mostly found in the study. High-correlation coefficients of Al-K, K-Zn, and Al-Zn are observed at the HCH (R=-0.99, -0.97, and -0.97) and the RPO (R=-0.94, -0.92, and -0.83), respectively. Most of the measured metallic elements show weak correlation with meteorological parameters. Principal component analysis (PCA) indicates that soil, construction, vehicular emission, and biomass burning are the major pollutant sources of both sampling site. The HCH site is influenced by the domestic activities like vehicular emission, construction, and biomass burning. The sources of airborne metals found in the RPO come from both domestic and industrial activities.

  14. Morphology, chemical composition, and bacterial concentration of airborne particulate matter in rabbit farms

    Directory of Open Access Journals (Sweden)

    Elisa Adell

    2012-12-01

    Full Text Available Livestock houses are major sources of airborne particulate matter (PM, which can originate from manure, feed, feathers, skin and bedding and may contain and transport microorganisms. Improved knowledge of particle size, morphology, chemical and microbiological composition of PM in livestock houses can help identify major sources of PM and contribute to the development of appropriate source-specific reduction techniques. In rabbit production systems, however, there is limited information on specific particle characteristics. The objective of this study was to characterise airborne PM in rabbit farms in terms of morphology, chemical compositions and bacterial concentration in different size fractions. Size-fractioned PM was sampled in the air of 2 rabbit farms, 1 for fattening rabbits and 1 for reproductive does, using a virtual cascade impactor, which simultaneously collected total suspended PM (TSP, PM10 and PM2.5 size fractions. Airborne PM samples were examined by light microscopy and scanning electron microscopy combined with energy dispersive X-ray analysis. Representative samples from potential sources of PM were also collected and examined. Additionally, a methodology to extract bacteria from the collected samples of airborne PM was developed to determine the bacterial concentration per PM size fraction. Results showed that airborne PM in rabbit farms is highly complex in particle morphology, especially in size. Broken skin flakes, disintegrated particles from feed or faecal material from mechanical fracture are the main sources of airborne PM in rabbit farms. Major elements found in rabbit airborne PM were S, Ca, Mg, Na and Cl. Bacterial concentrations ranged from 1.7×104 to 1.6×106 colony forming units (CFU/m3 (TSP; from 3.6×103 to 3.0×104 CFU/m3 (PM10; and from 3.1×103 to 1.6×104 CFU/m3 (PM2.5. Our results will improve the knowledge on essential particle characteristics necessary to understand PM’s origin in rabbit farms and

  15. Effect of microclimate on particulate matter, airborne bacteria, and odorous compounds in swine nursery houses.

    Science.gov (United States)

    Yao, H Q; Choi, H L; Lee, J H; Suresh, A; Zhu, K

    2010-11-01

    Nursery pigs are vulnerable to environmental risks associated with the microclimate and aerial contaminants. This study was carried out to assess the effect of microclimate (i.e., temperature, relative humidity, and air speed) on the quantity of particulate matter (PM), airborne bacteria, and odorants in nursery houses. Data were collected from 15 farms in different locations throughout South Korea during 4 seasons; daily sampling times were from 1000 to 1100 h in the morning. A nonparametric correlation analysis revealed correlations between microclimate variables and airborne contaminants in different seasons. Over the entire year, negative correlations were observed between temperature, air speed, and some odorous compounds (P houses. On the other hand, because of the sensitivity of coliform bacteria to temperature, positive correlations were observed between temperature and total coliform and Escherichia coli counts (P houses, the relationships between the microclimate and airborne contaminants established in this study could be used to reduce those contaminants by controlling microclimate variables. The correlations established in the current study could also be helpful in establishing guidelines for good management practices in nursery houses.

  16. Gamma-analysis of airborne particulates sampled in Youzhno-Sakhalinsk town at March - April 2011

    CERN Document Server

    Tertyshnik, E G; Andreev, F A; Artemyev, G B

    2012-01-01

    The experience of discovery of the radioactive products which have released into atmosphere of Sakhalin region from Fukushima Daiichi accident is presented. Sampling of airborne particulates and atmosphere fallout was carried out by means of the air ventilation set and horizontal gauze planchs, respectively. The HPGe detector was used for gamma analyses of the airborne samples. Since 23 March we confidently measured 131I in the airborne samples, after 03.04.2011 we also registered a rise of activity 137Cs and 134Cs. 132Te and 132I were discovered in ashen sample of the planch, which had exposed in Youzhno-Kurilk from 14 to 17 March. The effect of the pairs production when in the samples 208Tl presence, which emits gamma-quanta of 2615 keV, causes a rise in apparatus spectra of the peak corresponding to energy 1593 keV, which could be in error ascribed to 140La. It had been experimentally shown that the systematic reduction of 134Cs content in measuring samples due to effect of gamma - gamma coincidence did no...

  17. Honey Bees (Apis mellifera, L. as Active Samplers of Airborne Particulate Matter.

    Directory of Open Access Journals (Sweden)

    Ilaria Negri

    Full Text Available Honey bees (Apis mellifera L. are bioindicators of environmental pollution levels. During their wide-ranging foraging activity, these hymenopterans are exposed to pollutants, thus becoming a useful tool to trace the environmental contaminants as heavy metals, pesticides, radionuclides and volatile organic compounds. In the present work we demonstrate that bees can also be used as active samplers of airborne particulate matter. Worker bees were collected from hives located in a polluted postmining area in South West Sardinia (Italy that is also exposed to dust emissions from industrial plants. The area is included in an official list of sites of national interest for environmental remediation, and has been characterized for the effects of pollutants on the health of the resident population. The head, wings, hind legs and alimentary canal of the bees were investigated with Scanning Electron Microscopy coupled with X-ray spectroscopy (SEM-EDX. The analyses pointed to specific morphological and chemical features of the particulate, and resulted into the identification of three categories of particles: industry-, postmining-, and soil-derived. With the exception of the gut, all the analyzed body districts displayed inorganic particles, mostly concentrated in specific areas of the body (i.e. along the costal margin of the fore wings, the medial plane of the head, and the inner surface of the hind legs. The role of both past mining activities and the industrial activity close to the study area as sources of the particulate matter is also discussed. We conclude that honey bees are able to collect samples of the main airborne particles emitted from different sources, therefore could be an ideal tool for monitoring such a kind of pollutants.

  18. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Erin N., E-mail: Erin.Haynes@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Chen, Aimin, E-mail: Aimin.Chen@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Ryan, Patrick, E-mail: Patrick.Ryan@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Succop, Paul, E-mail: Paul.Succop@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Wright, John, E-mail: John.Wright@uc.edu [College of Education, Criminal Justice, and Human Services, University of Cincinnati, Cincinnati, OH 45221 (United States); Dietrich, Kim N., E-mail: Kim.Dietrich@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States)

    2011-11-15

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter ({<=}2.5 {mu}m) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban-rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003-2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3-4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter {<=}2.5 and {<=}10 {mu}m emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical

  19. Analytical Methods INAA and PIXE Applied to Characterization of Airborne Particulate Matter in Bandung, Indonesia

    Directory of Open Access Journals (Sweden)

    D.D. Lestiani

    2011-08-01

    Full Text Available Urbanization and industrial growth have deteriorated air quality and are major cause to air pollution. Air pollution through fine and ultra-fine particles is a serious threat to human health. The source of air pollution must be known quantitatively by elemental characterization, in order to design the appropriate air quality management. The suitable methods for analysis the airborne particulate matter such as nuclear analytical techniques are hardly needed to solve the air pollution problem. The objectives of this study are to apply the nuclear analytical techniques to airborne particulate samples collected in Bandung, to assess the accuracy and to ensure the reliable of analytical results through the comparison of instrumental neutron activation analysis (INAA and particles induced X-ray emission (PIXE. Particle samples in the PM2.5 and PM2.5-10 ranges have been collected in Bandung twice a week for 24 hours using a Gent stacked filter unit. The result showed that generally there was a systematic difference between INAA and PIXE results, which the values obtained by PIXE were lower than values determined by INAA. INAA is generally more sensitive and reliable than PIXE for Na, Al, Cl, V, Mn, Fe, Br and I, therefore INAA data are preffered, while PIXE usually gives better precision than INAA for Mg, K, Ca, Ti and Zn. Nevertheless, both techniques provide reliable results and complement to each other. INAA is still a prospective method, while PIXE with the special capabilities is a promising tool that could contribute and complement the lack of NAA in determination of lead, sulphur and silicon. The combination of INAA and PIXE can advantageously be used in air pollution studies to extend the number of important elements measured as key elements in source apportionment.

  20. Impact of banning of two-stroke engines on airborne particulate matter concentrations in Dhaka, Bangladesh.

    Science.gov (United States)

    Begum, Bilkis A; Biswas, Swapan K; Hopke, Philip K

    2006-01-01

    Vehicular air pollution is common in growing metropolitan areas throughout the world. Vehicular emissions of fine particles are particularly harmful because they occur near ground level, close to where people live and work. Two-stroke engines represented an important contribution to the motor vehicle emissions where they constitute approximately half of the total vehicle fleet in Dhaka city. Two-stroke engines have lower fuel efficiency than four-stroke engines, and they emit as much of an order of magnitude and more particulate matter (PM) than four-stroke engines of similar size. To eliminate their impact on air quality, the government of Bangladesh promulgated an order banning all two-stroke engines from the roads in Dhaka starting on December 31, 2002. The effect of the banning of two-stroke engines on airborne PM was studied at the Farm Gate air quality-monitoring station in Dhaka (capital of Bangladesh), a hot spot with very high-pollutant concentrations because of its proximity to major roadways. The samples were collected using a "Gent" stacked filter unit in two fractions of 0-2.2 microm and 2.2-10 microm sizes. Samples of fine and coarse fractions of airborne PM collected from 2000 to 2004 were studied. It has been found that the fine PM and black carbon concentrations decreased from the previous years because of the banning of two-stroke engine baby taxies.

  1. Real-world exposure of airborne particulate matter triggers oxidative stress in an animal model

    Science.gov (United States)

    Wan, Guohui; Rajagopalan, Sanjay; Sun, Qinghua; Zhang, Kezhong

    2010-01-01

    Epidemiological studies have shown a strong link between air pollution and the increase of cardio-pulmonary mortality and morbidity. In particular, inhaled airborne particulate matter (PM) exposure is closely associated with the pathogenesis of air pollution-induced systemic diseases. In this study, we exposed C57BIV6 mice to environmentally relevant PM in fine and ultra fine ranges (diameter < 2.5 μm, PM2.5) using a “real-world” airborne PM exposure system. We investigated the pathophysiologic impact of PM2.5 exposure in the animal model and in cultured primary pulmonary macrophages. We demonstrated that PM2.5 exposure increased the production of reactive oxygen species (ROS) in blood vessels in vivo. Furthermore, in vitro PM2.5 exposure experiment suggested that PM2.5 could trigger oxidative stress response, reflected by an increased expression of the anti-oxidative stress enzymes superoxide dismutase-1 (SOD-1) and heme oxygenase-1(HO-1), in mouse primary macrophages. Together, the results obtained through our “real-world” PM exposure approach demonstrated the pathophysiologic effect of ambient PM2.5 exposure on triggering oxidative stress in the specialized organ and cell type of an animal model. Our results and approach will be informative for the research in air pollution-associated physiology and pathology. PMID:21383899

  2. Diversity and Composition of Airborne Fungal Community Associated with Particulate Matters in Beijing during Haze and Non-haze Days.

    Science.gov (United States)

    Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2016-01-01

    To assess the diversity and composition of airborne fungi associated with particulate matters (PMs) in Beijing, China, a total of 81 PM samples were collected, which were derived from PM2.5, PM10 fractions, and total suspended particles during haze and non-haze days. The airborne fungal community in these samples was analyzed using the Illumina Miseq platform with fungi-specific primers targeting the internal transcribed spacer 1 region of the large subunit rRNA gene. A total of 797,040 reads belonging to 1633 operational taxonomic units were observed. Of these, 1102 belonged to Ascomycota, 502 to Basidiomycota, 24 to Zygomycota, and 5 to Chytridiomycota. The dominant orders were Pleosporales (29.39%), Capnodiales (27.96%), Eurotiales (10.64%), and Hypocreales (9.01%). The dominant genera were Cladosporium, Alternaria, Fusarium, Penicillium, Sporisorium, and Aspergilus. Analysis of similarities revealed that both particulate matter sizes (R = 0.175, p = 0.001) and air quality levels (R = 0.076, p = 0.006) significantly affected the airborne fungal community composition. The relative abundance of many fungal genera was found to significantly differ among various PM types and air quality levels. Alternaria and Epicoccum were more abundant in total suspended particles samples, Aspergillus in heavy-haze days and PM2.5 samples, and Malassezia in PM2.5 samples and heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature (p < 0.01), NO2 (p < 0.01), PM10 (p < 0.01), SO2(p < 0.01), CO (p < 0.01), and relative humidity (p < 0.05) were significant factors that determine airborne fungal community composition. The results suggest that diverse airborne fungal communities are associated with particulate matters and may provide reliable data for studying the responses of human body to the increasing level of air pollution in Beijing.

  3. Granulometric characterization of airborne particulate release during spray application of nanoparticle-doped coatings

    Science.gov (United States)

    Göhler, Daniel; Stintz, Michael

    2014-08-01

    Airborne particle release during the spray application of coatings was analyzed in the nanometre and micrometre size range. In order to represent realistic conditions of domestic and handcraft use, the spray application was performed using two types of commercial propellant spray cans and a manual gravity spray gun. Four different types of coatings doped with three kinds of metal-oxide tracer nanoparticle additives (TNPA) were analyzed. Depending on the used coating and the kind of spray unit, particulate release numbers between 5 × 108 and 3 × 1010 particles per gram ejection mass were determined in the dried spray aerosols. The nanoparticulate fraction amounted values between 10 and 60 no%. The comparison between nanoparticle-doped coatings with non-doped ones showed no TNPA-attributed differences in both the macroscopic spray process characteristics and the particle release numbers. SEM, TEM and EDX-analyzes showed that the spray aerosols were composed of particles made up solely from matrix material and sheathed pigments, fillers and TNPAs. Isolated ZnO- or Fe2O3-TNPAs could not be observed.

  4. Tonopah Test Range Air Monitoring: CY2015 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Nikolich, George [Nevada University, Reno, NV (United States). Desert Research Inst.; Shadel, Craig [Nevada University, Reno, NV (United States). Desert Research Inst.; Chapman, Jenny [Nevada University, Reno, NV (United States). Desert Research Inst.; McCurdy, Greg [Nevada University, Reno, NV (United States). Desert Research Inst.; Etyemezian, Vicken [Nevada University, Reno, NV (United States). Desert Research Inst.; Miller, Julianne J. [Nevada University, Reno, NV (United States). Desert Research Inst.; Mizell, Steve [Nevada University, Reno, NV (United States). Desert Research Inst.

    2016-09-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). The operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites. Radionuclide assessment of airborne particulates in 2015 found the gross alpha and gross beta values of dust collected from the filters at the monitoring stations are consistent with background conditions. The meteorological and particle monitoring indicate that conditions for wind-borne contaminant movement exist at the Clean Slate sites and that, although the transport of radionuclide-contaminated soil by suspension has not been detected, movement by saltation is occurring.

  5. Natural and anthropogenic radionuclides in airborne particulate samples collected in Barcelona (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Valles, I. [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain)], E-mail: isabel.valles@upc.edu; Camacho, A.; Ortega, X.; Serrano, I.; Blazquez, S.; Perez, S. [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain)

    2009-02-15

    Results for naturally occurring {sup 7}Be, {sup 210}Pb, {sup 40}K, {sup 214}Bi, {sup 214}Pb, {sup 212}Pb, {sup 228}Ac and {sup 208}Tl and anthropogenic {sup 137}Cs in airborne particulate matter in the Barcelona area during the period from January 2001 to December 2005 are presented and discussed. The {sup 212}Pb and {sup 208}Tl, {sup 214}Bi and {sup 214}Pb, {sup 7}Be and {sup 210}Pb radionuclide levels showed a significant correlation with each other, with correlation coefficients of 0.99, 0.78 and 0.69, respectively, suggesting similar origin/behaviour of these radionuclides in the air. Caessium-137 and Potassium-40 were transported to the air as resuspended particle from the soil. The {sup 7}Be and {sup 210}Pb concentrations showed similar seasonal variations, with a tendency for maximum concentrations during the summer months. An inverse relationship was observed between the {sup 7}Be, {sup 210}Pb, {sup 40}K and {sup 137}Cs concentrations and weekly rainfall, indicating washout of atmospheric aerosols carrying these radionuclides.

  6. Embryotoxicity of organic extracts from airborne particulates in ambient air in the chicken embryo

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, H.; Kashimoto, T.

    1986-07-01

    A fraction containing polycyclic aromatic hydrocarbons (PAHs), prepared from an organic extract of airborne particulate matter, was separated into nine subfractions by high pressure liquid chromatography (HPLC). The embryotoxicity of each of these fractions was investigated and analysis for PAHs by capillary gas chromatography-mass spectrometry (GC-MS) was performed. The ninth subfraction, with coronene as its main component, had the strongest toxic effects on chicken embryos per m/sup 3/ of air. Of the remaining eight subfractions, three had the greatest toxicity: the second fraction with benzofluoranthenes and benzo(e)pyrene as the main components, the fourth fraction having PAH-estimated compounds in small amounts, and the fifth fraction with indeno(1,2,3-cd)pyrene and benzo(ghi)perylene as the main ingredients had the greatest toxicity. These findings indicate PAHs to be responsible for embryotoxicity but the total amounts were not necessarily proportional to it. For further characterization of toxicity, the effects of each PAH and/or quantification of other embryotoxic compounds possibly present in small amounts should be investigated.

  7. Airborne fine particulate matter induced pulmonary inflammation as well as oxidative stress in neonate rats

    Institute of Scientific and Technical Information of China (English)

    DING Li-ren; WANG Kai; Baher Fahmy; SHEN Hua-hao; Cormier Stephania

    2010-01-01

    Background Airborne fine particulate matter (PM) can induce pulmonary inflammation which may adversely affect human health, but very few reports about its effect on the neonate rats are available. This study aimed to observe the potential impact and toxicity of fine PMs on the airway in neonate rats.Methods Pulmonary inflammation, cytotoxicity, histopathology, and antioxidants as well as oxidant products were assessed 24 hours after intratracheal instillation of fine PM consecutively for 3 days. Cytotoxicity of fine PM was measured in Hep-2 cells.Results Rats treated with high dose fine PM developed significant pulmonary inflammation characterized by neutrophiland macrophage infiltration. The inflammatory process was related to elevated level of TNF-α and prooxidant/antioxidant imbalance in the lung. Cytotoxicity studies performed in human epithelial cells indicated that high dose fine PM significantly reduced cell viability.Conclusion The study demonstrated acute exposure to fine PM induced airway inflammation as well as increased oxidative stress in addition to its direct toxic effect on airway epithelium cells.

  8. The Effects of Bus Ridership on Airborne Particulate Matter (PM10 Concentrations

    Directory of Open Access Journals (Sweden)

    Jaeseok Her

    2016-07-01

    Full Text Available Air pollution caused by rapid urbanization and the increased use of private vehicles seriously affects citizens’ health. In order to alleviate air pollution, many cities have replaced diesel buses with compressed natural gas (CNG buses that emit less exhaust gas. Urban planning strategies such as transit-oriented development (TOD posit that reducing private vehicle use and increasing public transportation use would reduce air pollution levels. The present study examined the effects of bus ridership on airborne particulate matter (PM10 concentrations in the capital region of Korea. We interpolated the levels of PM10 from 128 air pollution monitoring stations, utilizing the Kriging method. Spatial regression models were used to estimate the impact of bus ridership on PM10 levels, controlling for physical environment attributes and socio-economic factors. The analysis identified that PM10 concentration levels tend to be lower in areas with greater bus ridership. This result implies that urban and transportation policies designed to promote public transportation may be effective strategies for reducing air pollution.

  9. Spatiotemporal distribution of airborne particulate metals and metalloids in a populated arid region

    Science.gov (United States)

    Prabhakar, Gouri; Sorooshian, Armin; Toffol, Emily; Arellano, Avelino F.; Betterton, Eric A.

    2014-08-01

    A statistical analysis of data from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network of aerosol samplers has been used to study the spatial and temporal concentration trends in airborne particulate metals and metalloids for southern Arizona. The study region is a rapidly growing area in southwestern North America characterized by high fine soil concentrations (among the highest in the United States), anthropogenic emissions from an area within the fastest growing region in the United States, and a high density of active and abandoned mining sites. Crustal tracers in the region are most abundant in the summer (April-June) followed by fall (October-November) as a result of dry meteorological conditions which favor dust emissions from natural and anthropogenic activity. A distinct day-of-week cycle is evident for crustal tracer mass concentrations, with the greatest amplitude evident in urban areas. There have been significant reductions since 1988 in the concentrations of toxic species that are typically associated with smelting and mining. Periods with high fine soil concentrations coincide with higher concentrations of metals and metalloids in the atmosphere, with the enhancement being higher at urban sites.

  10. Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas.

    Science.gov (United States)

    Gandolfi, I; Bertolini, V; Bestetti, G; Ambrosini, R; Innocente, E; Rampazzo, G; Papacchini, M; Franzetti, A

    2015-06-01

    The study of spatio-temporal variability of airborne bacterial communities has recently gained importance due to the evidence that airborne bacteria are involved in atmospheric processes and can affect human health. In this work, we described the structure of airborne microbial communities in two urban areas (Milan and Venice, Northern Italy) through the sequencing, by the Illumina platform, of libraries containing the V5-V6 hypervariable regions of the 16S rRNA gene and estimated the abundance of airborne bacteria with quantitative PCR (qPCR). Airborne microbial communities were dominated by few taxa, particularly Burkholderiales and Actinomycetales, more abundant in colder seasons, and Chloroplasts, more abundant in warmer seasons. By partitioning the variation in bacterial community structure, we could assess that environmental and meteorological conditions, including variability between cities and seasons, were the major determinants of the observed variation in bacterial community structure, while chemical composition of atmospheric particulate matter (PM) had a minor contribution. Particularly, Ba, SO4 (2-) and Mg(2+) concentrations were significantly correlated with microbial community structure, but it was not possible to assess whether they simply co-varied with seasonal shifts of bacterial inputs to the atmosphere, or their variation favoured specific taxa. Both local sources of bacteria and atmospheric dispersal were involved in the assembling of airborne microbial communities, as suggested, to the one side by the large abundance of bacteria typical of lagoon environments (Rhodobacterales) observed in spring air samples from Venice and to the other by the significant effect of wind speed in shaping airborne bacterial communities at all sites.

  11. Study on the Adsorption Capacities for Airborne Particulates of Landscape Plants in Different Polluted Regions in Beijing (China

    Directory of Open Access Journals (Sweden)

    Wei-Kang Zhang

    2015-08-01

    Full Text Available Urban landscape plants are an important component of the urban ecosystem, playing a significant role in the adsorption of airborne particulates and air purification. In this study, six common landscape plants in Beijing were chosen as research subjects, and the adsorption capacities for each different plant leaf and the effects of the leaf structures for the adsorption capacities for particulates were determined. Preliminary results show that needle-leaved tree species adsorbed more airborne particulates than broad-leaved tree species for the same leaf area. Pinus tabuliformis exhibits the highest adsorption capacity, at 3.89 ± 0.026 μg·cm−2, almost two times as much as that of Populus tomentosa (2.00 ± 0.118 μg·cm−2. The adsorption capacities for PM10 of the same tree species leaves, in different polluted regions had significant differences, and the adsorption capacities for PM10 of the tree species leaf beside the Fifth Ring Road were higher than those of the tree species leaves in the Botanical Garden, although the adsorption capacities for PM2.5 of the same tree species in different polluted regions had no significant differences. By determining the soluble ion concentrations of the airborne particulates in two regions, it is suggested that the soluble ion concentrations of PM10 in the atmosphere in the Botanical Garden and beside the Fifth Ring Road have significant differences, while those of PM2.5 in the atmosphere had no significant differences. In different polluted regions there are significant adaptive changes to the leaf structures, and when compared with slightly polluted region, in the seriously polluted region the epidermis cells of the plant leaves shrinked, the surface textures of the leaves became rougher, and the stomas’ frequency and the pubescence length increased. Even though the plant leaves exposed to the seriously polluted region changed significantly, these plants can still grow normally and healthily.

  12. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    Directory of Open Access Journals (Sweden)

    A. Mahmud

    2012-02-01

    Full Text Available The effect of climate change on population-weighted concentrations of particulate matter (PM during extreme events was studied using the Parallel Climate Model (PCM, the Weather Research and Forecasting (WRF model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44 global emissions scenario was dynamically downscaled for the entire state of California between the years 2000–2006 and 2047–2053. Air quality simulations were carried out for 1008 days in each of the present-day and future climate conditions using year-2000 emissions. Population-weighted concentrations of PM0.1, PM2.5, and PM10 total mass, components species, and primary source contributions were calculated for California and three air basins: the Sacramento Valley air basin (SV, the San Joaquin Valley air basin (SJV and the South Coast Air Basin (SoCAB. Results over annual-average periods were contrasted with extreme events.

    Climate change between 2000 vs. 2050 did not cause a statistically significant change in annual-average population-weighted PM2.5 mass concentrations within any major sub-region of California in the current study. Climate change did alter the annual-average composition of the airborne particles in the SoCAB, with notable reductions of elemental carbon (EC; −3% and organic carbon (OC; −3% due to increased annual-average wind speeds that diluted primary concentrations from gasoline combustion (−3% and food cooking (−4%. In contrast, climate change caused significant increases in population-weighted PM2.5 mass concentrations in central California during extreme events. The maximum 24-h average PM2.5 concentration experienced by an average person during a ten-year period in the SJV increased by 21% due to enhanced production of secondary particulate matter (manifested as NH4NO3. In general, climate change caused increased

  13. Methodological study and application of advanced receptor modeling to airborne particulate sources

    Science.gov (United States)

    Chueinta, Wanna

    Two aspects of air quality management, aerosol mass measurement and pollution source identification, were studied. A beta gauge was developed to determine particulate mass collected on filter. Two advanced receptor models were applied to resolve possible sources of pollutants on local and regional scales by use of positive matrix factorization (PMF) and multilinear engine (ME), respectively. A simple, low cost beta gauge was designed, constructed, and tested to determine if it provided the necessary performance and reliability in collected aerosol mass measurements. The beta gauge was calibrated and evaluated by experiments with different sized particles. The results showed that the unit provided a satisfactory accuracy and precision with respect to the gravimetric method. (PMF) is a least-square approach to factor analysis. In this study, PMF was applied to investigate the possible sources of airborne particulate matter (APM) collected at an urban residential area of Bangkok from June 1995 to May 1996 and at a suburban residential area in Pathumthani from September 1993 to August 1994. The data consisting of the fine and coarse fractions were analyzed separately. The analysis used the robust analysis mode and rotations to produce six source factors for both the fine and coarse fractions at the urban site and five factors for the fine and coarse fractions at the suburban site. Examination of the influence of wind direction showed the correspondence of some specific factors such as sea salt and vehicle sources with known area sources. ME is a new algorithm for solving a broad range of multilinear problems. A model was developed for the analysis of spatial patterns and possible sources affecting haze and its visual effects in the southwestern United States. The data from the project Measurement of Haze and Visual Effects (MOHAVE) collected during the late winter and mid-summer of 1992 at the monitoring sites in four states, i.e., California, Arizona, Nevada and Utah

  14. Evaluation of historical beryllium abundance in soils, airborne particulates and facilities at Lawrence Livermore National Laboratory.

    Science.gov (United States)

    Sutton, Mark; Bibby, Richard K; Eppich, Gary R; Lee, Steven; Lindvall, Rachel E; Wilson, Kent; Esser, Bradley K

    2012-10-15

    Beryllium has been historically machined, handled and stored in facilities at Lawrence Livermore National Laboratory (LLNL) since the 1950s. Additionally, outdoor testing of beryllium-containing components has been performed at LLNL's Site 300 facility. Beryllium levels in local soils and atmospheric particulates have been measured over three decades and are comparable to those found elsewhere in the natural environment. While localized areas of beryllium contamination have been identified, laboratory operations do not appear to have increased the concentration of beryllium in local air or water. Variation in airborne beryllium correlates to local weather patterns, PM10 levels, normal sources (such as resuspension of soil and emissions from coal power stations) but not to LLNL activities. Regional and national atmospheric beryllium levels have decreased since the implementation of the EPA's 1990 Clean-Air-Act. Multi-element analysis of local soil and air samples allowed for the determination of comparative ratios for beryllium with over 50 other metals to distinguish between natural beryllium and process-induced contamination. Ten comparative elemental markers (Al, Cs, Eu, Gd, La, Nd, Pr, Sm, Th and Tl) that were selected to ensure background variations in other metals did not collectively interfere with the determination of beryllium sources in work-place samples at LLNL. Multi-element analysis and comparative evaluation are recommended for all workplace and environmental samples suspected of beryllium contamination. The multi-element analyses of soils and surface dusts were helpful in differentiating between beryllium of environmental origin and beryllium from laboratory operations. Some surfaces can act as "sinks" for particulate matter, including carpet, which retains entrained insoluble material even after liquid based cleaning. At LLNL, most facility carpets had beryllium concentrations at or below the upper tolerance limit determined by sampling facilities

  15. Airborne Fine Particulate Matter Induces Oxidative Stress and Inflammation in Human Nasal Epithelial Cells.

    Science.gov (United States)

    Hong, Zhicong; Guo, Zhiqiang; Zhang, Ruxin; Xu, Jian; Dong, Weiyang; Zhuang, Guoshun; Deng, Congrui

    2016-01-01

    Airborne fine particulate matter with an aerodynamic diameter equal to or smaller than 2.5 μm is abbreviated as PM2.5, which is one of the main components in air pollution. Exposure to PM2.5 is associated with increased risk of many human diseases, including chronic and allergic rhinitis, but the underlying molecular mechanism for its toxicity has not been fully elucidated. We have hypothesized that PM2.5 may cause oxidative stress and enhance inflammatory responses in nasal epithelial cells. Accordingly, we used human RPMI 2650 cells, derived from squamous cell carcinoma of the nasal septum, as a model of nasal epithelial cells, and exposed them to PM2.5 that was collected at Fudan University (31.3°N, 121.5°E) in Shanghai, China. PM2.5 exposure decreased the viability of RPMI 2650 cells, suggesting that PM2.5 may impair the barrier function of nasal epithelial cells. Moreover, PM2.5 increased the levels of intracellular reactive oxygen species (ROS) and the nuclear translocation of NF-E2-related factor-2 (Nrf2). Importantly, PM2.5 also decreased the activities of superoxide dismutase, catalase and glutathione peroxidase. Pretreatment with N-Acetyl-L-cysteine (an anti-oxidant) reduced the degree of the PM2.5-induced oxidative stress in RPMI 2650 cells. In addition, PM2.5 increased the production of granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-α, interleukin-13 and eotaxin (C-C motif chemokine ligand 11), each of which initiates and/or augments local inflammation. These results suggest that PM2.5 may induce oxidative stress and inflammatory responses in human nasal epithelial cells, thereby leading to nasal inflammatory diseases. The present study provides insights into cellular injury induced by PM2.5.

  16. Airborne particulate matter and mitochondrial damage: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Hou Lifang

    2010-08-01

    Full Text Available Abstract Background Oxidative stress generation is a primary mechanism mediating the effects of Particulate Matter (PM on human health. Although mitochondria are both the major intracellular source and target of oxidative stress, the effect of PM on mitochondria has never been evaluated in exposed individuals. Methods In 63 male healthy steel workers from Brescia, Italy, studied between April and May 2006, we evaluated whether exposure to PM was associated with increased mitochondrial DNA copy number (MtDNAcn, an established marker of mitochondria damage and malfunctioning. Relative MtDNAcn (RMtDNAcn was determined by real-time PCR in blood DNA obtained on the 1st (time 1 and 4th day (time 2 of the same work week. Individual exposures to PM10, PM1, coarse particles (PM10-PM1 and airborne metal components of PM10 (chromium, lead, arsenic, nickel, manganese were estimated based on measurements in the 11 work areas and time spent by the study subjects in each area. Results RMtDNAcn was higher on the 4th day (mean = 1.31; 95%CI = 1.22 to 1.40 than on the 1st day of the work week (mean = 1.09; 95%CI = 1.00 to 1.17. PM exposure was positively associated with RMtDNAcn on either the 4th (PM10: β = 0.06, 95%CI = -0.06 to 0.17; PM1: β = 0.08, 95%CI = -0.08 to 0.23; coarse: β = 0.06, 95%CI = -0.06 to 0.17 or the 1st day (PM10: β = 0.18, 95%CI = 0.09 to 0.26; PM1: β = 0.23, 95%CI = 0.11 to 0.35; coarse: β = 0.17, 95%CI = 0.09 to 0.26. Metal concentrations were not associated with RMtDNAcn. Conclusions PM exposure is associated with damaged mitochondria, as reflected in increased MtDNAcn. Damaged mitochondria may intensify oxidative-stress production and effects.

  17. The exposure assessment of airborne particulates matter (PM10 & PM2.5) towards building occupants: A case study at KL Sentral, Kuala Lumpur, Malaysia

    Science.gov (United States)

    Mohddin, S. A.; Aminuddin, N. M.

    2014-02-01

    Airborne particulates have been recognized as a crucial pollutant of indoor air. These pollutants can contribute towards poor indoor air quality (IAQ), which may affect human health in immediate or long term. This study aims to determine the level of IAQ and the effects of particulate towards occupants of office buildings (the office buildings selected for the case study are SSM, KTMB and MRCB at KL Sentral). The objectives of study are (i) to measure the level of airborne particulates that contribute to the IAQ during working hours, (ii) to compare the level of airborne particulates with the existing guidelines and standards of IAQ in Malaysia and other Asian countries and (iii) to assess the symptoms associated with airborne particulates among the building occupants, which were achieved through primary data collection (case study or site survey, structured interview and questionnaire survey) and supported by literature reviews. The results showed that the mass concentration level of airborne particulates within the areas has exceeded the allowable limit of 0.15mg/m3 by IAQ Code of Practice, 2005 of the Department of Safety and Health (DOSH), Malaysia and 0.05mg/m3 by the Department of Environmental (DOE) (outdoor) of 8 hours continuous sampling. Based on the findings, the highest mass concentration values measured is 2.581 mg/m3 at lobby of SSM building which is the highest recorded 17 times higher from the maximum limit recommended by DOSH than the others. This is due to the nearby construction works and the high numbers of particulates are generated from various types of vehicles for transportation surrounding KL Sentral. Therefore, the development of Malaysian Ambient Air Quality Guidelines on PM2.5 as one of the crucial parameters is highly recommended.

  18. Tonopah Test Range Air Monitoring: CY2012 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Miller, Julianne J

    2013-07-01

    401. This difference may be the result of using filter media at Station 400 with a smaller pore size than the media used at the other two stations. Average annual gamma exposure at Station 401 is slightly greater than at Station 400 and 402. Average annual gamma exposure at all three TTR stations are in the upper range to slightly higher than values reported for the CEMP stations surrounding the TTR. At higher wind speeds, the saltation counts are greater at Station 401 than at Station 402 while the suspended particulate concentrations are greater at Station 402 than at Statin 401. Although these observations seem counterintuitive, they are likely the result of differences in the soil material present at the two sites. Station 401 is located on an interfluve elevated above two adjacent drainage channels where the soil surface is likely to be composed of coarser material. Station 402 is located in finer sediments at the playa edge and is also subject to dust from a dirt road only 500 m to the north. During prolonged high wind events, suspended dust concentrations at Station 401 peaked with the initial winds then decreased whereas dust concentrations at Station 402 peaked with each peak in the wind speed. This likely reflects a limited PM10 source that is quickly expended at Station 401 relative to an abundant PM10 source at Station 402. In CY2013, to facilitate comparisons between radiological analyses of collected dust, the filter media at all three stations will be standardized. In addition, a sequence of samples will be collected at Station 400 using both types of filter media to enable development of a mathematical relationship between the results derived from the two filter types. Additionally, having acquired approximately four years of observations at Stations 400 and 401 and a year of observations at Station 402, a period-of-record analysis of the radiological and airborne dust conditions will be undertaken.

  19. Mutagenic activity of airborne particulate matter from the urban area of Porto Alegre, Brazil

    Directory of Open Access Journals (Sweden)

    Vera Maria Ferrão Vargas

    1998-06-01

    Full Text Available The mutagenic activity of airborne particulate matter collected from three different sites within the urban area of Porto Alegre, Brazil, was investigated using a Salmonella/microsome assay. Samples were extracted by sonication, sequentially, with cyclohexane (CX, and dichloromethane (DCM, for a rough fractionation by polarity. The different fractions were tested for mutagenicity using Salmonella typhimurium strains TA98, with and without metabolic activation (S9 mix fraction, and TA98NR and TA98/1,8-DNP6, without metabolic activation. Mutagenic response was observed for frameshift strain TA98 in assays with and without metabolization for two sites (sites 2 and 3, which had considerable risk of environmental contamination by nonpolar (CX and/or moderately polar (DCM compounds. However, the values of revertants/m3 (rev/m3 were highest on the site subject to automobile exhaust (site 3 in assays without (9.56 rev/m3 and with metabolization (5.08 rev/m3. Maximum mutagenic activity was detected in the moderately polar fraction, decreasing after metabolization. Nevertheless, the nonpolar fractions (CX gave higher mutagenic activity in the presence of metabolization than in the absence of the S9 mix fraction. The responses observed for TA98NR and TA98/1,8-DNP6 strains suggest the activity of nitrocompounds.Foi investigada a atividade mutagênica de material particulado de amostras de ar coletadas em três diferentes locais dentro da área urbana da cidade de Porto Alegre, Brasil, através do ensaio Salmonella/microssoma. As amostras foram extraídas, em ultra-som, por fracionamento seqüencial de acordo com a polaridade, utilizando os solventes ciclohexano (CX e diclorometano (DCM. As diferentes frações foram testadas para mutagenicidade com as linhagens de Salmonella typhimurium TA98, em presença e ausência de ativação metabólica, e TA98NR e TA98/1,8-DNP6 em ausência de metabolização. Observou-se resposta mutagênica positiva, do tipo erro

  20. Preliminary studies of airborne particulate emmisions from the Ampellum S.A. copper smelter, Zlatna, Romania

    Directory of Open Access Journals (Sweden)

    Ben J. Williamson

    2003-04-01

    Full Text Available Preliminary studies have been carried on the characterization of particulate emissions from the Ampellum S.A. copper smelter in the town of Zlatna, Romania. The particulates studied were collected on polycarbonate filters using air pump apparatus and on the surfaces of lichens. Mass of total suspended particulates (TSP and PM10 varied from 19 to 230 μg/m3 and 3 to 146 μg/m3, respectively (PM10/TSP = 0.14 to 1.0, depending on wind direction and proximity to the smelter. Particulates on collection filters from a site directly downwind from the smelter have a mean equivalent spherical diameter (ESD of 0.94 μm (s.d. 1.1 and are dominantly made up of material with the composition of anglesite (PbSO4. The remainder of the material is a heterogeneous mixture of silicates and Fe-, Pb- and Cu-bearing phases. Particulates > 5 μm ESD are rare on the TSP filters, mainly due to the restricted sampling durations possible with the equipment used (<3 hours. Particulates have therefore been studied in the lichen Acarospora smaragdula, which was growing on posts downwind from the smelter and which was found to contain high levels and a broader range of particulates compared with the filters (<5 to 100 μm in diameter. Larger particles include 20-30 μm diameter Fe-rich spherules, which occasionally have Pb- and S-rich encrustations on their surfaces. The nature and possible health effects of the particulates are discussed and recommendations made for future studies.

  1. The impact of airborne particulate matter on pediatric hospital admissions for pneumonia among Jinan children: a case-crossover study.

    Science.gov (United States)

    Lv, Chenguang; Wang, Xianfeng; Pang, Na; Wang, Lanzhong; Wang, Yuping; Xu, Tengfei; Zhang, Yu; Zhou, Tianran; Li, Wei

    2016-12-14

    This study aims to examine the effect of short-term changes in the concentration of particulate matter ≤2.5 µm (PM2.5) and ≤ 10 µm (PM10) on pediatric hospital admissions for pneumonia in Jinan, China. It explored confoundings factos of weather, season, and chemical pollutants. Information on pediatric hospital admissions for pneumonia in 2014 was extracted from the database of Jinan Qilu Hospital. The relative risk of pediatric hospital admissions for pneumonia was assessed using a case-crossover approach, controlling weather variables, day of the week, and seasonality. The single-pollutant model demonstrated that increased risk of pediatric hospital admissions for pneumonia was significantly associated with elevated PM2.5 concentrations the day before hospital admission and elevated PM10 concentrations two days before hospital admission. An increment of 10 μg/m(3) in PM2.5 and PM10 were correlated with a 6% (95% CI 1.02-1.10) and 4% (95% CI 1.00-1.08) rise in number of admissions for pneumonia, respectively. In two pollutant models, PM2.5 and PM10 remained significant after inclusion of sulfur dioxide or nitrogen dioxide but not carbon monoxide. This study demonstrated short-term exposure to atmospheric particulate matter (PM2.5/PM10) may be an important determinant of pediatric hospital admissions for pneumonia in Jinan, China. This study demonstrated short-term exposure to atmospheric particulate matter (PM2.5/PM10) may be an important determinant of pediatric hospital admissions for pneumonia in Jinan, China and suggested the relevance of pollutant exposure levels and their effects. As a specific group, children are sensitive to airborne particulate matter. This study estimated the short-term effects attribute to other air pollutants to provide references for relevant studies.

  2. Space and time resolved monitoring of airborne particulate matter in proximity of a traffic roundabout in Sweden.

    Science.gov (United States)

    Wilkinson, Kai E; Lundkvist, Johanna; Netrval, Julia; Eriksson, Mats; Seisenbaeva, Gulaim A; Kessler, Vadim G

    2013-11-01

    Concerns over exposure to airborne particulate matter (PM) are on the rise. Currently monitoring of PM is done on the basis of interpolating a mass of PM by volume (μg/m(3)) but has the drawback of not taking the chemical nature of PM into account. Here we propose a method of collecting PM at its emission source and employing automated analysis with scanning electron microscopy associated with EDS-analysis together with light scattering to discern the chemical composition, size distribution, and time and space resolved structure of PM emissions in a heavily trafficated roundabout in Sweden. Multivariate methods (PCA, ANOVA) indicate that the technogenic marker Fe follows roadside dust in spreading from the road, and depending on time and location of collection, a statistically significant difference can be seen, adding a useful tool to the repertoiré of detailed PM monitoring and risk assessment of local emission sources.

  3. A new approach for the determination of silicon in airborne particulate matter using electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Mukhtar, A; Limbeck, A

    2009-07-30

    In this work a new procedure for element specific analysis of silicon in airborne particulate matter is presented. The method is based on a preliminary treatment of the aerosol samples with nitric acid and perchloric acid leading to a mineralization of the organic sampling substrate, dissolution of soluble material and a homogeneous suspension of the remaining non-soluble sample fraction. ETAAS measurement of the derived slurries was performed using a Zr-treated graphite tube which prevents the formation of stable silicon carbide during sample measurement. Losses of volatile silicon species during sample pyrolysis were overcome by using Co(II) as matrix modifier and a pyrolysis temperature of only 300 degrees C. Furthermore this low pyrolysis temperature prevents charring of organic material which enables accurate ETAAS analysis. The method including the developed pretreatment procedure was evaluated using the Standard reference material 2709 (San Joaquin Soil) from NIST (National Institute of Standards and Technology, Gaithersburg, MD, USA). Suitability for measurement of Si in airborne particulate matter with an aerodynamic diameter aerosol samples and comparison of derived results with the findings obtained for the same samples after microwave digestion and subsequent ETAAS measurement. Finally the developed procedure was applied for the analysis of silicon in PM10 collected at an urban site in Vienna (Austria). Matrix matched calibration has been used for quantification of derived absorption signals. With the use of 20 microL sample injection volume for ETAAS analysis an instrumental detection limit of 52.2 microg L(-1) was obtained, which translates to method detection limits of approximately 0.52 microg m(-3) when considering the volumes of air collected per investigated aerosol sample. The reproducibility of analysis given as the relative standard deviation was 4.4% (n=12). Derived concentrations for Si in PM10 varied between 0.8 and 7.2 microg m(-3) which

  4. Airborne Particulate Matter in Two Multi-Family Green Buildings: Concentrations and Effect of Ventilation and Occupant Behavior.

    Science.gov (United States)

    Patton, Allison P; Calderon, Leonardo; Xiong, Youyou; Wang, Zuocheng; Senick, Jennifer; Sorensen Allacci, MaryAnn; Plotnik, Deborah; Wener, Richard; Andrews, Clinton J; Krogmann, Uta; Mainelis, Gediminas

    2016-01-20

    There are limited data on air quality parameters, including airborne particulate matter (PM) in residential green buildings, which are increasing in prevalence. Exposure to PM is associated with cardiovascular and pulmonary diseases, and since Americans spend almost 90% of their time indoors, residential exposures may substantially contribute to overall airborne PM exposure. Our objectives were to: (1) measure various PM fractions longitudinally in apartments in multi-family green buildings with natural (Building E) and mechanical (Building L) ventilation; (2) compare indoor and outdoor PM mass concentrations and their ratios (I/O) in these buildings, taking into account the effects of occupant behavior; and (3) evaluate the effect of green building designs and operations on indoor PM. We evaluated effects of ventilation, occupant behaviors, and overall building design on PM mass concentrations and I/O. Median PMTOTAL was higher in Building E (56 µg/m³) than in Building L (37 µg/m³); I/O was higher in Building E (1.3-2.0) than in Building L (0.5-0.8) for all particle size fractions. Our data show that the building design and occupant behaviors that either produce or dilute indoor PM (e.g., ventilation systems, combustion sources, and window operation) are important factors affecting residents' exposure to PM in residential green buildings.

  5. Analysis of airborne particulate matter (PM2.5) over Hong Kong using remote sensing and GIS.

    Science.gov (United States)

    Shi, Wenzhong; Wong, Man Sing; Wang, Jingzhi; Zhao, Yuanling

    2012-01-01

    Airborne fine particulates (PM(2.5); particulate matter with diameter less than 2.5 μm) are receiving increasing attention for their potential toxicities and roles in visibility and health. In this study, we interpreted the behavior of PM(2.5) and its correlation with meteorological parameters in Hong Kong, during 2007-2008. Significant diurnal variations of PM(2.5) concentrations were observed and showed a distinctive bimodal pattern with two marked peaks during the morning and evening rush hour times, due to dense traffic. The study observed higher PM(2.5) concentrations in winter when the northerly and northeasterly winds bring pollutants from the Chinese mainland, whereas southerly monsoon winds from the sea bring fresh air to the city in summer. In addition, higher concentrations of PM(2.5) were observed in rush hours on weekdays compared to weekends, suggesting the influence of anthropogenic activities on fine particulate levels, e.g., traffic-related local PM(2.5) emissions. To understand the spatial pattern of PM(2.5) concentrations in the context of the built-up environment of Hong Kong, we utilized MODerate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Thickness (AOT) 500 m data and visibility data to derive aerosol extinction profile, then converted to aerosol and PM(2.5) vertical profiles. A Geographic Information Systems (GIS) prototype was developed to integrate atmospheric PM(2.5) vertical profiles with 3D GIS data. An example of the query function in GIS prototype is given. The resulting 3D database of PM(2.5) concentrations provides crucial information to air quality regulators and decision makers to comply with air quality standards and in devising control strategies.

  6. Evaluation of airborne respirable particulate matter and polycyclic aromatic hydrocarbon exposure of asphalt workers

    Directory of Open Access Journals (Sweden)

    Teresa Cirillo

    2007-12-01

    Full Text Available

    Introduction: Assessment of exposure to the airborne respirable particles (PM10 and polycyclic aromatic hydrocarbons (PAHs of asphalt manufacturing and road paving workers in the Campania region (Italy.

    Materials and Methods: A study was carried out during 2006 and involved 5 firms producing and employing bitumen in road paving activities. The workers studied were categorized on the basis of their job as workers in bitumen manufacturing, in road paving and in workers not exposed at bitumen fume considered like controls.

    Results: In the manufacturing plants the average concentrations of airborne PM10 were 1125±445 ìg/m3 in the HMA manufacturing workers’ areas; 314±81 ìg/m3 in the process surveyors’ cabins and 92±27 ìg/m3 in the controls’ areas (administrative offices. Within the breathing zones of the worker, the average PAHs levels in air were as follows: 367±198 ng/m3 for HMA manufacturing workers; 348±172 ng/m3 for process surveyors; 21±2 ng/m3 for the controls. At the road paving sites the average airborne PM10 levels were 1435±325 ìg/m3 for roller operators; 1610±356 ìg/m3 for paver operators; 319±108 ìg/m for the controls (traffic controllers. PAHs in the breathing zones were 1220±694 ng/m3 for the paver operators; 1360±575 ng/m3 for the roller operators’ and 139±135 ng/m3 for the traffic controllers’. The results show that the more consistent hazard for asphalt workers’ health is derived from exposure to airborne PM10 both in exposed and in non-exposed (controls workers.

  7. Second generation dichotomous sampler for large-scale monitoring of airborne particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Loo, B.W.; Adachi, R.S.; Cork, C.P.; Goulding, F.S.; Jaklevic, J.M.; Landis, D.A.; Searles, W.L.

    1979-01-01

    The differences which exist between fine (< 2.5 ..mu..m) and coarse (> 2.5 ..mu..m) airborne particles with respect to their origin, chemical properties, and environmental impact, call for their separate collection and analysis. An automated dichotomous sampler (ADS), equipped with a high efficiency single-stage virtual impactor and a microprocessor-based controller to self-correct fault conditions including filter overload, has been developed as a model for commercial production.

  8. Water-soluble inorganic ions in airborne particulates from the nano to coarse mode: a case study of aerosol episodes in southern region of Taiwan.

    Science.gov (United States)

    Chang, Li-Peng; Tsai, Jiun-Horng; Chang, Kai-Lun; Lin, Jim Juimin

    2008-06-01

    In 2004, airborne particulate matter (PM) was collected for several aerosol episodes occurring in the southern region of Taiwan. The particulate samples were taken using both a MOUDI (Micro-orifice Uniform Deposit Impactor) and a nano-MOUDI sampler. These particulate samples were analyzed for major water-soluble ionic species with an emphasis to characterize the mass concentrations and distributions of these ions in the ambient ultrafine (PM0.1, diameter particles. Particles collected at the sampling site (the Da-Liao station) on the whole exhibited a typical tri-modal size distribution on mass concentration. The mass concentration ratios of PMnano/PM2.5, PM0.1/PM2.5, and PM1/PM2.5 on average were 1.8, 2.9, and 71.0%, respectively. The peak mass concentration appeared in the submicron particle mode (0.1 microm Particles smaller than 0.1 microm were essentially basic, whereas those greater than 2.5 microm were neutral or slightly acidic. The neutralization ratio (NR) was close to unity for airborne particles with diameters ranging from 0.18 to 1 microm. The NRs of these airborne particles were found strongly correlated with their sizes, at least for samples taken during the aerosol episodes under study. Insofar as this study is exploratory in nature, as only a small number of particulate samples were used, there appears to be a need for further research into the chemical composition, source contribution, and formation of the nano and ultrafine mode airborne particulates.

  9. DISTRIBUTION AND CHARACTERIZATION OF POLYCYCLIC AROMATIC HYDROCARBON COMPOUNDS IN AIRBORNE PARTICULATES OF EAST ASIA

    Institute of Scientific and Technical Information of China (English)

    Yan Liu; Libin Liu; Jin-Ming Lin; Ning Tang; Kazuichi Hayakawa

    2006-01-01

    A review is presented on the distribution and characterization of polycyclic aromatic hydrocarbons (PAHs)and their derivatives, including nitro-PAHs and hydro-PAHs, on atmospheric particulates of East Asia. Generally, PAH compounds with two or three aromatic rings are released mainly into the gas phase, while those containing three or more aromatic rings are associated with particulate matter (PM) emission. Particle-associated PAHs are primarily adsorbed on fine particles, and little associated with coarse particles. Investigation into the concentration level of PAHs in different areas can serve not only to reflect the pollutant status and sources but also to lead to the formulation of control strategies.The results of the present study show that China has more severe PAH pollution than such East Asian countries as Japan and Korea.

  10. The impact of particle size selective sampling methods on occupational assessment of airborne beryllium particulates.

    Science.gov (United States)

    Sleeth, Darrah K

    2013-05-01

    In 2010, the American Conference of Governmental Industrial Hygienists (ACGIH) formally changed its Threshold Limit Value (TLV) for beryllium from a 'total' particulate sample to an inhalable particulate sample. This change may have important implications for workplace air sampling of beryllium. A history of particle size-selective sampling methods, with a special focus on beryllium, will be provided. The current state of the science on inhalable sampling will also be presented, including a look to the future at what new methods or technology may be on the horizon. This includes new sampling criteria focused on particle deposition in the lung, proposed changes to the existing inhalable convention, as well as how the issues facing beryllium sampling may help drive other changes in sampling technology.

  11. Analysis of trace elements in airborne particulate matters collected in Ankara, Turkey by TXRF

    OpenAIRE

    2013-01-01

    The main focus point of the presented study was the assessment of atmospheric burden of particulate matter and toxic trace metals in the atmosphere of Ankara, Turkey. For this purpose, outdoor samplings were accomplished in the capital city, Ankara. The types of filters, sample collection and sample preparation methods were investigated and optimized. Analyses were provided by the total reflection X-ray fluorescence (TXRF) spectroscopic technique in Germany. Spatial and temporal variations of...

  12. Control strategies for the reduction of airborne particulate nitrate in California's San Joaquin Valley

    Science.gov (United States)

    Kleeman, Michael J.; Ying, Qi; Kaduwela, Ajith

    The effect of NO x, volatile organic compound (VOC), and NH 3 emissions control programs on the formation of particulate ammonium nitrate in the San Joaquin Valley (SJV) was examined under the typical winter conditions that existed on 4-6 January, 1996. The UCD/CIT photochemical transport model was used for this study so that the source origin of primary particulate matter and secondary particulate matter could be identified. When averaged across the entire SJV, the model results predict that 13-18% of the reactive nitrogen (NO y=NO x+reaction products of NO x) emitted from local sources within the SJV was converted to nitrate at the ground level. Each gram of NO x emitted locally within the SJV (expressed as NO 2) produced 0.23-0.31 g of particulate ammonium nitrate (NH 4NO 3), which is much smaller than the maximum theoretical yield of 1.7 g of NH 4NO 3 per gram of NO 2. The fraction of reactive nitrogen converted to nitrate varied strongly as a function of location. Urban regions with large amounts of fresh NO emissions converted little reactive nitrogen to nitrate, while remote areas had up to 70% conversion (equivalent to approximately 1.2 g of NH 4NO 3 per gram of NO 2). The use of a single spatially averaged ratio of NH 4NO 3/NO x as a predictor of how changes to NO x emissions would affect particulate nitrate concentrations would not be accurate at all locations in the SJV under the conditions studied. The largest local sources of particulate nitrate in the SJV were predicted to be diesel engines and catalyst equipped gasoline engines under the conditions experienced on 6 January, 1996. Together, these sources accounted for less than half of the ground-level nitrate aerosol in the SJV. The remaining fraction of the aerosol nitrate originated from reactive nitrogen originally released upwind of the SJV. The majority of this upwind reactive nitrogen was already transformed to nitrate by the time it entered the SJV. The effect of local emissions controls on

  13. Composition of airborne particulate matter in the industrial area versus mountain area

    Directory of Open Access Journals (Sweden)

    Barbora Sýkorová

    2016-03-01

    Full Text Available The paper deals with research of air pollution in two different locations on the Moravian-Silesian Region, Czech Republic. These are the sites Ostrava-Radvanice, which is located in the area affected by the industry and Ostravice in the mountains (without significant effect of the industry. The dust particles collected at these locations were subjected to a wide range of analyses. The mass concentration, the mass-size distribution, mineralogical composition, the concentration of PAHs (polycyclic aromatic hydrocarbons, and the concentrations of selected metals (Cd, Pb, Zn, Fe, Mn, As, Ni, Co, and Cr were observed at the particulate matter.

  14. PAH in airborne particulate matter.. Carcinogenic character of PM10 samples and assessment of the energy generation impact

    Energy Technology Data Exchange (ETDEWEB)

    Callen, M.S.; Cruz, M.T. de la; Lopez, J.M.; Mastral, A.M. [Instituto de Carboquimica (CSIC), Zaragoza (Spain)

    2011-02-15

    One of the main anthropogenic sources producing Polycyclic Aromatic Hydrocarbons (PAH) is related to combustion processes especially transport, power generation processes and other industrial activities. Therefore, the main cities constitute one of the main pollution sources for population. Due to the carcinogenic character of some of these pollutants, Directive 2004/107/EC established a target value of 1.0 ng/m{sup 3} with regard to Benzo(a)pyrene (BaP) for the total content in the particulate matter fraction averaged over a calendar year. Nevertheless, the consideration of only BaP can underestimate the carcinogenic character of the particulate matter. In this work, the carcinogenic character of the airborne PM10 of Zaragoza was studied during 2003-2004 by determining the concentration of BaP equivalents (BaP-eq), using toxic equivalent factors provided by Larsen and Larsen. Diagnostic ratios were used to discern regarding the main pollution sources in Zaragoza city in which the prevailing emission sources were related to diesel emissions and combustion sources. As PAH can travel long distances around the world, the impact of local pollution sources and long-range atmospheric transport on those samples exceeding 1.0 ng/m{sup 3} of BaP-eq that imply higher risk for human health were assessed by considering BaA/Chry and BaP/BeP ratios and by studying the origin of the air masses with the backward air trajectories according to the HYSPLIT model. Those samples were mainly produced during cold season. The local pollution sources were the dominant sources although one episode of long-range transport from European countries could be observed. (author)

  15. Analysis of trace elements in airborne particulate matters collected in Ankara, Turkey by TXRF

    Directory of Open Access Journals (Sweden)

    Durukan I.

    2013-04-01

    Full Text Available The main focus point of the presented study was the assessment of atmospheric burden of particulate matter and toxic trace metals in the atmosphere of Ankara, Turkey. For this purpose, outdoor samplings were accomplished in the capital city, Ankara. The types of filters, sample collection and sample preparation methods were investigated and optimized. Analyses were provided by the total reflection X-ray fluorescence (TXRF spectroscopic technique in Germany. Spatial and temporal variations of air particulate matter (APM levels in the city were examined. In some stations, APM sampled in according to their size distribution such as PM10 and PM2.5. Elemental characterization of size distributed PM were achieved and evaluated. It was detected that the elements mainly originated from soil in Beytepe station, from soil and solid fuel usage in Kayas station and from traffic and a variety of human activities in Sıhhiye station in air samplings. While the elements of natural origin observed in PM10 fraction, the elements from traffic and human activities were in PM2.5. Eventually, enrichment calculations were performed in order to identify the pollution sources.

  16. Observations of the effect of atmospheric processes on the genotoxic potency of airborne particulate matter

    DEFF Research Database (Denmark)

    Feilberg, Anders; Nielsen, Torben; Binderup, Mona-Lise

    2002-01-01

    In this study, the relationship between genotoxic potency and the occurrence of polycyclic aromatic hydrocarbons (PAH), including benzo(a)pyrene (BaP), and nitro-PAH in urban and semi-rural air masses has been investigated. The Salmonella/microsome assay has been used as a measure of genotoxic...... potency. We find that the ratios of BaP/ mutagenicity and PAH/mutagenicity are highly variable. The processes responsible for the variation are formation and degradation of mutagens and transport of polluted air masses from heavily industrialized regions, Air masses from Central Europe are shown...... been used in the past as an indicator of the carcinogenic risk of airborne particles, it is suggested that the cancer risk of air pollution has to be re-evaluated....

  17. Automated method for simultaneous lead and strontium isotopic analysis applied to rainwater samples and airborne particulate filters (PM10).

    Science.gov (United States)

    Beltrán, Blanca; Avivar, Jessica; Mola, Montserrat; Ferrer, Laura; Cerdà, Víctor; Leal, Luz O

    2013-09-03

    A new automated, sensitive, and fast system for the simultaneous online isolation and preconcentration of lead and strontium by sorption on a microcolumn packed with Sr-resin using an inductively coupled plasma mass spectrometry (ICP-MS) detector was developed, hyphenating lab-on-valve (LOV) and multisyringe flow injection analysis (MSFIA). Pb and Sr are directly retained on the sorbent column and eluted with a solution of 0.05 mol L(-1) ammonium oxalate. The detection limits achieved were 0.04 ng for lead and 0.03 ng for strontium. Mass calibration curves were used since the proposed system allows the use of different sample volumes for preconcentration. Mass linear working ranges were between 0.13 and 50 ng and 0.1 and 50 ng for lead and strontium, respectively. The repeatability of the method, expressed as RSD, was 2.1% and 2.7% for Pb and Sr, respectively. Environmental samples such as rainwater and airborne particulate (PM10) filters as well as a certified reference material SLRS-4 (river water) were satisfactorily analyzed obtaining recoveries between 90 and 110% for both elements. The main features of the LOV-MSFIA-ICP-MS system proposed are the capability to renew solid phase extraction at will in a fully automated way, the remarkable stability of the column which can be reused up to 160 times, and the potential to perform isotopic analysis.

  18. Mutagenic and recombinagenic activity of airborne particulates, PM10 and TSP, organic extracts in the Drosophila wing-spot test

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues Dihl, Rafael [Programa de Pos Graduacao em Genetica e Biologia Molecular (PPGBM), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Grazielli Azevedo da Silva, Carla [Instituto de Quimica, Departamento de Quimica Organica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Souza do Amaral, Viviane; Reguly, Maria Luiza [Laboratorio de Diagnostico da Toxicidade Genetica (TOXIGEN), Programa de Pos Graduacao em Genetica e Toxicologia Aplicada (PPGGTA), Universidade Luterana do Brasil - ULBRA, Avenida Farroupilha 8001, 92420280 Canoas, RS (Brazil); Rodrigues de Andrade, Heloisa Helena [Laboratorio de Diagnostico da Toxicidade Genetica (TOXIGEN), Programa de Pos Graduacao em Genetica e Toxicologia Aplicada (PPGGTA), Universidade Luterana do Brasil -ULBRA, Avenida Farroupilha 8001, 92420280 Canoas, RS (Brazil)], E-mail: heloisa@ulbra.br

    2008-01-15

    The genotoxicity associated with air pollution in the city of Canoas, Rio Grande do Sul (Brazil), was assessed in November (spring) and January (summer). We applied the somatic mutation and recombination test (SMART) in Drosophila melanogaster in its standard version with normal bioactivation (ST) and in its variant with increased cytochrome P450-dependent biotransformation capacity (HB). The data indicated the genotoxicity of TSP and PM10 collected in November, in both ST and HB crosses. The genotoxic activity of the PM10 material in the spring sample was exclusively associated with the induction of mitotic recombination, whereas the TSP genetic toxicity was due to both recombinational as well as point and/or chromosomal mutation events. Considering PM10 collected in January, a positive response-100% (17.10 m{sup 3}/ml) concentration-was observed in the HB cross, which was not detected in the ST cross. - Drosophila Wing-Spot Test can be used for detection of airborne particulates mutagenesis.

  19. In vitro alveolar cytotoxicity of soluble components of airborne particulate matter: effects of serum on toxicity of transition metals.

    Science.gov (United States)

    Okeson, C D; Riley, M R; Riley-Saxton, E

    2004-10-01

    Respiration of fossil fuel-derived airborne particulate matter (PM) has been linked to various pulmonary disorders. Transition metals contained in such PM, such as zinc, iron and vanadium, have been suggested as the primary culprits in PM-induced pulmonary distress by rat instillation studies. In this study, the cytotoxicity of zinc, iron, and vanadium on confluent monolayers of rat alveolar epithelial cells was evaluated as the inhibition of cellular succinate dehydrogenase metabolic activity as quantified via the MTT assay. In addition, the effect of culture medium serum concentration on the toxicities of these three metals was investigated. Of the three metals tested, zinc was the most toxic, with an EC50 of 0.6 mM in culture medium with 10% serum; vanadium and iron had EC50's of 3 and 4 mM, respectively. Serum in culture medium was found to substantially reduce the apparent toxicity of zinc: EC50's for zinc ranged from 0.6 mM in 10% serum to 0.1 mM in serum-free medium. Zinc toxicity analyses in various culture medium conditions demonstrated that the toxicity-reducing effect of serum was due largely and perhaps entirely, to serum albumin. Some, but not all of the effect of serum and albumin on zinc toxicity is apparently due to zinc-albumin binding.

  20. Cleanroom airborne particulate limits and 70% isopropyl alcohol: a lingering problem for pharmaceutical manufacturing?

    Science.gov (United States)

    Eaton, Tim

    2009-01-01

    Seventy percent isopropyl alcohol (70% IPA) in water for injection is extensively utilised within pharmaceutical cleanrooms for glove and surface disinfection. When supplied in pressurised containers and delivered as an aerosol, it has been demonstrated that large quantities of 70% IPA particles are generated that remain airborne for substantial periods of time. Within non-unidirectional airflow cleanroom areas, such particles are likely to be recorded by the particle monitoring system. Consequently, the derived operational limits for particles will almost certainly be at "artificially high" levels and any particle generating activities with contamination potential may be masked. These high particle levels may not comply with the requirements of Annex 1 of the European Unions Guide to Good Manufacturing Practices (EU GGMP) and the United States Food and Drug Administration (FDA) Aseptic Processing Guideline. This is the case predominantly for the larger particles (> or =5 microm), the monitoring of which is exclusively required by the Annex 1 guide. However, by using canisters that deliver the 70% IPA as a stream, large quantities of particles are not generated and more meaningful and compliant operational levels can be obtained. Additionally, the EU GGMP's Annex 1 continuing requirement to monitor particles > or =5 microm appears to have little value or scientific justification and restricts further harmonisation of the European guide with the US FDA Aseptic Processing Guideline.

  1. Analytical in vitro approach for studying cyto- and genotoxic effects of particulate airborne material.

    Science.gov (United States)

    Aufderheide, Michaela; Scheffler, Stefanie; Möhle, Niklas; Halter, Beat; Hochrainer, Dieter

    2011-12-01

    In the field of inhalation toxicology, progress in the development of in vitro methods and efficient exposure strategies now offers the implementation of cellular-based systems. These can be used to analyze the hazardous potency of airborne substances like gases, particles, and complex mixtures (combustion products). In addition, the regulatory authorities require the integration of such approaches to reduce or replace animal experiments. Although the animal experiment currently still has to provide the last proof of the toxicological potency and classification of a certain compound, in vitro testing is gaining more and more importance in toxicological considerations. This paper gives a brief characterization of the CULTEX® Radial Flow System exposure device, which allows the exposure of cultivated cells as well as bacteria under reproducible and stable conditions for studying cellular and genotoxic effects after the exposure at the air-liquid or air-agar interface, respectively. A commercial bronchial epithelial cell line (16HBE14o-) as well as Salmonella typhimurium tester strains were exposed to smoke of different research and commercial available cigarettes. A dose-dependent reduction of cell viability was found in the case of 16HBE14o- cells; S. typhimurium responded with a dose-dependent induction of revertants. The promising results recommend the integration of cellular studies in the field of inhalation toxicology and their regulatory acceptance by advancing appropriate validation studies.

  2. Dust storm contributions to airborne particulate matter in Reykjavík, Iceland

    Science.gov (United States)

    Thorsteinsson, Throstur; Gísladóttir, Guđrún; Bullard, Joanna; McTainsh, Grant

    2011-10-01

    Episodes of high levels of particulate matter (PM) in Reykjavík occur several times a year. The main sources of daily variation in PM are traffic or highly localized (e.g. construction) sources, however several episodes have been identified where these are not the cause. Examining PM10 (diameter 50-100 μg m-3; 30-min average), demonstrates that dust storms are the source of these increased levels of PM10. Since satellite coverage is sparse, visual confirmation of many such peaks in PM10 cannot be achieved. The level of pollution measured in Reykjavík during dust storms indicates that at least 200 kg s-1 of PM10 sized material is being eroded and transported away from sand plains ˜110 km away - this equates to an emission rate of 35 g m2 h-1. The source regions for dust storms in Iceland are the sandur areas on the southern coast of Iceland, and regions close to the glaciers. With climate warming, and fast retreating glaciers, the potential source regions in Iceland are rapidly increasing.

  3. Implications of ammonia emissions from post-combustion carbon capture for airborne particulate matter.

    Science.gov (United States)

    Heo, Jinhyok; McCoy, Sean T; Adams, Peter J

    2015-04-21

    Amine scrubbing, a mature post-combustion carbon capture and storage (CCS) technology, could increase ambient concentrations of fine particulate matter (PM2.5) due to its ammonia emissions. To capture 2.0 Gt CO2/year, for example, it could emit 32 Gg NH3/year in the United States given current design targets or 15 times higher (480 Gg NH3/year) at rates typical of current pilot plants. Employing a chemical transport model, we found that the latter emission rate would cause an increase of 2.0 μg PM2.5/m(3) in nonattainment areas during wintertime, which would be troublesome for PM2.5-burdened areas, and much lower increases during other seasons. Wintertime PM2.5 increases in nonattainment areas were fairly linear at a rate of 3.4 μg PM2.5/m(3) per 1 Tg NH3, allowing these results to be applied to other CCS emissions scenarios. The PM2.5 impacts are modestly uncertain (±20%) depending on future emissions of SO2, NOx, and NH3. The public health costs of CCS NH3 emissions were valued at $31-68 per tonne CO2 captured, comparable to the social cost of carbon itself. Because the costs of solvent loss to CCS operators are lower than the social costs of CCS ammonia, there is a regulatory interest to limit ammonia emissions from CCS.

  4. Analysis of traffic and meteorology on airborne particulate matter in Münster, northwest Germany.

    Science.gov (United States)

    Gietl, Johanna K; Klemm, Otto

    2009-07-01

    The importance of street traffic and meteorological conditions on the concentrations of particulate matter (PM) with an aerodynamic diameter smaller than 10 microm (PM10) was studied in the city of Münster in northwest Germany. The database consisted of meteorological data, data of PM10 mass concentrations and fine particle number (6-225 nm diameter) concentrations, and traffic intensity data as counted with tally hand counters at a four- to six-lane road. On working days, a significant correlation could be found between the diurnal mean PM10 mass concentration and vehicle number. The lower number of heavy-duty vehicles compared with passenger cars contributed more to the particle number concentration on working days than on weekend days. On weekends, when the vehicle number was very low, the correlation between PM10 mass concentration and vehicle number changed completely. Other sources of PM and the meteorology dominated the PM concentration. Independent of the weekday, by decreasing the traffic by approximately 99% during late-night hours, the PM10 concentration was reduced by 12% of the daily mean value. A correlation between PM10 and the particle number concentration was found for each weekday. In this study, meteorological parameters, including the atmospheric stability of the boundary layer, were also accounted for. The authors deployed artificial neural networks to achieve more information on the influence of various meteorological parameters, traffic, and the day of the week. A multilayer perceptron network showed the best results for predicting the PM10 concentration, with the correlation coefficient being 0.72. The influence of relative humidity, temperature, and wind was strong, whereas the influence of atmospheric stability and the traffic parameters was weak. Although traffic contributes a constant amount of particles in a daily and weekly cycle, it is the meteorology that drives most of the variability.

  5. Composition and size distribution of airborne particulate PAHs and oxygenated PAHs in two Chinese megacities

    Science.gov (United States)

    Ren, Yanqin; Zhou, Bianhong; Tao, Jun; Cao, Junji; Zhang, Zhisheng; Wu, Can; Wang, Jiayuan; Li, Jianjun; Zhang, Lu; Han, Yanni; Liu, Lang; Cao, Cong; Wang, Gehui

    2017-01-01

    Concentrations and compositions of PAHs and oxygenated PAHs (OPAHs) in four size ranges of ambient particles ( 9.0 μm) collected in Xi'an and Guangzhou, two megacities of China, during the winter and summer of 2013 were measured and compared with those in 2003. The TSP-equivalent concentrations of Σ14PAHs in Xi'an and Guangzhou are 57 ± 20 and 18 ± 23 ng m- 3 in winter, 5-10 times higher than those in summer. PAHs in both cities are dominated by 5- and 6-ring congeners in summer. In contrast, they are dominated by 4- and 5-ring congeners in winter, probably due to enhanced gas-to-particle phase partitioning of the semi-volatile PAHs. TSP-equivalent Σ7OPAHs during winter are 54 ± 15 and 23 ± 32 ng m- 3 in Xi'an and Guangzhou and dominated by 5-ring OPAHs. Size distribution results showed that the fine modes (PAHs and OPAHs in both cities are dominated by 4- and 5-ring congeners in winter and 5- and 6-ring congeners in summer. Relative abundances of 3-ring PAHs and OPAHs increased along with an increase in particle sizes, accounting for from about 1% of the total PAHs or OPAHs in the smallest particles ( 90% of the total in the largest particles (> 9.0 μm). The toxicity of PAH assessment indicated that atmospheric particles in Xi'an and Guangzhou during winter are much more toxic than those during summer and fine particles are more toxic than coarse particles. Compared to those in 2003, fine particulate PAHs and OPAHs in both cities during winter decreased by 50-90%, most likely due to the replacement of coal by natural gas in the country.

  6. Temperature-induced volatility of molecular markers in ambient airborne particulate matter

    Directory of Open Access Journals (Sweden)

    C. R. Ruehl

    2010-08-01

    Full Text Available Molecular markers are organic compounds used to represent known sources of particulate matter (PM in statistical source apportionment studies. The utility of molecular markers depends on, among other things, their ability to represent PM volatility under realistic atmospheric conditions. We measured the particle-phase concentrations and temperature-induced volatility of commonly-used molecular markers in California's heavily polluted San Joaqin Valley. Concentrations of elemental carbon, organic carbon, levoglucosan, and polycyclic aromatic hydrocarbons were not reduced by mild (~10 K heating. In contrast, both hopane/sterane and n-alkane concentrations were reduced, especially during the summer sampling events at the urban site. These results suggest that hopanes and steranes have effective saturation concentrations ~1 μg m−3, and therefore can be considered semi-volatile in realistic ambient conditions. The volatility behavior of n-alkanes during the urban summer is consistent with that predicted for absorption by suberic acid (a C8 diacid using a group contribution modelling method. Observations can also be matched by an absorbent whose composition is based on recently-obtained high-resolution aerosol mass spectrometer factors (approximately 33% "hydrocarbon-like" and 67% oxygenated organic aerosol. The diminished volatility of the n-alkanes, hopanes, and steranes during rural and/or winter experiments could be explained by a more oxygenated absorbing phase along with a non-absorptive partitioning mechanism, such as adsorption to soot. This suggests that the temperature-induced volatility of large hydrocarbons in PM is most important if a relatively non-polar absorbing organic phase exists. While the activity coefficients of most organic aerosol compounds may be close to unity, the assumption of ideality for large hydrocarbons (e.g., hopanes may result in large errors in partitioning calculations.

  7. Assessing the performance of methods to detect and quantify African dust in airborne particulates.

    Science.gov (United States)

    Viana, Mar; Salvador, Pedro; Artíñano, Begoña; Querol, Xavier; Alastuey, Andrés; Pey, Jorge; Latz, Achim J; Cabañas, Mercè; Moreno, Teresa; García dos Santos, Saúl; Herce, María Dolores; Diez Hernández, Pablo; Romero García, Dolores; Fernández-Patier, Rosalía

    2010-12-01

    African dust (AD) contributions to particulate matter (PM) levels may be reported by Member States to the European Commission during justification of exceedances of the daily limit value (DLV). However, the detection and subsequent quantification of the AD contribution to PM levels is complex, and only two measurement-based methods are available in the literature: the Spanish-Portuguese reference method (SPR), and the Tel Aviv University method (TAU). In the present study, both methods were assessed. The SPR method was more conservative in the detection of episodes (71 days identified as AD by SPR, vs 81 by TAU), as it is less affected by interferences with local dust sources. The mean annual contribution of AD was lower with the TAU method than with SPR (2.7 vs 3.5 ± 1.5 μg/m(3)). The SPR and TAU AD time series were correlated with daily aluminum levels (a known tracer of AD), as well as with an AD source identified by the Positive Matrix Factorization (PMF) receptor model. Higher r(2) values were obtained with the SPR method than with TAU in both cases (r(2) = 0.72 vs 0.56, y = 0.05x vs y = 0.06x with aluminum levels; r(2)=0.79 vs 0.43, y = 0.8x vs y = 0.4x with the PMF source). We conclude that the SPR method is more adequate from an EU policy perspective (justification of DLV exceedances) due to the fact that it is more conservative than the TAU method. Based on our results, the TAU method requires adaptation of the thresholds in the algorithm to refine detection of low-impact episodes and avoid misclassification of local events as AD.

  8. Tonopah Test Range Air Monitoring: CY2013 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A [DRI; Nikolich, George [DRI; Shadel, Craig [DRI; McCurdy, Greg [DRI; Etyemezian, Vicken [DRI; Miller, Julianne J [DRI

    2014-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during on-going monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2013 monitoring include: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2012 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations (this was the latest documented data available at the time of this writing); (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. However, differences in the observed dust concentrations are likely due to differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  9. Tonopah Test Range Air Monitoring. CY2014 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Nikoloch, George [Desert Research Inst. (DRI), Las Vegas, NV (United States); Shadel, Craig [Desert Research Inst. (DRI), Las Vegas, NV (United States); Chapman, Jenny [Desert Research Inst. (DRI), Las Vegas, NV (United States); Mizell, Steve A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Las Vegas, NV (United States); Etyemezian, Vicken [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J. [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2015-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2014 monitoring are: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2014 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations; (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. Differences in the observed dust concentrations are likely the result of differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  10. Chemical characteristics and causes of airborne particulate pollution in warm seasons in Wuhan, central China

    Science.gov (United States)

    Lyu, Xiaopu; Chen, Nan; Guo, Hai; Zeng, Lewei; Zhang, Weihao; Shen, Fan; Quan, Jihong; Wang, Nan

    2016-08-01

    Continuous measurements of airborne particles and their chemical compositions were conducted in May, June, October, and November 2014 at an urban site in Wuhan, central China. The results indicate that particle concentrations remained at a relatively high level in Wuhan, with averages of 135.1 ± 4.4 (mean ± 95 % confidence interval) and 118.9 ± 3.7 µg m-3 for PM10 and 81.2 ± 2.6 and 85.3 ± 2.6 µg m-3 for PM2.5 in summer and autumn, respectively. Moreover, PM2.5 levels frequently exceeded the National Standard Level II (i.e., daily average of 75 µg m-3), and six PM2.5 episodes (i.e., daily PM2.5 averages above 75 µg m-3 for 3 or more consecutive days) were captured during the sampling campaign. Potassium was the most abundant element in PM2.5, with an average concentration of 2060.7 ± 82.3 ng m-3; this finding indicates intensive biomass burning in and around Wuhan during the study period, because almost no correlation was found between potassium and mineral elements (iron and calcium). The source apportionment results confirm that biomass burning was the main cause of episodes 1, 3, and 4, with contributions to PM2.5 of 46.6 % ± 3.0 %, 50.8 % ± 1.2 %, and 44.8 % ± 2.6%, respectively, whereas fugitive dust was the leading factor in episode 2. Episodes 5 and 6 resulted mainly from increases in vehicular emissions and secondary inorganic aerosols, and the mass and proportion of NO3- both peaked during episode 6. The high levels of NOx and NH3 and the low temperature during episode 6 were responsible for the increase of NO3-. Moreover, the formation of secondary organic carbon was found to be dominated by aromatics and isoprene in autumn, and the contribution of aromatics to secondary organic carbon increased during the episodes.

  11. Chemical composition and size distribution of airborne particulate matters in Beijing during the 2008 Olympics

    Science.gov (United States)

    Li, Xingru; Wang, Lili; Wang, Yuesi; Wen, Tianxue; Yang, Yongjie; Zhao, Yanan; Wang, Yingfeng

    2012-04-01

    burning. The concentrations of atmospheric pollutants declined during the 2008 Olympic Games, indicating that the pollution control measures were effective in decreasing particulate air pollution in Beijing.

  12. Temperature-induced volatility of molecular markers in ambient airborne particulate matter

    Directory of Open Access Journals (Sweden)

    C. R. Ruehl

    2011-01-01

    Full Text Available Molecular markers are organic compounds used to represent known sources of particulate matter (PM in statistical source apportionment studies. The utility of molecular markers depends on, among other things, their ability to represent PM volatility under realistic atmospheric conditions. We measured the particle-phase concentrations and temperature-induced volatility of commonly-used molecular markers in California's heavily polluted San Joaqin Valley. Concentrations of elemental carbon, organic carbon, levoglucosan, and polycyclic aromatic hydrocarbons were not reduced by mild (~10 K heating. In contrast, both hopane/sterane and n-alkane concentrations were reduced, especially during the summer sampling events at the urban site. These results suggest that hopanes and steranes have effective saturation concentrations ~1 μg m−3, and therefore can be considered semi-volatile. The volatility of an individual compound depends both on its inherent properties (primarily vapour pressure and the interactions between itself and any potential absorbing phase. The volatility behavior of n-alkanes during the urban summer is consistent with that predicted for absorption by suberic acid (a C8 diacid using a group contribution modelling method. Observations can also be matched by an absorbent whose composition is based on recently-obtained high-resolution aerosol mass spectrometer factors (approximately 33% "hydrocarbon-like" and 67% oxygenated organic aerosol. The reduced evaporation of the n-alkanes, hopanes, and steranes with mild heating during rural and/or winter experiments could be explained by a more oxygenated absorbing phase along with a non-absorptive partitioning mechanism, such as adsorption to soot. This suggests that the temperature-induced volatility of large hydrocarbons in PM is most important if a relatively non-polar absorbing organic phase exists. While the activity coefficients of most organic

  13. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hong [Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY (United States); Shamy, Magdy [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Kluz, Thomas; Muñoz, Alexandra B.; Zhong, Mianhua; Laulicht, Freda [Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY (United States); Alghamdi, Mansour A.; Khoder, Mamdouh I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Chen, Lung-Chi [Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY (United States); Costa, Max, E-mail: Max.Costa@nyumc.org [Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY (United States)

    2012-12-01

    Epidemiological studies have established a positive correlation between human mortality and increased concentration of airborne particulate matters (PM). However, the mechanisms underlying PM related human diseases, as well as the molecules and pathways mediating the cellular response to PM, are not fully understood. This study aims to investigate the global gene expression changes in human cells exposed to PM{sub 10} and to identify genes and pathways that may contribute to PM related adverse health effects. Human bronchial epithelial cells were exposed to PM{sub 10} collected from Saudi Arabia for 1 or 4 days, and whole transcript expression was profiled using the GeneChip human gene 1.0 ST array. A total of 140 and 230 genes were identified that significantly changed more than 1.5 fold after PM{sub 10} exposure for 1 or 4 days, respectively. Ingenuity Pathway Analysis revealed that different exposure durations triggered distinct pathways. Genes involved in NRF2-mediated response to oxidative stress were up-regulated after 1 day exposure. In contrast, cells exposed for 4 days exhibited significant changes in genes related to cholesterol and lipid synthesis pathways. These observed changes in cellular oxidative stress and lipid synthesis might contribute to PM related respiratory and cardiovascular disease. -- Highlights: ► PM exposure modulated gene expression and associated pathways in BEAS-2B cells. ► One-day exposure to PM induced genes involved in responding to oxidative stress. ► 4-day exposure to PM changed genes associated to cholesterol and lipid synthesis.

  14. Oxidative stress-induced telomeric erosion as a mechanism underlying airborne particulate matter-related cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Grahame Thomas J

    2012-06-01

    Full Text Available Abstract Particulate matter (PM pollution is responsible for hundreds of thousands of deaths worldwide, the majority due to cardiovascular disease (CVD. While many potential pathophysiological mechanisms have been proposed, there is not yet a consensus as to which are most important in causing pollution-related morbidity/mortality. Nor is there consensus regarding which specific types of PM are most likely to affect public health in this regard. One toxicological mechanism linking exposure to airborne PM with CVD outcomes is oxidative stress, a contributor to the development of CVD risk factors including atherosclerosis. Recent work suggests that accelerated shortening of telomeres and, thus, early senescence of cells may be an important pathway by which oxidative stress may accelerate biological aging and the resultant development of age-related morbidity. This pathway may explain a significant proportion of PM-related adverse health outcomes, since shortened telomeres accelerate the progression of many diseases. There is limited but consistent evidence that vehicular emissions produce oxidative stress in humans. Given that oxidative stress is associated with accelerated erosion of telomeres, and that shortened telomeres are linked with acceleration of biological ageing and greater incidence of various age-related pathology, including CVD, it is hypothesized that associations noted between certain pollution types and sources and oxidative stress may reflect a mechanism by which these pollutants result in CVD-related morbidity and mortality, namely accelerated aging via enhanced erosion of telomeres. This paper reviews the literature providing links among oxidative stress, accelerated erosion of telomeres, CVD, and specific sources and types of air pollutants. If certain PM species/sources might be responsible for adverse health outcomes via the proposed mechanism, perhaps the pathway to reducing mortality/morbidity from PM would become clearer

  15. Airborne agricultural particulate matter induces inflammatory cytokine secretion by respiratory epithelial cells: mechanisms of regulation by eicosanoid lipid signal mediators.

    Science.gov (United States)

    Malireddy, Smitha; Lawson, Courtney; Steinhour, Emily; Hart, Judy; Kotha, Sainath R; Patel, Rishi B; Zhao, Lingying; Wilkins, John R; Marsh, Clay B; Magalang, Ulysses J; Romberger, Debra; Wewers, Mark D; Parinandi, Narasimham L

    2013-10-01

    The purpose of this study was to elucidate the mechanism of the airborne poultry dust (particulate matter, PM)-induced respiratory tract inflammation, a common symptom in agricultural respiratory diseases. The study was based on the hypothesis that poultry PM would induce the release of inflammatory cytokine interleukin-8 (IL-8) by respiratory epithelial cells under the upstream regulation by cytosolic phospholipase A2 (cPLA2) activation and subsequent formation of cyclooxygenase (COX)- and lipoxygenase (LOX)-catalyzed arachidonic acid (AA) metabolites (eicosanoids). Human lung epithelial cells (A549) in culture were treated with the poultry PM (0.1-1.0 mg) for different lengths of time, following which PLA2 activity, release of eicosanoids and secretion of IL-8 in cells were determined. Poultry PM (1.0 mg/ml) caused a significant activation of PLA2 in a time-dependent manner (15-60 min), which was significantly attenuated by the calcium-chelating agents, cPLA2-specific inhibitor (AACOCF3) and antioxidant (vitamin C) in A549 cells. Poultry PM also significantly induced the release of COX- and LOX-catalyzed eicosanoids (prostaglandins, thromboxane A2 and leukotrienes B4 and C4) and upstream activation of AA LOX in the cells. Poultry PM also significantly induced release of IL-8 by the cells in a dose- and time-dependent manner, which was significantly attenuated by the calcium chelating agents, antioxidants and COX- and LOX-specific inhibitors. The current study for the first time revealed that the poultry PM-induced IL-8 release from the respiratory epithelial cells was regulated upstream by reactive oxygen species, cPLA2-, COX- and LOX-derived eicosanoid lipid signal mediators.

  16. Climate impact on airborne particulate matter concentrations in California using seven year analysis periods

    Directory of Open Access Journals (Sweden)

    A. Mahmud

    2010-02-01

    Full Text Available The effect of global climate change on the annual average concentration of fine particulate matter (PM2.5 in California was studied using a climate – air quality modeling system composed of global through regional models. Output from the NCAR/DOE Parallel Climate Model (PCM generated under the "business as usual" global emissions scenario was downscaled using the Weather Research and Forecasting (WRF model followed by air quality simulations using the UCD/CIT airshed model. The air quality simulations were carried out for the entire state of California with a resolution of 8-km for the years 2000–2006 (present climate and 2047–2053 (future climate. The 7-year windows were chosen to properly account for annual variability with the added benefit that the air quality predictions under the present climate could be compared to actual measurements. The climate – air quality modeling system successfully predicted the spatial pattern of present climate PM2.5 concentrations in California but the absolute magnitude of the annual average PM2.5 concentrations were under-predicted by ~35–40% in the major air basins. The majority of this under-prediction was caused by excess ventilation predicted by PCM-WRF that should be present to the same degree in the current and future time periods so that the net bias introduced into the comparison is minimized.

    Surface temperature, relative humidity (RH, rain rate, and wind speed were predicted to increase in the future climate while the ultra violet (UV radiation was predicted to decrease in major urban areas in the San Joaquin Valley (SJV and South Coast Air Basin (SoCAB. These changes resulted in a ~0.6–1.9 μg m−3 decrease in predicted PM2.5 concentrations in coastal and central Los Angeles. Annual average PM2.5 concentrations were predicted to increase at certain locations within the SJV and the Sacramento Valley due to the

  17. Airborne particulates. European directives and standardization; Matieres particulaires dans l`air ambiant directives europeennes et normalisation

    Energy Technology Data Exchange (ETDEWEB)

    Houdret, J.L. [Ecole Nationale Superieure des Mines, 59 - Douai (France)

    1996-12-31

    The development of future European directives concerning atmospheric dusts and particulates, organization of the in-charge committee, measurement requirements and limit value determination processes are presented. Various measuring methods and instruments used for particulate and aerosol measurements are reviewed

  18. Climate impact on airborne particulate matter concentrations in California using seven year analysis periods

    Science.gov (United States)

    Mahmud, A.; Hixson, M.; Hu, J.; Zhao, Z.; Chen, S.-H.; Kleeman, M. J.

    2010-11-01

    The effect of global climate change on the annual average concentration of fine particulate matter (PM2.5) in California was studied using a climate-air quality modeling system composed of global through regional models. Output from the NCAR/DOE Parallel Climate Model (PCM) generated under the "business as usual" global emissions scenario was downscaled using the Weather Research and Forecasting (WRF) model followed by air quality simulations using the UCD/CIT airshed model. The system represents major atmospheric processes acting on gas and particle phase species including meteorological effects on emissions, advection, dispersion, chemical reaction rates, gas-particle conversion, and dry/wet deposition. The air quality simulations were carried out for the entire state of California with a resolution of 8-km for the years 2000-2006 (present climate with present emissions) and 2047-2053 (future climate with present emissions). Each of these 7-year analysis periods was analyzed using a total of 1008 simulated days to span a climatologically relevant time period with a practical computational burden. The 7-year windows were chosen to properly account for annual variability with the added benefit that the air quality predictions under the present climate could be compared to actual measurements. The climate-air quality modeling system successfully predicted the spatial pattern of present climate PM2.5 concentrations in California but the absolute magnitude of the annual average PM2.5 concentrations were under-predicted by ~4-39% in the major air basins. The majority of this under-prediction was caused by excess ventilation predicted by PCM-WRF that should be present to the same degree in the current and future time periods so that the net bias introduced into the comparison is minimized. Surface temperature, relative humidity (RH), rain rate, and wind speed were predicted to increase in the future climate while the ultra violet (UV) radiation was predicted to decrease

  19. Climate impact on airborne particulate matter concentrations in California using seven year analysis periods

    Directory of Open Access Journals (Sweden)

    A. Mahmud

    2010-11-01

    Full Text Available The effect of global climate change on the annual average concentration of fine particulate matter (PM2.5 in California was studied using a climate-air quality modeling system composed of global through regional models. Output from the NCAR/DOE Parallel Climate Model (PCM generated under the "business as usual" global emissions scenario was downscaled using the Weather Research and Forecasting (WRF model followed by air quality simulations using the UCD/CIT airshed model. The system represents major atmospheric processes acting on gas and particle phase species including meteorological effects on emissions, advection, dispersion, chemical reaction rates, gas-particle conversion, and dry/wet deposition. The air quality simulations were carried out for the entire state of California with a resolution of 8-km for the years 2000–2006 (present climate with present emissions and 2047–2053 (future climate with present emissions. Each of these 7-year analysis periods was analyzed using a total of 1008 simulated days to span a climatologically relevant time period with a practical computational burden. The 7-year windows were chosen to properly account for annual variability with the added benefit that the air quality predictions under the present climate could be compared to actual measurements. The climate-air quality modeling system successfully predicted the spatial pattern of present climate PM2.5 concentrations in California but the absolute magnitude of the annual average PM2.5 concentrations were under-predicted by ~4–39% in the major air basins. The majority of this under-prediction was caused by excess ventilation predicted by PCM-WRF that should be present to the same degree in the current and future time periods so that the net bias introduced into the comparison is minimized.

    Surface temperature, relative humidity (RH, rain rate, and wind speed were predicted to increase in the future climate

  20. Monitoring and Method development of Hg in Istanbul Airborne Particulates by Solid Sampling Continuum Source-High Resolution Electrothermal Atomic Absorption Spectromerty

    Directory of Open Access Journals (Sweden)

    Soydemir E.

    2014-07-01

    Full Text Available In this work, a method has been developed and monitoring for the determination of mercury in PM2.5 airborne particulates by solid sampling high-resolution continuum source electrothermal atomic absorption spectrometry. The PM2.5 airborne particulates were collected on quartz filters using high volume samplers (500 L/min in Istanbul (Turkey for 96 hours every month in one year. At first, experimental conditions as well as the validation tests were optimized using collected filter. For this purpose, the effects of atomization temperature, amount of sample intoduced in to the furnace, addition of acids and/or KMnO4 on the sample, covering of graphite tube and platform or using of Ag nanoparticulates, Au nanoparticulates, and Pd solutions on the accuracy and precision were investigated. After optimization of the experimental conditions, the mercury concentrations were determined in the collected filter. The filters with PM2.5 airborne particulates were dried, divided into small fine particles and then Hg concentrations were determined directly. In order to eliminate any error due to the sensitivity difference between aqueous standards and solid samples, the quantification was performed using solid calibrants. The limit of detection, based on three times the standard deviations for ten atomizations of an unused filter, was 30 ng/g. The Hg content was dependent on the sampling site, season etc, ranging from

  1. Determination of heavy metals concentrations in airborne particulates matter (APM) from Manjung district, Perak using energy dispersive X-ray fluorescence (EDXRF) spectrometer

    Science.gov (United States)

    Arshad, Nursyairah; Hamzah, Zaini; Wood, Ab. Khalik; Saat, Ahmad; Alias, Masitah

    2015-04-01

    Airborne particulates trace metals are considered as public health concern as it can enter human lungs through respiratory system. Generally, any substance that has been introduced to the atmosphere that can cause severe effects to living things and the environment is considered air pollution. Manjung, Perak is one of the development districts that is active with industrial activities. There are many industrial activities surrounding Manjung District area such as coal fired power plant, quarries and iron smelting which may contribute to the air pollution into the environment. This study was done to measure the concentrations of Hg, U, Th, K, Cu, Fe, Cr, Zn, As, Se, Pb and Cd in the Airborne Particulate Matter (APM) collected at nine locations in Manjung District area within 15 km radius towards three directions (North, North-East and South-East) in 5 km intervals. The samples were collected using mini volume air sampler with cellulose filter through total suspended particulate (TSP). The sampler was set up for eight hours with the flow rate of 5 L/min. The filter was weighed before and after sample collection using microbalance, to get the amount of APM and kept in desiccator before analyzing. The measurement was done using calibrated Energy Dispersive X-Ray Fluorescence (EDXRF) Spectrometer. The air particulate concentrations were found below the Malaysia Air Quality Guidelines for TSP (260 µg/m3). All of the metals concentrations were also lower than the guidelines set by World Health Organization (WHO), Ontario Ministry of the Environment and Argonne National Laboratory, USA NCRP (1975). From the concentrations, the enrichment factor were calculated.

  2. A pilot study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain.

    Science.gov (United States)

    Bhatt, Dhaval P; Puig, Kendra L; Gorr, Matthew W; Wold, Loren E; Combs, Colin K

    2015-01-01

    Exposure to air pollutants, including particulate matter, results in activation of the brain inflammatory response and Alzheimer disease (AD)-like pathology in dogs and humans. However, the length of time required for inhalation of ambient particulate matter to influence brain inflammation and AD pathology is less clear. Here, we studied the effect of 3 and 9 months of air particulate matter (PM2.5) exposure on brain inflammatory phenotype and pathological hallmarks of AD in C57BL/6 mice. Using western blot, ELISA, and cytokine array analysis we quantified brain APP, beta-site APP cleaving enzyme (BACE), oligomeric protein, total Aβ 1-40 and Aβ 1-42 levels, inducible nitric oxide synthase (iNOS), nitrotyrosine-modified proteins, HNE-Michael adducts, vascular cell adhesion molecule 1 (VCAM-1), glial markers (GFAP, Iba-1), pre- and post- synaptic markers (synaptophysin and PSD-95), cyclooxygenase (COX-1, COX-2) levels, and the cytokine profile in PM2.5 exposed and filtered air control mice. Only 9 month PM2.5 exposure increased BACE protein levels, APP processing, and Aβ 1-40 levels. This correlated with a concomitant increase in COX-1 and COX-2 protein levels and a modest alteration in the cytokine profile. These data support the hypothesis that prolonged exposure to airborne particulate matter has the potential to alter brain inflammatory phenotype and promote development of early AD-like pathology.

  3. A pilot study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Dhaval P Bhatt

    Full Text Available Exposure to air pollutants, including particulate matter, results in activation of the brain inflammatory response and Alzheimer disease (AD-like pathology in dogs and humans. However, the length of time required for inhalation of ambient particulate matter to influence brain inflammation and AD pathology is less clear. Here, we studied the effect of 3 and 9 months of air particulate matter (<2.5 μm diameter, PM2.5 exposure on brain inflammatory phenotype and pathological hallmarks of AD in C57BL/6 mice. Using western blot, ELISA, and cytokine array analysis we quantified brain APP, beta-site APP cleaving enzyme (BACE, oligomeric protein, total Aβ 1-40 and Aβ 1-42 levels, inducible nitric oxide synthase (iNOS, nitrotyrosine-modified proteins, HNE-Michael adducts, vascular cell adhesion molecule 1 (VCAM-1, glial markers (GFAP, Iba-1, pre- and post- synaptic markers (synaptophysin and PSD-95, cyclooxygenase (COX-1, COX-2 levels, and the cytokine profile in PM2.5 exposed and filtered air control mice. Only 9 month PM2.5 exposure increased BACE protein levels, APP processing, and Aβ 1-40 levels. This correlated with a concomitant increase in COX-1 and COX-2 protein levels and a modest alteration in the cytokine profile. These data support the hypothesis that prolonged exposure to airborne particulate matter has the potential to alter brain inflammatory phenotype and promote development of early AD-like pathology.

  4. Stable isotope measurements of carbon fractions (OC/EC) in airborne particulate: A new dimension for source characterization and apportionment

    Science.gov (United States)

    Huang, L.; Brook, J. R.; Zhang, W.; Li, S. M.; Graham, L.; Ernst, D.; Chivulescu, A.; Lu, G.

    A method to measure 13C/ 12C ratios of individual carbon fractions of airborne particular matter (PM) from filter samples using a stepwise thermal desorption/combustion OC/EC analyzer (via thermal optical transmission, (TOT) coupled with gas chromatography separation, followed by isotopic ratio mass spectrometer (GC-IRMS) analysis has been developed. In the TOT instrument, carbon fractions are released at different temperature ranges and different redox conditions. Organic carbon fraction (OC) was released at a relatively low temperature ( T=550 °C), whereas, elemental carbon or black carbon fraction (EC or BC) was released at a high temperature ( T>800 °C) via combustion. A temperature step of 870 °C without oxygen was chosen to remove the impact of carbonate carbon (CC) and possible cross-impact from OC and EC. All the fractions were collected cryogenically and subject to carbon isotope measurements via GC-IRMS. To evaluate the precision, accuracy and linearity range of the measurements, the different types of blanks and standards were investigated, including OC (i.e. glucose, sucrose, n-Alkanes and polycyclic aromatic hydrocarbons (PAHs), CC (i.e. carbonates) and EC (i.e. carbon black and graphite). The overall precision and the accuracy of the method is ˜0.3‰. The method was applied to Pacific2001 aerosol samples from the Greater Vancouver area in Canada. The results show that good baseline separations in thermographs can be achieved for individual carbon fractions (i.e. OC and EC) using optimized temperature plateau and retention times; relative small difference in carbon isotopic composition between OC and EC ( ΔC=δ13C-δ13C) were found in tunnel samples, whereas, the largest Δ 13C OC-EC were obtained in forest air samples; the Δ 13C OC-EC in ambient PM is likely dependant upon the dominant sources present in the vicinity of the sampling sites; the distribution of 13C/ 12C ratios of OC/EC can provide useful information for source characterization

  5. The “geotoxicology” of airborne particulate matter: implications for public health, public policy, and environmental security (Invited)

    Science.gov (United States)

    Plumlee, G. S.; Morman, S. A.

    2009-12-01

    Exposures to airborne particulate matter (PM) have been documented and hypothesized as the cause of a wide variety of adverse health effects. Most attention has focused on potential health effects of occupational and environmental exposures to many types of anthropogenic PM, such as mineral dusts or combustion byproducts of fossil fuels. However, geogenic PM (produced from the Earth by natural processes) and geoanthropogenic PM (produced from natural sources but modified by human activities) are also increasingly of concern as potential agents of toxicity and disease, via both environmental and occupational exposures. Geotoxicology can be defined as the study of the toxicological characteristics and potential health effects of geogenic and geoanthropogenic earth materials. Acute exposures to high PM concentrations are associated with exacerbated asthma, other pulmonary inflammatory responses, cardiovascular problems, and other issues. Some diseases can result from inhalation of dust-borne pathogens. PM can contain bioaccessible (readily dissolved in the body’s fluids) contaminants that, if absorbed in sufficient doses, can trigger toxicity. Acutely bioreactive PM, such as alkaline wildfire ash or acidic volcanic fog, can trigger acute irritation or damage of the respiratory tract, eyes, and skin. Biodurable PM such as asbestos fibers and crystalline silica are poorly cleared by lung macrophages, do not readily dissolve in the fluids lining the lungs, and can therefore persist in the lungs for decades. In sufficient dose, pneumoconioses can result from exposure to biodurable minerals, and chronic fluid-mineral reactions in the body (such as redox cycling and formation of free radicals) are thought to help promote cancers such as lung cancer and (in the case of asbestos) mesothelioma. Many key research questions remain, such as the exact mechanisms by which many types of PM cause disease, or the levels of exposure above which various types of PM begin to pose a

  6. Measurement of airborne 131I, 134Cs, and 137Cs nuclides due to the Fukushima reactors accident in air particulate in Milan (Italy)

    CERN Document Server

    Clemenza, Massimiliano; Previtali, Ezio; Sala, Elena

    2011-01-01

    After the earthquake and the tsunami occurred in Japan on 11th March 2011, four of the Fukushima reactors had released in air a large amount of radioactive isotopes that had been diffused all over the world. The presence of airborne 131I, 134Cs, and 137Cs in air particulate due to this accident has been detected and measured in the Low Radioactivity Laboratory operating in the Department of Environmental Sciences of the University of Milano-Bicocca. The sensitivity of the detecting apparatus is of 0.2 \\mu Bq/m3 of air. Concentration and time distribution of these radionuclides were determined and some correlations with the original reactor releases were found. Radioactive contaminations ranging from a few to 400 \\mu Bq/m3 for the 131I and of a few tens of \\mu Bq/m3 for the 137Cs and 134Cs have been detected

  7. Tillandsia stricta Sol (Bromeliaceae) leaves as monitors of airborne particulate matter-A comparative SEM methods evaluation: Unveiling an accurate and odd HP-SEM method.

    Science.gov (United States)

    de Oliveira, Martha Lima; de Melo, Edésio José Tenório; Miguens, Flávio Costa

    2016-09-01

    Airborne particulate matter (PM) has been included among the most important air pollutants by governmental environment agencies and academy researchers. The use of terrestrial plants for monitoring PM has been widely accepted, particularly when it is coupled with SEM/EDS. Herein, Tillandsia stricta leaves were used as monitors of PM, focusing on a comparative evaluation of Environmental SEM (ESEM) and High-Pressure SEM (HPSEM). In addition, specimens air-dried at formaldehyde atmosphere (AD/FA) were introduced as an SEM procedure. Hydrated specimen observation by ESEM was the best way to get information from T. stricta leaves. If any artifacts were introduced by AD/FA, they were indiscernible from those caused by CPD. Leaf anatomy was always well preserved. PM density was determined on adaxial and abaxial leaf epidermis for each of the SEM proceedings. When compared with ESEM, particle extraction varied from 0 to 20% in air-dried leaves while 23-78% of particles deposited on leaves surfaces were extracted by CPD procedures. ESEM was obviously the best choice over other methods but morphological artifacts increased in function of operation time while HPSEM operation time was without limit. AD/FA avoided the shrinkage observed in the air-dried leaves and particle extraction was low when compared with CPD. Structural and particle density results suggest AD/FA as an important methodological approach to air pollution biomonitoring that can be widely used in all electron microscopy labs. Otherwise, previous PM assessments using terrestrial plants as biomonitors and performed by conventional SEM could have underestimated airborne particulate matter concentration.

  8. Quantitative real-time monitoring of multi-elements in airborne particulates by direct introduction into an inductively coupled plasma mass spectrometer

    Science.gov (United States)

    Suzuki, Yoshinari; Sato, Hikaru; Hiyoshi, Katsuhiro; Furuta, Naoki

    2012-10-01

    A new calibration system for real-time determination of trace elements in airborne particulates was developed. Airborne particulates were directly introduced into an inductively coupled plasma mass spectrometer, and the concentrations of 15 trace elements were determined by means of an external calibration method. External standard solutions were nebulized by an ultrasonic nebulizer (USN) coupled with a desolvation system, and the resulting aerosol was introduced into the plasma. The efficiency of sample introduction via the USN was calculated by two methods: (1) the introduction of a Cr standard solution via the USN was compared with introduction of a Cr(CO)6 standard gas via a standard gas generator and (2) the aerosol generated by the USN was trapped on filters and then analyzed. The Cr introduction efficiencies obtained by the two methods were the same, and the introduction efficiencies of the other elements were equal to the introduction efficiency of Cr. Our results indicated that our calibration method for introduction efficiency worked well for the 15 elements (Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Mo, Sn, Sb, Ba, Tl and Pb). The real-time data and the filter-collection data agreed well for elements with low-melting oxides (V, Co, As, Mo, Sb, Tl, and Pb). In contrast, the real-time data were smaller than the filter-collection data for elements with high-melting oxides (Ti, Cr, Mn, Ni, Cu, Zn, Sn, and Ba). This result implies that the oxides of these 8 elements were not completely fused, vaporized, atomized, and ionized in the initial radiation zone of the inductively coupled plasma. However, quantitative real-time monitoring can be realized after correction for the element recoveries which can be calculated from the ratio of real-time data/filter-collection data.

  9. Lead sources in airborne particulate matter from urban areas of Sicily; Livelli di piombo nel particolato atmosferico dei centri urbani della Sicilia

    Energy Technology Data Exchange (ETDEWEB)

    Aiuppa, A.; Dongarra' , G.; Varrica, D. [Palermo Univ., Palermo (Italy). Dipt. di Chimica e Fisica della Terra; Monna, G. [Univ. de Bourgougne, Geosol, CST, Dijon (France); Sabatino, G. [Messina Univ., Messina (Italy). Dipt. di Scienze della Terra

    2001-01-01

    Pb isotopic studies, measurements of Pb/Br ratios and enrichment factors have been used to discriminate the origin of lead in the urban atmosphere of several cities of Sicily. The acquired data confirm that, although the relative importance of gasoline-derived Pb is decreased in time, lead still remains one of the most significant trace elements in airborne particulate matter. The chemical and isotopic data show that gasoline and industrial activities makes a major contribution to particulate Pb, while the crustal source is of minor importance. The correlation between lead and antimony is also presented. [Italian] Le differenti fonti che contribuiscono al contenuto di piombo nel particolato atmosferico di alcune citta' della Sicilia sono state discriminate mediante l'utilizzo di opportuni marker chimici: il rapporto Pb/Br ed i rapporti isotopici del piombo. I rapporti Pb/Br osservati nel particolato atmosferico risultano prossimi al rapporto tipico presente nelle benzine. I dati isotopici confermano il limitato contributo crostale rispetto a quello proveniente dal traffico autoveicolare e mettono in evidena come in alcune aree sia particolarmente significativo anche il contributo delle attivita' industriali. Viene inoltre presentata la correlazione esistente fra i contenuti di piombo e antimonio, come risultato delle attivita' antropiche.

  10. Fractionation of airborne particulate-bound elements in haze-fog episode and associated health risks in a megacity of southeast China.

    Science.gov (United States)

    Li, Huiming; Wang, Qin'geng; Shao, Min; Wang, Jinhua; Wang, Cheng; Sun, Yixuan; Qian, Xin; Wu, Hongfei; Yang, Meng; Li, Fengying

    2016-01-01

    Haze caused by high particulate matter loadings is an important environmental issue. PM2.5 was collected in Nanjing, China, during a severe haze-fog event and clear periods. The particulate-bound elements were chemically fractionated using sequential extractions. The average PM2.5 concentration was 3.4 times higher during haze-fog (96-518 μg/m(3)) than non-haze fog periods (49-142 μg/m(3)). Nearly all elements showed significantly higher concentrations during haze-fog than non-haze fog periods. Zn, As, Pb, Cd, Mo and Cu were considered to have higher bioavailability and enrichment degree in the atmosphere. Highly bioavailable fractions of elements were associated with high temperatures. The integrated carcinogenic risk for two possible scenarios to individuals exposed to metals was higher than the accepted criterion of 10(-6), whereas noncarcinogenic risk was lower than the safe level of 1. Residents of a city burdened with haze will incur health risks caused by exposure to airborne metals.

  11. Microfabricated Air-Microfluidic Sensor for Personal Monitoring of Airborne Particulate Matter: Design, Fabrication, and Experimental Results

    Science.gov (United States)

    We present the design and fabrication of a micro electro mechanical systems (MEMS) air-microfluidic particulate matter (PM) sensor, and show experimental results obtained from exposing the sensor to concentrations of tobacco smoke and diesel exhaust, two commonly occurring P...

  12. Innovative application of fluoro tagging to trace airborne particulate and gas-phase polybrominated diphenyl ether exposures.

    Science.gov (United States)

    Klösener, Johannes; Peters, Thomas M; Adamcakova-Dodd, Andrea; Teesch, Lynn M; Thorne, Peter S; Robertson, Larry W; Luthe, Gregor

    2009-01-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants applied as coatings to many consumer products, including household items. PBDEs are released and produce airborne vapors and dusts. Inhalation of particle-phase and/or gas-phase PBDEs is therefore a major route of exposure. In an attempt to mimic realistic airborne exposures, actual uptake, and deposition of particles and vapors, we prepared and characterized particles for future animal exposure studies. To trace the particles in environmental and biological systems, we employed fluoro tagging. We synthesized, characterized, and employed three PBDE congeners, 35, 47, and 99, and five fluoro-substituted PBDEs (F-PBDEs), 17-F5' 25-F5', 28-F3', 35-F5', 47-F3, and 99-F3', for this study. The PBDE congeners were selected because they are commonly found in house dust. For that reason, we coated spherical silica particles of 3 microm and C18 endcapped silica as representative and inert support materials, with 20, 30, and 40% PBDEs. We determined the particle size distributions by aerodynamic particle size spectrometry and the morphology by scanning electron microscopy. The suitability of the fluoro-tagged tracers to mimic their corresponding parent PBDEs was investigated by extraction studies from spiked blood serum. Our study is of fundamental importance to the development of xenobiotic tracers for monitoring routes of human exposure to PBDEs and understanding uptake of PBDEs from particles and vapors.

  13. Determination of mercury in airborne particulate matter collected on glass fiber filters using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Rennan G.O., E-mail: rgoa01@terra.com.br [Laboratorio de Quimica Analitica Ambiental, Departamento de Quimica, Universidade Federal de Sergipe, Campus Sao Cristovao, 49.100-000, Sao Cristovao, SE (Brazil); Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Vignola, Fabiola; Castilho, Ivan N.B. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Borges, Daniel L.G.; Welz, Bernhard [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Vale, Maria Goreti R. [Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Instituto de Quimica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS (Brazil); Smichowski, Patricia [Comision Nacional de Energia Atomica (CNEA) and Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina); Ferreira, Sergio L.C. [Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Instituto de Quimica, Universidade Federal da Bahia, 40170-290, Salvador, BA (Brazil); Becker-Ross, Helmut [Leibniz-Institut fuer Analytische Wissenschaften-ISAS-e.V., Department Berlin, 12489 Berlin (Germany)

    2011-05-15

    A study has been undertaken to assess the capability of high-resolution continuum source graphite furnace atomic absorption spectrometry for the determination of mercury in airborne particulate matter (APM) collected on glass fiber filters using direct solid sampling. The main Hg absorption line at 253.652 nm was used for all determinations. The certified reference material NIST SRM 1648 (Urban Particulate Matter) was used to check the accuracy of the method, and good agreement was obtained between published and determined values. The characteristic mass was 22 pg Hg. The limit of detection (3{sigma}), based on ten atomizations of an unexposed filter, was 40 ng g{sup -1}, corresponding to 0.12 ng m{sup -3} in the air for a typical air volume of 1440 m{sup 3} collected within 24 h. The limit of quantification was 150 ng g{sup -1}, equivalent to 0.41 ng m{sup -3} in the air. The repeatability of measurements was better than 17% RSD (n = 5). Mercury concentrations found in filter samples loaded with APM collected in Buenos Aires, Argentina, were between < 40 ng g{sup -1} and 381 {+-} 24 ng g{sup -1}. These values correspond to a mercury concentration in the air between < 0.12 ng m{sup -3} and 1.47 {+-} 0.09 ng m{sup -3}. The proposed procedure was found to be simple, fast and reliable, and suitable as a screening procedure for the determination of mercury in APM samples.

  14. Source identification, apportionment and toxicity of indoor and outdoor PM2.5 airborne particulates in a region characterised by wood burning.

    Science.gov (United States)

    Bravo-Linares, Claudio; Ovando-Fuentealba, Luis; Orellana-Donoso, Sandra; Gatica, Silvana; Klerman, Francisca; Mudge, Stephen M; Gallardo, Waldo; Pinaud, Jean Paul; Loyola-Sepulveda, Rodrigo

    2016-05-18

    The occurrence of airborne particulate matter has been flagged as "of concern" in several megacities, especially in Asia. Selected Chilean regions have similar problems as wood burning is the major source of heating in homes. This concern has led to mitigation measures restricting the burning of wood at periods when the particulate matter smaller than 2.5 μm (PM2.5) concentrations are predicted to be high. This work investigates the linkage between indoor and outdoor particle concentrations, determines their source through the polyaromatic hydrocarbon (PAH) signature and investigates the efficacy of the current management practice of burning restrictions. The PM2.5 fraction was collected at 12 different properties with coincident indoor and outdoor sampling using a low-volume active sampler for 24 hours. Indoor concentrations of PM2.5 ranged from 6 to 194 μg m(-3) with a mean of 72 μg m(-3) and corresponding outdoor concentrations ranged from 5 to 367 μg m(-3) with a mean of 85 μg m(-3) over the winter periods of 2014 and 2015; the Chilean national permitted maximum in outdoor air is 50 μg m(-3) in 24 hours. Higher concentrations were measured when the outdoor air temperature was lower. The PAHs were analysed on the PM2.5 fraction; the indoor concentrations ranged from 2 to 291 ng m(-3) with a mean of 51 ng m(-3) compared to an outdoor concentration between 3 and 365 ng m(-3) with a mean of 71 ng m(-3). Multivariate statistical analysis of the PAH profiles using principal components analysis (PCA) and polytopic vector analysis (PVA) identified wood burning, static and mobile diesel emissions and kerosene combustion as the major contributors to the particulate matter. When converted to toxicity equivalents (BaP-TEQ), the highest toxicity arising from PAHs in the indoor air was associated with a property that used a "leaky" combined wood stove and heater and also used a wood-fired brazier for local heating. In outdoor air, there was a relationship between the

  15. Chemical characterization of a polar portion in the neutral fraction derived from airborne particulate extracts responsible for the embryotoxicity in the chicken embryo

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, H.

    1988-01-01

    Airborne particulate matter was collected with a high-volume air sampler between June 1984 and May 1985 on the roof top of the authors institute. The tar material extracted was separated into six fractions by liquid-liquid partition and silica gel column chromatography. These fractions were then tested for their embryotoxicities by a chicken embryo assay. A moderately polar fraction per weight and a fraction containing polycyclic aromatic hydrocarbons (PAHs) had the greatest toxicity for chicken embryos. When the polar fraction was purified by high-pressure liquid chromatography, the purified fraction was 3.7 times more toxic than the original polar fraction. To determine the responsible components for the toxicity, the purified fraction as well as the original fraction was analyzed by capillary gas chromatography and gas chromatography-mass spectrometry. The characterized components were classified into oxygenated PAHs (containing ketones, quinones, and aldehydes), nitrogen-containing PAHS, diphenyl-substituted aliphatic ketones (or diketones), and esters of aliphatic acids.

  16. Airborne particulate matter in vitro exposure induces cytoskeleton remodeling through activation of the ROCK-MYPT1-MLC pathway in A549 epithelial lung cells.

    Science.gov (United States)

    Chirino, Yolanda I; García-Cuellar, Claudia María; García-García, Carlos; Soto-Reyes, Ernesto; Osornio-Vargas, Álvaro Román; Herrera, Luis A; López-Saavedra, Alejandro; Miranda, Javier; Quintana-Belmares, Raúl; Pérez, Irma Rosas; Sánchez-Pérez, Yesennia

    2017-03-06

    Airborne particulate matter with an aerodynamic diameter ≤10μm (PM10) is considered a risk factor for the development of lung cancer. Little is known about the cellular mechanisms by which PM10 is associated with cancer, but there is evidence that its exposure can lead to an acquired invasive phenotype, apoptosis evasion, inflammasome activation, and cytoskeleton remodeling in lung epithelial cells. Cytoskeleton remodeling occurs through actin stress fiber formation, which is partially regulated through ROCK kinase activation, we aimed to investigate if this protein was activated in response to PM10 exposure in A549 lung epithelial cells. Results showed that 10μg/cm(2) of PM10 had no influence on cell viability but increased actin stress fibers, cytoplasmic ROCK expression, and phosphorylation of myosin phosphatase-targeting 1 (MYPT1) and myosin light chain (MLC) proteins, which are targeted by ROCK. The inhibition of ROCK prevented actin stress fiber formation and the phosphorylation of MYPT1 and MLC, suggesting that PM10 activated the ROCK-MYPT1-MLC pathway in lung epithelial cells. The activation of ROCK1 has been involved in the acquisition of malignant phenotypes, and its induction by PM10 exposure could contribute to the understanding of PM10 as a risk factor for cancer development through the mechanisms associated with invasive phenotype.

  17. Comparison of the extraction efficiencies of different leaching agents for reliable assessment of bio-accessible trace metal fractions in airborne particulate matter

    Directory of Open Access Journals (Sweden)

    Mukhtar A.

    2013-04-01

    Full Text Available In present study, an in-vitro physiologically based extraction test has been applied for extraction of bio-accessible trace metal fractions in airborne particulate matter (APM samples collected from different urban sites in Austria and Pakistan using the leaching agents H2O, sodium chloride, ammonium acetate, ammonium citrate, synthetic gastric juice and artificial lung fluids. Obtained extracts were then measured using an ETV-ICP-OES procedure which allowed highly sensitive measurement of dissolved analytes even in the presence of leaching agents. Derived results indicated that the investigated leaching agents extract different amounts of trace metals. In general, leaching agents with organic nature yielded comparatively greater extractable and thus bio-accessible trace metal fractions to that of simple solvents like H2O or aqueous NaCl solution. With water, only 26.3±4.0% of Cd was found to be bio-accessible whereas 88.4±24.8 of Cd was obtained as bio-accessible fraction with the use of synthetic gastric juice. The concentrations of bio-accessible metal fractions varied from 0.4 ng m−3 (Cd to 714 ng m−3 (Zn and 0.3 ng m−3 (Cd to 190 ng m−3 (Zn for PM10 samples collected from Karachi (Pakistan and Graz (Austria respectively.

  18. Occupational exposure to polycyclic aromatic hydrocarbons in airborne particulate matter: validation and application of a gas chromatography-mass spectrometry analytical method.

    Science.gov (United States)

    Fioretti, Marzia; Catrambone, Tamara; Gordiani, Andrea; Cabella, Renato

    2010-12-01

    This study concerns the validation of an analytical method for the measurement of occupational exposure to trace levels of polycyclic aromatic hydrocarbons (PAHs) in airborne particulate matter (APM). Personal exposure to selected PAHs of five workers occupationally exposed to urban pollution in Rome, Italy, was evaluated. The samples were collected over 10 days evenly distributed during winter and summer of 2008. Polycyclic aromatic hydrocarbons were collected by a sampling pump and trapped in polytetrafluoroethylene filters; ultrasonic extraction was applied to extract PAH species from the matrix with toluene, and the concentrated extract was quantitatively analyzed by GC/MS. The analytical method was optimized and validated using a standard reference material of urban dust (SRM 1649a). Detection limits ranged from 0.8 ng per sample for indeno [1,2,3-cd] pyrene to 20.4 ng for sample for anthracene. Experimental results of the 50 personal samples collected showed that phenanthrene was the predominant polycyclic aromatic hydrocarbon [95% CI (32.42-41.13 ng m(-3))]; the highest benzo[a]pyrene concentration was 2.58 ng m(-3), approximately 2-fold higher than European annual target values (1 ng m(-3)). Seasonal variations of personal exposure to selected PAHs suggested higher emissions and reduced atmospheric reactivity of PAH compounds in winter. The analytical method was a suitable procedure for the determination of 13 of the 16 priority PAHs in APM personal samples and can be considered a useful tool to evaluate occupational exposure to low PAH levels.

  19. The complementarity of PIXE and PIGE techniques: A case study of size segregated airborne particulates collected from a Nigeria city.

    Science.gov (United States)

    Ezeh, G C; Obioh, I B; Asubiojo, O I; Chiari, M; Nava, S; Calzolai, G; Lucarelli, F; Nuviadenu, C

    2015-09-01

    The Proton Induced X-ray Emission (PIXE) technique is a reliable ion beam analytical tool for the characterization of thin aerosol samples, but it can underestimate the lightest measurable elements (such as Na, Mg, Al and Si) owing to the absorption of their X-rays inside the sample. The Proton Induced Gamma-ray Emission (PIGE) technique could be employed as avalid means to determine corrections for such an effect. Hence, in this study, Fine (PM(2.5)) and Coarse (PM(10-2.5)) particulate matter samples collected at Ikeja, Lagos-Nigeria, using a double staged 'Gent' stacked sampler were analyzed for their elemental concentrations using an external beam set-up for simultaneous PIXE and PIGE measurements. The measured PIXE concentrations as well as the PIGE correction factors for Na and Al detected in the PM(10-2.5) samples (collected on polycarbonate Nuclepore membranes) are reported. The concentrations of 24 elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, Rb, Sr, Zr, Cs and Pb) detected in both fractions were displayed, discussed and likely sources of these elements were also identified.

  20. Cocaine and other illicit drugs in airborne particulates in urban environments: A reflection of social conduct and population size

    Energy Technology Data Exchange (ETDEWEB)

    Viana, M., E-mail: mar.viana@idaea.csic.es [Institute for Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona (Spain); Postigo, C., E-mail: cprqam@cid.csic.es [Institute for Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona (Spain); Querol, X., E-mail: xavier.querol@idaea.csic.es [Institute for Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona (Spain); Alastuey, A., E-mail: andres.alastuey@idaea.csic.es [Institute for Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona (Spain); Lopez de Alda, M.J., E-mail: mlaqam@cid.csic.es [Institute for Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona (Spain); Barcelo, D., E-mail: dbcqam@cid.csic.es [Institute for Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona (Spain); King Saud University, Box 2454, Riyadh 11451 (Saudi Arabia); Artinano, B., E-mail: b.artinano@ciemat.es [Centre for Energy, Environment and Technology Research (CIEMAT), Av. Complutense 22, 28040 Madrid (Spain); Lopez-Mahia, P., E-mail: purmahia@udc.es [Department of Analytical Chemistry, University of A Coruna, Campus A Zapateira, 15071 A Coruna (Spain); Garcia Gacio, D., E-mail: dgarcia@udc.es [Department of Analytical Chemistry, University of A Coruna, Campus A Zapateira, 15071 A Coruna (Spain); Cots, N., E-mail: nuria.cots@gencat.ca [Department of the Environment, Catalonia Regional Government, Av. Diagonal 525, 08193 Barcelona (Spain)

    2011-05-15

    Levels of cocaine and other psychoactive substances in atmospheric particulate matter (PM) were determined in urban environments representing distinct social behaviours with regard to drug abuse: night-life, university and residential areas. Three cities (with population >1 million and <0.3 million inhabitants) were selected. Mean daily levels of drugs in PM were 11-336 pg/m{sup 3} for cocaine, 23-34 pg/m{sup 3} for cannabinoids, and 5-90 pg/m{sup 3} for heroin. The highest levels were recorded on weekends, with factors with respect to weekdays of 1-3 for cocaine, 1-2 for cannabinoids and 1.1-1.7 for heroin. Higher levels were detected in the night-life areas, pointing towards consumption and trafficking as major emission sources, and possibly ruling out drug manufacture. The similarities in temporal trends at all sites suggested a city-scale transport of psychoactive substances. Correlations were detected between cocaine and amphetamine consumption (r{sup 2} = 0.98), and between heroin and cannabinoids (r{sup 2}>0.82). - Highlights: > Cocaine, heroin, cannabis and related illicit drugs are found in detectable amounts in urban air. > Illicit drug consumption and small-scale trafficking are the major emission sources. > Illicit drugs remain in atmospheric particles and are transported across cities during at least 5 days. > Levels of illicit drugs increase from residential to night-life areas, and maximise on weekends. > Correlations between illicit drugs were detected, suggesting differences in consumer groups. - The presence of illicit drugs in atmospheric particles can be used to track illicit drug abuse.

  1. Comparative toxicity of size-fractionated airborne particulate matter obtained from different cities in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, M.I.; McGee, J.; Duvall, R.M.; Dailey, L.; Daniels, M.; Boykin, E.; Cho, S.H.; Doerfler, D.; Gordon, T.; Devlin, R.B. [US EPA, Research Triangle Park, NC (United States)

    2007-07-01

    Hundreds of epidemiological studies have shown that exposure to ambient particulate matter (PM) is associated with dose-dependent increases in morbidity and mortality. While early reports focused on PM less than 10 {mu}m (PM10), numerous studies have since shown that the effects can occur with PM stratified into ultrafine (UF), fine (FI), and coarse (CO) size modes despite the fact that these materials differ significantly in both evolution and chemistry. Furthermore the chemical makeup of these different size fractions can vary tremendously depending on location, meteorology, and source profile. For this reason, high-volume three-stage particle impactors with the capacity to collect UF, FI, and CO particles were deployed to four different locations in the United States (Seattle, WA; Salt Lake City, UT; Sterling Forest and South Bronx, NY), and weekly samples were collected for 1 mo in each place. The particles were extracted, assayed for a standardized battery of chemical components, and instilled into mouse lungs (female BALB/c) at doses of 25 and 100 {mu}g. Eighteen hours later animals were euthanized and parameters of injury and inflammation were monitored in the bronchoalveolar lavage fluid and plasma. Of the four locations, the South Bronx coarse fraction was the most potent sample in both pulmonary and systemic biomarkers. Receptor source modeling on the PM2.5 samples showed that the South Bronx sample was heavily influenced by emissions from coal fired power plants (31%) and mobile sources (22%). Further studies will assess how source profiles correlate with the observed effects for all locations and size fractions.

  2. Comparison of three different sample preparation procedures for the determination of traffic-related elements in airborne particulate matter collected on glass fiber filters.

    Science.gov (United States)

    Castilho, Ivan N B; Welz, Bernhard; Vale, Maria Goreti R; de Andrade, Jailson B; Smichowski, Patricia; Shaltout, Abdallah A; Colares, Lígia; Carasek, Eduardo

    2012-01-15

    Three different procedures for sample preparation have been compared for the determination of Cu, Mo and Sb in airborne particulate matter (APM) collected on glass fiber filters using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). Direct solid sample analysis of the ground filters was compared with microwave-assisted acid leaching with aqua regia and ultrasound-assisted extraction also using aqua regia. The main absorption line at 324.754 nm or the secondary line at 216.509 nm was used for the determination of Cu, depending on the analyte content in the samples. The primary absorption line at 313.259 nm was used for Mo and the secondary line at 212.739 nm for Sb determination. The limits of detection (LOD, 3σ) found for the direct solid sampling method, based on ten atomizations of an unused filter were 15 μg g(-1) for all three analytes, corresponding to 40 ng m(-3) for a typical air volume of 1,440 m(3) collected over a period of 24h. The LOD for the other two methods were less than a factor of two inferior, but the total time required for an analysis was significantly longer. The repeatability of the measurements was between 3 and 9% (n=5), and the results obtained with the three methods did not show any significant difference. The ratio between the three analytes on the filters from areas of intense traffic was found to be around Cu:Mo:Sb≈4:1:1.4, which suggests that the source of all three elements is brake linings, i.e., related to automobile traffic. When the ratio deviated significantly from the above values, the source of contamination was assumed to be of different origin.

  3. Electrospray Collection of Airborne Contaminants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In stark contrast to current stagnation-based methods for capturing airborne particulates and biological aerosols, our demonstrated, cost-effective electrospray...

  4. Ground-level airborne particulate matter near important Portuguese Cultural Heritage sites in high polluted (Lisbon) and low polluted (Evora) urban environments

    Science.gov (United States)

    Schiavon, N.; Wagner, F.; Candeias, A.; Kandler, K.; Tobias, L.; Mirao, J.

    2012-04-01

    As part of a wider project on aerosol composition in the Southwestern part of the Iberian peninsula, an intensive field monitoring/sampling/analytical campaign has been conducted in August and December 2011 to assess indoor and outdoor atmospheric aerosol optical and microphysical parameters (Nephelometry), number/mass/size distribution (TEOM, MAAP, OPS) and single particle minero-chemical composition on filter collected samples (VP-SEM+EDS, XRD) at several sheltered and unsheltered locations close to important Cultural Heritage monuments in Evora and Lisbon, Portugal. Sites investigated included the Igreja do S. Francisco in Evora, the Cristo Rei sanctuary, Jeronimos Monastery, and Lisbon Castle in Lisbon. At Cristo Rei measurements at sea level, around 100m and around 180m were carried out in order to determine the vertical profile of the particle size distribution. Measurements were taken at different times of day reflecting changes in atmospheric mixing and air pollution levels. Measurements were also performed near an air quality monitoring station at Avenida de Libertade (the busiest traffic artery in Lisbon city center) during traffic peak hour. One of the aims of the campaign was to determine differences in airborne particulate matter compositions and concentrations between an urban coastal high pollution (Lisbon) and a low pollution (Evora) environments and how these could affect the nature of decay patterns and processes in the building materials of the monuments under investigation. Preliminary results indicate significant differences in particle properties between the 2 cities as well as between indoor and outdoor locations. One interesting result was the detection of considerable amounts of particle of oceanic origin (such as sodium chloride) in the Evora site even at 130 km away from the coast. Despite its relatively unpolluted location, single particle analysis by SEM+EDS at the Evora site reveals the presence of significant numbers of particle of

  5. Characterization of Fine Airborne Particulate Collected in Tokyo and Major Atmospheric Emission Sources by Using Single Particle Measurement of SEM-EDX

    Science.gov (United States)

    Sato, K.; Iijima, A.; Furuta, N.

    2008-12-01

    In our long-term monitoring of size-classified Airborne Particulate Matter (APM) in Tokyo since 1995, it had been demonstrated that toxic elements such as As, Se, Cd, Sb and Pb were extremely enriched in fine APM (PM2.5). However, in that study, total sampled APM on a filter was digested with acids, and thus only averaged elemental composition in fine APM could be obtained. One of the effective methods to determine the origin of APM is single particle measurement by using SEM-EDX. By using characteristic shapes observed by SEM and marker elements contained in APM measured by EDX, detailed information for source identification can be obtained. In this study, fine APM (PM2.5) was collected at various locations such as roadside, diesel vehicle exhaust, a heavy oil combustion plant and a waste incineration plant as well as ambient atmosphere in Tokyo, and characteristics of fine particles that will be utilized for identification of emission sources are elucidated. Fine particles can be classified into 3 main characteristic shape groups; edge-shaped, cotton-like and spherical. Shape of particles collected in a heavy oil combustion plant and a waste incineration plant was mostly spherical, and these particles may be associated with thermal process. Diesel exhaust particles were predominantly cotton-like which may consist of coagulated nano-sized particles. Most of brake abrasion dusts were edge-shaped, which may be associated with mechanical abrasion of brake pads. In the elemental analysis of fine particles, high concentrations of Sb, Cu, Ti and Ba were detected in brake abrasion dusts. Since these elements are major constituents of brake pads, these can be used for marker elements of brake abrasion dusts. High concentration of C was detected in diesel exhaust particles and oil combustion particles, and thus C can be used for marker elements of their origin. Furthermore, high concentrations of C, Ca and K were detected in fly ash from a waste incineration plant, which

  6. X-ray Absorption Spectroscopy of Zinc in Airborne Particulate Matter Shows Tire Debris Concentrated in > 0.5 μm Fraction

    Science.gov (United States)

    Pingitore, N. E.; Clague, J. W.; Gill, T. E.; Amaya, M. A.; Cahill, T. A.

    2009-12-01

    Using X-ray absorption spectroscopy (XAS), we speciated Zn in size-resolved fractions of particulate matter (PM) from El Paso, Texas. Spectral patterns indicated that Zn in tire debris is the dominant form of Zn in PM coarser than 0.5 μm in aerodynamic diameter. Although concentrated in the > 0.5 μm fraction, a large portion of the tire debris in PM is small enough to penetrate and deposit in the lower respiratory tract. We collected 3 sets of size-resolved samples of airborne particulate matter (PM) over periods of several days to several weeks in November 2008, and April and May 2009. Local PM compositions typically are dominated by anthropogenic input in November and geologic sources in April, and a mixture in May. The collection site is in the urban core of El Paso, TX, contiguous to the University of Texas at El Paso, 0.6 km from Interstate Highway 10, 0.4 km from State Highway 20, and 1 km from Cd. Juarez, Chihuahua, Mexico. The DRUM sampler (Davis Rotating Uniform size-cut Monitor) employs a rotating Lundgren-type impactor, draws 10 l per minute, and deposits PM on plastic strips mounted on rotating drums. The sampler collected and segregated ambient PM into 8 size cuts: 12-5 μm, 5-2.5, 2.5-1.15, 1.15-0.75, 0.75-0.56, 0.56-0.34, 0.34-0.26, and 0.26-0.09. We conducted the X-ray absorption spectroscopy (XAS) experiments at the Stanford Synchrotron Radiation Lightsource on beam line 7-3. Spectra of the 24 samples of PM and numerous model compounds were collected at the Zn K absorption edge in fluorescence mode using a 30-element Ge solid-state detector. The overall spectral patterns from the 3 seasons were similar to one another. But strikingly, each set of 8 XAS spectra displayed an obvious change in the Zn speciation at the 0.56-0.75 μm size cut. We compared the PM spectra to those of our suite of known model compounds and materials. The spectral pattern of the coarser size cuts was quite similar to those of the tires we tested. The Zn in the tires

  7. Local and non-local sources of airborne particulate pollution at Beijing--The ratio of Mg/Al as an element tracer for estimating the contributions of mineral aerosols from outside Beijing

    Institute of Scientific and Technical Information of China (English)

    HAN; Lihui; ZHUANG; Guoshun; SUN; Yele; WANG; Zifa

    2005-01-01

    A new element tracer technique has firstly been established to estimate the contributions of mineral aerosols from both inside and outside Beijing. The ratio of Mg/Al in aerosol is a feasible element tracer to distinguish between the sources of inside and outside Beijing. Mineral aerosol, inorganic pollution aerosol mainly as sulfate and nitrate, and organic aerosol are the major components of airborne particulates in Beijing, of which mineral aerosol accounted for 32%―67% of total suspended particles (TSP), 10%―70% of fine particles (PM2.5), and as high as 74% and 90% of TSP and PM2.5, respectively, in dust storm. The sources from outside Beijing contributed 62% (38%―86%) of the total mineral aerosols in TSP, 69% (52%―90%) in PM10, and 76% (59%―93%) in PM2.5 in spring, and 69% (52%―83%), 79% (52%―93%), and 45% (7%―79%) in TSP, PM10, and PM2.5, respectively, in winter, while only ~20% in summer and autumn. The sources from outside Beijing contributed as high as 97% during dust storm and were the dominant source of airborne particulates in Beijing. The contributions from outside Beijing in spring and winter are higher than those in summer, indicating clearly that it was related to the various meteorological factors.

  8. 环境空气颗粒物及其组分对呼吸系统健康的影响%Impacts of airborne particulate matter and its components on respiratory system health

    Institute of Scientific and Technical Information of China (English)

    曹丽敏; 周芸; 张庄; 孙维伟; 穆阁; 陈卫红

    2016-01-01

    Nowadays, particulate air pollution has been a global environmental problem. Numerous studies has shown that long-term exposure to high level of airborne particulate matter (PM) can damage human health. Respiratory system, as a direct portal to contact with particulate matter, can be more susceptible to airborne particulates. Summarizing latest five-year epidemiological research, the present review is focused on the effects of PM on respiratory system health in different age groups. In detail, we investigated the harmful effect of PM, or its components on three common respiratory diseases, including lung function decline, chronic obstructive pulmonary disease (COPD) and asthma. The result showed that, to a certain degree, PM could induce the decline of lung function, the development and the exacerbation of COPD and asthma by oxidative stress and inflammatory reaction. And it may prompt that exposure to PM can be an improtant risk factor for the respiratory system health.%空气颗粒物(PM)污染目前已成为全球环境问题。大量研究表明,长期暴露于高水平PM会损害人类健康。而呼吸系统作为人体接触外界PM的门户,受到环境PM的危害更为严重。本文结合近期国内外人群的流行病学调查资料,分别对PM暴露对不同年龄层人群呼吸系统健康的影响进行综述,探讨了颗粒物或其组分对人体肺功能改变、慢性阻塞性肺疾病(COPD)以及哮喘影响。结果发现在一定程度上PM可通过氧化应激和炎性反应等作用引起肺功能的下降,也可引起COPD发病,加快哮喘的病程进展,提示PM的暴露可能是影响呼吸系统健康的一个重要危险因素。

  9. Evaluating airborne and ground based gamma spectrometry methods for detecting particulate radioactivity in the environment: A case study of Irish Sea beaches

    Energy Technology Data Exchange (ETDEWEB)

    Cresswell, A.J., E-mail: Alan.Cresswell@glasgow.ac.uk; Sanderson, D.C.W.

    2012-10-15

    In several places, programmes are in place to locate and recover radioactive particles that have the potential to cause detrimental health effects in any member of the public who may encounter them. A model has been developed to evaluate the use of mobile gamma spectrometry systems within such programmes, with particular emphasis on large volume (16 l) NaI(Tl) detectors mounted in low flying helicopters. This model uses a validated Monte Carlo code with assessment of local geochemistry and natural and anthropogenic background radiation concentrations and distributions. The results of the model, applied to the example of particles recovered from beaches in the vicinity of Sellafield, clearly show the ability of rapid airborne surveys conducted at 75 m ground clearance and 120 kph speeds to demonstrate the absence of sources greater than 5 MBq {sup 137}Cs within large areas (10-20 km{sup 2} h{sup -1}), and identify areas requiring further ground based investigation. Lowering ground clearance for airborne surveys to 15 m whilst maintaining speeds covering 1-2 km{sup 2} h{sup -1} can detect buried {sup 137}Cs sources of 0.5 MBq or greater activity. A survey design to detect 100 kBq {sup 137}Cs sources at 10 cm depth has also been defined, requiring surveys at < 15 m ground clearance and < 2 m s{sup -1} ground speed. The response of airborne systems to the Sellafield particles recovered to date has also been simulated, and the proportion of the existing radiocaesium background in the vicinity of the nuclear site has been established. Finally the rates of area coverage and sensitivities of both airborne and ground based approaches are compared, demonstrating the ability of airborne systems to increase the rate of particle recovery in a cost effective manner. The potential for equipment and methodological developments to improve performance are discussed. -- Highlights: Black-Right-Pointing-Pointer Validated Monte Carlo simulations used to model mobile gamma spectrometry

  10. Environmental Public Health Survelliance for Exposure to Respiratory Health Hazards: A Joint NASA/CDC Project to Use Remote Sensing Data for Estimating Airborne Particulate Matter Over the Atlanta, Georgia Metropolitan Area

    Science.gov (United States)

    Quattrochi, Dale A.; Rickman, Douglas; Mohammad, Al-Hamdan; Crosson, William; Estes, Maurice, Jr.; Limaye, Ashutosh; Qualters, Judith

    2008-01-01

    Describes the public health surveillance efforts of NASA, in a joint effort with the Center for Disease Control (CDC). NASA/MSFC and the CDC are partners in linking nvironmental and health data to enhance public health surveillance. The use of NASA technology creates value - added geospatial products from existing environmental data sources to facilitate public health linkages. The venture sought to provide remote sensing data for the 5-country Metro-Atlanta area and to integrate this environmental data with public health data into a local network, in an effort to prevent and control environmentally related health effects. Remote sensing data used environmental data (Environmental Protection Agency [EPA] Air Quality System [AQS] ground measurements and MODIS Aerosol Optical Depth [AOD]) to estimate airborne particulate matter over Atlanta, and linked this data with health data related to asthma. The study proved the feasibility of linking environmental data (MODIS particular matter estimates and AQS) with health data (asthma). Algorithms were developed for QC, bias removal, merging MODIS and AQS particulate matter data, as well as for other applications. Additionally, a Business Associate Agreement was negotiated for a health care provider to enable sharing of Protected Health Information.

  11. Photoacoustic study of airborne and model aerosols

    NARCIS (Netherlands)

    Alebic-Juretic, A.; Zetsch, C.; Doka, O.; Bicanic, D.D.

    2003-01-01

    Airborne particulates of either natural or anthropogenic origin constitute a significant portion of atmospheric pollution. Environmental xenobiotics, among which are polynuclear aromatic hydrocarbons (PAHs) and pesticides, often adsorb to aerosols and as such are transported through the atmosphere w

  12. Effects of quartz, airborne particulates and fly ash fractions from a waste incinerator on elastase release by activated and nonactivated rabbit alveolar macrophages.

    Science.gov (United States)

    Gulyas, H; Labedzka, M; Schmidt, N; Gercken, G

    1988-01-01

    Elastase release from cultured, activated and nonactivated rabbit alveolar macrophages (AM) was investigated after stimulation by different environmentally related mineral dusts (50-1000 micrograms/10(6) cells). Eight different dusts were analyzed for element contents and grain size: one rural and three urban airborne dusts, a coarse and a fine fraction of a sieved waste incinerator fly ash, a sonicated coarse fly ash fraction, and the standard quartz dust DQ 12. The fine fly ash fraction, the sonicated coarse fly ash fraction, and the quartz dust DQ 12 enhanced elastase release by activated AM. Only one of the tested airborne dusts effected a comparable elastase release. The untreated coarse fraction of the fly ash did not cause a significant increase of extracellular elastase activities. Elastase release was dependent on particle numbers and chemical composition and correlated best with barium and tin contents. Nonactivated AM released higher elastase activities than activated AM at low-dose levels. The possible role of dust-induced elastase secretion in the pathogenesis of emphysema is discussed.

  13. Speciation of nickel in airborne particulate matter by means of sequential extraction in a micro flow system and determination by graphite furnace atomic absorption spectrometry and inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Fuichtjohann, L; Jakubowski, N; Gladtke, D; Klocko, D; Broekaert, J A

    2001-12-01

    A four-stage sequential extraction procedure for the speciation of nickel has been applied to ambient aerosol samples. The determination of the soluble, sulfidic, metallic and oxidic Ni fractions in particulate matter was carried out by graphite furnace (electrothermal) atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICP-MS). An EDTA solution, a mixture of diammonium citrate and hydrogen peroxide, and a KCuCl3 solution were used as leaching agents for the determination of the soluble, sulfidic and metallic species, respectively, and nitric acid was used for the determination of oxidic compounds after microwave digestion of particulate matter sampled on filters. A new micro scale filter holder placed in a closed flow injection analysis (FIA) system for use in nickel speciation by means of sequential extraction, and the results of the optimisation of the extraction conditions are described. The temperature program for ETAAS was optimised for all extraction solutions with the aid of temperature curves. Pyrolysis temperatures of 900. 600 and 1,000 degrees C were found to be optimum for EDTA, hydrogen peroxide plus ammonium citrate and KCuCl3-containing solutions, respectively. Airborne dust was sampled on lilters at two locations near to a metallurgical plant in Dortmund, Germany. Concentrations in the low ng m(-3) range down to the detections limits (0.1-0.3 ng m(-3)) and various nickel species were found to be present in the collected dust. The mean fractions of total nickel (sampling period of one month) were found to contain 36+20% of soluble, 6 +/- 4% of sulfidic, 11 +/- 15% of metallic and 48 +/- 18% of oxidic nickel.

  14. Characterization of trace metals of risk to human health in airborne particulate matter (PM2.5) at two sites in Guadalajara, Mexico.

    Science.gov (United States)

    Saldarriaga-Noreña, Hugo; Hernández-Mena, Leonel; Ramírez-Muñiz, Martín; Carbajal-Romero, Patricia; Cosío-Ramírez, Ricardo; Esquivel-Hernández, Benjamín

    2009-04-01

    PM2.5 samples were collected at two locations in Guadalajara: Centro and Miravalle, during 2007. The first site (Centro) is located downtown and characterized by high vehicular traffic. Miravalle is in the southern part of the city, and influenced by emissions from high industrial and vehicular activity. Samples were collected for 24 h and the annual median concentrations of PM2.5 observed were 44.1 and 52.8 microg m(-3) at Centro and Miravalle, respectively. The concentration of PM2.5 observed at the Miravalle site was significantly higher (p Cluster Analysis and the enrichment factor (EF) based on the concentrations of each element indicated that the main source of particulates at Centro was of geological origin, while Miravalle receives emissions from natural and anthropogenic sources. Both contribute to the chemical composition of PM2.5 in Guadalajara.

  15. Concentrations of Platinum Group Elements (Pt, Pd, Rh in Airborne Particulate Matter (PM2.5 and PM10-2.5 Collected at Selected Canadian Urban Sites: a Case Study

    Directory of Open Access Journals (Sweden)

    Celo V.

    2013-04-01

    Full Text Available Increasing environmental concentrations of platinum group elements (PGEs, in particular platinum (Pt, palladium (Pd and rhodium (Rh, from catalytic converters has been reported worldwide. Initially it was believed that the emitted PGEs remain in the roadside environment, but recent studies have shown that fine PGE-containing particles can be transported and distributed at regional and long-range levels. Therefore, the monitoring of PGEs in airborne particulate matter (PM is important for the estimation of potential risks to human health and to the ecosystem. The aim of this study is to present the first results from an analysis on the concentration and distribution of Pt, Pd and Rh in PM collected on Teflon filters at two selected urban sites (Toronto, Ontario; Edmonton, Alberta collected within the Canadian National Air Pollution Surveillance (NAPS network. In this work, a quadruple inductively coupled plasma mass spectrometry (ICP-MS, combined with microwave assisted acid digestion using aqua regia was used. A cation exchange separation was used to alleviate the matrix-induced spectral and nonspectral interferences prior to ICP-MS analysis. To obtain sufficient material needed for PGEs analysis, fine PM (particles with aerodynamic diameter less than 2.5 mm; PM2.5 and coarse PM (with aerodynamic diameter between 2.5 and 10 mm; PM10-2.5 samples were combined into composite samples on a seasonal basis. The obtained results will be discussed and compared with literature data.

  16. Sub-parts-per-billion determination of nitro-substituted polynuclear aromatic hydrocarbons in airborne particulate matter and soil by electron capture-Tandem mass spectrometry.

    Science.gov (United States)

    Vincenti, M; Minero, C; Pelizzetti, E; Fontana, M; De Maria, R

    1996-12-01

    A procedure for the determination of nitro-substiruted polynuclear aromatic hydrocarbons (nitro-PAH) on crude air-particulate and soil extracts is introduced. Elimination of purification and fractionation procedures was made possible by the use of both a selective ionization method, such as electron-capture chemical ionization, and a specific fragmentation process, in an experiment of tandem mass spectrometry (gas chromatography-electron capture tandem mass spectrometry). Different mass spectrometric procedures were compared. The best performance was observed when the nitro-PAH molecular ions [M](-) were mass-selected by the first analyzer under multiple reaction monitoring conditions and then fragmented to NO 2 (-) (m/z 46). Detection limits were on the order of hundreds of femtograms, as determined in extracts of real environmental samples. This corresponds approximately to 5-15 pg of nitro-PAH per cubic meter of air sampled. Calibration curves were linear over 3 orders of magnitude. Applications to contamination from motor vehicle combustion and the iron industry are briefly discussed.

  17. Evolving Pb isotope signatures of London airborne particulate matter (PM 10)-constraints from on-filter and solution-mode MC-ICP-MS.

    Science.gov (United States)

    Noble, Stephen R; Horstwood, Matthew S A; Davy, Pamela; Pashley, Vanessa; Spiro, Baruch; Smith, Steve

    2008-07-01

    Pb isotope compositions of biologically significant PM(10) atmospheric particulates from a busy roadside location in London UK were measured using solution- and laser ablation-mode MC-ICP-MS. The solution-mode data for PM(10) sampled between 1998-2001 document a dramatic shift to increasingly radiogenic compositions as leaded petrol was phased out. LA-MC-ICP-MS isotope analysis, piloted on a subset of the available samples, is shown to be a potential reconnaissance analytical technique. PM(10) particles trapped on quartz filters were liberated from the filter surface, without ablating the filter substrate, using a 266 nm UV laser and a dynamic, large diameter, low-fluence ablation protocol. The Pb isotope evolution noted in the London data set obtained by both analytical protocols is similar to that observed elsewhere in Western Europe following leaded petrol elimination. The data therefore provide important baseline isotope composition information useful for continued UK atmospheric monitoring through the early 21(st) century.

  18. Airborne particulate matter PM2.5 from Mexico City affects the generation of reactive oxygen species by blood neutrophils from asthmatics: an in vitro approach

    Directory of Open Access Journals (Sweden)

    Ceballos Guillermo

    2009-06-01

    Full Text Available Abstract Background The Mexico City Metropolitan Area is densely populated, and toxic air pollutants are generated and concentrated at a higher rate because of its geographic characteristics. It is well known that exposure to particulate matter, especially to fine and ultra-fine particles, enhances the risk of cardio-respiratory diseases, especially in populations susceptible to oxidative stress. The aim of this study was to evaluate the effect of fine particles on the respiratory burst of circulating neutrophils from asthmatic patients living in Mexico City. Methods In total, 6 subjects diagnosed with mild asthma and 11 healthy volunteers were asked to participate. Neutrophils were isolated from peripheral venous blood and incubated with fine particles, and the generation of reactive oxygen species was recorded by chemiluminescence. We also measured plasma lipoperoxidation susceptibility and plasma myeloperoxidase and paraoxonase activities by spectrophotometry. Results Asthmatic patients showed significantly lower plasma paraoxonase activity, higher susceptibility to plasma lipoperoxidation and an increase in myeloperoxidase activity that differed significantly from the control group. In the presence of fine particles, neutrophils from asthmatic patients showed an increased tendency to generate reactive oxygen species after stimulation with fine particles (PM2.5. Conclusion These findings suggest that asthmatic patients have higher oxidation of plasmatic lipids due to reduced antioxidant defense. Furthermore, fine particles tended to increase the respiratory burst of blood human neutrophils from the asthmatic group. On the whole, increased myeloperoxidase activity and susceptibility to lipoperoxidation with a concomitant decrease in paraoxonase activity in asthmatic patients could favor lung infection and hence disrupt the control of asthmatic crises.

  19. Mutagenicity profile of atmospheric particulate matter in a small urban center subjected to airborne emission from vehicle traffic and sugar cane burning.

    Science.gov (United States)

    Alves, Debora Kristina M; Kummrow, Fábio; Cardoso, Arnaldo A; Morales, Daniel A; Umbuzeiro, Gisela A

    2016-01-01

    Atmospheric particulate matter (PM) is genotoxic and recently was classified as carcinogenic to humans by the International Agency for Research on Cancer. PM chemical composition varies depending on source and atmospheric conditions. The Salmonella/microsome assay is the most used mutagenicity test and can identify the major chemical classes responsible for observed mutagenicity. The objective of this work was to characterize the mutagenicity of PM samples from a countryside city, Limeira, Brazil, which is influenced by heavy traffic and sugar cane biomass burning. Six samples of total PM were collected. Air mass backward trajectories were calculated. Organic extracts were assayed using the Salmonella/microsome microsuspension mutagenicity assay using TA98, YG1041, and TA1538, with and without metabolic activation (S9). YG1041 was the most sensitive strain and mutagenicity reached 9,700 revertants per m(3) without metabolic activation. Potency for TA1538 was higher than TA98, indicating that this strain should be considered in air mutagenicity studies. The increased response to YG1041 relative to TA98, and the decreased response with S9, suggests that nitroaromatics are the major contributors. Limeira is among the most mutagenic cities in the world. High mutagenicity in Limeira seems to occur when the air mass from the area of sugarcane production is mixed with air from the region impacted by anthropogenic activities such as traffic. An increase in the formation of nitro-polycyclic aromatic hydrocarbons may result from longer contact time between the aromatic compounds and the atmosphere with high NOx and ozone concentration, although more studies are required to confirm this hypothesis.

  20. 地铁颗粒物PM2.5的SEM和微束XRF分析%Study on airborne particulate matter in PM2.5 in Shanghai city's subway by SEM and SR-XRF

    Institute of Scientific and Technical Information of China (English)

    杨永兴; 包良满; 雷前涛

    2013-01-01

    In this paper, the composition, morphology and structure of airborne particulate matter in PM2.5 in Shanghai city's subway and urban street were studied using SEM-EDS and synchrotron radiation technique micro-beam X-ray fluorescence (XRF). SEM results showed that subway particles had a flat surface in combination with parallel scratches and sharp edges and looked like metal sheets or flakes, whose morphology was obvious different from that of urban street particles. Furthermore, the atomic composition of typical subway particles was analyzed by EDS. The results showed that oxygen and iron dominated the mass of the particles. It is a relative airtight microenvironment for the people who works in the subway stations or takes the subways every day. The work suggested that great attentions should be paid to the influence of subway's particles on the health of people in subways.%采用扫描电镜和X-射线能谱分析(SEM-EDS)以及同步辐射X射线荧光分析(SR-XRF)技术,对地铁PM25颗粒物样品进行了形貌及元素成分分析.SEM结果表明地铁颗粒物形貌不同于室外颗粒物,地铁颗粒物粒径较大,形状不规则,具有片状刮擦特性.EDS分析表明地铁单颗粒物中Fe、O元素成分含量最高,铁氧化物是地铁颗粒物的主要成分.结果表明,地铁大气环境明显有别于地铁外环境,地铁在运行过程中产生了大量富含对人体有害的金属颗粒物.地铁环境对城市人群健康的影响需要引起重视.

  1. Concentration, spatial and size distribution of airborne aerobic mesophilic bacteria in broiler farms

    NARCIS (Netherlands)

    Adell, E.; Moset, V.; Yang Zhao, Yang; Cerisuelo, A.; Cambra-Lopez, M.

    2011-01-01

    In livestock houses, particulate matter (PM) and airborne microorganism are two of the most relevant air pollutants. Particulate matter may carry microorganisms, the inhalation of which can cause detrimental health effects. The aim of this study was to study the spatial distribution of airborne aero

  2. Analysis methods for airborne radioactivity

    OpenAIRE

    Ala-Heikkilä, Jarmo J

    2008-01-01

    High-resolution gamma-ray spectrometry is an analysis method well suitable for monitoring airborne radioactivity. Many of the natural radionuclides and a majority of anthropogenic nuclides are prominent gamma-ray emitters. With gamma-ray spectrometry different radionuclides are readily observed at minute concentrations that are far from health hazards. The gamma-ray spectrometric analyses applied in air monitoring programmes can be divided into particulate measurements and gas measurements. I...

  3. The Characteristics of deposition of airborne particulate matters with different size on certain plants%园林植物滞留不同粒径大气颗粒物的特征及规律

    Institute of Scientific and Technical Information of China (English)

    赵松婷; 李新宇; 李延明

    2014-01-01

    为研究常用园林植物滞留大气颗粒物的能力,本文以北京市常用园林植物为例,应用直接采样、电镜分析和统计分析的方法,对选定园林植物滞留不同粒径大气颗粒物的特征及规律进行了系统分析。结果表明:(1)园林植物滞留的颗粒物形状为不规则块体、球体和聚合体,通过对比分析得出,滞留大气颗粒物能力由高到低的微形态结构依次是蜡质结构>绒毛>沟槽>条状突起,并且这些微形态结构越密集、深浅差别越大,越有利于滞留大气颗粒物。(2)以园林植物叶片滞留颗粒物的数量进行统计时,得出园林植物叶片表面大部分为PM10(Dp≤10μm),均在98%以上,而PM2.5(Dp≤2.5μm)均在90%以上,粗颗粒物(Dp>10μm)的数量对总体数量的贡献非常小,均在2%以下;以体积进行统计时,得出PM10的体积在总体积中的比例在50%以上,对颗粒物总体积贡献最大,滞留的PM2.5体积占总体积8.5%-17.6%,粗颗粒物(Dp>10μm)体积占总体积20%以上。(3)对园林植物滞留颗粒物累积规律分析得出:在相同观测叶面积下,园林植物滞尘10 d的叶表面颗粒物数量较滞尘5 d的叶表面颗粒物数量均有所增加,增幅最大的是小叶黄杨(Buxus microphylla),增幅最小的是月季(Rosa chinensis),通过方差分析得出绦柳(Salix matsudana f.pendula)叶表面颗粒物数量显著低于除银杏(Ginkgo biloba)之外的其它7种树种,大叶黄杨(Euonymus japonicus)、小叶黄杨和国槐( Sophora japonica)叶表面滞留颗粒物的数量较多,并且显著高于月季、银杏和绦柳叶表面滞留的颗粒物数量;滞尘10 d后园林植物叶表面滞留的颗粒物的总面积均未超过观测叶面积的25%,至于叶片持续滞留颗粒物多少天后达到饱和状态仍需进一步研究。%In order to research retention capacity of airborne

  4. Ambient Background Particulate Compositiion Outdoor Natural Background: Interferents/Clutter

    Science.gov (United States)

    2011-08-01

    FIGURES 1. Map of UK Sampling Locations, Lizard, Pershore, Birmingham, Lichfield 10 2. Mean UK Airborne Pollen, Fungi , and Bacteria and/or their Sum... Airborne Pollen, Fungi , and Bacteria and/or their Sum @ Four Locations 12 4. TOTAL VS CULTURABLE MEASUREMENTS OF NATURAL OUTDOOR BACTERIA 10...characterize exposures to particulate matter in an effort to access the health effects on military personnel in the Middle East. For approximately 1 year

  5. Pavement wear and airborne dust pollution in Norway

    OpenAIRE

    Snilsberg, Brynhild

    2008-01-01

    In several large cities in Norway the traffic volume is high. The use of studded tires and other friction enhancing measures during winter leads to significant pavement wear, which in turn leads to an increase in the amount of airborne particulate matter, often exceeding the limits set in the ambient air regulation. This represents a nuisance or health risk for people being exposed to the pollution. According to regulations set by the European Union particulate matter is measured and regulate...

  6. Modeling for Airborne Contamination

    Energy Technology Data Exchange (ETDEWEB)

    F.R. Faillace; Y. Yuan

    2000-08-31

    The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of

  7. Determination of arsenic in air particulates and diesel exhaust particulates by spectrophotometry

    Institute of Scientific and Technical Information of China (English)

    S. M. Talebi; M. Abedi

    2005-01-01

    A method was developed for the determination of trace arsenic by spectrophotometry. The proposed method is rapid, simple,and inexpensive. This method can be used for sensitive determination of trace arsenic in environmental samples and especially in air particulates. The results obtained by this method as a proposed method were compared with those obtained by hydride generation atomic absorption spectrometry as a popular reported method for the determination of arsenic and an excellent agreement was found between them. The method was also used for determination of arsenic associated with airborne particulate matter and diesel exhaust particulates.The results showed that considerable amount of arsenic are associated with diesel engine particulates. The variation in concentration of arsenic was also investigated. The atmospheric concentration of arsenic was different in different sampling stations was dependent to the traffic density.

  8. Airborne microorganisms from waste containers.

    Science.gov (United States)

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste.

  9. Design of experiment approach for the optimization of polybrominated diphenyl ethers determination in fine airborne particulate matter by microwave-assisted extraction and gas chromatography coupled to tandem mass spectrometry.

    Science.gov (United States)

    Beser, Maria Isabel; Beltrán, Joaquim; Yusà, Vicent

    2014-01-03

    A sensitive and selective procedure for the determination of 12 polybrominated diphenyl ethers (BDE-28, BDE-49, BDE-47, BDE-66, BDE-100, BDE-119, BDE-99, BDE-155, BDE-154, BDE-153, BDE-139 and BDE-183) in airbone particulate matter (PM2.5) at trace level has been developed. The proposed method includes extraction PM2.5-bound PBDEs by microwave-assisted extraction (MAE) followed by gel permeation chromatography (GPC) clean-up and determination by GC-MS/MS using a programmed temperature vaporizer (PTV) in large volume injection (LVI) mode to introduce the sample to the chromatographic system. A design of experiment (DoE) approach was used for the optimization of large volume injection and microwave-assisted extraction parameters to improve these techniques efficiency. Other conditions of the method were studied: GC-MS/MS parameters, extraction solvent and matrix effect. The limit of quantification ranged from 0.063pgm(-3) to 0.210pgm(-3) when air volumes of 723m(3) were collected. Recoveries ranged from 80% to 106%. The method was successfully applied to eight real samples collected from a residential area of the monitoring network of the Region of Valencia Government (Spain) during April-August 2012. BDE-47 and BDE-99 were quantified in six and five samples respectively. The concentrations were ranged from 0.063 to 0.112pgm(-3) for BDE-47, and from 0.107 to 0.212pgm(-3) for BDE-99.

  10. Composición química y reconstrucción másica del material particulado suspendido en el aire de Bogotá Chemical composition and mass closure for airborne particulate matter in Bogotá

    Directory of Open Access Journals (Sweden)

    Rojas Néstor Y.

    2010-08-01

    Full Text Available El material particulado, medido como PM10, es el contaminante que más afecta la calidad del aire en Bogotá. Conocer la composición del material particulado es crucial para en- tender cuáles son las fracciones químicas que más aportan a ese contaminante e identificar posibles fuentes generadoras de él. En este artículo se presenta el resultado de la caracterización de especies iónicas, fracciones carbonáceas, meta- les y elementos minerales del material particulado en dos puntos de Bogotá. Con base en los resultados de caracterización se realiza un análisis de neutralidad iónica y reconstrucción másica para comparar la consistencia de los resulta- dos obtenidos. La composición es diferente para cada sector, pero en general las fracciones que más aportan al material particulado son la geológica (asociada a polvo fugitivo y re- suspendido, entre el 37 y 42%; las fracciones carbonáceas, que son las que más aportan, entre un 12 y 11% para el car- bono elemental y un 43 y 34% para materia orgánica; la fracción iónica se encontró entre un 5 y 8%.Particulate matter, measured as PM10, is the most concerning airborne pollutant in Bogotá. Determining its chemical com- position is important for understanding its potential effects and to estimate various sources’ contribution to such pollution. This paper gives the results of characterizing the ionic species, carbonaceous material, metals and crustal elements present in airborne PM10 in Bogotá. An ion charge balance and mass reconstruction were done for determining consistency between chemical characterization and gravimetric PM10. The composition was different in each area; however, the fractions contributing most to PM10 were crustal, 37% to 42% was related to fugitive and suspended dust, 12% to 11% was related to carbonaceus fractions, 43% to elemental carbon, 34% for organic matter and 5% to 8% for ionic fractions.

  11. Exposure to particulate hexavalent chromium exacerbates allergic asthma pathology

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Brent C. [Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC 20037 (United States); Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States); Constant, Stephanie L. [Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC 20037 (United States); Patierno, Steven R. [Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States); GW Cancer Institute, The George Washington University, Washington, DC 20037 (United States); Jurjus, Rosalyn A. [Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037 (United States); Ceryak, Susan M., E-mail: phmsmc@gwumc.edu [Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States)

    2012-02-15

    Airborne hexavalent chromate, Cr(VI), has been identified by the Environmental Protection Agency as a possible health threat in urban areas, due to the carcinogenic potential of some of its forms. Particulate chromates are produced in many different industrial settings, with high levels of aerosolized forms historically documented. Along with an increased risk of lung cancer, a high incidence of allergic asthma has been reported in workers exposed to certain inhaled particulate Cr(VI) compounds. However, a direct causal association between Cr(VI) and allergic asthma has not been established. We recently showed that inhaled particulate Cr(VI) induces an innate neutrophilic inflammatory response in BALB/c mice. In the current studies we investigated how the inflammation induced by inhaled particulate Cr(VI) might alter the pathology of an allergic asthmatic response. We used a well-established mouse model of allergic asthma. Groups of ovalbumin protein (OVA)-primed mice were challenged either with OVA alone, or with a combination of OVA and particulate zinc chromate, and various parameters associated with asthmatic responses were measured. Co-exposure to particulate Cr(VI) and OVA mediated a mixed form of asthma in which both eosinophils and neutrophils are present in airways, tissue pathology is markedly exacerbated, and airway hyperresponsiveness is significantly increased. Taken together these findings suggest that inhalation of particulate forms of Cr(VI) may augment the severity of ongoing allergic asthma, as well as alter its phenotype. Such findings may have implications for asthmatics in settings in which airborne particulate Cr(VI) compounds are present at high levels. -- Highlights: ► Allergic asthma correlated with exposure to certain inhaled particulate chromates. ► Direct causal association between Cr(VI) and allergic asthma not established. ► Cr exacerbated pathology and airway hyperresponsiveness in an OVA-challenged mouse. ► Particulate Cr

  12. Expert workshop traffic-caused airborne particles in urban areas; Experten-Workshop 'Verkehrsbedingte Feinstaeube in der Stadt'

    Energy Technology Data Exchange (ETDEWEB)

    Lanzendorf, Martin; Birmili, Wolfram; Franke, Patrick

    2006-07-15

    The proceedings of the expert workshop on traffic-caused airborne particulates in urban regions include the following contributions: epidemiology of ultra-fine particulates, ultra-fine particulates and their impacts in human health, environmental particulates in the urban atmosphere: properties and future requirement of measuring methods; ultra-fine particulates from traffic emissions - problems of measuring site selection for the evaluation of human exposure, modeling of PMx emissions in the context of environmental compatibility assessments and mitigation planning, traffic-caused particulates - need for action and remedial actions from the sight of the Federal environment Agency, traffic-related measures for the reduction of urban particulate exposure and their impact on the planning of air pollution prevention, strategic environmental assessment as an instrument for the airborne particulate consideration within the traffic and regional planning.

  13. Airborne geoid determination

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Bastos, L.

    2000-01-01

    Airborne geoid mapping techniques may provide the opportunity to improve the geoid over vast areas of the Earth, such as polar areas, tropical jungles and mountainous areas, and provide an accurate "seam-less" geoid model across most coastal regions. Determination of the geoid by airborne methods...

  14. Health effects of atmospheric particulates: a medical geology perspective.

    Science.gov (United States)

    Duzgoren-Aydin, Nurdan S

    2008-01-01

    In this review, atmospheric particulates as composite airborne earth materials often containing both natural and anthropogenic components were examined in the context of medical geology. Despite a vast number of both experimental and epidemiological studies confirming the direct and indirect links between atmospheric particulates and human health, the exact nature of mechanisms affecting the particulate-induced pathogenesis largely remains unexplored. Future in depth research on these areas would be most successful if potential mechanisms are examined with reference to the physical (e.g., size, shape and surface), chemical, mineralogical and source characteristics of particulate matters. The underlying goal of this review was to present the relevant terminology and processes proposed in the literature to explain the interfaces and interactions between atmospheric particles and human body within the framework of "atmospheric particle cycles." The complexities of the interactions were demonstrated through case studies focusing on particulate matter air pollution and malignant mesothelioma occurrences due to environmental exposure to erionite-a fibrous zeolite mineral. There is an urgent need for a standard protocol or speciation methods applicable to earth-materials to guide and streamline studies on etiology of mineral-induced diseases. This protocol or speciation methods should provide relevant procedures to determine the level and extent of physical, chemical and mineralogical heterogeneity of particulate matters as well as quantitative in-situ particulate characteristics.

  15. Heavy metal composition of particulate matter in rural and urban residential built environments in Pakistan

    OpenAIRE

    Nasar, ZA; Colbeck, I.; Ali, Z; Ahmed, S

    2015-01-01

    Heavy metals in outdoor and indoor airborne particulate matter (PM) and dust in different residential built environmentsat two rural and one urban site in Pakistan were analysed. An eight stage non-viable impactor (Thermo Fisher Scientific Inc., USA) loaded with EMP 2000 glass microfiber filter papers (Whatman, England) was used to collect airborne PM.The indoordust samples (settled dust) were collected from different indoor surfaces (floor, cupboards) in living rooms and kitchens...

  16. Interaction between ozone and airborne particulate matter in office air

    DEFF Research Database (Denmark)

    Mølhave, Lars; Kjærgaard, Søren K.; Sigsgaard, Torben

    2005-01-01

    This study investigated the hypotheses that humans are affected by air pollution caused by ozone and house dust, that the effect of simultaneous exposure to ozone and dust in the air is larger than the effect of these two pollutants individually, and that the effects can be measured as release...

  17. Airborne wind energy

    CERN Document Server

    Ahrens, Uwe; Schmehl, Roland

    2013-01-01

    This reference offers an overview of the field of airborne wind energy. As the first book of its kind, it provides a consistent compilation of the fundamental theories, a compendium of current research and development activities as well as economic and regulatory aspects. In five parts, the book demonstrates the relevance of Airborne Wind Energy and the role that this emerging field of technology can play for the transition towards a renewable energy economy. Part I on 'Fundamentals' contains seven general chapters explaining the principles of airborne wind energy and its different variants, o

  18. Airborne Evaluation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — AFRL's Airborne Evaluation Facility (AEF) utilizes Air Force Aero Club resources to conduct test and evaluation of a variety of equipment and concepts. Twin engine...

  19. ESEM-EDX characterisation of airborne particles from an industrialised area of northern Greece

    Energy Technology Data Exchange (ETDEWEB)

    Iordanidis, A.; Buckman, J.; Triantafyllou, A.G.; Asvesta, A. [Technology Educational Institute for Western Macedonia, Kozani (Greece)

    2008-10-15

    The aim of this study was to characterise individual airborne particles collected from the Ptolemais-Kozani region (Western Macedonia), northern Greece. Throughout a 1-year period (March 2003 to February 2004), we collected several filters that captured airborne particles at seven sampling sites distributed throughout the area. The airborne particles captured on the filters were then characterised by environmental scanning electron microscopy (ESEM) coupled with energy-dispersive X-ray analysis (EDX). The particles were categorised as geogenic, biogenic and anthropogenic. The main anthropogenic airborne particles were fly ash (released from lignite-fired power plants) and carbonaceous (soot and char) and metalliferous (mainly iron- and copper-enriched) particulates. We present here characteristic ESEM and EDX spectra for the airborne particles and underline the presence of characteristic primary and secondary sulphates.

  20. Fluidizing device for solid particulates

    Science.gov (United States)

    Diebold, J.P.; Scahill, J.W.

    A flexible whip suspended in a hopper is caused to impact against fibrous and irregularly shaped particulates in the hopper to fluidize the particulates and facilitate the flow of the particulates through the hopper. The invention provides for the flow of particulates at a substantially constant mass flow rate and uses a minimum of energy.

  1. Savannah River Site Ingestion Pathway Methodology Manual for Airborne Radioactive Releases

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, A.W. III

    2001-01-03

    This manual documents a recommended methodology for determining the ingestion pathway consequences of hypothetical accidental airborne radiological releases from facilities at the Savannah River Site. Both particulate and tritiated radioactive contaminants are addressed. Other approaches should be applied for evaluation of routine releases.

  2. Toxic effects of indoor and outdoor airborne particles relevant to carcinogenesis.

    NARCIS (Netherlands)

    Heussen, G.A.H.

    1993-01-01

    The mutagenicity of indoor and outdoor airborne particulate matter (APM) has been demonstrated by previous in vitro studies (Alink et al., 1983; Van Houdt et al., 1984, 1986, 1987). The aim of the present thesis was to contribute to a better understanding of the mode of action of AIM in the pathogen

  3. Characteristics of airborne bacteria in Mumbai urban environment.

    Science.gov (United States)

    Gangamma, S

    2014-08-01

    Components of biological origin constitute small but a significant proportion of the ambient airborne particulate matter (PM). However, their diversity and role in proinflammatory responses of PM are not well understood. The present study characterizes airborne bacterial species diversity in Mumbai City and elucidates the role of bacterial endotoxin in PM induced proinflammatory response in ex vivo. Airborne bacteria and endotoxin samples were collected during April-May 2010 in Mumbai using six stage microbial impactor and biosampler. The culturable bacterial species concentration was measured and factors influencing the composition were identified by principal component analysis (PCA). The biosampler samples were used to stimulate immune cells in whole blood assay. A total of 28 species belonging to 17 genera were identified. Gram positive and spore forming groups of bacteria dominated the airborne culturable bacterial concentration. The study indicated the dominance of spore forming and human or animal flora derived pathogenic/opportunistic bacteria in the ambient air environment. Pathogenic and opportunistic species of bacteria were also present in the samples. TNF-α induction by PM was reduced (35%) by polymyxin B pretreatment and this result was corroborated with the results of blocking endotoxin receptor cluster differentiation (CD14). The study highlights the importance of airborne biological particles and suggests need of further studies on biological characterization of ambient PM.

  4. Airborne Emissions from Si/FeSi Production

    Science.gov (United States)

    Kero, Ida; Grådahl, Svend; Tranell, Gabriella

    2016-10-01

    The management of airborne emissions from silicon and ferrosilicon production is, in many ways, similar to the management of airborne emissions from other metallurgical industries, but certain challenges are highly branch-specific, for example the dust types generated and the management of NO X emissions by furnace design and operation. A major difficulty in the mission to reduce emissions is that information about emission types and sources as well as abatement and measurement methods is often scarce, incomplete and scattered. The sheer diversity and complexity of the subject presents a hurdle, especially for new professionals in the field. This article focuses on the airborne emissions from Si and FeSi production, including greenhouse gases, nitrogen oxides, airborne particulate matter also known as dust, polyaromatic hydrocarbons and heavy metals. The aim is to summarize current knowledge in a state-of-the-art overview intended to introduce fresh industry engineers and academic researchers to the technological aspects relevant to the reduction of airborne emissions.

  5. Airborne Emissions from Si/FeSi Production

    Science.gov (United States)

    Kero, Ida; Grådahl, Svend; Tranell, Gabriella

    2017-02-01

    The management of airborne emissions from silicon and ferrosilicon production is, in many ways, similar to the management of airborne emissions from other metallurgical industries, but certain challenges are highly branch-specific, for example the dust types generated and the management of NO X emissions by furnace design and operation. A major difficulty in the mission to reduce emissions is that information about emission types and sources as well as abatement and measurement methods is often scarce, incomplete and scattered. The sheer diversity and complexity of the subject presents a hurdle, especially for new professionals in the field. This article focuses on the airborne emissions from Si and FeSi production, including greenhouse gases, nitrogen oxides, airborne particulate matter also known as dust, polyaromatic hydrocarbons and heavy metals. The aim is to summarize current knowledge in a state-of-the-art overview intended to introduce fresh industry engineers and academic researchers to the technological aspects relevant to the reduction of airborne emissions.

  6. Univers de Particules

    CERN Multimedia

    CERN Video Productions

    2010-01-01

    Dans l’Univers, tout est fait de particules. Mais d’où viennent-elles? Quelle est l’origine des lois de la nature? Au rez-de-chaussée du Globe de la science et de l’innovation, l’exposition permanente « Univers de particules » vous invite à un voyage vers le Big Bang en explorant le CERN. Avec à la clé des réponses aux questions: pourquoi cette recherche ? Comment accélérer des particules ? Comment les détecter ? Quelles sont les théories sur la matière et sur l’Univers aujourd’hui ? Quelles retombées pour notre vie quotidienne ?

  7. International Symposium on Airborne Geophysics

    Science.gov (United States)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  8. Microwave regenerated particulate trap

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, A.C. Jr.; Yonushonis, T.M. [Cummins Engine Co., Inc., Columbus, IN (United States); Haberkamp, W.C.; Mako, F.; Len, L.K,; Silberglitt, R.; Ahmed, I. [FM Technologies, Inc., Fairfax, VA (United States)

    1997-12-31

    It has been demonstrated that a fibrous particulate filter can extract particulate matter from the diesel exhaust. However, additional engineering efforts remains to achieve the design target of 90%. It has also be shown that with minor modifications magnetrons produced for home ovens can endure a simulated diesel operating environment. Much work remains to develop a robust product ready to complete extensive engine testing and evaluation. These efforts include: (1) additional environmental testing of magnetrons; (2) vibration testing of the filter in the housing; (3) evaluating alternative methods/designs to seal the center bore; and (4) determining the optimum coating thickness that provides sufficient structural integrity while maintaining rapid heating rates.

  9. Indoor airborne infection

    Energy Technology Data Exchange (ETDEWEB)

    Riley, R.L.

    1982-01-01

    Airborne infection from person to person is an indoor phenomenon. The infectious organisms are atomized by coughing, sneezing, singing, and even talking. The smallest droplets evaporate to droplet nuclei and disperse rapidly and randomly throughout the air of enclosed spaces. Droplet nuclei have negligible settling velocity and travel wherever the air goes. Outdoors, dilution is so rapid that the chance of inhaling an infectious droplet nucleus is minimal. Measles and other childhood contagions, the common respiratory virus infections, pulmonary tuberculosis, and Legionnaires' Disease are typically airborne indoors. In analyzing a measles outbreak, the probability that a susceptible person would breathe a randomly distributed quantum of airborne infection during one generation of an outbreak was expressed mathematically. Estimates of the rate of production of infectious droplet nuclei ranged between 93 and 8 per min, and the concentration in the air produced by the index case was about 1 quantum per 5 m/sup 3/ of air. Infectious aiborne particles are thus few and far between. Control of indoor airborne infection can be approached through immunization, therapeutic medication, and air disinfection with ultraviolet radiation.

  10. Airborne Compositae dermatitis

    DEFF Research Database (Denmark)

    Christensen, Lars Porskjær; Jakobsen, Henrik Byrial; Paulsen, E.

    1999-01-01

    The air around intact feverfew (Tanacetum parthenium) plants was examined for the presence of airborne parthenolide and other potential allergens using a high-volume air sampler and a dynamic headspace technique. No particle-bound parthenolide was detected in the former. Among volatiles emitted f...

  11. Bioaccessibility of palladium and platinum in urban aerosol particulates

    Science.gov (United States)

    Puls, Christoph; Limbeck, Andreas; Hann, Stephan

    2012-08-01

    To evaluate potential health hazards caused by environmental Platinum Group Elements (PGEs), bioaccessibility of the metals in question needs to be assessed. To gain appropriate data, airborne particulate matter samples of different size fractions (total suspended particles as well as PM10 and PM2.5) were taken in downtown Vienna, an urban site primarily polluted by traffic. Total PGE concentrations in these samples were in the low picogram per cubic meter range, as determined by ID-ICP-MS after microwave digestion. For elimination of elements interfering with the accurate quantification, the digested samples were subjected to a cleaning procedure involving cation exchange. For determination of the bioaccessible fraction, it was assumed that inhaled particles are removed from the respiratory system by mucociliary clearance and subsequently ingested. Accordingly, the solubility of PGE in synthetic gastric juice was investigated by batch extraction of particulate matter samples followed by microwave assisted UV-digestion, cation exchange cleanup and ID-ICP-MS. The acquired data was used to calculate the bioaccessible fraction of Pd and Pt in airborne particulate matter. Average GIT-extractable fractions for Pd and Pt in TSP were 41% and 27%, in PM10 34% and 26%, respectively, thus exceeding previously determined values for bioaccessibility of PGE from ground catalyst materials by up to an order of magnitude.

  12. Geochemical Characterization of Rain Water Particulate Material on a Coastal Sub-Tropical Region in SE: Brazil

    OpenAIRE

    Silva Filho, E. V.; Paiva, R. P.; WASSERMAN, J.C.; Lacerda,L. D.

    1998-01-01

    Airborne contamination has been of concern for a number of scientist in temperate regions. In the tropics, a very small amount of data is available. In this work, rain water particulate material was monitored in two sites in Rio de Janeiro State (Brazil): the first (Sepetiba), subjected to high inputs of metals from industrial activities and the second (Iguaba), subjected to very mild contamination. Particulate material was obtained by filtration of rain water samples. The filters were analys...

  13. Particulate Matter (PM) Pollution

    Science.gov (United States)

    ... affect the heart and lungs and cause serious health effects. December 1, 2016 - EPA proposes air quality determinations for eleven areas designated "nonattainment" for the 24-hour fine particle standards. Particulate Matter (PM) Pollution PM Basics What is PM, and how does ...

  14. Effect of environmental variables in turkey confinement houses on airborne Aspergillus and mycoflora composition.

    Science.gov (United States)

    Debey, M C; Trampel, D W; Richard, J L; Bundy, D S; Hoffman, L J; Meyer, V M; Cox, D F

    1995-03-01

    Environmental conditions and airborne mycoflora were measured concurrently in 10 turkey confinement houses during warm and cold weather. The following variables in the environment were measured: numbers of feed- and litter-associated yeast and mold fungi, temperature, relative humidity, airspeed, carbon dioxide and ammonia concentration, airborne bacteria, and airborne particulate mass, particle number, and particle size distribution. Winter air in turkey confinement houses contained significantly higher concentrations of Aspergillus, Scopulariopsis, and Mucor sp. and significantly lower concentrations of Cladosporium, Fusarium, and Alternaria sp. when compared with summer air. Significantly greater numbers of Mucor sp. were recovered per cubic meter of air where the current turkey flock was present less than 100 d when compared to houses where the current flock resided 100 d or more. Management decisions regarding control of the internal environment of turkey confinement houses apparently influence airborne mycoflora composition.

  15. Absolute airborne gravimetry

    Science.gov (United States)

    Baumann, Henri

    This work consists of a feasibility study of a first stage prototype airborne absolute gravimeter system. In contrast to relative systems, which are using spring gravimeters, the measurements acquired by absolute systems are uncorrelated and the instrument is not suffering from problems like instrumental drift, frequency response of the spring and possible variation of the calibration factor. The major problem we had to resolve were to reduce the influence of the non-gravitational accelerations included in the measurements. We studied two different approaches to resolve it: direct mechanical filtering, and post-processing digital compensation. The first part of the work describes in detail the different mechanical passive filters of vibrations, which were studied and tested in the laboratory and later in a small truck in movement. For these tests as well as for the airborne measurements an absolute gravimeter FG5-L from Micro-G Ltd was used together with an Inertial navigation system Litton-200, a vertical accelerometer EpiSensor, and GPS receivers for positioning. These tests showed that only the use of an optical table gives acceptable results. However, it is unable to compensate for the effects of the accelerations of the drag free chamber. The second part describes the strategy of the data processing. It is based on modeling the perturbing accelerations by means of GPS, EpiSensor and INS data. In the third part the airborne experiment is described in detail, from the mounting in the aircraft and data processing to the different problems encountered during the evaluation of the quality and accuracy of the results. In the part of data processing the different steps conducted from the raw apparent gravity data and the trajectories to the estimation of the true gravity are explained. A comparison between the estimated airborne data and those obtained by ground upward continuation at flight altitude allows to state that airborne absolute gravimetry is feasible and

  16. Indoor and outdoor concentrations of Japanese cedar pollens and total suspended particulates: A case study at a kindergarten in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Naomichi [Department of Nursing, School of Health Sciences, Tokai University, Bohseidai, Isehara-shi, Kanagawa 259-1193 (Japan); Japan Society for the Promotion of Science (JSPS), Ichiban-cho 8, Chiyoda-ku, Tokyo 102-8472 (Japan); Nishikawa, Junko; Sakamoto, Miho; Shimizu, Tomomi; Matsuki, Hideaki [Department of Nursing, School of Health Sciences, Tokai University, Bohseidai, Isehara-shi, Kanagawa 259-1193 (Japan)

    2010-03-15

    Japanese cedar pollinosis (JCP) caused by allergenic cedar and cypress pollens is one of major economic and health issues in Japan. The present study reported here aimed to provide basic data to understand the status of early life exposures to airborne cedar and cypress pollens in school settings. In particular, the study investigated relationships between indoor and outdoor concentrations of airborne cedar and cypress pollens and total suspended particulates (TSP) in a kindergarten in Japan. Overall, outdoor concentrations of the airborne pollens and TSP were higher than the indoor concentrations, i.e., indoor to outdoor (I/O) ratios of 0.043-0.055 and 0.545 for the airborne pollens and TSP, respectively. The smaller I/O ratios for the pollens were expected because the larger pollen grains (20-30 {mu}m in diameter) were less likely penetrated to indoor environment than for smaller airborne particulates. The present study also found increased TSP concentrations during the pollen season was likely attributed to increased airborne pollen concentrations. By understanding the status of indoor and outdoor concentrations of airborne cedar and cypress pollens in school settings, early life exposures to these allergenic pollens should be effectively minimized to prevent subsequent progression to JCP symptoms. (author)

  17. Characterization of particulate matter concentrations and bioaerosol on each floor at a building in Seoul, Korea.

    Science.gov (United States)

    Oh, Hyeon-Ju; Jeong, Na-Na; Chi, Woo-Bae; Seo, Ji-Hoon; Jun, Si-Moon; Sohn, Jong-Ryeul

    2015-10-01

    Particulate matter (PM) in buildings are mostly sourced from the transport of outdoor particles through a heating, ventilation, and air conditioning (HVAC) system and generation of particle within the building itself. We investigated the concentrations and characteristic of indoor and outdoor particles and airborne bacteria concentrations across four floors of a building located in a high-traffic area. In all the floors we studied (first, second, fifth, and eighth), the average concentrations of particles less than 10 μm (PM10) in winter for were higher than those in summer. On average, a seasonal variation in the PM10 level was found for the first, fifth, and eighth floors, such that higher values occurred in the winter season, compared to the summer season. In addition, in winter, the indoor concentrations of PM10 on the first, fifth, and eighth floors were higher than those of the outdoor PM10. The maximum level of airborne bacteria concentration was found in a fifth floor office, which held a private academy school consisting of many students. Results indicated that the airborne bacteria remained at their highest concentration throughout the weekday period and varied by students' activity. The correlation coefficient (R (2)) and slope of linear approximation for the concentrations of particulate matter were used to evaluate the relationship between the indoor and outdoor particulate matter. These results can be used to predict both the indoor particle levels and the risk of personal exposure to airborne bacteria.

  18. Predicted responses for a particulate detection system in a continuous stack monitor.

    Science.gov (United States)

    Tries, Mark A; Holloman, Ryan L; Bobe, Leo M

    2002-10-01

    Predicted counting rate responses were developed for a particulate detection system that is used for continuous monitoring for the presence of radioactive particulates in the effluent air from a research reactor. The particulate detection system consists of a moving filter paper assembly, a plastic scintillation detector, and a rate meter output, and is part of a comprehensive stack monitoring system. A predicted response was derived for the case of a steady-state activity distribution across the surface of the moving filter paper that is in proximity to the detector and was determined to be 1.59 x 10(7) cpm per unit airborne concentration of 138Cs (expressed in units of Bq cm(-3)), where 138Cs was used as an indicator for a hypothetical fission product release. The corresponding response model provided by the manufacturer was found to underestimate airborne activity concentrations by about an order of magnitude. A predicted response also was derived for the case of a rapid change in airborne activity concentration, which was formulated based on the kinetics of the rate meter circuit and was used to establish alarm settings and detection limits for the particulate detection system.

  19. Airborne wireless communication systems, airborne communication methods, and communication methods

    Science.gov (United States)

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  20. Particulate matter dynamics

    CERN Document Server

    Cionco, Rodolfo G; Caligaris, Marta G

    2012-01-01

    A substantial fraction of the particulate matter released into the atmosphere by industrial or natural processes corresponds to particles whose aerodynamic diameters are greater than 50 mm. It has been shown that, for these particles, the classical description of Gaussian plume diffusion processes, is inadequate to describe the transport and deposition. In this paper we present new results concerning the dispersion of coarse particulate matter. The simulations are done with our own code that uses the Bulirsch Stoer numerical integrator to calculate threedimensional trajectories of particles released into the environment under very general conditions. Turbulent processes are simulated by the Langevin equation and weather conditions are modeled after stable (Monin-Obukhov length L> 0) and unstable conditions (L <0). We present several case studies based on Monte Carlo simulations and discusses the effect of weather on the final deposition of these particles.

  1. Airborne Submillimeter Spectroscopy

    Science.gov (United States)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  2. 40 CFR Appendix G to Part 50 - Reference Method for the Determination of Lead in Suspended Particulate Matter Collected From...

    Science.gov (United States)

    2010-07-01

    ... County, IL, by Atomic Absorption Spectroscopy.” Envir. Sci. and Tech., 3, 472-475 (1969). 7. “Proposed... Lead in Airborne Particulates.” Inter. J. Environ. Anal. Chem., 2, 63-77 (1972). 4. Slavin, W., “Atomic Absorption Spectroscopy.” Published by Interscience Company, New York, NY (1968). 5. Kirkbright, G. F.,...

  3. Airborne field strength monitoring

    Directory of Open Access Journals (Sweden)

    J. Bredemeyer

    2007-06-01

    Full Text Available In civil and military aviation, ground based navigation aids (NAVAIDS are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000 by the International Civil Aviation Organization (ICAO. One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz, the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA accelerated method of moments (MoM using a complex geometric model of the aircraft. First results will be presented in this paper.

  4. Airborne Contamination Control through Directed Airflow in the Exam Room: A Pilot Study Using a Membrane Diffuser

    Directory of Open Access Journals (Sweden)

    Debajyoti Pati

    2010-01-01

    Full Text Available Airborne infections have been documented as a major source of hospital acquired infection - one of the major concerns in healthcare delivery. An important factor contributing to airborne infection is cross contamination through air particulate dispersion as affected by the ventilation system design. Clean room technology (with membrane ceiling has been successfully used in technology and pharmaceutical industries to control airborne contamination. This study examined the performance of membrane ceiling technology in controlling air particulate dispersion in a mock-up exam room. It included both performance tests in a mock-up room and a simulation study of six different ventilation system designs using Computational Fluid Dynamics (CFD analysis. Findings suggest that a membrane diffuser directed airflow ventilation strategy occupying approximately 20% to 30% of the ceiling surface and placed over the patient in a contemporary sized exam room provides a less turbulent airflow pattern and less mixing of the air between the patient and others in the room.

  5. Compositae dermatitis from airborne parthenolide

    DEFF Research Database (Denmark)

    Paulsen, E.; Christensen, Lars Porskjær; Andersen, K.E.

    2007-01-01

    -allergic patients and (ii) re-assess the role of PHL and other SQLs in airborne contact allergy. PATIENTS AND METHODS: Feverfew-allergic patients were patch tested with extracts and fractions containing volatile monoterpenes and sesquiterpenes as well as extracts of airborne particles from flowering feverfew plants......, whether they were oxidized or not. CONCLUSIONS: The clinical results have proved that some feverfew-allergic patients are sensitive to airborne particles released from the plant, and isolation of PHL from the particle-containing HIVAS extract in allergenic amounts is strong evidence of PHL......BACKGROUND: Compositae dermatitis confined to exposed skin has often been considered on clinical grounds to be airborne. Although anecdotal clinical and plant chemical reports suggest true airborne allergy, no proof has been procured. Feverfew (Tanacetum parthenium) is a European Compositae plant...

  6. Application of ultraviolet spectrophotometry to estimate occupational exposure to airborne polyaromatic compounds in asphalt pavers.

    Science.gov (United States)

    Buratti, Marina; Campo, Laura; Fustinoni, Silvia; Valla, Carla; Martinotti, Irene; Cirla, Piero E; Cavallo, Domenico; Foà, Vito

    2007-06-01

    An ultraviolet (UV) spectrophotometric procedure was devised for the determination of polycyclic aromatic compound-oriented organic soluble matter in vapors and particulate collected from emissions of hot asphalt mix. Ultrasonic extraction was carried out with acetonitrile, followed by UV measurements at 254 nm. Polycyclic aromatic compounds (PACs) in volatile and particulate fraction were quantified as phenanthrene or benzo[k]fluoranthene equivalents. A comparison between UV and high-pressure liquid chromatography with fluorescence detection showed that PACs were one to three orders of magnitude higher than the sum of 15 priority polycyclic aromatic hydrocarbons (PAHs); still, significant correlations were found between volatile or particulate PACs and, respectively, total volatile or particulate PAHs. Moreover, in the particulate phase, PACs correlated with total particulate matter quantified by gravimetry. The proposed procedure was employed in a field study for monitoring personal exposure to asphalt emissions of workers engaged in road construction. Observed levels of acetonitrile-soluble PACs in air samples were very low (2-20 microg/m3); however, asphalt pavers were exposed to significantly higher concentrations of volatile PACs than construction workers (geometric mean, 5.9 microg/m3 vs. 4.1 microg/m3). This method for estimating the global content of volatile or particulate PACs in air samples satisfies our requirements of simplicity and is suitable for conducting an initial screening to assess exposure to airborne polyaromatic organics in asphalt pavers.

  7. Gravimetric Analysis of Particulate Matter using Air Samplers Housing Internal Filtration Capsules

    OpenAIRE

    O'Connor, Sean; O'Connor, Paula Fey; Feng, H. Amy; Ashley, Kevin

    2014-01-01

    An evaluation was carried out to investigate the suitability of polyvinyl chloride (PVC) internal capsules, housed within air sampling devices, for gravimetric analysis of airborne particles collected in workplaces. Experiments were carried out using blank PVC capsules and PVC capsules spiked with 0,1 – 4 mg of National Institute of Standards and Technology Standard Reference Material® (NIST SRM) 1648 (Urban Particulate Matter) and Arizona Road Dust (Air Cleaner Test Dust). The capsules were ...

  8. Airborne Cloud Computing Environment (ACCE)

    Science.gov (United States)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  9. Airborne laser fish finder

    Science.gov (United States)

    Zhu, Xiao; Li, Zaiguang; Huang, Houzheng

    1998-05-01

    An experimental airborne laser fish finder has been developed and field trial has been conducted. The Q-switched and frequency-doubled Nd:YAG laser output is of 100 HZ pulse repetition rate, 2 MW peak power, 8 ns pulse width. The green light receiving telescope is transmissive with 1400 mm focal length and 200 mm aperture. The varying-gain control of PMT and logarithmic amplifier are used to compress the 105 dynamic range of received signals. The main features of data real-time processing subsystem are of 200 Ms/s sampling rate, 8 bit resolution, adjacent average treatment of return waveforms with high noise, and pseudo-color display of water depth.

  10. Airborne laser bathymetry experiment

    Science.gov (United States)

    Lei, Wenqiang; Zhu, Xiao; Yang, Kecheng; Li, Zaiguang

    1999-09-01

    An experimental airborne laser bathymetry system has been developed and field trial has been conducted. The Q-switched and frequency-doubled Nd:YAG laser output is of 100 HZ pulse repetition rate, 2 MW peak power, 8 ns pulse width. The green light receiving telescope is transmissive with 1400 mm focal length and 200 mm aperture. The varying-gain control of PMT and logarithmic amplifier are used to compress the 105 dynamic range of received signals. The main features of data real-time processing subsystem are of 200 Ms/s sampling rate, 8 bit resolution, adjacent average treatment of return waveforms with high noise, and pseudo-color display of sea depth.

  11. Micromorphology and chemistry of airborne particles in Brussels during agriculture working periods in surrounding region.

    Science.gov (United States)

    Vanderstraeten, P; Lénelle, Y; Meurrens, A; Carati, D; Brenig, L; Offer, Z Y; Zaady, E

    2008-11-01

    The main objective of our research was to compare the airborne particle micromorphology and chemistry in the Brussels environment during agriculture working periods in the surrounding farming region. We used specific methods and instrumentation that are adapted to the climate peculiarities of the Brussels region, the period of investigations (12 months) and the proposed objectives. For the agricultural works we defined the following six periods: before sowing, sowing, after sowing, before harvest, harvest and after harvest. The results indicate a possible temporal correlation between agricultural work periods and airborne particle concentration, micromorphology and chemistry in the Brabant-Brussels region. For wheat and corn plant-growth periods, the average particle size, defined as the area obtained by a planar projection of the particulate, showed important variations in time. For sugar beet and endive, the average area size variations are less important. The roughness and sphericity parameters for the growth periods of the four different plants also showed significant differences. Many of the larger particulates (> 10 microm) are aggregates of even finer particles coated with many still finer ones. The airborne particle chemistry averages (atomic percentage At%), showed that three constituents (Si, S and Fe) dominate all the samples (except for particles 3-10 microm in size, which contain a relatively large percentage of Al). Applying similar investigation methods to study the correlations between airborne particle dynamics in urban zones and the agriculture working periods in their surrounding regions could be of interest to better understand the complexity of the PM problematic.

  12. NASA_Airborne_Lidar_Flights

    Data.gov (United States)

    National Aeronautics and Space Administration — Data from the 1982 NASA Langley Airborne Lidar flights following the eruption of El Chichon beginning in July 1982 and continuing to January 1984. Data in ASCII...

  13. Ion-Beam Analysis of Airborne Pollution

    Science.gov (United States)

    Harrington, Charles; Gleason, Colin; Schuff, Katie; Battaglia, Maria; Moore, Robert; Turley, Colin; Labrake, Scott; Vineyard, Michael

    2010-11-01

    An undergraduate laboratory research program in ion-beam analysis (IBA) of atmospheric aerosols is being developed to study pollution in the Capitol District and Adirondack Mountains of New York. The IBA techniques applied in this project include proton induced X-ray emission (PIXE), proton induced gamma-ray emission (PIGE), Rutherford backscattering (RBS), and proton elastic scattering analysis (PESA). These methods are well suited for studying air pollution because they are quick, non-destructive, require little to no sample preparation, and capable of investigating microscopic samples. While PIXE spectrometry is used to analyze most elements from silicon to uranium, the other techniques are being applied to measure some of the remaining elements and complement PIXE in the study of aerosols. The airborne particulate matter is collected using nine-stage cascade impactors that separate the particles according to size and the samples are bombarded with proton beams from the Union College 1.1-MV Pelletron Accelerator. The reaction products are measured with SDD X-ray, Ge gamma-ray, and Si surface barrier charged particle detectors. Here we report on the progress we have made on the PIGE, RBS, and PESA analysis of aerosol samples.

  14. Diversity and seasonal dynamics of airborne archaea

    Science.gov (United States)

    Fröhlich-Nowoisky, J.; Ruzene Nespoli, C.; Pickersgill, D. A.; Galand, P. E.; Müller-Germann, I.; Nunes, T.; Gomes Cardoso, J.; Almeida, S. M.; Pio, C.; Andreae, M. O.; Conrad, R.; Pöschl, U.; Després, V. R.

    2014-11-01

    Archaea are widespread and abundant in many terrestrial and aquatic environments, and are thus outside extreme environments, accounting for up to ~10% of the prokaryotes. Compared to bacteria and other microorganisms, however, very little is known about the abundance, diversity, and dispersal of archaea in the atmosphere. By means of DNA analysis and Sanger sequencing targeting the 16S rRNA (435 sequences) and amoA genes in samples of air particulate matter collected over 1 year at a continental sampling site in Germany, we obtained first insights into the seasonal dynamics of airborne archaea. The detected archaea were identified as Thaumarchaeota or Euryarchaeota, with soil Thaumarchaeota (group I.1b) being present in all samples. The normalized species richness of Thaumarchaeota correlated positively with relative humidity and negatively with temperature. This together with an increase in bare agricultural soil surfaces may explain the diversity peaks observed in fall and winter. The detected Euryarchaeota were mainly predicted methanogens with a low relative frequency of occurrence. A slight increase in their frequency during spring may be linked to fertilization processes in the surrounding agricultural fields. Comparison with samples from the Cape Verde islands (72 sequences) and from other coastal and continental sites indicates that the proportions of Euryarchaeota are enhanced in coastal air, which is consistent with their suggested abundance in marine surface waters. We conclude that air transport may play an important role in the dispersal of archaea, including assumed ammonia-oxidizing Thaumarchaeota and methanogens.

  15. Diversity and seasonal dynamics of airborne Archaea

    Directory of Open Access Journals (Sweden)

    J. Fröhlich-Nowoisky

    2014-05-01

    Full Text Available Archaea are widespread and abundant in many terrestrial and aquatic environments, accounting for up to ∼10% of the prokaryotes. Compared to Bacteria and other microorganisms, however, very little is known about the abundance, diversity, and dispersal of Archaea in the atmosphere. By DNA analysis targeting the 16S rRNA and amoA genes in samples of air particulate matter collected over one year at a continental sampling site in Germany, we obtained first insights into the seasonal dynamics of airborne Archaea. The detected Archaea were identified as Thaumarchaeota or Euryarchaeota, with soil Thaumarchaeota (group I.1b being present in all samples. The normalized species richness of Thaumarchaeota correlated positively with relative humidity and negatively with temperature. This together with an increase of bare agricultural soil surfaces may explain the diversity peaks observed in fall and winter. The detected Euryarchaeota were mainly methanogens with a low relative frequency of occurrence. A slight increase in their frequency during spring may be linked to fertilization processes in the surrounding agricultural fields. Comparison with samples from the Cape Verde islands and from other coastal and continental sites indicates that the proportions of Euryarchaeota are enhanced in coastal air, which is consistent with their suggested abundance in marine surface waters. We conclude that air transport may play an important role for the dispersal of Archaea, including ammonia-oxidizing Thaumarchaeota and methanogens. Also, anthropogenic activities might influence the atmospheric abundance and diversity of Archaea.

  16. ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert

    2001-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m{sup 3}/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be

  17. Electrically heated particulate filter restart strategy

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-07-12

    A control system that controls regeneration of a particulate filter is provided. The system generally includes a propagation module that estimates a propagation status of combustion of particulate matter in the particulate filter. A regeneration module controls current to the particulate filter to re-initiate regeneration based on the propagation status.

  18. South African Airborne Operations

    Directory of Open Access Journals (Sweden)

    McGill Alexander

    2012-02-01

    Full Text Available Airborne operations entail the delivery of ground troops and their equipment by air to their area of operations. They can also include the subsequent support of these troops and their equipment by air. Historically, and by definition, this would encompass delivery by fixed-wing powered aircraft, by glider, by parachute or by helicopter. Almost any troops can be delivered by most of these means. However, the technical expertise and physical as well as psychological demands required by parachuting have resulted in specialist troops being selected and trained for this role. Some of the material advantages of using parachute troops, or paratroops, are: the enormous strategic reach provided by the long-distance transport aircraft used to convey them; the considerable payload which these aircraft are capable of carrying; the speed with which the parachute force can deploy; and the fact that no infrastructure such as airfields are required for their arrival. Perhaps most attractively to cash-strapped governments, the light equipment scales of parachute units’ makes them economical to establish and maintain. There are also less tangible advantages: the soldiers selected are invariably volunteers with a willingness or even desire to tackle challenges; their selection and training produces tough, confident and aggressive troops, psychologically geared to face superior odds and to function independently from other units; and their initiative and self-reliance combined with a high level of physical fitness makes them suitable for a number of different and demanding roles.

  19. Spacecraft Cabin Particulate Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design, build and test an optical extinction monitor for the detection of spacecraft cabin particulates. This monitor will be sensitive to particle...

  20. Spacecraft Cabin Particulate Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We have built and tested an optical extinction monitor for the detection of spacecraft cabin particulates. This sensor sensitive to particle sizes ranging from a few...

  1. Particulate pollution and stone deterioration

    OpenAIRE

    Kendall, Michaela

    1998-01-01

    The soiling and damage of building surfaces may be enhanced by particulate air pollution, reducing the aesthetic value and lifetimes of historic buildings and monuments. This thesis focuses on the deposition of atmospheric particulate material to building surfaces and identifies potential sources of this material. It also identifies environmental factors influencing two deterioration effects: surface soiling and black crust growth. Two soiling models have been compared to assess their effecti...

  2. Electrical diesel particulate filter (DPF) regeneration

    Science.gov (United States)

    Gonze, Eugene V; Ament, Frank

    2013-12-31

    An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

  3. Curved PVDF airborne transducer.

    Science.gov (United States)

    Wang, H; Toda, M

    1999-01-01

    In the application of airborne ultrasonic ranging measurement, a partially cylindrical (curved) PVDF transducer can effectively couple ultrasound into the air and generate strong sound pressure. Because of its geometrical features, the ultrasound beam angles of a curved PVDF transducer can be unsymmetrical (i.e., broad horizontally and narrow vertically). This feature is desired in some applications. In this work, a curved PVDF air transducer is investigated both theoretically and experimentally. Two resonances were observed in this transducer. They are length extensional mode and flexural bending mode. Surface vibration profiles of these two modes were measured by a laser vibrometer. It was found from the experiment that the surface vibration was not uniform along the curvature direction for both vibration modes. Theoretical calculations based on a model developed in this work confirmed the experimental results. Two displacement peaks were found in the piezoelectric active direction of PVDF film for the length extensional mode; three peaks were found for the flexural bending mode. The observed peak positions were in good agreement with the calculation results. Transient surface displacement measurements revealed that vibration peaks were in phase for the length extensional mode and out of phase for the flexural bending mode. Therefore, the length extensional mode can generate a stronger ultrasound wave than the flexural bending mode. The resonance frequencies and vibration amplitudes of the two modes strongly depend on the structure parameters as well as the material properties. For the transducer design, the theoretical model developed in this work can be used to optimize the ultrasound performance.

  4. Hydrocarbon-enhanced particulate filter regeneration via microwave ignition

    Science.gov (United States)

    Gonze, Eugene V.; Brown, David B.

    2010-02-02

    A regeneration method for a particulate filter includes estimating a quantity of particulate matter trapped within the particulate filter, comparing the quantity of particulate matter to a predetermined quantity, heating at least a portion of the particulate filter to a combustion temperature of the particulate matter, and introducing hydrocarbon fuel to the particulate filter. The hydrocarbon fuel facilitates combustion of the particulate matter to regenerate the particulate filter.

  5. AIR QUALITY: MERCURY, TRACE ELEMENTS, AND PARTICULATE MATTER CONFERENCE

    Energy Technology Data Exchange (ETDEWEB)

    John H. Pavlish; Steven A. Benson

    1999-07-01

    This final report summarizes the planning/preparation, facilitation, and outcome of the conference entitled ''Air Quality: Mercury, Trace Elements, and Particulate Matter'' that was held December 1-4, 1998, in McLean, Virginia (on the outskirts of Washington, DC). The goal of the conference was to bring together industry, government, and the research community to discuss the critical issue of how air quality can impact human health and the ecosystem, specifically hazardous air pollutants and fine airborne particles; available and developing control technologies; strategies and research needs; and an update on federal and state policy and regulations, related implementation issues, and the framework of the future.

  6. Forced-air warming: a source of airborne contamination in the operating room?

    Directory of Open Access Journals (Sweden)

    David Leaper

    2009-12-01

    Full Text Available Forced-air-warming (FAW is an effective and widely used means for maintaining surgical normothermia, but FAW also has the potential to generate and mobilize airborne contamination in the operating room. We measured the emission of viable and non-viable forms of airborne contamination from an arbitrary selection of FAW blowers (n=25 in the operating room. A laser particle counter measured particulate concentrations of the air near the intake filter and in the distal hose airstream. Filtration efficiency was calculated as the reduction in particulate concentration in the distal hose airstream relative to that of the intake. Microbial colonization of the FAW blower’s internal hose surfaces was assessed by culturing the microorganisms recovered through swabbing (n=17 and rinsing (n=9 techniques. Particle counting revealed that 24% of FAW blowers were emitting significant levels of internally generated airborne contamination in the 0.5 to 5.0 mm size range, evidenced by a steep decrease in FAW blower filtration efficiency for particles 0.5 to 5.0 mm in size. The particle size-range-specific reduction in efficiency could not be explained by the filtration properties of the intake filter. Instead, the reduction was found to be caused by size-range-specific particle generation within the FAW blowers. Microorganisms were detected on the internal air path surfaces of 94% of FAW blowers. The design of FAW blowers was found to be questionable for preventing the build-up of internal contamination and the emission of airborne contamination into the operating room. Although we did not evaluate the link between FAW and surgical site infection rates, a significant percentage of FAW blowers with positive microbial cultures were emitting internally generated airborne contamination within the size range of free floating bacteria and fungi (<4 mm that could, conceivably, settle onto the surgical site.

  7. Urban airborne lead: X-ray absorption spectroscopy establishes soil as dominant source.

    Directory of Open Access Journals (Sweden)

    Nicholas E Pingitore

    Full Text Available BACKGROUND: Despite the dramatic decrease in airborne lead over the past three decades, there are calls for regulatory limits on this potent pediatric neurotoxin lower even than the new (2008 US Environmental Protection Agency standard. To achieve further decreases in airborne lead, what sources would need to be decreased and what costs would ensue? Our aim was to identify and, if possible, quantify the major species (compounds of lead in recent ambient airborne particulate matter collected in El Paso, TX, USA. METHODOLOGY/PRINCIPAL FINDINGS: We used synchrotron-based XAFS (x-ray absorption fine structure to identify and quantify the major Pb species. XAFS provides molecular-level structural information about a specific element in a bulk sample. Pb-humate is the dominant form of lead in contemporary El Paso air. Pb-humate is a stable, sorbed complex produced exclusively in the humus fraction of Pb-contaminated soils; it also is the major lead species in El Paso soils. Thus such soil must be the dominant source, and its resuspension into the air, the transfer process, providing lead particles to the local air. CONCLUSIONS/SIGNIFICANCE: Current industrial and commercial activity apparently is not a major source of airborne lead in El Paso, and presumably other locales that have eliminated such traditional sources as leaded gasoline. Instead, local contaminated soil, legacy of earlier anthropogenic Pb releases, serves as a long-term reservoir that gradually leaks particulate lead to the atmosphere. Given the difficulty and expense of large-scale soil remediation or removal, fugitive soil likely constrains a lower limit for airborne lead levels in many urban settings.

  8. SAFETY HEALTH IMPACTS OF PARTICULATE MATTER FROM EXCAVATION WORK SITES

    Directory of Open Access Journals (Sweden)

    Giuseppe Pizzo

    2012-01-01

    Full Text Available Epidemiological studies have shown a linear relationship between airborne particulates and effects on human health. This study examines the risk that can be run by populations which are exposed to significant pollutant sources such as excavation in urban areas for renovation work. The health risk assessment methodology defined by the WHO air quality guidelines for Europe was applied to assess the possible health effects from exposure to PM10 for daily average concentrations greater than 50 µg m-3 and greater than 100 µg m-3 for three consecutive days and for increments of 10 µg m-3. The methodology adopted was based on daily average concentrations detected in a monitoring period of 8 months in different areas in and around the excavation work site with concentrations of PM10 below or above the legal limits. The exposure estimates calculated show that urban areas with excavation work sites are damaging to human health, due to the large number of people exposed and the already high concentrations of PM10 within cities. It was found that even when in parts of a work site legal limits of PM10 are not exceeded, adverse effects on health still occur. The application, in the present study, of the WHO methodology of exposure assessment indicates the risk ratio for effects on human health. Epidemiological data do not suggest exposition threshold values below which there are no adverse health effects. It is not possible to identify a PM10 concentration value, attributable to an additional source, such as an excavation work site, below which there is no damage. The purpose of this research is therefore to stimulate debate and decisions by public authorities, in order to deepen knowledge and to address issues related to airborne particulates.

  9. On-site application of air cleaner emitting plasma ion to reduce airborne contaminants in pig building

    Science.gov (United States)

    Cho, Man Su; Ko, Han Jong; Kim, Daekeun; Kim, Ki Youn

    2012-12-01

    The objective of this field study is to evaluate temporal reduction efficiency of air cleaner emitting plasma ion on airborne pollutants emitted from pig building. The operation principle of air cleaner based on plasma ion is that hydrogen atoms and oxygen ions combine to form hydroperoxyl radicals (HOO-), which surround and attach to surface of airborne microorganisms and eliminate them by breaking the hydrogen bond in their protein structure. In gaseous pollutants, it was found that there is no reduction effect of the air cleaner on ammonia and hydrogen sulfide (p > 0.05). In particulate pollutants, the air cleaner showed mean 79%(±6.1) and 78%(±3.0) of reduction efficiency for PM2.5. and PM1, respectively, compared to the control without air cleaner (p 0.05). In biological pollutants, the mean reduction efficiencies for airborne bacteria and fungi by application of air cleaner were 22%(±6.6) and 25%(±8.7), respectively (p effect on PM2.5, PM1, airborne bacteria and airborne fungi among airborne pollutants distributed in pig building while it did not lead to significant reduction of ammonia and hydrogen sulfide.

  10. Airborne gamma-ray spectrometry

    DEFF Research Database (Denmark)

    Hovgaard, Jens

    A new method - Noise Adjusted Singular Value Decomposition, NASVD - for processing gamma-ray spectra has been developed as part of a Ph.D. project. By using this technique one is able to decompose a large set of data - for example from airborne gamma-ray surveys - into a few spectral components. ...

  11. CDC WONDER: Daily Fine Particulate Matter

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Daily Fine Particulate Matter data available on CDC WONDER are geographically aggregated daily measures of fine particulate matter in the outdoor air, spanning...

  12. Laser shock cleaning of radioactive particulates from glass surface

    Science.gov (United States)

    Kumar, Aniruddha; Prasad, Manisha; Bhatt, R. B.; Behere, P. G.; Afzal, Mohd.; Kumar, Arun; Nilaya, J. P.; Biswas, D. J.

    2014-06-01

    Efficient removal of Uranium-di-oxide (UO2) particulates from glass surface was achieved by Nd-YAG laser induced airborne plasma shock waves. The velocity of the generated shock wave was measured by employing the photo-acoustic probe deflection method. Experiments were carried out to study the effect of laser pulse energy, number of laser exposures and the separation between the substrate surface and the onset point of the shock wave on the de-contamination efficiency. The efficacy of the process was estimated monitoring the alpha activity of the samples before and after laser shock cleaning using a ZnS (Ag) scintillation detector. Significant cleaning efficiency could be achieved when the substrate was exposed to multiple laser shocks that could be further improved by geometrically confining the plasma. No visual damage or loss in optical quality was observed when the shock cleaned surfaces were analysed by optical microscopy and spectrophotometry. The area cleaned by laser shock cleaning was found to be significantly larger than that possible by conventional laser cleaning. Theoretical estimate of the shock force generated has been found to exceed the van der Waal`s binding force for spherical contaminant particulate.

  13. Resuspension of particulate matter and PAHs from street dust

    Science.gov (United States)

    Martuzevicius, D.; Kliucininkas, L.; Prasauskas, T.; Krugly, E.; Kauneliene, V.; Strandberg, B.

    2011-01-01

    Winter street sanding activities in northern countries are often associated with elevated pollution by particulate matter. There are indications that street dust may act as a source of particle-bound PAHs. However, very few studies have addressed the resuspension potential of PAHs from street dust. The purpose of this study was to quantitatively assess emissions of particulate matter and PAHs from street dust by laboratory-scale simulation of particle resuspension. Increases in air velocity caused proportional increases in air-borne PM 2.5, PM 10 and PM total concentrations, while the concentrations of PAHs associated with resuspended particles did not show clear statistically significant dependence on air velocity. A substantial difference in particle and PAH resuspension was observed between dust from the city center street and dust from the connecting street. The data obtained in the present study indicate that street dust may be a significant source not only of PMs but also of particle-bound PAHs in ambient air.

  14. Physical‐chemical and microbiological characterization, and mutagenic activity of airborne PM sampled in a biomass‐fueled electrical production facility

    DEFF Research Database (Denmark)

    Cohn, Corey A.; Lemieux, Christine L.; Long, Alexandra S.

    2011-01-01

    problems. In March and August of 2006, airborne PM was collected from a biomass‐fueled facility located in Denmark. In addition, source‐specific PM was generated from straw and wood pellets using a rotating drum. The PM was analyzed for polycyclic aromatic hydrocarbons (PAHs), metals, microbial components......Biomass combustion is used in heating and electric power generation in many areas of the world. Airborne particulate matter (PM) is released when biomass is brought to a facility, stored, and combusted. Occupational exposure to airborne PM within biomass‐fueled facilities may lead to health...... collected in March was more toxic than PM collected in August. Overall, airborne PM collected from the facility, especially that from the boiler room, were more toxic than PM generated from straw and wood chips. The results suggest that exposure to combustion PM in a biomass‐fueled facility, which likely...

  15. Transport phenomena in particulate systems

    CERN Document Server

    Freire, José Teixeira; Ferreira, Maria do Carmo

    2012-01-01

    This volume spans 10 chapters covering different aspects of transport phenomena including fixed and fluidized systems, spouted beds, electrochemical and wastewater treatment reactors. This e-book will be valuable for students, engineers and researchers aiming to keep updated on the latest developments on particulate systems.

  16. Particulate Matter: a closer look

    NARCIS (Netherlands)

    Buijsman E; Beck JP; Bree L van; Cassee FR; Koelemeijer RBA; Matthijsen J; Thomas R; Wieringa K; LED; MGO

    2005-01-01

    The summary in booklet form 'Fijn stof nader bekeken' (Particulate Matter: a closer look) , published in Dutch by the Netherlands Environmental Assessment Agency (MNP) and the Environment and Safety Division of the National Institute for Public Health and the Environment (RIVM), has been designed to

  17. Particulate matter and preterm birth

    Science.gov (United States)

    Particulate matter (PM) has been variably associated with preterm birth (PTB) (gestation <37 weeks), but the role played by specific chemical components of PM has been little studied. We examined the association between ambient PM <2.5 micrometers in aerodynamic diameter (PM2.S) ...

  18. Airborne Next: Rethinking Airborne Organization and Applying New Concepts

    Science.gov (United States)

    2015-06-01

    supported them, both inside and outside of the classroom . The direction of this project was kept on track thanks to Professor Leo Blanken, COL Guy LeMire...the areas of organization, doctrine, technology , and strategy as guiding frames of reference, this thesis recommends updating the organizational... technology , and strategy as guiding frames of reference, this thesis recommends updating the organizational structures of airborne forces to model a

  19. Accident Generated Particulate Materials and Their Characteristics -- A Review of Background Information

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, S. L.

    1982-05-01

    Safety assessments and environmental impact statements for nuclear fuel cycle facilities require an estimate of the amount of radioactive particulate material initially airborne (source term) during accidents. Pacific Northwest Laboratory (PNL) has surveyed the literature, gathering information on the amount and size of these particles that has been developed from limited experimental work, measurements made from operational accidents, and known aerosol behavior. Information useful for calculating both liquid and powder source terms is compiled in this report. Potential aerosol generating events discussed are spills, resuspension, aerodynamic entrainment, explosions and pressurized releases, comminution, and airborne chemical reactions. A discussion of liquid behavior in sprays, sparging, evaporation, and condensation as applied to accident situations is also included.

  20. Variations in abundance, diversity and community composition of airborne fungi in swine houses across seasons.

    Science.gov (United States)

    Kumari, Priyanka; Woo, Cheolwoon; Yamamoto, Naomichi; Choi, Hong-Lim

    2016-11-28

    We examined the abundance, diversity and community composition of airborne fungi in swine houses during winter and summer seasons by using quantitative PCR and Illumina HiSeq sequencing of ITS1 region. The abundance of airborne fungi varied significantly only between seasons, while fungal diversity varied significantly both within and between seasons, with both abundance and diversity peaked in winter. The fungal OTU composition was largely structured by the swine house unit and season as well as by their interactions. Of the measured microclimate variables, relative humidity, particulate matters (PMs), ammonia, and stocking density were significantly correlated with fungal OTU composition. The variation in beta diversity was higher within swine houses during summer, which indicates that the airborne fungal community composition was more heterogeneous in summer compared to winter. We also identified several potential allergen/pathogen related fungal genera in swine houses. The total relative abundance of potential allergen/pathogen related fungal genera varied between swine houses in both seasons, and showed positive correlation with PM2.5. Overall, our findings show that the abundance, diversity and composition of airborne fungi are highly variable in swine houses and to a large extent structured by indoor microclimate variables of swine houses.

  1. Variations in abundance, diversity and community composition of airborne fungi in swine houses across seasons

    Science.gov (United States)

    Kumari, Priyanka; Woo, Cheolwoon; Yamamoto, Naomichi; Choi, Hong-Lim

    2016-11-01

    We examined the abundance, diversity and community composition of airborne fungi in swine houses during winter and summer seasons by using quantitative PCR and Illumina HiSeq sequencing of ITS1 region. The abundance of airborne fungi varied significantly only between seasons, while fungal diversity varied significantly both within and between seasons, with both abundance and diversity peaked in winter. The fungal OTU composition was largely structured by the swine house unit and season as well as by their interactions. Of the measured microclimate variables, relative humidity, particulate matters (PMs), ammonia, and stocking density were significantly correlated with fungal OTU composition. The variation in beta diversity was higher within swine houses during summer, which indicates that the airborne fungal community composition was more heterogeneous in summer compared to winter. We also identified several potential allergen/pathogen related fungal genera in swine houses. The total relative abundance of potential allergen/pathogen related fungal genera varied between swine houses in both seasons, and showed positive correlation with PM2.5. Overall, our findings show that the abundance, diversity and composition of airborne fungi are highly variable in swine houses and to a large extent structured by indoor microclimate variables of swine houses.

  2. Dispersion and Deposition of Fine Particulates, Heavy Metals and Nitrogen in Urban Landscapes

    Science.gov (United States)

    Whitlow, T. H.; Tong, Z.

    2015-12-01

    Cities are characterized by networks of heavily trafficked roads, abrupt environmental gradients and local sources of airborne pollutants. Because urban dwellers are inevitably in close proximity to near ground pollution, there has been recent interest in using trees and green roofs to reduce human exposure yet there have been few empirical studies documenting the effect of vegetation and spatial heterogeneity on pollution concentration, human exposure and food safety. In this paper we describe the results of 2 studies in the New York metropolitan area. The first describes the effect of roadside trees on the concentration of fine particulates downwind of a major highway. The second examines vertical attenuation of fine particulates between street level and a rooftop vegetable farm and the deposition of nitrogen and heavy metals to vegetables and soil on the roof.

  3. Fogging formulations for fixation of particulate contamination in ductwork and enclosures

    Energy Technology Data Exchange (ETDEWEB)

    Maresca, Jr., Joseph W.; Kostelnik, Lori M.; Kriskivich, James R.; Demmer, Rick L.; Tripp, Julia L.

    2015-09-08

    A method and an apparatus using aqueous fixatives for fogging of ventilation ductwork, enclosures, or buildings containing dust, lint, and particulates that may be contaminated by radionuclides and other dangerous or unsafe particulate contaminants, which method and apparatus are capable of (1) obtaining full coverage within the ductwork and (2) penetrating and fixing the lint, dust and large particles present in the ductwork so that no airborne particles are released during or after the application of the fixative. New aqueous fogging solutions outperform conventional glycerin-based solutions. These aqueous solutions will fog using conventional methods of application and contain a surfactant to aid wetting and penetration of the lint and dust, a binder to stabilize loose or respirable particles, and an agent to aid in fogging and enhance adhesiveness. The solutions are safe and easy to use.

  4. Monitoring and evaluation techniques for airborne contamination

    Energy Technology Data Exchange (ETDEWEB)

    Xia Yihua [China Inst. of Atomic Energy, Beijing (China)

    1997-06-01

    Monitoring and evaluation of airborne contamination are of great importance for the purpose of protection of health and safety of workers in nuclear installations. Because airborne contamination is one of the key sources to cause exposure to individuals by inhalation and digestion, and to cause diffusion of contaminants in the environment. The main objectives of monitoring and evaluation of airborne contamination are: to detect promptly a loss of control of airborne material, to help identify those individuals and predict exposure levels, to assess the intake and dose commitment to the individuals, and to provide sufficient documentation of airborne radioactivity. From the viewpoint of radiation protection, the radioactive contaminants in air can be classified into the following types: airborne aerosol, gas and noble gas, and volatile gas. In this paper, the following items are described: sampling methods and techniques, measurement and evaluation, and particle size analysis. (G.K.)

  5. Protective coatings for commercial particulates

    DEFF Research Database (Denmark)

    Kindl, B.; Teng, Y.H.; Liu, Y.L.

    1994-01-01

    SiC/Al composites are in large-scale production with Al-Si alloy matrices. The same composites with pure Al or low Si matrices need diffusion barriers on the SiC reinforcement to control the interfacial reaction. The present paper describes various approaches taken to obtain protective coatings...... of alumina and zirconia on SiC particulates by sol-gel techniques. Aqueous and organic precursors have been used. The extent of the reaction, i.e., the Si and Al4C3 content in the matrix, was determined by differential thermal analysis and X-ray diffraction. The reaction rates of some coated particulates...... in liquid Al are decreased by as much as one order of magnitude during the first 15 min of immersion. Pretreatments of the SiC surface, the composition and thickness of the coating interphase and heat treatments of the coated materials have been studied, and are discussed in relation to their effect...

  6. Material Instabilities in Particulate Systems

    Science.gov (United States)

    Goddard, J. D.

    1999-01-01

    Following is a brief summary of a theoretical investigation of material (or constitutive) instability associated with shear induced particle migration in dense particulate suspensions or granular media. It is shown that one can obtain a fairly general linear-stability analysis, including the effects of shear-induced anisotropy in the base flow as well as Reynolds dilatancy. A criterion is presented here for simple shearing instability in the absence of inertia and dilatancy.

  7. Atmospheric Light Detection and Ranging (LiDAR) Coupled With Point Measurement Air Quality Samplers to Measure Fine Particulate Matter (PM) Emissions From Agricultural Operations: The Los Banos CA Fall 2007 Tillage Campaign.

    Science.gov (United States)

    Airborne particles, especially fine particulate matter 2.5 micrometers (μm) or less in aerodynamic diameter (PM2.5), are microscopic solids or liquid droplets that can cause serious health problems, including increased respiratory symptoms such as coughing or difficulty breathing...

  8. Chemical Microsensor Instrument for UAV Airborne Atmospheric Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) proposes to develop a miniaturized Airborne Chemical Microsensor Instrument (ACMI) suitable for real-time, airborne measurements of...

  9. Geophex Airborne Unmanned Survey System

    Energy Technology Data Exchange (ETDEWEB)

    Won, I.J.; Keiswetter, D. [Geophex, Ltd., Raleigh, NC (United States)

    1995-10-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits rapid geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected.

  10. Airborne Research Experience for Educators

    Science.gov (United States)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  11. Requirements for airborne vector gravimetry

    Science.gov (United States)

    Schwarz, K. P.; Colombo, O.; Hein, G.; Knickmeyer, E. T.

    1992-01-01

    The objective of airborne vector gravimetry is the determination of the full gravity disturbance vector along the aircraft trajectory. The paper briefly outlines the concept of this method using a combination of inertial and GPS-satellite data. The accuracy requirements for users in geodesy and solid earth geophysics, oceanography and exploration geophysics are then specified. Using these requirements, accuracy specifications for the GPS subsystem and the INS subsystem are developed. The integration of the subsystems and the problems connected with it are briefly discussed and operational methods are indicated that might reduce some of the stringent accuracy requirements.

  12. First airborne transient em survey in antarctica

    DEFF Research Database (Denmark)

    Auken, Esben; Mikucki, J. J.; Sørensen, Kurt Ingvard K.I.

    2012-01-01

    A first airborne transient electromagnetic survey was flown in Antarctica in December 2011 with the SkyTEM system. This transient airborne EM system has been optimized in Denmark for almost ten years and was specially designed for ground water mapping. The SkyTEM tool is ideal for mapping...

  13. A Simple Method for Collecting Airborne Pollen

    Science.gov (United States)

    Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.

    2006-01-01

    Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…

  14. Resuscitation effects of catalase on airborne bacteria.

    OpenAIRE

    Marthi, B; Shaffer, B. T.; Lighthart, B; Ganio, L

    1991-01-01

    Catalase incorporation into enumeration media caused a significant increase (greater than 63%) in the colony-forming abilities of airborne bacteria. Incubation for 30 to 60 min of airborne bacteria in collection fluid containing catalase caused a greater than 95% increase in colony-forming ability. However, catalase did not have any effects on enumeration at high relative humidities (80 to 90%).

  15. SIMULATION STUDY ON AIRBORNE SAR ECHO SIGNAL

    Institute of Scientific and Technical Information of China (English)

    Bao Houbing; Liu Zhao

    2004-01-01

    Through analyzing the influence on echo signal by factors of kinematical parameters of airborne SAR platform and radar antenna direction, this letter, on the basis of classical SAR echo signal analogue algorithm, puts forward certain airborne SAR echo signal analogue algorithm of distance directional frequency domain pulse coherent accumulation, and goes through simulation. The simulation results have proved the effectiveness of this algorithm.

  16. Zone heated diesel particulate filter electrical connection

    Science.gov (United States)

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2010-03-30

    An electrical connection system for a particulate filter is provided. The system includes: a particulate filter (PF) disposed within an outer shell wherein the PF is segmented into a plurality of heating zones; an outer mat disposed between the particulate filter and the outer shell; an electrical connector coupled to the outer shell of the PF; and a plurality of printed circuit connections that extend along the outer surface of the PF from the electrical connector to the plurality of heating zones.

  17. Diesel particulate filter with zoned resistive heater

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI

    2011-03-08

    A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

  18. Particulate organic carbon and particulate humic material in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.; Sarma, V.V.S.S.; DileepKumar, M.

    Variations in particulate organic carbon (POC) and particulate humic material (PHM) were studied in winter (February-March 1995) and intermonsoon (April-May 1994) seasons in the Arabian Sea. Higher levels of POC were found in the north than...

  19. Electrically heated particulate filter embedded heater design

    Science.gov (United States)

    Gonze, Eugene V.; Chapman, Mark R.

    2014-07-01

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine and wherein an upstream surface of the particulate filter includes machined grooves. A grid of electrically resistive material is inserted into the machined grooves of the exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

  20. Human health risk evaluation of selected VOC, SVOC and particulate emissions from scented candles.

    Science.gov (United States)

    Petry, Thomas; Vitale, Danielle; Joachim, Fred J; Smith, Ben; Cruse, Lynn; Mascarenhas, Reuben; Schneider, Scott; Singal, Madhuri

    2014-06-01

    Airborne compounds in the indoor environment arise from a wide variety of sources such as environmental tobacco smoke, heating and cooking, construction materials as well as outdoor sources. To understand the contribution of scented candles to the indoor load of airborne substances and particulate matter, candle emission testing was undertaken in environmentally controlled small and large emission chambers. Candle emission rates, calculated on the basis of measured chamber concentrations of volatile and semi-volatile organic compounds (VOC, SVOC) and particulate matter (PM), were used to predict their respective indoor air concentrations in a standard EU-based dwelling using 2 models: the widely accepted ConsExpo 1-box inhalation model and the recently developed RIFM 2-box indoor air dispersion model. The output from both models has been used to estimate more realistic consumer exposure concentrations of specific chemicals and PM in candle emissions. Potential consumer health risks associated with the candle emissions were characterized by comparing the exposure concentrations with existing indoor or ambient air quality guidelines or, where not existent, to established toxicity thresholds. On the basis of this investigation it was concluded that under normal conditions of use scented candles do not pose known health risks to the consumer.

  1. Quantitative x-ray diffraction phase analysis of coarse airborne particulate collected by cascade impactor sampling

    Science.gov (United States)

    Esteve, V.; Rius, J.; Ochando, L. E.; Amigó, J. M.

    Mineralogical composition of Castellon (Spanish Mediterranean coast) atmospheric aerosol was studied by X-ray diffraction by sampling with a cascade impactor without filters. Quantitative phase analysis of natural phases present in the atmospheric coarse aerosol was performed using a modified version of the computer program MENGE, that uses the standardless X-ray method developed by Rius for the quantitative analysis of multiphase mixtures, adapted for PC running. Presence of quartz, calcite and gypsum was identified in the atmospheric aerosol and we have quantified their amounts using the standardless method.

  2. Field comparison of instruments for exposure assessment of airborne ultrafine particles and particulate matter

    Science.gov (United States)

    Spinazzè, Andrea; Fanti, Giacomo; Borghi, Francesca; Del Buono, Luca; Campagnolo, Davide; Rovelli, Sabrina; Cattaneo, Andrea; Cavallo, Domenico M.

    2017-04-01

    The objective of this study was to compare the use of co-located real-time devices and gravimetric samplers to measure ultrafine particles (UFP) and size-fractionated PM mass concentrations. The results contribute to evaluating the comparability of different monitoring instruments for size-fractionated PM concentrations. Paired light scattering devices and gravimetric samplers were used to measure the PM1, PM2.5, PM4/5, PM10 and TSP mass concentrations during 8-h monitoring sessions in an urban background site (Como, Italy) in winter. A total of 16 sampling sessions were performed: measurements were analyzed using linear regression analysis. Absolute deviations between techniques were calculated and discussed. The UFP concentrations measured using a condensation particle counter were clearly overestimated compared with the reference instrument (portable diffusion charger), with an absolute deviation that appeared to increase with the UFP concentration. The comparison of different light-scattering devices (photometers - 'PHOTs') indicated an over-estimation of two of the tested instruments (PHOT-2 and PHOT-3) with respect to the one used as the reference (PHOT-1) regarding the measurement of the size-fractioned PM, with the only exception being PM4/5. Further, the comparison of different light-scattering devices with filter-based samplers indicated that direct-reading devices tend to over-estimate (PHOT-2, PHOT-3) or under-estimate (PHOT-1) the PM concentrations from gravimetric analysis. The comparison of different filter-based samplers showed that the observed over-estimation error increased with increasing PM concentration levels; however, the good level of agreement between the investigated methods allowed them to be classified as comparable, although they cannot be characterized as having reciprocal predictability. Ambient relative humidity was correlated with the absolute error resulting from the comparison of direct-reading vs. filter-based techniques, as well as among different filter-based samplers for the same PM fraction.

  3. An airborne assessment of atmospheric particulate emissions from the processing of Athabasca oil sands

    Directory of Open Access Journals (Sweden)

    S. G. Howell

    2013-08-01

    Full Text Available During the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS campaign, two NASA research aircraft, a DC-8 and a P-3B, were outfitted with extensive trace gas (the DC-8 and aerosol (both aircraft instrumentation. Each aircraft spent about a half hour sampling air around the oil sands mining and upgrading facilities near Ft. McMurray, Alberta, Canada. The DC-8 circled the area, while the P-3B flew directly over the upgrading plants, sampling close to the exhaust stacks, then headed downwind to monitor the aerosol as it aged. At short range, the plume from the oil sands is a complex mosaic of freshly nucleated ultrafine particles from a SO2 and NO2-rich plume, fly ash and soot from industrial processes, and dust from dirt roads and mining operations. Shortly downwind, organic aerosol appears in quantities that rival SO4=, either as volatile organic vapors condense or as they react with the H2SO4. The DC-8 pattern allowed us to integrate total flux from the oil sands facilities within about a factor of two uncertainty that spanned values consistent with 2008 estimates from reported SO2 and NO2 emissions. In contrast, CO fluxes exceeded reported regional emissions, due either to variability in production or sources missing from the emissions inventory. The conversion rate of SO2 to aerosol SO4= of ~6% per hour is consistent with earlier reports, though OH concentrations are insufficient to accomplish this. Other oxidation pathways must be active. Altogether, organic aerosol and black carbon emissions from the oil sands operations are small compared with the forest fires present in the region during the summer. The oil sands do contribute significant sulfate and exceed fire production of SO2 by an order of magnitude.

  4. Biomonitoring of airborne particulate matter emitted from a cement plant and comparison with dispersion modelling results

    Science.gov (United States)

    Abril, Gabriela A.; Wannaz, Eduardo D.; Mateos, Ana C.; Pignata, María L.

    2014-01-01

    The influence of a cement plant that incinerates industrial waste on the air quality of a region in the province of Córdoba, Argentina, was assessed by means of biomonitoring studies (effects of immission) and atmospheric dispersion (effects of emission) of PM10 with the application of the ISC3 model (Industrial Source Complex) developed by the USEPA (Environmental Protection Agency). For the biomonitoring studies, samples from the epiphyte plant Tillandsia capillaris Ruíz & Pav. f. capillaris were transplanted to the vicinities of the cement plant in order to determine the physiological damage and heavy metal accumulation (Ca, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb). For the application of the ISC3 model, point and area sources from the cement plant were considered to obtain average PM10 concentration results from the biomonitoring exposure period. This model permitted it to be determined that the emissions from the cement plant (point and area sources) were confined to the vicinities, without significant dispersion in the study area. This was also observed in the biomonitoring study, which identified Ca, Cd and Pb, pH and electric conductivity (EC) as biomarkers of this cement plant. Vehicular traffic emissions and soil re-suspension could be observed in the biomonitors, giving a more complete scenario. In this study, biomonitoring studies along with the application of atmospheric dispersion models, allowed the atmospheric pollution to be assessed in more detail.

  5. Tonopah Test Range Air Monitoring: CY2015 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Nikolich, George [Nevada University, Reno, NV (United States). Desert Research Inst.; Shadel, Craig [Nevada University, Reno, NV (United States). Desert Research Inst.; Chapman, Jenny [Nevada University, Reno, NV (United States). Desert Research Inst.; McCurdy, Greg [Nevada University, Reno, NV (United States). Desert Research Inst.; Etyemezian, Vicken [Nevada University, Reno, NV (United States). Desert Research Inst.; Miller, Julianne J. [Nevada University, Reno, NV (United States). Desert Research Inst.; Mizell, Steve [Nevada University, Reno, NV (United States). Desert Research Inst.

    2016-09-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). The operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites.

  6. Stable isotopes of lead and strontium as tracers of sources of airborne particulate matter in Kyrgyzstan.

    Science.gov (United States)

    Central Asia is dominated by an arid climate and desert-like conditions, leading to the potential of long-range transport of desert dust. One potential source of dust to Central Asia is the Aral Sea, the surface area of which has receded in size from 68,000 km2 to 14,280 km2, lar...

  7. Stable Isotopes of Sr and Pb as Tracers of Sources of Airborne Particulate Matter in Kyrgyzstan

    Science.gov (United States)

    ConclusionsElemental concentrations were higher at the LIDAR site compared to the Bishkek site. Also, concentrations were higher during dust than non-dust events at both sites.The Sr isotopic ratios suggest dust from another region, such as from Western China, Africa, or Middle E...

  8. Dans le tourbillon des particules

    CERN Document Server

    Zito, Marco

    2015-01-01

    Accélérateurs géants, détecteurs complexes, particules énigmatiques... La physique subatomique peut sembler bien intimidante pour le novice. Et pourtant, qui n a jamais entendu parler du boson de Higgs et du CERN, le laboratoire européen où il a été découvert en 2012 ? Nul besoin d être un spécialiste pour comprendre de quoi il s agit. Aujourd hui, une théorie extraordinairement élégante, le Modèle Standard, décrit tous les résultats des expériences dans le domaine. Trente-sept particules élémentaires et quatre forces fondamentales : c est tout ce dont nous avons besoin pour expliquer la matière et l Univers ! Ce livre, destiné à un large public, raconte sans équations le long parcours qui a abouti au Modèle Standard. Ce parcours, parfois sinueux, a été entamé lorsque les Grecs anciens, et peut-être d autres avant eux, ont imaginé que la matière est composée de petites « billes ». Il faudra attendre plusieurs siècles pour qu on réalise que la matière, à l échelle micros...

  9. Southern Fine Particulate Monitoring Project

    Energy Technology Data Exchange (ETDEWEB)

    Ashley Williamson

    2003-05-31

    This final project report presents experimental details, results and analysis of continuous onsite ambient fine particulate data at the North Birmingham sampling site during the October, 2001-September, 2002 study period.The host site for these measurement activities is the North Birmingham PM monitoring station by the Jefferson County Health Department in Birmingham, AL.The continuous data include PM{sub 2.5} mass concentrations measured by TEOM, particle sulfate using the R&P 8400S monitor, particle size distributions measured by SMPS and APS monitors, and PM{sub 2.5} light scattering extinction coefficient as measured by nephelometer. During the course of the project, measurement intercomparison data were developed for these instruments and several complementary measurements at the site. The report details the instrument set and operating procedures and describes the resulting data. Report subsections present an overview summary of the data, followed by detailed description of the systematic time behavior of PM{sub 2.5} and other specific particulate size fractions. Specific subsections are included for particle size distribution, light scattering, and particle sulfate data. The final subsection addresses application of the measurements to the practical questions of fine PM generation and transport, source attribution, and PM{sub 2.5} management strategies.

  10. A study of the origin, nature, and behavior of particulate matter and metallic atoms in the mesosphere, lower thermosphere, and at the mesopause. [using lidar data

    Science.gov (United States)

    Poultney, S. K.

    1973-01-01

    In a study of particulate matter and metallic atoms in the vicinity of the mesopause, three areas have received the most effort. These areas are: the significance of cometary dust influxes to the earth's atmosphere; the relation of nightglows to atmospheric motions and aerosols; and the feasibility of using an airborne resonant scatter lidar to study polar noctilucent clouds, the sodium layer, and fireball dust.

  11. Comprehensive airborne characterization of aerosol from a major bovine source

    Directory of Open Access Journals (Sweden)

    A. Sorooshian

    2008-06-01

    Full Text Available We report an extensive airborne characterization of aerosol downwind of a massive bovine source in the San Joaquin Valley (California on two flights during July 2007. The Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS Twin Otter probed chemical composition, particle size distribution, mixing state, sub- and supersaturated water uptake behavior, light scattering properties, and the interrelationship between these parameters and meteorology. Total PM1.0 levels and concentrations of organics, nitrate, and ammonium were enhanced in the plume from the source as compared to the background aerosol. Organics dominated the plume aerosol mass (~56–64%, followed either by sulfate or nitrate, and then ammonium. Particulate amines were detected in the plume aerosol by a particle-into-liquid sampler (PILS and via mass spectral markers in the Aerodyne cToF-AMS. Amines were found to be a significant atmospheric base even in the presence of ammonia; particulate amine concentrations are estimated as at least 14–23% of that of ammonium in the plume. Enhanced sub- and supersaturated water uptake and reduced refractive indices were coincident with lower organic mass fractions, higher nitrate mass fractions, and the detection of amines. Kinetic limitations due to hydrophobic organic material are shown to have likely suppressed droplet growth. After removing effects associated with size distribution and mixing state, the normalized activated fraction of cloud condensation nuclei (CCN increased as a function of the subsaturated hygroscopic growth factor, with the highest activated fractions being consistent with relatively lower organic mass fractions and higher nitrate mass fractions. Subsaturated hygroscopic growth factors for the organic fraction of the aerosol are estimated based on employing the Zdanovskii-Stokes Robinson (ZSR mixing rule. Representative values for a parameterization treating particle water uptake in both the

  12. Comprehensive airborne characterization of aerosol from a major bovine source

    Directory of Open Access Journals (Sweden)

    H. Jonsson

    2008-09-01

    Full Text Available We report an extensive airborne characterization of aerosol downwind of a massive bovine source in the San Joaquin Valley (California on two flights during July 2007. The Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS Twin Otter probed chemical composition, particle size distribution, mixing state, sub- and supersaturated water uptake behavior, light scattering properties, and the interrelationship between these parameters and meteorology. Total PM1.0 levels and concentrations of organics, nitrate, and ammonium were enhanced in the plume from the source as compared to the background aerosol. Organics dominated the plume aerosol mass (~56–64%, followed either by sulfate or nitrate, and then ammonium. Particulate amines were detected in the plume aerosol by a particle-into-liquid sampler (PILS and via mass spectral markers in the Aerodyne C-ToF-AMS. Amines were found to be a significant atmospheric base even in the presence of ammonia; particulate amine concentrations are estimated as at least 14–23% of that of ammonium in the plume. Enhanced sub- and supersaturated water uptake and reduced refractive indices were coincident with lower organic mass fractions, higher nitrate mass fractions, and the detection of amines. The likelihood of suppressed droplet growth owing to kinetic limitations from hydrophobic organic material is explored. After removing effects associated with size distribution and mixing state, the normalized activated fraction of cloud condensation nuclei (CCN increased as a function of the subsaturated hygroscopic growth factor, with the highest activated fractions being consistent with relatively lower organic mass fractions and higher nitrate mass fractions. Subsaturated hygroscopic growth factors for the organic fraction of the aerosol are estimated based on employing the Zdanovskii-Stokes Robinson (ZSR mixing rule. Representative values for a parameterization treating particle water

  13. MEASURING THE PARTICULATE BACKSCATTERING OF INLAND WATERS: A COMPARISON OF TECHNIQUES

    Directory of Open Access Journals (Sweden)

    G. Campbell

    2012-07-01

    Full Text Available The objective of this work was to examine whether the standard particulate backscattering IOP (Inherent Optical Properties measurement method could be simplified. IOP measurements are essential for parameterising several forms of algorithms used to estimate water quality parameters from airborne and satellite images. Field measurements of the backscattering IOPs are more difficult to make than absorption measurements as correction of the raw Hydroscat-6 backscattering sensor observations is required to allow for the systematic errors associated with the water and water quality parameter absorption. The standard approach involves making simultaneous measurement of the absorption and attenuation of the water with an absorption and attenuation meter (ac-9 or making assumptions about the particulate backscattering probability. Recently, a number of papers have been published that use an alternative method to retrieve the particulate backscattering spectrum by using laboratory measured absorption values and in situ spectroradiometric observations. The alternative method inverts a model of reflectance iteratively using non-linear least squares fitting to solve for the particulate backscattering at 532 nm (bbp0(532 and the particulate backscattering spectral slope (γ. In this paper, eleven observations made at Burdekin Falls Dam, Australia are used to compare the alternative reflectance method to the conventional corrected Hydroscat-6 observations. Assessment of the alternative reflectance method showed that the result of the inversions were highly dependent on the starting conditions. To overcome this limitation, Particle Swarm Optimisation, a stochastic search technique which includes a random element in the search approach, was used. It was found that when compared to the conventionally corrected Hydroscat-6 observations, the alternative reflectance method underestimated bbp0(532 by approximately 50% and overestimated γ by approximately 40

  14. Determination of airborne cadmium in environmental tobacco smoke by instrumental neutron activation analysis with a compton suppression system.

    Science.gov (United States)

    Landsberger, S; Larson, S; Wu, D

    1993-06-01

    Concentrations of cadmium, a toxic trace element, were measured in the indoor air of several public places where environmental tobacco smoke was present. Particulate-phase cadmium concentrations were determined by analyzing air filter samples using epithermal instrumental neutron activation analysis in conjunction with a Compton suppression gamma-ray detection system, in which the detection limit for cadmium was reduced to a few nanograms per filter. A cascade impactor and a personal filter sampler were used to collect the indoor suspended particulate matter for size-fractionated mass as well as total mass, respectively. Results show that where environmental tobacco smoke is present, cadmium concentrations are significantly higher than background and that about 80% of the cadmium found in indoor airborne particulate matter is associated with particles with aerodynamic diameters less than 1.8 microns. In one instance, airborne cadmium concentrations in a music club were found to be 38 ng/m, which is at least 30 times higher than background.

  15. Airborne remote sensing of forest biomes

    Science.gov (United States)

    Sader, Steven A.

    1987-01-01

    Airborne sensor data of forest biomes obtained using an SAR, a laser profiler, an IR MSS, and a TM simulator are presented and examined. The SAR was utilized to investigate forest canopy structures in Mississippi and Costa Rica; the IR MSS measured forest canopy temperatures in Oregon and Puerto Rico; the TM simulator was employed in a tropical forest in Puerto Rico; and the laser profiler studied forest canopy characteristics in Costa Rica. The advantages and disadvantages of airborne systems are discussed. It is noted that the airborne sensors provide measurements applicable to forest monitoring programs.

  16. Airborne microwave radiometric imaging system

    Science.gov (United States)

    Guo, Wei; Li, Futang; Zhang, Zuyin

    1999-09-01

    A dual channel Airborne Microwave Radiometric Imaging system (AMRI) was designed and constructed for regional environment mapping. The system operates at 35GHz, which collects radiation at horizontal and vertical polarized channels. It runs at mechanical conical scanning with 45 degrees incidence angle. Two Cassegrain antennas with 1.5 degrees beamwidth scan the scene alternately and two pseudo- color images of two channels are displayed on the screen of PC in real time. Simultaneously, all parameters of flight and radiometric data are sorted in hard disk for post- processing. The sensitivity of the radiometer (Delta) T equals 0.16K. A new displaying method, unequal size element arc displaying method, is used in image displaying. Several experiments on mobile tower were carried out and the images demonstrate that the AMRI is available to work steadily and accurately.

  17. Advanced Fine Particulate Characterization Methods

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and

  18. Cytotoxicity to alveolar macrophages of airborne particles and waste incinerator fly-ash fractions.

    Science.gov (United States)

    Gulyas, H; Gercken, G

    1988-01-01

    A waste incinerator fly ash was separated into different grain-size fractions by sieving and sedimentation in butanol. The element content of each fraction was determined by atomic absorption and emission spectrometry. The fly-ash fractions, an eluted fine fly-ash fraction and an eluted airborne dust were analysed microscopically for particle size and numbers, together with standard quartz DQ 12 and three element-analysed airborne dusts. Rabbit alveolar macrophages, isolated by lung lavage, were incubated for 24 h with the particulates, the two eluates and a mixed element compound solution corresponding to the element concentrations of one airborne dust. At the end of incubation, the activities of lactate dehydrogenase, N-acetyl-beta-glucosaminidase, beta-galactosidase and acid phosphatase were determined in medium and cell lysates. Cytotoxicity was expressed as ratio of extracellular to total LDH (lactate dehydrogenase) activity. Release of N-acetyl-beta-glucosaminidase and beta-galactosidase was correlated positively with LDH release, whereas the total activity of acid phosphatase decreased with increasing LDH release. Cytotoxicity of the dusts was correlated with particle numbers, and As, Sb and Pb contents. The contribution of As to particle toxicity is discussed. Eluates of dusts did not affect rabbit alveolar macrophage viability.

  19. PRODUCT ENGINEERING OF PARTICULATE SOLIDS

    Institute of Scientific and Technical Information of China (English)

    Wolfgang Peukert

    2005-01-01

    An important development in Particle Technology is directed towards tailored product properties, i.e. product engineering. Product properties are strongly related to the disperse properties of the particles, i.e. their size, shape, morphology and surface. We discuss some general applicable principles in product engineering and give various examples. Strongly related to this approach are methods to characterize and to tailor product and particle properties. For systems which are controlled by the interfaces (e.g. particles in the micron size range and below) we apply a multi-scale approach from the particulate interfaces over particle interactions to the macroscopic properties. Thus, we tailor macroscopic product properties through microscopic control of the interfaces. This approach must be complemented by methods to characterize particle and product properties. It is shown that by careful consideration of the underlying physical processes considerable progress can be achieved.

  20. Methods for Coating Particulate Material

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2013-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  1. Radiant zone heated particulate filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI

    2011-12-27

    A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

  2. Reconfigurable Weather Radar for Airborne Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Automation, Inc (IAI) and its university partner, University of Oklahoma (OU), Norman, propose a forward-looking airborne environment sensor based on...

  3. Airborne Infrared Search and Track Systems

    Directory of Open Access Journals (Sweden)

    Hari Babu Srivastava

    2007-09-01

    Full Text Available Infrared search and track (IRST systems are required for fighter aircraft to enable them to passively search, detect, track, classify, and prioritise multiple airborne targets under all aspects, look-up, look-down, and co-altitude conditions and engage them at as long ranges as possible. While the IRST systems have been proven in performance for ground-based and naval-based platforms, it is still facing some technical problems for airborne applications. These problems arise from uncertainty in target signature, atmospheric effects, background clutter (especially dense and varying clouds, signal and data processing algorithms to detect potential targets at long ranges and some hardware limitations such as large memory requirement to store and process wide field of view data. In this paper, an overview of airborne IRST as a system has been presented with detailed comparative simulation results of different detectionitracking algorithms and the present status of airborne IRSTs

  4. Airborne Multi-Gas Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mesa Photonics proposes to develop an Airborne Multi-Gas Sensor (AMUGS) based upon two-tone, frequency modulation spectroscopy (TT-FMS). Mesa Photonics has developed...

  5. Regenerable Lunar Airborne Dust Filter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Effective methods are needed to control pervasive Lunar Dust within spacecraft and surface habitations. Once inside, airborne transmission is the primary mode of...

  6. Miniaturized Airborne Imaging Central Server System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a miniaturized airborne imaging central server system (MAICSS). MAICSS is designed as a high-performance-computer-based electronic backend that...

  7. Miniaturized Airborne Imaging Central Server System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a miniaturized airborne imaging central server system (MAICSS). MAICSS is designed as a high-performance computer-based electronic backend that...

  8. Stroke Damage Is Exacerbated by Nano-Size Particulate Matter in a Mouse Model.

    Science.gov (United States)

    Liu, Qinghai; Babadjouni, Robin; Radwanski, Ryan; Cheng, Hank; Patel, Arati; Hodis, Drew M; He, Shuhan; Baumbacher, Peter; Russin, Jonathan J; Morgan, Todd E; Sioutas, Constantinos; Finch, Caleb E; Mack, William J

    2016-01-01

    This study examines the effects of nano-size particulate matter (nPM) exposure in the setting of murine reperfused stroke. Particulate matter is a potent source of inflammation and oxidative stress. These processes are known to influence stroke progression through recruitment of marginally viable penumbral tissue into the ischemic core. nPM was collected in an urban area in central Los Angeles, impacted primarily by traffic emissions. Re-aerosolized nPM or filtered air was then administered to mice through whole body exposure chambers for forty-five cumulative hours. Exposed mice then underwent middle cerebral artery occlusion/ reperfusion. Following cerebral ischemia/ reperfusion, mice exposed to nPM exhibited significantly larger infarct volumes and less favorable neurological deficit scores when compared to mice exposed to filtered air. Mice exposed to nPM also demonstrated increases in markers of inflammation and oxidative stress in the region of the ischemic core. The findings suggest a detrimental effect of urban airborne particulate matter exposure in the setting of acute ischemic stroke.

  9. Toxicogenomic analysis of susceptibility to inhaled urban particulate matter in mice with chronic lung inflammation

    Directory of Open Access Journals (Sweden)

    Yauk Carole L

    2009-03-01

    Full Text Available Abstract Background Individuals with chronic lung disease are at increased risk of adverse health effects from airborne particulate matter. Characterization of underlying pollutant-phenotype interactions may require comprehensive strategies. Here, a toxicogenomic approach was used to investigate how inflammation modifies the pulmonary response to urban particulate matter. Results Transgenic mice with constitutive pulmonary overexpression of tumour necrosis factor (TNF-α under the control of the surfactant protein C promoter and wildtype littermates (C57BL/6 background were exposed by inhalation for 4 h to particulate matter (0 or 42 mg/m3 EHC-6802 and euthanized 0 or 24 h post-exposure. The low alveolar dose of particles (16 μg did not provoke an inflammatory response in the lungs of wildtype mice, nor exacerbate the chronic inflammation in TNF animals. Real-time PCR confirmed particle-dependent increases of CYP1A1 (30–100%, endothelin-1 (20–40%, and metallothionein-II (20–40% mRNA in wildtype and TNF mice (p Conclusion Our data support the hypothesis that health effects of acute exposure to urban particles are dominated by activation of specific physiological response cascades rather than widespread changes in gene expression.

  10. Beryllium Concentrations at European Workplaces: Comparison of 'Total' and Inhalable Particulate Measurements.

    Science.gov (United States)

    Kock, Heiko; Civic, Terence; Koch, Wolfgang

    2015-07-01

    A field study was carried out in order to derive a factor for the conversion of historic worker exposure data on airborne beryllium (Be) obtained by sampling according to the 37-mm closed faced filter cassette (CFC) 'total' particulate method into exposure concentration values to be expected when sampling using the 'Gesamtstaubprobenahmesystem' (GSP) inhalable sampling convention. Workplaces selected to represent the different copper Be work processing operations that typically occur in Germany and the EU were monitored revealing a broad spectrum of prevailing Be size distributions. In total, 39 personal samples were taken using a 37-mm CFC and a GSP worn side by side for simultaneous collection of the 'total' dust and the inhalable particulates, respectively. In addition, 20 static general area measurements were carried out using GSP, CFC, and Respicon samplers in parallel, the latter one providing information on the extra-thoracic fraction of the workplace aerosol. The study showed that there is a linear relationship between the concentrations measured with the CFC and those measured with the GSP sampler. The geometric mean value of the ratios of time-weighted average concentrations determined from GSP and CFC samples of all personal samples was 2.88. The individual values covered a range between 1 and 17 related to differences in size distributions of the Be-containing particulates. This was supported by the area measurements showing that the conversion factor increases with increasing values of the extra-thoracic fraction covering a range between 0 and 79%.

  11. Airborne Network Optimization with Dynamic Network Update

    Science.gov (United States)

    2015-03-26

    AIRBORNE NETWORK OPTIMIZATION WITH DYNAMIC NETWORK UPDATE THESIS Bradly S. Paul, Capt, USAF AFIT-ENG-MS-15-M-030 DEPARTMENT OF THE AIR FORCE AIR...to copyright protection in the United States. AFIT-ENG-MS-15-M-030 AIRBORNE NETWORK OPTIMIZATION WITH DYNAMIC NETWORK UPDATE THESIS Presented to the...NETWORK OPTIMIZATION WITH DYNAMIC NETWORK UPDATE Bradly S. Paul, B.S.C.P. Capt, USAF Committee Membership: Maj Thomas E. Dube Chair Dr. Kenneth M. Hopkinson

  12. Study on some factors affecting survivability of airborne fungi.

    Science.gov (United States)

    Abdel Hameed, A A; Khoder, M I; Ibrahim, Y H; Saeed, Y; Osman, M E; Ghanem, S

    2012-01-01

    The aim of the present study was to investigate the effect of some air pollutants and meteorological parameters on the survivability of airborne fungi. Fungi were collected by using a slit impactor sampler calibrated to draw 20 L/min, for 3 min. Nitrogen dioxide (NO(2)), sulfur dioxide (SO(2)), particulate matter (PM), relative humidity (RH %), temperature (T °C) and wind speed (WS) were also measured. Air samples were taken during the period from March 2006 to February 2007. Fungal concentrations ranged between 45 and 451 CFU/m(3) with an annual mean concentration of 216 CFU/m(3). The lowest fungal concentration was found in the summer, however the highest one was found in the autumn. NO(2,) SO(2) and PM averaged 83.66 μg/m(3), 67.01 μg/m(3), and 237.69 μg/m(3), respectively. T °C was positively and negatively correlated with Aspergillus (P = 0.000) and Penicillium (P = 0.007), respectively. RH% was positively correlated with total fungi (P = 0.001), Aspergillus (P = 0.002) and Cladosporium (P = 0.047). Multiple regression analysis showed that T °C and RH% were the most predicted variants. Non-significant correlations were found between fungal concentrations and air pollutants. Meteorological parameters were the critical factors affecting fungal survivability.

  13. Evaluation of particulate filtration efficiency of retrofit particulate filters for light duty vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Van Asch, R.; Verbeek, R.

    2009-10-15

    In the light of the currently running subsidy programme for particulate filters in the Netherlands, the Dutch ministry of spatial planning and environment (VROM) asked TNO to execute a desk study to evaluate the particulates filtration efficiency of retrofit particulate filters for light duty vehicles (passenger cars and vans). The typical retrofit particulate filters for light duty vehicles are also called 'open' or 'half-open' filters, because a part of the exhaust gas can pass through the particulate filter unfiltered. From design point they are very different from the majority of the factory installed particulate filters, which are also called wall-flow or 'closed' particulate filters. Due to these differences there is a large difference in filtration efficiency. Whereas the 'dosed' particulate filters show a filtration efficiency of larger than 90%, the filtration efficiency of 'open' particulate filters is generally lower (type approval minimum 30%), and strongly dependent on the conditions of use. The objective of the current project was to assess the average filtration efficiency of retrofit (open) particulate fillters on light duty vehicles in real world day to day driving, based on available literature data. Also, the reasons of a possible deviation with the type approval test results (minimum filtration efficiency of 30%) was investigated.

  14. Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles

    Science.gov (United States)

    Hagino, Hiroyuki; Oyama, Motoaki; Sasaki, Sousuke

    2016-04-01

    To measure driving-distance-based mass emission factors for airborne brake wear particulate matter (PM; i.e., brake wear particles) related to the non-asbestos organic friction of brake assembly materials (pads and lining), and to characterize the components of brake wear particles, a brake wear dynamometer with a constant-volume sampling system was developed. Only a limited number of studies have investigated brake emissions under urban city driving cycles that correspond to the tailpipe emission test (i.e., JC08 or JE05 mode of Japanese tailpipe emission test cycles). The tests were performed using two passenger cars and one middle-class truck. The observed airborne brake wear particle emissions ranged from 0.04 to 1.4 mg/km/vehicle for PM10 (particles up to 10 μm (in size), and from 0.04 to 1.2 mg/km/vehicle for PM2.5. The proportion of brake wear debris emitted as airborne brake wear particles was 2-21% of the mass of wear. Oxygenated carbonaceous components were included in the airborne PM but not in the original friction material, which indicates that changes in carbon composition occurred during the abrasion process. Furthermore, this study identified the key tracers of brake wear particles (e.g., Fe, Cu, Ba, and Sb) at emission levels comparable to traffic-related atmospheric environments.

  15. Association of the mutagenicity of airborne particles with the direct emission from combustion processes investigated in Osaka, Japan

    Science.gov (United States)

    Kameda, Takayuki; Sanukida, Satoshi; Inazu, Koji; Hisamatsu, Yoshiharu; Maeda, Yasuaki; Takenaka, Norimichi; Bandow, Hiroshi

    The association of the direct-acting mutagenicity of soluble organic fraction of airborne particles toward Salmonella typhimurium YG1024 strain with the direct emission was investigated at a roadside and at a residential area in Osaka, Japan. The direct-acting mutagenicity was evaluated as mutagenic activity per unit volume of ambient air (rev m -3) and/or that per airborne particulate weight collected on a filter (rev mg -1). The annual or diurnal changes of the mutagenicity of airborne particles at the residential site showed similar patterns to those of some gaseous pollutants such as NO 2 and SO 2, which were emitted from combustion processes. This result indicates that the mutagenicity is mainly attributable to the primary emissions. From the analysis of the relationship between the wind sector and the mutagenic intensity, rev m -3 and rev mg -1 values were strongly affected by the emissions from the fixed sources and from the mobile sources, respectively. The rev m -3 value and concentration of 1-nitropyrene (1-NP) in unit per m 3 at the roadside were a factor of 2.6 and 2.8 higher than those at the residential site, respectively, but the rev mg -1 value and concentration of 1-NP in unit per mg at the roadside were substantially comparable to those at the residential area. These observations suggest that the characteristics of the airborne particles can be attributed to the automotive emissions even at the suburban area.

  16. Downscaling of Airborne Wind Energy Systems

    Science.gov (United States)

    Fechner, Uwe; Schmehl, Roland

    2016-09-01

    Airborne wind energy systems provide a novel solution to harvest wind energy from altitudes that cannot be reached by wind turbines with a similar nominal generator power. The use of a lightweight but strong tether in place of an expensive tower provides an additional cost advantage, next to the higher capacity factor and much lower total mass. This paper investigates the scaling effects of airborne wind energy systems. The energy yield of airborne wind energy systems, that work in pumping mode of operation is at least ten times higher than the energy yield of conventional solar systems. For airborne wind energy systems the yield is defined per square meter wing area. In this paper the dependency of the energy yield on the nominal generator power for systems in the range of 1 kW to 1 MW is investigated. For the onshore location Cabauw, The Netherlands, it is shown, that a generator of just 1.4 kW nominal power and a total system mass of less than 30 kg has the theoretical potential to harvest energy at only twice the price per kWh of large scale airborne wind energy systems. This would make airborne wind energy systems a very attractive choice for small scale remote and mobile applications as soon as the remaining challenges for commercialization are solved.

  17. Airborne infections and modern building technology

    Energy Technology Data Exchange (ETDEWEB)

    LaForce, F.M.

    1986-01-01

    Over the last 30 yr an increased appreciation of the importance of airborne infection has evolved. The concept of droplet nuclei, infectious particles from 0.5 to 3 ..mu.. which stay suspended in air for long periods of time, has been accepted as an important determinant of infectivity. Important airborne pathogens in modern buildings include legionella pneumophila, Aspergillus sp., thermophilic actinomycetes, Mycobacterium tuberculosis, measles, varicella and rubella. Perhaps, the most important microbiologic threat to most buildings is L. pneumophila. This organism can multiply in water cooling systems and contaminate effluent air which can be drawn into a building and efficiently circulated throughout by existing ventilation systems. Hospitals are a special problem because of the concentration of immunosuppressed patients who are uniquely susceptible to airborne diseases such as aspergillosis, and the likelihood that patients ill from diseases that can be spread via the airborne route will be concentrated. Humidifiers are yet another problem and have been shown to be important in several outbreaks of allergic alveolitis and legionellosis. Control of airborne infections is largely an effort at identifying and controlling reservoirs of infection. This includes regular biocide treatment of cooling towers and evaporative condensers and identification and isolation of patients with diseases that may be spread via the airborne route.

  18. Challenges and Opportunities of Airborne Metagenomics

    KAUST Repository

    Behzad, H.

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles.

  19. Challenges and opportunities of airborne metagenomics.

    Science.gov (United States)

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles.

  20. Environmental studies in two communes of Santiago de Chile by the analysis of magnetic properties of particulate matter deposited on leaves of roadside trees

    Science.gov (United States)

    Muñoz, David; Aguilar, Bertha; Fuentealba, Raúl; Préndez, Margarita

    2017-03-01

    Emissions from motor vehicles are considered to be one of the main sources of airborne particulate matter in Santiago. International researchers have shown that particulate matter contains metal oxides and magnetic particles, both of which are emitted mainly from vehicles exhaust pipes. On the other hand, trees are effective in reducing such contamination, so that they act as passive collectors of particulate matter. This work presents the results obtained from the first magnetic study of the particulate matter collected in two areas of the city of Santiago de Chile. Magnetic susceptibility and Saturation Isothermic Remanent Magnetization (SIRM) were determined in leaves from abundant urban trees and from urban dust samples. Results indicate that most of the samples contain ferromagnetic minerals with magnetite (Fe3O4) as the main carrier. Values of magnetic susceptibility (SI ×10-6 m3/kg) in the range 0.04-0.24 for leaves and in the range 10-45 for urban dust were determinated. In one of the city areas studied, significant correlation between the particulate matter deposited on leaves of Platanus orientalis and measured traffic flows was obtained. In addition, it was possible to estimate that the species Platanus orientalis and Acer negundo have a better ability to capture particulate matter than the species Robinia pseudoacacia.

  1. Electrically heated particulate filter enhanced ignition strategy

    Science.gov (United States)

    Gonze, Eugene V; Paratore, Jr., Michael J

    2012-10-23

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating applied to at least one of the PF and the grid. A control module estimates a temperature of the grid and controls the engine to produce a desired exhaust product to increase the temperature of the grid.

  2. Toward Understanding Prevalence of Airborne Microorganisms in a Hot-Arid Environment

    Directory of Open Access Journals (Sweden)

    Abdel Hameed A.A.

    2017-01-01

    Full Text Available This study aims to determine prevalence of microorganisms in the air state and those associated particulate matter (PM in a hot arid environment (Makkah city, Saudi Arabia in relation to time of the day, PM concentration and meteorological conditions during the period between July and September 2014. PM and black smoke samples were collected on cellulose nitrate membrane filters during the daytime (8.00 am - 20.00 pm and the nighttime (20.00 pm - 8.00 am. PMs, filters were eluted in buffer phosphate and aliquots were spread plated onto the surfaces of trypticase soya agar, malt extract agar, and starch casein agar media for counting bacteria, fungi and actinomycetes associated PM, respectively. Airborne microorganisms were collected using an Andersen two stage impactor sampler equipped with Petri plates containing the previously mentioned agar media. The Andersen two-stage viable cascade impactor sampler separates particles into coarse (≥8 µm and fine (≤8 µm size fractions. Airborne microorganisms were taken at three day time-scales: in the morning (8 am - 10 am, at the afternoon (13.00 pm - 16.00 pm and in the evening (22.00 pm - 1.00 am. The average concentrations of PM (149.5 µg/m3 and smoke (57.03 µg/m3 were higher in the daytime and nighttime, respectively. The greatest concentrations of microorganisms associated PM were found in the daytime, however the peak concentration of airborne microorganisms was found in the evening time. Fine microbial fraction constituted ~60% - 75.9% of the total microbial concentrations. Positive correlations were found between bacteria with PM concentration in the daytime and meteorological conditions at the nighttime. Temperature and relative humidity positively affected survivability of microorganisms associated PM at the nighttime and airborne fungi as well. This study helps understand distribution pattern of microorganisms in the atmosphere of a hot-arid environment.

  3. Proinflammatory and cytotoxic effects of Mexico City air pollution particulate matter in vitro are dependent on particle size and composition.

    OpenAIRE

    2003-01-01

    Exposure to urban airborne particulate matter (PM) is associated with adverse health effects. We previously reported that the cytotoxic and proinflammatory effects of Mexico City PM10 (less than or equal to 10 micro m mean aerodynamic diameter) are determined by transition metals and endotoxins associated with these particles. However, PM2.5 (less than or equal to 2.5 micro m mean aerodynamic diameter) could be more important as a human health risk because this smaller PM has the potential to...

  4. Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic.

    Science.gov (United States)

    Valavanidis, Athanasios; Iliopoulos, Nikiforos; Gotsis, George; Fiotakis, Konstantinos

    2008-08-15

    The production and use of polymeric materials worldwide has reached levels of 150 million tonnes per year, and the majority of plastic materials are discarded in waste landfills where are burned generating toxic emissions. In the present study we conducted laboratory experiments for batch combustion/burning of commercial polymeric materials, simulating conditions of open fire combustion, with the purpose to analyze their emissions for chemical characteristics of toxicological importance. We used common types of plastic materials: poly(vinyl chloride) (PVC), low and high density poly(ethylene) (LDPE, HDPE), poly(styrene) (PS), poly(propylene) (PP) and poly(ethylene terephthalate) (PET). Samples of particulate smoke (soot) collected on filters and residue solid ash produced by controlled burning conditions at 600-750 degrees C are used for analysis. Emissions of particulate matter, persistent free radicals embedded in the carbonaceous polymeric matrix, heavy metals, other elements and PAHs were determined in both types of samples. Results showed that all plastics burned easily generating charred residue solid ash and black airborne particulate smoke. Persistent carbon- and oxygen-centered radicals, known for their toxic effects in inhalable airborne particles, were detected in both particulate smoke emissions and residue solid ash. Concentrations of heavy metals and other elements (determined by Inductively Coupled Plasma Emission Spectrometry, ICP, method) were measured in the airborne soot and residue ash. Toxic heavy metals, such as Pb, Zn, Cr, Ni, and Cd were relatively at were found at low concentrations. High concentrations were found for some lithophilic elements, such as Na, Ca, Mg, Si and Al in particulate soot and residue solid ash. Measurements of PAHs showed that low molecular weight PAHs were at higher concentrations in the airborne particulate soot than in the residue solid ash for all types of plastic. Higher-ringed PAHs were detected at higher

  5. Self-Cleaning Particulate Air Filter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA requires an innovative solution to the serious issue of particulate fouling on air revitalization component surfaces in order to address the potential for...

  6. Heat and mass transfer in particulate suspensions

    CERN Document Server

    Michaelides, Efstathios E (Stathis)

    2013-01-01

    Heat and Mass Transfer in Particulate Suspensions is a critical review of the subject of heat and mass transfer related to particulate Suspensions, which include both fluid-particles and fluid-droplet Suspensions. Fundamentals, recent advances and industrial applications are examined. The subject of particulate heat and mass transfer is currently driven by two significant applications: energy transformations –primarily combustion – and heat transfer equipment. The first includes particle and droplet combustion processes in engineering Suspensions as diverse as the Fluidized Bed Reactors (FBR’s) and Internal Combustion Engines (ICE’s). On the heat transfer side, cooling with nanofluids, which include nanoparticles, has attracted a great deal of attention in the last decade both from the fundamental and the applied side and has produced several scientific publications. A monograph that combines the fundamentals of heat transfer with particulates as well as the modern applications of the subject would be...

  7. PARTICULATE MATTER, OXIDATIVE STRESS AND NEUROTOXICITY

    Science.gov (United States)

    Particulate matter (PM), a component of air pollution has been epidemiologically associated with sudden deaths, cardiovascular and respiratory illnesses. The effects are more pronounced in patients with pre-existing conditions such as asthma, diabetes or obstructive pulmonary dis...

  8. Allegheny County Particulate Matter 2.5

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The U.S. Environmental Protection Agency provides information on the particulate matter concentration for Allegheny County that have a diameter greater or equal to...

  9. Johns Hopkins Particulate Matter Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Johns Hopkins Particulate Matter Research Center will map health risks of PM across the US based on analyses of national databases on air pollution, mortality,...

  10. Particulate products tailoring properties for optimal performance

    CERN Document Server

    Merkus, Henk G

    2013-01-01

    In this book, experts in different product fields provide information on which particulate aspects are most relevant for behavior and performance of specified industrial products and how optimum results can be obtained.

  11. SOUTHERN FINE PARTICULATE MONITORING PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-04-01

    This quarterly report presents results and analysis of continuous onsite ambient fine particulate data at the North Birmingham sampling site during the January-March, 2002 study period. The continuous data include PM{sub 2.5} mass concentrations measured by TEOM, particle sulfate using the R&P 8400S monitor, particle size distributions measured by SMPS and APS monitors, and PM{sub 2.5} light scattering extinction coefficient as measured by nephelometer. Some instrumental issues were noted with the upgrade of the APS model 3320 are described in the report, as well as preliminary performance indications for the upgraded instrument. During the quarter preliminary data analysis and modeling studies were conducted to test the potential of the North Birmingham site data for source attribution analyses. Our initial assessment has continued to be optimistic in this regard due to the location of the site relative to several important classes of local and midrange emission sources. We anticipate that these analyses will provide good separations of the effects of major source classes and spatial source clusters, and will provide useful information relevant to PM{sub 2.5} implementation strategies.

  12. MTCI acoustic agglomeration particulate control

    Energy Technology Data Exchange (ETDEWEB)

    Chandran, R.R.; Mansour, M.N. [Manufacturing and Technology Conversion International, Inc., Columbia, MD (United States); Scaroni, A.W.; Koopmann, G.H. [Pennsylvania State Univ., University Park, PA (United States); Loth, J.L. [West Virginia Univ., Morgantown, WV (United States)

    1994-10-01

    The overall objective of this project is to demonstrate pulse combination induced acoustic enhancement of coal ash agglomeration and sulfur capture at conditions typical of direct coal-fired turbines and PFBC hot gas cleanup. MTCI has developed an advanced compact pulse combustor island for direct coal-firing in combustion gas turbines. This combustor island comprises a coal-fired pulse combustor, a combined ash agglomeration and sulfur capture chamber (CAASCC), and a hot cyclone. In the MTCI proprietary approach, the pulse combustion-induced high intensity sound waves improve sulfur capture efficiency and ash agglomeration. The resulting agglomerates allow the use of commercial cyclones and achieve very high particulate collection efficiency. In the MTCI proprietary approach, sorbent particles are injected into a gas stream subjected to an intense acoustic field. The acoustic field serves to improve sulfur capture efficiency by enhancing both gas film and intra-particle mass transfer rates. In addition, the sorbent particles act as dynamic filter foci, providing a high density of stagnant agglomerating centers for trapping the finer entrained (in the oscillating flow field) fly ash fractions. A team has been formed with MTCI as the prime contractor and Penn State University and West Virginia University as subcontractors to MTCI. MTCI is focusing on hardware development and system demonstration, PSU is investigating and modeling acoustic agglomeration and sulfur capture, and WVU is studying aerovalve fluid dynamics. Results are presented from all three studies.

  13. CERN: le Mondial de la particule

    CERN Multimedia

    Favier, R

    1998-01-01

    Avec le LEP (acc\\’{e}l\\’{e}rateur de particules), le CERN est devenu le v\\’{e}ritable phare de la science europ\\’{e}enne. Notamment pour la physique des particules. Riche de multiples exp\\’{e}riences r\\’{e}ussies, mais aussi de quelques prix Nobel, le CERN est en train de vivre une nouvelle aventure scientifique, en lan

  14. Spectral variability of the particulate backscattering ratio

    Science.gov (United States)

    Whitmire, A. L.; Boss, E.; Cowles, T. J.; Pegau, W. S.

    2007-05-01

    The spectral dependency of the particulate backscattering ratio is relevant in the fields of ocean color inversion, light field modeling, and inferring particle properties from optical measurements. Aside from theoretical predictions for spherical, homogeneous particles, we have very limited knowledge of the actual in situ spectral variability of the particulate backscattering ratio. This work presents results from five research cruises that were conducted over a three-year period. Water column profiles of physical and optical properties were conducted across diverse aquatic environments that offered a wide range of particle populations. The main objective of this research was to examine the behavior of the spectral particulate backscattering ratio in situ, both in terms of its absolute magnitude and its variability across visible wavelengths, using over nine thousand 1-meter binned data points for each of five wavelengths of the spectral particulate backscattering ratio. Our analysis reveals no spectral dependence of the particulate backscattering ratio within our measurement certainty, and a geometric mean value of 0.013 for this dataset. This is lower than the commonly used value of 0.0183 from Petzold’s integrated volume scattering data. Within the first optical depth of the water column, the mean particulate backscattering ratio was 0.010.

  15. Current concepts on airborne particles and health

    Energy Technology Data Exchange (ETDEWEB)

    Mauderly, J.L.

    1994-11-01

    Epidemiological evidence of associations between environmental particulate concentrations and both acute and chronic health effects has grown with numerous recent studies conducted in the US and other countries. An association between short-term changes in particulate levels and acute mortality now seems certain. The association is consistent among studies and coherent among indicators of mortality and morbidity. Effects observed at surprisingly low pollution levels have raised concern for current exposures even in modestly polluted cities. Toxicology did not predict the acute mortality effect, and causal mechanisms are difficult to rationalize. Present data suggest that the fine fraction of particulate pollution is more toxic than larger particles, but the contribution of specific particulate species is poorly understood.

  16. Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit

    Science.gov (United States)

    Licina, Dusan; Bhangar, Seema; Brooks, Brandon; Baker, Robyn; Firek, Brian; Tang, Xiaochen; Morowitz, Michael J.; Banfield, Jillian F.; Nazaroff, William W.

    2016-01-01

    Premature infants in neonatal intensive care units (NICUs) have underdeveloped immune systems, making them susceptible to adverse health consequences from air pollutant exposure. Little is known about the sources of indoor airborne particles that contribute to the exposure of premature infants in the NICU environment. In this study, we monitored the spatial and temporal variations of airborne particulate matter concentrations along with other indoor environmental parameters and human occupancy. The experiments were conducted over one year in a private-style NICU. The NICU was served by a central heating, ventilation and air-conditioning (HVAC) system equipped with an economizer and a high-efficiency particle filtration system. The following parameters were measured continuously during weekdays with 1-min resolution: particles larger than 0.3 μm resolved into 6 size groups, CO2 level, dry-bulb temperature and relative humidity, and presence or absence of occupants. Altogether, over sixteen periods of a few weeks each, measurements were conducted in rooms occupied with premature infants. In parallel, a second monitoring station was operated in a nearby hallway or at the local nurses’ station. The monitoring data suggest a strong link between indoor particle concentrations and human occupancy. Detected particle peaks from occupancy were clearly discernible among larger particles and imperceptible for submicron (0.3–1 μm) particles. The mean indoor particle mass concentrations averaged across the size range 0.3–10 μm during occupied periods was 1.9 μg/m3, approximately 2.5 times the concentration during unoccupied periods (0.8 μg/m3). Contributions of within-room emissions to total PM10 mass in the baby rooms averaged 37–81%. Near-room indoor emissions and outdoor sources contributed 18–59% and 1–5%, respectively. Airborne particle levels in the size range 1–10 μm showed strong dependence on human activities, indicating the importance of indoor

  17. Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit.

    Directory of Open Access Journals (Sweden)

    Dusan Licina

    Full Text Available Premature infants in neonatal intensive care units (NICUs have underdeveloped immune systems, making them susceptible to adverse health consequences from air pollutant exposure. Little is known about the sources of indoor airborne particles that contribute to the exposure of premature infants in the NICU environment. In this study, we monitored the spatial and temporal variations of airborne particulate matter concentrations along with other indoor environmental parameters and human occupancy. The experiments were conducted over one year in a private-style NICU. The NICU was served by a central heating, ventilation and air-conditioning (HVAC system equipped with an economizer and a high-efficiency particle filtration system. The following parameters were measured continuously during weekdays with 1-min resolution: particles larger than 0.3 μm resolved into 6 size groups, CO2 level, dry-bulb temperature and relative humidity, and presence or absence of occupants. Altogether, over sixteen periods of a few weeks each, measurements were conducted in rooms occupied with premature infants. In parallel, a second monitoring station was operated in a nearby hallway or at the local nurses' station. The monitoring data suggest a strong link between indoor particle concentrations and human occupancy. Detected particle peaks from occupancy were clearly discernible among larger particles and imperceptible for submicron (0.3-1 μm particles. The mean indoor particle mass concentrations averaged across the size range 0.3-10 μm during occupied periods was 1.9 μg/m3, approximately 2.5 times the concentration during unoccupied periods (0.8 μg/m3. Contributions of within-room emissions to total PM10 mass in the baby rooms averaged 37-81%. Near-room indoor emissions and outdoor sources contributed 18-59% and 1-5%, respectively. Airborne particle levels in the size range 1-10 μm showed strong dependence on human activities, indicating the importance of indoor

  18. GNSS kinematic position and velocity determination for airborne gravimetry

    OpenAIRE

    K. He

    2015-01-01

    The Global Navigation Satellite System (GNSS) plays a significant role in the fields of airborne gravimetry. The objective of this thesis is to develop reliable GNSS algorithms and software for kinematic highly precise GNSS data analysis in airborne gravimetry.

  19. Towards airborne nanoparticle mass spectrometry with nanomechanical string resonators

    DEFF Research Database (Denmark)

    Schmid, Silvan; Kurek, Maksymilian; Boisen, Anja

    2013-01-01

    Airborne nanoparticles can cause severe harm when inhaled. Therefore, small and cheap portable airborne nanoparticle monitors are highly demanded by authorities and the nanoparticle producing industry. We propose to use nanomechanical resonators to build the next generation cheap and portable...

  20. On the Impact of Particulate Matter Distribution on Pressure Drop of Wall-Flow Particulate Filters

    Directory of Open Access Journals (Sweden)

    Vicente Bermúdez

    2017-03-01

    Full Text Available Wall-flow particulate filters are a required exhaust aftertreatment system to abate particulate matter emissions and meet current and incoming regulations applying worldwide to new generations of diesel and gasoline internal combustion engines. Despite the high filtration efficiency covering the whole range of emitted particle sizes, the porous substrate constitutes a flow restriction especially relevant as particulate matter, both soot and ash, is collected. The dependence of the resulting pressure drop, and hence the fuel consumption penalty, on the particulate matter distribution along the inlet channels is discussed in this paper taking as reference experimental data obtained in water injection tests before the particulate filter. This technique is demonstrated to reduce the particulate filter pressure drop without negative effects on filtration performance. In order to justify these experimental data, the characteristics of the particulate layer are diagnosed applying modeling techniques. Different soot mass distributions along the inlet channels are analyzed combined with porosity change to assess the new properties after water injection. Their influence on the subsequent soot loading process and regeneration is assessed. The results evidence the main mechanisms of the water injection at the filter inlet to reduce pressure drop and boost the interest for control strategies able to force the re-entrainment of most of the particulate matter towards the inlet channels’ end.

  1. Advanced Hybrid Particulate Collector Project Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.J.

    1995-11-01

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  2. Urban greenness influences airborne bacterial community composition.

    Science.gov (United States)

    Mhuireach, Gwynne; Johnson, Bart R; Altrichter, Adam E; Ladau, Joshua; Meadow, James F; Pollard, Katherine S; Green, Jessica L

    2016-11-15

    Urban green space provides health benefits for city dwellers, and new evidence suggests that microorganisms associated with soil and vegetation could play a role. While airborne microorganisms are ubiquitous in urban areas, the influence of nearby vegetation on airborne microbial communities remains poorly understood. We examined airborne microbial communities in parks and parking lots in Eugene, Oregon, using high-throughput sequencing of the bacterial 16S rRNA gene on the Illumina MiSeq platform to identify bacterial taxa, and GIS to measure vegetation cover in buffer zones of different diameters. Our goal was to explore variation among highly vegetated (parks) versus non-vegetated (parking lots) urban environments. A secondary objective was to evaluate passive versus active collection methods for outdoor airborne microbial sampling. Airborne bacterial communities from five parks were different from those of five parking lots (p=0.023), although alpha diversity was similar. Direct gradient analysis showed that the proportion of vegetated area within a 50m radius of the sampling station explained 15% of the variation in bacterial community composition. A number of key taxa, including several Acidobacteriaceae were substantially more abundant in parks, while parking lots had higher relative abundance of Acetobacteraceae. Parks had greater beta diversity than parking lots, i.e. individual parks were characterized by unique bacterial signatures, whereas parking lot communities tended to be similar to each other. Although parks and parking lots were selected to form pairs of nearby sites, spatial proximity did not appear to affect compositional similarity. Our results also showed that passive and active collection methods gave comparable results, indicating the "settling dish" method is effective for outdoor airborne sampling. This work sets a foundation for understanding how urban vegetation may impact microbial communities, with potential implications for designing

  3. Airborne Vertical Profiling of Mercury Speciation near Tullahoma, TN, USA

    Directory of Open Access Journals (Sweden)

    Steve Brooks

    2014-08-01

    Full Text Available Atmospheric transport and in situ oxidation are important factors influencing mercury concentrations at the surface and wet and dry deposition rates. Contributions of both natural and anthropogenic processes can significantly impact burdens of mercury on local, regional and global scales. To address these key issues in atmospheric mercury research, airborne measurements of mercury speciation and ancillary parameters were conducted over a region near Tullahoma, Tennessee, USA, from August 2012 to June 2013. Here, for the first time, we present vertical profiles of Hg speciation from aircraft for an annual cycle over the same location. These airborne measurements included gaseous elemental mercury (GEM, gaseous oxidized mercury (GOM and particulate bound mercury (PBM, as well as ozone (O3, sulfur dioxide (SO2, condensation nuclei (CN and meteorological parameters. The flights, each lasting ~3 h, were conducted typically one week out of each month to characterize seasonality in mercury concentrations. Data obtained from 0 to 6 km altitudes show that GEM exhibited a relatively constant vertical profile for all seasons with an average concentration of 1.38 ± 0.17 ng∙m−3. A pronounced seasonality of GOM was observed, with the highest GOM concentrations up to 120 pg∙m−3 in the summer flights and lowest (0–20 pg∙m−3 in the winter flights. Vertical profiles of GOM show the maximum levels at altitudes between 2 and 4 km. Limited PBM measurements exhibit similar levels to GOM at all altitudes. HYSPLIT back trajectories showed that the trajectories for elevated GOM (>70 pg∙m−3 or PBM concentrations (>30 pg∙m−3 were largely associated with air masses coming from west/northwest, while events with low GOM (<20 pg∙m−3 or PBM concentrations (<5 pg∙m−3 were generally associated with winds from a wider range of wind directions. This is the first set of speciated mercury vertical profiles collected in a single location over the course

  4. Detection and enumeration of airborne biocontaminants.

    Science.gov (United States)

    Stetzenbach, Linda D; Buttner, Mark P; Cruz, Patricia

    2004-06-01

    The sampling and analysis of airborne microorganisms has received attention in recent years owing to concerns with mold contamination in indoor environments and the threat of bioterrorism. Traditionally, the detection and enumeration of airborne microorganisms has been conducted using light microscopy and/or culture-based methods; however, these analyses are time-consuming, laborious, subjective and lack sensitivity and specificity. The use of molecular methods, such as quantitative polymerase chain reaction amplification, can enhance monitoring strategies by increasing sensitivity and specificity, while decreasing the time required for analysis.

  5. Inactivation of an enterovirus by airborne disinfectants

    OpenAIRE

    2013-01-01

    Background The activity of airborne disinfectants on bacteria, fungi and spores has been reported. However, the issue of the virucidal effect of disinfectants spread by fogging has not been studied thoroughly. Methods A procedure has been developed to determine the virucidal activity of peracetic acid-based airborne disinfectants on a resistant non-enveloped virus poliovirus type 1. This virus was laid on a stainless carrier. The products were spread into the room by hot fogging at 55°C for 3...

  6. 76 FR 76333 - Notification for Airborne Wind Energy Systems (AWES)

    Science.gov (United States)

    2011-12-07

    ... Federal Aviation Administration 14 CFR Part 77 Notification for Airborne Wind Energy Systems (AWES) AGENCY...,'' to airborne wind energy systems (AWES). In addition, this notice requests information from airborne wind energy system developers and the public related to these systems so that the FAA...

  7. The mechanical behaviour of packed particulates

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, R

    1998-01-01

    Within the Canadian Nuclear Fuel Waste Management program, the central concept is to package used fuel in containers that would be deposited in an underground vault in a plutonic rock formation. To provide internal mechanical support for the container, the reference design specifies it to be filled with a matrix of compacted particulate material (called 'packed particulate'), such as quartz sand granules. The focus of this report is on the mechanical properties of the packed-particulate material, based on information drawn from the extant literature. We first consider the packing density of particulate matrices to minimize the remnant porosity and maximize mechanical stability under conditions of external pressure. Practical methods, involving vibratory packing, are reviewed and recommendations made to select techniques to achieve optimum packing density. The behaviour of particulates under compressive loading has been of interest to the powder metallurgy industry (i.e., the manufacture of products from pressed/sintered metal and ceramic powders) since the early decades of this century. We review the evidence showing that in short timescales, stress induced compaction occurs by particle shuffling and rearrangement, elastic distortion, plastic yielding and microfracturing. Analytical expressions are available to describe these processes in a semiquantitative fashion. Time-dependent compaction, mainly via creep mechanisms, is more complex. Much of the theoretical and experimental information is confined to higher temperatures (> 500 degrees C), where deformation rates are more rapid. Thus, for the relatively low ambient temperatures of the waste container ({approx}100 degrees C), we require analytical techniques to extrapolate the collective particulate creep behaviour. This is largely accomplished by employing current theories of creep deformation, particularly in the form of Deformation Mechanism Maps, which allow estimation of creep rates over a wide

  8. Comparison of particulate verification techniques study

    Science.gov (United States)

    Rivera, Rachel

    2006-08-01

    The efficacy of five particulate verification techniques on four types of materials was studied. Statistical Analysis Software/JMP 6.0 was used to create a statistically valid design of experiments. In doing so, 35 witness coupons consisting of the four types of materials being studied, were intentionally contaminated with particulate fallout. Image Analysis was used to characterize the extent of particulate fallout on the coupons and was used to establish a baseline, or basis of comparison, against the five techniques that were studied. The five particulate verification techniques were the Tapelift, the Particulate Solvent Rinse, the GelPak lift, an in-line vacuum filtration probe, and the Infinity Focusing Microscope (IFM). The four types of materials consisted of magnesium flouride (MgF II) coated mirrors, composite coated silver aluminum (CCAg), Z93 and NS43G coated aluminum, and silicon (si) wafers. The vacuum probe was determined to be most effective for Z93, the tapelift or vacuum probe for MgF2, and the GelPak Lift for CCAg and si substrates. A margin of error for each technique, based on experimental data from two experiments, for si wafer substrates, yielded the following: Tapelift - 67%, Solvent Rinse - 58%, GelPak- 26%, Vacuum Probe - 93%, IFM-to be determined.

  9. Atmospheric behaviors of particulate-bound polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in Beijing, China from 2004 to 2010

    Science.gov (United States)

    Tang, Ning; Suzuki, Genki; Morisaki, Hiroshi; Tokuda, Takahiro; Yang, Xiaoyang; Zhao, Lixia; Lin, Jinming; Kameda, Takayuki; Toriba, Akira; Hayakawa, Kazuichi

    2017-03-01

    Airborne particulates were collected at an urban site (site 1) from 2004 to 2010 and at a suburban site (site 2) in 2010 in Beijing. Nine polycyclic aromatic hydrocarbons (PAHs) and five nitropolycyclic aromatic hydrocarbons (NPAHs) in the airborne particulates were determined by HPLC with fluorescence and chemiluminescence detection, respectively. The concentrations of PAHs and NPAHs were higher in heating season than in non-heating season at the two sites. Both the concentrations of PAHs and NPAHs decreased in the non-heating season but only the concentrations of NPAHs decreased in heating season at site 1, from 2004 to 2010. These findings suggest that source control measures implemented by the city of Beijing helped to reduce air pollution in Beijing. The concentrations of PAHs increased at site 1 in 2010, possibly because of the transport of emissions from windward other areas, such as Shanxi province. Several diagnostic ratios of PAHs and NPAHs showed that the different sources contributed to Beijing's air pollution, although coal combustion was the main source in the heating season and vehicle emission was the main source in the non-heating season. An analysis of physical parameters at Beijing showed that high wind speed can remove atmospheric PAHs and NPAHs in the heating season and that high relative humidity can remove them in the non-heating season.

  10. Particulate air pollution and daily mortality in Bangkok

    Science.gov (United States)

    Vajanapoom, Nitaya

    1999-10-01

    This study was designed to assess the association between PM10 and visibility, and to determine whether the variations in daily mortality were associated with fluctuations in daily PM10 and visibility levels, in Bangkok during 1992-1997. Mortality data were extracted from death certificates, provided by the Bureau of Registration Administration. PM10 data were obtained from three monitoring stations operated by the Pollution Control Department, and visibility data were obtained from two monitoring stations operated by the Department of Meteorology. PM10 was regressed on visibility using multiple regression. Inverse and significant association was found between PM10 and visibility, after controlling for relative humidity, minimum temperature, and winter indicator variable. Positive association was found between total mortality and PM10, in Poisson regression model while controlling for long-term trends, season, and variations in weather. Five-day moving average of PM10 was significantly and most strongly associated with total mortality from non-external causes; a 2.3% (95% CI = 1.3, 3.3) increase in mortality was estimated for one interquartile range (30 μg/m3) increase in PM10. When PM10 was replaced with visibility, a 1.3% (95% CI = 0.4, 2.3) increase in mortality was estimated for one interquartile range (1.5 km) decrease in visibility. Lagged effects up to three day lags prior to death with similar patterns were observed for both PM10 and visibility. The findings suggest the possibility of using visibility as a surrogate for fine particulate matter. This approach is feasible because visibility data are usually routinely recorded at airports throughout the world. On the other hand, given the large number of population living in Bangkok, the small but significant percent excess deaths attributable to airborne particle exposure is an important public health concern.

  11. Air particulate matter and cardiovascular disease: a narrative review.

    Science.gov (United States)

    Martinelli, Nicola; Olivieri, Oliviero; Girelli, Domenico

    2013-06-01

    Consistent evidences from both epidemiological and experimental studies have demonstrated that short- and long-term exposure to particulate matter (PM), in particular to the finest particles (i.e. airborne PM with aerodynamic diameter less than 2.5 μm, PM2.5), is associated with cardiovascular morbidity and mortality. PM concentration has been linked with several clinical manifestations of cardiovascular diseases (CVD), including myocardial infarction, stroke, heart failure, arrhythmias, and venous thromboembolism. Noteworthy, some groups of subjects, like elderly, diabetics, or those with known coronary artery disease, appear specifically susceptible to the harmful effects triggered by PM exposure. Although the PM-related risk for a single individual appears relatively low, the PM-related population attributable risk is impressive. Recent studies indicate that the PM-CVD relationship is likely more complex than a mere quantitative association between overall PM concentration and disease risk. Indeed, the biological effects of PM may vary in function of both the aerodynamic diameter and the chemical composition. Moreover, it has been shown that the influence of air pollution on health is not limited to PM. Indeed, other gaseous pollutants may play an independent role in CVD, suggesting the need to develop multi-pollutant preventive approaches. Causality has been recently strongly supported by observations showing reduced CVD mortality after coordinated community policies resulting in lowering PM exposure at population level. An in-depth knowledge on the heterogeneous sources, chemical compounds, and biological effects of PM may help to propose more accurate and clinically effective recommendations for this important and modifiable factor contributing to CVD burden.

  12. Airborne Gravity: NGS' Airborne Gravity Data for AN01 (2009-2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2009-2010 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  13. The Airborne Cloud-Aerosol Transport System. Part I; Overview and Description of the Instrument and Retrival Algorithms

    Science.gov (United States)

    Yorks, John E.; Mcgill, Matthew J.; Scott, V. Stanley; Kupchock, Andrew; Wake, Shane; Hlavka, Dennis; Hart, William; Selmer, Patrick

    2014-01-01

    The Airborne Cloud-Aerosol Transport System (ACATS) is a multi-channel Doppler lidar system recently developed at NASA Goddard Space Flight Center (GSFC). A unique aspect of the multi-channel Doppler lidar concept such as ACATS is that it is also, by its very nature, a high spectral resolution lidar (HSRL). Both the particulate and molecular scattered signal can be directly and unambiguously measured, allowing for direct retrievals of particulate extinction. ACATS is therefore capable of simultaneously resolving the backscatterextinction properties and motion of a particle from a high altitude aircraft. ACATS has flown on the NASA ER-2 during test flights over California in June 2012 and science flights during the Wallops Airborne Vegetation Experiment (WAVE) in September 2012. This paper provides an overview of the ACATS method and instrument design, describes the ACATS retrieval algorithms for cloud and aerosol properties, and demonstrates the data products that will be derived from the ACATS data using initial results from the WAVE project. The HSRL retrieval algorithms developed for ACATS have direct application to future spaceborne missions such as the Cloud-Aerosol Transport System (CATS) to be installed on the International Space Station (ISS). Furthermore, the direct extinction and particle wind velocity retrieved from the ACATS data can be used for science applications such 27 as dust or smoke transport and convective outflow in anvil cirrus clouds.

  14. Homogenized thermal conduction model for particulate foods

    Energy Technology Data Exchange (ETDEWEB)

    Chinesta, Francisco [Laboratoire de mecanique des systemes et des procedes, Ecole nationale superieure d' arts et metiers, 151 boulevard de l' Hopital, 75013, Paris (France); Torres, Rafael [Departamento de Ingenieria Mecanica, Universidad Politecnica de Valencia, Camino de Vera s/n. 46071, Valencia (Spain); Ramon, Antonio [AIMPLAS, Gustave Eiffel 4, 46980 Paterna, Valencia (Spain); Rodrigo, Mari Carmen; Rodrigo, Miguel [Instituto de Agroquimica y Tecnologia de Alimentos, Consejo Superior de Investigaciones Cientificas, Apartado de correos 73, 46100, Burjasot (Spain)

    2002-12-01

    This paper deals with the definition of an equivalent thermal conductivity for particulate foods. An homogenized thermal model is used to asses the effect of particulate spatial distribution and differences in thermal conductivities. We prove that the spatial average of the conductivity can be used in an homogenized heat transfer model if the conductivity differences among the food components are not very large, usually the highest conductivity ratio between the foods components is lower than 5. In the general case we propose to use a standard spatial homogenization procedure. Although the heterogeneity give rise to an anisotropic heat transfer behaviour, this effect is negligible when the food particles are randomly distributed. When we use pre-mixed particulate foods a statistical average can be defined from a small number of possible particle arrangements. (authors)

  15. Diesel particulate filter design simulation: A review

    Directory of Open Access Journals (Sweden)

    Shichun Yang

    2016-03-01

    Full Text Available Simulation is a powerful tool in the design and analysis of diesel particulate filters. Various models have been developed in the last three decades and great improvements have been made in terms of model comprehensiveness and accuracy. However, simulation of diesel particulate filter is still not a reliable resort to fine-tuning of diesel particulate filter and much effort is still needed. To promote the development of effective simulation models, first, the various models are viewed. Their characteristics and application occasions are discussed. Second, regarding the limitations of these models, some key submodels are introduced, which are pressure drop model in the wall, filtration model, and soot oxidation model. Finally, some conclusions are made and further researches are recommended.

  16. Precision Rectification of Airborne SAR Image

    DEFF Research Database (Denmark)

    Dall, Jørgen; Liao, M.; Zhang, Zhe

    1997-01-01

    A simple and direct procedure for the rectification of a certain class of airborne SAR data is presented. The relief displacements of SAR data are effectively removed by means of a digital elevation model and the image is transformed to the ground coordinate system. SAR data from the Danish EMISAR...

  17. Airborne microorganisms and dust from livestock houses

    NARCIS (Netherlands)

    Zhao, Y.; Aarnink, A.J.A.; Jong, de M.C.M.; Groot Koerkamp, P.W.G.

    2011-01-01

    The objective of this study was to evaluate the efficiencies and suitability of samplers for airborne microorganisms and dust, which could be used in practical livestock houses. Two studies were performed: 1) Testing impaction and cyclone pre-separators for dust sampling in livestock houses; 2) Dete

  18. The National Airborne Field Experiment Data Sets

    DEFF Research Database (Denmark)

    Walker, J. P.; Balling, Jan E.; Bell, M.

    2007-01-01

    The National Airborne Field Experiment's (NAFE) were a series of intensive experiments recently conducted in different parts of Australia. These hydrologic-focused experiments have been designed to answer a range of questions which can only be resolved through carefully planned and executed field...

  19. Experimental airborne transmission of PRRS virus

    DEFF Research Database (Denmark)

    Kristensen, C.S.; Bøtner, Anette; Takai, H.

    2004-01-01

    A series of three experiments, differing primarily in airflow volume, were performed to evaluate the likelihood of airborne transmission of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) from infected to non-infected pigs. Pigs were housed in two units (unit A and unit B) located 1 m...

  20. Mapping Waterhyacinth Infestations Using Airborne Hyperspectral Imagery

    Science.gov (United States)

    Waterhyacinth [Eichhornia crassipes (Mart.) Solms] is an exotic aquatic weed that often invades and clogs waterways in many tropical and subtropical regions of the world. The objective of this study was to evaluate airborne hyperspectral imagery and different image classification techniques for mapp...

  1. Airborne gravity field Measurements - status and developments

    DEFF Research Database (Denmark)

    Olesen, Arne Vestergaard; Forsberg, René

    2016-01-01

    English Abstract:DTU-Space has since 1996 carried out large area airborne surveys over both polar, tropical and temperate regions, especially for geoid determination and global geopotential models. Recently we have started flying two gravimeters (LCR and Chekan-AM or inertial navigation systems) ...

  2. Level, potential sources of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM10) in Naples

    Science.gov (United States)

    Di Vaio, Paola; Cocozziello, Beatrice; Corvino, Angela; Fiorino, Ferdinando; Frecentese, Francesco; Magli, Elisa; Onorati, Giuseppe; Saccone, Irene; Santagada, Vincenzo; Settimo, Gaetano; Severino, Beatrice; Perissutti, Elisa

    2016-03-01

    In Naples, particulate matter PM10 associated with polycyclic aromatic hydrocarbons (PAHs) in ambient air were determined in urban background (NA01) and urban traffic (NA02) sites. The principal objective of the study was to determine the concentration and distribution of PAHs in PM10 for identification of their possible sources (through diagnostic ratio - DR and principal component analysis - PCA) and an estimation of the human health risk (from exposure to airborne TEQ). Airborne PM10 samples were collected on quartz filters using a Low Volume Sampler (LVS) for 24 h with seasonal samples (autumn, winter, spring and summer) of about 15 days each between October 2012 and July 2013. The PM10 mass was gravimetrically determined. The PM10 levels, in all seasons, were significantly higher (P natural gas emissions. In particular diesel vehicular emissions were the major source of PAHs at the studied sites. The use of Toxicity Equivalence Quantity (TEQ) concentration provide a better estimation of carcinogenicity activities; health risk to adults and children associated with PAHs inhalation was assessed by taking into account the lifetime average daily dose and corresponding incremental lifetime cancer risk (ILCR). The ILCR was within the acceptable range (10-6-10-4), indicating a low health risk to residents in these areas.

  3. Particulate matter sensor with a heater

    Science.gov (United States)

    Hall, Matthew

    2011-08-16

    An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.

  4. Airborne laser sensors and integrated systems

    Science.gov (United States)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  5. Turbulent dispersivity under conditions relevant to airborne disease transmission between laboratory animals

    Science.gov (United States)

    Halloran, Siobhan; Ristenpart, William

    2013-11-01

    Virologists and other researchers who test pathogens for airborne disease transmissibility often place a test animal downstream from an inoculated animal and later determine whether the test animal became infected. Despite the crucial role of the airflow in pathogen transmission between the animals, to date the infectious disease community has paid little attention to the effect of airspeed or turbulent intensity on the probability of transmission. Here we present measurements of the turbulent dispersivity under conditions relevant to experimental tests of airborne disease transmissibility between laboratory animals. We used time lapse photography to visualize the downstream transport and turbulent dispersion of smoke particulates released from a point source downstream of an axial fan, thus mimicking the release and transport of expiratory aerosols exhaled by an inoculated animal. We show that for fan-generated turbulence the plume width is invariant with the mean airspeed and, close to the point source, increases linearly with downstream position. Importantly, the turbulent dispersivity is insensitive to the presence of meshes placed downstream from the point source, indicating that the fan length scale dictates the turbulent intensity and corresponding dispersivity.

  6. Characterization of airborne trace metal and trace organic species from coal gasification.

    Science.gov (United States)

    Osborn, J F; Santhanam, S; Davidson, C I; Flotard, R D; Stetter, J R

    1984-12-01

    Fugitive emissions from a slagging fixed-bed coal-gasification pilot plant were analyzed by flameless atomic absorption spectrophotometry, gas chromatography, and mass spectrometry for trace metal and trace organic species. Analysis of the size distributions of airborne particulate matter inside the plant showed an abundance of large metal-containing particles; outdoor distributions in the vicinity of the plant resembled the indoor distributions, suggesting the importance of the gasifier in influencing ambient air quality. This conclusion was further supported by identification of similar organic compounds inside and outside the plant. Trace element enrichment factors based on the earth's crustal composition were greater than those based on the composition of the lignite used in the gasifier, showing the importance of characterizing the proper source material when inverstigating chemical fraction during aerosol formation. Enrichments in the present study were much greater than those found in previous sampling during aborted start-up and cleaning procedures, where normal operating temperatures had not yet been reached. Both studies showed evidence of enrichment factors which decreased with increasing particle size. Although much of the airborne mass was associated with large particles having low respirability, the high concentrations of some metals indoors suggests that further assessment of potential occupational exposures is warranted.

  7. Analysis of Potentially Toxic Metals in Airborne Cement Dust Around Sagamu, Southwestern Nigeria

    Science.gov (United States)

    Gbadebo, A. M.; Bankole, O. D.

    This study analyzed the concentration levels of potentially toxic and harmful elements contained in the airborne cement dust generated in the vicinity and farther away 500 m in the conventional four cardinal directions from the West African Portland Cement Company (WAPCO) factory mill, Sagamu. The results indicated that the concentration range of these toxic elements fall between 40.0 and 280,000 μg g-1 in the cement dust samples. Also, the concentration range of these toxic elements in 1 L of air samples varies between 0.01 μg g-1 and 29.92 μg L-1. The results generally show elevated concentrations of all the elements when compared with USA threshold limit of particulate mental concentration (e.g., Pb (1.5 g m-3); Cd (0.004-0.026 g m-3) in the air. These elements in the airborne cement dusts may pose a great threat to the health of plants, animals and residents in and around the factory and also to workers and visitors to the factory.

  8. The correlation and quantification of airborne spectroradiometer data to turbidity measurements at Lake Powell, Utah

    Science.gov (United States)

    Merry, C. J.

    1979-01-01

    A water sampling program was accomplished at Lake Powell, Utah, during June 1975 for correlation to multispectral data obtained with a 500-channel airborne spectroradiometer. Field measurements were taken of percentage of light transmittance, surface temperature, pH and Secchi disk depth. Percentage of light transmittance was also measured in the laboratory for the water samples. Analyses of electron micrographs and suspended sediment concentration data for four water samples located at Hite Bridge, Mile 168, Mile 150 and Bullfrog Bay indicated differences in the composition and concentration of the particulate matter. Airborne spectroradiometer multispectral data were analyzed for the four sampling locations. The results showed that: (1) as the percentage of light transmittance of the water samples decreased, the reflected radiance increased; and (2) as the suspended sediment concentration (mg/l) increased, the reflected radiance increased in the 1-80 mg/l range. In conclusion, valuable qualitative information was obtained on surface turbidity for the Lake Powell water spectra. Also, the reflected radiance measured at a wavelength of 0.58 micron was directly correlated to the suspended sediment concentration.

  9. Comparative performance of two air samplers for monitoring airborne fungal propagules

    Directory of Open Access Journals (Sweden)

    L.G.F. Távora

    2003-05-01

    Full Text Available Many studies have attempted to evaluate the importance of airborne fungi in the development of invasive fungal infection, especially for immunocompromised hosts. Several kinds of instruments are available to quantitate fungal propagule levels in air. We compared the performance of the most frequently used air sampler, the Andersen sampler with six stages, with a portable one, the Reuter centrifugal sampler (RCS. A total of 84 samples were analyzed, 42 with each sampler. Twenty-eight different fungal genera were identified in samples analyzed with the Andersen instrument. In samples obtained with the RCS only seven different fungal genera were identified. The three most frequently isolated genera in samples analyzed with both devices were Penicillium, Aspergillus and Cladophialophora. In areas supplied with a high efficiency particulate air filter, fungal spore levels were usually lower when compared to areas without these filters. There was a significant correlation between total fungal propagule measurements taken with both devices on each sampling occasion (Pearson coefficient = 0.50. However, the Andersen device recovered a broader spectrum of fungi. We conclude that the RCS can be used for quantitative estimates of airborne microbiological concentrations. For qualitative studies, however, this device cannot be recommended.

  10. Technical note: concentration and composition of airborne aerobic bacteria inside an enclosed rabbit shed

    Directory of Open Access Journals (Sweden)

    S. Li

    2016-03-01

    Full Text Available Numerous studies have been conducted to analyse bacterial aerosols in animal houses, which is beneficial for the control of animal diseases. However, little information on aerosols in enclosed rabbit sheds was available. An FA-1 sampler was employed to collect air samples in an enclosed rabbit house in the Qingdao region of China. Concentration, composition, and aerodynamics of bacterial aerosols inside the enclosed rabbit shed were systematically analysed. The concentration of airborne bacteria inside the rabbit shed was 2.11-6.36×104 colony forming unit/m3 (CFU/m3. Seventeen species of bacteria belonging to eight genera were identified. Among these, there were 11 species belonging to 4 genera of gram-positive bacteria, and 6 species belonging to 4 genera of gram-negative bacteria. The dominant species of bacteria were, in descending order, Micrococcus luteus (49.4%, Staphylococcus epidermidis (25.5%, and Alcaligenes odorans (10.2%. A total of about 76.3% of airborne bacteria was distributed in stages C-F of the FA-1 sampler (that ranges from A to F, with aerodynamic radii <3.3 μm in diameter. These particulates could enter lower respiratory tracks and even alveoli, posing a potential threat to the health of both animals and breeders.

  11. Characterization of winter airborne particles at Emperor Qin's Terra-cotta Museum, China.

    Science.gov (United States)

    Hu, Tafeng; Lee, Shuncheng; Cao, Junji; Chow, Judith C; Watson, John G; Ho, Kinfai; Ho, Wingkei; Rong, Bo; An, Zhisheng

    2009-10-01

    Daytime and nighttime total suspended particulate matters (TSP) were collected inside and outside Emperor Qin's Terra-cotta Museum, the most popular on-site museum in China, in winter 2008. The purpose of this study was to investigate the contribution of visitors to indoor airborne particles in two display halls with different architectural and ventilating conditions, including Exhibition Hall and Pit No.1. Morphological and elemental analyses of 7-day individual particle samples were performed with scanning electron microscopy and energy dispersive X-ray spectrometer (SEM-EDX). Particle mass concentrations in Exhibition Hall and Pit No.1 were in a range of 54.7-291.7 microg m(-3) and 95.3-285.4 microg m(-3) with maximum diameters of 17.5 microm and 26.0 microm, respectively. In most sampling days, daytime/nighttime particle mass ratios in Exhibition Hall (1.30-3.12) were higher than those in Pit No.1 (0.96-2.59), indicating more contribution of the tourist flow in Exhibition Hall than in Pit No. 1. The maximum of particle size distributions were in a range of 0.5-1.0 microm, with the highest abundance (43.4%) occurred in Exhibition Hall at night. The majority of airborne particles at the Museum was composed of soil dust, S-containing particles, and low-Z particles like soot aggregate and biogenic particles. Both size distributions and particle types were found to be associated with visitor numbers in Exhibition Hall and with natural ventilation in Pit No.1. No significant influence of visitors on indoor temperature and relative humidity (RH) was found in either display halls. Those baseline data on the nature of the airborne particles inside the Museum can be incorporated into the maintenance criteria, display management, and ventilation strategy by conservators of the museum.

  12. Chemical analysis of World Trade Center fine particulate matter for use in toxicologic assessment.

    Science.gov (United States)

    McGee, John K; Chen, Lung Chi; Cohen, Mitchell D; Chee, Glen R; Prophete, Colette M; Haykal-Coates, Najwa; Wasson, Shirley J; Conner, Teri L; Costa, Daniel L; Gavett, Stephen H

    2003-06-01

    The catastrophic destruction of the World Trade Center (WTC) on 11 September 2001 caused the release of high levels of airborne pollutants into the local environment. To assess the toxicity of fine particulate matter [particulate matter with a mass median aerodynamic diameter fraction was isolated on filters. Here we report the chemical and physical properties of PM2.5 derived from these samples and compare them with PM2.5 fractions of three reference materials that range in toxicity from relatively inert to acutely toxic (Mt. St. Helens PM; Washington, DC, ambient air PM; and residual oil fly ash). X-ray diffraction of very coarse sieved WTC PM (fraction. Analysis of WTC PM2.5 using X-ray fluorescence, neutron activation analysis, and inductively coupled plasma spectrometry showed high levels of calcium (range, 22-33%) and sulfur (37-43% as sulfate) and much lower levels of transition metals and other elements. Aqueous extracts of WTC PM2.5 were basic (pH range, 8.9-10.0) and had no evidence of significant bacterial contamination. Levels of carbon were relatively low, suggesting that combustion-derived particles did not form a significant fraction of these samples recovered in the immediate aftermath of the destruction of the towers. Because gypsum and calcite are known to cause irritation of the mucus membranes of the eyes and respiratory tract, inhalation of high doses of WTC PM2.5 could potentially cause toxic respiratory effects.

  13. Source apportionment of particulate matter in a large city of southeastern Po Valley (Bologna, Italy).

    Science.gov (United States)

    Tositti, L; Brattich, E; Masiol, M; Baldacci, D; Ceccato, D; Parmeggiani, S; Stracquadanio, M; Zappoli, S

    2014-01-01

    This study reports the results of an experimental research project carried out in Bologna, a midsize town in central Po valley, with the aim at characterizing local aerosol chemistry and tracking the main source emissions of airborne particulate matter. Chemical speciation based upon ions, trace elements, and carbonaceous matter is discussed on the basis of seasonal variation and enrichment factors. For the first time, source apportionment was achieved at this location using two widely used receptor models (principal component analysis/multi-linear regression analysis (PCA/MLRA) and positive matrix factorization (PMF)). Four main aerosol sources were identified by PCA/MLRA and interpreted as: resuspended particulate and a pseudo-marine factor (winter street management), both related to the coarse fraction, plus mixed combustions and secondary aerosol largely associated to traffic and long-lived species typical of the fine fraction. The PMF model resolved six main aerosol sources, interpreted as: mineral dust, road dust, traffic, secondary aerosol, biomass burning and again a pseudo-marine factor. Source apportionment results from both models are in good agreement providing a 30 and a 33% by weight respectively for PCA-MLRA and PMF for the coarse fraction and 70% (PCA-MLRA) and 67% (PMF) for the fine fraction. The episodic influence of Saharan dust transport on PM10 exceedances in Bologna was identified and discussed in term of meteorological framework, composition, and quantitative contribution.

  14. Climate change, aeroallergens, natural particulates, and human health in Australia: state of the science and policy.

    Science.gov (United States)

    Beggs, Paul John; Bennett, Charmian Margaret

    2011-03-01

    The objective of this article is to systematically review and assess what is known about the impacts of climate change on aeroallergens and other naturally derived particulates, and the associated human health impacts, and to examine responses to these in Australia, focusing on adaptation. Prior research was searched using several general and discipline-specific research databases. The review concludes that whereas there is little original research on the impacts of climate change on aeroallergens and other naturally derived particulates in Australia, or the human health consequences of these, research from overseas suggests that these impacts may be adverse and of considerable magnitude. More research is required to assess the impacts of climate change on these airborne particles and associated diseases in Australia and other parts of the Asia-Pacific. There are important policy implications of this review. There is a need for enhanced monitoring of the atmospheric environment and associated health conditions in Australia. Education about climate change and human health in general, and air quality and related diseases specifically, is required for the community, health professionals, and others. Improvements are needed in the preparedness of infrastructure, such as health care facilities and early warning systems, particularly for aeroallergens, and all of these adaptive policy responses require further research.

  15. Measuring Sub-micron Size Fractionated Particulate Matter on Aluminum Impactor Disks

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, B A; Zermeno, P; Hwang, H; Young, T M

    2009-07-28

    Sub-micron sized airborne particulate matter is not collected well on regular quartz or glass fiber filter papers. We used a micro-orifice uniform deposit impactor (MOUDI) to size fractionate particulate matter (PM) into six size fractions and deposit it on specially designed high purity thin aluminum disks. The MOUDI separated PM into fractions 56-100 nm, 100-180 nm, 180-320 nm, 320-560 nm, 560-1000 nm, and 1000-1800 nm. Since MOUDI have low flow rates, it takes several days to collect sufficient carbon on 47 mm foil disks. The small carbon mass (20-200 microgram C) and large aluminum substrate ({approx}25 mg Al) presents several challenges to production of graphite targets for accelerator mass spectrometry (AMS) analysis. The Al foil consumes large amounts of oxygen as it is heated and tends to melt into quartz combustion tubes, causing gas leaks. We describe sample processing techniques to reliably produce graphitic targets for {sup 14}C-AMS analysis of PM deposited on Al impact foils.

  16. Variation of airborne quartz in air of Beijing during the Asia-Pacific Economic Cooperation Economic Leaders' Meeting.

    Science.gov (United States)

    Li, Gang; Li, Yingming; Zhang, Hongxing; Li, Honghua; Gao, Guanjun; Zhou, Qian; Gao, Yuan; Li, Wenjuan; Sun, Huizhong; Wang, Xiaoke; Zhang, Qinghua

    2016-01-01

    Quartz particles are a toxic component of airborne particulate matter (PM). Quartz concentrations were analyzed by X-ray diffraction in eighty-seven airborne PM samples collected from three locations in Beijing before, during, and after the Asia-Pacific Economic Cooperation (APEC) Leaders' Meeting in 2014. The results showed that the mean concentrations of quartz in PM samples from the two urban sites were considerably higher than those from the rural site. The quartz concentrations in samples collected after the APEC meeting, when the pollution restriction lever was lifted, were higher than those in the samples collected before or during the APEC meeting. The quartz concentrations ranged from 0.97 to 13.2 μg/m(3), which were among the highest values amid those reported from other countries. The highest quartz concentration exceeded the Californian Office of Environmental Health Hazard Assessment reference exposure level and was close to the occupational threshold limit values for occupational settings. Moreover, a correlation analysis showed that quartz concentrations were positively correlated with concentrations of pollution parameters PM10, PM2.5, SO2 and NOx, but were negatively correlated with O3 concentration. The results suggest that the airborne quartz particles may potentially pose health risks to the general population of Beijing.

  17. Particulate organic constituents of surface waters of east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sreepada, R.A.; Bhat, K.L.; Parulekar, A.H.

    Particulate matter collected from surface seawater (approx 1 m) samples from 11 coastal (depth less than 200 m) and 40 oceanic (depth > 200 m ) stations was studied for particulate organic carbon (POC), particulate carbohydrate (PCHO), particulate...

  18. Aerotrace. Measurement of particulates from an engine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, C.D. [DRA, Farnborough (United Kingdom)

    1997-12-31

    The effect of gas turbine operating conditions, inlet temperature, pressure and overall air fuel ratio, on particulate number density has been measured. Particulate number density was found to be proportional to combustor inlet pressure and decrease with increasing combustor inlet temperature. The relationship with air fuel ratio is more complex. The mechanism of particulate loss down sample lines has been elucidated and equations are presented to predict particulate losses for stainless steel and PTFE sample lines. (author) 3 refs.

  19. Alternate particle removal technologies for the Airborne Activity Confinement System at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Brockmann, J.E.; Adkins, C.L.J.; Gelbard, F. (Sandia National Labs., Albuquerque, NM (United States))

    1991-09-01

    This report presents a review of the filtration technologies available for the removal of particulate material from a gas stream. It was undertaken to identify alternate filtration technologies that may be employed in the Airborne Activity Confinement System (AACS) at the Savannah River Plant. This report is organized into six sections: (1) a discussion of the aerosol source term and its definition, (2) a short discussion of particle and gaseous contaminant removal mechanisms, (3) a brief overview of particle removal technologies, (4) a discussion of the existing AACS and its potential shortcomings, (5) an enumeration of issues to be addressed in upgrading the AACS, and, (6) a detailed discussion of the identified technologies. The purpose of this report is to identity available options to the existing particle removal system. This system is in continuous operation during routine operation of the reactor. As will be seen, there are a number of options and the selection of any technology or combination of technologies will depend on the design aerosol source term (yet to be appropriately defined) as well as the flow requirements and configuration. This report does not select a specific technology. It focuses on particulate removal and qualitatively on the removal of radio-iodine and mist elimination. Candidate technologies have been selected from industrial and nuclear gas cleaning applications.

  20. Characterisation of airborne particles and associated organic components produced from incense burning.

    Science.gov (United States)

    Chuang, Hsiao-Chi; Jones, Tim; Chen, Yang; Bell, Jennifer; Wenger, John; BéruBé, Kelly

    2011-12-01

    Airborne particles generated from the burning of incense have been characterized in order to gain an insight into the possible implications for human respiratory health. Physical characterization performed using field-emission scanning electron microscopy showed incense particulate smoke mainly consisted of soot particles with fine and ultrafine fractions in various aggregated forms. A range of organic compounds present in incense smoke have been identified using derivatisation reactions coupled with gas chromatography-mass spectrometry analysis. A total of 19 polar organic compounds were positively identified in the samples, including the biomass burning markers levoglucosan, mannosan and galactosan, as well as a number of aromatic acids and phenols. Formaldehyde was among 12 carbonyl compounds detected and predominantly associated with the gas phase, whereas six different quinones were also identified in the incense particulate smoke. The nano-structured incense soot particles intermixed with organics (e.g. formaldehyde and quinones) could increase the oxidative capacity. When considering the worldwide prevalence of incense burning and resulting high respiratory exposures, the oxygenated organics identified in this study have significant human health implications, especially for susceptible populations.

  1. Modeled global effects of airborne desert dust on air quality and premature mortality

    Science.gov (United States)

    Giannadaki, D.; Pozzer, A.; Lelieveld, J.

    2014-01-01

    Fine particulate matter is one of the most important factors contributing to air pollution. Epidemiological studies have related increased levels of atmospheric particulate matter to premature human mortality caused by cardiopulmonary disease and lung cancer. However, a limited number of investigations have focused on the contribution of airborne desert dust particles. Here we assess the effects of dust particles with an aerodynamic diameter smaller than 2.5 μm (DU2.5) on human mortality for the year 2005. We used the EMAC atmospheric-chemistry general circulation model at high resolution to simulate global atmospheric dust concentrations. We applied a health impact function to estimate premature mortality for the global population of 30 yr and older, using parameters from epidemiological studies. We estimate a global cardiopulmonary mortality of about 402 000 in 2005. The associated years of life lost are about 3.47 million per year. We estimate the global fraction of the cardiopulmonary deaths caused by atmospheric desert dust to be about 1.8%, though in the 20 countries most affected by dust this is much higher, about 15-50%. These countries are primarily found in the so-called "dust belt" from North Africa across the Middle East and South Asia to East Asia

  2. A real-time monitoring system for airborne particle shape and size analysis

    Science.gov (United States)

    Kaye, P. H.; Alexander-Buckley, K.; Hirst, E.; Saunders, S.; Clark, J. M.

    1996-08-01

    This paper describes a new instrument for the study of airborne particles. The instrument performs a rapid analysis of the transient spatial intensity distribution of laser-light scattered by individual aerosol particles drawn from an ambient environment and uses this to characterize the particles in terms of both size and shape parameters. Analyses are carried out at peak particle throughput rates of up to 10,000 particles per second, and semiquantitative data relating to the size and shape (or more correctly asymmetry) spectra of the sampled particles are provided to the user via a graphical display which is refreshed or updated at 5-s intervals. In addition to the real-time display of data, continuous data recording allows subsequent replay of measurements at either normal or high speed. Preliminary experimental results are given for aerosols of both spherical and nonspherical particle types, and these suggest the instrument may find use in environmental monitoring of aerosols or clouds where some real-time semiquantitative assessment of particulate size and shape spectra may be desirable as an aid to characterizing the aerosol and its constituent particulate species.

  3. Source apportionment of particulate matter in Denmark

    Science.gov (United States)

    Moenster, J.; Glasius, M.; Nielsen, O. J.; Bilde, M.; Jensen, F. P.

    2005-12-01

    Atmospheric particulate matter (PM) has received considerable attention over the last decade as an important component of air pollution, particularly due to its health effects on the exposed population. Typically the mass of particles with diameters smaller that 10 μm (PM10) has been used in large cohort studies to estimate health effects such as increase in hospitalization rate, asthma attacks and premature deaths. Particles smaller than 2.5 μm (PM2.5) and ultra fine particles have been used in various epidemiological studies and correlations between exposure to fine and ultra fine particles and health effects have been found. Limits of acceptable concentrations of PM10, PM2.5 and some carcinogenic species have been made, and it is important to find the origin of the particulate matter to prevent exceeds of these limits. This can be done by measuring particle mass, organic/inorganic fractions of particles, the chemical components and other relevant factors, and then use receptor modeling for source apportionment of the particulate matter. We have done measurements at street level and urban background in Copenhagen, Denmark, to determine the origin of different sizes of particulate matter and the toxic organic compounds connected to these particles. We also did measurements in a small village with less traffic and more residential wood combustion for a comparison between traffic and wood combustion generated pollution. Our results show a significant amount of particulate matter coming from non local sources and are dominated by long-range transported inorganic salts. The amount of these is highly depended on the wind direction and thus on the origin of the wind plume. The origin of the carcinogenic organic compound benzo(a)pyrene was found to be local combustion sources. To prevent events of high particulate matter concentration in Copenhagen, Denmark, a reduction of emission from the local traffic will only lead to a minor effect, since the majority of the

  4. 40 CFR 60.402 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... which: (i) Contain particulate matter in excess of 0.030 kilogram per megagram of phosphate rock feed (0...) Contain particulate matter in excess of 0.12 kilogram per megagram of phosphate rock feed (0.23 lb/ton... beneficiated rock any gases which: (i) Contain particulate matter in excess of 0.055 kilogram per megagram...

  5. Electrically heated particulate filter preparation methods and systems

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI

    2012-01-31

    A control system that controls regeneration of a particulate filter is provided. The system generally includes a fuel control module that controls injection of fuel into exhaust that passes through the particulate filter. A regeneration module controls current to the particulate filter to initiate regeneration after the fuel has been injected into the exhaust.

  6. Sensitivity study of particulate loss processes within HY-SPLIT4, SCIPUFF, and MATHEW/ADPIC

    Energy Technology Data Exchange (ETDEWEB)

    Seely, S.L.

    1999-07-01

    Three transport and dispersion models equipped to simulate the transport, diffusion, and deposition of particulate pollutants were compared and contrasted in a sensitivity study. The input parameters were controlled and similar for each model tested. The airborne concentrations along a straight line 100 km downwind from the source were estimated by virtual samplers located at 5 km intervals. Downwind concentrations produced by the three models were examined for changes after dry deposition, decay, and light and heavy rain during both stable and unstable conditions. The assumed distribution of particle diameters was centered around two sizes: 8 and 14 mm. Large differences in the relative change in concentration of downwind particulates were found depending upon the model used. This was likely due to the parameterization of the loss processes within each model. SCIPUFF produced consistent losses when decay or wet or dry deposition were activated. ADPIC produced intermittent losses during the daytime when dry deposition was activated. HY-SPLIT4 produced intermittent losses both day and night when dry deposition was activated. Washout in ADPIC and HY-SPLIT4 was more rapid and complete than in SCIPUFF. Anomalous results were observed with HY-SPLIT4 during nighttime simulations of decay, with intermittent increases in near-ground particulate concentrations. Finally, all three models produced similar losses due to decay during daytime simulations. This research is significant and relevant to decision-making organizations that utilize model outputs for emergency preparedness and response. By understanding the effects of selecting different deposition input parameters and the manner in which deposition is implemented within each model, the emergency planner is better equipped for decision-making when confronted with output from more than one model.

  7. Exposure to chlorpyrifos in gaseous and particulate form in greenhouses: a pilot study.

    Science.gov (United States)

    Kim, Seung Won; Lee, Eun Gyung; Lee, Taekhee; Lee, Larry A; Harper, Martin

    2014-01-01

    Phase distribution of airborne chemicals is important because intake and uptake mechanisms of each phase are different. The phase distribution and concentrations are needed to determine strategies of exposure assessment, hazard control, and worker protection. However, procedures for establishing phase distribution and concentration have not been standardized. The objective of this study was to compare measurements of an airborne semivolatile pesticide (chlorpyrifos) by phase using two different procedures. Six pesticide applications in two facilities were studied and at each site, samples were collected for three time slots: T1, the first 1 or 2 hr after the commencement of application; T2, a 6-hr period immediately following T1; and T3, a 6-hr period after the required re-entry interval (24 hr for chlorpyrifos).Two phase-separating devices were co-located at the center of each greenhouse: semivolatile aerosol dichotomous sampler (SADS) using flow rates of 1.8 l x min(-1) and 0.2 l x min(-1), corresponding to a total inlet flow rate of 2.0 l x min(-1) with a vapor phase flow fraction of 0.1; and an electrostatic precipitator (ESP), along with a standard OVS XAD-2 tube. Chlorpyrifos in vapor and particulate form in a SADS sampling train and that in vapor form in an ESP sampling train were collected in OVS tubes. Chlorpyrifos in particulate form in the ESP setting would have been collected on aluminum substrate. However, no chlorpyrifos in particulate form was recovered from the ESP. Overall (vapor plus particle) concentrations measured by OVS ranged 11.7-186.6 μg/m(3) at T1 and decreased on average 77.1% and 98.9% at T2 and T3, respectively. Overall concentrations measured by SADS were 66.6%, 72.7%, and 102% of those measured by OVS on average at T1, T2, and T3, respectively. Particle fractions from the overall concentrations measured by SADS were 60.0%, 49.2%, and 13.8%, respectively, for T1, T2, and T3. SADS gives better guidance on the distribution of

  8. Note on the sanitary impact of diesel particulates; Note sur l'impact sanitaire des particules diesel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-10-15

    In the actual situation of scientific works, the epidemiology studies on environment do not allow to say the carcinogen contribution of diesel particulates at the concentration levels measured in the urban air. But according to the experimental data for the rat and the data observed for the personnel exposed to diesel particulates these particulates are classified as probably carcinogen. (N.C.)

  9. Geoid of Nepal from airborne gravity survey

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Einarsson, Indriði

    2011-01-01

    An airborne gravity survey of Nepal was carried out December 2010 in a cooperation between DTU-Space, Nepal Survey Department, and NGA, USA. The entire country was flown with survey lines spaced 6 nm with a King Air aircraft, with a varying flight altitude from 4 to 10 km. The survey operations...... were a major challenge due to excessive jet streams at altitude as well as occasional excessive mountain waves. Despite the large 400 mGal+ range of gravity anomaly changes from the Indian plains to the Tibetan Plateau, results appear accurate to a few mGal, with proper evaluation from cross...... as well as recent GPS-heights of Mt. Everest. The new airborne data also provide an independent validation of GOCE gravity field results at the local ~100 km resolution scale....

  10. A system for airborne SAR interferometry

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang; Skou, Niels; Granholm, Johan

    1996-01-01

    Interferometric synthetic aperture radar (INSAR) systems have already demonstrated that elevation maps can be generated rapidly with single pass airborne across-track interferometry systems (XTT), and satellite repeat track interferometry (RTT) techniques have been used to map both elevation...... and perturbations of the surface of the Earth. The Danish Center for Remote Sensing (DCRS) has experimented with airborne INSAR since 1993. Multiple track data are collected in a special mode in which the radar directly steers the aircraft which allows for very precise control of the flight path. Such data sets...... have been acquired at both L- and C-band. During 1994/95 the system was further modified to add the capability to perform single pass interferometric data acquisitions at C-band. This paper will discuss: (1) the general principles of INSAR systems and their application to topographic mapping and (2...

  11. Infrared signature generation of airborne targets

    Science.gov (United States)

    Whalen, Michael R.

    1993-08-01

    This report proposes a generic methodology for generating infrared signatures of airborne targets. The various issues, assumptions and simplifications utilized in signature studies are outlines to insure baseline consistency among future models and evaluation tools. More specifically, the target is characterized on a component level, and the at-aperture signature is generated by the correct inclusion of atmospheric transmission. While the technique and general concepts may apply to all airborne targets, this study places emphasis on cruise missiles and related targets due to their low contrast. For these targets, the background signature becomes more important as both the emitted target radiance and the reflected background radiance contribute to the overall signature. Example target signatures generated using the proposed methodology will be presented following the discussion of signature modeling.

  12. Analyzing Options for Airborne Emergency Wireless Communications

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schmitt; Juan Deaton; Curt Papke; Shane Cherry

    2008-03-01

    In the event of large-scale natural or manmade catastrophic events, access to reliable and enduring commercial communication systems is critical. Hurricane Katrina provided a recent example of the need to ensure communications during a national emergency. To ensure that communication demands are met during these critical times, Idaho National Laboratory (INL) under the guidance of United States Strategic Command has studied infrastructure issues, concerns, and vulnerabilities associated with an airborne wireless communications capability. Such a capability could provide emergency wireless communications until public/commercial nodes can be systematically restored. This report focuses on the airborne cellular restoration concept; analyzing basic infrastructure requirements; identifying related infrastructure issues, concerns, and vulnerabilities and offers recommended solutions.

  13. Comprehensive characterization of indoor airborne bacterial profile

    Institute of Scientific and Technical Information of China (English)

    P.L.Chan; P.H.F.Yu; Y.W.Cheng; C.Y.Chan; P.K.Wong

    2009-01-01

    This is the first detailed characterization of the air-borne bacterial profiles in indoor environments and two restaurants were selected for this study.Fifteen genera of bacteria were isolated from each restaurant and identified by three different bacterial identification systems including MIDI, Biolog and Riboprinter?.The dominant bacteria of both restaurants were Gram-positive bacteria in which Micrococcus and Bacillus species were the most abundant species.Most bacteria identified were representative species of skin and respiratory tract of human, and soil.Although the bacterial levels in these restaurants were below the limit of the Hong Kong Indoor Air Quality Objective (HKIAQO) Level 1 standard (i.e., < 500 cfu/m3), the majority of these bacteria were opportunistic pathogens.These results suggested that the identity of airborne bacteria should also be included in the IAQ to ensure there is a safety guideline for the public.

  14. Simulating City-level Airborne Infectious Diseases

    CERN Document Server

    Shan, Mei; Yifan, Zhu; Zhenghu, Zu; Tao, Zheng; Boukhanovsky, A V; Sloot, P M A

    2012-01-01

    With the exponential growth in the world population and the constant increase in human mobility, the danger of outbreaks of epidemics is rising. Especially in high density urban areas such as public transport and transfer points, where people come in close proximity of each other, we observe a dramatic increase in the transmission of airborne viruses and related pathogens. It is essential to have a good understanding of the `transmission highways' in such areas, in order to prevent or to predict the spreading of infectious diseases. The approach we take is to combine as much information as is possible, from all relevant sources and integrate this in a simulation environment that allows for scenario testing and decision support. In this paper we lay out a novel approach to study Urban Airborne Disease spreading by combining traffic information, with geo-spatial data, infection dynamics and spreading characteristics.

  15. Spatial dynamics of airborne infectious diseases

    OpenAIRE

    Robinson, M; Stilianakis, N. I.; Drossinos, Y.

    2011-01-01

    Disease outbreaks, such as those of Severe Acute Respiratory Syndrome in 2003 and the 2009 pandemic A(H1N1) influenza, have highlighted the potential for airborne transmission in indoor environments. Respirable pathogen-carrying droplets provide a vector for the spatial spread of infection with droplet transport determined by diffusive and convective processes. An epidemiological model describing the spatial dynamics of disease transmission is presented. The effects of an ambient airflow, as ...

  16. Airborne Chemical Sensing with Mobile Robots

    Science.gov (United States)

    Lilienthal, Achim J.; Loutfi, Amy; Duckett, Tom

    2006-01-01

    Airborne chemical sensing with mobile robots has been an active research area since the beginning of the 1990s. This article presents a review of research work in this field, including gas distribution mapping, trail guidance, and the different subtasks of gas source localisation. Due to the difficulty of modelling gas distribution in a real world environment with currently available simulation techniques, we focus largely on experimental work and do not consider publications that are purely based on simulations.

  17. Cryospheric Applications of Modern Airborne Photogrammetry

    Science.gov (United States)

    Nolan, M.

    2014-12-01

    Airborne photogrammetry is undergoing a renaissance. Lower-cost equipment, more powerful software, and simplified methods have lowered the barriers-to-entry significantly and now allow repeat-mapping of cryospheric dynamics that were previously too expensive to consider. The current state-of-the-art is the ability to use an airborne equipment package costing less than $20,000 to make topographic maps on landscape-scales at 10 cm pixel size with a vertical repeatability of about 10 cm. Nearly any surface change on the order of decimeters can be measured using these techniques through analysis of time-series of such maps. This presentation will discuss these new methods and their application to cryospheric dynamics such as the measurement of snow depth, coastal erosion, valley-glacier volume-change, permafrost thaw, frost heave of infrastructure, river bed geomorphology, and aufeis melt. Because of the expense of other airborne methods, by necessity measurements of these dynamics are currently most often made on the ground along benchmark transects that are then extrapolated to the broader scale. The ability to directly measure entire landscapes with equal or higher accuracy than transects eliminates the need to extrapolate them and the ability to do so at lower costs than transects may revolutionize the way we approach studying change in the cryosphere, as well as our understanding of the cryosphere itself.

  18. Particulate Concentration Levels in Chinatown, Oakland, California

    Science.gov (United States)

    Chen, B.; Yeung, A.; Yu, J. F.

    2007-12-01

    Chinatown is located near the center of the busy business district of downtown Oakland, California. It is one of the most inhabited and congested areas in the City of Oakland, averaging 4,000 vehicles and 3,000 pedestrians per hour at a key intersection in the center of the neighborhood. Particles produced by automobiles and construction can settle into the bronchi of lungs and induce asthma attacks, irritate cardiovascular tissue, and possibly lead to lung cancer and death. Particulate pollution is a serious problem that is estimated to cause between 20,000 and 50,000 deaths per year in the US alone. Hence, evaluation of the air quality of the Chinatown neighborhood is important, because it helps to address issues that are of great concern to residents of the area. The primary goal of our project was to measure particulate concentration levels at various intersections in Oakland's Chinatown to determine if the air quality met U.S. EPA standards, and to take note of any trends that may occur over a period of months. We were primarily concerned with particles that are 2.5 micrometers diameter and smaller, as smaller particles are easily inhaled and directly affect the respiratory system. We were interested in identifying any intersections that may have had significantly higher levels than other intersections. Using a map of Chinatown, we chose 12 intersections and made measurements at these points over the course of six months, beginning in February and ending in July of 2007. Particulate matter measurements were made using a FLUKE 893 Particle Counter. Measurements recorded on the first day of our study, February 4, 2007, which was the day of an annual street festival, yielded the highest values for particulate matter concentration in our dataset. This was followed by a significant drop in concentration the following week, and then a gradual increase of concentration as the months progressed. No one location yielded values significantly higher than any other, and

  19. Geological Mapping of Sabah, Malaysia, Using Airborne Gravity Survey

    DEFF Research Database (Denmark)

    Fauzi Nordin, Ahmad; Jamil, Hassan; Noor Isa, Mohd;

    2016-01-01

    using airborne gravity surveys. Airborne gravity data over land areas of Sabah has been combined with the marine airborne gravity data to provide a seamless land-to-sea gravity field coverage in order to produce the geological mapping. Free-air and Bouguer anomaly maps (density 2.67 g/cm3) have been......Airborne gravimetry is an effective tool for mapping local gravity fields using a combination of airborne sensors, aircraft and positioning systems. It is suitable for gravity surveys over difficult terrains and areas mixed with land and ocean. This paper describes the geological mapping of Sabah...... gravity data were 5-6 km. The airborne gravity survey database for landand marine areas has been compiled using ArcGIS geodatabase format in order to produce the update geological map of Sabah....

  20. Measuring airborne microorganisms and dust from livestock houses

    OpenAIRE

    Yang Zhao, Yang

    2011-01-01

      Airborne transmission has been suspected to be responsible for epidemics of highly infectious disease in livestock production. In such transmission, the pathogenic microorganisms may associate with dust particles. However, the extent to which airborne transmission plays a role in the spread of diseases between farms, and the relationship between microorganisms and dust remain unclear. In order to better understand airborne transmission and to set up effective control techniques, this s...

  1. Shock Wave Structure in Particulate Composites

    Science.gov (United States)

    Rauls, Michael; Ravichandran, Guruswami

    2015-06-01

    Shock wave experiments are conducted on a particulate composite consisting of a polymethyl methacrylate (PMMA) matrix reinforced by glass beads. Such a composite with an impedance mismatch of 4.3 closely mimics heterogeneous solids of interest such as concrete and energetic materials. The composite samples are prepared using a compression molding process. The structure and particle velocity rise times of the shocks are examined using forward ballistic experiments. Reverse ballistic experiments are used to track how the interface density influences velocity overshoot above the steady state particle velocity. The effects of particle size (0.1 to 1 mm) and volume fraction of glass beads (30-40%) on the structure of the leading shock wave are investigated. It is observed that the rise time increases with increasing particle size and scales linearly for the range of particle sizes considered here. Results from numerical simulations using CTH are compared with experimental results to gain insights into wave propagation in heterogeneous particulate composites.

  2. NICKEL SPECIATION OF URBAN PARTICULATE MATTER

    Energy Technology Data Exchange (ETDEWEB)

    Kevin C. Galbreath; Charlene R. Crocker; Carolyn M. Nyberg; Frank E. Huggins; Gerald P. Huffman

    2003-10-01

    A four-step sequential Ni extraction method, summarized in Table AB-1, was evaluated for identifying and quantifying the Ni species occurring in urban total suspended particulate (TSP) matter and fine particulate matter (<10 {micro}m [PM{sub 10}] and <2.5 {micro}m [PM{sub 2.5}] in aerodynamic diameter). The extraction method was originally developed for quantifying soluble, sulfidic, elemental, and oxidic forms of Ni that may occur in industrial atmospheres. X-ray diffraction (XRD) and x-ray absorption fine structure (XAFS) spectroscopy were used to evaluate the Ni species selectivity of the extraction method. Uncertainties in the chemical speciation of Ni in urban PM{sub 10} and PM{sub 2.5} greatly affect inhalation health risk estimates, primarily because of the large variability in acute, chronic, and cancer-causing effects for different Ni compounds.

  3. High-Performance Airborne Optical Carbon Dioxide Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental species measurement on airborne atmospheric research craft is a demanding application for optical sensing techniques. Yet optical techniques offer...

  4. High-Performance Airborne Optical Carbon Dioxide Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental species measurement on airborne atmospheric research craft is a demanding application for optical sensing techniques. Yet optical techniques offer many...

  5. Aromatic Radicals-Acetylene Particulate Matter Chemistry

    Science.gov (United States)

    2011-12-01

    atmosphere1. In addition to acute respiratory problems, long-term effects include lung cancer and cardiopulmonary diseases , as studied by Pope at al...problems such as ischemic heart disease , fatal arrhythmia, and congestive heart failure4,5. Strategies to reduce fine particulate matter (PM...acetylene reaction have been made by Fahr and Stein15, who deduced an Arrhenius expression in a 4 temperature range between 1000 and 1330 K in

  6. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuefei [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China); Jiang Zucheng [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China); He Man [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China); Hu Bin [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China)]. E-mail: binhu@whu.edu.cn

    2007-07-15

    A method of fluorination assisted electrothermal vaporization (FETV)-ICP-MS with polytetrafluoroethylene as fluorinating reagent was developed for the direct determination of trace rare earth elements (REEs) in coal fly ash and atmospheric particulates. Under the optimal conditions, the detection limits for REEs were 0.1 pg m{sup -3}(Eu) to 6.7 pg m{sup -3}(Nd) with the precisions of 4.1%(Yb) to 10%(La) (c = 1 {mu}g L{sup -1}, n = 9). The proposed method was applied to determine trace REEs in coal fly ash, airborne particulates and NIES SRM No. 8 Vehicle Exhaust Particulates. It was found that the determined values for Y, La, Pr and Nd obtained by slurry sampling FETV-ICP-MS with external calibration coincided with that obtained by pneumatic nebulization (PN)-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. However, the determined values for Ce and Sm obtained by slurry sampling FETV-ICP-MS with external calibration were lower than that obtained by PN-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. - A new method for direct determination of trace rare earth elements in coal fly ash and atmospheric particulates by fluorination ETV-ICP-MS with slurry sampling.

  7. Airborne Chernobyl radioactivity in College Park, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Kitto, M.E. (Dept. of Chemistry, Univ. of Maryland, College Park, MD (USA) New York State Dept. of Health, Wadsworth Center for Laboratories and Research, Albany, NY (USA)); Faller, S.H. (Dept. of Chemistry, Univ. of Maryland, College Park, MD (USA) Environmental Monitoring Systems Lab., U.S. Environmental Protection Agency, Las Vegas, NV (USA)); Anderson, D.L. (Dept. of Chemistry, Univ. of Maryland, College Park, MD (USA) Food and Drug Administration Lab., National Inst. of Standards and Technology, Gaithersburg, MD (USA)); McCarthy, L.E. (Dept. of Chemistry, Univ. of Maryland, College Park, MD (USA) Gerghty and Miller, Inc., Plainview, NY (USA))

    1991-01-01

    Atmospheric concentrations of Chernobyl-derived radionuclides collected on filters in College Park, Maryland during May, 1986 have been determined by gamma-ray analysis. Measurements indicate that following an extensive wash-out of radioactivity, {sup 103}Ru was enriched in the upper atmosphere relative to {sup 137}Cs and {sup 131}I. Absolute concentrations of particulate and gas-phase radionuclides and the observed enrichment of {sup 103}Ru are in agreement with other studies. (orig.).

  8. MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller

    2005-05-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control

  9. Development of a Low-Cost Particulate Matter Monitor

    Energy Technology Data Exchange (ETDEWEB)

    White, Richard M.; Apte, Michael G.; Gundel, Lara A.; Black, Justin

    2008-08-01

    We describe a small, inexpensive portable monitor for airborne particulates, composed of the following elements: a. A simple size-selective inlet (vertical elutriator) that permits only particles below a pre-set diameter to pass and enter the measurement section; b. A measurement section in which passing particles are deposited thermophoretically on a micro-fabricated resonant piezoelectric mass sensor; c. An optical characterization module co-located with the mass sensor module that directs infrared and ultraviolet beams through the deposit. The emergent optical beams are detected by a photodiode. The optical absorption of the deposit can be measured in order to characterize the deposit, and determine how much is due to diesel exhaust and/or environmental tobacco smoke; and d. A small pump that moves air through the device, which may also be operated in a passive mode. The component modules were designed by the project team, and fabricated at UCB andLBNL. Testing and validation were performed in a room-sized environmental chamber at LBNL in to which was added either environmental tobacco smoke (ETS, produced by a cigarette smoking machine) or diesel exhaust (from a conventional diesel engine). Two pilot field tests in a dwelling compared the monitor with existing aerosol instruments during exposure to infiltrated ambient air to which cigarette smoke, diesel exhaust, wood smoke and cooking fumes were added. The limit of detection (LOD) derived from statistical analysis of field data is 18 mu g m-3, at the 99percent confidence level. The monitor weighs less than 120 g and has a volume of roughly 250 cm3. Power consumption is approximately 100 milliwatts. During this study, the optical component of the device was not fully implemented and has been left for future efforts. Suggested improvements in the current prototype include use of integrated thermal correction, reconfiguration of the resonator for increased particle collection area, increased thermophoretic

  10. Radio Frequency Sensing of Particulate Matter Accumulation on a Gasoline Particulate Filter

    Energy Technology Data Exchange (ETDEWEB)

    Parks, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Prikhodko, Vitaly Y. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sappok, Alex [Filter Sensing Technologies, Malden, MA (United States); Ragaller, Paul [Filter Sensing Technologies, Malden, MA (United States); Bromberg, Leslie [Filter Sensing Technologies, Malden, MA (United States)

    2016-10-30

    Filter Sensing Technology’s radio frequency (RF) sensor for particulate filter on-board diagnostics (OBD) was studied on a lean gasoline engine at the National Transportation Research Center (NTRC) at Oak Ridge National Laboratory (ORNL). The response of the RF sensor to particulate matter (PM) or “soot” accumulation on the gasoline particulate filter (GPF) installed in the engine exhaust was evaluated. In addition, end plugs of the GPF were purposely removed, and subsequent changes to the RF sensor measured soot loading on the GPF were characterized. Results from the study showed that the RF sensor can accurately measure soot accumulation on a GPF; furthermore, the predicted decreased soot accumulation due to plug removal was detected by the RF sensor. Overall, the studies were short and preliminary in nature; however, clearly, the RF sensor demonstrated the capability of measuring GPF soot loading at a level suitable for use in lean gasoline engine emission control OBD and control.

  11. NEON Airborne Remote Sensing of Terrestrial Ecosystems

    Science.gov (United States)

    Kampe, T. U.; Leisso, N.; Krause, K.; Karpowicz, B. M.

    2012-12-01

    The National Ecological Observatory Network (NEON) is the continental-scale research platform that will collect information on ecosystems across the United States to advance our understanding and ability to forecast environmental change at the continental scale. One of NEON's observing systems, the Airborne Observation Platform (AOP), will fly an instrument suite consisting of a high-fidelity visible-to-shortwave infrared imaging spectrometer, a full waveform small footprint LiDAR, and a high-resolution digital camera on a low-altitude aircraft platform. NEON AOP is focused on acquiring data on several terrestrial Essential Climate Variables including bioclimate, biodiversity, biogeochemistry, and land use products. These variables are collected throughout a network of 60 sites across the Continental United States, Alaska, Hawaii and Puerto Rico via ground-based and airborne measurements. Airborne remote sensing plays a critical role by providing measurements at the scale of individual shrubs and larger plants over hundreds of square kilometers. The NEON AOP plays the role of bridging the spatial scales from that of individual organisms and stands to the scale of satellite-based remote sensing. NEON is building 3 airborne systems to facilitate the routine coverage of NEON sites and provide the capacity to respond to investigator requests for specific projects. The first NEON imaging spectrometer, a next-generation VSWIR instrument, was recently delivered to NEON by JPL. This instrument has been integrated with a small-footprint waveform LiDAR on the first NEON airborne platform (AOP-1). A series of AOP-1 test flights were conducted during the first year of NEON's construction phase. The goal of these flights was to test out instrument functionality and performance, exercise remote sensing collection protocols, and provide provisional data for algorithm and data product validation. These test flights focused the following questions: What is the optimal remote

  12. Laser links for mobile airborne nodes

    Science.gov (United States)

    Griethe, Wolfgang; Knapek, Markus; Horwath, Joachim

    2015-05-01

    Remotely Piloted Aircrafts (RPA's) and especially Medium Altitude Long Endurance (MALE) and High Altitude Long Endurance (HALE) are currently operated over long distances, often across several continents. This is only made possible by maintaining Beyond Line Of Side (BLOS) radio links between ground control stations and unmanned vehicles via geostationary (GEO) satellites. The radio links are usually operated in the Ku-frequency band and used for both, vehicle command & control (C2) - it also refers to Command and Non-Payload Communication (CNPC) - as well as transmission of intelligence data - the associated communication stream also refers to Payload Link (PL). Even though this scheme of communication is common practice today, various other issues are raised thereby. The paper shows that the current existing problems can be solved by using the latest technologies combined with altered intuitive communication strategies. In this context laser communication is discussed as a promising technology for airborne applications. It is clearly seen that for tactical reasons, as for instance RPA cooperative flying, Air-to-Air communications (A2A) is more advantageous than GEO satellite communications (SatCom). Hence, together with in-flight test results the paper presents a design for a lightweight airborne laser terminal, suitable for use onboard manned or unmanned airborne nodes. The advantages of LaserCom in combination with Intelligence, Surveillance and Reconnaissance (ISR) technologies particularly for Persistent Wide Area Surveillance (PWAS) are highlighted. Technical challenges for flying LaserCom terminals aboard RPA's are outlined. The paper leads to the conclusion that by combining both, LaserCom and ISR, a new quality for an overall system arises which is more than just the sum of two separate key technologies.

  13. Even Shallower Exploration with Airborne Electromagnetics

    Science.gov (United States)

    Auken, E.; Christiansen, A. V.; Kirkegaard, C.; Nyboe, N. S.; Sørensen, K.

    2015-12-01

    Airborne electromagnetics (EM) is in many ways undergoing the same type rapid technological development as seen in the telecommunication industry. These developments are driven by a steadily increasing demand for exploration of minerals, groundwater and geotechnical targets. The latter two areas demand shallow and accurate resolution of the near surface geology in terms of both resistivity and spatial delineation of the sedimentary layers. Airborne EM systems measure the grounds electromagnetic response when subject to either a continuous discrete sinusoidal transmitter signal (frequency domain) or by measuring the decay of currents induced in the ground by rapid transmission of transient pulses (time domain). In the last decade almost all new developments of both instrument hardware and data processing techniques has focused around time domain systems. Here we present a concept for measuring the time domain response even before the transient transmitter current has been turned off. Our approach relies on a combination of new instrument hardware and novel modeling algorithms. The newly developed hardware allows for measuring the instruments complete transfer function which is convolved with the synthetic earth response in the inversion algorithm. The effect is that earth response data measured while the transmitter current is turned off can be included in the inversion, significantly increasing the amount of available information. We demonstrate the technique using both synthetic and field data. The synthetic examples provide insight on the physics during the turn off process and the field examples document the robustness of the method. Geological near surface structures can now be resolved to a degree that is unprecedented to the best of our knowledge, making airborne EM even more attractive and cost-effective for exploration of water and minerals that are crucial for the function of our societies.

  14. Historical performance of particulate settleable in a municipality located in the ceramic cluster of Castellón (Spain)

    Science.gov (United States)

    Pardo, P.; Sanfeliu, Teófilo; Soriano, A.; Pallarés, S.; Vicente, A. B.

    2010-05-01

    Air pollution can be defined as: "the introduction into the atmosphere by man, directly or indirectly, of substances or energy with have effects deleterious of such a nature that endangers human health, causing damage to biological resources and to ecosystems, which impair material goods and to harm or interfere with amenities and other legitimate uses of the environment". One of the main pollutants in air is the particulate matter. This material particulate includes settleable, particles larger than 10 μm that remain airborne for relatively short periods of time. For what its effects are most pronounced in the vicinity of the emitting sources. The study area is located in the city of Alcora. This population is located in the region eastern of the province of Castellon (Spain). The municipality of Alcora has a high industrial density, highlighting framed companies in chemical industry and non-metallic mineral products. The area has a high traffic density due to the proximity of population to various roads. These two factors point peaks rise high concentration of atmospheric particulate pollutants. The purpose of this paper is conducting a retrospective view of the evolution of settleable particulate concentrations. Settleable particulate samples were collected with a sensor BRITISH STANDARD PS particles during the period between January 2000 and December 2005. REFERENCES Gómez E.T.; Sanfeliu T.; Rius J.; Jordán M.M. (2005) "Evolution, sources and distribution of mineral particles and amorphous phase of atmospheric aerosol in an industrial and Mediterranean coastal area" Water, air and Soil Pollution 167:311-330. Sanfeliu T.; Gómez E.T.; Hernánde D.;Martín J.D.; Ovejero M.; Jordán M.M. (2002). "Avaluation of the particulate atmospheric aerosol in the urban area on Castellón, Spain". Protecction and conservation of the cultural heritage of the Mediterranean cities. Eds. Galán and Zezza Ed. Swets&Zeitlinger, Lisse pp:61-64. Sanfeliu T.; Jordán M.M.; Gómez E

  15. Fine particulates over South Asia: Review and meta-analysis of PM2.5 source apportionment through receptor model.

    Science.gov (United States)

    Singh, Nandita; Murari, Vishnu; Kumar, Manish; Barman, S C; Banerjee, Tirthankar

    2017-04-01

    Fine particulates (PM2.5) constitute dominant proportion of airborne particulates and have been often associated with human health disorders, changes in regional climate, hydrological cycle and more recently to food security. Intrinsic properties of particulates are direct function of sources. This initiates the necessity of conducting a comprehensive review on PM2.5 sources over South Asia which in turn may be valuable to develop strategies for emission control. Particulate source apportionment (SA) through receptor models is one of the existing tool to quantify contribution of particulate sources. Review of 51 SA studies were performed of which 48 (94%) were appeared within a span of 2007-2016. Almost half of SA studies (55%) were found concentrated over few typical urban stations (Delhi, Dhaka, Mumbai, Agra and Lahore). Due to lack of local particulate source profile and emission inventory, positive matrix factorization and principal component analysis (62% of studies) were the primary choices, followed by chemical mass balance (CMB, 18%). Metallic species were most regularly used as source tracers while use of organic molecular markers and gas-to-particle conversion were minimum. Among all the SA sites, vehicular emissions (mean ± sd: 37 ± 20%) emerged as most dominating PM2.5 source followed by industrial emissions (23 ± 16%), secondary aerosols (22 ± 12%) and natural sources (20 ± 15%). Vehicular emissions (39 ± 24%) also identified as dominating source for highly polluted sites (PM2.5>100 μgm(-3), n = 15) while site specific influence of either or in combination of industrial, secondary aerosols and natural sources were recognized. Source specific trends were considerably varied in terms of region and seasonality. Both natural and industrial sources were most influential over Pakistan and Afghanistan while over Indo-Gangetic plain, vehicular, natural and industrial emissions appeared dominant. Influence of vehicular emission was found

  16. Source Identification Of Airborne Antimony On The Basis Of The Field Monitoring And The Source Profiling

    Science.gov (United States)

    Iijima, A.; Sato, K.; Fujitani, Y.; Fujimori, E.; Tanabe, K.; Ohara, T.; Shimoda, M.; Kozawa, K.; Furuta, N.

    2008-12-01

    The results of the long-term monitoring of airborne particulate matter (APM) in Tokyo indicated that APM have been extremely enriched with antimony (Sb) compared to crustal composition. This observation suggests that the airborne Sb is distinctly derived from human activities. According to the material flow analysis, automotive brake abrasion dust and fly ash from waste incinerator were suspected as the significant Sb sources. To clarify the emission sources of the airborne Sb, elemental composition, particle size distribution, and morphological profiles of dust particles collected from two possible emission sources were characterized and compared to the field observation data. Brake abrasion dust samples were generated by using a brake dynamometer. During the abrasion test, particle size distribution was measured by an aerodynamic particle sizer spectrometer. Concurrently, size- classified dust particles were collected by an Andersen type air sampler. Fly ash samples were collected from several municipal waste incinerators, and the bulk ash samples were re-dispersed into an enclosed chamber. The measurement of particle size distribution and the collection of size-classified ash particles were conducted by the same methodologies as described previously. Field observations of APM were performed at a roadside site and a residential site by using an Andersen type air sampler. Chemical analyses of metallic elements were performed by an inductively coupled plasma atomic emission spectrometry and an inductively coupled plasma mass spectrometr. Morphological profiling of the individual particle was conducted by a scanning electron microscope equipped with an energy dispersive X-ray spectrometer. High concentration of Sb was detected from both of two possible sources. Particularly, Sb concentrations in a brake abrasion dust were extremely high compared to that in an ambient APM, suggesting that airborne Sb observed at the roadside might have been largely derived from

  17. Topology optimized cloak for airborne sound

    DEFF Research Database (Denmark)

    Andkjær, Jacob Anders; Sigmund, Ole

    2013-01-01

    Directional acoustic cloaks that conceal an aluminum cylinder for airborne sound waves are presented in this paper. Subwavelength cylindrical aluminum inclusions in air constitute the cloak design to aid practical realizations. The positions and radii of the subwavelength cylinders are determined...... by minimizing scattering from the cloak-structure and cylinder using the gradient-based topology optimization method. In the final optimization step, the radii of the subwavelength cylinders are constrained to three discrete values. A near-perfect narrow-banded and angular cloaking effect is obtained...

  18. Voxel inversion of airborne EM data

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca G.; Auken, Esben; Christiansen, Anders Vest C A.V.C.;

    2013-01-01

    We present a geophysical inversion algorithm working directly in a voxel grid disconnected from the actual measuring points, which allows for straightforward integration of different data types in joint inversion, for informing geological/hydrogeological models directly and for easier incorporation...... for jointly inverting airborne and ground-based geophysical data. Furthermore, geological and groundwater models most often refer to a regular voxel grid not correlated to the geophysical model space, and incorporating the geophysical data into the geological/hydrological modelling grids is problematic. We...... present a voxel grid inversion routine that overcomes these problems and we discuss in detail the algorithm implementation....

  19. Digital Logarithmic Airborne Gamma Ray Spectrometer

    OpenAIRE

    2014-01-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range, because the low-energy pulse signal has a larger gain than the high-energy pulse signal. The spectrometer can clearly distinguish the photopeaks at 239, 352, 583, and 609keV in the low-energy spectral sections after the energ...

  20. Airborne Pollen Grains Of Afyon, Turkey

    Institute of Scientific and Technical Information of China (English)

    Adem BICAKCI; Süheyla ERGUN; Sevcan TATLIDIL; Hulusi MALYER; Sabri OZYURT; Ahmet AKKAYA; Nihat SAPAN

    2002-01-01

    The airborne pollen grains of Afyon have been studied for a two-year period (1999-2000) with a Durham sampler. A total of 14 367 pollen grains belonging to 40 taxa have been identified and recorded with some unidentified ones. Of them, 6 732 were identified in 1999 and 7 635 in 2000. Of the total pollen grains, 69.67% were arboreal, 26.64% non-arboreal and 3.68 % unidentified. The majority of the investigated pollen grains were from Pinus, Gramineae, Cupressaceae, Platanus, Chenopodiaceae/Amaranthaceae, Quercus, Ailanthus, Moraceae, Juglans, Salix, Cedrus and Rosaceae. The highest level of pollen grains was in May.

  1. Assessment of Contribution of Contemporary Carbon Sources to Size-Fractionated Particulate Matter and Time-Resolved Bulk Particulate Matter Using the Measurement of Radiocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, H M; Young, T M; Buchholz, B A

    2009-04-16

    This study was motivated by a desire to improve understanding of the sources contributing to the carbon that is an important component of airborne particulate matter (PM). The ultimate goal of this project was to lay a ground work for future tools that might be easily implemented with archived or routinely collected samples. A key feature of this study was application of radiocarbon measurement that can be interpreted to indicate the relative contributions from fossil and non-fossil carbon sources of atmospheric PM. Size-resolved PM and time-resolved PM{sub 10} collected from a site in Sacramento, CA in November 2007 (Phase I) and March 2008 (Phase II) were analyzed for radiocarbon and source markers such as levoglucosan, cholesterol, and elemental carbon. Radiocarbon data indicates that the contributions of non-fossil carbon sources were much greater than that from fossil carbon sources in all samples. Radiocarbon and source marker measurements confirm that a greater contribution of non-fossil carbon sources in Phase I samples was highly likely due to residential wood combustion. The present study proves that measurement of radiocarbon and source markers can be readily applied to archived or routinely collected samples for better characterization of PM sources. More accurate source apportionment will support ARB in developing more efficient control strategies.

  2. Estimates of particulate mass in multi-canister overpacks

    Energy Technology Data Exchange (ETDEWEB)

    SLOUGHTER, J.P.

    1999-02-25

    High, best estimate, and low values are developed for particulate inventories within MCO baskets that have been loaded with freshly cleaned fuel assemblies and scrap. These per-basket estimates are then applied to all anticipated MCO payload configurations to identify which configurations are bounding for each type of particulate. Finally the resulting bounding and nominal values for residual particulates are combined with corresponding values [from other documents] for particulate that may be generated by corrosion of exposed uranium after the fuel has been cleaned. The resulting rounded nominal estimate for a typical MCO after 40 years of storage is 8 kg. The estimate for a bounding total particulate case MCO is that it may contain up to 64 kg of particulate after 40 years of storage.

  3. Estimates of Particulate Mass in Multi Canister Overpacks (MCO)

    Energy Technology Data Exchange (ETDEWEB)

    SLOUGHTER, J.P.

    2000-02-16

    High, best estimate, and low values are developed for particulate inventories within MCO baskets that have been loaded with freshly cleaned fuel assemblies and scrap. These per-basket estimates are then applied to all anticipated MCO payload configurations to identify which configurations are bounding for each type of particulate. Finally the resulting bounding and nominal values for residual particulates are combined with corresponding values [from other documents] for particulates that may be generated by corrosion of exposed uranium after the fuel has been cleaned. The resulting rounded nominal estimate for a typical MCO after 40 years of storage is 8 kg. The estimate for a bounding total particulate case MCO is that it may contain up to 64 kg of particulate after 40 years of storage.

  4. Methods and apparatus for handling or treating particulate material

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2009-01-01

    An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.

  5. Detection in Urban Scenario Using Combined Airborne Imaging Sensors

    NARCIS (Netherlands)

    Renhorn, I.; Axelsson, M.; Benoist, K.W.; Bourghys, D.; Boucher, Y.; Xavier Briottet, X.; Sergio De CeglieD, S. De; Dekker, R.J.; Dimmeler, A.; Dost, R.; Friman, O.; Kåsen, I.; Maerker, J.; Persie, M. van; Resta, S.; Schwering, P.B.W.; Shimoni, M.; Vegard Haavardsholm, T.

    2012-01-01

    The EDA project “Detection in Urban scenario using Combined Airborne imaging Sensors” (DUCAS) is in progress. The aim of the project is to investigate the potential benefit of combined high spatial and spectral resolution airborne imagery for several defense applications in the urban area. The proje

  6. Detection in Urban Scenario using Combined Airborne Imaging Sensors

    NARCIS (Netherlands)

    Renhorn, I.; Axelsson, M.; Benoist, K.W.; Bourghys, D.; Boucher, Y.; Xavier Briottet, X.; Sergio De CeglieD, S. De; Dekker, R.J.; Dimmeler, A.; Dost, R.; Friman, O.; Kåsen, I.; Maerker, J.; Persie, M. van; Resta, S.; Schwering, P.B.W.; Shimoni, M.; Vegard Haavardsholm, T.

    2012-01-01

    The EDA project “Detection in Urban scenario using Combined Airborne imaging Sensors” (DUCAS) is in progress. The aim of the project is to investigate the potential benefit of combined high spatial and spectral resolution airborne imagery for several defense applications in the urban area. The proje

  7. SOFIA's Airborne Astronomy Ambassadors: An External Evaluation of Cycle 1

    Science.gov (United States)

    Phillips, Michelle

    2015-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) represents a partnership between NASA and the German Aerospace Center (DLR). The observatory itself is a Boeing 747 SP that has been modified to serve as the world's largest airborne research observatory. The SOFIA Airborne Astronomy Ambassadors (AAA) program is a component of SOFIA's…

  8. Measuring airborne microorganisms and dust from livestock houses

    NARCIS (Netherlands)

    Yang Zhao, Yang

    2011-01-01

      Airborne transmission has been suspected to be responsible for epidemics of highly infectious disease in livestock production. In such transmission, the pathogenic microorganisms may associate with dust particles. However, the extent to which airborne transmission plays a role in the spread

  9. Moving Target Indication for Multi-channel Airborne Radar Systems

    NARCIS (Netherlands)

    Lidicky, L.

    2010-01-01

    Moving target indication (MTI) using radar is of great interest in civil and military applications. Its uses include airborne or space-borne surveillance of ground moving vehicles (cars, trains) or ships at sea, for instance. Airborne (space-borne) radar offers several advantages when compared to op

  10. APEX; current status of the airborne dispersive pushbroom imaging spectrometer

    NARCIS (Netherlands)

    Nieke, J.; Itten, K.I.; Kaiser, J.W.; Schlapfer, D.; Brazile, J.; Debruyn, W.; Meuleman, K.; Kempeneers, P.; Neukom, A.; Feusi, H.; Adolph, P.; Moser, R.; Schilliger, T.; Kohler, P.; Meng, M.; Piesbergen, J.; Strobl, P.; Schaepman, M.E.; Gavira, J.; Ulbrich, G.J.; Meynart, R.

    2004-01-01

    Recently, a joint Swiss/Belgian initiative started a project to build a new generation airborne imaging spectrometer, namely APEX (Airborne Prism Experiment) under the ESA funding scheme named PRODEX. APEX is a dispersive pushbroom imaging spectrometer operating in the spectral range between 380 - 2

  11. Shielded regeneration heating element for a particulate filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-01-04

    An exhaust system includes a particulate filter (PF) that is disposed downstream from an engine. The PF filters particulates within an exhaust from the engine. A heating element heats particulate matter in the PF. A catalyst substrate or a flow converter is disposed upstream from said heating element. The catalyst substrate oxidizes the exhaust prior to reception by the heating element. The flow converter converts turbulent exhaust flow to laminar exhaust flow prior to reception by the heating element.

  12. The nature of particulate organic matter settled on solid substrata

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, M.O.; Wagh, A.B.

    National Institute of Oceanography, Dona Paula, Goa, 403004, India. Received 25/0 I/90, in revised form 16/02/90, accepted 22/03/90. Particulate material settled on aluminium and glass panels during their immersion in estuarine water was analysed... of the particulate material recovered from these two surfaces. Highly significant correlations were observed between the bacterial numbers and the measured parameters. This probably suggests that bacteria were the major source of the particulate matter settled...

  13. Pressure Interaction of Mixing Particulate Material Along the Blade Length

    OpenAIRE

    Peciar Peter; Peciar Marián; Fekete Roman; Úradníček Juraj

    2015-01-01

    To assess the energy intensity of particulate materials mixing, it is necessary to know the state of stress in the particulate material in front of mixing elements. The theoretical background of this process results from the theory of the equilibrium limit of the particulate material, and this state may by described by Mohr’s circle theory and the Novosad model. Based on the above assumptions, it is possible to derive the pressure distribution along the blade height, but only for an infinitel...

  14. Diesel particulate filter regeneration via resistive surface heating

    Science.gov (United States)

    Gonze, Eugene V; Ament, Frank

    2013-10-08

    An exhaust system that processes exhaust generated by an engine is provided. The system includes: a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine; and a grid of electrically resistive material that is applied to an exterior upstream surface of the PF and that selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

  15. Study on analysis from sources of error for Airborne LIDAR

    Science.gov (United States)

    Ren, H. C.; Yan, Q.; Liu, Z. J.; Zuo, Z. Q.; Xu, Q. Q.; Li, F. F.; Song, C.

    2016-11-01

    With the advancement of Aerial Photogrammetry, it appears that to obtain geo-spatial information of high spatial and temporal resolution provides a new technical means for Airborne LIDAR measurement techniques, with unique advantages and broad application prospects. Airborne LIDAR is increasingly becoming a new kind of space for earth observation technology, which is mounted by launching platform for aviation, accepting laser pulses to get high-precision, high-density three-dimensional coordinate point cloud data and intensity information. In this paper, we briefly demonstrates Airborne laser radar systems, and that some errors about Airborne LIDAR data sources are analyzed in detail, so the corresponding methods is put forwarded to avoid or eliminate it. Taking into account the practical application of engineering, some recommendations were developed for these designs, which has crucial theoretical and practical significance in Airborne LIDAR data processing fields.

  16. Stellar Occultations from Airborne Platforms: 1988 to 2016

    Science.gov (United States)

    Bosh, Amanda S.; Dunham, Edward W.; Zuluaga, Carlos; Levine, Stephen; Person, Michael J.; Van Cleve, Jeffrey E.

    2016-10-01

    Observing a stellar occultation by a solar system body with an airborne telescope requires precise positioning of the observer within the shadow cast onto the Earth. For small bodies like Pluto and Kuiper Belt objects, smaller than the Earth, the challenge is particularly intense, with the accuracy of the astrometric and flight planning determining whether the observation succeeds or fails. From our first airborne occultation by Pluto in 1988 aboard the Kuiper Airborne Observatory (KAO), to our most recent event by Pluto in 2015 aboard the Stratospheric Observatory for Infrared Astronomy (SOFIA), we have refined our astrometric and flight planning systems to the point where we can now place an airborne observer into the small central flash zone. We will discuss the history of airborne observation of occultations while detailing the improvements in the astrometric processes. Support for this work was provided by NASA SSO grant NNX15AJ82G to Lowell Observatory.

  17. Immunity-Related Protein Expression and Pathological Lung Damage in Mice Poststimulation with Ambient Particulate Matter from Live Bird Markets.

    Science.gov (United States)

    Meng, Kai; Wu, Bo; Gao, Jing; Cai, Yumei; Yao, Meiling; Wei, Liangmeng; Chai, Tongjie

    2016-01-01

    The objective of this study was to obtain insight into the adverse health effects of airborne particulate matter (PM) collected from live bird markets and to determine whether biological material in PM accounts for immune-related inflammatory response. Mice were exposed to a single or repeated dose of PM, after which the expression of toll-like receptors (TLRs), cytokines, and chemokines in the lungs of infected mice were examined by enzyme-linked immunosorbent assay and histopathological analysis. Results after single and repeated PM stimulation with [Formula: see text] indicated that TLR2 and TLR4 played a dominant role in the inflammatory responses of the lung. Further analysis demonstrated that the expression levels of IL-1β, TNF-α, IFN-γ, IL-8, IP-10, and MCP-1 increased significantly, which could eventually contribute to lung injury. Moreover, biological components in PM were critical in mediating immune-related inflammatory responses and should therefore not be overlooked.

  18. Experimental examination of effectiveness of vegetation as bio-filter of particulate matters in the urban environment.

    Science.gov (United States)

    Chen, Lixin; Liu, Chenming; Zou, Rui; Yang, Mao; Zhang, Zhiqiang

    2016-01-01

    Studies focused on pollutants deposition on vegetation surfaces or aerodynamics of vegetation space conflict in whether vegetation planting can effectively reduce airborne particulate matter (PM) pollution. To achieve a more comprehensive understanding of the conflict, we conducted experiments during 2013 and 2014 in Beijing, China to evaluate the importance of vegetation species, planting configurations and wind in influencing PM concentration at urban and street scales. Results showed that wind field prevailed over the purification function by vegetation at urban scale. All six examined planting configurations reduced total suspended particle along horizontal but not vertical direction. Shrubs and trees-grass configurations performed most effectively for horizontal PM2.5 reduction, but adversely for vertical attenuation. Trapping capacity of PMs was species-specific, but species selection criteria could hardly be generalized for practical use. Therefore, design of planting configuration is practically more effective than tree species selection in attenuating the ambient PM concentrations in urban settings.

  19. Electrically heated particulate filter regeneration using hydrocarbon adsorbents

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI

    2011-02-01

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material selectively heats exhaust passing through the upstream end to initiate combustion of particulates within the PF. A hydrocarbon adsorbent coating applied to the PF releases hydrocarbons into the exhaust to increase a temperature of the combustion of the particulates within the PF.

  20. Development of Polyester/Eggshell Particulate Composites

    Directory of Open Access Journals (Sweden)

    S.N. Patrick

    2012-12-01

    Full Text Available The development of Polyester/Eggshell particulate composites has been carried out. Uncarbonized and carbonized eggshell particles were used as reinforcement in polyester matrix. 10 to 50 wt% eggshell particles at intervals of 10 wt% were added to polyester as reinforcement. The microstructural analyses of the polyester/eggshell particulate composites were carried out using SEM and EDS. The mechanical properties and density were carried out by standard methods. The results showed that the density and hardness values of the polyester/eggshell particulate composite increased steadily with increasing eggshell addition. The tensile strength increased from 15.182 N/mm2 at 0 wt% eggshell addition to a maximum of 23.4 N/mm2 at 40 wt% eggshell addition for uncarbonized eggshell; while it increased to a maximum of 28.378 N/mm2 at 20 wt% eggshell addition for carbonized eggshell. Compressive strength increased steadily from 90.3 N/mm2 at 0 wt% eggshell additions to a maximum of 103.6 at 50 wt% eggshell addition for uncarbonized eggshell and 116.5N/mm2 at 50 % eggshell addition for carbonized eggshell. Hardness value increased from 91 HRF at 0 % eggshell addition to a maximum of 120.05HRF at 50 wt% eggshell addition for uncarbonized eggshell and 149.45HRF at 50 wt% eggshell for the carbonized eggshell. Flexural strength increased from 76.06 N/mm2 at 0 wt% eggshell addition to a maximum of 97.06 N/mm2 at 40 wt% eggshell addition for uncarbonized eggshell; however, it increased to a maximum of 106.66 N/mm2 at 20 wt% eggshell addition for the carbonized eggshell. The impact energy also increased from 0.1 Joules at 0 wt% eggshell addition to a maximum of 0.35 Joules at 30 wt% eggshell addition for uncarbonized eggshell; it however increased to a maximum of 0.45 Joules at 20 wt% eggshell addition for the carbonized eggshell. Hence the development of polyester/eggshell particulate composites material with good mechanical properties and light weight which is

  1. Electrically heated particulate filter with reduced stress

    Science.gov (United States)

    Gonze, Eugene V.

    2013-03-05

    A system comprises a particulate matter (PM) filter comprising an inlet for receiving exhaust gas. A zoned heater is arranged in the inlet and comprises a resistive heater comprising N zones, where N is an integer greater than one. Each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates others of the N zones.

  2. Electronic Control of Unguided Airborne Vehicle (UAV

    Directory of Open Access Journals (Sweden)

    Mohammed Ahmed Mohammed

    2015-02-01

    Full Text Available The paper deals with building an electronic remote control circuit for Unguided Airborne Vehicle (UAV based on implementing Dual Tone Multiple Frequency decoder ( DTMF .A microcontroller is used in the design to analyze and execute the commands arriving to the UAV . A Liquid Crystal Display (LCD is implemented to show the results during the circuit development and test phase. The control of the UAV is done from the ground using a mobile or a personnel computer (PC supplied with a modem. The DTMF decoder output is connected to the microcontroller which analyzes the commands and accordingly execute them on the control parts in the UAV . The microcontroller issues orders and display the operations on the LCD . The circuit design assumes the presence of an operating GSM network for the transmission of the control commands .The airborne platform model is a small aircraft carrying the electronic circuit on board. Three stepper motors are used as a means of control to the wings, elevators and rudders in the UAV. .The electronic circuit on board the UAV is well protected to ensue safety of the hardware and perfect performance.

  3. Filter algorithm for airborne LIDAR data

    Science.gov (United States)

    Li, Qi; Ma, Hongchao; Wu, Jianwei; Tian, Liqiao; Qiu, Feng

    2007-11-01

    Airborne laser scanning data has become an accepted data source for highly automated acquisition of digital surface models(DSM) as well as for the generation of digital terrain models(DTM). To generate a high quality DTM using LIDAR data, 3D off-terrain points have to be separated from terrain points. Even though most LIDAR system can measure "last-return" data points, these "last-return" point often measure ground clutter like shrubbery, cars, buildings, and the canopy of dense foliage. Consequently, raw LIDAR points must be post-processed to remove these undesirable returns. The degree to which this post processing is successful is critical in determining whether LIDAR is cost effective for large-scale mapping application. Various techniques have been proposed to extract the ground surface from airborne LIDAR data. The basic problem is the separation of terrain points from off-terrain points which are both recorded by the LIDAR sensor. In this paper a new method, combination of morphological filtering and TIN densification, is proposed to separate 3D off-terrain points.

  4. Changes to airborne pollen counts across Europe.

    Directory of Open Access Journals (Sweden)

    Chiara Ziello

    Full Text Available A progressive global increase in the burden of allergic diseases has affected the industrialized world over the last half century and has been reported in the literature. The clinical evidence reveals a general increase in both incidence and prevalence of respiratory diseases, such as allergic rhinitis (common hay fever and asthma. Such phenomena may be related not only to air pollution and changes in lifestyle, but also to an actual increase in airborne quantities of allergenic pollen. Experimental enhancements of carbon dioxide (CO[Formula: see text] have demonstrated changes in pollen amount and allergenicity, but this has rarely been shown in the wider environment. The present analysis of a continental-scale pollen data set reveals an increasing trend in the yearly amount of airborne pollen for many taxa in Europe, which is more pronounced in urban than semi-rural/rural areas. Climate change may contribute to these changes, however increased temperatures do not appear to be a major influencing factor. Instead, we suggest the anthropogenic rise of atmospheric CO[Formula: see text] levels may be influential.

  5. Auxiliary DCP data acquisition system. [airborne system

    Science.gov (United States)

    Snyder, R. V.

    1975-01-01

    An airborne DCP Data Aquisition System has been designed to augment the ERTS satellite data recovery system. The DCP's are data collection platforms located at pertinent sites. With the appropriate sensors they are able to collect, digitally encode and transmit environmental parameters to the ERTS satellite. The satellite in turn relays these transmissions to a ground station for processing. The satellite is available for such relay duty a minimum of two times in a 24-hour period. The equipment is to obtain continuous DCP data during periods of unusual environmental activity--storms, floods, etc. Two circumstances contributed to the decision to design such a system; (1) Wallops Station utilizes surveillance aircraft in support of rocket launches and also in support of earth resources activities; (2) the area in which Wallops is located, the Delaware and Chesapeake Bay areas, are fertile areas for DCP usage. Therefore, by developing an airborne DCP receiving station and installing it on aircraft more continuous DCP data can be provided from sites in the surrounding areas at relatively low cost.

  6. Airborne Radar Interferometric Repeat-Pass Processing

    Science.gov (United States)

    Hensley, Scott; Michel, Thierry R.; Jones, Cathleen E.; Muellerschoen, Ronald J.; Chapman, Bruce D.; Fore, Alexander; Simard, Marc; Zebker, Howard A.

    2011-01-01

    Earth science research often requires crustal deformation measurements at a variety of time scales, from seconds to decades. Although satellites have been used for repeat-track interferometric (RTI) synthetic-aperture-radar (SAR) mapping for close to 20 years, RTI is much more difficult to implement from an airborne platform owing to the irregular trajectory of the aircraft compared with microwave imaging radar wavelengths. Two basic requirements for robust airborne repeat-pass radar interferometry include the ability to fly the platform to a desired trajectory within a narrow tube and the ability to have the radar beam pointed in a desired direction to a fraction of a beam width. Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is equipped with a precision auto pilot developed by NASA Dryden that allows the platform, a Gulfstream III, to nominally fly within a 5 m diameter tube and with an electronically scanned antenna to position the radar beam to a fraction of a beam width based on INU (inertial navigation unit) attitude angle measurements.

  7. Airborne soil organic particles generated by precipitation

    Science.gov (United States)

    Wang, Bingbing; Harder, Tristan H.; Kelly, Stephen T.; Piens, Dominique S.; China, Swarup; Kovarik, Libor; Keiluweit, Marco; Arey, Bruce W.; Gilles, Mary K.; Laskin, Alexander

    2016-06-01

    Airborne organic particles play a critical role in Earth's climate, public health, air quality, and hydrological and carbon cycles. However, sources and formation mechanisms for semi-solid and solid organic particles are poorly understood and typically neglected in atmospheric models. Laboratory evidence suggests that fine particles can be formed from impaction of mineral surfaces by droplets. Here, we use chemical imaging of particles collected following rain events in the Southern Great Plains, Oklahoma, USA and after experimental irrigation to show that raindrop impaction of soils generates solid organic particles. We find that after rain events, sub-micrometre solid particles, with a chemical composition consistent with soil organic matter, contributed up to 60% of atmospheric particles. Our irrigation experiments indicate that intensive water impaction is sufficient to cause ejection of airborne soil organic particles from the soil surface. Chemical imaging and micro-spectroscopy analysis of particle physico-chemical properties suggest that these particles may have important impacts on cloud formation and efficiently absorb solar radiation. We suggest that raindrop-induced formation of solid organic particles from soils may be a widespread phenomenon in ecosystems such as agricultural systems and grasslands where soils are exposed to strong, episodic precipitation events.

  8. Architecture and Algorithms for an Airborne Network

    CERN Document Server

    Sen, Arunabha; Silva, Tiffany; Das, Nibedita; Kundu, Anjan

    2010-01-01

    The U.S. Air Force currently is in the process of developing an Airborne Network (AN) to provide support to its combat aircrafts on a mission. The reliability needed for continuous operation of an AN is difficult to achieve through completely infrastructure-less mobile ad hoc networks. In this paper we first propose an architecture for an AN where airborne networking platforms (ANPs - aircrafts, UAVs and satellites) form the backbone of the AN. In this architecture, the ANPs can be viewed as mobile base stations and the combat aircrafts on a mission as mobile clients. The combat aircrafts on a mission move through a space called air corridor. The goal of the AN design is to form a backbone network with the ANPs with two properties: (i) the backbone network remains connected at all times, even though the topology of the network changes with the movement of the ANPs, and (ii) the entire 3D space of the air corridor is under radio coverage at all times by the continuously moving ANPs. In addition to proposing an...

  9. CO2 Budget and Rectification Airborne Study

    Science.gov (United States)

    Grainger, C. A.

    2004-01-01

    The main purpose of this award was to supply a platform for the airborne measurements of gases associated with the CO2 Budget and Regional Airborne Study (COBRA). The original program was to consist of three field programs: the first was to be in 1999, the second in 2000, and the third in 2001. At the end of the second field program, it was agreed that the science could better be served by making the measurements in northern Brazil, rather than in North America. The final North American program would be postponed until after two field programs in Brazil. A substantial amount of effort was diverted into making plans and preparations for the Brazil field programs. The Brazil field programs were originally scheduled to take place in the Fall of 2002 and Spring of 2003. Carrying out the field program in Brazil was going to logistically much more involved than a program in the US. Shipping of equipment, customs, and site preparations required work to begin many months prior to the actual measurement program. Permission to fly in that country was also not trivial and indeed proved to be a major obstacle. When we were not able to get permission to fly in Brazil for the 2002 portion of the experiment, the program was pushed back to 2003. When permission by the Brazilian government was not given in time for a Spring of 2003 field program, the experiment was postponed again to begin in the Fall of 2003.

  10. The Airborne Carbon in the Mountains Experiment

    Science.gov (United States)

    Schimel, D.; Stephens, B.; Running, S.; Monson, R.; Vukicevic, T.; Ojima, D.

    2004-12-01

    Mountain landscapes of the Western US contain a significant portion of the North American carbon sink. This results from the land use history of the region, which has a preponderance of potentially aggrading mid-aged stands. The issue is significant not only because of the significant sink but because of the vulnerability of that sink to drought, insects, wildfire and other ecological changes occurring rapidly in the West. Quantification of the carbon budgets of western forests have received relatively limited attention, in part because direct carbon flux measurements are believed to be difficult to apply in complex landscapes. New techniques that take advantage of organized nighttime drainage flows may allow quantification of respiration on scales inaccessible in level landscapes, while Lagrangian airborne measurements may allow daytime fluxes to be quantified. Airborne and ground-based measurements during the summer of 2004 in Colorado show substantial drawdown of atmospheric carbon dioxide during the day and strong enrichment of the nocturnal boundary layer from nighttime respiration. We present a strategy whereby in situ measurements at multiple scales, remote sensing and data assimilation may be used to quantify carbon dynamics in mountain landscapes. Larger scales of integration may be possible in mountainous than level landscapes because of the integrative flow of air and water, while because of high heterogeneity, scaling from detailed local process studies remains difficult.

  11. Effect of three surface conditioning methods to improve bond strength of particulate filler resin composites.

    Science.gov (United States)

    Ozcan, M; Alander, P; Vallittu, P K; Huysmans, M-C; Kalk, W

    2005-01-01

    The use of resin-based composite materials in operative dentistry is increasing, including applications in stress-bearing areas. However, composite restorations, in common with all restorations, suffer from deterioration and degradation in clinical service. Durable repair alternatives by layering a new composite onto such failed composite restorations, will eliminate unnecessary loss of tooth tissue and repeated insults to the pulp. The objective of this study was to evaluate the effect of three surface conditioning methods on the repair bond strength of a particulate filler resin-composite (PFC) to 5 PFC substrates. The specimens were randomly assigned to one of the following surface conditioning methods: (1) Hydrofluoric (HF) acid gel (9.5%) etching, (2) Air-borne particle abrasion (50 microm Al2O3), (3) Silica coating (30 microm SiOx, CoJet-Sand). After each conditioning method, a silane coupling agent was applied. Adhesive resin was then applied in a thin layer and light polymerized. The low-viscosity diacrylate resin composite was bonded to the conditioned substrates in polyethylene molds. All specimens were tested in dry and thermocycled (6.000, 5-55 degrees C, 30 s) conditions. One-way ANOVA showed significant influence of the surface conditioning methods (p acid etched specimens (5.7-14.3 MPa) and those treated with either air-borne particle abrasion (13.0-22.5 MPa) or silica coating (25.5-41.8 MPa) in dry conditions (ANOVA, p < 0.001). After thermocycling, the silica coating process resulted in the highest bond values in all material groups (17.2-30.3 MPa).

  12. Quantitative DNA Analyses for Airborne Birch Pollen.

    Directory of Open Access Journals (Sweden)

    Isabell Müller-Germann

    Full Text Available Birch trees produce large amounts of highly allergenic pollen grains that are distributed by wind and impact human health by causing seasonal hay fever, pollen-related asthma, and other allergic diseases. Traditionally, pollen forecasts are based on conventional microscopic counting techniques that are labor-intensive and limited in the reliable identification of species. Molecular biological techniques provide an alternative approach that is less labor-intensive and enables identification of any species by its genetic fingerprint. A particularly promising method is quantitative Real-Time polymerase chain reaction (qPCR, which can be used to determine the number of DNA copies and thus pollen grains in air filter samples. During the birch pollination season in 2010 in Mainz, Germany, we collected air filter samples of fine (<3 μm and coarse air particulate matter. These were analyzed by qPCR using two different primer pairs: one for a single-copy gene (BP8 and the other for a multi-copy gene (ITS. The BP8 gene was better suitable for reliable qPCR results, and the qPCR results obtained for coarse particulate matter were well correlated with the birch pollen forecasting results of the regional air quality model COSMO-ART. As expected due to the size of birch pollen grains (~23 μm, the concentration of DNA in fine particulate matter was lower than in the coarse particle fraction. For the ITS region the factor was 64, while for the single-copy gene BP8 only 51. The possible presence of so-called sub-pollen particles in the fine particle fraction is, however, interesting even in low concentrations. These particles are known to be highly allergenic, reach deep into airways and cause often severe health problems. In conclusion, the results of this exploratory study open up the possibility of predicting and quantifying the pollen concentration in the atmosphere more precisely in the future.

  13. Quantitative DNA Analyses for Airborne Birch Pollen.

    Science.gov (United States)

    Müller-Germann, Isabell; Vogel, Bernhard; Vogel, Heike; Pauling, Andreas; Fröhlich-Nowoisky, Janine; Pöschl, Ulrich; Després, Viviane R

    2015-01-01

    Birch trees produce large amounts of highly allergenic pollen grains that are distributed by wind and impact human health by causing seasonal hay fever, pollen-related asthma, and other allergic diseases. Traditionally, pollen forecasts are based on conventional microscopic counting techniques that are labor-intensive and limited in the reliable identification of species. Molecular biological techniques provide an alternative approach that is less labor-intensive and enables identification of any species by its genetic fingerprint. A particularly promising method is quantitative Real-Time polymerase chain reaction (qPCR), which can be used to determine the number of DNA copies and thus pollen grains in air filter samples. During the birch pollination season in 2010 in Mainz, Germany, we collected air filter samples of fine (<3 μm) and coarse air particulate matter. These were analyzed by qPCR using two different primer pairs: one for a single-copy gene (BP8) and the other for a multi-copy gene (ITS). The BP8 gene was better suitable for reliable qPCR results, and the qPCR results obtained for coarse particulate matter were well correlated with the birch pollen forecasting results of the regional air quality model COSMO-ART. As expected due to the size of birch pollen grains (~23 μm), the concentration of DNA in fine particulate matter was lower than in the coarse particle fraction. For the ITS region the factor was 64, while for the single-copy gene BP8 only 51. The possible presence of so-called sub-pollen particles in the fine particle fraction is, however, interesting even in low concentrations. These particles are known to be highly allergenic, reach deep into airways and cause often severe health problems. In conclusion, the results of this exploratory study open up the possibility of predicting and quantifying the pollen concentration in the atmosphere more precisely in the future.

  14. METAL CONTENT OF DANDELION (TARAXACUM OFFICINALE) LEAVES IN RELATION TO SOIL CONTAMINATION AND AIRBORNE PARTICULATE MATTER. (R826602)

    Science.gov (United States)

    The global distribution of the common dandelion (Taraxacum officinale Weber, sensu lato; Asteraceae), along with its ability to tolerate a wide range of environmental conditions, make this `species' a particularly attractive candidate to evaluate for its ...

  15. The Application of Atomic Absorption Spectroscopy and Optical Microscopy to the Characterization of Sized Airborne Particulate in Dayton, Ohio.

    Science.gov (United States)

    1978-01-01

    PERIOD COVERED " AneT Appication of Atomic Absorption Spectroscopy ’ and Optical Microscopy to the Characterization of THESIS/DISSERTATION 4 Sized...1978 U I HEREBY REC04MEND THAT THE THESIS PREPARED ’NDER MY SUPERVISION BY Lorelei Ann Krebs ENTITLED The Application of Atomic Absorption Spectroscopy and...acid and diluted with distilled water in a 25 milliliter volumetric flask. Atomic absorption . spectroscopy was used to analyze the solutions for

  16. Characterisation of the local topsoil contribution to airborne particulate matter in the area of Rome (Italy). Source profiles

    Science.gov (United States)

    Pietrodangelo, A.; Salzano, R.; Rantica, E.; Perrino, C.

    2013-04-01

    Elemental profiles of the local resuspended natural topsoil of Rome area have been studied. Relevant compositional differences were observed either among main geological domains and rock types of this area (volcanics, flysch, marlstone, travertine) or between the two considered dimensional fractions (50 μm and PM10 resuspended from the former). A significant enrichment in trace metals (especially Pb, Ni and Cr) has been observed in the PM10 resuspended fraction of either volcanics or sedimentary outcropping rocks; volcanics show larger trace metals enrichment than sedimentary. Profiles of this study have been compared with signatures of natural crustal dust of African origin (collected either in situ or at European receptor sites, including Rome and other sites in the Latium region) and with signatures of road dust, properly selected from literature. This comparison was performed for source apportionment goals, with the aim of improving discrimination among signatures of local and non-local natural crustal materials. Elemental ratios of major and trace elements of geochemical relevance were used for the comparative study. Mg/Ca and Ti/Ca ratios appear successful in separating, by dispersion diagram, the resuspended fraction of local Rome geological topsoil from road dust and from long-range transported dust from Africa.

  17. Simultaneous two-color, two-dimensional angular optical scattering patterns from airborne particulates: Scattering results and exploratory analysis

    Science.gov (United States)

    Holler, Stephen; Fuerstenau, Stephen D.; Skelsey, Charles R.

    2016-07-01

    Light scattering from non-spherical particles and aggregates exhibits complex structure that is revealed only when observed in two angular dimensions (θ, ϕ). However, due to variations in shape, packing, and orientation of such aerosols, the structure of two-dimensional angular optical scattering (TAOS) patterns varies among particles. The spectral dependence of scattering contributes further to the observed complexity, but offers another facet to consider. By leveraging multispectral TAOS data from flowing aerosols, we have identified novel morphological descriptors that may be employed in multivariate statistical algorithms for "unknown" particle classification.

  18. Correlation between polycyclic aromatic hydrocarbons concentration and airborne particle mutagenicity in the rubber factory.

    Science.gov (United States)

    Barański, B; Palus, J; Rogaczewska, T; Szymczak, W; Spiechowicz, E

    1992-01-01

    The study was undertaken to evaluate the correlation between benzo[a]pyrene and coal tar pitch volatiles concentrations and mutagenic activity of airborne particles sampled at different workplaces of the factory producing various types of tires. The solid phase of aerosols was collected on Whatman glass-fibers filters using Staplex pumps. Coal tar pitch volatiles (CTPVs) were extracted from sample filters using ultrasonic-benzene extraction and determined by the gravimetric method. Benzo[a]pyrene (BaP) analysis was performed using high performance liquid chromatography with a spectrofluorimetric detector. The mutagenic substances were extracted from collected material with acetone. The mutagenic properties were estimated with the Ames' test using S. typhimurium strain TA98 without and with S9 fraction. At nearly all workplaces the concentrations of BaP and CTPVs were within the range of 4-61 ng/m3 and 0.11-1.26 mg/m3, respectively. Only at weighing were they much higher and amounted to 172-2261 ng/m3 for BaP and 3.05-4.07 mg/m3 for CTPVs. The highest exposure to mutagenic airborne particulate matter was found at weighing (1500 rev/m3), the mixers loading level (> 500 rev/m3) and the carbon black station (> 150 rev/m3). The air mutagenic activity at other workplaces, especially at the extruder mill of the mixer (> 90 rev/m3), the two-roll mill of mixers (> 70 rev/m3), mixer I loading (> 70 rev/m3), calendering (> 70 rev/m3) and fender vulcanizing (> 80 rev/m3) was even much more higher than that found in the urban indoor and outdoor air (2-9 rev/m3).(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Airborne microbial composition in a high-throughput poultry slaughtering facility.

    Science.gov (United States)

    Liang, Ruiping; Tian, Jijing; She, Ruiping; Meng, Hua; Xiao, Peng; Chang, Lingling

    2013-03-01

    A high-throughput chicken slaughtering facility in Beijing was systematically investigated for numbers of airborne microorganisms. Samples were assessed for counts of aerobic bacteria, Staphylococcus aureus, total coliforms, Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes, Bacillus cereus, and Salmonella. During a 4-month period (September to December 2011), samples were collected for 10 min three times daily (preproduction, production, and postproduction). Samples were collected for three consecutive days of each month with an FA-1 sampler from six sampling sites: receiving-hanging, soaking-scalding and defeathering, evisceration, precooling, subdividing, and packing. Humidity, temperature, wind velocity, and airborne particulates also were recorded at each sampling site and time. The highest counts of microorganisms were recorded in the initial stages of processing, i.e., the receiving-hanging and defeathering areas, with a definite decline toward the evisceration, prechilling, subdividing, and packing areas; the prechilling area had the lowest microbial counts of 2.4 × 10(3) CFU/m(3). Mean total coliforms counts ranged from 8.4 × 10(3) to 140 CFU/m(3). Maximum E. coli counts were 6.1 × 10(3) CFU/m(3) in the soaking-scalding and defeathering area. B. cereus, P. aeruginosa, and S. aureus represented only a small proportion of the microbial population (1,900 to 20 CFU/m(3)). L. monocytogenes and Salmonella were rarely detected in evisceration, precooling, subdividing, and packing areas. Our study identified the levels of bioaerosols that may affect chicken product quality. This finding could be useful for improved control of microbial contamination to ensure product quality.

  20. Spatial and temporal variations in traffic-related particulate matter at New York City high schools

    Science.gov (United States)

    Patel, Molini M.; Chillrud, Steven N.; Correa, Juan C.; Feinberg, Marian; Hazi, Yair; Deepti, K. C.; Prakash, Swati; Ross, James M.; Levy, Diane; Kinney, Patrick L.

    Relatively little is known about exposures to traffic-related particulate matter at schools located in dense urban areas. The purpose of this study was to examine the influences of diesel traffic proximity and intensity on ambient concentrations of fine particulate matter (PM 2.5) and black carbon (BC), an indicator of diesel exhaust particles, at New York City (NYC) high schools. Outdoor PM 2.5 and BC were monitored continuously for 4-6 weeks at each of 3 NYC schools and 1 suburban school located 40 km upwind of the city. Traffic count data were obtained using an automated traffic counter or video camera. BC concentrations were 2-3 fold higher at urban schools compared with the suburban school, and among the 3 urban schools, BC concentrations were higher at schools located adjacent to highways. PM 2.5 concentrations were significantly higher at urban schools than at the suburban school, but concentrations did not vary significantly among urban schools. Both hourly average counts of trucks and buses and meteorological factors such as wind direction, wind speed, and humidity were significantly associated with hourly average ambient BC and PM 2.5 concentrations in multivariate regression models. An increase of 443 trucks/buses per hour was associated with a 0.62 μg/m 3 increase in hourly average BC at an NYC school located adjacent to a major interstate highway. Car traffic counts were not associated with BC. The results suggest that local diesel vehicle traffic may be important sources of airborne fine particles in dense urban areas and consequently may contribute to local variations in PM 2.5 concentrations. In urban areas with higher levels of diesel traffic, local, neighborhood-scale monitoring of pollutants such as BC, which compared to PM 2.5, is a more specific indicator of diesel exhaust particles, may more accurately represent population exposures.

  1. Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome.

    Directory of Open Access Journals (Sweden)

    Lisa Kish

    Full Text Available BACKGROUND: Particulate matter (PM is a key pollutant in ambient air that has been associated with negative health conditions in urban environments. The aim of this study was to examine the effects of orally administered PM on the gut microbiome and immune function under normal and inflammatory conditions. METHODS: Wild-type 129/SvEv mice were gavaged with Ottawa urban PM10 (EHC-93 for 7-14 days and mucosal gene expression analyzed using Ingenuity Pathways software. Intestinal permeability was measured by lactulose/mannitol excretion in urine. At sacrifice, segments of small and large intestine were cultured and cytokine secretion measured. Splenocytes were isolated and incubated with PM10 for measurement of proliferation. Long-term effects of exposure (35 days on intestinal cytokine expression were measured in wild-type and IL-10 deficient (IL-10(-/- mice. Microbial composition of stool samples was assessed using terminal restriction fragment length polymorphism. Short chain fatty acids were measured in caecum. RESULTS: Short-term treatment of wild-type mice with PM10 altered immune gene expression, enhanced pro-inflammatory cytokine secretion in the small intestine, increased gut permeability, and induced hyporesponsiveness in splenocytes. Long-term treatment of wild-type and IL-10(-/- mice increased pro-inflammatory cytokine expression in the colon and altered short chain fatty acid concentrations and microbial composition. IL-10(-/- mice had increased disease as evidenced by enhanced histological damage. CONCLUSIONS: Ingestion of airborne particulate matter alters the gut microbiome and induces acute and chronic inflammatory responses in the intestine.

  2. Particulate emissions from residential wood combustion

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo; Jensen, Ole Michael; Tarelho, Luis A. C.

    Residential wood combustion (RWC) in fireplaces and conventional appliances is the main contributor to fine particulate matter (PM2.5) emissions in Denmark and Portugal representing more than 30% of the total emissions [1;2]. Such estimations are uncertain concerning the wood consumption and offi......Residential wood combustion (RWC) in fireplaces and conventional appliances is the main contributor to fine particulate matter (PM2.5) emissions in Denmark and Portugal representing more than 30% of the total emissions [1;2]. Such estimations are uncertain concerning the wood consumption.......5 emissions within a specific “wood burning living area”, but one Danish study exists [4]. In previous inventories distinct combustion air operation modes and the growing penetration of automate wood-burning stoves have not been considered. The present work aims to discuss opportunities for improving...... Portuguese combustion practices in laboratory tests. This study highlights that the previous PM2.5 emission inventories in Denmark and Portugal did not consider the possible variations on fuel moisture, dimensions of wood-logs and air-inlet operation patterns, although they are very important, especially...

  3. Study of airborne science experiment management concepts for application to space shuttle, volume 2

    Science.gov (United States)

    Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1973-01-01

    Airborne research management and shuttle sortie planning at the Ames Research Center are reported. Topics discussed include: basic criteria and procedures for the formulation and approval of airborne missions; ASO management structure and procedures; experiment design, development, and testing aircraft characteristics and experiment interfaces; information handling for airborne science missions; mission documentation requirements; and airborne science methods and shuttle sortie planning.

  4. Nanoscale characterization of PM2.5 airborne pollutants reveals high adhesiveness and aggregation capability of soot particles

    Science.gov (United States)

    Shi, Yuanyuan; Ji, Yanfeng; Sun, Hui; Hui, Fei; Hu, Jianchen; Wu, Yaxi; Fang, Jianlong; Lin, Hao; Wang, Jianxiang; Duan, Huiling; Lanza, Mario

    2015-07-01

    In 2012 air pollutants were responsible of seven million human death worldwide, and among them particulate matter with an aerodynamic diameter of 2.5 micrometers or less (PM2.5) are the most hazardous because they are small enough to invade even the smallest airways and penetrate to the lungs. During the last decade the size, shape, composition, sources and effect of these particles on human health have been studied. However, the noxiousness of these particles not only relies on their chemical toxicity, but particle morphology and mechanical properties affect their thermodynamic behavior, which has notable impact on their biological activity. Therefore, correlating the physical, mechanical and chemical properties of PM2.5 airborne pollutants should be the first step to characterize their interaction with other bodies but, unfortunately, such analysis has never been reported before. In this work, we present the first nanomechanical characterization of the most abundant and universal groups of PM2.5 airborne pollutants and, by means of atomic force microscope (AFM) combined with other characterization tools, we observe that fluffy soot aggregates are the most sticky and unstable. Our experiments demonstrate that such particles show strong adhesiveness and aggregation, leading to a more diverse composition and compiling all possible toxic chemicals.

  5. Chemical Speciation of Thorium in Marine Biogenic Particulate Matter

    Directory of Open Access Journals (Sweden)

    Katsumi Hirose

    2004-01-01

    Full Text Available Concentrations of particulate thorium in seawater were determined together with the strong organic ligand (SOL and uranium in particulate matter (PM. The concentrations of particulate Th in surface waters of the western North Pacific and the Sea of Japan ranged from 0.05 to 1.5 pM (1 x 10−12 M, and showed relatively large temporal and spatial variations. In order to chemically characterize the particulate Th in seawater, the relationship between particulate Th and SOL concentrations in surface PM was examined. The result reveals that particulate Th in surface PM was well correlated with the SOL concentration in PM. The concentrations of particulate Th in surface water were linearly related to those of particulate U. Mass balance analysis suggests that the dominant chemical form of Th(IV, as well as of U, in surface PM is a surface complex with the SOL in PM. Our findings suggest that the SOL in PM is a nonmetal-specific chelator originating from the cell surface of microorganisms.

  6. The origin of ambient particulate matter concentrations in the Netherlands

    NARCIS (Netherlands)

    Hendriks, C.; Kranenburg, R.; Kuenen, J.; Gijlswijk, R. van; Wichink Kruit, R.; Segers, A.; Denier van der Gon, H.; Schaap, M.

    2013-01-01

    Particulate matter poses a significant threat to human health. To be able to develop effective mitigation strategies, the origin of particulate matter needs to be established. The regional air quality model LOTOS-EUROS, equipped with a newly developed labeling routine, was used to establish the orig

  7. Experiments to investigate particulate materials in reduced gravity fields

    Science.gov (United States)

    Bowden, M.; Eden, H. F.; Felsenthal, P.; Glaser, P. E.; Wechsler, A. E.

    1967-01-01

    Study investigates agglomeration and macroscopic behavior in reduced gravity fields of particles of known properties by measuring and correlating thermal and acoustical properties of particulate materials. Experiment evaluations provide a basis for a particle behavior theory and measure bulk properties of particulate materials in reduced gravity.

  8. Evaluation of airborne lead levels in storage battery workshops and some welding environments in Kumasi metropolis in Ghana.

    Science.gov (United States)

    Dartey, E; Adimado, A A; Agyarko, K

    2010-05-01

    Airborne lead levels were assessed in nine workshops, three each from battery, electronic repair, and welding sources within the Kumasi Metropolis in Ghana. Samples were collected at 0, 2.5, and 5.0 m away from the emission source at the workshops during working hours and another at 5.0 m during break hours. Airborne lead particulates were collected and analyzed using the filter membrane technique and flame atomic absorption spectrophotometry, respectively. There were significant differences (p < or = 0.05) among the air lead levels from the workshops. Workshop 3b produced the highest significant values of air lead concentrations of 2,820.31 +/- 53.89, 2,406.74 +/- 71.87, 754.55 +/- 72.52, and 549.01 +/- 67.30 microg/m(3) at distances of 0, 2.5, 5.0, and 5.0 m (break-time measurement), respectively, while workshop 1w significantly produced the lowest air lead concentration values of 261.06 +/- 21.60, 190.92 +/- 36.90, 86.43 +/- 16.26, and 61.05 +/- 3.88 microg/m(3) at distances of 0, 2.5, 5.0, and 5.0 m (break-time measurement), respectively. The air lead levels reduced with distance from emission source at the workshops. At all the distances of measurement at working hours, the airborne lead levels were higher than the World Health Organization standard of 50 microg/m(3) and exceeded the threshold limit values of 100 to 150 microg/m(3) recommended in most jurisdictions. Workers and people in the immediate environs were exposed to air lead levels that were too high by most international standards, thus posing a serious threat to their health.

  9. Control of Airborne Infectious Diseases in Ventilated Spaces

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    2009-01-01

    We protect ourselves from airborne cross-infection in the indoor environment by supplying fresh air to a room by natural or mechanical ventilation. The air is distributed in the room according to different principles: mixing ventilation, displacement ventilation, etc. A large amount of air...... is supplied to the room to ensure a dilution of airborne infection. Analyses of the flow in the room show that there are a number of parameters that play an important role in minimizing airborne cross-infection. The air flow rate to the room must be high, and the air distribution pattern can be designed...

  10. Airborne gravimetry, altimetry, and GPS navigation errors

    Science.gov (United States)

    Colombo, Oscar L.

    1992-01-01

    Proper interpretation of airborne gravimetry and altimetry requires good knowledge of aircraft trajectory. Recent advances in precise navigation with differential GPS have made it possible to measure gravity from the air with accuracies of a few milligals, and to obtain altimeter profiles of terrain or sea surface correct to one decimeter. These developments are opening otherwise inaccessible regions to detailed geophysical mapping. Navigation with GPS presents some problems that grow worse with increasing distance from a fixed receiver: the effect of errors in tropospheric refraction correction, GPS ephemerides, and the coordinates of the fixed receivers. Ionospheric refraction and orbit error complicate ambiguity resolution. Optimal navigation should treat all error sources as unknowns, together with the instantaneous vehicle position. To do so, fast and reliable numerical techniques are needed: efficient and stable Kalman filter-smoother algorithms, together with data compression and, sometimes, the use of simplified dynamics.

  11. Wavelet Based Fractal Analysis of Airborne Pollen

    CERN Document Server

    Degaudenzi, M E

    1999-01-01

    The most abundant biological particles in the atmosphere are pollen grains and spores. Self protection of pollen allergy is possible through the information of future pollen contents in the air. In spite of the importance of airborne pol len concentration forecasting, it has not been possible to predict the pollen concentrations with great accuracy, and about 25% of the daily pollen forecasts have resulted in failures. Previous analysis of the dynamic characteristics of atmospheric pollen time series indicate that the system can be described by a low dimensional chaotic map. We apply the wavelet transform to study the multifractal characteristics of an a irborne pollen time series. We find the persistence behaviour associated to low pollen concentration values and to the most rare events of highest pollen co ncentration values. The information and the correlation dimensions correspond to a chaotic system showing loss of information with time evolution.

  12. Vine variety discrimination with airborne imaging spectroscopy

    Science.gov (United States)

    Ferreiro-Armán, M.; Alba-Castro, J. L.; Homayouni, S.; da Costa, J. P.; Martín-Herrero, J.

    2007-09-01

    We aim at the discrimination of varieties within a single plant species (Vitis vinifera) by means of airborne hyperspectral imagery collected using a CASI-2 sensor and supervised classification, both under constant and varying within-scene illumination conditions. Varying illumination due to atmospheric conditions (such as clouds) and shadows cause different pixels belonging to the same class to present different spectral vectors, increasing the within class variability and hindering classification. This is specially serious in precision applications such as variety discrimination in precision agriculture, which depends on subtle spectral differences. In this study, we use machine learning techniques for supervised classification, and we also analyze the variability within and among plots and within and among sites, in order to address the generalizability of the results.

  13. Spatial dynamics of airborne infectious diseases

    CERN Document Server

    Robinson, M; Drossinos, Y

    2011-01-01

    Disease outbreaks, such as those of Severe Acute Respiratory Syndrome in 2003 and the 2009 pandemic A(H1N1) influenza, have highlighted the potential for airborne transmission in indoor environments. Respirable pathogen-carrying droplets provide a vector for the spatial spread of infection with droplet transport determined by diffusive and convective processes. An epidemiological model describing the spatial dynamics of disease transmission is presented. The effects of an ambient airflow, as an infection control, are incorporated leading to a delay equation, with droplet density dependent on the infectious density at a previous time. It is found that small droplets ($\\sim 0.4\\ \\mu$m) generate a negligible infectious force due to the small viral load and the associated duration they require to transmit infection. In contrast, larger droplets ($\\sim 4\\ \\mu$m) can lead to an infectious wave propagating through a fully susceptible population or a secondary infection outbreak for a localised susceptible population...

  14. Digital Logarithmic Airborne Gamma Ray Spectrometer

    CERN Document Server

    Zeng, GuoQiang; Li, Chen; Tan, ChengJun; Ge, LiangQuan; Gu, Yi; Cheng, Feng

    2014-01-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range, because the low-energy pulse signal has a larger gain than the high-energy pulse signal. The spectrometer can clearly distinguish the photopeaks at 239, 352, 583, and 609keV in the low-energy spectral sections after the energy calibration. The photopeak energy resolution of 137Cs improves to 6.75% from the original 7.8%. Furthermore, the energy resolution of three photopeaks, namely, K, U, and Th, is maintained, and the overall stability of the energy spectrum is increased through potassium peak spectrum stabilization. Thus, effectively measuring energy from 20keV to 10MeV is possible.

  15. Digital logarithmic airborne gamma ray spectrometer

    Science.gov (United States)

    Zeng, Guo-Qiang; Zhang, Qing-Xian; Li, Chen; Tan, Cheng-Jun; Ge, Liang-Quan; Gu, Yi; Cheng, Feng

    2014-07-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range because the low-energy pulse signal has a larger gain than the high-energy pulse signal. After energy calibration, the spectrometer can clearly distinguish photopeaks at 239, 352, 583 and 609 keV in the low-energy spectral sections. The photopeak energy resolution of 137Cs improves to 6.75% from the original 7.8%. Furthermore, the energy resolution of three photopeaks, namely, K, U, and Th, is maintained, and the overall stability of the energy spectrum is increased through potassium peak spectrum stabilization. Thus, it is possible to effectively measure energy from 20 keV to 10 MeV.

  16. Determination of airborne nanoparticles from welding operations.

    Science.gov (United States)

    Gomes, João Fernando Pereira; Albuquerque, Paula Cristina Silva; Miranda, Rosa Maria Mendes; Vieira, Maria Teresa Freire

    2012-01-01

    The aim of this study is to assess the levels of airborne ultrafine particles emitted in welding processes (tungsten inert gas [TIG], metal active gas [MAG] of carbon steel, and friction stir welding [FSW] of aluminum) in terms of deposited area in pulmonary alveolar tract using a nanoparticle surface area monitor (NSAM) analyzer. The obtained results showed the dependence of process parameters on emitted ultrafine particles and demonstrated the presence of ultrafine particles compared to background levels. Data indicated that the process that resulted in the lowest levels of alveolar deposited surface area (ADSA) was FSW, followed by TIG and MAG. However, all tested processes resulted in significant concentrations of ultrafine particles being deposited in humans lungs of exposed workers.

  17. Particulate matter in urban areas: health-based economic assessment.

    Science.gov (United States)

    El-Fadel, M; Massoud, M

    2000-08-10

    The interest in the association between human health and air pollution has grown substantially in recent years. Based on epidemiological studies in several countries, there is conclusive evidence of a link between particulate air pollution and adverse health effects. Considering that particulate matter may be the most serious pollutant in urban areas and that pollution-related illness results in financial and non-financial welfare losses, the main objective of this study is to assess the economic benefits of reducing particulate air pollution in Lebanese urban areas. Accordingly, the extent and value of health benefits due to decreasing levels of particulate in the air are predicted. Health impacts are expressed in both physical and monetary terms for saved statistical lives, and productivity due to different types of morbidity endpoints. Finally, the study concludes with a range of policy options available to mitigate particulate air pollution in urban areas.

  18. Anti-Inflammatory Effects of Pomegranate Peel Extract in THP-1 Cells Exposed to Particulate Matter PM10

    Directory of Open Access Journals (Sweden)

    Soojin Park

    2016-01-01

    Full Text Available Epidemiological and experimental evidence support health risks associated with the exposure to airborne particulate matter with a diameter of <10 μM (PM10. PM10 stimulates the production of reactive oxygen species (ROS and inflammatory mediators. Thus, we assumed that natural antioxidants might provide health benefits attenuating hazardous effects of PM10. In the present study, we examined the effects of pomegranate peel extract (PPE on THP-1 monocytic cells exposed to PM10. PM10 induced cytotoxicity and the production of ROS. It also increased the expression and secretion of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, and monocyte chemoattractant protein-1 (MCP-1, and cell adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1. PPE at 10–100 μg mL−1 attenuated the production of ROS and the expression of TNF-α, IL-1β, MCP-1, and ICAM-1, but not VCAM-1, in THP-1 cells stimulated by PM10 (100 μg mL−1. PPE also attenuated the adhesion of PM10-stimulated THP-1 cells to EA.hy926 endothelial cells. PPE constituents, punicalagin and ellagic acid, attenuated PM10-induced monocyte adhesion to endothelial cells, and punicalagin was less cytotoxic compared to ellagic acid. The present study suggests that PPE and punicalagin may be useful in alleviating inflammatory reactions due to particulate matter.

  19. The NASA enhanced MODIS airborne simulator

    Science.gov (United States)

    Ellis, Thomas A.; Myers, Jeffrey; Grant, Patrick; Platnick, Steven; Guerin, Daniel C.; Fisher, John; Song, Kai; Kimchi, Joseph; Kilmer, Louis; LaPorte, Daniel D.; Moeller, Christopher C.

    2011-10-01

    The new NASA Enhanced MODIS Airborne Simulator (eMAS) is based on the legacy MAS system, which has been used extensively in support of the NASA Earth Observing System program since 1995. eMAS consists of two separate instruments designed to fly together on the NASA ER-2 and Global Hawk high altitude aircraft. The eMAS-IR instrument is an upgraded version of the legacy MAS line-scanning spectrometer, with 38 spectral bands in the wavelength range from 0.47 to 14.1 μm. The original LN2-cooled MAS MWIR and LWIR spectrometers are replaced with a single vacuum-sealed, Stirling-cooled assembly, having a single MWIR and twelve LWIR bands. This spectrometer module contains a cold optical bench where both dispersive optics and detector arrays are maintained at cryogenic temperatures to reduce infrared background noise, and ensure spectral stability during high altitude airborne operations. The EMAS-HS instrument is a stand-alone push-broom imaging spectrometer, with 202 contiguous spectral bands in the wavelength range from 0.38 to 2.40 μm. It consists of two Offner spectrometers, mated to a 4-mirror anastigmatic telescope. The system has a single slit, and uses a dichroic beam-splitter to divide the incoming energy between VNIR and SWIR focal plane arrays. It will be synchronized and bore-sighted with the IR line-scanner, and includes an active source for monitoring calibration stability. eMAS is intended to support future satellite missions including the Hyperspectral Infrared Imager ( HyspIRI,) the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP,) and the follow-on Joint Polar Satellite System (JPSS.)

  20. Identifying Airborne Pathogens in Time to Respond

    Energy Technology Data Exchange (ETDEWEB)

    Hazi, A

    2006-01-25

    Among the possible terrorist activities that might threaten national security is the release of an airborne pathogen such as anthrax. Because the potential damage to human health could be severe, experts consider 1 minute to be an operationally useful time limit for identifying the pathogen and taking action. Many commercial systems can identify airborne pathogenic microbes, but they take days or, at best, hours to produce results. The Department of Homeland Security (DHS) and other U.S. government agencies are interested in finding a faster approach. To answer this national need, a Livermore team, led by scientist Eric Gard, has developed the bioaerosol mass spectrometry (BAMS) system--the only instrument that can detect and identify spores at low concentrations in less than 1 minute. BAMS can successfully distinguish between two related but different spore species. It can also sort out a single spore from thousands of other particles--biological and nonbiological--with no false positives. The BAMS team won a 2005 R&D 100 Award for developing the system. Livermore's Laboratory Directed Research and Development (LDRD) Program funded the biomedical aspects of the BAMS project, and the Department of Defense's Technical Support Working Group and Defense Advanced Research Project Agency funded the biodefense efforts. Developing a detection system that can analyze small samples so quickly has been challenging. Livermore engineer Vincent Riot, who worked on the BAMS project, explains, ''A typical spore weighs approximately one-trillionth of a gram and is dispersed in the atmosphere, which contains naturally occurring particles that could be present at concentrations thousands of times higher. Previous systems also had difficulty separating benign organisms from those that are pathogenic but very similar, which has resulted in false alarms''.

  1. Chemical Characterisation of the Coarse and Fine Particulate Matter in the Environment of an Underground Railway System: Cytotoxic Effects and Oxidative Stress—A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Anna Maria Spagnolo

    2015-04-01

    Full Text Available Background: Exposure to the particulate matter produced in underground railway systems is arousing increasing scientific interest because of its health effects. The aim of our study was to evaluate the airborne concentrations of PM10 and three sub-fractions of PM2.5 in an underground railway system environment in proximity to platforms and in underground commercial areas within the system, and to compare these with the outdoor airborne concentrations. We also evaluated the metal components, the cytotoxic properties of the various fractions of particulate matter (PM and their capacity to induce oxidative stress. Method: We collected the coarse fraction (5–10 µm and the fine fractions (1–2.5 µm; 0.5–1 µm; 0.25–0.5 µm. Chemical characterisation was determined by means of spectrometry. Cytotoxicity and oxidative stress were evaluated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and Reactive Oxygen Species (ROS assessment. Results: The concentrations of both PM10 and PM2.5 proved to be similar at the three sampling sites. Iron and other transition metals displayed a greater concentration at the subway platform than at the other two sites. The 2.5–10 µm and 1–2.5 µm fractions of PM from all three sampling sites determined a greater increase in ROS; the intensity of oxidative stress progressively declined as particle diameter diminished. Moreover, ROS concentrations were correlated with the concentrations of some transition metals, namely Mn, Cr, Ti, Fe, Cu, Zn, Ni and Mo. All particulate matter fractions displayed lower or similar ROS values between platform level and the outdoor air. Conclusions: The present study revealed that the underground railway environment at platform level, although containing higher concentrations of some particularly reactive metallic species, did not display higher cytotoxicity and oxidative stress levels than the outdoor air.

  2. Simultaneously catalytic removal of NOx and particulate matter on diesel particulate filter

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The simultaneous removal of NOx and particulate matter (PM) exhausted from diesel engine was studied with a diesel particulate filter (DPF) on which a mixed metal oxide catalyst, Cu0.95K0.05Fe2O4 was loaded. The NOx reduction was observed in the same temperature range of the CO2 formation, implying the occurrence of the simultaneous removal of NOx and PM in an oxidizing atmosphere. It was shown that SOF and soot in PM are attributed to the reduction of NOx at lower and higher temperatures, respectively. The oxidation of PM was enhanced by the coexistence of NO and O2. The ignition and exhaustion temperatures of PM decrease as the order NO>O2>NO+O2. This is a combined process of PM trapping as well as the catalytic reactions of soot oxidation and NOx reduction, promising the most desirable after-treatment of diesel exhausts.

  3. Lability of Secondary Organic Particulate Matter

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pengfei; Li, Yong Jie; Wang, Yan; Giles, Mary K.; Zaveri, Rahul A.; Bertram, Allan K.; Martin, Scot T.

    2016-10-24

    Accurate simulations of the consenctrations of atmospheric organic particulate matter (PM) are needed for predicting energy flow in the Earth’s climate system. In the past, simulations of organic PM widely assume equilibrium partitioning of semivolatile organic compounds (SVOCs) between the PM and surrounding vapor. Herein, we test this assumption by measuring evaporation rates and associated vapor mass concentration of organic films representative of atmospheric PM. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH), indicating equilibrium partitioning above a transition RH but not below. In contrast for films representing biogenic PM, no threshold was observed, indicating equilibrium partitioning at all RHs. The results suggest that the mass lability of atmospheric organic PM can differ in consequential ways among Earth’s natural biomes, polluted regions, and regions of land-use change, and these differences need to be considered when simulating atmospheric organic PM.

  4. Production, handling and characterization of particulate materials

    CERN Document Server

    Meesters, Gabriel

    2016-01-01

    This edited volume presents most techniques and methods that have been developed by material scientists, chemists, chemical engineers and physicists for the commercial production of particulate materials, ranging from the millimeter to the nanometer scale.  The scope includes the physical and chemical background, experimental optimization of equipment and procedures, as well as an outlook on future methods. The books addresses  issues of industrial importance such as specifications, control parameter(s), control strategy, process models, energy consumption and discusses the various techniques in relation to potential applications. In addition to the production processes, all major unit operations and characterization methods are described in this book. It differs from other books which are devoted to a single technique or a single material. Contributors to this book are acknowledged experts in their field. The aim of the book is to facilitate comparison of the different unit operations leading to optimum...

  5. Quasi-specular reflection from particulate media

    CERN Document Server

    Penttilä, Antti

    2013-01-01

    Specular reflection is known to play an important role in many fields of scattering applications, e.g., in remote sensing, computer graphics, optimization of visual appearance of industrial products. Usually it can be assumed that the object has a solid surface and that the properties of the surface will dictate the behavior of the specular component. In this study I will show that media consisting of wavelength-sized particles can also have a quasi-specular reflection in cases where there is ordered structure in the media. I will also show that the quasi-specular reflection in particulate media is more than just a surface effect, and planar particle arrangement below the very surface can give arise to quasi-specular reflection. This study shows that the quasi-specular reflection may contribute in some cases in the backscattering direction, together with coherent backscattering and shadow-hiding effects.

  6. Optical measurements of chemically heterogeneous particulate surfaces

    Science.gov (United States)

    Zubko, Nataliya; Gritsevich, Maria; Zubko, Evgenij; Hakala, Teemu; Peltoniemi, Jouni I.

    2016-07-01

    We experimentally study light scattering by particulate surfaces consisting of two high-contrast materials. Using the Finnish Geodetic Institute field goniospectropolarimeter, reflectance and degree of linear polarization are measured in dark volcanic sand, bright salt (NaCl) and bright ferric sulfate (Fe2(SO4)3); and in mixtures of bright and dark components. We found that the light-scattering response monotonically changes with volume ratio of dark and bright components. In contrast to previous finding, we do not detect an enhancement of the negative polarization amplitude in two-component high-contrast mixtures. Two-component mixtures reveal an inverse correlation between maximum of their linear polarization and reflectance near backscattering, the so-called Umov effect. In log-log scales this inverse correlation takes a linear form for the dark and moderate-dark samples, while for the brightest samples there is a noticeable deviation from the linear trend.

  7. Methods and apparatus for coating particulate material

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2012-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  8. Gel cast foam diesel particulate filters

    Energy Technology Data Exchange (ETDEWEB)

    Binner, J.G.P.; Hughes, S. [IPTME, Loughborough Univ., Loughborough (United Kingdom); Sambrook, R.M. [Dytech Corp. Ltd., Dronfield (United Kingdom)

    2004-07-01

    A new manufacturing route for foam ceramics based on gel casting has been developed and is being commercialised. Gel casting employs an organic monomer that is polymerised to cause the in-situ gelation of a foamed aqueous ceramic slurry. The primary advantage is the inherent flexibility of the process; the foams can be near net shape manufactured in a variety of shapes and sizes and after production are simply dried and fired. In addition, the porosity and pore size distribution can be varied to suit the application and a wide range of ceramics can be foamed with densities ranging from 5-40% of theoretical. Applications are diverse and include the potential to be used as diesel particulate filters (DPF). The present work examines this and concludes that filtration efficiencies of {>=}90% are achievable without generating a significant backpressure for the engine. (orig.)

  9. Assessment of Internal Fabric of Particulate Materials

    Science.gov (United States)

    Alshibi, Khalid A.

    2000-01-01

    Particle arrangement and distribution within a soil matrix has long been recognized as having significant influence on the mechanical behavior of cohesionless soils. It is well known that two soil specimens having the same grain type (e.g., quartz, feldspar, etc.), same grain size distribution and relative density (or void ratio) can display completely different mechanical behavior. Because of the different fabric configurations in the otherwise similar specimens, they are likely to have different mechanical properties such as stress-strain response, anisotropy, dilatancy, etc. Soil Fabric is defined as the arrangement of particles, particle groups and associated pore space. In the literature, fabric analysis techniques are mainly classified as destructive (e.g., specimen stabilization, thin-sectioning, and microscopy), and nondestructive techniques (e.g., magnetic resonance imaging, ultrasonic testing, x-ray radiography, and computed tomography). Quantifying the void ratio and its distribution is the main parameter used to describe the fabric of particulate materials. This paper presents a comprehensive literature review of fabric analysis techniques applied to particulate materials. In addition, the results of a comprehensive investigation to quantify void ratio of sand specimens will be presented and discussed. The sand used in the experiments in a natural, uniform rounded to sub-rounded silica sand known as F-75 banding sand with mean particle size of 0.22 mm. Uniform specimens and specimens subjected to different axial-strain levels tested under triaxial and biaxial conditions are examined to evaluate void ratio evolution and its distribution using destructive thin-sectioning and nondestructive Computed Tomography (CT) techniques. Details of a new innovative polygon generation technique called Voronoi tessellation used to quantify void ratio of microscopic images of sand grains will be presented and compared to classical Oda's method. Finally, frequency

  10. Exposure to daily ambient particulate polycyclic aromatic hydrocarbons and cough occurrence in adult chronic cough patients: A longitudinal study

    Science.gov (United States)

    Anyenda, Enoch Olando; Higashi, Tomomi; Kambayashi, Yasuhiro; Thao, Nguyen Thi Thu; Michigami, Yoshimasa; Fujimura, Masaki; Hara, Johsuke; Tsujiguchi, Hiromasa; Kitaoka, Masami; Asakura, Hiroki; Hori, Daisuke; Yamada, Yohei; Hayashi, Koichiro; Hayakawa, Kazuichi; Nakamura, Hiroyuki

    2016-09-01

    The specific components of airborne particulates responsible for adverse health effects have not been conclusively identified. We conducted a longitudinal study on 88 adult patients with chronic cough to evaluate whether exposure to daily ambient levels of particulate polycyclic aromatic hydrocarbons (PAH) has relationship with cough occurrence. Study participants were recruited at Kanazawa University Hospital, Japan and were physician-diagnosed to at least have asthma, cough variant asthma and/or atopic cough during 4th January to 30th June 2011. Daily cough symptoms were collected by use of cough diaries and simultaneously, particulate PAH content in daily total suspended particles collected on glass fiber filters were determined by high performance liquid chromatography coupled with fluorescence detector. Population averaged estimates of association between PAH exposure and cough occurrence for entire patients and subgroups according to doctor's diagnosis were performed using generalized estimating equations. Selected adjusted odds ratios for cough occurrence were 1.088 (95% confidence interval (CI): 1.031, 1.147); 1.209 (95% CI: 1.060, 1.379) per 1 ng/m3 increase for 2-day lag and 6-day moving average PAH exposure respectively. Likewise, 5 ring PAH had higher odds in comparison to 4 ring PAH. On the basis of doctor's diagnosis, non-asthma group had slightly higher odds ratio 1.127 (95% CI: 1.033, 1.228) per 1 ng/m3 increase in 2-day lag PAH exposure. Our findings suggest that ambient PAH exposure is associated with cough occurrence in adult chronic cough patients. The association may be stronger in non-asthma patients and even at low levels although there is need for further study with a larger sample size of respective diagnosis and inclusion of co-pollutants.

  11. Allergic airway inflammation by nasal inoculation of particulate matter (PM2.5 in NC/Nga mice.

    Directory of Open Access Journals (Sweden)

    Keiki Ogino

    Full Text Available To evaluate the effect of airborne particulate matter 2.5 (PM2.5 in winter on airway inflammation, water-soluble supernatant (Sup and water-insoluble precipitate (Pre in PM2.5 were inoculated in NC/Nga mice with high sensitivity to mite allergens. Sup with aluminum oxide was injected intraperitoneally for sensitization. Five days later, Sup, Pre or both Sup and Pre were inoculated via the nasal route five times for more sensitization and a challenge inoculation on the 11th day in NC/Nga mice. On the 12th day, mice were examined for airway hyperresponsiveness (AHR, BALF cell count and IL-1β concentration, mRNA expression of Th1 and Th2 cytokines, chemokines such as eotaxin 1 and eotaxin 2, inflammasomal complex molecules such as IL-1β, caspase 1 and the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3 in lung tissue as well as histopathology. The synergistic effect of Sup and Pre was observed in terms of increases in AHR, BALF cells, the mRNA expression of IL-13, eotaxin1 and IL-1β, and the IL-1β concentration in BALF. Intracellular deposits of insoluble particulates were observed in macrophages around inflammatory granulation of the mouse group treated with Sup and Pre. These results suggest that PM2.5 can induce airway hyperresponsiveness in mice with genetically high sensitivity to mite allergens by an inflammasome-associated mechanism and synergistic action of insoluble particulates and soluble components.

  12. Characterization and source apportionment of particulate matter Indonesia, during a recent peat fire episode.

    Science.gov (United States)

    See, Siao Wei; Balasubramanian, Rajasekhar; Rianawati, Elisabeth; Karthikeyan, Sathrugnan; Streets, David G

    2007-05-15

    An intensive field study was conducted in Sumatra, Indonesia, during a peat fire episode to investigate the physical and chemical characteristics of particulate emissions in peat smoke and to provide necessary data for source-receptor analyses. Ambient air sampling was carried out at three different sites located at varying distances from the peatfires to determine changes in mass and number concentrations of PM2.5 and its chemical composition (carbonaceous and nitrogenous materials, polycyclic aromatic hydrocarbons, water-soluble inorganic and organic ions, and total and water-soluble metals). The three sites represent a rural site directly affected by the local peat combustion, a semirural site, and an urban site situated downwind of the peat fires. The mass concentration of PM2.5 and the number concentration of airborne particles were as high as 1600 microg/m3 and 1.7 x 10(5) cm(-3), respectively, in the vicinity of peat fires. The major components of PM2.5 in peat smoke haze were carbonaceous particles, particularly organic carbon, NO3-, and SO4(2-), while the less abundant constituents included ions such as NH4+, NO2-, Na+, K+, organic acids, and metals such as Al, Fe, and Ti. Source apportionment by chemical mass balance receptor modeling indicates that peat smoke can travel long distances and significantly affect the air quality at locations downwind.

  13. Particulate Matter Pollution and its Regional Transport in the Mid-Atlantic States

    Science.gov (United States)

    He, H.; Goldberg, D. L.; Hembeck, L.; Canty, T. P.; Vinciguerra, T.; Ring, A.; Salawitch, R. J.; Dickerson, R. R.

    2015-12-01

    Particulate matter (PM) causes negative effects on human health, impair visibility in scenic areas, and affect regional/global climate. PM can be formed through chemical changes of precursors, including biogenic VOCs and anthropogenic SO2 and NOx often from fossil fuel combustion. In the past decades, PM pollution in the US has improved substantially. However, some areas in the Mid-Atlantic States are still designated as 'moderate' nonattainment by EPA. We utilize datasets obtained during the NASA 2011 DISCOVER-AQ campaign to characterize the composition and distribution of summertime PM pollution in the Mid-Atlantic States. Aircraft measurements and OMI satellite retrieval of major anthropogenic precursors (NO2 and SO2) are analyzed to investigate the regional transport of PM precursors from upwind sources. We compare PM concentration and chemical composition observed during the field campaign to CMAQ simulations with the latest EPA emission inventory. Specifically, we focus on the secondary organic aerosol (SOA) chemistry in CMAQ simulations using various biogenic VOCs estimates from the MEGAN and BEIS models. Airborne PM observations including PILS measurements from DISCOVER-AQ campaign and OMI retrievals of HCHO are also used to validate and improve the representation of SOA chemistry and PM pollution within CMAQ. The comparison reveals the source and evolution of PM pollution in the Mid-Atlantic States.

  14. Particulate organic acids in the atmosphere of Italian cities: Are they environmentally relevant?

    Science.gov (United States)

    Balducci, Catia; Cecinato, Angelo

    2010-02-01

    Mono- and dicarboxylic n-alkyl acids were extensively investigated in downtown Rome, Italy, and in Montelibretti, ˜30 km NE of the city, during 2005-2007. Congeners ranging from lauric to mellisic, and from succinic to α,ω-docosanedioic acids were evaluated as well as phthalic, palmitoleic and oleic acids, by solvent extraction of airborne particulates followed by derivatization with propanol in the presence of boron trifluoride, and gas chromatographic-mass spectrometric analysis. Shorter measurements were made in Milan, in Taranto, at suburban and rural sites of Italy, and in the polar regions, from 1996 to 2005. The predominance of palmitic and stearic acids observed elsewhere was confirmed, and the behaviour of azelaic and phthalic acids resulted strongly dependent upon the year season. In the urban sites, among the long-chain compounds, the lignoceric acid was usually the most abundant, while the cerotic, montanic and mellisic homologues cumulatively never exceeded 8% of the total. Unlike other contaminants, the concentrations of organic acids remained fairly invariant over the last decade, suggesting that more attention must be paid to them in the future.

  15. Pulmonary antioxidants exert differential protective effects against urban and industrial particulate matter

    Indian Academy of Sciences (India)

    L L Greenwell; T Moreno; R J Richards

    2003-02-01

    This investigation focuses on the application of an in vitro assay in elucidating the role of lung lining fluid antioxidants in the protection against inhaled particles, and to compare the toxicities of different airborne particulate matter (PM), PM10, collections from South Wales, UK. PM collections from both urban and industrial sites caused 50% oxidative degradation of DNA in vitro at concentrations as low as 12.9 ± 2.1 g ml–1 and 4.9 ± 0.9 mg ml–1 respectively. The primary source of this bioreactivity was found to be the soluble fraction of both particle collections. The coarser PM10–2.5 fraction also showed greater oxidative bioreactivity than the PM2.5–0.1 in both cases. When repeated in the presence of a low molecular weight fraction of fresh pulmonary lavage fluid, as well as in artificial lung lining fluid (200 M urate, glutathione and ascorbate), the DNA damage was significantly reduced in all cases ( < 0.05). The antioxidants exerted a greater effect on the industrial samples than on the urban samples, and on the PM10–2.5 fractions than on the PM2.5–0.1 fractions, supporting the previous findings that respirable PM and urban samples contain fewer free radical sources than inhalable PM and industrial samples.

  16. Ambient urban Baltimore particulate-induced airway hyperresponsiveness and inflammation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Walters, D.M.; Breysse, P.N.; Wills-Karp, M. [Childrens Hospital, Cincinnati, OH (United States). Medical Centre, Division of Immunobiology

    2001-10-15

    Airborne particulate matter (PM) is hypothesized to play a role in increases in asthma prevalence, although a causal relationship has yet to be established. To investigate the effects of real-world PM exposure on airway reactivity (AHR) and bronchoalveolar lavage (BAL) cellularity, mice were exposed to a single dose (0.5 mg/ mouse) of ambient PM, coal fly ash, or diesel PM. It was found that ambient PM exposure induced increases in AHR and BAL cellularity, whereas diesel PM induced significant increases in BAL cellularity, but not AHR. On the other hand, coal fly ash exposure did not elicit significant changes in either of these parameters. Ambient PM-induced temporal changes in AHR, BAL cells, and lung cytakine levels over a 2-wk period were then examined. Ambient PM-induced AHR was sustained over 7 d. The increase in AHR was preceded by dramatic increases in BAL eosinophils, whereas a decline in AHR was associated with increases in macrophages. It is concluded that ambient PM can induce asthmalike parameters in mice, suggesting that PM exposure may be an important factor in increases in asthma prevalence.

  17. Estimation of fine particulate matter in Taipei using landuse regression and bayesian maximum entropy methods.

    Science.gov (United States)

    Yu, Hwa-Lung; Wang, Chih-Hsih; Liu, Ming-Che; Kuo, Yi-Ming

    2011-06-01

    Fine airborne particulate matter (PM2.5) has adverse effects on human health. Assessing the long-term effects of PM2.5 exposure on human health and ecology is often limited by a lack of reliable PM2.5 measurements. In Taipei, PM2.5 levels were not systematically measured until August, 2005. Due to the popularity of geographic information systems (GIS), the landuse regression method has been widely used in the spatial estimation of PM concentrations. This method accounts for the potential contributing factors of the local environment, such as traffic volume. Geostatistical methods, on other hand, account for the spatiotemporal dependence among the observations of ambient pollutants. This study assesses the performance of the landuse regression model for the spatiotemporal estimation of PM2.5 in the Taipei area. Specifically, this study integrates the landuse regression model with the geostatistical approach within the framework of the Bayesian maximum entropy (BME) method. The resulting epistemic framework can assimilate knowledge bases including: (a) empirical-based spatial trends of PM concentration based on landuse regression, (b) the spatio-temporal dependence among PM observation information, and (c) site-specific PM observations. The proposed approach performs the spatiotemporal estimation of PM2.5 levels in the Taipei area (Taiwan) from 2005-2007.

  18. Organic composition of aerosol particulate matter during a haze episode in Kuala Lumpur, Malaysia

    Science.gov (United States)

    Radzi Bin Abas, M.; Rahman, Noorsaadah A.; Omar, Nasr Yousef M. J.; Maah, M. Jamil; Abu Samah, Azizan; Oros, Daniel R.; Otto, Angelika; Simoneit, Bernd R. T.

    The solvent-extractable compounds of urban airborne particulate matter were analyzed to determine the distributions of homologous and biomarker tracers. Samples were collected by high-volume air filtration during the haze episode of 1997 around the University of Malaya campus near Petaling Jaya, a suburb of Kuala Lumpur, Malaysia. These results show that the samples contain n-alkanes, n-alkan-2-ones, n-alkanols, methyl n-alkanoates, n-alkyl nitriles, n-alkanals, n-alkanoic acids, levoglucosan, PAHs, and UCM as the dominant components, with minor amounts of terpenoids, glyceryl esters and sterols, all derived from natural biogenic sources (vascular plant wax), from burning of biomass, and from anthropogenic utilization of fossil fuel products (lubricating oil, vehicle emissions, etc.). Some compositional differences are observed in the samples and greater atmospheric concentrations were found for almost all organic components in the samples collected near a roadway. The results interpreted in terms of major sources are due to local build-up of organic contaminants from vehicular emissions, smoke from biomass burning, and natural background as a result of the atmospheric stability during the haze episodes. The organic components transported in from areas outside the region, assuming all smoke components are external to the city, amount to about 30% of the total organic particle burden.

  19. Thermal Mapping Airborne Simulator for Small Satellite Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A high performance, inexpensive, airborne simulator that will serve as the prototype for a small satellite based imaging system capable of mapping thermal anomalies...

  20. Airborne Wide Area Imager for Wildfire Mapping and Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An autonomous airborne imaging system for earth science research, disaster response, and fire detection is proposed. The primary goal is to improve information to...

  1. Airborne Gravity: NGS' Gravity Data for CN03 (2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Nebraska collected in 2014 over one survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  2. Airborne Magnetic Trackline and Survey Data (Vector and Scalar Observations)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA National Centers for Environmental Information (formerly National Geophysical Data Center) receive airborne magnetic survey data from US and non-US...

  3. Dynamic network management and service integration for airborne network

    Science.gov (United States)

    Pan, Wei; Li, Weihua

    2009-12-01

    The development of airborne network is conducive to resource sharing, flight management and interoperability in civilian and military aviation fields. To enhance the integrated ability of airborne network, the paper focuses on dynamic network management and service integration architecture for airborne network (DNMSIAN). Adaptive routing based on the mapping mechanism between connection identification and routing identification can provide diversified network access, and ensure the credibility and mobility of the aviation information exchange. Dynamic network management based on trustworthy cluster can ensure dynamic airborne network controllable and safe. Service integration based on semantic web and ontology can meet the customized and diversified needs for aviation information services. The DNMSIAN simulation platform demonstrates that our proposed methods can effectively perform dynamic network management and service integration.

  4. Airborne Gravity: NGS' Gravity Data for EN09 (2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Massachusetts, Connecticut, Rhode Island, New Hampshire, New York, and the Atlantic Ocean collected in 2012 over 1 survey. This data set is...

  5. Airborne Gravity: NGS' Gravity Data for TS01 (2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Puerto Rico and the Virgin Islands collected in 2009 over 1 survey. This data set is part of the Gravity for the Re-definition of the...

  6. Airborne Gravity: NGS' Gravity Data for CN02 (2013 & 2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Nebraska collected in 2013 & 2014 over 3 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical...

  7. Airborne Gravity: NGS' Gravity Data for EN04 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Michigan and Lake Huron collected in 2012 over 1 survey. This data set is part of the Gravity for the Re-definition of the American...

  8. Airborne Gravity: NGS' Gravity Data for ES03 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Maryland, Pennsylvania, New Jersey, West Virginia, Virginia, Delaware, and the Atlantic Ocean collected in 2013 over 1 survey. This data...

  9. Airborne Gravity: NGS' Gravity Data for AN03 (2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 and 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  10. Airborne Gravity: NGS' Gravity Data for CS03 (2009)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas and Louisiana collected in 2009 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical...

  11. Airborne Gravity: NGS' Gravity Data for EN06 (2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Maine, Canada, and the Atlantic Ocean collected in 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the...

  12. Airborne Gravity: NGS' Gravity Data for EN05 (2012)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Minnesota, Wisconsin, and Michigan collected in 2012 over 1 survey. This data set is part of the Gravity for the Re-definition of the...

  13. Airborne Gravity: NGS' Gravity Data for EN10 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Pennsylvania, New Jersey, Connecticut and the Atlantic Ocean collected in 2013 over 1 survey. This data set is part of the...

  14. Airborne Gravity: NGS' Gravity Data for EN01 (2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Canada, and Lake Ontario collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the...

  15. Airborne Gravity: NGS' Gravity Data for EN08 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Vermont, New Hampshire, Massachusettes, Maine, and Canada collected in 2013 over 1 survey. This data set is part of the Gravity...

  16. Airborne Gravity: NGS' Gravity Data for PN01 (2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for California and Oregon collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical...

  17. Airborne Gravity: NGS' Gravity Data for ES01 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Florida, the Bahamas, and the Atlantic Ocean collected in 2013 over 1 survey. This data set is part of the Gravity for the Re-definition of...

  18. Airborne Gravity: NGS' Gravity Data for CS01 (2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alabama and Florida collected in 2008 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical...

  19. A Web-Based Airborne Remote Sensing Telemetry Server Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Web-based Airborne Remote Sensing Telemetry Server (WARSTS) is proposed to integrate UAV telemetry and web-technology into an innovative communication, command,...

  20. Airborne X-band SAR tomography for forest volumes

    Science.gov (United States)

    Muirhead, Fiona; Woodhouse, Iain H.; Mulgrew, Bernard

    2016-10-01

    We evaluate the usefulness of X-band, airborne (helicopter) data for tomography over forestry regions and discuss the use of compressive sensing algorithms to aid X-band airborne tomography. This work examines if there is any information that can be gained from forest volumes when analysing forestry sites using X-band data. To do so, different forest scenarios were simulated and a fast SAR simulator was used to model airborne multipass SAR data, at X-band, with parameters based on Leonardo's PicoSAR instrument. Model simulations considered varying factors that affect the height determination when using tomography. The main parameters that are considered here are: motion errors of the platform, the spacing of the flight paths, the resolution of the SAR images and plant life being present under the canopy (an understory). It was found that residual motion errors from the airborne platform cause the largest error in the tomographic profile.

  1. Airborne Wide Area Imager for Wildfire Mapping and Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An advanced airborne imaging system for fire detection/mapping is proposed. The goal of the project is to improve control and management of wildfires in order to...

  2. Airborne chemicals cause respiratory symptoms in individuals with contact allergy

    DEFF Research Database (Denmark)

    Elberling, J; Linneberg, A; Mosbech, H;

    2005-01-01

    Exposure to fragrance chemicals causes various eye and airway symptoms. Individuals with perfume contact allergy report these symptoms more frequently than individuals with nickel allergy or no contact allergies. However, the associations between contact allergy and respiratory symptoms elicited...... by airborne chemicals other than perfumes are unclear. The study aimed to investigate the association between eye and airway symptoms elicited by airborne chemicals (other than perfumes) and contact allergy in a population-based sample. A questionnaire on respiratory symptoms was posted, in 2002, to 1189...... individuals who participated in 1997/1998 in a Danish population-based study of allergic diseases. Questions about eye and airway symptoms elicited by different airborne chemicals and airborne proteins were included in the questionnaire. Data from the questionnaire were compared with data on patch testing...

  3. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.F.; Jiang, Z.C.; He, M.; Hu, B. [Wuhan University, Wuhan (China). Dept. of Chemistry

    2007-07-15

    A method of fluorination assisted electrothermal vaporization (FETV)-ICP-MS with polytetrafluoroethylene as fluorinating reagent was developed for the direct determination of trace rare earth elements (REEs) in coal fly ash and atmospheric particulates. Under the optimal conditions, the detection limits for REEs were 0.1 pg m{sup -3} (Eu) to 6.7 Pg m{sup -3} (Nd) with the precisions of 4.1% (Yb) to 10% (La) = 1 {mu} g L{sup -1}, n = 9). The proposed method was applied to determine trace REEs in coal fly ash, airborne particulates and NIES SRM No. 8 Vehicle Exhaust Particulates. It was found that the determined values for Y, La, Pr and Nd obtained by slurry sampling FETV-ICP-MS with external calibration coincided with that obtained by pneumatic nebulization (PN)-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. However, the determined values for Ce and Sm obtained by slurry sampling FETV-ICP-MS with external calibration were lower than that obtained by PN-ICP-MS and slurry sampling FETV-ICP-MS with standard addition.

  4. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling.

    Science.gov (United States)

    Zhang, Yuefei; Jiang, Zucheng; He, Man; Hu, Bin

    2007-07-01

    A method of fluorination assisted electrothermal vaporization (FETV)-ICP-MS with polytetrafluoroethylene as fluorinating reagent was developed for the direct determination of trace rare earth elements (REEs) in coal fly ash and atmospheric particulates. Under the optimal conditions, the detection limits for REEs were 0.1 pg m(-3)(Eu) to 6.7 pg m(-3)(Nd) with the precisions of 4.1%(Yb) to 10%(La) (c=1 microg L(-1), n=9). The proposed method was applied to determine trace REEs in coal fly ash, airborne particulates and NIES SRM No. 8 Vehicle Exhaust Particulates. It was found that the determined values for Y, La, Pr and Nd obtained by slurry sampling FETV-ICP-MS with external calibration coincided with that obtained by pneumatic nebulization (PN)-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. However, the determined values for Ce and Sm obtained by slurry sampling FETV-ICP-MS with external calibration were lower than that obtained by PN-ICP-MS and slurry sampling FETV-ICP-MS with standard addition.

  5. Key airborne pollutants. The impact on health

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, Robert [Department of Health, Room 661, Skipton House, 80 London Road, London SE1 6LH (United Kingdom)

    2004-12-01

    Current appreciations of the effect on health of classical air pollutants including nitrogen dioxide, sulphur dioxide, particulate matter, carbon monoxide and ozone, depend upon modern techniques of epidemiological research. These techniques, which are powerful and able to detect small effects, depend upon the power of modern computers and, though the theory was understood, their application was not possible for most research workers before about 1980. The methods involve handling large data sets and the application of complex methods of regression analysis. Dealing statistically with the many confounding factors that obscure and interact with the effects on health of air pollutants is possible using these methods. Early concerns about the adequacy of handling confounding factors have recently been allayed. This review considers short-term impacts, long-term impacts and areas where further research is required.

  6. Target detection algorithm for airborne thermal hyperspectral data

    OpenAIRE

    Marwaha, R.; Kumar, A.; Raju, P.L.N.; Y. V. N. Krishna Murthy

    2014-01-01

    Airborne hyperspectral imaging is constantly being used for classification purpose. But airborne thermal hyperspectral image usually is a challenge for conventional classification approaches. The Telops Hyper-Cam sensor is an interferometer-based imaging system that helps in the spatial and spectral analysis of targets utilizing a single sensor. It is based on the technology of Fourier-transform which yields high spectral resolution and enables high accuracy radiometric calibration. ...

  7. Assessment of airborne virus contamination in wastewater treatment plants

    OpenAIRE

    Masclaux, Frédéric; Hotz, Philipp; Gashi, Drita; Savova-Bianchi, Dessislava; Oppliger, Anne

    2014-01-01

    INTRODUCTION: Occupational exposure to bioaerosols in wastewater treatment plants (WWTP) and its consequence on workers׳ health are well documented. Most studies were devoted to enumerating and identifying cultivable bacteria and fungi, as well as measuring concentrations of airborne endotoxins, as these are the main health-related factors found in WWTP. Surprisingly, very few studies have investigated the presence and concentrations of airborne virus in WWTP. However, many enteric viruses ar...

  8. Calibration for Radiation Protection Equipment for the Measuring Airborne Tritium

    Institute of Scientific and Technical Information of China (English)

    CHEN; Xi-lin; SHEN; En-wei; WEI; Ke-xin; WANG; Kong-zhao; LI; Hou-wen; GE; Jian-an; LV; Xiao-xia

    2012-01-01

    <正>Monitoring airborne tritium is an important routine work in heavy water reactor nuclear power stations and the units related with tritium. Nowadays direct measuring instruments like hand carrying tritium monitors are more often used in routine workshop environment check. Need for calibrating such monitors was suggested. A trial work about the calibration for radiation protection equipment for measuring airborne tritium was carried out with a domestic standard EJ/T 1077-1998 equivalent that of IEC 710.

  9. Beryllium solubility in occupational airborne particles: Sequential extraction procedure and workplace application.

    Science.gov (United States)

    Rousset, Davy; Durand, Thibaut

    2016-01-01

    Modification of an existing sequential extraction procedure for inorganic beryllium species in the particulate matter of emissions and in working areas is described. The speciation protocol was adapted to carry out beryllium extraction in closed-face cassette sampler to take wall deposits into account. This four-step sequential extraction procedure aims to separate beryllium salts, metal, and oxides from airborne particles for individual quantification. Characterization of the beryllium species according to their solubility in air samples may provide information relative to toxicity, which is potentially related to the different beryllium chemical forms. Beryllium salts (BeF(2), BeSO(4)), metallic beryllium (Bemet), and beryllium oxide (BeO) were first individually tested, and then tested in mixtures. Cassettes were spiked with these species and recovery rates were calculated. Quantitative analyses with matched matrix were performed using inductively coupled plasma mass spectrometry (ICP-MS). Method Detection Limits (MDLs) were calculated for the four matrices used in the different extraction steps. In all cases, the MDL was below 4.2 ng/sample. This method is appropriate for assessing occupational exposure to beryllium as the lowest recommended threshold limit values are 0.01 µg.m(-3) in France([) (1) (]) and 0.05 µg.m(-3) in the USA.([ 2 ]) The protocol was then tested on samples from French factories where occupational beryllium exposure was suspected. Beryllium solubility was variable between factories and among the same workplace between different tasks.

  10. Airborne trace element pollution in 11 European cities assessed by exposure of standardised ryegrass cultures

    Science.gov (United States)

    Klumpp, Andreas; Ansel, Wolfgang; Klumpp, Gabriele; Breuer, Jörn; Vergne, Philippe; Sanz, María José; Rasmussen, Stine; Ro-Poulsen, Helge; Ribas Artola, Àngela; Peñuelas, Josep; He, Shang; Garrec, Jean Pierre; Calatayud, Vicent

    Within a European biomonitoring programme, Italian ryegrass ( Lolium multiflorum Lam.) was employed as accumulative bioindicator of airborne trace elements (As, Cd, Cr, Cu, Fe, Ni, Pb, Sb, V, Zn) in urban agglomerations. Applying a highly standardised method, grass cultures were exposed for consecutive periods of four weeks each to ambient air at up to 100 sites in 11 cities during 2000-2002. Results of the 2001 exposure experiments revealed a clear differentiation of trace element pollution within and among local monitoring networks. Pollution was influenced particularly by traffic emissions. Especially Sb, Pb, Cr, Fe, and Cu exhibited a very uneven distribution within the municipal areas with strong accumulation in plants from traffic-exposed sites in the city centres and close to major roads, and moderate to low levels in plants exposed at suburban or rural sites. Accumulation of Ni and V was influenced by other emission sources. The biomonitoring sites located in Spanish city centres featured a much higher pollution load by trace elements than those in other cities of the network, confirming previously reported findings obtained by chemical analyses of dust deposition and aerosols. At some heavily-trafficked sites, legal thresholds for Cu, Pb, and V contents in foodstuff and animal feed were reached or even surpassed. The study confirmed that the standardised grass exposure is a useful and reliable tool to monitor and to assess environmental levels of potentially toxic compounds of particulate matter.

  11. Dispersion Modeling and Characterization of Particulates from Land Application of Class B Biosolids

    Science.gov (United States)

    Bhat, Abhishek S.

    This study presents a comprehensive approach to understand the particle characteristics, identify the source profile, develop new equations for emission rates, analyze the source-receptor relationship, and develop and evaluate a numerical model for the dispersion and transport of particles released during the injection of biosolids. Two field studies were conducted in the summer of 2008 and 2009 to collect airborne particulate matter emitted during the injection application of class B biosolids. The sampling was carried out before (pre-application), during (application), and after (post-application) the application. The research work characterized the particulate emissions deposited on the aerosols spectrometer. The mass concentrations of fine (PM2.5) and ultrafine (PM 1.0) particles were highest during the pre-application. The mass concentration of thoracic fraction (PM2.5-10) increased significantly during the application. A bimodal size distribution was observed throughout the sampling. Nuclei mode formation was predominant during the pre-application and the post-application, whereas the accumulation mode was distinctive during the application. Airborne particles were collected on filter papers during the biosolids application process using an aerosol spectrometer. Scanning electron microscopy (SEM) coupled with an energy dispersive spectrometry (EDS) tool was used to analyze particles collected before, during, and after injection of biosolids. The major emphasis of the analysis was on providing in depth information on particle count, size, shape, morphology, and chemical composition. The particle count was significantly sensitive towards the different activities surrounding the application. The combination of SEM, particle analysis software, and EDS technique was capable of revealing detailed information on the size, shape, morphology, and chemical composition of individual particles. These techniques proved to be an effective non-destructive method for the

  12. Analysis of the high-temperature particulate collection problem

    Energy Technology Data Exchange (ETDEWEB)

    Razgaitis, R.

    1977-10-01

    Particulate agglomeration and separation at high temperatures and pressures are examined, with particular emphasis on the unique features of the direct-cycle application of fluidized-bed combustion. The basic long-range mechanisms of aerosol separation are examined, and the effects of high temperature and high pressure on usable collection techniques are assessed. Primary emphasis is placed on those avenues that are not currently attracting widespread research. The high-temperature, particulate-collection problem is surveyed, together with the peculiar requirements associated with operation of turbines with particulate-bearing gas streams. 238 references.

  13. Mineralogy and geochemistry of atmospheric particulates in western Iran

    Science.gov (United States)

    Ahmady-Birgani, Hesam; Mirnejad, Hassan; Feiznia, Sadat; McQueen, Ken G.

    2015-10-01

    This study investigates the mineralogy and physico-chemical properties of atmospheric particulates collected at Abadan (southwestern Iran) near the Persian Gulf coast and Urmia (northwestern Iran) during ambient and dust events over 6 months (winter 2011; spring 2012). Particle sizes collected were: TSP (total suspended particulates); PM10 (particulates Al, Mg, Na, Cl, P, S, Ca, K, Fe, Ti, and Si, mostly reflecting calcite, quartz, aluminosilicates, clays, gypsum and halite. Additionally, As, Pb, Zn, Mn, Sc, Nd, W, Ce, La, Ba and Ni were detected in TSP, PM10 and PM2.5 samples collected during dust events.

  14. Locating spilled oil with airborne laser fluorosensors

    Science.gov (United States)

    Brown, Carl E.; Fingas, Mervin F.; Nelson, Robert D.; Mullin, Joseph V.

    1999-02-01

    Locating oil in marine and terrestrial environments is a daunting task. There are commercially available off the shelf (COTS) sensors with a wide field-of-view (FOV) which can be used to map the overall extent of the spill. These generic sensors, however, lack the specificity required to positively identify oil and related products. The problem is exacerbated along beach and shoreline environments where a variety of organic and inorganic substrates are present. One sensor that can detect and classify oil in these environments is the laser fluorosensor. Laser fluorosensors have been under development by several agencies around the world for the past two decades. Environment Canada has been involved with laser fluorosensor development since the early 1990s. The prototype system was known as the Laser Environmental Airborne Fluorosensor (LEAF). The LEAF has recently been modified to provide real-time oil spill detection and classification. Fluorescence spectra are collected and analyzed at the rate of 100 Hz. Geo-referenced maps showing the locations of oil contamination are produced in real-time onboard the aircraft. While the LEAF has proven to be an excellent prototype sensor and a good operational tool, it has some deficiencies when it comes to oil spill response operations. A consortium including Environment Canada and the Minerals Management Service has recently funded the development of a new fluorosensor, called the Scanning Laser Environmental Airborne Fluorosensor (SLEAF). The SLEAF was designed to detect and map oil in shoreline environments where other non-specific sensors experience difficulty. Oil tends to pile up in narrow bands along the high tide line on beaches. A nadir-looking, small footprint sensor such as the LEAF would have difficulty locating oil in this situation. The SLEAF employs a pair of conical scanning mirrors to direct the laser beam in a circular pattern below the aircraft. With a sampling rate of 400 Hz and real-time spectral analysis

  15. High Resolution Airborne Shallow Water Mapping

    Science.gov (United States)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  16. The JAC airborne EM system: AEM-05

    Science.gov (United States)

    Leväniemi, H.; Beamish, D.; Hautaniemi, H.; Kurimo, M.; Suppala, I.; Vironmäki, J.; Cuss, R. J.; Lahti, M.; Tartaras, E.

    2009-03-01

    This paper describes the airborne electromagnetic (AEM) system operated by the Joint Airborne geoscience Capability (JAC), a partnership between the Finnish and British Geological Surveys. The system is a component of a 3-in-1, fixed-wing facility acquiring magnetic gradiometer and full spectrum radiometric data alongside the wing-tip, frequency-domain AEM measurements. The AEM system has recently (2005) been upgraded from 2 to 4 frequencies and now provides a bandwidth from 900 Hz to 25 kHz. The fixed-wing configuration of 4 dual vertical coplanar coils, offers a high signal/noise by virtue of the wingspan separation of the sensors. This unique configuration allows 3-in-1 surveys to be successfully performed at a variety of survey elevations when regulatory conditions are imposed. Its deployment on a twin-engine aircraft also permits low altitude surveying in countries, such as the UK, where this is a requirement. The development of the new AEM-05 system has been incremental and its history can be traced back over five decades. The AEM data acquired in the Finnish National Mapping project, and across northern Europe, have been used extensively in mineral exploration. More recent projects have investigated the application of the data to environmental, hydrogeological and land quality issues. These studies have been enhanced by reducing the flight line separation from 200 m (the national high-resolution scale) to 50 m. Our surveys also increasingly involve the application of AEM across populated areas often with extensive infrastructure. Additional secondary instrumentation has been introduced to provide an increased understanding of the data and the AEM responses observed. The secondary systems include an accurate, high sampling rate laser altimeter, a downward-looking digital camera to record the flight path, a 50/60 Hz power line monitor and a GPS gyroscope. The paper is intended as an overview and provides descriptions of the new AEM system, the secondary

  17. POTENTIAL OF AIRBORNE IMAGING SPECTROSCOPY AT CZECHGLOBE

    Directory of Open Access Journals (Sweden)

    J. Hanuš

    2016-06-01

    Full Text Available Ecosystems, their services, structures and functions are affected by complex environmental processes, which are both natural and human-induced and globally changing. In order to understand how ecosystems behave in globally changing environment, it is important to monitor the current status of ecosystems and their structural and functional changes in time and space. An essential tool allowing monitoring of ecosystems is remote sensing (RS. Many ecosystems variables are being translated into a spectral response recorded by RS instruments. It is however important to understand the complexity and synergies of the key ecosystem variables influencing the reflected signal. This can be achieved by analysing high resolution RS data from multiple sources acquired simultaneously from the same platform. Such a system has been recently built at CzechGlobe - Global Change Research Institute (The Czech Academy of Sciences. CzechGlobe has been significantly extending its research infrastructure in the last years, which allows advanced monitoring of ecosystem changes at hierarchical levels spanning from molecules to entire ecosystems. One of the CzechGlobe components is a laboratory of imaging spectroscopy. The laboratory is now operating a new platform for advanced remote sensing observations called FLIS (Flying Laboratory of Imaging Spectroscopy. FLIS consists of an airborne carrier equipped with passive RS systems. The core instrument of FLIS is a hyperspectral imaging system provided by Itres Ltd. The hyperspectral system consists of three spectroradiometers (CASI 1500, SASI 600 and TASI 600 that cover the reflective spectral range from 380 to 2450 nm, as well as the thermal range from 8 to 11.5 μm. The airborne platform is prepared for mounting of full-waveform laser scanner Riegl-Q780 as well, however a laser scanner is not a permanent part of FLIS. In 2014 the installation of the hyperspectral scanners was completed and the first flights were carried out

  18. Potential of Airborne Imaging Spectroscopy at Czechglobe

    Science.gov (United States)

    Hanuš, J.; Fabiánek, T.; Fajmon, L.

    2016-06-01

    Ecosystems, their services, structures and functions are affected by complex environmental processes, which are both natural and human-induced and globally changing. In order to understand how ecosystems behave in globally changing environment, it is important to monitor the current status of ecosystems and their structural and functional changes in time and space. An essential tool allowing monitoring of ecosystems is remote sensing (RS). Many ecosystems variables are being translated into a spectral response recorded by RS instruments. It is however important to understand the complexity and synergies of the key ecosystem variables influencing the reflected signal. This can be achieved by analysing high resolution RS data from multiple sources acquired simultaneously from the same platform. Such a system has been recently built at CzechGlobe - Global Change Research Institute (The Czech Academy of Sciences). CzechGlobe has been significantly extending its research infrastructure in the last years, which allows advanced monitoring of ecosystem changes at hierarchical levels spanning from molecules to entire ecosystems. One of the CzechGlobe components is a laboratory of imaging spectroscopy. The laboratory is now operating a new platform for advanced remote sensing observations called FLIS (Flying Laboratory of Imaging Spectroscopy). FLIS consists of an airborne carrier equipped with passive RS systems. The core instrument of FLIS is a hyperspectral imaging system provided by Itres Ltd. The hyperspectral system consists of three spectroradiometers (CASI 1500, SASI 600 and TASI 600) that cover the reflective spectral range from 380 to 2450 nm, as well as the thermal range from 8 to 11.5 μm. The airborne platform is prepared for mounting of full-waveform laser scanner Riegl-Q780 as well, however a laser scanner is not a permanent part of FLIS. In 2014 the installation of the hyperspectral scanners was completed and the first flights were carried out with all

  19. Influence of organic and inorganic markers in the source apportionment of airborne PM10 in Zaragoza (Spain) by two receptor models.

    Science.gov (United States)

    Callén, M S; López, J M; Mastral, A M

    2013-05-01

    Improving knowledge on the apportionment of airborne particulate matter will be useful to handle and fulfill the legislation regarding this pollutant. The main aim of this work was to assess the influence of markers in the source apportionment of airborne PM10, in particular, whether the use of particle polycyclic aromatic hydrocarbon (PAH) and ions provided similar results to the ones obtained using not only the mentioned markers but also gas phase PAH and trace elements. In order to reach this aim, two receptor models: UNMIX and positive matrix factorization were applied to two sets of data in Zaragoza city from airborne PM10, a previously reported campaign (2003-2004) (Callén et al. Chemosphere 76:1120-1129, 2009), where PAH associated to the gas and particle phases, ions and trace elements were used as markers and a long sampling campaign (2001-2009), where only PAH in the particle phase and ions were analyzed. For both campaigns, positive matrix factorization was able to explain a higher number of sources than the UNMIX model. Independently of the sampling campaign and the receptor model used, soil resuspension was the main PM10 source, especially in the warm period (21st March-21st September), where most of the PM10 exceedances were produced. Despite some of the markers of anthropogenic sources were different for both campaigns, common sources associated to different combustion sources (coal, light-oil, heavier-oil, biomass, and traffic) were found and PAH in particle phase and ions seemed to be good markers for the airborne PM10 apportionment.

  20. Airborne infrared spectrophotometry of Mira variables

    Science.gov (United States)

    Strecker, D. W.; Erickson, E. F.; Witteborn, F. C.

    1978-01-01

    Airborne spectrophotometric observations of R Cas near minimum and maximum light, R Leo near minimum, and NML Tau near maximum are reported which were obtained over the wavelength range from 1.2 to 4 microns with 1.5% resolution. The spectral energy distributions of the three stars at the indicated times are presented, and it is shown that the H2O bands at 1.4, 1.9, and 2.7 microns are clearly evident in all the spectra, while the absorption bands of CO at about 1.6 and 2.3 microns are probably present although they are masked by the strong water vapor features. The results indicate that water vapor is the dominant opacity source in the atmospheres of Mira variables, that R Leo and NML Tau may be fitted well over the entire spectrum by respective single temperatures of 2250 and 1800 K, and that R Cas near both minimum and maximum cannot be adequately described by one temperature over the entire wavelength range investigated. The shapes and depths of the absorption bands are determined together with the apparent angular diameter of each star and the equivalent widths of the H2O + CO absorption bands. It is concluded that water vapor absorption is more strongly correlated with color temperature than with spectral type for R Cas and R Leo.