WorldWideScience

Sample records for airborne particulate matter

  1. Health Effects of Airborne Particulate Matter Trace Elements

    Institute of Scientific and Technical Information of China (English)

    XIANG GAO; QI YU; LI-MIN CHEN

    2005-01-01

    The effects of airborne particulate matter (PM) trace elements on health are widely concerned nowadays. Many achievements have been made while many unknowns exist. This article reports the recent research progresses, describes the effects of exposure to PM trace elements on health epidemiological evidence, toxicology findings, and raises some questions for future studies.

  2. Transport of airborne particulate matters originating from Mentougou, Beijing, China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this study, a coupled regional air quality modeling system is applied to investigate the time spatial variations in airborne particulate matters (PM10), originating from Mentougou to Beijing municipal area in the period of April 1-7, 2004, and the influences of complex terrain and meteorological conditions upon boundary layer structure and PMio concentration distributions. An intercomparison of the performance with CALPUFF against the observed data is presented and an examination of scatter plots is provided. The statistics show that the correlation coefficient and STD between the modeled and observed data are 0.86 and 0.03, respectively. Analysis of model results illustrates that the pollutants emitted from Mentougou can be transported to Beijing municipal area along certain transport pathways, and PMio concentration distributions show heterogeneity characteristics. Contributions of the Mentougou sources to the PMio concentrations in Beijing municipal area are up to 0.1-15 μg/m3.

  3. Skin Damage Mechanisms Related to Airborne Particulate Matter Exposure.

    Science.gov (United States)

    Magnani, Natalia D; Muresan, Ximena M; Belmonte, Giuseppe; Cervellati, Franco; Sticozzi, Claudia; Pecorelli, Alessandra; Miracco, Clelia; Marchini, Timoteo; Evelson, Pablo; Valacchi, Giuseppe

    2016-01-01

    Epidemiological studies suggest a correlation between increased airborne particulate matter (PM) and adverse health effects. The mechanisms of PM-health effects are believed to involve oxidative stress and inflammation. To evaluate the ability of PM promoting skin tissue damage, one of the main organs exposed to outdoor pollutants, we analyzed the effect of concentrated ambient particles (CAPs) in a reconstructed human epidermis (RHE) model. RHE tissues were exposed to 25 or 100 µg/ml CAPs for 24 or 48 h. Data showed that RHE seems to be more susceptible to CAPs-induced toxicity after 48 h exposure than after 24 h. We found a local reactive O(2) species (ROS) production increase generated from metals present on the particle, which contributes to lipids oxidation. Furthermore, as a consequence of altered redox status, NFkB nucleus translocation was increase upon CAPs exposure, as well as cyclooxygenase 2 and cytochrome P450 levels, which may be involved in the inflammatory response initiated by PM. CAPs also triggered an apoptotic process in skin. Surprisingly, by transition electron microscopy analysis we showed that CAPs were able to penetrate skin tissues. These findings contribute to the understanding of the cutaneous pathophysiological mechanisms initiated by CAPs exposure, where oxidative stress and inflammation may play predominant roles. PMID:26507108

  4. Ecological effect of airborne particulate matter on plants

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Prajapati

    2012-03-01

    Full Text Available Atmospheric particulate matter is a mixture of diverse elements. Deposition of particulate matter to vegetated surfaces depends on the size distribution of these particles and, to a lesser extent, on the chemistry. Effects of particulate matter on vegetation may be associated with the reduction in light required for photosynthesis and an increase in leaf temperature due to changed surface optical properties. Changes in energy exchange are more important than the diffusion of gases into and out of leaves which is influenced by dust load, color and particle size. Alkaline dust materials may cause leaf surface injury while other materials may be taken up across the cuticle. A more probable route for metabolic uptake and impact on vegetation and ecosystems is through the rhizosphere. Interception of dusts by vegetation makes an important contribution to the improvement of air quality in the vicinity of vegetation. Although the effect of particulate matter on ecosystem is linked to climate change, there is little threat due to un-speciated particulate matter on a regional scale.

  5. Fe, Ni and Zn speciation, in airborne particulate matter

    Science.gov (United States)

    Thiodjio Sendja, Bridinette; Aquilanti, Giuliana; Vassura, Ivano; Giorgetti, Marco

    2016-05-01

    The study of elemental speciation in atmospheric particulate matter is important for the assessment of the source of the particle as well for the evaluation of its toxicity. XANES data at Fe, Ni, and Zn K-edges are recorded on a sample of urban dust (from the Rimini area of Emilia Romagna region, Italy) deposited on a filter and on the NIST standard reference material 1648. Using linear combination fitting we give an indication of the chemical species of the three metals present in the samples.

  6. Qualitative and quantitative determination of water in airborne particulate matter

    Directory of Open Access Journals (Sweden)

    S. Canepari

    2012-10-01

    Full Text Available This paper describes the optimization and validation of a new simple method for the quantitative determination of water in atmospheric particulate matter (PM. The analyses are performed by using a coulometric Karl-Fisher system equipped with a controlled heating device; different water contributions are separated by the application of an optimized thermal ramp (three heating steps: 50–120 °C, 120–180 °C, 180–250 °C.

    The analytical performance of the method was verified by using standard materials containing 5.55% and 1% by weight of water. The recovery was greater than 95%; the detection limit was about 20 μg. The method was then applied to NIST reference materials (NIST1649a, urban particulate matter and to real PM10 samples collected in different geographical areas. In all cases the repeatability was satisfactory (10–15%.

    When analyzing the reference material, the separation of four different types of water was obtained. In real PM10 samples the amount of water and its thermal profile differed as a function of the chemical composition of the dust. Mass percentages of 3–4% of water were obtained in most samples, but values up to about 15% were reached in areas where the chemical composition of PM is dominated by secondary inorganic ions and organic matter. High percentages of water were also observed in areas where PM is characterized by the presence of desert dust.

    A possible identification of the quality of water released from the samples was tried by applying the method to some hygroscopic compounds that are likely contained in PM (pure SiO2, Al2O3, ammonium salts, carbohydrates and dicarboxylic acids and by comparing the results with those obtained from field samples.

  7. Application of 2D-GCMS reveals many industrial chemicals in airborne particulate matter

    Science.gov (United States)

    Alam, Mohammed S.; West, Charles E.; Scarlett, Alan G.; Rowland, Steven J.; Harrison, Roy M.

    2013-02-01

    Samples of airborne particulate matter (PM2.5) have been collected in Birmingham, UK and extracted with dichloromethane prior to analysis by two-dimensional GC separation and TOFMS analysis. Identification of compounds using the NIST spectral library has revealed a remarkable diversity of compounds, some of which have not been previously reported in airborne analyses. Groups of compounds identified in this study include a large number of oxygenated VOC including linear and branched compounds, substituted aromatic compounds and alicyclic compounds, oxygenated polycyclic aromatic and alicyclic compounds, organic nitrogen compounds, branched chain VOC and substituted aromatic VOC, phthalates, organo-phosphates and organo-sulphate compounds. Many of the compounds identified are mass production chemicals, which due to their semi-volatility enter the atmosphere and subsequently partition onto pre-existing aerosol. Their contribution to the toxicity of airborne particulate matter is currently unknown but might be significant. The diverse industrial uses and potential sources of the identified compounds are reported.

  8. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Buggiano, Valeria; Petrillo, Ezequiel; Alló, Mariano; Lafaille, Celina [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); Redal, María Ana [Instituto de Ciencias Básicas y Medicina Experimental, Hospital Italiano de Buenos Aires (Argentina); Alghamdi, Mansour A. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Khoder, Mamdouh I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah (Saudi Arabia); Shamy, Magdy [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Muñoz, Manuel J., E-mail: mmunoz@fbmc.fcen.uba.ar [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); and others

    2015-07-15

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5′ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: • Airborne particulate matter (PM10) affects alternative splicing in colon cells. • PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. • This variant has a longer 5′ unstranslated region and introduces an upstream AUG. • By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. • BMP-4 downregulation was previously reported to be associated to colon cancer.

  9. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells

    International Nuclear Information System (INIS)

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5′ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: • Airborne particulate matter (PM10) affects alternative splicing in colon cells. • PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. • This variant has a longer 5′ unstranslated region and introduces an upstream AUG. • By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. • BMP-4 downregulation was previously reported to be associated to colon cancer

  10. Real-world exposure of airborne particulate matter triggers oxidative stress in an animal model

    OpenAIRE

    Wan, Guohui; Rajagopalan, Sanjay; Sun, Qinghua; Zhang, Kezhong

    2010-01-01

    Epidemiological studies have shown a strong link between air pollution and the increase of cardio-pulmonary mortality and morbidity. In particular, inhaled airborne particulate matter (PM) exposure is closely associated with the pathogenesis of air pollution-induced systemic diseases. In this study, we exposed C57BIV6 mice to environmentally relevant PM in fine and ultra fine ranges (diameter < 2.5 μm, PM2.5) using a “real-world” airborne PM exposure system. We investigated the pathophysiolog...

  11. Collaborative monitoring study of airborne particulate matters among seven Asian countries

    International Nuclear Information System (INIS)

    Seven Asian countries have been collaborating in collecting airborne particulate matter (APM) in their individual countries and analyzing them by neutron activation analysis as a common analytical tool. APM samples were collected into two fractions of fine and coarse grains (PM2 and PM2- 10, respectively). Analytical data were compared from several viewpoints such as particulate sizes, locality of sampling sites (either urban or rural) and geographical location of participating countries. Chemical composition and their monthly variations as well as mass concentrations appear to be highly characteristic for individual sampling sites, suggesting that NAA data are suitable for evaluating the air quality in each site. (author)

  12. Sampling and analytical methodologies for energy dispersive X-ray fluorescence analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    The present document represents an attempt to summarize the most important features of the different forms of ED-XFR as applied to the analysis of airborne particulate matter. It is intended to serve as a set of guidelines for use by participants in the IAEA's own programmes, and other scientists, who are not yet fully experienced in the application of ED-XRF to airborne particulate samples, and who wish either to make a start on using this technique or to improve their existing procedures. The methodologies for sampling described in this document are of rather general applicability. Emphasis is also placed on the sources of errors affecting the sampling of airborne particulate matter. The analytical part of the document describes the different forms of ED-XRF and their potential applications. Spectrum evaluation, a key step in X-ray spectrometry, is covered in depth, including discussion on several calibration and peak fitting techniques and computer programs especially designed for this purpose. 148 refs, 25 figs, 13 tabs

  13. Collection of airborne particulate matter for a subsequent analysis by total reflection X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Klockenkaemper, R.; Bayer, H.; Bohlen, A. von; Schmeling, M.; Klockow, D. [Institut fuer Spektrochemie und Angewandte Spektroskopie, Dortmund (Germany)

    1995-06-01

    The collection of airborne particulate matter by filtration and impaction was adapted to total reflection X-ray fluorescence analysis (TXRF). Cellulose nitrate filters were used for collecting in a Berner impactor. Single filter spots were punched out, placed on quartz-glass carriers, dissolved by tetrahydrofuran and re-precipitated prior to element determinations by TXRF. In a Battelle-type impactor, airborne dust was collected on Plexiglass carriers coated with medical Vaseline. The loaded carriers were directly analyzed by TXRF. In both cases, quantification was simply performed by the addition of an internal standard after sampling. Impactors were made of a suitable material in order to investigate high blank values, collection losses and memory effects. It could be shown that stainless steel, even coated with TiN, is less suitable and should be avoided as an impactor material. Although aluminum is partly recommendable, titanium and the polymer Makrolon are quite appropriate. By using an impactor made of these materials, a reliable multielement determination in airborne dust is made possible with low detection limits as low as 1 ng/m{sup 3} and a satisfactory repeatability of a few %. Short sampling times of only 1 h or less can be realized. The total procedure is simple and time-saving, and can be recommended for routine investigations of airborne particulate matter. (author).

  14. Characterization of airborne particulate matter in the metropolitan region of Belo Horizonte

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Fernanda V.F.; Ardisson, Jose Domingos; Rodrigues, Paulo Cesar H.; Brito, Walter de; Macedo, Waldemar Augusto A.; Jacomino, Vanusa Maria F., E-mail: ferufv@yahoo.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    In this work soil samples, iron ore and airborne atmospheric particulate matter (PM) in the Metropolitan Region of Belo Horizonte (MRBH), State of Minas Gerais, Brazil, are investigated with the aim of identifying if the sources of the particulate matter are of natural origin, such as, resuspension of particles from soil, or due to anthropogenic origins from mining and processing of iron ore. Samples were characterized by powder X-ray diffraction, X-ray fluorescence and {sup 57}Fe-Moessbauer spectroscopy. The results showed that soil samples studied are rich in quartz and have low contents of iron mainly iron oxide with low crystallinity. The samples of iron ore and PM have high concentration of iron, predominantly well crystallized hematite. {sup 57}Fe-Moessbauer spectroscopy confirmed the presence of similar iron oxides in samples of PM and in the samples of iron ore, indicating the anthropogenic origin in the material present in atmosphere of the study area. (author)

  15. Determination of basic azaarenes and polynuclear aromatic hydrocarbons in airborne particulate matter by gas chromatography

    DEFF Research Database (Denmark)

    Nielsen, Torben; Clausen, Peraxel; Jensen, Finn Palmgren

    1986-01-01

    phase (adjusted to pH 14 with potassium hydroxide) with dichloromethane, and determined by capillary gas chromatography (g.c.) with a nitrogen-sensitive detector. The PAH in the toluene phase are isolated by means of semipreparative high-performance liquid chromatography and liquid-liquid extraction......Polynuclear aromatic hydrocarbons (PAH) and their nitrogen analogs, basic azaarenes, are extracted from samples of airborne particulate matter by toluene with ultrasonic treatment. The basic azaarenes are extracted from the toluene phase with phosphoric acid, re-extracted from the phosphoric acid...

  16. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Erin N., E-mail: Erin.Haynes@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Chen, Aimin, E-mail: Aimin.Chen@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Ryan, Patrick, E-mail: Patrick.Ryan@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Succop, Paul, E-mail: Paul.Succop@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Wright, John, E-mail: John.Wright@uc.edu [College of Education, Criminal Justice, and Human Services, University of Cincinnati, Cincinnati, OH 45221 (United States); Dietrich, Kim N., E-mail: Kim.Dietrich@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States)

    2011-11-15

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter ({<=}2.5 {mu}m) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban-rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003-2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3-4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter {<=}2.5 and {<=}10 {mu}m emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical

  17. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    International Nuclear Information System (INIS)

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter (≤2.5 μm) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban–rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003–2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3–4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter ≤2.5 and ≤10 μm emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical

  18. Honey Bees (Apis mellifera, L. as Active Samplers of Airborne Particulate Matter.

    Directory of Open Access Journals (Sweden)

    Ilaria Negri

    Full Text Available Honey bees (Apis mellifera L. are bioindicators of environmental pollution levels. During their wide-ranging foraging activity, these hymenopterans are exposed to pollutants, thus becoming a useful tool to trace the environmental contaminants as heavy metals, pesticides, radionuclides and volatile organic compounds. In the present work we demonstrate that bees can also be used as active samplers of airborne particulate matter. Worker bees were collected from hives located in a polluted postmining area in South West Sardinia (Italy that is also exposed to dust emissions from industrial plants. The area is included in an official list of sites of national interest for environmental remediation, and has been characterized for the effects of pollutants on the health of the resident population. The head, wings, hind legs and alimentary canal of the bees were investigated with Scanning Electron Microscopy coupled with X-ray spectroscopy (SEM-EDX. The analyses pointed to specific morphological and chemical features of the particulate, and resulted into the identification of three categories of particles: industry-, postmining-, and soil-derived. With the exception of the gut, all the analyzed body districts displayed inorganic particles, mostly concentrated in specific areas of the body (i.e. along the costal margin of the fore wings, the medial plane of the head, and the inner surface of the hind legs. The role of both past mining activities and the industrial activity close to the study area as sources of the particulate matter is also discussed. We conclude that honey bees are able to collect samples of the main airborne particles emitted from different sources, therefore could be an ideal tool for monitoring such a kind of pollutants.

  19. Airborne Particulate Threat Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  20. Morphology, chemical composition, and bacterial concentration of airborne particulate matter in rabbit farms

    Directory of Open Access Journals (Sweden)

    Elisa Adell

    2012-12-01

    Full Text Available Livestock houses are major sources of airborne particulate matter (PM, which can originate from manure, feed, feathers, skin and bedding and may contain and transport microorganisms. Improved knowledge of particle size, morphology, chemical and microbiological composition of PM in livestock houses can help identify major sources of PM and contribute to the development of appropriate source-specific reduction techniques. In rabbit production systems, however, there is limited information on specific particle characteristics. The objective of this study was to characterise airborne PM in rabbit farms in terms of morphology, chemical compositions and bacterial concentration in different size fractions. Size-fractioned PM was sampled in the air of 2 rabbit farms, 1 for fattening rabbits and 1 for reproductive does, using a virtual cascade impactor, which simultaneously collected total suspended PM (TSP, PM10 and PM2.5 size fractions. Airborne PM samples were examined by light microscopy and scanning electron microscopy combined with energy dispersive X-ray analysis. Representative samples from potential sources of PM were also collected and examined. Additionally, a methodology to extract bacteria from the collected samples of airborne PM was developed to determine the bacterial concentration per PM size fraction. Results showed that airborne PM in rabbit farms is highly complex in particle morphology, especially in size. Broken skin flakes, disintegrated particles from feed or faecal material from mechanical fracture are the main sources of airborne PM in rabbit farms. Major elements found in rabbit airborne PM were S, Ca, Mg, Na and Cl. Bacterial concentrations ranged from 1.7×104 to 1.6×106 colony forming units (CFU/m3 (TSP; from 3.6×103 to 3.0×104 CFU/m3 (PM10; and from 3.1×103 to 1.6×104 CFU/m3 (PM2.5. Our results will improve the knowledge on essential particle characteristics necessary to understand PM’s origin in rabbit farms and

  1. Assessment of Elemental Content in Airborne Particulate Matter in Bratislava Atmosphere using INAA and AAS

    Science.gov (United States)

    Meresova, J.; Florek, M.; Frontasyeva, M. V.; Pavlov, S. S.; Holy, K.; Sykora, I.

    2007-11-01

    The wide range concentration of elements including heavy metals, halogens and rare earths in airborne particulate matter were investigated. Sixteen samples were collected on filters in Meteorological station, Comenius University Bratislava (Slovak Republic) in different seasons. Using instrumental neutron activation analysis (INAA) the concentrations of 29 elements (Na, Al, Cl, K, Ca, Sc, Ti, V, Mn, Fe, Ga, As, Se, Br, Rb, In, Sb, I, Cs, Ba, La, Sm, Dy, Tm, W, Au, Hg, Th, U) were determined. The concentrations of other 6 elements (Cr, Ni, Cu, Zn, Cd, Pb) were measured by atomic absorption spectrometry (AAS). The obtained results allow us to better understand the dynamic processes in the atmosphere and to quantify the air pollution and its trends.

  2. Trace element determination in the airborne particulate matter of Bangkok and Samutprakan by INAA

    International Nuclear Information System (INIS)

    During October 1995 - January 1996, 66 samples of airborne particulate matter were collected from Bangkok and Samutprakan provinces. Samples of the particle sizes of 2.5 - 10 microns (33 samples) and less than 2.5 microns (33 samples) were determined for elemental concentration of 34 elements. A comparative study of the data from both sampling size was initiated to investigate the trends, source and origin of the aerosols by comparing the concentration, enrichment factor (E F) and coarse/ fine ratio. The results show Al, Fe, Sc are from crustal elements, Ca, K, Mn, V has moderate high E F and As, Br, Cd, Cu, Ni, Sb, Se and Zn has rather high E F. Comparison between the two sites yields higher levels of As and Sb at Samutprakan appearly due to smelting or other industries nearby. Higher level of Br might be due to the heavier of transportation of trucks in and out of the city

  3. Genotoxicity of organic extracts of urban airborne particulate matter: an assessment within a personal exposure study.

    Science.gov (United States)

    Abou Chakra, Oussama R; Joyeux, Michel; Nerrière, Eléna; Strub, Marie-Pierre; Zmirou-Navier, Denis

    2007-01-01

    Airborne particulate matter, PM(10) and PM(2.5), are associated with a range of health effects including lung cancer. Their complex organic fraction contains genotoxic and carcinogenic compounds such as polycyclic aromatic hydrocarbons (PAHs) and their derivatives. This study evaluates the genotoxicity of the PM(10) and PM(2.5) organic extracts that were sampled in the framework of a personal exposure study in three French metropolitan areas (Paris, Rouen and Strasbourg), using the comet assay, performed on HeLa S3 cells. In each city, 60-90 non-smoking volunteers composed of two groups of equal size (adults and children) carried the personal Harvard Chempass multi-pollutant sampler during 48h along two different seasons ('hot' and 'cold'). Volunteers were selected so as to live (home and work/school) in 3 different urban sectors contrasted in terms of air pollution within each city (one highly exposed to traffic emissions, one influenced by local industrial sources, and a background urban environment). Genotoxic effects are stronger for PM(2.5) extracts than for PM(10), and greater in winter than in summer. Fine particles collected by subjects living within the traffic proximity sector present the strongest genotoxic responses, especially in the Paris metropolitan area. This work confirms the genotoxic potency of particulate matter (PM(10) and PM(2.5)) organic extracts to which urban populations are exposed. PMID:16901531

  4. Impact of banning of two-stroke engines on airborne particulate matter concentrations in Dhaka, Bangladesh.

    Science.gov (United States)

    Begum, Bilkis A; Biswas, Swapan K; Hopke, Philip K

    2006-01-01

    Vehicular air pollution is common in growing metropolitan areas throughout the world. Vehicular emissions of fine particles are particularly harmful because they occur near ground level, close to where people live and work. Two-stroke engines represented an important contribution to the motor vehicle emissions where they constitute approximately half of the total vehicle fleet in Dhaka city. Two-stroke engines have lower fuel efficiency than four-stroke engines, and they emit as much of an order of magnitude and more particulate matter (PM) than four-stroke engines of similar size. To eliminate their impact on air quality, the government of Bangladesh promulgated an order banning all two-stroke engines from the roads in Dhaka starting on December 31, 2002. The effect of the banning of two-stroke engines on airborne PM was studied at the Farm Gate air quality-monitoring station in Dhaka (capital of Bangladesh), a hot spot with very high-pollutant concentrations because of its proximity to major roadways. The samples were collected using a "Gent" stacked filter unit in two fractions of 0-2.2 microm and 2.2-10 microm sizes. Samples of fine and coarse fractions of airborne PM collected from 2000 to 2004 were studied. It has been found that the fine PM and black carbon concentrations decreased from the previous years because of the banning of two-stroke engine baby taxies.

  5. Real-world exposure of airborne particulate matter triggers oxidative stress in an animal model

    Science.gov (United States)

    Wan, Guohui; Rajagopalan, Sanjay; Sun, Qinghua; Zhang, Kezhong

    2010-01-01

    Epidemiological studies have shown a strong link between air pollution and the increase of cardio-pulmonary mortality and morbidity. In particular, inhaled airborne particulate matter (PM) exposure is closely associated with the pathogenesis of air pollution-induced systemic diseases. In this study, we exposed C57BIV6 mice to environmentally relevant PM in fine and ultra fine ranges (diameter < 2.5 μm, PM2.5) using a “real-world” airborne PM exposure system. We investigated the pathophysiologic impact of PM2.5 exposure in the animal model and in cultured primary pulmonary macrophages. We demonstrated that PM2.5 exposure increased the production of reactive oxygen species (ROS) in blood vessels in vivo. Furthermore, in vitro PM2.5 exposure experiment suggested that PM2.5 could trigger oxidative stress response, reflected by an increased expression of the anti-oxidative stress enzymes superoxide dismutase-1 (SOD-1) and heme oxygenase-1(HO-1), in mouse primary macrophages. Together, the results obtained through our “real-world” PM exposure approach demonstrated the pathophysiologic effect of ambient PM2.5 exposure on triggering oxidative stress in the specialized organ and cell type of an animal model. Our results and approach will be informative for the research in air pollution-associated physiology and pathology. PMID:21383899

  6. Analytical Methods INAA and PIXE Applied to Characterization of Airborne Particulate Matter in Bandung, Indonesia

    Directory of Open Access Journals (Sweden)

    D.D. Lestiani

    2011-08-01

    Full Text Available Urbanization and industrial growth have deteriorated air quality and are major cause to air pollution. Air pollution through fine and ultra-fine particles is a serious threat to human health. The source of air pollution must be known quantitatively by elemental characterization, in order to design the appropriate air quality management. The suitable methods for analysis the airborne particulate matter such as nuclear analytical techniques are hardly needed to solve the air pollution problem. The objectives of this study are to apply the nuclear analytical techniques to airborne particulate samples collected in Bandung, to assess the accuracy and to ensure the reliable of analytical results through the comparison of instrumental neutron activation analysis (INAA and particles induced X-ray emission (PIXE. Particle samples in the PM2.5 and PM2.5-10 ranges have been collected in Bandung twice a week for 24 hours using a Gent stacked filter unit. The result showed that generally there was a systematic difference between INAA and PIXE results, which the values obtained by PIXE were lower than values determined by INAA. INAA is generally more sensitive and reliable than PIXE for Na, Al, Cl, V, Mn, Fe, Br and I, therefore INAA data are preffered, while PIXE usually gives better precision than INAA for Mg, K, Ca, Ti and Zn. Nevertheless, both techniques provide reliable results and complement to each other. INAA is still a prospective method, while PIXE with the special capabilities is a promising tool that could contribute and complement the lack of NAA in determination of lead, sulphur and silicon. The combination of INAA and PIXE can advantageously be used in air pollution studies to extend the number of important elements measured as key elements in source apportionment.

  7. Airborne particulate matter, platinum group elements and human health: a review of recent evidence.

    Science.gov (United States)

    Wiseman, Clare L S; Zereini, Fathi

    2009-04-01

    Environmental concentrations of the platinum group elements (PGE) platinum (Pt), palladium (Pd) and rhodium (Rh) have been on the rise, due largely to the use of automobile catalytic converters which employ these metals as exhaust catalysts. It has generally been assumed that the health risks associated with environmental exposures to PGE are minimal. More recent studies on PGE toxicity, environmental bioavailability and concentrations in biologically relevant media indicate however that environmental exposures to these metals may indeed pose a health risk, especially at a chronic, subclinical level. The purpose of this paper is to review the most recent evidence and provide an up-to-date assessment of the risks related to environmental exposures of PGE, particularly in airborne particulate matter (PM). This review concludes that these metals may pose a greater health risk than once thought for several reasons. First, emitted PGE may be easily mobilised and solubilised by various compounds commonly present in the environment, thereby enhancing their bioavailability. Second, PGE may be transformed into more toxic species upon uptake by organisms. The presence of chloride in lung fluids, for instance, may lead to the formation of halogenated PGE complexes that have a greater potential to induce cellular damage. Third, a significant proportion of PGE found in airborne PM is present in the fine fraction that been found to be associated with increases in morbidity and mortality. PGE are also a concern to the extent that they contribute to the suite of metals found in fine PM suspected of eliciting a variety of health effects, especially in vulnerable populations. All these factors highlight the need to monitor environmental levels of PGE and continue research on their bioavailability, behaviour, speciation and associated toxicity to enable us to better assess their potential to elicit health effects in humans. PMID:19181366

  8. Evaluation of Airborne Particulate Matter and Metals Data in Personal, Indoor and Outdoor Environments using ED-XRF and ICP-MS and Co-located Duplicate Samples

    Science.gov (United States)

    Factors and sources affecting measurement uncertainty in airborne particulate matter (PM) gravimetric measurements and elemental analyses were investigated as part of the Windsor Ontario Exposure Assessment Study (WOEAS). The assessment was made using co-located duplicate sample...

  9. Correlation analysis of size-resolved airborne particulate matter with classified meteorological conditions

    Science.gov (United States)

    Nguyen, Minh-Viet; Park, Gee-Hyeong; Lee, Byeong-Kyu

    2016-05-01

    This study analyzed correlations between classified meteorological conditions and size-resolved particulate matter (PM) concentrations over year. Seasonal measurements of airborne PM were conducted on the roof of a university building located in an urban residential area in Ulsan, Korea. A total of 267 daily PM samples were obtained using a nine-stage cascade impactor during the 12-month sampling period (March 2011-March 2012). Among this period, the average PM1.0, PM2.5, PM2.5-10, and PM10 concentrations were the lowest during the summer. The highest and lowest monthly average PM concentrations for all particle size ranges were observed in dry April and humid July, respectively. The PM1.0, PM2.5, PM2.5-10, and PM10 concentrations were negatively correlated (p 80 %) and under moderate humidity conditions (50-80 %) only during the winter season. PM concentrations also negatively correlated with precipitation (p 30 mm) and moderate (10-30 mm) rainfall conditions and only under light rainfall (speed [strong (>7 m/s) and moderate (3-7 m/s) wind]. Most PM concentrations correlated positively with ambient temperature, however, only on days with an average temperature above 20 °C. High and moderate temperatures negatively correlated with high and moderate humid conditions, while low and extra low temperatures in winter period showed positive correlation with high and moderate humidity.

  10. The Effects of Bus Ridership on Airborne Particulate Matter (PM10 Concentrations

    Directory of Open Access Journals (Sweden)

    Jaeseok Her

    2016-07-01

    Full Text Available Air pollution caused by rapid urbanization and the increased use of private vehicles seriously affects citizens’ health. In order to alleviate air pollution, many cities have replaced diesel buses with compressed natural gas (CNG buses that emit less exhaust gas. Urban planning strategies such as transit-oriented development (TOD posit that reducing private vehicle use and increasing public transportation use would reduce air pollution levels. The present study examined the effects of bus ridership on airborne particulate matter (PM10 concentrations in the capital region of Korea. We interpolated the levels of PM10 from 128 air pollution monitoring stations, utilizing the Kriging method. Spatial regression models were used to estimate the impact of bus ridership on PM10 levels, controlling for physical environment attributes and socio-economic factors. The analysis identified that PM10 concentration levels tend to be lower in areas with greater bus ridership. This result implies that urban and transportation policies designed to promote public transportation may be effective strategies for reducing air pollution.

  11. Study on the behavior of trace elements and radionuclides in airborne particulate matters

    International Nuclear Information System (INIS)

    Airborne particulate matters (PM) are collected by HV-1000 high volume air sampler in Musashi Institute of Technology in Japan from October, 2002, to November, 2003. The elements were determined by a neutron activation analysis and radioactive nuclides were detected by γ-ray spectrometry. The concentration of PM decreased with increasing amount of precipitation. The amount of PM was affected by wash out depend on rain a day before. 12 to 17 kinds of elements are determined in the samples. The correlation coefficient of Br and Sb was 0.81 of the concentration of element and 0.60 of concentration of composition. The same tendency was observed among Sc, Fe and La. Na is thought to be affected by sea salt particles. Sc and Th in PM were originated by wikipedia in Asia. The concentration of Sc, V, La and Th are smaller than the earth's crust. However, its Br and Sb were larger than it. Pb-210 and Be-7 are determined and both average concentrations were increased by north wind. (S.Y.)

  12. Diversity and Composition of Airborne Fungal Community Associated with Particulate Matters in Beijing during Haze and Non-haze Days.

    Science.gov (United States)

    Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2016-01-01

    To assess the diversity and composition of airborne fungi associated with particulate matters (PMs) in Beijing, China, a total of 81 PM samples were collected, which were derived from PM2.5, PM10 fractions, and total suspended particles during haze and non-haze days. The airborne fungal community in these samples was analyzed using the Illumina Miseq platform with fungi-specific primers targeting the internal transcribed spacer 1 region of the large subunit rRNA gene. A total of 797,040 reads belonging to 1633 operational taxonomic units were observed. Of these, 1102 belonged to Ascomycota, 502 to Basidiomycota, 24 to Zygomycota, and 5 to Chytridiomycota. The dominant orders were Pleosporales (29.39%), Capnodiales (27.96%), Eurotiales (10.64%), and Hypocreales (9.01%). The dominant genera were Cladosporium, Alternaria, Fusarium, Penicillium, Sporisorium, and Aspergilus. Analysis of similarities revealed that both particulate matter sizes (R = 0.175, p = 0.001) and air quality levels (R = 0.076, p = 0.006) significantly affected the airborne fungal community composition. The relative abundance of many fungal genera was found to significantly differ among various PM types and air quality levels. Alternaria and Epicoccum were more abundant in total suspended particles samples, Aspergillus in heavy-haze days and PM2.5 samples, and Malassezia in PM2.5 samples and heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature (p < 0.01), NO2 (p < 0.01), PM10 (p < 0.01), SO2(p < 0.01), CO (p < 0.01), and relative humidity (p < 0.05) were significant factors that determine airborne fungal community composition. The results suggest that diverse airborne fungal communities are associated with particulate matters and may provide reliable data for studying the responses of human body to the increasing level of air pollution in Beijing.

  13. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    Directory of Open Access Journals (Sweden)

    A. Mahmud

    2012-02-01

    Full Text Available The effect of climate change on population-weighted concentrations of particulate matter (PM during extreme events was studied using the Parallel Climate Model (PCM, the Weather Research and Forecasting (WRF model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44 global emissions scenario was dynamically downscaled for the entire state of California between the years 2000–2006 and 2047–2053. Air quality simulations were carried out for 1008 days in each of the present-day and future climate conditions using year-2000 emissions. Population-weighted concentrations of PM0.1, PM2.5, and PM10 total mass, components species, and primary source contributions were calculated for California and three air basins: the Sacramento Valley air basin (SV, the San Joaquin Valley air basin (SJV and the South Coast Air Basin (SoCAB. Results over annual-average periods were contrasted with extreme events.

    Climate change between 2000 vs. 2050 did not cause a statistically significant change in annual-average population-weighted PM2.5 mass concentrations within any major sub-region of California in the current study. Climate change did alter the annual-average composition of the airborne particles in the SoCAB, with notable reductions of elemental carbon (EC; −3% and organic carbon (OC; −3% due to increased annual-average wind speeds that diluted primary concentrations from gasoline combustion (−3% and food cooking (−4%. In contrast, climate change caused significant increases in population-weighted PM2.5 mass concentrations in central California during extreme events. The maximum 24-h average PM2.5 concentration experienced by an average person during a ten-year period in the SJV increased by 21% due to enhanced production of secondary particulate matter (manifested as NH4NO3. In general, climate change caused increased

  14. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    Directory of Open Access Journals (Sweden)

    A. Mahmud

    2012-08-01

    Full Text Available The effect of climate change on population-weighted concentrations of particulate matter (PM during extreme pollution events was studied using the Parallel Climate Model (PCM, the Weather Research and Forecasting (WRF model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44 global emissions scenario was dynamically downscaled for the entire state of California between the years 2000–2006 and 2047–2053. Air quality simulations were carried out for 1008 days in each of the present-day and future climate conditions using year-2000 emissions. Population-weighted concentrations of PM0.1, PM2.5, and PM10 total mass, components species, and primary source contributions were calculated for California and three air basins: the Sacramento Valley air basin (SV, the San Joaquin Valley air basin (SJV and the South Coast Air Basin (SoCAB. Results over annual-average periods were contrasted with extreme events.

    The current study found that the change in annual-average population-weighted PM2.5 mass concentrations due to climate change between 2000 vs. 2050 within any major sub-region in California was not statistically significant. However, climate change did alter the annual-average composition of the airborne particles in the SoCAB, with notable reductions of elemental carbon (EC; −3% and organic carbon (OC; −3% due to increased annual-average wind speeds that diluted primary concentrations from gasoline combustion (−3% and food cooking (−4%. In contrast, climate change caused significant increases in population-weighted PM2.5 mass concentrations in central California during extreme events. The maximum 24-h average PM2.5 concentration experienced by an average person during a ten-yr period in the SJV increased by 21% due to enhanced production of secondary particulate matter (manifested as NH4NO3. In general, climate

  15. Airborne Fine Particulate Matter Induces Oxidative Stress and Inflammation in Human Nasal Epithelial Cells.

    Science.gov (United States)

    Hong, Zhicong; Guo, Zhiqiang; Zhang, Ruxin; Xu, Jian; Dong, Weiyang; Zhuang, Guoshun; Deng, Congrui

    2016-01-01

    Airborne fine particulate matter with an aerodynamic diameter equal to or smaller than 2.5 μm is abbreviated as PM2.5, which is one of the main components in air pollution. Exposure to PM2.5 is associated with increased risk of many human diseases, including chronic and allergic rhinitis, but the underlying molecular mechanism for its toxicity has not been fully elucidated. We have hypothesized that PM2.5 may cause oxidative stress and enhance inflammatory responses in nasal epithelial cells. Accordingly, we used human RPMI 2650 cells, derived from squamous cell carcinoma of the nasal septum, as a model of nasal epithelial cells, and exposed them to PM2.5 that was collected at Fudan University (31.3°N, 121.5°E) in Shanghai, China. PM2.5 exposure decreased the viability of RPMI 2650 cells, suggesting that PM2.5 may impair the barrier function of nasal epithelial cells. Moreover, PM2.5 increased the levels of intracellular reactive oxygen species (ROS) and the nuclear translocation of NF-E2-related factor-2 (Nrf2). Importantly, PM2.5 also decreased the activities of superoxide dismutase, catalase and glutathione peroxidase. Pretreatment with N-Acetyl-L-cysteine (an anti-oxidant) reduced the degree of the PM2.5-induced oxidative stress in RPMI 2650 cells. In addition, PM2.5 increased the production of granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-α, interleukin-13 and eotaxin (C-C motif chemokine ligand 11), each of which initiates and/or augments local inflammation. These results suggest that PM2.5 may induce oxidative stress and inflammatory responses in human nasal epithelial cells, thereby leading to nasal inflammatory diseases. The present study provides insights into cellular injury induced by PM2.5.

  16. APPLYING DATA ASSIMILATION AND ADJOINT SENSITIVITY TO EPIDEMIOLOGICAL AND POLICY STUDIES OF AIRBORNE PARTICULATE MATTER

    Science.gov (United States)

    Source-resolved fine particulate matter (PM) concentrations are needed at high spatial and temporal resolutions for epidemiological studies aimed at identifying more- and less-harmful types of PM. Building on recent advances in air quality modeling, data assimilation, and s...

  17. Airborne particulate matter and mitochondrial damage: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Hou Lifang

    2010-08-01

    Full Text Available Abstract Background Oxidative stress generation is a primary mechanism mediating the effects of Particulate Matter (PM on human health. Although mitochondria are both the major intracellular source and target of oxidative stress, the effect of PM on mitochondria has never been evaluated in exposed individuals. Methods In 63 male healthy steel workers from Brescia, Italy, studied between April and May 2006, we evaluated whether exposure to PM was associated with increased mitochondrial DNA copy number (MtDNAcn, an established marker of mitochondria damage and malfunctioning. Relative MtDNAcn (RMtDNAcn was determined by real-time PCR in blood DNA obtained on the 1st (time 1 and 4th day (time 2 of the same work week. Individual exposures to PM10, PM1, coarse particles (PM10-PM1 and airborne metal components of PM10 (chromium, lead, arsenic, nickel, manganese were estimated based on measurements in the 11 work areas and time spent by the study subjects in each area. Results RMtDNAcn was higher on the 4th day (mean = 1.31; 95%CI = 1.22 to 1.40 than on the 1st day of the work week (mean = 1.09; 95%CI = 1.00 to 1.17. PM exposure was positively associated with RMtDNAcn on either the 4th (PM10: β = 0.06, 95%CI = -0.06 to 0.17; PM1: β = 0.08, 95%CI = -0.08 to 0.23; coarse: β = 0.06, 95%CI = -0.06 to 0.17 or the 1st day (PM10: β = 0.18, 95%CI = 0.09 to 0.26; PM1: β = 0.23, 95%CI = 0.11 to 0.35; coarse: β = 0.17, 95%CI = 0.09 to 0.26. Metal concentrations were not associated with RMtDNAcn. Conclusions PM exposure is associated with damaged mitochondria, as reflected in increased MtDNAcn. Damaged mitochondria may intensify oxidative-stress production and effects.

  18. Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas.

    Science.gov (United States)

    Gandolfi, I; Bertolini, V; Bestetti, G; Ambrosini, R; Innocente, E; Rampazzo, G; Papacchini, M; Franzetti, A

    2015-06-01

    The study of spatio-temporal variability of airborne bacterial communities has recently gained importance due to the evidence that airborne bacteria are involved in atmospheric processes and can affect human health. In this work, we described the structure of airborne microbial communities in two urban areas (Milan and Venice, Northern Italy) through the sequencing, by the Illumina platform, of libraries containing the V5-V6 hypervariable regions of the 16S rRNA gene and estimated the abundance of airborne bacteria with quantitative PCR (qPCR). Airborne microbial communities were dominated by few taxa, particularly Burkholderiales and Actinomycetales, more abundant in colder seasons, and Chloroplasts, more abundant in warmer seasons. By partitioning the variation in bacterial community structure, we could assess that environmental and meteorological conditions, including variability between cities and seasons, were the major determinants of the observed variation in bacterial community structure, while chemical composition of atmospheric particulate matter (PM) had a minor contribution. Particularly, Ba, SO4 (2-) and Mg(2+) concentrations were significantly correlated with microbial community structure, but it was not possible to assess whether they simply co-varied with seasonal shifts of bacterial inputs to the atmosphere, or their variation favoured specific taxa. Both local sources of bacteria and atmospheric dispersal were involved in the assembling of airborne microbial communities, as suggested, to the one side by the large abundance of bacteria typical of lagoon environments (Rhodobacterales) observed in spring air samples from Venice and to the other by the significant effect of wind speed in shaping airborne bacterial communities at all sites. PMID:25592734

  19. Mutagenic activity of airborne particulate matter from the urban area of Porto Alegre, Brazil

    Directory of Open Access Journals (Sweden)

    Vera Maria Ferrão Vargas

    1998-06-01

    Full Text Available The mutagenic activity of airborne particulate matter collected from three different sites within the urban area of Porto Alegre, Brazil, was investigated using a Salmonella/microsome assay. Samples were extracted by sonication, sequentially, with cyclohexane (CX, and dichloromethane (DCM, for a rough fractionation by polarity. The different fractions were tested for mutagenicity using Salmonella typhimurium strains TA98, with and without metabolic activation (S9 mix fraction, and TA98NR and TA98/1,8-DNP6, without metabolic activation. Mutagenic response was observed for frameshift strain TA98 in assays with and without metabolization for two sites (sites 2 and 3, which had considerable risk of environmental contamination by nonpolar (CX and/or moderately polar (DCM compounds. However, the values of revertants/m3 (rev/m3 were highest on the site subject to automobile exhaust (site 3 in assays without (9.56 rev/m3 and with metabolization (5.08 rev/m3. Maximum mutagenic activity was detected in the moderately polar fraction, decreasing after metabolization. Nevertheless, the nonpolar fractions (CX gave higher mutagenic activity in the presence of metabolization than in the absence of the S9 mix fraction. The responses observed for TA98NR and TA98/1,8-DNP6 strains suggest the activity of nitrocompounds.Foi investigada a atividade mutagênica de material particulado de amostras de ar coletadas em três diferentes locais dentro da área urbana da cidade de Porto Alegre, Brasil, através do ensaio Salmonella/microssoma. As amostras foram extraídas, em ultra-som, por fracionamento seqüencial de acordo com a polaridade, utilizando os solventes ciclohexano (CX e diclorometano (DCM. As diferentes frações foram testadas para mutagenicidade com as linhagens de Salmonella typhimurium TA98, em presença e ausência de ativação metabólica, e TA98NR e TA98/1,8-DNP6 em ausência de metabolização. Observou-se resposta mutagênica positiva, do tipo erro

  20. Composition of airborne particulate matter in the industrial area versus mountain area

    Directory of Open Access Journals (Sweden)

    Barbora Sýkorová

    2016-03-01

    Full Text Available The paper deals with research of air pollution in two different locations on the Moravian-Silesian Region, Czech Republic. These are the sites Ostrava-Radvanice, which is located in the area affected by the industry and Ostravice in the mountains (without significant effect of the industry. The dust particles collected at these locations were subjected to a wide range of analyses. The mass concentration, the mass-size distribution, mineralogical composition, the concentration of PAHs (polycyclic aromatic hydrocarbons, and the concentrations of selected metals (Cd, Pb, Zn, Fe, Mn, As, Ni, Co, and Cr were observed at the particulate matter.

  1. Elemental composition of airborne particulate matter from Santiago City, Chile, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Prendez, M.; Ortiz, J.L.; Cortes, E.; Cassorla, V.

    1984-01-01

    In Chile, the State Public Health Office (Ministerio de Salud Publica) is responsible for pollution control and for air quality. This office has been monitoring only toxic gases and total suspended particulate matter. The present work is the first study in Chile designed to determine trace elements and their concentrations in particulate matter in the air. By use of enrichment factors, 25 trace elements were classified according to natural or anthropogenic origin. There were two sampling periods: July (winter) and September (spring) 1976. Four sites were studied, located about 6 km north, south, west and east of downtown Santiago. The south, north and west sites are urban and 55 m above sea level. The east site is suburban and approximately 270 m higher than the others. Twenty-four-hour samples were collected on Whatman-41 cellulose filter paper, in a modified stainless steel Buchner funnel. Approximately 10 m/sup 3/ were used at the urban sites and 200 m/sup 3/ at the suburban site. Instrumental neutron activation analysis (INAA) was used as the analytical technique.

  2. A new approach for determination of soluble trace metal fractions in airborne particulate matter using a dynamic extraction procedure coupled to ICP-AES

    International Nuclear Information System (INIS)

    Complete text of publication follows. The current interest in atmospheric particulate matter (PM) is mainly due to its effect on human health. A fraction that is associated with several adverse health effects - including cancer - is the metallic portion. For this reason, a great deal of research has focused on the metal composition of airborne particulate matter. Until now in most studies total elemental concentrations were determined. However, toxic effects of trace metals in airborne PM are only expected if the metals are biologically available. Thus for risk assessment detailed knowledge about the solubility of the investigated metals is required since bioavailability depends thereon. Recently various extraction schemes have been developed for batch-wise fractionation of various metals in airborne particulate matter. Although these batch-wise liquid/solid extraction methods have gained widespread acceptance in literature the eco-toxicological relevance of the information provided with these techniques is questionable, since naturally occurring processes occur always under dynamic conditions. In this study a procedure for the sequential extraction of airborne particulate matter with various leaching solutions and the subsequent on-line ICP-AES measurement of selected trace metals in the derived extracts is presented. For analysis several punches of the filter substrate were packed into indigenously developed micro-columns and treated successively with the different extraction solutions. Evaluation of the derived elution profiles provided information about the kinetics of the extraction process and allowed differentiation between individual soluble fractions.

  3. Extensive 1-year survey of trace elements and compounds in the airborne suspended particulate matter in Cleveland, Ohio

    Science.gov (United States)

    King, R. B.; Fordyce, J. S.; Antoine, A. C.; Leibecki, H. F.; Neustadter, H. E.; Sidik, S. M.

    1976-01-01

    Concentrations of 75 chemical constituents in the airborne particulate matter were measured in Cleveland, Ohio, during 1971 and 1972. Values covering a 1-year period (45 to 50 sampling days) at each of 16 sites are presented for 60 elements. A lesser number of values is given for sulfate, nitrate, fluoride, acidity, 10 polynuclear aromatic hydrocarbon compounds, and the aliphatic hydrocarbon compounds as a group. Methods used included instrumental neutron activation, emission spectroscopy, gas chromatography, combustion techniques, and colorimetry. Uncertainties in the concentrations associated with the sampling procedures, the analysis methods, the use of several analytical facilities, and samples with concentrations below the detection limits are evaluated in detail. The data is discussed in relation to other studies and source origins. The trace constituent concentrations as a function of wind direction are used to suggest a practical method for air pollution source identification.

  4. Stopped-flow injection liquid-liquid extraction spectrophotometric determination of palladium in airborne particulate matter and automobile catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Anthemidis, A.N.; Themelis, D.G.; Stratis, J.A. [Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54006 Thessaloniki (Greece)

    2001-03-30

    A stopped-flow injection liquid-liquid extraction (SF-EX-FIA) spectrophotometric method is reported for the determination of palladium(II), using the 2,2'-dipyridyl-2-pyridylhydrazone (DPPH) as a color forming reagent. The colored complex Pd(II)-DPPH was extracted in CHCl{sub 3} and the absorbance was monitored at 560 nm. An injection valve was used as a commutator in order to combine the stopped-flow technique with liquid-liquid extraction FI system. The calibration graph was linear up to 12 mg l{sup -1} (s{sub r}=0.27%; r=0.9999) with a detection limit of c{sub L}=0.007 mg l{sup -1}. The sampling rate was 20 injections per hour. The proposed method has been successfully applied to the determination of palladium in airborne particulate matter (APM) and in automobile exhaust gas converter catalysts.

  5. A new approach for the determination of silicon in airborne particulate matter using electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Mukhtar, A; Limbeck, A

    2009-07-30

    In this work a new procedure for element specific analysis of silicon in airborne particulate matter is presented. The method is based on a preliminary treatment of the aerosol samples with nitric acid and perchloric acid leading to a mineralization of the organic sampling substrate, dissolution of soluble material and a homogeneous suspension of the remaining non-soluble sample fraction. ETAAS measurement of the derived slurries was performed using a Zr-treated graphite tube which prevents the formation of stable silicon carbide during sample measurement. Losses of volatile silicon species during sample pyrolysis were overcome by using Co(II) as matrix modifier and a pyrolysis temperature of only 300 degrees C. Furthermore this low pyrolysis temperature prevents charring of organic material which enables accurate ETAAS analysis. The method including the developed pretreatment procedure was evaluated using the Standard reference material 2709 (San Joaquin Soil) from NIST (National Institute of Standards and Technology, Gaithersburg, MD, USA). Suitability for measurement of Si in airborne particulate matter with an aerodynamic diameter aerosol samples and comparison of derived results with the findings obtained for the same samples after microwave digestion and subsequent ETAAS measurement. Finally the developed procedure was applied for the analysis of silicon in PM10 collected at an urban site in Vienna (Austria). Matrix matched calibration has been used for quantification of derived absorption signals. With the use of 20 microL sample injection volume for ETAAS analysis an instrumental detection limit of 52.2 microg L(-1) was obtained, which translates to method detection limits of approximately 0.52 microg m(-3) when considering the volumes of air collected per investigated aerosol sample. The reproducibility of analysis given as the relative standard deviation was 4.4% (n=12). Derived concentrations for Si in PM10 varied between 0.8 and 7.2 microg m(-3) which

  6. Airborne Particulate Matter in Two Multi-Family Green Buildings: Concentrations and Effect of Ventilation and Occupant Behavior.

    Science.gov (United States)

    Patton, Allison P; Calderon, Leonardo; Xiong, Youyou; Wang, Zuocheng; Senick, Jennifer; Sorensen Allacci, MaryAnn; Plotnik, Deborah; Wener, Richard; Andrews, Clinton J; Krogmann, Uta; Mainelis, Gediminas

    2016-01-01

    There are limited data on air quality parameters, including airborne particulate matter (PM) in residential green buildings, which are increasing in prevalence. Exposure to PM is associated with cardiovascular and pulmonary diseases, and since Americans spend almost 90% of their time indoors, residential exposures may substantially contribute to overall airborne PM exposure. Our objectives were to: (1) measure various PM fractions longitudinally in apartments in multi-family green buildings with natural (Building E) and mechanical (Building L) ventilation; (2) compare indoor and outdoor PM mass concentrations and their ratios (I/O) in these buildings, taking into account the effects of occupant behavior; and (3) evaluate the effect of green building designs and operations on indoor PM. We evaluated effects of ventilation, occupant behaviors, and overall building design on PM mass concentrations and I/O. Median PMTOTAL was higher in Building E (56 µg/m³) than in Building L (37 µg/m³); I/O was higher in Building E (1.3-2.0) than in Building L (0.5-0.8) for all particle size fractions. Our data show that the building design and occupant behaviors that either produce or dilute indoor PM (e.g., ventilation systems, combustion sources, and window operation) are important factors affecting residents' exposure to PM in residential green buildings. PMID:26805862

  7. Airborne Particulate Matter in Two Multi-Family Green Buildings: Concentrations and Effect of Ventilation and Occupant Behavior

    Directory of Open Access Journals (Sweden)

    Allison P. Patton

    2016-01-01

    Full Text Available There are limited data on air quality parameters, including airborne particulate matter (PM in residential green buildings, which are increasing in prevalence. Exposure to PM is associated with cardiovascular and pulmonary diseases, and since Americans spend almost 90% of their time indoors, residential exposures may substantially contribute to overall airborne PM exposure. Our objectives were to: (1 measure various PM fractions longitudinally in apartments in multi-family green buildings with natural (Building E and mechanical (Building L ventilation; (2 compare indoor and outdoor PM mass concentrations and their ratios (I/O in these buildings, taking into account the effects of occupant behavior; and (3 evaluate the effect of green building designs and operations on indoor PM. We evaluated effects of ventilation, occupant behaviors, and overall building design on PM mass concentrations and I/O. Median PMTOTAL was higher in Building E (56 µg/m3 than in Building L (37 µg/m3; I/O was higher in Building E (1.3–2.0 than in Building L (0.5–0.8 for all particle size fractions. Our data show that the building design and occupant behaviors that either produce or dilute indoor PM (e.g., ventilation systems, combustion sources, and window operation are important factors affecting residents’ exposure to PM in residential green buildings.

  8. Dust storm contributions to airborne particulate matter in Reykjavík, Iceland

    Science.gov (United States)

    Thorsteinsson, Throstur; Gísladóttir, Guđrún; Bullard, Joanna; McTainsh, Grant

    2011-10-01

    Episodes of high levels of particulate matter (PM) in Reykjavík occur several times a year. The main sources of daily variation in PM are traffic or highly localized (e.g. construction) sources, however several episodes have been identified where these are not the cause. Examining PM10 (diameter 50-100 μg m-3; 30-min average), demonstrates that dust storms are the source of these increased levels of PM10. Since satellite coverage is sparse, visual confirmation of many such peaks in PM10 cannot be achieved. The level of pollution measured in Reykjavík during dust storms indicates that at least 200 kg s-1 of PM10 sized material is being eroded and transported away from sand plains ˜110 km away - this equates to an emission rate of 35 g m2 h-1. The source regions for dust storms in Iceland are the sandur areas on the southern coast of Iceland, and regions close to the glaciers. With climate warming, and fast retreating glaciers, the potential source regions in Iceland are rapidly increasing.

  9. Air pollution and skin diseases: Adverse effects of airborne particulate matter on various skin diseases.

    Science.gov (United States)

    Kim, Kyung Eun; Cho, Daeho; Park, Hyun Jeong

    2016-05-01

    Environmental air pollution encompasses various particulate matters (PMs). The increased ambient PM from industrialization and urbanization is highly associated with morbidity and mortality worldwide, presenting one of the most severe environmental pollution problems. This article focuses on the correlation between PM and skin diseases, along with related immunological mechanisms. Recent epidemiological studies on the cutaneous impacts of PM showed that PM affects the development and exacerbation of skin diseases. PM induces oxidative stress via production of reactive oxygen species and secretion of pro-inflammatory cytokines such as TNF-α, IL-1α, and IL-8. In addition, the increased production of ROS such as superoxide and hydroxyl radical by PM exposure increases MMPs including MMP-1, MMP-2, and MMP-9, resulting in the degradation of collagen. These processes lead to the increased inflammatory skin diseases and skin aging. In addition, environmental cigarette smoke, which is well known as an oxidizing agent, is closely related with androgenetic alopecia (AGA). Also, ultrafine particles (UFPs) including black carbon and polycyclic aromatic hydrocarbons (PAHs) enhance the incidence of skin cancer. Overall, increased PM levels are highly associated with the development of various skin diseases via the regulation of oxidative stress and inflammatory cytokines. Therefore, anti-oxidant and anti-inflammatory drugs may be useful for treating PM-induced skin diseases. PMID:27018067

  10. Implications of ammonia emissions from post-combustion carbon capture for airborne particulate matter.

    Science.gov (United States)

    Heo, Jinhyok; McCoy, Sean T; Adams, Peter J

    2015-04-21

    Amine scrubbing, a mature post-combustion carbon capture and storage (CCS) technology, could increase ambient concentrations of fine particulate matter (PM2.5) due to its ammonia emissions. To capture 2.0 Gt CO2/year, for example, it could emit 32 Gg NH3/year in the United States given current design targets or 15 times higher (480 Gg NH3/year) at rates typical of current pilot plants. Employing a chemical transport model, we found that the latter emission rate would cause an increase of 2.0 μg PM2.5/m(3) in nonattainment areas during wintertime, which would be troublesome for PM2.5-burdened areas, and much lower increases during other seasons. Wintertime PM2.5 increases in nonattainment areas were fairly linear at a rate of 3.4 μg PM2.5/m(3) per 1 Tg NH3, allowing these results to be applied to other CCS emissions scenarios. The PM2.5 impacts are modestly uncertain (±20%) depending on future emissions of SO2, NOx, and NH3. The public health costs of CCS NH3 emissions were valued at $31-68 per tonne CO2 captured, comparable to the social cost of carbon itself. Because the costs of solvent loss to CCS operators are lower than the social costs of CCS ammonia, there is a regulatory interest to limit ammonia emissions from CCS.

  11. Analysis of Airborne Particulate Matter (PM2.5 over Hong Kong Using Remote Sensing and GIS

    Directory of Open Access Journals (Sweden)

    Yuanling Zhao

    2012-05-01

    Full Text Available Airborne fine particulates (PM2.5; particulate matter with diameter less than 2.5 µm are receiving increasing attention for their potential toxicities and roles in visibility and health. In this study, we interpreted the behavior of PM2.5 and its correlation with meteorological parameters in Hong Kong, during 2007–2008. Significant diurnal variations of PM2.5 concentrations were observed and showed a distinctive bimodal pattern with two marked peaks during the morning and evening rush hour times, due to dense traffic. The study observed higher PM2.5 concentrations in winter when the northerly and northeasterly winds bring pollutants from the Chinese mainland, whereas southerly monsoon winds from the sea bring fresh air to the city in summer. In addition, higher concentrations of PM2.5 were observed in rush hours on weekdays compared to weekends, suggesting the influence of anthropogenic activities on fine particulate levels, e.g., traffic-related local PM2.5 emissions. To understand the spatial pattern of PM2.5 concentrations in the context of the built-up environment of Hong Kong, we utilized MODerate Resolution Imaging Spectroradiometer (MODIS Aerosol Optical Thickness (AOT 500 m data and visibility data to derive aerosol extinction profile, then converted to aerosol and PM2.5 vertical profiles. A Geographic Information Systems (GIS prototype was developed to integrate atmospheric PM2.5 vertical profiles with 3D GIS data. An example of the query function in GIS prototype is given. The resulting 3D database of PM2.5 concentrations provides crucial information to air quality regulators and decision makers to comply with air quality standards and in devising control strategies.

  12. Analysis of airborne particulate matter (PM2.5) over Hong Kong using remote sensing and GIS.

    Science.gov (United States)

    Shi, Wenzhong; Wong, Man Sing; Wang, Jingzhi; Zhao, Yuanling

    2012-01-01

    Airborne fine particulates (PM(2.5); particulate matter with diameter less than 2.5 μm) are receiving increasing attention for their potential toxicities and roles in visibility and health. In this study, we interpreted the behavior of PM(2.5) and its correlation with meteorological parameters in Hong Kong, during 2007-2008. Significant diurnal variations of PM(2.5) concentrations were observed and showed a distinctive bimodal pattern with two marked peaks during the morning and evening rush hour times, due to dense traffic. The study observed higher PM(2.5) concentrations in winter when the northerly and northeasterly winds bring pollutants from the Chinese mainland, whereas southerly monsoon winds from the sea bring fresh air to the city in summer. In addition, higher concentrations of PM(2.5) were observed in rush hours on weekdays compared to weekends, suggesting the influence of anthropogenic activities on fine particulate levels, e.g., traffic-related local PM(2.5) emissions. To understand the spatial pattern of PM(2.5) concentrations in the context of the built-up environment of Hong Kong, we utilized MODerate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Thickness (AOT) 500 m data and visibility data to derive aerosol extinction profile, then converted to aerosol and PM(2.5) vertical profiles. A Geographic Information Systems (GIS) prototype was developed to integrate atmospheric PM(2.5) vertical profiles with 3D GIS data. An example of the query function in GIS prototype is given. The resulting 3D database of PM(2.5) concentrations provides crucial information to air quality regulators and decision makers to comply with air quality standards and in devising control strategies.

  13. Particulate Matter (PM) Pollution

    Science.gov (United States)

    ... Environmental Protection Agency Search Search Particulate Matter (PM) Pollution Share Facebook Twitter Google+ Pinterest Contact Us Most ... issues final PM Implementation Rule Particulate Matter (PM) Pollution PM Basics What is PM, and how does ...

  14. Airborne particulate discriminator

    Science.gov (United States)

    Creek, Kathryn Louise; Castro, Alonso; Gray, Perry Clayton

    2009-08-11

    A method and apparatus for rapid and accurate detection and discrimination of biological, radiological, and chemical particles in air. A suspect aerosol of the target particulates is treated with a taggant aerosol of ultrafine particulates. Coagulation of the taggant and target particles causes a change in fluorescent properties of the cloud, providing an indication of the presence of the target.

  15. Temperature-induced volatility of molecular markers in ambient airborne particulate matter

    Directory of Open Access Journals (Sweden)

    C. R. Ruehl

    2010-08-01

    Full Text Available Molecular markers are organic compounds used to represent known sources of particulate matter (PM in statistical source apportionment studies. The utility of molecular markers depends on, among other things, their ability to represent PM volatility under realistic atmospheric conditions. We measured the particle-phase concentrations and temperature-induced volatility of commonly-used molecular markers in California's heavily polluted San Joaqin Valley. Concentrations of elemental carbon, organic carbon, levoglucosan, and polycyclic aromatic hydrocarbons were not reduced by mild (~10 K heating. In contrast, both hopane/sterane and n-alkane concentrations were reduced, especially during the summer sampling events at the urban site. These results suggest that hopanes and steranes have effective saturation concentrations ~1 μg m−3, and therefore can be considered semi-volatile in realistic ambient conditions. The volatility behavior of n-alkanes during the urban summer is consistent with that predicted for absorption by suberic acid (a C8 diacid using a group contribution modelling method. Observations can also be matched by an absorbent whose composition is based on recently-obtained high-resolution aerosol mass spectrometer factors (approximately 33% "hydrocarbon-like" and 67% oxygenated organic aerosol. The diminished volatility of the n-alkanes, hopanes, and steranes during rural and/or winter experiments could be explained by a more oxygenated absorbing phase along with a non-absorptive partitioning mechanism, such as adsorption to soot. This suggests that the temperature-induced volatility of large hydrocarbons in PM is most important if a relatively non-polar absorbing organic phase exists. While the activity coefficients of most organic aerosol compounds may be close to unity, the assumption of ideality for large hydrocarbons (e.g., hopanes may result in large errors in partitioning calculations.

  16. Analysis of traffic and meteorology on airborne particulate matter in Münster, northwest Germany.

    Science.gov (United States)

    Gietl, Johanna K; Klemm, Otto

    2009-07-01

    The importance of street traffic and meteorological conditions on the concentrations of particulate matter (PM) with an aerodynamic diameter smaller than 10 microm (PM10) was studied in the city of Münster in northwest Germany. The database consisted of meteorological data, data of PM10 mass concentrations and fine particle number (6-225 nm diameter) concentrations, and traffic intensity data as counted with tally hand counters at a four- to six-lane road. On working days, a significant correlation could be found between the diurnal mean PM10 mass concentration and vehicle number. The lower number of heavy-duty vehicles compared with passenger cars contributed more to the particle number concentration on working days than on weekend days. On weekends, when the vehicle number was very low, the correlation between PM10 mass concentration and vehicle number changed completely. Other sources of PM and the meteorology dominated the PM concentration. Independent of the weekday, by decreasing the traffic by approximately 99% during late-night hours, the PM10 concentration was reduced by 12% of the daily mean value. A correlation between PM10 and the particle number concentration was found for each weekday. In this study, meteorological parameters, including the atmospheric stability of the boundary layer, were also accounted for. The authors deployed artificial neural networks to achieve more information on the influence of various meteorological parameters, traffic, and the day of the week. A multilayer perceptron network showed the best results for predicting the PM10 concentration, with the correlation coefficient being 0.72. The influence of relative humidity, temperature, and wind was strong, whereas the influence of atmospheric stability and the traffic parameters was weak. Although traffic contributes a constant amount of particles in a daily and weekly cycle, it is the meteorology that drives most of the variability.

  17. Temperature-induced volatility of molecular markers in ambient airborne particulate matter

    Directory of Open Access Journals (Sweden)

    C. R. Ruehl

    2011-01-01

    Full Text Available Molecular markers are organic compounds used to represent known sources of particulate matter (PM in statistical source apportionment studies. The utility of molecular markers depends on, among other things, their ability to represent PM volatility under realistic atmospheric conditions. We measured the particle-phase concentrations and temperature-induced volatility of commonly-used molecular markers in California's heavily polluted San Joaqin Valley. Concentrations of elemental carbon, organic carbon, levoglucosan, and polycyclic aromatic hydrocarbons were not reduced by mild (~10 K heating. In contrast, both hopane/sterane and n-alkane concentrations were reduced, especially during the summer sampling events at the urban site. These results suggest that hopanes and steranes have effective saturation concentrations ~1 μg m−3, and therefore can be considered semi-volatile. The volatility of an individual compound depends both on its inherent properties (primarily vapour pressure and the interactions between itself and any potential absorbing phase. The volatility behavior of n-alkanes during the urban summer is consistent with that predicted for absorption by suberic acid (a C8 diacid using a group contribution modelling method. Observations can also be matched by an absorbent whose composition is based on recently-obtained high-resolution aerosol mass spectrometer factors (approximately 33% "hydrocarbon-like" and 67% oxygenated organic aerosol. The reduced evaporation of the n-alkanes, hopanes, and steranes with mild heating during rural and/or winter experiments could be explained by a more oxygenated absorbing phase along with a non-absorptive partitioning mechanism, such as adsorption to soot. This suggests that the temperature-induced volatility of large hydrocarbons in PM is most important if a relatively non-polar absorbing organic phase exists. While the activity coefficients of most organic

  18. Evaluation of airborne respirable particulate matter and polycyclic aromatic hydrocarbon exposure of asphalt workers

    Directory of Open Access Journals (Sweden)

    Teresa Cirillo

    2007-12-01

    Full Text Available

    Introduction: Assessment of exposure to the airborne respirable particles (PM10 and polycyclic aromatic hydrocarbons (PAHs of asphalt manufacturing and road paving workers in the Campania region (Italy.

    Materials and Methods: A study was carried out during 2006 and involved 5 firms producing and employing bitumen in road paving activities. The workers studied were categorized on the basis of their job as workers in bitumen manufacturing, in road paving and in workers not exposed at bitumen fume considered like controls.

    Results: In the manufacturing plants the average concentrations of airborne PM10 were 1125±445 ìg/m3 in the HMA manufacturing workers’ areas; 314±81 ìg/m3 in the process surveyors’ cabins and 92±27 ìg/m3 in the controls’ areas (administrative offices. Within the breathing zones of the worker, the average PAHs levels in air were as follows: 367±198 ng/m3 for HMA manufacturing workers; 348±172 ng/m3 for process surveyors; 21±2 ng/m3 for the controls. At the road paving sites the average airborne PM10 levels were 1435±325 ìg/m3 for roller operators; 1610±356 ìg/m3 for paver operators; 319±108 ìg/m for the controls (traffic controllers. PAHs in the breathing zones were 1220±694 ng/m3 for the paver operators; 1360±575 ng/m3 for the roller operators’ and 139±135 ng/m3 for the traffic controllers’. The results show that the more consistent hazard for asphalt workers’ health is derived from exposure to airborne PM10 both in exposed and in non-exposed (controls workers.

  19. Second generation dichotomous sampler for large-scale monitoring of airborne particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Loo, B.W.; Adachi, R.S.; Cork, C.P.; Goulding, F.S.; Jaklevic, J.M.; Landis, D.A.; Searles, W.L.

    1979-01-01

    The differences which exist between fine (< 2.5 ..mu..m) and coarse (> 2.5 ..mu..m) airborne particles with respect to their origin, chemical properties, and environmental impact, call for their separate collection and analysis. An automated dichotomous sampler (ADS), equipped with a high efficiency single-stage virtual impactor and a microprocessor-based controller to self-correct fault conditions including filter overload, has been developed as a model for commercial production.

  20. RECOVERY OF SEMI-VOLATILE ORGANIC COMPOUNDS DURING SAMPLE PREPARATION: IMPLICATIONS FOR CHARACTERIZATION OF AIRBORNE PARTICULATE MATTER

    Science.gov (United States)

    Semi-volatile compounds present special analytical challenges not met by conventional methods for analysis of ambient particulate matter (PM). Accurate quantification of PM-associated organic compounds requires validation of the laboratory procedures for recovery over a wide v...

  1. Climate impact on airborne particulate matter concentrations in California using seven year analysis periods

    Directory of Open Access Journals (Sweden)

    A. Mahmud

    2010-11-01

    Full Text Available The effect of global climate change on the annual average concentration of fine particulate matter (PM2.5 in California was studied using a climate-air quality modeling system composed of global through regional models. Output from the NCAR/DOE Parallel Climate Model (PCM generated under the "business as usual" global emissions scenario was downscaled using the Weather Research and Forecasting (WRF model followed by air quality simulations using the UCD/CIT airshed model. The system represents major atmospheric processes acting on gas and particle phase species including meteorological effects on emissions, advection, dispersion, chemical reaction rates, gas-particle conversion, and dry/wet deposition. The air quality simulations were carried out for the entire state of California with a resolution of 8-km for the years 2000–2006 (present climate with present emissions and 2047–2053 (future climate with present emissions. Each of these 7-year analysis periods was analyzed using a total of 1008 simulated days to span a climatologically relevant time period with a practical computational burden. The 7-year windows were chosen to properly account for annual variability with the added benefit that the air quality predictions under the present climate could be compared to actual measurements. The climate-air quality modeling system successfully predicted the spatial pattern of present climate PM2.5 concentrations in California but the absolute magnitude of the annual average PM2.5 concentrations were under-predicted by ~4–39% in the major air basins. The majority of this under-prediction was caused by excess ventilation predicted by PCM-WRF that should be present to the same degree in the current and future time periods so that the net bias introduced into the comparison is minimized.

    Surface temperature, relative humidity (RH, rain rate, and wind speed were predicted to increase in the future climate

  2. Climate impact on airborne particulate matter concentrations in California using seven year analysis periods

    Science.gov (United States)

    Mahmud, A.; Hixson, M.; Hu, J.; Zhao, Z.; Chen, S.-H.; Kleeman, M. J.

    2010-11-01

    The effect of global climate change on the annual average concentration of fine particulate matter (PM2.5) in California was studied using a climate-air quality modeling system composed of global through regional models. Output from the NCAR/DOE Parallel Climate Model (PCM) generated under the "business as usual" global emissions scenario was downscaled using the Weather Research and Forecasting (WRF) model followed by air quality simulations using the UCD/CIT airshed model. The system represents major atmospheric processes acting on gas and particle phase species including meteorological effects on emissions, advection, dispersion, chemical reaction rates, gas-particle conversion, and dry/wet deposition. The air quality simulations were carried out for the entire state of California with a resolution of 8-km for the years 2000-2006 (present climate with present emissions) and 2047-2053 (future climate with present emissions). Each of these 7-year analysis periods was analyzed using a total of 1008 simulated days to span a climatologically relevant time period with a practical computational burden. The 7-year windows were chosen to properly account for annual variability with the added benefit that the air quality predictions under the present climate could be compared to actual measurements. The climate-air quality modeling system successfully predicted the spatial pattern of present climate PM2.5 concentrations in California but the absolute magnitude of the annual average PM2.5 concentrations were under-predicted by ~4-39% in the major air basins. The majority of this under-prediction was caused by excess ventilation predicted by PCM-WRF that should be present to the same degree in the current and future time periods so that the net bias introduced into the comparison is minimized. Surface temperature, relative humidity (RH), rain rate, and wind speed were predicted to increase in the future climate while the ultra violet (UV) radiation was predicted to decrease

  3. Trace element composition of airborne particulate matter in urban and rural areas of Bangladesh

    International Nuclear Information System (INIS)

    Size fractionated aerosol samples were collected at an urban site (Dhaka) in Bangladesh for a period of 17 months and at a rural site for six months. The samples were collected using a 'Gent' stacked filter unit in two fractions of 0-2 μm and 2-10 μm sizes. Proton induced x-ray emission (PIXE) spectroscopy has been used to determine the concentrations of 18 elements in the range of ng/m3. The elements range from Si to Sr and include Pb. The results of analysis of 292 air particulate samples of course and fine types from the urban site are presented. The results are discussed in the context of air pollution specially that of Pb. 6 refs., 7 tables., 2 figs

  4. Observations of the effect of atmospheric processes on the genotoxic potency of airborne particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Feilberg, A.; Nielsen, T.; Poulsen, M.W.B. [Riso National Laboratory, Roskilde (Denmark); Binderup, M.-L. [Institute of Food Safety and Toxicology, Danish Veterinary and Food Administration, Soeborg (Denmark); Skov, H. [National Environmental Research Institute, Roskilde (Denmark)

    2002-10-01

    In this study, the relationship between genotoxic potency and the occurrence of polycyclic aromatic hydrocarbons (PAH), including benzo(a)pyrene (BaP), and nitro-PAH in urban and semi-rural air masses has been investigated. The Salmonella/microsome assay has been used as a measure of genotoxic potency. We find that the ratios of BaP/mutagenicity and PAH/mutagenicity are highly variable. The processes responsible for the variation are formation and degradation of mutagens and transport of polluted air masses from heavily industrialized regions. Air masses from Central Europe are shown to be highly enriched in mutagens as well as in PAH and nitro-PAH. However, the mutagenic activity is much more elevated than the PAH levels when these air masses are mixed with local urban air. Part of the variation in the PAH/mutagenicity ratio can be explained by photochemical transformation. Since BaP has been used in the past as an indicator of the carcinogenic risk of airborne particles, it is suggested that the cancer risk of air pollution has to be re-evaluated. (author)

  5. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hong [Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY (United States); Shamy, Magdy [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Kluz, Thomas; Muñoz, Alexandra B.; Zhong, Mianhua; Laulicht, Freda [Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY (United States); Alghamdi, Mansour A.; Khoder, Mamdouh I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Chen, Lung-Chi [Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY (United States); Costa, Max, E-mail: Max.Costa@nyumc.org [Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY (United States)

    2012-12-01

    Epidemiological studies have established a positive correlation between human mortality and increased concentration of airborne particulate matters (PM). However, the mechanisms underlying PM related human diseases, as well as the molecules and pathways mediating the cellular response to PM, are not fully understood. This study aims to investigate the global gene expression changes in human cells exposed to PM{sub 10} and to identify genes and pathways that may contribute to PM related adverse health effects. Human bronchial epithelial cells were exposed to PM{sub 10} collected from Saudi Arabia for 1 or 4 days, and whole transcript expression was profiled using the GeneChip human gene 1.0 ST array. A total of 140 and 230 genes were identified that significantly changed more than 1.5 fold after PM{sub 10} exposure for 1 or 4 days, respectively. Ingenuity Pathway Analysis revealed that different exposure durations triggered distinct pathways. Genes involved in NRF2-mediated response to oxidative stress were up-regulated after 1 day exposure. In contrast, cells exposed for 4 days exhibited significant changes in genes related to cholesterol and lipid synthesis pathways. These observed changes in cellular oxidative stress and lipid synthesis might contribute to PM related respiratory and cardiovascular disease. -- Highlights: ► PM exposure modulated gene expression and associated pathways in BEAS-2B cells. ► One-day exposure to PM induced genes involved in responding to oxidative stress. ► 4-day exposure to PM changed genes associated to cholesterol and lipid synthesis.

  6. Multi-element analysis of airborne particulate matter from different work tasks during subsea tunnel rehabilitation work.

    Science.gov (United States)

    Weggeberg, Hanne; Føreland, Solveig; Buhagen, Morten; Hilt, Bjørn; Flaten, Trond Peder

    2016-10-01

    Tunnel rehabilitation work involves exposure to various air contaminants, including airborne particulate matter (APM). Little is known on the contents of different chemical components of APM generated during tunnel work. The objective of the present study was to characterize exposure to APM and various elements for different job categories in different size fractions of APM during a subsea tunnel rehabilitation project carried out in Western Norway. Personal as well as stationary samples of inhalable, thoracic and respirable dust were collected from workers divided into 11 different job categories based on work operations performed, and air concentrations of a range of elements were determined using high-resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS). Overall, APM concentrations were low, but with some measurements exceeding the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV) for inhalable particles, and considerable proportions of respirable and especially inhalable APM exceeding 10% of the TLVs. For most elements, air concentrations measured were quite low, in the ng/m(3) range, except for the major crustal elements Si, Fe, Al, and Mg, which were found to be in the µg/m(3) range. Asphalt millers overall had the highest exposure levels for APM and most measured elements; for instance, mean concentrations of V, Rb, and Mn were 380, 210, and 2000 ng/m(3) in inhalable and 33, 44, and 310 ng/m(3) in respirable APM. Mounting PVC membrane seemed to generate elevated levels of Cr, Zn, Sn, Pb, Sb, As, Mn, Fe, and Ni, whereas typical bedrock elements were elevated during drilling activities compared to the low exposed categories lead car drivers, foremen/surveyors, drivers of heavy-duty vehicles, and electricians. Overall, stationary samples contained lower amounts of dust and elemental constituents compared to personal samples. Elemental air concentrations were highly variable with occasional elevated

  7. Concentrations, sources and geochemistry of airborne particulate matter at a major European airport.

    Science.gov (United States)

    Amato, Fulvio; Moreno, Teresa; Pandolfi, Marco; Querol, Xavier; Alastuey, Andrés; Delgado, Ana; Pedrero, Manuel; Cots, Nuria

    2010-04-01

    Monitoring of aerosol particle concentrations (PM(10), PM(2.5), PM(1)) and chemical analysis (PM(10)) was undertaken at a major European airport (El Prat, Barcelona) for a whole month during autumn 2007. Concentrations of airborne PM at the airport were close to those at road traffic hotspots in the nearby Barcelona city, with means measuring 48 microg PM(10)/m(3), 21 microg PM(2.5)/m(3) and 17 microg PM(1)/m(3). Meteorological controls on PM at El Prat are identified as cleansing daytime sea breezes with abundant coarse salt particles, alternating with nocturnal land-sourced winds which channel air polluted by industry and traffic (PM(1)/PM(10) ratios > 0.5) SE down the Llobregat Valley. Chemical analyses of the PM(10) samples show that crustal PM is dominant (38% of PM(10)), followed by total carbon (OC + EC, 25%), secondary inorganic aerosols (SIA, 20%), and sea salt (6%). Local construction work for a new airport terminal was an important contributor to PM(10) crustal levels. Source apportionment modelling PCA-MLRA identifies five factors: industrial/traffic, crustal, sea salt, SIA, and K(+) likely derived from agricultural biomass burning. Whereas most of the atmospheric contamination concerning ambient air PM(10) levels at El Prat is not attributable directly to aircraft movement, levels of carbon are unusually high (especially organic carbon), as are metals possibly sourced from tyre detritus/smoke in runway dust (Ba, Zn, Mo) and from brake dust in ambient PM(10) (Cu, Sb), especially when the airport is at its most busy. We identify microflakes of aluminous alloys in ambient PM(10) filters derived from corroded fuselage and wings as an unequivocal and highly distinctive tracer for aircraft movement. PMID:20383366

  8. A pilot study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain.

    Science.gov (United States)

    Bhatt, Dhaval P; Puig, Kendra L; Gorr, Matthew W; Wold, Loren E; Combs, Colin K

    2015-01-01

    Exposure to air pollutants, including particulate matter, results in activation of the brain inflammatory response and Alzheimer disease (AD)-like pathology in dogs and humans. However, the length of time required for inhalation of ambient particulate matter to influence brain inflammation and AD pathology is less clear. Here, we studied the effect of 3 and 9 months of air particulate matter (PM2.5) exposure on brain inflammatory phenotype and pathological hallmarks of AD in C57BL/6 mice. Using western blot, ELISA, and cytokine array analysis we quantified brain APP, beta-site APP cleaving enzyme (BACE), oligomeric protein, total Aβ 1-40 and Aβ 1-42 levels, inducible nitric oxide synthase (iNOS), nitrotyrosine-modified proteins, HNE-Michael adducts, vascular cell adhesion molecule 1 (VCAM-1), glial markers (GFAP, Iba-1), pre- and post- synaptic markers (synaptophysin and PSD-95), cyclooxygenase (COX-1, COX-2) levels, and the cytokine profile in PM2.5 exposed and filtered air control mice. Only 9 month PM2.5 exposure increased BACE protein levels, APP processing, and Aβ 1-40 levels. This correlated with a concomitant increase in COX-1 and COX-2 protein levels and a modest alteration in the cytokine profile. These data support the hypothesis that prolonged exposure to airborne particulate matter has the potential to alter brain inflammatory phenotype and promote development of early AD-like pathology.

  9. A pilot study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Dhaval P Bhatt

    Full Text Available Exposure to air pollutants, including particulate matter, results in activation of the brain inflammatory response and Alzheimer disease (AD-like pathology in dogs and humans. However, the length of time required for inhalation of ambient particulate matter to influence brain inflammation and AD pathology is less clear. Here, we studied the effect of 3 and 9 months of air particulate matter (<2.5 μm diameter, PM2.5 exposure on brain inflammatory phenotype and pathological hallmarks of AD in C57BL/6 mice. Using western blot, ELISA, and cytokine array analysis we quantified brain APP, beta-site APP cleaving enzyme (BACE, oligomeric protein, total Aβ 1-40 and Aβ 1-42 levels, inducible nitric oxide synthase (iNOS, nitrotyrosine-modified proteins, HNE-Michael adducts, vascular cell adhesion molecule 1 (VCAM-1, glial markers (GFAP, Iba-1, pre- and post- synaptic markers (synaptophysin and PSD-95, cyclooxygenase (COX-1, COX-2 levels, and the cytokine profile in PM2.5 exposed and filtered air control mice. Only 9 month PM2.5 exposure increased BACE protein levels, APP processing, and Aβ 1-40 levels. This correlated with a concomitant increase in COX-1 and COX-2 protein levels and a modest alteration in the cytokine profile. These data support the hypothesis that prolonged exposure to airborne particulate matter has the potential to alter brain inflammatory phenotype and promote development of early AD-like pathology.

  10. Chemical composition and size distribution of airborne particulate matters in Beijing during the 2008 Olympics

    Science.gov (United States)

    Li, Xingru; Wang, Lili; Wang, Yuesi; Wen, Tianxue; Yang, Yongjie; Zhao, Yanan; Wang, Yingfeng

    2012-04-01

    burning. The concentrations of atmospheric pollutants declined during the 2008 Olympic Games, indicating that the pollution control measures were effective in decreasing particulate air pollution in Beijing.

  11. Carbon in Atmospheric Particulate Matter

    International Nuclear Information System (INIS)

    Carbon compounds account for a large fraction of airborne particulate matter ('carbonaceous aerosols'). Their presence raises a number of scientific questions dealing with climate issues and possible effects on human health. This review describes the current state of knowledge with respect to the ambient concentrations levels (elemental carbon, organic carbon and organic matter) and the various emission sources, and summarizes the role of atmospheric carbon in the various environmental issues. The report finishes by identifying the actual gaps in knowledge and gives (related) suggestions for future research

  12. Polarization signatures of airborne particulates

    Science.gov (United States)

    Raman, Prashant; Fuller, Kirk A.; Gregory, Don A.

    2013-07-01

    Exploratory research has been conducted with the aim of completely determining the polarization signatures of selected particulates as a function of wavelength. This may lead to a better understanding of the interaction between electromagnetic radiation and such materials, perhaps leading to the point detection of bio-aerosols present in the atmosphere. To this end, a polarimeter capable of measuring the complete Mueller matrix of highly scattering samples in transmission and reflection (with good spectral resolution from 300 to 1100 nm) has been developed. The polarization properties of Bacillus subtilis (surrogate for anthrax spore) are compared to ambient particulate matter species such as pollen, dust, and soot. Differentiating features in the polarization signatures of these samples have been identified, thus demonstrating the potential applicability of this technique for the detection of bio-aerosol in the ambient atmosphere.

  13. The “geotoxicology” of airborne particulate matter: implications for public health, public policy, and environmental security (Invited)

    Science.gov (United States)

    Plumlee, G. S.; Morman, S. A.

    2009-12-01

    Exposures to airborne particulate matter (PM) have been documented and hypothesized as the cause of a wide variety of adverse health effects. Most attention has focused on potential health effects of occupational and environmental exposures to many types of anthropogenic PM, such as mineral dusts or combustion byproducts of fossil fuels. However, geogenic PM (produced from the Earth by natural processes) and geoanthropogenic PM (produced from natural sources but modified by human activities) are also increasingly of concern as potential agents of toxicity and disease, via both environmental and occupational exposures. Geotoxicology can be defined as the study of the toxicological characteristics and potential health effects of geogenic and geoanthropogenic earth materials. Acute exposures to high PM concentrations are associated with exacerbated asthma, other pulmonary inflammatory responses, cardiovascular problems, and other issues. Some diseases can result from inhalation of dust-borne pathogens. PM can contain bioaccessible (readily dissolved in the body’s fluids) contaminants that, if absorbed in sufficient doses, can trigger toxicity. Acutely bioreactive PM, such as alkaline wildfire ash or acidic volcanic fog, can trigger acute irritation or damage of the respiratory tract, eyes, and skin. Biodurable PM such as asbestos fibers and crystalline silica are poorly cleared by lung macrophages, do not readily dissolve in the fluids lining the lungs, and can therefore persist in the lungs for decades. In sufficient dose, pneumoconioses can result from exposure to biodurable minerals, and chronic fluid-mineral reactions in the body (such as redox cycling and formation of free radicals) are thought to help promote cancers such as lung cancer and (in the case of asbestos) mesothelioma. Many key research questions remain, such as the exact mechanisms by which many types of PM cause disease, or the levels of exposure above which various types of PM begin to pose a

  14. Determination of heavy metals concentrations in airborne particulates matter (APM) from Manjung district, Perak using energy dispersive X-ray fluorescence (EDXRF) spectrometer

    Science.gov (United States)

    Arshad, Nursyairah; Hamzah, Zaini; Wood, Ab. Khalik; Saat, Ahmad; Alias, Masitah

    2015-04-01

    Airborne particulates trace metals are considered as public health concern as it can enter human lungs through respiratory system. Generally, any substance that has been introduced to the atmosphere that can cause severe effects to living things and the environment is considered air pollution. Manjung, Perak is one of the development districts that is active with industrial activities. There are many industrial activities surrounding Manjung District area such as coal fired power plant, quarries and iron smelting which may contribute to the air pollution into the environment. This study was done to measure the concentrations of Hg, U, Th, K, Cu, Fe, Cr, Zn, As, Se, Pb and Cd in the Airborne Particulate Matter (APM) collected at nine locations in Manjung District area within 15 km radius towards three directions (North, North-East and South-East) in 5 km intervals. The samples were collected using mini volume air sampler with cellulose filter through total suspended particulate (TSP). The sampler was set up for eight hours with the flow rate of 5 L/min. The filter was weighed before and after sample collection using microbalance, to get the amount of APM and kept in desiccator before analyzing. The measurement was done using calibrated Energy Dispersive X-Ray Fluorescence (EDXRF) Spectrometer. The air particulate concentrations were found below the Malaysia Air Quality Guidelines for TSP (260 µg/m3). All of the metals concentrations were also lower than the guidelines set by World Health Organization (WHO), Ontario Ministry of the Environment and Argonne National Laboratory, USA NCRP (1975). From the concentrations, the enrichment factor were calculated.

  15. Polycyclic aromatic hydrocarbons in the airborne particulate matter at a location 40 km north of Bangkok, Thailand

    Science.gov (United States)

    Kim Oanh, N. T.; Bætz Reutergårdh, L.; Dung, N. Tr.; Yu, M.-H.; Yao, W.-X.; Co, H. X.

    Total suspended particulate matter in ambient air was sampled by high-volume samplers at four sites at the Asian Institute of Technology campus, west of the Phahonyothin Road, Phathumthani Province, 40 km North of Bangkok, Thailand. The concentrations of 18 polycyclic aromatic hydrocarbons (PAH), were measured by gas chromatography with flame ionisation and/or liquid chromatography with fluorescence detection. The PAH profile with relatively high concentrations of benzo(ghi)perylene and coronene, decreasing with the distance from the road, suggested a substantial contribution from the traffic. The concentrations in the core of the campus were in the same range as those reported for residential areas in the Bangkok Metropolitan.

  16. Determination of water-soluble inorganic species in airborne atmospheric particulate matter in an Urban Area in Jordan

    International Nuclear Information System (INIS)

    Major water soluble cations and anions in inhalable (INP) and noninhalable (Nip) airbome particulate matter samples have been determined in an urban area of Amman city of Jordan during Winter, 1996 by ion chromatography. The total average level of F-, CI+, NO3+, SO42- and total suspended particles (Tsp) were 1.48, 3.84, 6.40, 45.85 and 221μg/m3, respectively. For cations, the total average levels were 25.42, 6.68, 4.06, 5.84, and 25.05 μg/m3 for Na+, NH4+, Mg2+, and Ca2+, respectively. This study show ss that the concentrations of FΛ, NO3Λ, SO42, Na+, K+, Mg2+, and Ca2+ in the INP fraction were significantly greater than in the Nip fraction while the CI+ and NH4+ levels are greater than in the Nip, In the same sampling site, it was found that the nitrate and sulfate concentrations in air particulate matter are significantly higher in winter, 1996 than in summer season, 1995. However, the levels of fluoride and chloride are greater in summer than in winter. (authors). 24 refs., 5 figs., 2 table

  17. Small-angle light scattering by airborne particulates: Environnement S.A. continuous particulate monitor

    Science.gov (United States)

    Renard, Jean-Baptiste; Thaury, Claire; Mineau, Jean-Luc; Gaubicher, Bertrand

    2010-08-01

    Airborne particulate matter may have an effect on human health. It is therefore necessary to determine and control in real time the evolution of the concentration and mass of particulates in the ambient air. These parameters can be obtained using optical methods. We propose here a new instrument, 'CPM' (continuous particulate monitor), for the measurement of light scattered by ambient particulates at small angles. This geometry allows simultaneous and separate detections of PM10, PM2.5 and PM1 fractions of airborne particulate matter, with no influence of their chemical nature and without using theoretical calculations. The ambient air is collected through a standard sampling head (PM10 inlet according to EN 12341, PM2.5 inlet according to EN 14907; or PM1, TSP inlets, standard US EPA inlets). The analysis of the first measurements demonstrates that this new instrument can detect, for each of the seven defined size ranges, real-time variations of particulate content in the ambient air. The measured concentrations (expressed in number per liter) can be converted into total mass concentrations (expressed in micrograms per cubic meter) of all fractions of airborne particulate matters sampled by the system. Periodic comparison with a beta-attenuation mass monitor (MP101M Beta Gauge Analyzer from Environnement S.A. company) allows the calculation of a calibration factor as a function of the mean particulate density that is used for this conversion. It is then possible to provide real-time relative variations of aerosol mass concentration.

  18. Small-angle light scattering by airborne particulates: Environnement S.A. continuous particulate monitor

    International Nuclear Information System (INIS)

    Airborne particulate matter may have an effect on human health. It is therefore necessary to determine and control in real time the evolution of the concentration and mass of particulates in the ambient air. These parameters can be obtained using optical methods. We propose here a new instrument, 'CPM' (continuous particulate monitor), for the measurement of light scattered by ambient particulates at small angles. This geometry allows simultaneous and separate detections of PM10, PM2.5 and PM1 fractions of airborne particulate matter, with no influence of their chemical nature and without using theoretical calculations. The ambient air is collected through a standard sampling head (PM10 inlet according to EN 12341, PM2.5 inlet according to EN 14907; or PM1, TSP inlets, standard US EPA inlets). The analysis of the first measurements demonstrates that this new instrument can detect, for each of the seven defined size ranges, real-time variations of particulate content in the ambient air. The measured concentrations (expressed in number per liter) can be converted into total mass concentrations (expressed in micrograms per cubic meter) of all fractions of airborne particulate matters sampled by the system. Periodic comparison with a beta-attenuation mass monitor (MP101M Beta Gauge Analyzer from Environnement S.A. company) allows the calculation of a calibration factor as a function of the mean particulate density that is used for this conversion. It is then possible to provide real-time relative variations of aerosol mass concentration

  19. Tillandsia stricta Sol (Bromeliaceae) leaves as monitors of airborne particulate matter-A comparative SEM methods evaluation: Unveiling an accurate and odd HP-SEM method.

    Science.gov (United States)

    de Oliveira, Martha Lima; de Melo, Edésio José Tenório; Miguens, Flávio Costa

    2016-09-01

    Airborne particulate matter (PM) has been included among the most important air pollutants by governmental environment agencies and academy researchers. The use of terrestrial plants for monitoring PM has been widely accepted, particularly when it is coupled with SEM/EDS. Herein, Tillandsia stricta leaves were used as monitors of PM, focusing on a comparative evaluation of Environmental SEM (ESEM) and High-Pressure SEM (HPSEM). In addition, specimens air-dried at formaldehyde atmosphere (AD/FA) were introduced as an SEM procedure. Hydrated specimen observation by ESEM was the best way to get information from T. stricta leaves. If any artifacts were introduced by AD/FA, they were indiscernible from those caused by CPD. Leaf anatomy was always well preserved. PM density was determined on adaxial and abaxial leaf epidermis for each of the SEM proceedings. When compared with ESEM, particle extraction varied from 0 to 20% in air-dried leaves while 23-78% of particles deposited on leaves surfaces were extracted by CPD procedures. ESEM was obviously the best choice over other methods but morphological artifacts increased in function of operation time while HPSEM operation time was without limit. AD/FA avoided the shrinkage observed in the air-dried leaves and particle extraction was low when compared with CPD. Structural and particle density results suggest AD/FA as an important methodological approach to air pollution biomonitoring that can be widely used in all electron microscopy labs. Otherwise, previous PM assessments using terrestrial plants as biomonitors and performed by conventional SEM could have underestimated airborne particulate matter concentration. PMID:27357408

  20. Tillandsia stricta Sol (Bromeliaceae) leaves as monitors of airborne particulate matter-A comparative SEM methods evaluation: Unveiling an accurate and odd HP-SEM method.

    Science.gov (United States)

    de Oliveira, Martha Lima; de Melo, Edésio José Tenório; Miguens, Flávio Costa

    2016-09-01

    Airborne particulate matter (PM) has been included among the most important air pollutants by governmental environment agencies and academy researchers. The use of terrestrial plants for monitoring PM has been widely accepted, particularly when it is coupled with SEM/EDS. Herein, Tillandsia stricta leaves were used as monitors of PM, focusing on a comparative evaluation of Environmental SEM (ESEM) and High-Pressure SEM (HPSEM). In addition, specimens air-dried at formaldehyde atmosphere (AD/FA) were introduced as an SEM procedure. Hydrated specimen observation by ESEM was the best way to get information from T. stricta leaves. If any artifacts were introduced by AD/FA, they were indiscernible from those caused by CPD. Leaf anatomy was always well preserved. PM density was determined on adaxial and abaxial leaf epidermis for each of the SEM proceedings. When compared with ESEM, particle extraction varied from 0 to 20% in air-dried leaves while 23-78% of particles deposited on leaves surfaces were extracted by CPD procedures. ESEM was obviously the best choice over other methods but morphological artifacts increased in function of operation time while HPSEM operation time was without limit. AD/FA avoided the shrinkage observed in the air-dried leaves and particle extraction was low when compared with CPD. Structural and particle density results suggest AD/FA as an important methodological approach to air pollution biomonitoring that can be widely used in all electron microscopy labs. Otherwise, previous PM assessments using terrestrial plants as biomonitors and performed by conventional SEM could have underestimated airborne particulate matter concentration.

  1. Modelling airborne dispersion of coarse particulate material

    International Nuclear Information System (INIS)

    Methods of modelling the airborne dispersion and deposition of coarse particulates are presented, with the emphasis on the heavy particles identified as possible constituents of releases from damaged AGR fuel. The first part of this report establishes the physical characteristics of the irradiated particulate in airborne emissions from AGR stations. The second part is less specific and describes procedures for extending current dispersion/deposition models to incorporate a coarse particulate component: the adjustment to plume spread parameters, dispersion from elevated sources and dispersion in conjunction with building effects and plume rise. (author)

  2. The use of nuclear and related techniques for the studies of airborne particulate matter in workplace including tissue analysis and possible impacts on human health in a metal industry

    International Nuclear Information System (INIS)

    Various processes in a metal industry may produce gases and fine airborne particulate matter that hazardous to human health. The present study deals with assessment of levels and health effects of airborne particulate matter in a metal industry. The objective is achieved by determination of elemental levels in blood, nail and hair of workers and airborne particulate matter that are collected from their workplace. The elemental levels in blood, nail and hair of the workers will be compared to those of control. Their health condition are examined by medical examination and biochemical analysis of their blood. The blood was drawn following an overnight fast before breakfast, by means of I.V. catheter into three polyethylene tubes. The blood samples in the first tubes were sent to clinical laboratory for biochemical examination. Those in the second and third tubes, which are considered free from metal contamination by the needle of the catheter, are used for trace element study. Sera in the polyethylene tubes were separated from erythrocyte by centrifugation, then cooled by liquid nitrogen and freeze dried. Approximately 1 g of toe nail and hair samples were taken respectively from every worker. To eliminate grease and surface contamination the hair samples were rinse with acetone. Airborne particulate samples were collected from the workplace using Gent sampler. These samples are ready for elemental analysis. Results of biochemical analysis and medical examinations of the workers are presented in this report. The correlation among various parameters will be determined by statistical analysis. (author)

  3. Spatial and temporal variations in airborne particulate matter (PM 10 and PM 2.5) across Spain 1999-2005

    Science.gov (United States)

    Querol, X.; Alastuey, A.; Moreno, T.; Viana, M. M.; Castillo, S.; Pey, J.; Rodríguez, S.; Artiñano, B.; Salvador, P.; Sánchez, M.; Garcia Dos Santos, S.; Herce Garraleta, M. D.; Fernandez-Patier, R.; Moreno-Grau, S.; Negral, L.; Minguillón, M. C.; Monfort, E.; Sanz, M. J.; Palomo-Marín, R.; Pinilla-Gil, E.; Cuevas, E.; de la Rosa, J.; Sánchez de la Campa, A.

    Average ranges of particulate matter (PM 10 and PM 2.5) concentrations and chemical composition in Spain show significant variations across the country, with current PM 10 levels at several industrial and traffic hotspots exceeding recommended pollution limits. Such variations and exceedances are linked to patterns of anthropogenic and natural PM emissions, climate, and reactivity/stability of particulate species. PM 10 and PM 2.5 concentrations reach 14-22 μg PM 10 m -3 and 8-12 μg PM 2.5 m -3 at most rural/regional background sites, 25-30 μg PM 10 m -3 and 15-20μg PM 2.5 m -3 at suburban sites, 30-46 μg PM 10 m -3 and 20-30 μg PM 2.5 m -3 at urban background and industrial sites, and 46-50 μg PM 10 m -3 and 30-35 μg PM 2.5 m -3 at heavy traffic hotpots. Spatial distributions show sulphate and carbon particle levels reach maxima in industrialised areas and large cities (where traffic emissions are higher), and nitrate levels increase from the Atlantic to the Mediterranean (independent of the regional NO x emissions). African dust outbreaks have an influence on the number of exceedances of the daily limit value, but its additional load on the mean annual PM 10 levels is only highly significant in Southern Iberia and Canary and Balearic islands. The marine aerosol contribution is near one order of magnitude higher in the Canaries compared to the other regions. Important temporal influences include PM intrusion events from Africa (more abundant in February-March and spring-summer), regional-scale pollution episodes, and weekday versus weekend activity. Higher summer insolation enhances (NH 4) 2SO 4 but depletes particulate NO 3- (as a consequence of the thermal instability of ammonium nitrate in summer) and Cl - (due to HCl volatilisation resulting from the interaction of gaseous HNO 3 with the marine NaCl), as well as generally increasing dry dust resuspension under a semi-arid climate. Average trace metal concentrations rise with the highest levels at

  4. Particulate matter dynamics

    CERN Document Server

    Cionco, Rodolfo G; Caligaris, Marta G

    2012-01-01

    A substantial fraction of the particulate matter released into the atmosphere by industrial or natural processes corresponds to particles whose aerodynamic diameters are greater than 50 mm. It has been shown that, for these particles, the classical description of Gaussian plume diffusion processes, is inadequate to describe the transport and deposition. In this paper we present new results concerning the dispersion of coarse particulate matter. The simulations are done with our own code that uses the Bulirsch Stoer numerical integrator to calculate threedimensional trajectories of particles released into the environment under very general conditions. Turbulent processes are simulated by the Langevin equation and weather conditions are modeled after stable (Monin-Obukhov length L> 0) and unstable conditions (L <0). We present several case studies based on Monte Carlo simulations and discusses the effect of weather on the final deposition of these particles.

  5. Population vulnerability due to the exposure to radon and airborne particulate matter (PM{sub 10}), in Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, G., E-mail: espinosa@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20364, 01000 Mexico, D.F. (Mexico); Golzarri, J.I. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20364, 01000 Mexico, D.F. (Mexico); Ponciano-Rodriguez, G. [Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Gaso, M.I. [Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027, 11801 Mexico, D.F. (Mexico); Mena, M.; Segovia, N. [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Vazquez-Lopez, C. [Departamento de Fisica, CINVESTAV (Mexico); Sajo-Bohus, L. [Departamento de Fisica, Universidad Simon Bolivar (Venezuela, Bolivarian Republic of)

    2009-10-15

    Exposure to indoor radon and suspended particulate matter (SPM) is considered a high risk in lung cancer aetiology. In this paper indoor radon and SPM concentration measurements and their correlations, associated with lung cancer cases are given. Mexico City suffers high concentration of SPM as well as other photochemical pollutants such as ozone. During the last decade in Mexico City, radon and SPM have been monitored. The indoor radon measurements were done using the Nuclear Track Methodology, basically the close-end-cup device with polyallyldiglycol carbonate as detector material, followed of an established chemical etching protocol, and automatic digital image analyzer system for counting. SPM size and concentration were obtained from monitoring stations located along the city. The results show that the central-north part of Mexico City has a large concentration of SPM and the vulnerable population (older than 65 years and younger than 14 years) is located essentially in the same region. In this area, a large number of lung cancer cases were found, even if indoor radon levels were below the recommended limits.

  6. The Effect of Seasonal Variations in Airborne Particulate Matter on Asthma-Related Airway Inflammation in Mice

    Science.gov (United States)

    Kurai, Jun; Watanabe, Masanari; Sano, Hiroyuki; Hantan, Degejirihu; Shimizu, Eiji

    2016-01-01

    This study aimed to investigate the effects of winter and spring particulate matter (PM) on airway inflammation and allergies in a mouse asthma model. PM was collected during 7–28 February 2013 (winter) and during 7–28 April 2013 (spring) in Yonago, Japan. NC/Nga mice were co-sensitized using intranasal instillation of the PMs and Dermatophagoides farinae (Df) for 5 consecutive days, and were subsequently challenged using intranasal Df at 7 days after the last sensitization. At 24 h after the challenge, serum immunoglobulin levels, differential leukocyte counts, and inflammatory cytokines levels were measured in the mice’s bronchoalveolar lavage fluid (BALF). Compared to co-sensitization using spring PM and Df, winter PM and Df induced greater increases in the BALF neutrophil and eosinophil counts and total serum IgE and IgG2a levels. Furthermore, winter PM-sensitized mice exhibited higher BALF levels of interleukin-5, interleukin-13, interleukin-6, and keratinocyte-derived chemokine. Therefore, we observed seasonal variations in the effects of PM on asthma-related airway inflammation. These findings suggest that the compositions of PM vary according to season, and that it is important to evaluate PM compositions in order to understand the associations between asthma and PM. PMID:27294946

  7. The exposure assessment of airborne particulates matter (PM10 & PM2.5) towards building occupants: A case study at KL Sentral, Kuala Lumpur, Malaysia

    Science.gov (United States)

    Mohddin, S. A.; Aminuddin, N. M.

    2014-02-01

    Airborne particulates have been recognized as a crucial pollutant of indoor air. These pollutants can contribute towards poor indoor air quality (IAQ), which may affect human health in immediate or long term. This study aims to determine the level of IAQ and the effects of particulate towards occupants of office buildings (the office buildings selected for the case study are SSM, KTMB and MRCB at KL Sentral). The objectives of study are (i) to measure the level of airborne particulates that contribute to the IAQ during working hours, (ii) to compare the level of airborne particulates with the existing guidelines and standards of IAQ in Malaysia and other Asian countries and (iii) to assess the symptoms associated with airborne particulates among the building occupants, which were achieved through primary data collection (case study or site survey, structured interview and questionnaire survey) and supported by literature reviews. The results showed that the mass concentration level of airborne particulates within the areas has exceeded the allowable limit of 0.15mg/m3 by IAQ Code of Practice, 2005 of the Department of Safety and Health (DOSH), Malaysia and 0.05mg/m3 by the Department of Environmental (DOE) (outdoor) of 8 hours continuous sampling. Based on the findings, the highest mass concentration values measured is 2.581 mg/m3 at lobby of SSM building which is the highest recorded 17 times higher from the maximum limit recommended by DOSH than the others. This is due to the nearby construction works and the high numbers of particulates are generated from various types of vehicles for transportation surrounding KL Sentral. Therefore, the development of Malaysian Ambient Air Quality Guidelines on PM2.5 as one of the crucial parameters is highly recommended.

  8. Determination of mercury in airborne particulate matter collected on glass fiber filters using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Rennan G.O., E-mail: rgoa01@terra.com.br [Laboratorio de Quimica Analitica Ambiental, Departamento de Quimica, Universidade Federal de Sergipe, Campus Sao Cristovao, 49.100-000, Sao Cristovao, SE (Brazil); Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Vignola, Fabiola; Castilho, Ivan N.B. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Borges, Daniel L.G.; Welz, Bernhard [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Vale, Maria Goreti R. [Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Instituto de Quimica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS (Brazil); Smichowski, Patricia [Comision Nacional de Energia Atomica (CNEA) and Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina); Ferreira, Sergio L.C. [Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Instituto de Quimica, Universidade Federal da Bahia, 40170-290, Salvador, BA (Brazil); Becker-Ross, Helmut [Leibniz-Institut fuer Analytische Wissenschaften-ISAS-e.V., Department Berlin, 12489 Berlin (Germany)

    2011-05-15

    A study has been undertaken to assess the capability of high-resolution continuum source graphite furnace atomic absorption spectrometry for the determination of mercury in airborne particulate matter (APM) collected on glass fiber filters using direct solid sampling. The main Hg absorption line at 253.652 nm was used for all determinations. The certified reference material NIST SRM 1648 (Urban Particulate Matter) was used to check the accuracy of the method, and good agreement was obtained between published and determined values. The characteristic mass was 22 pg Hg. The limit of detection (3{sigma}), based on ten atomizations of an unexposed filter, was 40 ng g{sup -1}, corresponding to 0.12 ng m{sup -3} in the air for a typical air volume of 1440 m{sup 3} collected within 24 h. The limit of quantification was 150 ng g{sup -1}, equivalent to 0.41 ng m{sup -3} in the air. The repeatability of measurements was better than 17% RSD (n = 5). Mercury concentrations found in filter samples loaded with APM collected in Buenos Aires, Argentina, were between < 40 ng g{sup -1} and 381 {+-} 24 ng g{sup -1}. These values correspond to a mercury concentration in the air between < 0.12 ng m{sup -3} and 1.47 {+-} 0.09 ng m{sup -3}. The proposed procedure was found to be simple, fast and reliable, and suitable as a screening procedure for the determination of mercury in APM samples.

  9. [In vitro study of genotoxic and oxidative effects induced on human pulmonary cells by exposure to PAHs extracted from airborne particulate matter collected in a coke plant].

    Science.gov (United States)

    Cavallo, D; Ursini, C L; Pira, E; Romano, C; Ciervo, A; Maiello, R; Caglieri, A; Iavicoli, S

    2007-01-01

    Genotoxic and oxidative effect of airborne particulate matter collected in a coke plant were evaluated on lung epithelial cells (A549). We aimed to clarify the mechanism of action of complex mixtures of PAHs and to identify biomarkers of effect of lung cancer. Particulate matter was analysed by GC/MS. Genotoxic and oxidative effects induced by the exposure to the extract were evaluated by Fpg comet assay. The cells were exposed for 30 min, 2h and 4h to 0.01%, 0.02% and 0.05% of the extract. We evaluated comet percentage and analysed tail moment values of exposed and unexposed cells treated with Fpg enzyme (TMenz) and untreated (TM) that indicate respectively oxidative and direct DNA damage. We found 0.328 ng/m3 of pyrene, 0.33 ng/m3 of benzo(a)anthracene, 1.073 ng/m3 of benzo(b)fluoranthene, 0.22 ng/m3 of benzo(k)fluoranthene, 0.35 ng/m3 of benzo(a)pyrene, 0.079 ng/m3 of dibenzo(a,h)anthracene and 0.40 ng/m3 of benzo(g,h,i)perylene. A dose-dependent increase, although not significant, of TM and TMenz in the exposed cells in respect to controls was found that indicates a slight increase of both direct and oxidative damage in exposed cells. A slight increase of comet percentage was found at the highest dose. We show the high sensibility of comet assay to measure early DNA damage also at low doses suggesting the use of such test on A549 to evaluate on target organ the effects of complex mixtures of genotoxic substances. PMID:18409689

  10. Comparative toxicity of size-fractionated airborne particulate matter obtained from different cities in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, M.I.; McGee, J.; Duvall, R.M.; Dailey, L.; Daniels, M.; Boykin, E.; Cho, S.H.; Doerfler, D.; Gordon, T.; Devlin, R.B. [US EPA, Research Triangle Park, NC (United States)

    2007-07-01

    Hundreds of epidemiological studies have shown that exposure to ambient particulate matter (PM) is associated with dose-dependent increases in morbidity and mortality. While early reports focused on PM less than 10 {mu}m (PM10), numerous studies have since shown that the effects can occur with PM stratified into ultrafine (UF), fine (FI), and coarse (CO) size modes despite the fact that these materials differ significantly in both evolution and chemistry. Furthermore the chemical makeup of these different size fractions can vary tremendously depending on location, meteorology, and source profile. For this reason, high-volume three-stage particle impactors with the capacity to collect UF, FI, and CO particles were deployed to four different locations in the United States (Seattle, WA; Salt Lake City, UT; Sterling Forest and South Bronx, NY), and weekly samples were collected for 1 mo in each place. The particles were extracted, assayed for a standardized battery of chemical components, and instilled into mouse lungs (female BALB/c) at doses of 25 and 100 {mu}g. Eighteen hours later animals were euthanized and parameters of injury and inflammation were monitored in the bronchoalveolar lavage fluid and plasma. Of the four locations, the South Bronx coarse fraction was the most potent sample in both pulmonary and systemic biomarkers. Receptor source modeling on the PM2.5 samples showed that the South Bronx sample was heavily influenced by emissions from coal fired power plants (31%) and mobile sources (22%). Further studies will assess how source profiles correlate with the observed effects for all locations and size fractions.

  11. Assessment of levels and 'health-effects' of airborne particulate matter in mining, metal refining and metal working industries using nuclear and related analytical techniques

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) has been supporting, over the years, several coordinated research programmes (CRPs) on various research topics related to environmental issues impacting human health. The primary aim of these CRPs has been to help enhance the research and development capabilities in the Member States, particularly among developing countries; to identify the sources of various environmental contaminants and evaluate their fate; and to provide for the basis of improved health among human populations by the use of nuclear and related analytical techniques. The CRP on Assessment of Levels and Health-Effects of Airborne Particulate Matter in Mining, Metal Refining and Metal Working Industries using nuclear and related analytical techniques focused on improving the competence for research on workplace monitoring in a variety of industrial environments. The personal monitoring of the APM (airborne particulate matter) of the exposed workforce was carried out for the first time by many participants. Nuclear and related analytical techniques, including the application of proton micro-beam, were used to generate the trace element concentration profiles in various biomarkers tissues of the exposed workers. The quality assurance/quality control (QA/QC) aspects related to the CRP were addressed through intercomparison analyses of APM on filter paper samples and freeze dried human urine samples to generate validated data. These data have helped to generate correlations between the occupational exposure measured and the magnitude of the biological response. Such new information is essential to evolve procedures to considerably reduce/eliminate the pollutants in the workplace environment and to make informed decisions on the evolution of standards in working environments aimed at preserving the health of workers. The purpose of this TECDOC is to provide an overview of the activities performed under the CRP by the participants. The overall achievements

  12. Occupational exposure to polycyclic aromatic hydrocarbons in airborne particulate matter: validation and application of a gas chromatography-mass spectrometry analytical method.

    Science.gov (United States)

    Fioretti, Marzia; Catrambone, Tamara; Gordiani, Andrea; Cabella, Renato

    2010-12-01

    This study concerns the validation of an analytical method for the measurement of occupational exposure to trace levels of polycyclic aromatic hydrocarbons (PAHs) in airborne particulate matter (APM). Personal exposure to selected PAHs of five workers occupationally exposed to urban pollution in Rome, Italy, was evaluated. The samples were collected over 10 days evenly distributed during winter and summer of 2008. Polycyclic aromatic hydrocarbons were collected by a sampling pump and trapped in polytetrafluoroethylene filters; ultrasonic extraction was applied to extract PAH species from the matrix with toluene, and the concentrated extract was quantitatively analyzed by GC/MS. The analytical method was optimized and validated using a standard reference material of urban dust (SRM 1649a). Detection limits ranged from 0.8 ng per sample for indeno [1,2,3-cd] pyrene to 20.4 ng for sample for anthracene. Experimental results of the 50 personal samples collected showed that phenanthrene was the predominant polycyclic aromatic hydrocarbon [95% CI (32.42-41.13 ng m(-3))]; the highest benzo[a]pyrene concentration was 2.58 ng m(-3), approximately 2-fold higher than European annual target values (1 ng m(-3)). Seasonal variations of personal exposure to selected PAHs suggested higher emissions and reduced atmospheric reactivity of PAH compounds in winter. The analytical method was a suitable procedure for the determination of 13 of the 16 priority PAHs in APM personal samples and can be considered a useful tool to evaluate occupational exposure to low PAH levels.

  13. Comparison of the extraction efficiencies of different leaching agents for reliable assessment of bio-accessible trace metal fractions in airborne particulate matter

    Directory of Open Access Journals (Sweden)

    Mukhtar A.

    2013-04-01

    Full Text Available In present study, an in-vitro physiologically based extraction test has been applied for extraction of bio-accessible trace metal fractions in airborne particulate matter (APM samples collected from different urban sites in Austria and Pakistan using the leaching agents H2O, sodium chloride, ammonium acetate, ammonium citrate, synthetic gastric juice and artificial lung fluids. Obtained extracts were then measured using an ETV-ICP-OES procedure which allowed highly sensitive measurement of dissolved analytes even in the presence of leaching agents. Derived results indicated that the investigated leaching agents extract different amounts of trace metals. In general, leaching agents with organic nature yielded comparatively greater extractable and thus bio-accessible trace metal fractions to that of simple solvents like H2O or aqueous NaCl solution. With water, only 26.3±4.0% of Cd was found to be bio-accessible whereas 88.4±24.8 of Cd was obtained as bio-accessible fraction with the use of synthetic gastric juice. The concentrations of bio-accessible metal fractions varied from 0.4 ng m−3 (Cd to 714 ng m−3 (Zn and 0.3 ng m−3 (Cd to 190 ng m−3 (Zn for PM10 samples collected from Karachi (Pakistan and Graz (Austria respectively.

  14. Assessment of levels and 'health-effects' of airborne particulate matter in mining, metal refining and metal working industries using nuclear and related analytical techniques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-01-15

    The International Atomic Energy Agency (IAEA) has been supporting, over the years, several coordinated research programmes (CRPs) on various research topics related to environmental issues impacting human health. A variety of industrial environments such as: galvanisation, iron and steel production, steel construction, coal fired thermal power plants, mining and mineral beneficiation of monazite, zinc smelters, and phosphate fertilizer production plants were included in this CRP. Toxic elements specific for particular industries as potential pollutants were monitored within individual projects. The CRP focussed on the use of nuclear and related analytical techniques for studies of exposure to inorganic constituents and radionuclides from naturally occurring radioactive materials (NORMs), in the workplaces and their impacts on the health of the workers. The objectives were to: develop strategies and techniques for sampling of workplace airborne particulate matter (APM) and of bio-markers (e.g. hair, blood, nails, teeth, urine, breath) of exposed and non-exposed individuals; develop reliable analytical procedures for the analysis of such samples, using nuclear and related analytical techniques; carry out workplace and personal monitoring surveys, and assess workers' exposure to toxic elements on the basis of measurements results. This document provides an overview of the activities performed under the CRP by the participants. The overall achievements are summarized and those aspects that require a further deeper look are also pointed out. The individual country reports include details on the progress made by the respective participants during the CRP period.

  15. Analysis of palladium concentrations in airborne particulate matter with reductive co-precipitation, He collision gas, and ID-ICP-Q-MS

    Energy Technology Data Exchange (ETDEWEB)

    Alsenz, H.; Zereini, F.; Puettmann, W. [J.W. Goethe-University, Institute for Atmospheric and Environmental Sciences, Department of Environmental Analytical Chemistry, Frankfurt/Main (Germany); Wiseman, C.L.S. [University of Toronto, Centre for Environment, Toronto, ON (Canada)

    2009-11-15

    The concentration of platinum group elements (PGE) in the environment has increased significantly in the last 20 years mainly due to their use as catalysts in automotive catalytic converters. The quantitation of these metals in different environmental compartments is, however, challenging due to their very low concentrations and the presence of interfering matrix constituents when inductively coupled plasma-mass spectrometry (ICP-MS) is used for analysis. Previously, the research focus was on the analysis of platinum (Pt) and rhodium (Rh). However, due to the increasing use of palladium (Pd) in automotive catalytic converters, quantitation of this element in airborne particulate matter (PM) is also needed. Compared to Pt and Rh, measurements of Pd using ICP-MS are plagued by greater molecular interferences arising from elements such as copper (Cu), zinc (Zn) strontium (Sr), yttrium (Y), and zirconium (Zr). The aim of this study was to evaluate the applicability of reductive co-precipitation procedures using both mercury (Hg) and tellurium (Te) for the pre-concentration of Pd from airborne PM. Furthermore, helium (He) was tested as a collision gas for isotope dilution-inductively coupled plasma-quadrupole-mass spectrometry (ID-ICP-Q-MS) to measure Pd in the Hg and Te precipitates. Airborne PM samples (PM{sub 10}) were collected from Neuglobsow (Brandenburg, north-eastern Germany) and Deuselbach (Rhineland-Palatinate, south-western Germany), considered to represent background levels, and from the city Frankfurt am Main (Hesse, Germany), a high-traffic area. Samples were first digested with aqua regia in a high-pressure asher (HPA) at 320 C and 130 bar prior to the application of reductive co-precipitation procedures. The method was validated with road dust reference material BCR-723 and the CANMET-CCRMP reference material TDB-1 and WPR-1. In airborne PM collected at the background areas Neuglobsow and Deuselbach, Pd was detected with median concentrations values of 0

  16. Analysis of palladium concentrations in airborne particulate matter with reductive co-precipitation, He collision gas, and ID-ICP-Q-MS.

    Science.gov (United States)

    Alsenz, H; Zereini, F; Wiseman, C L S; Püttmann, W

    2009-11-01

    The concentration of platinum group elements (PGE) in the environment has increased significantly in the last 20 years mainly due to their use as catalysts in automotive catalytic converters. The quantitation of these metals in different environmental compartments is, however, challenging due to their very low concentrations and the presence of interfering matrix constituents when inductively coupled plasma-mass spectrometry (ICP-MS) is used for analysis. Previously, the research focus was on the analysis of platinum (Pt) and rhodium (Rh). However, due to the increasing use of palladium (Pd) in automotive catalytic converters, quantitation of this element in airborne particulate matter (PM) is also needed. Compared to Pt and Rh, measurements of Pd using ICP-MS are plagued by greater molecular interferences arising from elements such as copper (Cu), zinc (Zn) strontium (Sr), yttrium (Y), and zirconium (Zr). The aim of this study was to evaluate the applicability of reductive co-precipitation procedures using both mercury (Hg) and tellurium (Te) for the pre-concentration of Pd from airborne PM. Furthermore, helium (He) was tested as a collision gas for isotope dilution-inductively coupled plasma-quadrupole-mass spectrometry (ID-ICP-Q-MS) to measure Pd in the Hg and Te precipitates. Airborne PM samples (PM10) were collected from Neuglobsow (Brandenburg, north-eastern Germany) and Deuselbach (Rhineland-Palatinate, south-western Germany), considered to represent background levels, and from the city Frankfurt am Main (Hesse, Germany), a high-traffic area. Samples were first digested with aqua regia in a high-pressure asher (HPA) at 320 degrees C and 130 bar prior to the application of reductive co-precipitation procedures. The method was validated with road dust reference material BCR-723 and the CANMET-CCRMP reference material TDB-1 and WPR-1. In airborne PM collected at the background areas Neuglobsow and Deuselbach, Pd was detected with median concentrations values of

  17. Nuclear and atomic techniques in air pollution studies by transplant lichen exposure, bulk deposition and airborne particulate matter collection after 6 month exposure

    International Nuclear Information System (INIS)

    This work presents the preliminary results obtained in the study 'Air pollution monitoring by sampling airborne particulate matter combined with lichen bioaccumulator exposure', in progress at IDRANAP Center of Excellence EU Project, ICA1-CT-2000-70023, WP2. Transplants of Evernia prunastri and Pseudevernia furfuracea lichen species from the Italian Prealps were exposed for 6 and 12 months at six locations with different degrees and types of industrial activity, as well as on a background site with relatively clean air (Fundata). At each investigated location, bulk deposition was collected for the same periods, while airborne particulate matter was sequentially collected during 2 months, in parallel with those at a reference station (Afumati). Pollution in the investigated areas is mainly due to the following industrial activities: steel manufacturing (Galati); non-ferrous ore processing (Baia Mare); chemicals and non-ferrous industry (Copsa Mica); coal-fired power plant and cement factory (Deva); traffic, coal-fired power plants, inorganic dyes and galvanic treatment factories (Oradea); agriculture, mixed industry and traffic (Afumati). The lichen material was analyzed by INAA, XRFA, and ICP-MS, while the aerosol filters were analyzed by INAA and XRFA. The bulk deposition was analyzed only by INAA. XRFA was carried out at Stuttgart, ICP-MS at Trondheim, while INAA at Bucharest (long lifetime radionuclides) and Delft (short lifetime radionuclides, and, in the case of bulk deposition, short and long lifetime radionuclides). The investigated elements having relevant role in environmental studies were: As, Br, Ca, Cd, Co, Cr, Cu, Fe, K, Mn, Ni, Pb, S, Sb, Sc, Se, V, and Zn. Cd, Co, Sb, and Sc could only be determined by INAA and ICP-MS, while Pb and S only by XRFA and ICP-MS. After 6-month exposure, both lichen species showed significant enrichment factors (relative to 'zero level', before exposure) for all the measured elements, except Br, Ca, K, and Mn. Small lichen

  18. Air pollution and stillbirth risk: exposure to airborne particulate matter during pregnancy is associated with fetal death.

    Directory of Open Access Journals (Sweden)

    Emily DeFranco

    Full Text Available To test the hypothesis that exposure to fine particulate air pollution (PM2.5 is associated with stillbirth.Geo-spatial population-based cohort study using Ohio birth records (2006-2010 and local measures of PM2.5, recorded by the EPA (2005-2010 via 57 monitoring stations across Ohio. Geographic coordinates of the mother's residence for each birth were linked to the nearest PM2.5 monitoring station and monthly exposure averages calculated. The association between stillbirth and increased PM2.5 levels was estimated, with adjustment for maternal age, race, education level, quantity of prenatal care, smoking, and season of conception.There were 349,188 live births and 1,848 stillbirths of non-anomalous singletons (20-42 weeks with residence ≤10 km of a monitor station in Ohio during the study period. The mean PM2.5 level in Ohio was 13.3 μg/m3 [±1.8 SD, IQR(Q1: 12.1, Q3: 14.4, IQR: 2.3], higher than the current EPA standard of 12 μg/m3. High average PM2.5 exposure through pregnancy was not associated with a significant increase in stillbirth risk, adjOR 1.21(95% CI 0.96,1.53, nor was it increased with high exposure in the 1st or 2nd trimester. However, exposure to high levels of PM2.5 in the third trimester of pregnancy was associated with 42% increased stillbirth risk, adjOR 1.42(1.06,1.91.Exposure to high levels of fine particulate air pollution in the third trimester of pregnancy is associated with increased stillbirth risk. Although the risk increase associated with high PM2.5 levels is modest, the potential impact on overall stillbirth rates could be robust as all pregnant women are potentially at risk.

  19. Ground-level airborne particulate matter near important Portuguese Cultural Heritage sites in high polluted (Lisbon) and low polluted (Evora) urban environments

    Science.gov (United States)

    Schiavon, N.; Wagner, F.; Candeias, A.; Kandler, K.; Tobias, L.; Mirao, J.

    2012-04-01

    As part of a wider project on aerosol composition in the Southwestern part of the Iberian peninsula, an intensive field monitoring/sampling/analytical campaign has been conducted in August and December 2011 to assess indoor and outdoor atmospheric aerosol optical and microphysical parameters (Nephelometry), number/mass/size distribution (TEOM, MAAP, OPS) and single particle minero-chemical composition on filter collected samples (VP-SEM+EDS, XRD) at several sheltered and unsheltered locations close to important Cultural Heritage monuments in Evora and Lisbon, Portugal. Sites investigated included the Igreja do S. Francisco in Evora, the Cristo Rei sanctuary, Jeronimos Monastery, and Lisbon Castle in Lisbon. At Cristo Rei measurements at sea level, around 100m and around 180m were carried out in order to determine the vertical profile of the particle size distribution. Measurements were taken at different times of day reflecting changes in atmospheric mixing and air pollution levels. Measurements were also performed near an air quality monitoring station at Avenida de Libertade (the busiest traffic artery in Lisbon city center) during traffic peak hour. One of the aims of the campaign was to determine differences in airborne particulate matter compositions and concentrations between an urban coastal high pollution (Lisbon) and a low pollution (Evora) environments and how these could affect the nature of decay patterns and processes in the building materials of the monuments under investigation. Preliminary results indicate significant differences in particle properties between the 2 cities as well as between indoor and outdoor locations. One interesting result was the detection of considerable amounts of particle of oceanic origin (such as sodium chloride) in the Evora site even at 130 km away from the coast. Despite its relatively unpolluted location, single particle analysis by SEM+EDS at the Evora site reveals the presence of significant numbers of particle of

  20. Toxicity to chicken embryos of organic extracts from airborne particulates separated into five sizes

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, H.

    1988-07-01

    The chicken embryo assay has been used for research on the toxicity of complex extracts derived from different environmental sources, as well as of individual compounds. However, only a few studies have been made on the toxicological effects of extracts derived from airborne particulate matter in chicken embryo. These studies showed that the toxic effect was due to the polycyclic aromatic hydrocarbons (PAHs) in the particles, although their structure and quantity were the factors determining the extent of the toxicity. Airborne particulate matter is composed of particles of different sizes, which can be separated into five classes according to their size by an Andersen high-volume sampler. Each class contained many kinds of compounds such as PAHs. In this study, airborne particulate matter was extracted according to particle size, the extracts analyzed for PAHs, and tested for embryotoxicity.

  1. Particulate matter and preterm birth

    Science.gov (United States)

    Particulate matter (PM) has been variably associated with preterm birth (PTB) (gestation <37 weeks), but the role played by specific chemical components of PM has been little studied. We examined the association between ambient PM <2.5 micrometers in aerodynamic diameter (PM2.S) ...

  2. CDC WONDER: Daily Fine Particulate Matter

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Daily Fine Particulate Matter data available on CDC WONDER are geographically aggregated daily measures of fine particulate matter in the outdoor air, spanning...

  3. Environmental Public Health Survelliance for Exposure to Respiratory Health Hazards: A Joint NASA/CDC Project to Use Remote Sensing Data for Estimating Airborne Particulate Matter Over the Atlanta, Georgia Metropolitan Area

    Science.gov (United States)

    Quattrochi, Dale A.; Rickman, Douglas; Mohammad, Al-Hamdan; Crosson, William; Estes, Maurice, Jr.; Limaye, Ashutosh; Qualters, Judith

    2008-01-01

    Describes the public health surveillance efforts of NASA, in a joint effort with the Center for Disease Control (CDC). NASA/MSFC and the CDC are partners in linking nvironmental and health data to enhance public health surveillance. The use of NASA technology creates value - added geospatial products from existing environmental data sources to facilitate public health linkages. The venture sought to provide remote sensing data for the 5-country Metro-Atlanta area and to integrate this environmental data with public health data into a local network, in an effort to prevent and control environmentally related health effects. Remote sensing data used environmental data (Environmental Protection Agency [EPA] Air Quality System [AQS] ground measurements and MODIS Aerosol Optical Depth [AOD]) to estimate airborne particulate matter over Atlanta, and linked this data with health data related to asthma. The study proved the feasibility of linking environmental data (MODIS particular matter estimates and AQS) with health data (asthma). Algorithms were developed for QC, bias removal, merging MODIS and AQS particulate matter data, as well as for other applications. Additionally, a Business Associate Agreement was negotiated for a health care provider to enable sharing of Protected Health Information.

  4. Analysis of the origin and composition of airborne particulate pollution

    International Nuclear Information System (INIS)

    Methods were developed for determination of airborne particulate pollution sources and origins from airborne particulate measurements, analyses of particulate constituents and routine meteorological measurements. The results obtained provide the basis for quantification of the long- and short-time impacts of these pollution sources on immission. The methods were tested in a densely populated urban area (West Berlin) and in a rural district (Waldhof, District of Uelzen) by collecting airborne particulates (fine and coarse particulates) at six measuring points by use of dichotomous collectors and high-volume collectors. The measurements were taken twice a day from November 1989 to November 1990. Analyses were made of the compounds and of the constituents Al, Fe, Si, Ca, Mg, K, Na, As, Cd, Cu, Ni, Sb, Se, V, Zn, Cl-, NO-3, SO2-4, NH+4, organic carbons (OC) and inorganic elementary (EC) carbons. (orig.). 104 refs., 66 tabs., 79 figs

  5. Evaluation of principal cannabinoids in airborne particulates

    Energy Technology Data Exchange (ETDEWEB)

    Balducci, C., E-mail: balducci@iia.cnr.it [Italian National Research Council, Institute for Atmospheric Pollution (CNR-IIA), Monterotondo Stazione (Italy); Nervegna, G.; Cecinato, A. [Italian National Research Council, Institute for Atmospheric Pollution (CNR-IIA), Monterotondo Stazione (Italy)

    2009-05-08

    The determination of delta(9)-tetrahydrocannabinol ({Delta}{sup 9}-THC), cannabidiol (CND) and cannabinol (CNB), primary active components in cannabis preparation, was carried out on airborne particulates by applying a specific procedure consisting of soot extraction by ultrasonic bath, purification by solvent partitioning, derivatization with N-(t-butyldimethylsilyl)-N-methyl-trifluoroacetamide, and separation/detection through gas chromatography coupled with tandem mass spectrometry. The optimized procedure was found suitable for measuring the three psychotropic substances at concentrations ranging from ca. 0.001 to ca. 5.0 ng cm{sup -3} of air, with recoveries always higher than 82%, accuracy >7.3% and precision >90%. Application of the procedure performed on field in Rome and Bari, Italy, demonstrated that all three compounds contaminate the air in Italian cities whereas in Algiers, Algeria, only cannabinol, the most stable in the atmosphere, exceeded the limit of quantification of the method. The relative percentages of the three cannabinoids in general reproduced those typical of the Cannabis sativa plant and were very different from those found in human blood, urine and sweat.

  6. Particulate Organic Matter (POM) Separation

    International Nuclear Information System (INIS)

    Information on soil organic matter (SOM) pools is of vital importance for studying the impact of soil management and environmental factors on soil organic carbon, an important part of the global carbon cycle. Several conceptual SOM pools with different turnover rates are available to feed models or to study carbon cycles. The fractionation scheme of Zimmermann allows isolating the labile particulate organic matter (POM) pool. Besides its use in conventional soil organic carbon dynamics studies and modelling, this pool can be determining as well in the evaluation of soil organic carbon stability based on the use of stable 15N and 13C isotopes

  7. Health effects of particulate air pollution and airborne desert dust

    Science.gov (United States)

    Lelieveld, J.; Pozzer, A.; Giannadaki, D.; Fnais, M.

    2013-12-01

    Air pollution by fine particulate matter (PM2.5) has increased strongly with industrialization and urbanization. In the past decades this increase has taken place at a particularly high pace in South and East Asia. We estimate the premature mortality and the years of human life lost (YLL) caused by anthropogenic PM2.5 and airborne desert dust (DU2.5) on regional and national scales (Giannadaki et al., 2013; Lelieveld et al., 2013). This is based on high-resolution global model calculations that resolve urban and industrial regions in relatively great detail. We apply an epidemiological health impact function and find that especially in large countries with extensive suburban and rural populations, air pollution-induced mortality rates have been underestimated given that previous studies largely focused on the urban environment. We calculate a global premature mortality by anthropogenic aerosols of 2.2 million/year (YLL ≈ 16 million/year) due to lung cancer and cardiopulmonary disease. High mortality rates by PM2.5 are found in China, India, Bangladesh, Pakistan and Indonesia. Desert dust DU2.5 aerosols add about 0.4 million/year (YLL ≈ 3.6 million/year). Particularly significant mortality rates by DU2.5 occur in Pakistan, China and India. The estimated global mean per capita mortality caused by airborne particulates is about 0.1%/year (about two thirds of that caused by tobacco smoking). We show that the highest premature mortality rates are found in the Southeast Asia and Western Pacific regions (about 25% and 46% of the global rate, respectively) where more than a dozen of the most highly polluted megacities are located. References: Giannadaki, D., A. Pozzer, and J. Lelieveld, Modeled global effects of airborne desert dust on air quality and premature mortality, Atmos. Chem. Phys. Discuss. (submitted), 2013. Lelieveld, J., C. Barlas, D. Giannadaki, and A. Pozzer, Model calculated global, regional and megacity premature mortality due to air pollution by ozone

  8. Quantification of PAHs and oxy-PAHs on airborne particulate matter in Chiang Mai, Thailand, using gas chromatography high resolution mass spectrometry

    Science.gov (United States)

    Walgraeve, Christophe; Chantara, Somporn; Sopajaree, Khajornsak; De Wispelaere, Patrick; Demeestere, Kristof; Van Langenhove, Herman

    2015-04-01

    An analytical method using gas chromatography high resolution mass spectrometry was developed for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) and 12 oxygenated PAHs (of which 4 diketones, 3 ketones, 4 aldehydes and one anhydride) on atmospheric particulate matter with an aerodynamic diameter less than 10 μm (PM10). The magnetic sector mass spectrometer was run in multiple ion detection mode (MID) with a mass resolution above 10 000 (10% valley definition) and allows for a selective accurate mass detection of the characteristic ions of the target analytes. Instrumental detection limits between 0.04 pg and 1.34 pg were obtained for the PAHs, whereas for the oxy-PAHs they ranged between 0.08 pg and 2.13 pg. Pressurized liquid extraction using dichloromethane was evaluated and excellent recoveries ranging between 87% and 98% for the PAHs and between 74% and 110% for 10 oxy-PAHs were obtained, when the optimum extraction temperature of 150 °C was applied. The developed method was finally used to determine PAHs and oxy-PAHs concentration levels from particulate matter samples collected in the wet season at 4 different locations in Chiang Mai, Thailand (n = 72). This study brings forward the first concentration levels of oxy-PAHs in Thailand. The median of the sum of the PAHs and oxy-PAHs concentrations was 3.4 ng/m3 and 1.1 ng/m3 respectively, which shows the importance of the group of the oxy-PAHs as PM10 constituents. High molecular weight PAHs contributed the most to the ∑PAHs. For example, benzo[ghi]perylene was responsible for 30-44% of the ∑PAHs. The highest contribution to ∑oxy-PAHs came from 1,8-napthalic anhydride (26-78%), followed by anthracene-9,10-dione (4-27%) and 7H-benzo[de]anthracene-7-one (6-26%). Indications of the degradation of PAHs and/or formation of oxy-PAHs were observed.

  9. Chemical and biological characterization of urban particulate matter

    International Nuclear Information System (INIS)

    Airborne particulate matter has been collected on glass fiber filter by high volume sampling in the Goeteborg urban area. The samples were, after extraction with respect to organic components, tested for biological effect in the Salmonella mutagenicity assay, affinity to the cytosol TCDD receptor and toxicity towards a mammalian cell system and analysed chemically for selected polycyclic aromatic compounds. A series of samples collected simultaneously at a street level location and a rooftop site showed that most parameters associated with the organic compounds adsorbed to airborne particulate matter has similar concentrations at the two levels. The differences observed for the mutagenic effect in different strains and conditions showed that the rooftop samples had a different composition compared to the street samples indicating that atmospheric transformations have occurred. Chemical fractionation of representative samples showed that the distribution of mutagenic activity among different fractions is dissimilar to the distribution obtained in the fractionation of both gasoline and diesel engine exhaust particles. Partial least squares regression analysis showed qualitatively that diesel exhaust is a major source of airborne particulate mutagenic activity and source apportionment with chemical mass balance and multilinear regression corroborated this quantitatively. The multilinear regression analysis gave the result that the airborne activity in Salmonella TA90-S9 originated to 54±4% from diesel exhaust and to 26±3% from gasoline exhaust. The contribution is more equal for the activity measured with TA98+S9. The usefulness of short-term bioassays as an addition to chemical analysis of airborne particulate matter depends on whether only polycylic aromatic hydrocarbons (PAH) are major carcinogens, as has been suggested in the literature, or whether also other polycyclic aromatic compound (PAC) are of importance. (au)

  10. [Chemical characteristics in airborne particulate matter (PM10) during a high pollution spring dust storm episode in Beijing, Tianjin and Zhangjiakou, China].

    Science.gov (United States)

    Liu, Qing-Yang; Liu, Yan-Ju; Zhao, Qiang; Zhang, Ting-Ting; Zhang, Mei-Gen; Wang, Cun-Mei

    2014-08-01

    Atmospheric particulate matter (PM10) was collected at sampling locations of Beijing, Tianjin and Zhangjiakou from April 1st to May 24th, 2012. The mass concentration of PM10 and concentrations of ions, elemental carbon (EC) and organic carbon (OC) in PM10 were determined. The results showed that average mass concentration of PM10 were 233.82 microg x m(-3) for Beijing, 279.64 microg x (-3) for Tianjin and 238.13 microg x m(-3) for Zhangjiakou, respectively. Backward trajectories results confirmed dust storm events occurred from 27th to 29th April. The maximum daily mass concentrations of PM10 were 755.54 microg x m(-3) for Beijing, 831.32 microg x m(-3) for Tianjin and 582.82 microg x m(-3) for Zhangjiakou during the dust storm episodes, respectively. Water-soluble ions (Na+, NH4+, Ca2+, K+, F-, Cl-, NO3-, SO4(2-)), organic carbon (OC) and elemental carbon (EC) were major aerosol components during the dust storm episodes, and their concentrations were higher than non-dust storm days. In addition, dust storm caused increases in NO3-, SO4(2-) and enrichment of secondary organic carbon (SOC) concentration relative to OC, suggesting that chemical reaction processes involving gas-particle conversion occurred during the long-distance transport of aerosol particles. PMID:25338350

  11. Mutagenicity profile of atmospheric particulate matter in a small urban center subjected to airborne emission from vehicle traffic and sugar cane burning.

    Science.gov (United States)

    Alves, Debora Kristina M; Kummrow, Fábio; Cardoso, Arnaldo A; Morales, Daniel A; Umbuzeiro, Gisela A

    2016-01-01

    Atmospheric particulate matter (PM) is genotoxic and recently was classified as carcinogenic to humans by the International Agency for Research on Cancer. PM chemical composition varies depending on source and atmospheric conditions. The Salmonella/microsome assay is the most used mutagenicity test and can identify the major chemical classes responsible for observed mutagenicity. The objective of this work was to characterize the mutagenicity of PM samples from a countryside city, Limeira, Brazil, which is influenced by heavy traffic and sugar cane biomass burning. Six samples of total PM were collected. Air mass backward trajectories were calculated. Organic extracts were assayed using the Salmonella/microsome microsuspension mutagenicity assay using TA98, YG1041, and TA1538, with and without metabolic activation (S9). YG1041 was the most sensitive strain and mutagenicity reached 9,700 revertants per m(3) without metabolic activation. Potency for TA1538 was higher than TA98, indicating that this strain should be considered in air mutagenicity studies. The increased response to YG1041 relative to TA98, and the decreased response with S9, suggests that nitroaromatics are the major contributors. Limeira is among the most mutagenic cities in the world. High mutagenicity in Limeira seems to occur when the air mass from the area of sugarcane production is mixed with air from the region impacted by anthropogenic activities such as traffic. An increase in the formation of nitro-polycyclic aromatic hydrocarbons may result from longer contact time between the aromatic compounds and the atmosphere with high NOx and ozone concentration, although more studies are required to confirm this hypothesis.

  12. Airborne particulate matter PM2.5 from Mexico City affects the generation of reactive oxygen species by blood neutrophils from asthmatics: an in vitro approach

    Directory of Open Access Journals (Sweden)

    Ceballos Guillermo

    2009-06-01

    Full Text Available Abstract Background The Mexico City Metropolitan Area is densely populated, and toxic air pollutants are generated and concentrated at a higher rate because of its geographic characteristics. It is well known that exposure to particulate matter, especially to fine and ultra-fine particles, enhances the risk of cardio-respiratory diseases, especially in populations susceptible to oxidative stress. The aim of this study was to evaluate the effect of fine particles on the respiratory burst of circulating neutrophils from asthmatic patients living in Mexico City. Methods In total, 6 subjects diagnosed with mild asthma and 11 healthy volunteers were asked to participate. Neutrophils were isolated from peripheral venous blood and incubated with fine particles, and the generation of reactive oxygen species was recorded by chemiluminescence. We also measured plasma lipoperoxidation susceptibility and plasma myeloperoxidase and paraoxonase activities by spectrophotometry. Results Asthmatic patients showed significantly lower plasma paraoxonase activity, higher susceptibility to plasma lipoperoxidation and an increase in myeloperoxidase activity that differed significantly from the control group. In the presence of fine particles, neutrophils from asthmatic patients showed an increased tendency to generate reactive oxygen species after stimulation with fine particles (PM2.5. Conclusion These findings suggest that asthmatic patients have higher oxidation of plasmatic lipids due to reduced antioxidant defense. Furthermore, fine particles tended to increase the respiratory burst of blood human neutrophils from the asthmatic group. On the whole, increased myeloperoxidase activity and susceptibility to lipoperoxidation with a concomitant decrease in paraoxonase activity in asthmatic patients could favor lung infection and hence disrupt the control of asthmatic crises.

  13. Mutagenicity profile of atmospheric particulate matter in a small urban center subjected to airborne emission from vehicle traffic and sugar cane burning.

    Science.gov (United States)

    Alves, Debora Kristina M; Kummrow, Fábio; Cardoso, Arnaldo A; Morales, Daniel A; Umbuzeiro, Gisela A

    2016-01-01

    Atmospheric particulate matter (PM) is genotoxic and recently was classified as carcinogenic to humans by the International Agency for Research on Cancer. PM chemical composition varies depending on source and atmospheric conditions. The Salmonella/microsome assay is the most used mutagenicity test and can identify the major chemical classes responsible for observed mutagenicity. The objective of this work was to characterize the mutagenicity of PM samples from a countryside city, Limeira, Brazil, which is influenced by heavy traffic and sugar cane biomass burning. Six samples of total PM were collected. Air mass backward trajectories were calculated. Organic extracts were assayed using the Salmonella/microsome microsuspension mutagenicity assay using TA98, YG1041, and TA1538, with and without metabolic activation (S9). YG1041 was the most sensitive strain and mutagenicity reached 9,700 revertants per m(3) without metabolic activation. Potency for TA1538 was higher than TA98, indicating that this strain should be considered in air mutagenicity studies. The increased response to YG1041 relative to TA98, and the decreased response with S9, suggests that nitroaromatics are the major contributors. Limeira is among the most mutagenic cities in the world. High mutagenicity in Limeira seems to occur when the air mass from the area of sugarcane production is mixed with air from the region impacted by anthropogenic activities such as traffic. An increase in the formation of nitro-polycyclic aromatic hydrocarbons may result from longer contact time between the aromatic compounds and the atmosphere with high NOx and ozone concentration, although more studies are required to confirm this hypothesis. PMID:26289646

  14. Mutagenicity of airborne particulates in the rubber industry.

    Science.gov (United States)

    Barański, B; Indulski, J; Janik-Spiechowicz, E; Palus, J

    1989-12-01

    The aim of this work was to evaluate the mutagenic activity of airborne particulate matter in the rubber industry. Air was sucked through Whatman glass-fibre filters with Staplex pumps and adsorbed substances and fume particles were extracted with acetone or toluene for 2 h in a ultrasonic cleaner. After separation of the insoluble solid phase by filtration, solvent was evaporated at a temperature of 70 degrees C in an argon atmosphere. The residue was stored at -20 degrees C. Mutagenicity was determined by the Salmonella plate incorporation assay with the tester strain TA98 and activity is related either to the weight of aerosol (rev mg-1) or to the volume of atmospheric sample (rev m-3). The fumes emitted from the tyre tread line, calender feeding, and tyre vulcanizing processes, showed the highest mutagenic activity (55-211 rev mg-1, + S9). At these and at other workplaces (extruder mill, carbon black station, mixer loading), mutagenic activity related to the volume of air was in the range of 22-158 rev m-3, + S9. The results indicate the need to reduce and monitor mutagenic contamination in order to increase the safety of work in the rubber industry. PMID:2693511

  15. Concentrations of Platinum Group Elements (Pt, Pd, Rh in Airborne Particulate Matter (PM2.5 and PM10-2.5 Collected at Selected Canadian Urban Sites: a Case Study

    Directory of Open Access Journals (Sweden)

    Celo V.

    2013-04-01

    Full Text Available Increasing environmental concentrations of platinum group elements (PGEs, in particular platinum (Pt, palladium (Pd and rhodium (Rh, from catalytic converters has been reported worldwide. Initially it was believed that the emitted PGEs remain in the roadside environment, but recent studies have shown that fine PGE-containing particles can be transported and distributed at regional and long-range levels. Therefore, the monitoring of PGEs in airborne particulate matter (PM is important for the estimation of potential risks to human health and to the ecosystem. The aim of this study is to present the first results from an analysis on the concentration and distribution of Pt, Pd and Rh in PM collected on Teflon filters at two selected urban sites (Toronto, Ontario; Edmonton, Alberta collected within the Canadian National Air Pollution Surveillance (NAPS network. In this work, a quadruple inductively coupled plasma mass spectrometry (ICP-MS, combined with microwave assisted acid digestion using aqua regia was used. A cation exchange separation was used to alleviate the matrix-induced spectral and nonspectral interferences prior to ICP-MS analysis. To obtain sufficient material needed for PGEs analysis, fine PM (particles with aerodynamic diameter less than 2.5 mm; PM2.5 and coarse PM (with aerodynamic diameter between 2.5 and 10 mm; PM10-2.5 samples were combined into composite samples on a seasonal basis. The obtained results will be discussed and compared with literature data.

  16. Johns Hopkins Particulate Matter Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Johns Hopkins Particulate Matter Research Center will map health risks of PM across the US based on analyses of national databases on air pollution, mortality,...

  17. Complexity analysis in particulate matter measurements

    Directory of Open Access Journals (Sweden)

    Luciano Telesca

    2011-09-01

    Full Text Available We investigated the complex temporal fluctuations of particulate matter data recorded in London area by using the Fisher-Shannon (FS information plane. In the FS plane the PM10 and PM2.5 data are aggregated in two different clusters, characterized by different degrees of order and organization. This results could be related to different sources of the particulate matter.

  18. Magnetic Approaches to Measuring and Mitigating Airborne Particulate Pollution

    Science.gov (United States)

    Maher, B.

    2014-12-01

    Human exposure to airborne particulate matter (PM) generates adverse human health impacts at all life stages from the embryonic to the terminal, including damage to respiratory and cardiovascular health, and neurodevelopment and cognitive function. Detailed understanding of the causal links between PM exposure and specific health impacts, and possible means to reduce PM exposure require knowledge of PM concentrations, compositions and sources at the fine-scale; i.e. beyond the current resolution of spatially-sparse conventional PM monitoring, non-unique elemental analyses, or poorly-validated PM modelling. Magnetically-ordered iron oxide minerals appear to be a ubiquitous component of urban PM. These minerals derive partly from the presence of iron impurities in fuels, which form, upon combustion, a non-volatile residue, often dominated by magnetite, within glassy, spherical condensates. Iron-rich, magnetic PM also arises from abrasion from vehicle components, including disk brakes, and road dust. The ubiquity and diversity of these magnetic PM phases, and the speed and sensitivity of magnetic analyses (down to trace concentrations), makes possible rapid, cost-effective magnetic characterization and quantification of PM, a field of study which has developed rapidly across the globe over the last 2 decades. Magnetic studies of actively-sampled PM, on filters, and passively-sampled PM, on tree leaves and other depositional surfaces, can be used to: monitor and map at high spatial resolution ambient PM concentrations; address the controversial issue of the efficacy of PM capture by vegetation; and add a new, discriminatory dimension to PM source apportionment.

  19. Co-ordinated research project on assessment of levels and health-effects of airborne particulate matter in mining, metal refining and metal working industries using nuclear and related analytical techniques. Report on the second research co-ordination meeting

    International Nuclear Information System (INIS)

    Overall objectives: To demonstrate the applicability of nuclear and related techniques in studies that may impact on human health, giving emphasis to the solution of problems that have been identified to be of high priority in national and international programmes for sustainable development. Specific objectives: To develop strategies and techniques for sampling of workplace airborne particulate matter (APM) and of human tissues and body fluids (hair, blood, etc.) of exposed and non-exposed persons; To development suitable analytical procedures for analysis of such types of samples, using nuclear and related analytical techniques; To carry out workplace and personal monitoring of APM and characterise the health effects of such exposure in terms of the observed elemental concentration; To carry out tissue analyses of the workers so exposed for biological monitoring and the health effects studies. Achievements: a) Specific industries not previously monitored in individual countries have been targeted in respect of pollution assessment. Some examples are: Stainless steel processing and construction; Galvanising industry; Zinc smelting operations; Mineral fertiliser industry. b) Validation of analytical techniques through quality control exercises: NAT-3 Interlaboratory comparison for the determination of trace and minor elements in urban dust artificially loaded on air filters; NAT-4 Proficiency test on selected trace elements in lyophilised urine and air filters. c) Capacity building through the establishment of new multidisciplinary teams, personnel training and laboratory expertise. d) The sampling procedures have been harmonised through: The application of the ''Gent'' sampler for APM collection, IAEA procedures and IUPAC guidelines for sampling and sample handling of hair, blood and urine. e) All participants performed surveys on targeted industries and selected pollutants. f) The scientific output of the CRP is materialised in various national and international

  20. Dispersion model for airborne particulates inside a building

    International Nuclear Information System (INIS)

    An empirical model has been developed for the spread of airborne radioactive particles after they are released inside a building. The model has been useful in performing safety analyses of actinide materials facilities at the Savannah River Plant (SRP). These facilities employ the multiple-air-zone concept; that is, ventilation air flows from rooms or areas of least radioactive material hazard, through zones of increasing hazard, to a treatment system. A composite of the data for dispersion of airborne activity during 12 actual case incidents at SRP forms the basis for this model. These incidents occurred during approximately 90 plant-years of experience at SRP with the chemical and metallurgical processing of purified neptunium and plutonium after their recovery from irradiated uranium. The model gives ratios of the airborne activity concentrations in rooms and corridors near the site of the release. The multiple-air-zone concept has been applied to many designs of nuclear facilities as a safety feature to limit the spread of airborne activity from a release. The model illustrates the limitations of this concept: it predicts an apparently anomalous behavior of airborne particulates; namely, a small migration against the flow of the ventilation air

  1. Sub-parts-per-billion determination of nitro-substituted polynuclear aromatic hydrocarbons in airborne particulate matter and soil by electron capture-Tandem mass spectrometry.

    Science.gov (United States)

    Vincenti, M; Minero, C; Pelizzetti, E; Fontana, M; De Maria, R

    1996-12-01

    A procedure for the determination of nitro-substiruted polynuclear aromatic hydrocarbons (nitro-PAH) on crude air-particulate and soil extracts is introduced. Elimination of purification and fractionation procedures was made possible by the use of both a selective ionization method, such as electron-capture chemical ionization, and a specific fragmentation process, in an experiment of tandem mass spectrometry (gas chromatography-electron capture tandem mass spectrometry). Different mass spectrometric procedures were compared. The best performance was observed when the nitro-PAH molecular ions [M](-) were mass-selected by the first analyzer under multiple reaction monitoring conditions and then fragmented to NO 2 (-) (m/z 46). Detection limits were on the order of hundreds of femtograms, as determined in extracts of real environmental samples. This corresponds approximately to 5-15 pg of nitro-PAH per cubic meter of air sampled. Calibration curves were linear over 3 orders of magnitude. Applications to contamination from motor vehicle combustion and the iron industry are briefly discussed.

  2. Microorganisms associated particulate matter: a preliminary study.

    Science.gov (United States)

    Alghamdi, Mansour A; Shamy, Magdy; Redal, Maria Ana; Khoder, Mamdouh; Awad, Abdel Hameed; Elserougy, Safaa

    2014-05-01

    This study aims to determine the microbiological quality of particulate matter (PM) in an urban area in Jeddah, Saudi Arabia, during December 2012 to April 2013. This was achieved by the determination of airborne bacteria, fungi, and actinobacteria associated PM10 and PM2.5, as well as their relationships with gaseous pollutants, O3, SO2 and NO2, and meteorological factors (T°C, RH% and Ws). High volume samplers with PM10 and PM2.5 selective sizes, and glass fiber filters were used to collect PM10 and PM2.5, respectively. The filters were suspended in buffer phosphate and aliquots were spread plated onto the surfaces of trypticase soy agar, malt extract agar, and starch casein agar media for counting of bacteria, fungi and actinobacteria-associated PM, respectively. PM10 and PM2.5 concentrations averaged 159.9 μg/m(3) and 60 μg/m(3), respectively, with the ratio of PM2.5/PM10 averaged ~0.4. The concentrations of O3, SO2 and NO2 averaged 35.73 μg/m(3), 38.1μg/m(3) and 52.5 μg/m(3), respectively. Fungi and actinobacteria associated PM were found in lower concentrations than bacteria. The sum of microbial loads was higher in PM10 than PM2.5, however a significant correlation (r=0.57, P ≤ 0.05) was found between the sum of microbial loads associated PM10 and PM2.5. Aspergillus fumigatus and Aspergillus niger were the common fungal types associated PM. Temperature significantly correlated with both PM10 (r=0.44), and PM2.5 (r=0.5). Significant negative correlations were found between O3 and PM2.5 (r=-0.47), and between SO2 with PM10 (r=-0.48). Wind speed positively correlated with airborne microorganisms associated PM. The regression model showed that the inverse PM2.5 concentration (1/PM2.5) was a significant determinant of fungal count associated PM. Chemical processes and environmental factors could affect properties of PM and in turn its biological quality.

  3. 40 CFR 60.422 - Standards for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Manufacture § 60.422 Standards for particulate matter. On or after the date on which the performance test... sulfate dryer, particulate matter at an emission rate exceeding 0.15 kilogram of particulate per...

  4. Particulate matter sensor with a heater

    Science.gov (United States)

    Hall, Matthew

    2011-08-16

    An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.

  5. Characterization of airborne particulates in Bangkok urban area by neutron activation analysis.

    Science.gov (United States)

    Nouchpramool, S; Sumitra, T; Leenanuphunt, V

    1999-01-01

    Samples of airborne particulates were collected in a residential area and in an area near a busy highway in Bangkok during the period from January 1997 to May 1998. A stacked filter system was used for the former site and a Partisol 2000 was used for the latter site. Both 2.5 microns and 10-micron particulates were collected every week. The total suspended particulate matters were also collected at the latter site. The samples were analyzed by neutron activation analysis utilizing neutron flux from a 2-MW TRIGA MARK III research reactor. The elements most frequently detected in the airborne particulates were Al, As, Br, Ca, Ce, Cl, Co, Cr, Cs, Fe, I, K, La, Mg, Mn, Na, Rb, Sb, Sc, Sm, Th, Ti, V, and Zn. The enrichment factor and factor analysis were used to investigate trends, sources, and origin of the atmospheric aerosols. Anthropogenic elements in road dust, construction dust, motor vehicles emission, and other combustion components were identified. A comparative study of data between both sites was performed and it was found that the mass concentration in the area close to the highway was about three times higher than in the residential area. PMID:10676491

  6. Particulate matter and health - from air to human lungs

    International Nuclear Information System (INIS)

    The aim of this project is to search for respiratory system particular aggressors to which workers are submitted in their labouring activity. The work plan under the current IAEA contract comprise a prospective study to identify particulate matter deposited in the human respiratory ducts and lung tissue and workers respiratory health status survey at a steel plant, Siderurgia Nacional (SN). So far, the selection of areas of interest at SN, workers exposed, airborne particulate monitoring sites according to the periodicity of labouring cycles, and the beginning of workers medical survey have been achieved and/or initiated. The SN selected area, where steel is processed and steel casting is achieved, involve approximately 80 workers, most of them working at that location for more than 15 years. Blood elemental content data determined by PIXE and INAA and a preliminary health status evaluation from 32 of the 80 workers included in this survey are presented and discussed. (author)

  7. Heavy metal composition of particulate matter in rural and urban residential built environments in Pakistan

    OpenAIRE

    Nasar, ZA; Colbeck, I.; Ali, Z; Ahmed, S

    2015-01-01

    Heavy metals in outdoor and indoor airborne particulate matter (PM) and dust in different residential built environmentsat two rural and one urban site in Pakistan were analysed. An eight stage non-viable impactor (Thermo Fisher Scientific Inc., USA) loaded with EMP 2000 glass microfiber filter papers (Whatman, England) was used to collect airborne PM.The indoordust samples (settled dust) were collected from different indoor surfaces (floor, cupboards) in living rooms and kitchens...

  8. Source apportionment of airborne particulates through receptor modeling: Indian scenario

    Science.gov (United States)

    Banerjee, Tirthankar; Murari, Vishnu; Kumar, Manish; Raju, M. P.

    2015-10-01

    Airborne particulate chemistry mostly governed by associated sources and apportionment of specific sources is extremely essential to delineate explicit control strategies. The present submission initially deals with the publications (1980s-2010s) of Indian origin which report regional heterogeneities of particulate concentrations with reference to associated species. Such meta-analyses clearly indicate the presence of reservoir of both primary and secondary aerosols in different geographical regions. Further, identification of specific signatory molecules for individual source category was also evaluated in terms of their scientific merit and repeatability. Source signatures mostly resemble international profile while, in selected cases lack appropriateness. In India, source apportionment (SA) of airborne particulates was initiated way back in 1985 through factor analysis, however, principal component analysis (PCA) shares a major proportion of applications (34%) followed by enrichment factor (EF, 27%), chemical mass balance (CMB, 15%) and positive matrix factorization (PMF, 9%). Mainstream SA analyses identify earth crust and road dust resuspensions (traced by Al, Ca, Fe, Na and Mg) as a principal source (6-73%) followed by vehicular emissions (traced by Fe, Cu, Pb, Cr, Ni, Mn, Ba and Zn; 5-65%), industrial emissions (traced by Co, Cr, Zn, V, Ni, Mn, Cd; 0-60%), fuel combustion (traced by K, NH4+, SO4-, As, Te, S, Mn; 4-42%), marine aerosols (traced by Na, Mg, K; 0-15%) and biomass/refuse burning (traced by Cd, V, K, Cr, As, TC, Na, K, NH4+, NO3-, OC; 1-42%). In most of the cases, temporal variations of individual source contribution for a specific geographic region exhibit radical heterogeneity possibly due to unscientific orientation of individual tracers for specific source and well exaggerated by methodological weakness, inappropriate sample size, implications of secondary aerosols and inadequate emission inventories. Conclusively, a number of challenging

  9. Standard Practice for Sampling Airborne Particulate Contamination in Cleanrooms for Handling Aerospace Fluids

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This practice covers a procedure for sampling airborne particulate matter larger than 5 m in size. The method is designed to be used in specific areas, commonly called cleanrooms in the aerospace industry, where aerospace fluids are handled. Note 1 Practice F 50 is an alternative procedure. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  10. Approach to predict partitioning of organic compounds from air into airborne particulate

    Institute of Scientific and Technical Information of China (English)

    SUN Cong; FENG Liu

    2005-01-01

    Based on the theoretical linear solvation energy relationship and quantum chemical descriptors computed by AM1 Hamiltonian, a new approach was developed to predict the partitioning of some organic compounds between the airborne particulate and air. It could be successfully used to study the partitioning of organic compounds from air into airborne particulate, and evaluate the potential risk of organic compounds.

  11. 40 CFR 60.402 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... which: (i) Contain particulate matter in excess of 0.030 kilogram per megagram of phosphate rock feed (0...) Contain particulate matter in excess of 0.12 kilogram per megagram of phosphate rock feed (0.23 lb/ton... beneficiated rock any gases which: (i) Contain particulate matter in excess of 0.055 kilogram per megagram...

  12. 40 CFR 60.92 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.92... Facilities § 60.92 Standard for particulate matter. (a) On and after the date on which the performance test... which: (1) Contain particulate matter in excess of 90 mg/dscm (0.04 gr/dscf). (2) Exhibit 20...

  13. 40 CFR 60.182 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.182... Smelters § 60.182 Standard for particulate matter. (a) On and after the date on which the performance test... furnace, or sintering machine discharge end any gases which contain particulate matter in excess of 50...

  14. 40 CFR 60.382 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard...

  15. 40 CFR 60.472 - Standards for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Processing and Asphalt Roofing Manufacture § 60.472 Standards for particulate matter. (a) On and after the...) Particulate matter in excess of: (i) 0.04 kg/Mg (0.08 lb/ton) of asphalt shingle or mineral-surfaced...

  16. 40 CFR 60.142a - Standards for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... 20, 1983 § 60.142a Standards for particulate matter. (a) Except as provided under paragraphs (b) and...-blown BOPF and contain particulate matter in excess of 23 mg/dscm (0.010 gr/dscf). (3) Exit from...

  17. 40 CFR 60.342 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.342... Manufacturing Plants § 60.342 Standard for particulate matter. (a) On and after the date on which the... gases which: (1) Contain particulate matter in excess of 0.30 kilogram per megagram (0.60 lb/ton)...

  18. 40 CFR 60.532 - Standards for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Wood Heaters § 60.532 Standards for particulate matter. Unless exempted under § 60.530, each affected... comply with the following particulate matter emission limits as determined by the test methods...

  19. 40 CFR 52.2584 - Control strategy; Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy; Particulate matter... Control strategy; Particulate matter. (a) Part D—Disapproval—USEPA disapproves Regulation NR 154.11(7)(b... control strategy to attain and maintain the standards for particulate matter, because it does not...

  20. 40 CFR 60.302 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.302... § 60.302 Standard for particulate matter. (a) On and after the 60th day of achieving the maximum... a grain dryer any process emission which: (1) Contains particulate matter in excess of 0.023...

  1. 40 CFR 60.172 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.172... Smelters § 60.172 Standard for particulate matter. (a) On and after the date on which the performance test... contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  2. 40 CFR 60.142 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.142....142 Standard for particulate matter. (a) Except as provided under paragraph (b) of this section, on... the atmosphere from any affected facility any gases which: (1) Contain particulate matter in excess...

  3. 40 CFR 60.52 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.52... § 60.52 Standard for particulate matter. (a) On and after the date on which the initial performance... atmosphere from any affected facility any gases which contain particulate matter in excess of 0.18 g/dscm...

  4. 40 CFR 60.682 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.682... Insulation Manufacturing Plants § 60.682 Standard for particulate matter. On and after the date on which the... gases which contain particulate matter in excess of 5.5 kg/Mg (11.0 1b/ton) of glass pulled....

  5. 40 CFR 52.1476 - Control strategy: Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter... strategy: Particulate matter. (a) The requirements of subpart G of this chapter are not met since the plan does not provide for the attainment and maintenance of the national standards for particulate matter...

  6. 40 CFR 60.282 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.282... § 60.282 Standard for particulate matter. (a) On and after the date on which the performance test...: (i) Contain particulate matter in excess of 0.10 g/dscm (0.044 gr/dscf) corrected to 8 percent...

  7. ASSESSMENT OF BAGGING OPERATORS EXPOSURE TO WITH PVC AIRBORNE PARTICULATES

    Directory of Open Access Journals (Sweden)

    H. Asilian, M. Nasseri Nejad, S. B. Mortazavi, M. J. Jafari, A. Khavanin, A. R. Dehdashti

    2008-07-01

    Full Text Available Dust consists of tiny solid particles carried by air currents. These particles are formed by many different processes. One of these processes is polymerization of inert plastic such as Polyvinyl Chloride production plant. According to the Occupational Health and Safety Assessment Series requirements, section 4.4.6, occupational health and safety risks must be defined and controlled where needed. This field study was conducted to evaluate the occupational exposure of packaging operators to airborne polyvinyl chloride dust in order to health risk assessment and recommend feasible controlling methods. The mass concentration of polyvinyl chloride particulate was measured in two fractions according to the particle size that expressed as total and respirable particulates. The Air Sampling Methods, Methods for the Determination of Hazardous Substances 14/3, of Health and Safety Executive were used as a standard sampling protocol. The average mass concentrations for respirable and total particulates were measured 3.54±0.3 mg/m3 and 11.89±0.8 mg/m3 respectively. Also health risks of studied condition were estimated as significant level, category one, therefore the risk must be reduced below the standard level. According to the work requirements to reduce the emission rate and mitigate the health risk exposure, a local exhaust ventilation system design was recommended for bag-filters of hopper tank.

  8. NICKEL SPECIATION OF URBAN PARTICULATE MATTER

    Energy Technology Data Exchange (ETDEWEB)

    Kevin C. Galbreath; Charlene R. Crocker; Carolyn M. Nyberg; Frank E. Huggins; Gerald P. Huffman

    2003-10-01

    A four-step sequential Ni extraction method, summarized in Table AB-1, was evaluated for identifying and quantifying the Ni species occurring in urban total suspended particulate (TSP) matter and fine particulate matter (<10 {micro}m [PM{sub 10}] and <2.5 {micro}m [PM{sub 2.5}] in aerodynamic diameter). The extraction method was originally developed for quantifying soluble, sulfidic, elemental, and oxidic forms of Ni that may occur in industrial atmospheres. X-ray diffraction (XRD) and x-ray absorption fine structure (XAFS) spectroscopy were used to evaluate the Ni species selectivity of the extraction method. Uncertainties in the chemical speciation of Ni in urban PM{sub 10} and PM{sub 2.5} greatly affect inhalation health risk estimates, primarily because of the large variability in acute, chronic, and cancer-causing effects for different Ni compounds.

  9. Co-ordinated research project on assessment of levels and health-effects of airborne particulate matter in mining, metal refining and metal working industries using nuclear and related analytical techniques. Report on the first research co-ordination meeting (RCM)

    International Nuclear Information System (INIS)

    The objectives of the CRP are to: (1) improve competence for research on workplace monitoring in terms of proper sampling and analytical procedures, (2) obtain relevant and reliable data on sources and levels of workplace pollution in various countries, (3) promote a better understanding of methods for the interpretation of such data including occupational heath studies, and (4) encourage closer collaboration between analytical scientists and researchers in the field of occupational health in the countries concerned. The CRP focuses on the use of nuclear and related analytical techniques for the following kinds of studies: (1) strategies and techniques for sampling of workplace airborne particulate matter and of human tissues and body fluids (hair, blood, etc.) sampling of exposed and non-exposed persons; (2) development of suitable analytical procedures for analysis of such types of samples; (3) workplace and personal monitoring of airborne particulate matter in the mining, refining and metal working industries, and the health effects of such exposure; and (4) tissue analysis of the workers exposed for biological monitoring and the health effects studies. This report includes the core and supplementary programme of the CRP; technical aspects of sampling, analysis, data processing, and quality assurance; and organizational aspects. The report includes also 10 papers contributed by the participants. Each individual contribution was indexed and provided with an abstract

  10. Mineralogical characterization of airborne individual particulates in Beijing PM10

    Institute of Scientific and Technical Information of China (English)

    LU Sen-lin; SHAO Long-yi; WU Ming-hong; JIAO Zheng

    2006-01-01

    This work mainly focuses on the mineralogical study of particulate matter(PM10) in Beijing. Samples were collected on polycarbonate filter from April, 2002 to March, 2003 in Beijing urban area. Scanning electronic microscopy coupled with energy dispersive X-ray(SEM/EDX) was used to investigate individual mineral particles in Beijing PM10. 1454 individual mineral particulates from 48 samples were analysed by SEM/EDX. The results revealed that mineral particulates were complex and heterogeneous. 38kinds of minerals in PM10 were identified. The clay minerals, of annual average percentage of 30.1% , were the main composition among the identified minerals, and illite/smectite was the main composition in clay minerals, reaching up to 35%. Annual average percentage of quartz, calcite, compound particulates, carbonates were 13.5%, 10.9%, 11.95%, 10.31%, respectively. Annual average percentage less than 10% were gypsum, feldspar, dolomite, and so on. Fluorite, apatite, halite, barite and chloridize zinc (ZnCl2) were firstly identified in Beijing PM10. Sulfurization was found on surface of mineral particles, suggested extensive atmospheric reaction in air during summer.

  11. Airborne particulate soiling of terrestrial photovoltaic modules and cover materials

    Science.gov (United States)

    Hoffman, A. R.; Maag, C. R.

    1980-01-01

    Results are presented for the first phase of a photovoltaic-module soiling study that was carried out with NASA participation to investigate the problem of the electrical performance degradation of flat-plate photovoltaic modules exposed at outdoor sites that is due to the accumulation of airborne particulates on sensitive optical surfaces. The results were obtained in both field and laboratory soiling experiments, as well as in materials field experiments using candidate encapsulants and top covers. It is concluded that: (1) the electrical performance degradation shows a significant time and site dependence, ranging from 2% to 60% power loss; (2) the rate of particulate accumulation appears to be largely material independent when natural removal processes do not dominate; (3) the effectiveness of natural removal processes, especially rain, is strongly material dependent; (4) top-cover materials of glass and plexiglass retain fewer particles than silicone rubber; and (5) high module voltages relative to ground do not appear to affect the rate of dirt accumulation on modules.

  12. Particulate matter and health - From air to human lungs

    International Nuclear Information System (INIS)

    This work reports on the environmental influence in the respiratory health of workers exposed to metal pollutants in their labour activities (metal processing industry). The clinical, respiratory functional and morphological changes were related with blood elemental concentrations in order to evaluate the influence of exposure to inhaled metal airborne particles. In addition, the deposition of particulate matter in the respiratory system was assessed in humans and in an animal model to infer possible mechanisms of interaction of metals with the respiratory tissue. The respiratory affections encountered for the exposure group through clinical, functional and morphological data are related with the number of years of exposure and with high levels of Zn in blood. Methodologies applied have into account the quality of results produced. Interlaboratory checks were carried out using certified reference materials and standard procedures were initiated to assure traceability in chemical analysis of biological matrices using analytical techniques based on X ray spectrometry. (author)

  13. Resuspension of particulate matter and PAHs from street dust

    Science.gov (United States)

    Martuzevicius, D.; Kliucininkas, L.; Prasauskas, T.; Krugly, E.; Kauneliene, V.; Strandberg, B.

    2011-01-01

    Winter street sanding activities in northern countries are often associated with elevated pollution by particulate matter. There are indications that street dust may act as a source of particle-bound PAHs. However, very few studies have addressed the resuspension potential of PAHs from street dust. The purpose of this study was to quantitatively assess emissions of particulate matter and PAHs from street dust by laboratory-scale simulation of particle resuspension. Increases in air velocity caused proportional increases in air-borne PM 2.5, PM 10 and PM total concentrations, while the concentrations of PAHs associated with resuspended particles did not show clear statistically significant dependence on air velocity. A substantial difference in particle and PAH resuspension was observed between dust from the city center street and dust from the connecting street. The data obtained in the present study indicate that street dust may be a significant source not only of PMs but also of particle-bound PAHs in ambient air.

  14. Characterization of particulate matter concentrations and bioaerosol on each floor at a building in Seoul, Korea.

    Science.gov (United States)

    Oh, Hyeon-Ju; Jeong, Na-Na; Chi, Woo-Bae; Seo, Ji-Hoon; Jun, Si-Moon; Sohn, Jong-Ryeul

    2015-10-01

    Particulate matter (PM) in buildings are mostly sourced from the transport of outdoor particles through a heating, ventilation, and air conditioning (HVAC) system and generation of particle within the building itself. We investigated the concentrations and characteristic of indoor and outdoor particles and airborne bacteria concentrations across four floors of a building located in a high-traffic area. In all the floors we studied (first, second, fifth, and eighth), the average concentrations of particles less than 10 μm (PM10) in winter for were higher than those in summer. On average, a seasonal variation in the PM10 level was found for the first, fifth, and eighth floors, such that higher values occurred in the winter season, compared to the summer season. In addition, in winter, the indoor concentrations of PM10 on the first, fifth, and eighth floors were higher than those of the outdoor PM10. The maximum level of airborne bacteria concentration was found in a fifth floor office, which held a private academy school consisting of many students. Results indicated that the airborne bacteria remained at their highest concentration throughout the weekday period and varied by students' activity. The correlation coefficient (R (2)) and slope of linear approximation for the concentrations of particulate matter were used to evaluate the relationship between the indoor and outdoor particulate matter. These results can be used to predict both the indoor particle levels and the risk of personal exposure to airborne bacteria. PMID:26062466

  15. First study of airborne particulate pollution using PIXE analysis in Habana city, Cuba

    International Nuclear Information System (INIS)

    The present work reports the results of a first study of elemental composition in airborne particulate matter (fine and coarse) collected at the Municipality of Centro Habana, Havana City, Cuba, using the PIXE technique. At present, there is not any information available about element contents in airborne particulate from this region. A five months sampling campaign was carried out, collecting the samples under an air flux of 20 l/min with a Gent SFU Sampler equipped with a system which allows the aerosol collection in both size fractions simultaneously. A total of 144 aerosol samples were collected. For the PIXE analysis, the samples were irradiated by 2.0 MeV energy protons from a 2 MV Tandetron Accelerator. A total of 14 elements (S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br and Pb) were consistently detected with minimum detection limits from 1 ng/m3 to 10 ng/m3 for most of the elements. Enrichment factors were also calculated for both fractions in order to identify the natural and anthropogenic group of elements. The quantitative results obtained have revealed important information that has been used in a first attempt to understand and to characterize the atmospheric pollution of this area. (author)

  16. The Characteristics of deposition of airborne particulate matters with different size on certain plants%园林植物滞留不同粒径大气颗粒物的特征及规律

    Institute of Scientific and Technical Information of China (English)

    赵松婷; 李新宇; 李延明

    2014-01-01

    particulate matters (PM) by common plants, some representative plants in Beijing were chosen to systematically analyze the characteristics of deposition of PM with different size on them by using direct sampling, electron microscope analysis and statistical analysis methods. The results showed that:1) PM retained by plants had shapes of irregular block, ball and polymer. Plants which had more waxy leaf surface, or had more glandular hairs and wrinkles on leaves could retain PM more easily. 2) Over 98% of PM deposition on plants’ leaf surface were PM10(Dp≤10 μm), PM2.5(Dp≤2.5 μm) accounted for over 90%, whereas, coarse particles accounted for less than 2%;The volume percentage of PM10 was over 50%, that of PM2.5 was 8.5%-17.6%, and the volume percentage of coarse particulate was over 20%. 3) With the same study area, leaves which retained PM for 10 days had more PM deposition than those retained PM for 5 days, Buxus microphylla had the largest increase, while Rosa chinensis had the smallest. Analysis of variance indicated that PM deposition on Salix matsudana f.pendula leaf surface was significantly less than other plants except for Ginkgo biloba, and the deposition of PM on leaf surface of Euonymus japonicus, Buxus microphylla and Sophora japonica were remarkably more than Rosa chinensis, Ginkgo biloba and Salix matsudana f.pendula. Moreover, The area of PM deposition was less than 25%of research leaf surface area. The time which it takes to get saturation state for PM deposition on leave surface will be studied in further research.

  17. Activation analysis of air particulate matter

    International Nuclear Information System (INIS)

    This review on activation analysis of air particulate matter is an extended and updated version of a review given by the same authors in 1985. The main part is aimed at the analytical scheme and refers to rules and techniques for sampling, sample and standard preparation, irradiation and counting procedures, as well as data processing, - evaluation, and - presentation. Additional chapters deal with relative and monostandard methods, the use of activation analysis for atmosphere samples in various localities, and level of toxic and other elements in the atmosphere. The review contains 190 references. (RB)

  18. Trace elements in airborne particulates in South Africa

    International Nuclear Information System (INIS)

    Airborne particulate materials were monitored continously with calendar month sampling periods at 5 rural/background, 4 rural/developing/peri-urban, 6 urban and 7 industrial sites in South Africa. Concentrations of Al, Br, Ca, Cs, Cd, Cl, Co, Cr, Cu, Eu, Fe, K, Mg, Mn, Na, Ni, Pb, Rb, S, Sb, Sc, Se, Ti, V and Zn were determined with neutron activation analysis (NAA), atomic absorption spectroscopy (AAS) and particle-induced X-ray emission spectroscopy (PIXE) employed on a complementary basis. A review of sources of airborne trace elements is given. The monitoring program, sampling, sample-handling procedures, as well as the analytical methods used, are discussed in detail. The results of related studies, i.e. effects of filter materials; sampling rates and geometry; determinations of collection efficiencies; particle size ranges; effects of internal flux monitors on the precision and accuracy of NAA; trace impurities in blank materials; quality control by routine analysis of reference materials; comparison of results obtained by NAA, AAS, and PIXE analysis; are given, as is a review of air-pollution control and research policy in South Africa and of ambient air quality standards. Results are discussed in terms of general patterns in trace-element concentrations and enrichments, the general pattern in population centres, the variability of monthly concentrations, and in terms of long-term trends at background, rural, developing, peri-urban, urban and industrial sites. Cases of concern in respect of increasing concentrations are pointed out, as are the constantly high Pb levels at urban sites

  19. 40 CFR 60.62 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.62... Plants § 60.62 Standard for particulate matter. (a) On and after the date on which the performance test... particulate matter in excess of 0.15 kg per metric ton of feed (dry basis) to the kiln (0.30 lb per ton)....

  20. 40 CFR 60.152 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry...

  1. PM 2.5 Airborne Particulates Near Frac Sand Operations.

    Science.gov (United States)

    Walters, Kristin; Jacobson, Jeron; Kroening, Zachary; Pierce, Crispin

    2015-11-01

    The rapid growth of hydraulic fracturing for oil and gas extraction in the U.S. has led to 135 active "frac" sand mines, processing plants, and rail transfer stations in Wisconsin. Potential environmental health risks include increased truck traffic, noise, ecosystem loss, and groundwater, light, and air pollution. Emitted air contaminants include fine particulate matter (PM2.5) and respirable crystalline silica. Inhalation of fine dust particles causes increased mortality, cardiovascular disease, lung disease, and lung cancer. In the authors' pilot study, use of a filter-based ambient particulate monitor found PM2.5 levels of 5.82-50.8 µg/m3 in six 24-hour samples around frac sand mines and processing sites. Enforcement of the existing U.S. Environmental Protection Agency annual PM2.5 standard of 12 µg/m3 is likely to protect the public from silica exposure risks as well. PM2.5 monitoring around frac sand sites is needed to ensure regulatory compliance, inform nearby communities, and protect public health.

  2. PM 2.5 Airborne Particulates Near Frac Sand Operations.

    Science.gov (United States)

    Walters, Kristin; Jacobson, Jeron; Kroening, Zachary; Pierce, Crispin

    2015-11-01

    The rapid growth of hydraulic fracturing for oil and gas extraction in the U.S. has led to 135 active "frac" sand mines, processing plants, and rail transfer stations in Wisconsin. Potential environmental health risks include increased truck traffic, noise, ecosystem loss, and groundwater, light, and air pollution. Emitted air contaminants include fine particulate matter (PM2.5) and respirable crystalline silica. Inhalation of fine dust particles causes increased mortality, cardiovascular disease, lung disease, and lung cancer. In the authors' pilot study, use of a filter-based ambient particulate monitor found PM2.5 levels of 5.82-50.8 µg/m3 in six 24-hour samples around frac sand mines and processing sites. Enforcement of the existing U.S. Environmental Protection Agency annual PM2.5 standard of 12 µg/m3 is likely to protect the public from silica exposure risks as well. PM2.5 monitoring around frac sand sites is needed to ensure regulatory compliance, inform nearby communities, and protect public health. PMID:26638669

  3. DETERMINATION OF MOBILITY AND BIOAVAILABILITY OF HEAVY METALS IN THE URBAN AIR PARTICULATES MATTER OF ISFAHAN

    OpenAIRE

    Kalantari, A.; M. Talebi; B BINA

    2001-01-01

    Introduction: In addition to, Carbohyrates, Lipids, Amino acids and vitamins, some of the trace metals are known vital for biological activity. But some of them not only are not necessary, but also they are very toxic and carcinogen. In this research the rate of Mobility and Bioavailability of heavy metals associated with airborne particulates matter such as Zn, Pb, Cd, Cu, Fe, Ni and Cr have been measured. Methods: The sequential extraction has been used for releasing of heavy metales f...

  4. 40 CFR 52.2429 - Control strategy: Particulate matter.

    Science.gov (United States)

    2010-07-01

    ....5 NAAQS has attained the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR 52.1004(c... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January...

  5. 40 CFR 52.1880 - Control strategy: Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... NAAQS. These determinations, in accordance with 40 CFR 52.1004(c), suspend the requirements for these... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter... strategy: Particulate matter. (a) The requirements of subpart G of this chapter are not met because...

  6. 40 CFR 52.2526 - Control strategy: Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... NAAQS. These determinations, in accordance with 40 CFR 52.1004(c), suspend the requirements for these... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. (a) EPA approves West Virginia's November 15, 1991 SIP submittal...

  7. 40 CFR 52.1131 - Control strategy: Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter. 52.1131 Section 52.1131 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) Revisions to the following regulations submitted on March...

  8. 40 CFR 52.1025 - Control strategy: Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter. 52.1025 Section 52.1025 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... strategy: Particulate matter. (a) The revisions to the control strategy resulting from the modification...

  9. 40 CFR 52.1374 - Control strategy: Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter. 52.1374 Section 52.1374 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) On July 8, 1997, the Governor of Montana submitted...

  10. The origin of ambient particulate matter concentrations in the Netherlands

    NARCIS (Netherlands)

    Hendriks, C.; Kranenburg, R.; Kuenen, J.; Gijlswijk, R. van; Wichink Kruit, R.; Segers, A.; Denier van der Gon, H.; Schaap, M.

    2013-01-01

    Particulate matter poses a significant threat to human health. To be able to develop effective mitigation strategies, the origin of particulate matter needs to be established. The regional air quality model LOTOS-EUROS, equipped with a newly developed labeling routine, was used to establish the orig

  11. Chemical Speciation of Thorium in Marine Biogenic Particulate Matter

    OpenAIRE

    Katsumi Hirose

    2004-01-01

    Concentrations of particulate thorium in seawater were determined together with the strong organic ligand (SOL) and uranium in particulate matter (PM). The concentrations of particulate Th in surface waters of the western North Pacific and the Sea of Japan ranged from 0.05 to 1.5 pM (1 x 10−12 M), and showed relatively large temporal and spatial variations. In order to chemically characterize the particulate Th in seawater, the relationship between particulate Th and SOL concentrations in sur...

  12. Chemical characterization of urban air particulate matter of Kuala Lumpur 2002-2004

    International Nuclear Information System (INIS)

    Urban air particulate samples of Kuala Lumpur ambient air have been collected characterize according to fine and coarse airborne particulates. The air filters containing particulate matter were collected using GENT stack filter unit fitted with appropriate polycarbonate filters. The sampling location site (Lat: 03deg 10'30''; Long: 101deg 43'24.2'') is approximately 1 km from the Kuala Lumpur city center. All the sampling conducted from January 2002 until October 2004 was included in the analysis and results were reported. The mass loading for finest air particulate matter (PM 2.5) in Kuala Lumpur are 199±55 μg (2002), 171±53 μg (2003), and 171±61 μg (2004), respectively. The mass loading for coarse air particulate matter (PM 10) in Kuala Lumpur were 125±29 μg (2002), 134±48 μg (2003), and 137 ± 57 μg (2004), respectively. The elemental concentration of the air filters were determined using INAA technique utilizing both short and long irradiation facilities at MINT's TRIGA MKII reactor. Upon irradiation the air filters were counted at suitable counting time using HPGe gamma-ray detectors. The elements reported for this monitoring are Al, As, Br, Co, Cr, K, Lu, Mn, Na, Sb, Sc, Ti, V, and Zn. Certified reference materials were also included in the sample analysis function as quality control materials. (author)

  13. Environmental Public Health Surveillance for Exposure to Respiratory Health Hazards: A Joint NASA/CDC Project to Use Remote Sensing Data for Estimating Airborne Particulate Matter Over the Atlanta, Georgia Metropolitan Area

    Science.gov (United States)

    Quattrochi, Dale A.; Al-Hamdan, Mohammad; Estes, Maurice; Crosson, William

    2007-01-01

    As part of the National Environmental Public Health Tracking Network (EPHTN) the National Center for Environmental Health (NCEH) at the Centers for Disease Control and Prevention (CDC) is leading a project called Health and Environment Linked for Information Exchange (HELiX-Atlanta). The goal of developing the National Environmental Public Health Tracking Network is to improve the health of communities. Currently, few systems exist at the state or national level to concurrently track many of the exposures and health effects that might be associated with environmental hazards. An additional challenge is estimating exposure to environmental hazards such as particulate matter whose aerodynamic diameter is less than or equal to 2.5 micrometers (PM2.5). HELIX-Atlanta's goal is to examine the feasibility of building an integrated electronic health and environmental data network in five counties of Metropolitan Atlanta, GA. NASA Marshall Space Flight Center (NASA/MSFC) is collaborating with CDC to combine NASA earth science satellite observations related to air quality and environmental monitoring data to model surface estimates of PM2.5 concentrations that can be linked with clinic visits for asthma. While use of the Air Quality System (AQS) PM2.5 data alone could meet HELIX-Atlanta specifications, there are only five AQS sites in the Atlanta area, thus the spatial coverage is not ideal. We are using NASA Moderate Resolution Imaging Spectroradiometer (MODIS) satellite Aerosol Optical Depth (AOD) data for estimating daily ground level PM2.5 at 10 km resolution over the metropolitan Atlanta area supplementing the AQS ground observations and filling their spatial and temporal gaps.

  14. Effect of ambient particulate matter expousre on hemostasis

    Science.gov (United States)

    Epidemiological studies have linked levels of particulate matter (PM) in ambient air to cardiovascular mortality and hospitalizations for myocardial infarction (MI) and stroke. Thrombus formation plays a primary role in potentiating acute cardiovascular events, and this study was...

  15. MEMANFAATKAN TANAMAN UNTUK MENGURANGI POLUSI PARTICULATE MATTER KE DALAM BANGUNAN

    Directory of Open Access Journals (Sweden)

    Christina E. Mediastika

    2002-01-01

    Full Text Available Inhabitants of a building are difficult to escape particulate matter emission. Within this condition, buildings should have vertical element that could block the dispersion of particulate matter to living spaces. Vegetation, a part of vertical elemen for fencing, is considered to do this task. The use of vegetation is chosen with reference to nature and behaviour of particulate matter. Earlier research found that dispersion of particulate matter is mostly at lower atmospheric layer and that particulate matter could be deposited. Therefore, low growing vegetation or climbing plants with particular leaf condition to encourage deposition is predicted suitable. Four vegetation was examined: Duranta repens, Polyscias fruticosa, Stephanotis floribunda and Scindapsus sp. As a preliminary study, there is no valid conclusion could be made from this experiment. However, there are indications that Duranta repens and Stephanotis floribunda block and deposit slightly more particulate matter than the two others. Abstract in Bahasa Indonesia : Polusi particulate matter atau partikel halus tidak hanya terjadi di jalan raya, tetapi juga masuk ke dalam bangunan yang terletak di sepanjang jalan. Oleh karenanya, bangunan seyogyanya memiliki elemen vertikal yang mampu bertugas menghalangi masuknya polusi partikel halus. Salah satu kemungkinan penggunaan elemen vertikal, yaitu tanaman yang ditempatkan pada posisi pagar diteliti dalam studi ini. Mempelajari bahwa partikel halus dengan ukuran tertentu dapat diendapkan dan penyebarannya umumnya terjadi pada lapisan udara rendah, maka studi terhadap tanaman semak atau perdu atau tanaman rambat dengan jenis permukaan daun tertentu lebih diutamakan. Empat jenis tanaman diuji kemampuannya, yaitu: Duranta repens, Polyscias fruticosa, Stephanotis floribunda and Scindapsus sp. Sebagai studi yang sangat awal, masih belum ada hasil valid yang ditawarkan, namun setidaknya ditemukan indikasi bahwa Duranta repens and Stephanotis

  16. Estimation of particulate matter from simulation and measurements

    Science.gov (United States)

    Nakata, Makiko; Nakano, Tomio; Okuhara, Takaaki; Sano, Itaru; Mukai, Sonoyo

    2011-11-01

    The particulate matter is a typical indicator of small particles in the atmosphere. In addition to providing impacts on climate and environment, these small particles can bring adverse effects on human health. Then an accurate estimation of particulate matter is an urgent subject. We set up SPM sampler attached to our AERONET (Aerosol Robotics Network) station in urban city of Higashi-Osaka in Japan. The SPM sampler provides particle information about the concentrations of various SPMs (e.g., PM10 and PM2.5) separately. The AEROENT program is world wide ground based sunphotometric observation networks by NASA and provides the spectral information about aerosol optical thickness (AOT) and Angstrom exponent (α). Simultaneous measurements show that a linear correlation definitely exists between AOT and PM2.5. These results indicate that particulate matter can be estimated from AOT. However AOT represents integrated values of column aerosol amount retrieved from optical property, while particulate matter concentration presents in-situ aerosol loading on the surface. Then simple way using linear correlation brings the discrepancy between observed and estimated particulate matter. In this work, we use cluster information about aerosol type to reduce the discrepancy. Our improved method will be useful for retrieving particulate matter from satellite measurements.

  17. CFD Modeling of Particulate Matter Dispersion from Kerman Cement Plant

    Directory of Open Access Journals (Sweden)

    M. Panahandeh

    2010-04-01

    Full Text Available "n "n "nBackgrounds and Objectives: The dispersion of particulate matter has been known as the most serious environmental pollution of cement plants. In the present work, dispersion of the particulate matter from stack of Kerman Cement Plant was investigated using Computational Fluid Dynamics (CFD modeling."nMaterials and Methods: In order to study the dispersion of particulate matter from the stack, a calculation domain with dimensions of 8000m × 800m × 400m was considered. The domain was divided to 936781 tetrahedral control volumes. The mixture two-phase model was employed to model the interaction of the particulate matter (dispersed phase and air (continuous phase. The Large Eddy Simulation (LES method was used for turbulence modeling."nResults: The concentration of particulate matter in the whole calculation domain was computed. The predicted concentrations were compared to the measured values from the literature and a good agreement was observed. The predicted concentration profiles at different cross sections were analyzed."nConclusion:The results of the present work showed that CFD is a useful tool for understanding the dispersion of particulate matter in air. Although the obtained results were promising, more investigations on the properties of the dispersed phase, turbulent parameters and the boundary layer effect is needed to obtain more accurate results.

  18. Particulate matter and early childhood body weight.

    Science.gov (United States)

    Kim, Eunjeong; Park, Hyesook; Park, Eun Ae; Hong, Yun-Chul; Ha, Mina; Kim, Hwan-Cheol; Ha, Eun-Hee

    2016-09-01

    Concerns over adverse effects of air pollution on children's health have been rapidly rising. However, the effects of air pollution on childhood growth remain to be poorly studied. We investigated the association between prenatal and postnatal exposure to PM10 and children's weight from birth to 60months of age. This birth cohort study evaluated 1129 mother-child pairs in South Korea. Children's weight was measured at birth and at six, 12, 24, 36, and 60months. The average levels of children's exposure to particulate matter up to 10μm in diameter (PM10) were estimated during pregnancy and during the period between each visit until 60months of age. Exposure to PM10 during pregnancy lowered children's weight at 12months. PM10 exposure from seven to 12months negatively affected weight at 12, 36, and 60months. Repeated measures of PM10 and weight from 12 to 60months revealed a negative association between postnatal exposure to PM10 and children's weight. Children continuously exposed to a high level of PM10 (>50μg/m(3)) from pregnancy to 24months of age had weight z-scores of 60 that were 0.44 times lower than in children constantly exposed to a lower level of PM10 (≤50μg/m(3)) for the same period. Furthermore, growth was more vulnerable to PM10 exposure in children with birth weight 3.3kg. Air pollution may delay growth in early childhood and exposure to air pollution may be more harmful to children when their birth weight is low. PMID:27344372

  19. Development of analytical methods for polycyclic aromatic hydrocarbons (PAHs) in airborne particulates:A review

    Institute of Scientific and Technical Information of China (English)

    LIU Li-bin; LIU Yan; LIN Jin-ming; TANG Ning; HAYAKAWA Kazuichi; MAEDA Tsuneaki

    2007-01-01

    In the present work,the different sample collection, pretreatment and analytical methods for polycyclic aromatic hydrocarbons (PAHs) in airborne particulates is systematacially reviewed, and the applications of these pretreatment and analytical methods for PAHs are compared in detail. Some comments on the future expectation are also presented.

  20. Particulate matter concentrations and emissions in rabbit farms

    Directory of Open Access Journals (Sweden)

    Elisa Adell

    2012-04-01

    Full Text Available The extent of the potential health hazards of particulate matter (PM inside rabbit farms and the magnitude of emission levels to the outside environment are still unknown, as data on PM concentrations and emissions in and from such buildings is scarce.  The purpose of this study was to quantify airborne PM10 and PM2.5 concentrations and emissions on two rabbit farms in Mediterranean conditions and identify the main factors related with farm activities influencing PM generation.  Concentrations of PM10 and PM2.5 were determined continuously using a tapered element oscillating microbalance (TEOM in one farm with fattening rabbits and one reproductive doe farm in autumn.  At the same time as PM sampling, the time and type of human farm activity being performed was recorded. Additionally, temperature, relative humidity and ventilation rate were recorded continuously.  Emissions were calculated using a mass balance on each farm.  Results showed PM concentrations in rabbit farms are low compared with poultry and pig farms.  Average PM10 concentrations were 0.082±0.059 mg/m3 (fattening rabbits, and 0.048 ±0.058 mg/m3 (reproductive does. Average PM2.5 concentrations were 0.012±0.016 mg/m3 (fattening rabbits, and 0.012±0.035 mg/m3 (reproductive does. Particulate matter concentrations were significantly influenced by the type of human farm activity carried out in the building rather than by animal activity.  The main PM-generating activity on the fattening rabbit farm was sweeping, and the major PM-generating activity in reproductive does was sweeping and burning hair from the cages.  Average PM10 emissions were 5.987±6.144 mg/place/day (fattening rabbits, and 14.9±31.5 mg/place/day (reproductive does.  Average PM2.5 emissions were 0.20±1.26 mg/place/day (fattening rabbits, and 2.83±19.54 mg/place/day (reproductive does.  Emission results indicate that rabbit farms can be considered relevant point sources of PM emissions, comparable to

  1. Natural and anthropogenic radionuclides in airborne particulate samples collected in Barcelona (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Valles, I. [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain)], E-mail: isabel.valles@upc.edu; Camacho, A.; Ortega, X.; Serrano, I.; Blazquez, S.; Perez, S. [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain)

    2009-02-15

    Results for naturally occurring {sup 7}Be, {sup 210}Pb, {sup 40}K, {sup 214}Bi, {sup 214}Pb, {sup 212}Pb, {sup 228}Ac and {sup 208}Tl and anthropogenic {sup 137}Cs in airborne particulate matter in the Barcelona area during the period from January 2001 to December 2005 are presented and discussed. The {sup 212}Pb and {sup 208}Tl, {sup 214}Bi and {sup 214}Pb, {sup 7}Be and {sup 210}Pb radionuclide levels showed a significant correlation with each other, with correlation coefficients of 0.99, 0.78 and 0.69, respectively, suggesting similar origin/behaviour of these radionuclides in the air. Caessium-137 and Potassium-40 were transported to the air as resuspended particle from the soil. The {sup 7}Be and {sup 210}Pb concentrations showed similar seasonal variations, with a tendency for maximum concentrations during the summer months. An inverse relationship was observed between the {sup 7}Be, {sup 210}Pb, {sup 40}K and {sup 137}Cs concentrations and weekly rainfall, indicating washout of atmospheric aerosols carrying these radionuclides.

  2. Embryotoxicity of organic extracts from airborne particulates in ambient air in the chicken embryo

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, H.; Kashimoto, T.

    1986-07-01

    A fraction containing polycyclic aromatic hydrocarbons (PAHs), prepared from an organic extract of airborne particulate matter, was separated into nine subfractions by high pressure liquid chromatography (HPLC). The embryotoxicity of each of these fractions was investigated and analysis for PAHs by capillary gas chromatography-mass spectrometry (GC-MS) was performed. The ninth subfraction, with coronene as its main component, had the strongest toxic effects on chicken embryos per m/sup 3/ of air. Of the remaining eight subfractions, three had the greatest toxicity: the second fraction with benzofluoranthenes and benzo(e)pyrene as the main components, the fourth fraction having PAH-estimated compounds in small amounts, and the fifth fraction with indeno(1,2,3-cd)pyrene and benzo(ghi)perylene as the main ingredients had the greatest toxicity. These findings indicate PAHs to be responsible for embryotoxicity but the total amounts were not necessarily proportional to it. For further characterization of toxicity, the effects of each PAH and/or quantification of other embryotoxic compounds possibly present in small amounts should be investigated.

  3. Assessment of inhalation dose sensitivity by physicochemical properties of airborne particulates containing naturally occurring radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Si Young; Choi, Cheol Kyu; Kim, Yong Geon; Choi, Won Chul; Kim, Kwang Pyo [Kyung Hee University, Seoul (Korea, Republic of)

    2015-12-15

    Facilities processing raw materials containing naturally occurring radioactive materials (NORM) may give rise to enhanced radiation dose to workers due to chronic inhalation of airborne particulates. Internal radiation dose due to particulate inhalation varies depending on particulate properties, including size, shape, density, and absorption type. The objective of the present study was to assess inhalation dose sensitivity to physicochemical properties of airborne particulates. Committed effective doses to workers resulting from inhalation of airborne particulates were calculated based on International Commission on Radiological Protection 66 human respiratory tract model. Inhalation dose generally increased with decreasing particulate size. Committed effective doses due to inhalation of 0.01μm sized particulates were higher than doses due to 100μm sized particulates by factors of about 100 and 50 for {sup 238}U and {sup 230}Th, respectively. Inhalation dose increased with decreasing shape factor. Shape factors of 1 and 2 resulted in dose difference by about 18 %. Inhalation dose increased with particulate mass density. Particulate mass densities of 11 g·cm{sup -3} and 0.7 g·cm{sup -3} resulted in dose difference by about 60 %. For {sup 238}U, inhalation doses were higher for absorption type of S, M, and F in that sequence. Committed effective dose for absorption type S of {sup 238}U was about 9 times higher than dose for absorption F. For {sup 230}Th, inhalation doses were higher for absorption type of F, M, and S in that sequence. Committed effective dose for absorption type F of {sup 230}Th was about 16 times higher than dose for absorption S. Consequently, use of default values for particulate properties without consideration of site specific physiochemical properties may potentially skew radiation dose estimates to unrealistic values up to 1-2 orders of magnitude. For this reason, it is highly recommended to consider site specific working materials and

  4. Characterization of particulate matter for three sites in Kuwait.

    Science.gov (United States)

    Brown, Kathleen Ward; Bouhamra, Walid; Lamoureux, Denise P; Evans, John S; Koutrakis, Petros

    2008-08-01

    Many studies have shown strong associations between particulate matter (PM) levels and a variety of health outcomes, leading to changes in air quality standards in many regions, especially the United States and Europe. Kuwait, a desert country located on the Persian Gulf, has a large petroleum industry with associated industrial and urban land uses. It was marked by environmental destruction from the 1990 Iraqi invasion and subsequent oil fires. A detailed particle characterization study was conducted over 12 months in 2004-2005 at three sites simultaneously with an additional 6 months at one of the sites. Two sites were in urban areas (central and southern) and one in a remote desert location (northern). This paper reports the concentrations of particles less than 10 microm in diameter (PM10) and fine PM (PM2.5), as well as fine particle nitrate, sulfate, elemental carbon (EC), organic carbon (OC), and elements measured at the three sites. Mean annual concentrations for PM10 ranged from 66 to 93 microg/m3 across the three sites, exceeding the World Health Organization (WHO) air quality guidelines for PM10 of 20 microg/m3. The arithmetic mean PM2.5 concentrations varied from 38 and 37 microg/m3 at the central and southern sites, respectively, to 31 microg/m3 at the northern site. All sites had mean PM2.5 concentrations more than double the U.S. National Ambient Air Quality Standard (NAAQS) for PM2.5. Coarse particles comprised 50-60% of PM10. The high levels of PM10 and large fraction of coarse particles comprising PM10 are partially explained by the resuspension of dust and soil from the desert crust. However, EC, OC, and most of the elements were significantly higher at the urbanized sites, compared with the more remote northern site, indicating significant pollutant contributions from local mobile and stationary sources. The particulate levels in this study are high enough to generate substantial health impacts and present opportunities for improving public

  5. Monitoring Particulate Matter with Commodity Hardware

    Science.gov (United States)

    Holstius, David

    Health effects attributed to outdoor fine particulate matter (PM 2.5) rank it among the risk factors with the highest health burdens in the world, annually accounting for over 3.2 million premature deaths and over 76 million lost disability-adjusted life years. Existing PM2.5 monitoring infrastructure cannot, however, be used to resolve variations in ambient PM2.5 concentrations with adequate spatial and temporal density, or with adequate coverage of human time-activity patterns, such that the needs of modern exposure science and control can be met. Small, inexpensive, and portable devices, relying on newly available off-the-shelf sensors, may facilitate the creation of PM2.5 datasets with improved resolution and coverage, especially if many such devices can be deployed concurrently with low system cost. Datasets generated with such technology could be used to overcome many important problems associated with exposure misclassification in air pollution epidemiology. Chapter 2 presents an epidemiological study of PM2.5 that used data from ambient monitoring stations in the Los Angeles basin to observe a decrease of 6.1 g (95% CI: 3.5, 8.7) in population mean birthweight following in utero exposure to the Southern California wildfires of 2003, but was otherwise limited by the sparsity of the empirical basis for exposure assessment. Chapter 3 demonstrates technical potential for remedying PM2.5 monitoring deficiencies, beginning with the generation of low-cost yet useful estimates of hourly and daily PM2.5 concentrations at a regulatory monitoring site. The context (an urban neighborhood proximate to a major goods-movement corridor) and the method (an off-the-shelf sensor costing approximately USD $10, combined with other low-cost, open-source, readily available hardware) were selected to have special significance among researchers and practitioners affiliated with contemporary communities of practice in public health and citizen science. As operationalized by

  6. 公路两侧大气颗粒物中的重金属污染特征及其影响因素%Pollution characterization and controlling factors of heavy metals in airborne particulate matter near expressway

    Institute of Scientific and Technical Information of China (English)

    邵莉; 肖化云

    2012-01-01

    Metal concentrations were measured in different size airborne particles collected near two expressways with different traffic densities from April 2009 to June 2009.The pollution characterization and distribution mode of Zn,Pb,Mn,Cu,Cd,Sb in airborne particles were studied to discuss the influence of traffic volume,particle size,weather and distance.The results show that Zn concentration in airborne particles was the highest,followed by Pb,Mn,Cu,Cd,and Sb concentration was the lowest.The metal concentration was highly dependent on traffic volume,indicating that traffic was the main source of these metals.The high concentrations of Zn and Mn in PM10(possibly originated from gas exhaust) and 10 μmDa50≤100 μm particles(possibly associated with tire wear) suggest that gas exhaust and tire wear were the main sources of Zn and Mn.Antimony(Sb) existed mostly in PM10 and originated mainly from the wear of brake linings.The concentration of Cu was high in both PM10 and 10 μmDa50≤100 μm particles,suggesting that Cu had other sources than the wear of brake linings.Lead(Pb) and Cd existed mainly in PM10.Weather mainly influenced the Zn concentration,but not other metals.Within 10 meters from the expressway,the metal concentration decreased little.The concentrations of Pb,Sb in the countryside was noticeably lower as compared with their concentrations near the expressway,which may be explained by the fact that the main source of airborne Pb,Sb was traffic.%选择昌九高速公路(赣粤高速公路南昌至九江段)、昌樟高速公路(赣粤高速公路南昌至樟树段)为研究对象,采集了公路两侧10μm

  7. Calibration Matters: Advances in Strapdown Airborne Gravimetry

    Science.gov (United States)

    Becker, D.

    2015-12-01

    Using a commercial navigation-grade strapdown inertial measurement unit (IMU) for airborne gravimetry can be advantageous in terms of cost, handling, and space consumption compared to the classical stable-platform spring gravimeters. Up to now, however, large sensor errors made it impossible to reach the mGal-level using such type IMUs as they are not designed or optimized for this kind of application. Apart from a proper error-modeling in the filtering process, specific calibration methods that are tailored to the application of aerogravity may help to bridge this gap and to improve their performance. Based on simulations, a quantitative analysis is presented on how much IMU sensor errors, as biases, scale factors, cross couplings, and thermal drifts distort the determination of gravity and the deflection of the vertical (DOV). Several lab and in-field calibration methods are briefly discussed, and calibration results are shown for an iMAR RQH unit. In particular, a thermal lab calibration of its QA2000 accelerometers greatly improved the long-term drift behavior. Latest results from four recent airborne gravimetry campaigns confirm the effectiveness of the calibrations applied, with cross-over accuracies reaching 1.0 mGal (0.6 mGal after cross-over adjustment) and DOV accuracies reaching 1.1 arc seconds after cross-over adjustment.

  8. [Determination of particulate matter in small volume antibiotic injections].

    Science.gov (United States)

    Niizeki, M; Tanno, K

    1989-03-01

    Amounts of particulate matter present in 17 small volume antibiotic injections marketed in Japan were determined using light obscuration particle analyzer (HIAC). The vial volume range of each batch of product was 7-20 ml, and each vial contained 1 g as antibiotic potency. In 4 products, contents of particles between 2.5 and 10 microns in diameter were counted 2,000-7,000 per vial, and particles in other products were counted less than 2,000 per vial. Numbers of particles greater than or equal to 10 microns in diameter were much less than the USP XXI criteria for particulate matter in small volume injections. The product of the highest counts for particles between 10 and 25 microns in diameter showed counts amounted to 0.13% of the USP XXI criteria. In the 25-50 microns particulate diameter range, particulate matters were detected only in 2 products, and they were less than 0.2% of the USP XXI criteria. Particles over 50 microns in diameter were not detected in any products. These results showed that 17 small volume antibiotic injections marketed in Japan had good qualities regarding contents of particulate matter. PMID:2746842

  9. Black carbon and elemental concentration of ambient particulate matter in Makassar Indonesia

    International Nuclear Information System (INIS)

    Airborne particulate matter with aerodynamic diameter of less or equal to 10 um or PM10, has been collected on a weekly basis for one year from February 2012 to January 2013 at one site of Makassar, Province of South Sulawesi Indonesia. The samples were collected using a size selective high volume air sampler sited at Daya, a mixed urban, commercial and industrial area in the city of Makassar. The concentration of black carbon (BC) along with a total of 14 elements (i.e Al, Ba, Ca, Cr, Fe, K, Mg, Ba, Na, Ni, Pb, Si, Ti and Zn) were determined from the sample. Results showed that the average particulate mass concentration was 32.9 ± 11.6 μg/m3 with BC and elemental concentration constituted 6.1% and 10.6% of the particulate concentration, respectively. Both BC and elemental constituents contributed 16.7% while 83.3% of the particulate matter remained to be counted for. The black carbon concentration was higher during the dry months which may be attributed to rampant biomass burning during hot and dry weather conditions, apart from other possible sources. Most of the elements were enriched relative to soil origin illustrating of their possible associations with other sources such as marine and anthropogenic derived aerosols, particularly Cr, Ni, Pb, and Zn, which are known to originate from man-made activities

  10. Chemical Speciation of Thorium in Marine Biogenic Particulate Matter

    Directory of Open Access Journals (Sweden)

    Katsumi Hirose

    2004-01-01

    Full Text Available Concentrations of particulate thorium in seawater were determined together with the strong organic ligand (SOL and uranium in particulate matter (PM. The concentrations of particulate Th in surface waters of the western North Pacific and the Sea of Japan ranged from 0.05 to 1.5 pM (1 x 10−12 M, and showed relatively large temporal and spatial variations. In order to chemically characterize the particulate Th in seawater, the relationship between particulate Th and SOL concentrations in surface PM was examined. The result reveals that particulate Th in surface PM was well correlated with the SOL concentration in PM. The concentrations of particulate Th in surface water were linearly related to those of particulate U. Mass balance analysis suggests that the dominant chemical form of Th(IV, as well as of U, in surface PM is a surface complex with the SOL in PM. Our findings suggest that the SOL in PM is a nonmetal-specific chelator originating from the cell surface of microorganisms.

  11. Elemental Composition In Airborne Particulate Sample Of Bandung and Lembang Region In 1999

    International Nuclear Information System (INIS)

    Concentration of airborne particulate of Bandung higher than that of Lembang. The PM2.5 fraction was in the range of 4,3 μg/m3 to 21,1 μg/m3 for Bandung area, and 2,9 μg/m3 to 19,2 μg/m3 for Lembang area for 24 hours sampling time. The PM10 fraction of Bandung area was in the range of 12,1 μg/m3 to 44, 1 μg/m3, where a s the PM10 fraction of Lembang area was in the range of 5,2 μg/m3 to 30,6 μg/m3. The data much lower than that of National ambient air quality standard for 24 hours, 65 μg/m3 and 150 μg/m3 for PM2.5 fraction and PM10 fraction respectively. No clear correlation either concentration of fine or coarse particulate to rainfall. For teen elements, which were Al, Br, Ca, Ce, CI, Cr, Fe, I, Mn, Na, Sb, Sc, V and Zn, were detected. The elements of Br, Ce, CI, Cr, I, Sb and Zn were enriched in fine and coarse of Bandung and Lembang samples, where as AI, Ca, Mn, Na and V were not enriched. The special element of Fe was enriched in fine particulate of Lembang, where as in particulate of Bandung was not enriched. Analysis of coarse particulate samples indicated the similar results to fine particulate except for Ce. The results of analysis explained that pollutant source of Bandung and Lembang were the same. Some elements such as Br, CI and I possibly come from organic material burning; Br and CI could be from motor vehicle; Cr, and Zn could be from paint factory; Zn and Sb could be from refuse incineration; while Ce could be from electronic factory. The calculation results indicated that enrichment factor of elements in fine particulate higher than that of coarse particulate. Furthermore the enrichment factor of element in airborne particulate of Bandung area was higher than that of airborne particulate of Lembang

  12. Toxicogenomic analysis of susceptibility to inhaled urban particulate matter in mice with chronic lung inflammation

    Directory of Open Access Journals (Sweden)

    Yauk Carole L

    2009-03-01

    Full Text Available Abstract Background Individuals with chronic lung disease are at increased risk of adverse health effects from airborne particulate matter. Characterization of underlying pollutant-phenotype interactions may require comprehensive strategies. Here, a toxicogenomic approach was used to investigate how inflammation modifies the pulmonary response to urban particulate matter. Results Transgenic mice with constitutive pulmonary overexpression of tumour necrosis factor (TNF-α under the control of the surfactant protein C promoter and wildtype littermates (C57BL/6 background were exposed by inhalation for 4 h to particulate matter (0 or 42 mg/m3 EHC-6802 and euthanized 0 or 24 h post-exposure. The low alveolar dose of particles (16 μg did not provoke an inflammatory response in the lungs of wildtype mice, nor exacerbate the chronic inflammation in TNF animals. Real-time PCR confirmed particle-dependent increases of CYP1A1 (30–100%, endothelin-1 (20–40%, and metallothionein-II (20–40% mRNA in wildtype and TNF mice (p Conclusion Our data support the hypothesis that health effects of acute exposure to urban particles are dominated by activation of specific physiological response cascades rather than widespread changes in gene expression.

  13. 40 CFR 60.122 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... subpart shall discharge or cause the discharge into the atmosphere from a blast (cupola) or reverberatory furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf). (2... shall discharge or cause the discharge into the atmosphere from any pot furnace any gases which...

  14. 40 CFR 60.132 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... reverberatory furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf... subpart shall discharge or cause the discharge into the atmosphere from any blast (cupola) or electric furnace any gases which exhibit 10 percent opacity or greater....

  15. 40 CFR 60.162 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.162 Section 60.162 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Primary...

  16. Turkish Primary Students' Conceptions about the Particulate Nature of Matter

    Science.gov (United States)

    Ozmen, Haluk

    2011-01-01

    This study was conducted to determine 4th, 5th, and 6th grade primary students' conceptions about the particulate nature of matter in daily-life events. Five questions were asked of students and interviews were used to collect data. The interviews were conducted with 12 students, four students from each grade, after they finished the formal…

  17. 40 CFR 60.732 - Standards for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Calciners and... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) for calciners and for calciners and dryers installed in series and in excess of 0.057 g/dscm (0.025 gr/dscf) for dryers; and...

  18. 40 CFR 60.102 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... Refineries § 60.102 Standard for particulate matter. Each owner or operator of any fluid catalytic cracking... regenerator. (2) Gases exhibiting greater than 30 percent opacity, except for one six-minute average opacity reading in any one hour period. (b) Where the gases discharged by the fluid catalytic cracking...

  19. 77 FR 39205 - Public Hearings for Proposed Rules-National Ambient Air Quality Standards for Particulate Matter

    Science.gov (United States)

    2012-07-02

    ... Quality Standards for Particulate Matter AGENCY: Environmental Protection Agency (EPA). ACTION... titled, ``National Ambient Air Quality Standards for Particulate Matter,'' that is scheduled to be... and secondary national ambient air quality standards (NAAQS) for particulate matter (PM) to...

  20. Detecting inertial effects with airborne matter-wave interferometry

    CERN Document Server

    Geiger, Remi; Stern, Guillaume; Zahzam, Nassim; Cheinet, Patrick; Battelier, Baptiste; Villing, André; Moron, Frédéric; Lours, Michel; Bidel, Yannick; Bresson, Alexandre; Landragin, Arnaud; Bouyer, Philippe

    2011-01-01

    Inertial sensors relying on atom interferometry offer a breakthrough advance in a variety of applications, such as inertial navigation, gravimetry or ground- and space-based tests of fundamental physics. These instruments require a quiet environment to reach their performance and using them outside the laboratory remains a challenge. Here we report the first operation of an airborne matter-wave accelerometer set up aboard a 0g plane and operating during the standard gravity (1g) and microgravity (0g) phases of the flight. At 1g, the sensor can detect inertial effects more than 300 times weaker than the typical acceleration fluctuations of the aircraft. We describe the improvement of the interferometer sensitivity in 0g, which reaches 2 x 10-4 ms-2 / \\surdHz with our current setup. We finally discuss the extension of our method to airborne and spaceborne tests of the Universality of free fall with matter waves.

  1. On the removal of airborne particulate radioactivity under accident conditions

    International Nuclear Information System (INIS)

    In the case of an accident, the filter elements in the ventilation systems of a nuclear facility may become a part of the remaining fission product barrier. Within the framework of the Project Nuclear Safety of the Karlsruhe Nuclear Research Center, contributions are made to an increase in reliability of the air cleaning systems under accident conditions. These include the development and verification of computer programs for the estimation of those conditions prevailing inside the air cleaning systems in the case of an accident. Experimental investigations into the response of HEPA filters to differential pressures involving both dry and moist air have demonstrated the occurence of structural failures with subsequent loss of efficiency at relatively low values of differential pressures. With regard to further investigations, a new test facility was put into operation for the realization of superimposed challenges. A new method for testing particulate removal efficiency under high temperature or high humidity was developed. Finally, first results of code development work and of the corresponding verification experiments are reported on. (orig.)

  2. Seasonal and spatial distribution of particulate organic matter in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, L.; Bhosle, N.B.; Matondkar, S.G.P.; Bhushan, R.

    The temporal, spatial and depth related variation of suspended particulate organic matter (POM) in the Bay of Bengal are assessed in this paper. For this purpose, suspended particulate matter (SPM) samples were collected from eight depths (2 to 1000...

  3. Distribution, origin and transformation of amino sugars sand bacterial contribution to estuarine particulate organic matter

    Digital Repository Service at National Institute of Oceanography (India)

    Khodse, V.B.; Bhosle, N.B.

    Amino sugars including bacterial biomarker muramic acid(Mur) were investigated in suspended particulate matter(SPM) to understand their distribution, origin, and biogeochemical cycling and the contribution of bacteria to particulate organic matter...

  4. The heart as an extravascular target of endothelin-1 in particulate matter-induced cardiac dysfunction

    Science.gov (United States)

    Exposure to particulate matter air pollution has been causally linked to cardiovascular disease in humans. Several broad and overlapping hypotheses describing the biological mechanisms by which particulate matter exposure leads to cardiovascular disease and cardiac dysfunction ha...

  5. Particulate Matter Filtration Design Considerations for Crewed Spacecraft Life Support Systems

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.

    2016-01-01

    Particulate matter filtration is a key component of crewed spacecraft cabin ventilation and life support system (LSS) architectures. The basic particulate matter filtration functional requirements as they relate to an exploration vehicle LSS architecture are presented. Particulate matter filtration concepts are reviewed and design considerations are discussed. A concept for a particulate matter filtration architecture suitable for exploration missions is presented. The conceptual architecture considers the results from developmental work and incorporates best practice design considerations.

  6. 78 FR 3085 - National Ambient Air Quality Standards for Particulate Matter

    Science.gov (United States)

    2013-01-15

    ... Air Quality Standards for Particulate Matter; Final Rule #0;#0;Federal Register / Vol. 78 , No. 10..., 51, 52, 53 and 58 RIN 2060-AO47 National Ambient Air Quality Standards for Particulate Matter AGENCY... criteria and the national ambient air quality standards (NAAQS) for particulate matter (PM), the EPA...

  7. Gene-particulate matter-health interactions

    International Nuclear Information System (INIS)

    Inter-individual variation in human responses to air pollutants suggests that some subpopulations are at increased risk to the detrimental effects of pollutant exposure. Extrinsic factors such as previous exposure and nutritional status may influence individual susceptibility. Intrinsic (host) factors that determine susceptibility include age, gender, and pre-existing disease (e.g., asthma), and it is becoming clear that genetic background also contributes to individual susceptibility. Environmental exposures to particulates and genetic factors associated with disease risk likely interact in a complex fashion that varies from one population and one individual to another. The relationships between genetic background and disease risk and severity are often evaluated through traditional family-based linkage studies and positional cloning techniques. However, case-control studies based on association of disease or disease subphenotypes with candidate genes have advantages over family pedigree studies for complex disease phenotypes. This is based in part on continued development of quantitative analysis and the discovery and availability of simple sequence repeats and single nucleotide polymorphisms. Linkage analyses with genetically standardized animal models also provide a useful tool to identify genetic determinants of responses to environmental pollutants. These approaches have identified significant susceptibility quantitative trait loci on mouse chromosomes 1, 6, 11, and 17. Physical mapping and comparative mapping between human and mouse genomes will yield candidate susceptibility genes that may be tested by association studies in human subjects. Human studies and mouse modeling will provide important insight to understanding genetic factors that contribute to differential susceptibility to air pollutants

  8. Samplings of urban particulate matter for mutagenicity assays

    International Nuclear Information System (INIS)

    In the frame of a specific program relating to the evaluation of mutagenic activity of urban particulate matter, an experimental arrangement has been developed to sample aerosuspended particles from the external environment carried indoor by means of a fan. Instrumentation was placed directly in the air flow to minimize particle losses, and consisted of total filter, collecting particles without any size separation; cascade impactor, fractioning urban particulate to obtain separate samples for analyses; an optical device, for real time monitoring of aerosol concentration, temperature and relative humidity sensors. Some of the samples obtained were analysed to investigate: particle morphology, aerosol granulometric distributions, effect of relative humidity on collected particulate, amount of ponderal mass compared with real time optical determinations. The results obtained are reported here, together with some considerations about carbonaceous particles, in urban areas mainly originated from diesel exhausts, their degree of agglomeration and role to vehiculate substances into the human respiratory

  9. Biodiesel Fuel Property Effects on Particulate Matter Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.; Black, S.; McCormick, R. L.

    2010-06-01

    Controlling diesel particulate emissions to meet the 2007 U.S. standard requires the use of a diesel particulate filter (DPF). The reactivity of soot, or the carbon fraction of particulate matter, in the DPF and the kinetics of soot oxidation are important in achieving better control of aftertreatment devices. Studies showed that biodiesel in the fuel can increase soot reactivity. This study therefore investigated which biodiesel fuel properties impact reactivity. Three fuel properties of interest included fuel oxygen content and functionality, fuel aromatic content, and the presence of alkali metals. To determine fuel effects on soot reactivity, the performance of a catalyzed DPF was measured with different test fuels through engine testing and thermo-gravimetric analysis. Results showed no dependence on the aromatic content or the presence of alkali metals in the fuel. The presence and form of fuel oxygen was the dominant contributor to faster DPF regeneration times and soot reactivity.

  10. Particulate matter formation from photochemical degradation of organophosphorus pesticides

    Science.gov (United States)

    Borrás, E.; Ródenas, M.; Vera, T.; Muñoz, A.

    2015-12-01

    Several experiments were performed in the European Photo-reactor - EUPHORE - for studying aerosol formation from organophosphorus pesticides such as diazinon, chlorpyrifos, chlorpyrifos-methyl and pirimiphos-methyl. The mass concentration yields obtained (Y) were in the range 5 - 44% for the photo-oxidation reactions in the presence and the absence of NOx. These results confirm the importance of studying pesticides as significant precursors of atmospheric particulate matter due to the serious risks associated to them. The studies based on the use of EUPHORE photoreactor provide useful data about atmospheric degradation processes of organophosphorus pesticides to the atmosphere. Knowledge of the specific degradation products, including the formation of secondary particulate matter, could complete the assessment of their potential impact, since the formation of those degradation products plays a significant role in the atmospheric chemistry, global climate change, radiative force, and are related to health effects.

  11. Electrochemical Impedance Spectra of Particulate Matter and Smoke

    Energy Technology Data Exchange (ETDEWEB)

    Osite, A; Katkevich, J; Viksna, A; Vaivars, G, E-mail: agnese.osite@lu.lv [Department of Chemistry, University of Latvia, Riga, Valdemara Street 48, Latvia, LV-1013 (Latvia)

    2011-06-23

    Particularly aerosol particles of fine dimensions are recognized to have a strong impact on the climate change, on the atmospheric energy budget, on the environment and on human health. In this study coarse aerosol particles with different black carbon mass concentrations were investigated by electrochemical impedance spectroscopy. Present work describes preparation of particulate matter samples for impedance measurements, the principles of the structure of electrochemical cell and the relationship between parameters obtained from impedance spectra and black carbon mass concentration. Using complex electrode it is possible to obtain qualitative impedance spectra of particulate matter which were sampled on glass fibre filters. The values of equivalent circuit's elements (R, Q and n) are depending on sampled mass of black carbon and mass of other carbonaceous components which are not black as well as they depend on filter pore packing with solid particles.

  12. Gaseous pollutants in particulate matter epidemiology: confounders or surrogates?

    OpenAIRE

    Sarnat, J A; Schwartz, J.; Catalano, P J; Suh, H H

    2001-01-01

    Air pollution epidemiologic studies use ambient pollutant concentrations as surrogates of personal exposure. Strong correlations among numerous ambient pollutant concentrations, however, have made it difficult to determine the relative contribution of each pollutant to a given health outcome and have led to criticism that health effect estimates for particulate matter may be biased due to confounding. In the current study we used data collected from a multipollutant exposure study conducted i...

  13. Establishing the origin of particulate matter across Europe

    Science.gov (United States)

    Schaap, Martijn; Kranenburg, Richard; Hendriks, Carlijn; Kuenen, Jeroen

    2016-04-01

    Exposure to particulate matter (PM) in ambient air leads to adverse health effects. To design cost effective mitigation strategies, a thorough understanding of the sources of particulate matter is crucial. In this paper we like to provide an overview of recent source apportionment studies aimed at PM and its precursors carried out at TNO. The source apportionment module that tracks the origin of modelled particulate matter distributions throughout a LOTOS-EUROS simulation will be explained. To optimally apply this technology dedicated emission inventories, e.g. fuel type specific, need to be generated. Applications to Europe shows that in northwestern Europe the contribution of transport and agricultural emissions dominate the PM mass concentrations, especially during episodic events. In eastern Europe, the domestic and energy sector are much more important. In southern Europe the picture is more mixed, although the frequent high levels of desert dust stand out. Evaluation of the source allocation against experimental data and PMF analyses is challenging as there is only a limited availability of source specific tracers or factors that can be used for direct comparison. Nonetheless, for the available tracers such as vanadium for heavy fuel oil combustion an evaluation is very well possible. The source apportionment technique can also be used to interpret particulate matter formation efficiencies. It will be shown that the conversion rates for the secondary inorganic aerosol precursors (NOx, NH3 and SO2) have changed during the last 20 years. A particular problem is related to the fact that CTMs systematically underestimate observed PM levels, which means that the contribution of certain source categories (natural, agriculture, combustion) are underestimated. Future developments needed to improve the source apportionment information concerning process knowledge, data assimilation as well as model implementation will be discussed. Specific challenges concerning the

  14. Particulate Matter and Ozone: Remote Sensing and Source Attribution

    OpenAIRE

    Kim, Sungshik

    2015-01-01

    Particulate matter (PM) and tropospheric ozone are air pollutants that are harmful to human health and have broad implications for climate. Despite their importance, there remain large uncertainties related to their sources, evolution in the atmosphere, and impact downwind. In this thesis, I work to address some of these uncertainties through integrated analysis of ground, aircraft, and satellite observations and using both forward and inverse modeling approaches. A new, high-resolution d...

  15. Toward the next generation of air quality monitoring: Particulate Matter

    Science.gov (United States)

    Engel-Cox, Jill; Kim Oanh, Nguyen Thi; van Donkelaar, Aaron; Martin, Randall V.; Zell, Erica

    2013-12-01

    Fine particulate matter is one of the key global pollutants affecting human health. Satellite and ground-based monitoring technologies as well as chemical transport models have advanced significantly in the past 50 years, enabling improved understanding of the sources of fine particles, their chemical composition, and their effect on human and environmental health. The ability of air pollution to travel across country and geographic boundaries makes particulate matter a global problem. However, the variability in monitoring technologies and programs and poor data availability make global comparison difficult. This paper summarizes fine particle monitoring, models that integrate ground-based and satellite-based data, and communications, then recommends steps for policymakers and scientists to take to expand and improve local and global indicators of particulate matter air pollution. One of the key set of recommendations to improving global indicators is to improve data collection by basing particulate matter monitoring design and stakeholder communications on the individual country, its priorities, and its level of development, while at the same time creating global data standards for inter-country comparisons. When there are good national networks that produce consistent quality data that is shared openly, they serve as the foundation for better global understanding through data analysis, modeling, health impact studies, and communication. Additionally, new technologies and systems should be developed to expand personal air quality monitoring and participation of non-specialists in crowd-sourced data collections. Finally, support to the development and improvement of global multi-pollutant indicators of the health and economic effects of air pollution is essential to addressing improvement of air quality around the world.

  16. Electrically heated particulate matter filter soot control system

    Energy Technology Data Exchange (ETDEWEB)

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2016-03-15

    A regeneration system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas and a downstream end. A control module determines a current soot loading level of the PM filter and compares the current soot loading level to a predetermined soot loading level. The control module permits regeneration of the PM filter when the current soot loading level is less than the predetermined soot loading level.

  17. PAH Accessibility in Particulate Matter from Road-Impacted Environments.

    Science.gov (United States)

    Allan, Ian J; O'Connell, Steven G; Meland, Sondre; Bæk, Kine; Grung, Merete; Anderson, Kim A; Ranneklev, Sissel B

    2016-08-01

    Snowmelt, surface runoff, or stormwater releases in urban environments can result in significant discharges of particulate matter-bound polycyclic aromatic hydrocarbons (PAHs) into aquatic environments. Recently, more-specific activities such as road-tunnel washing have been identified as contributing to contaminant load to surface waters. However, knowledge of PAH accessibility in particulate matter (PM) of urban origin that may ultimately be released into urban surface waters is limited. In the present study, we evaluated the accessibility of PAHs associated with seven distinct (suspended) particulate matter samples collected from different urban sources. Laboratory-based infinite sink extractions with silicone rubber (SR) as the extractor phase demonstrated a similar pattern of PAH accessibility for most PM samples. Substantially higher accessible fractions were observed for the less-hydrophobic PAHs (between 40 and 80% of total concentrations) compared with those measured for the most-hydrophobic PAHs (wash waters, first-order desorption rates for PAHs with log Kow > 5.5 were found in line with those commonly found for slowly or very slowly desorbing sediment-associated contaminants. PAHs with log Kow wash waters when surfactants are used. The implications of total and accessible PAH concentrations measured in our urban PM samples are discussed in a context of management of PAH and PM emission to the surrounding aquatic environment. Although we only fully assessed PAHs in this work, further study should consider other contaminants such as OPAHs, which were also detected in all PM samples. PMID:27312518

  18. Spatial statistics of atmospheric particulate matter in China

    Science.gov (United States)

    Gao, Shenghui; Wang, Yangjun; Huang, Yongxiang; Zhou, Quan; Lu, Zhiming; Shi, Xiang; Liu, Yulu

    2016-06-01

    In this paper, the spatial dynamics of the atmospheric particulate matters (resp. PM10 and PM2.5) are studied using turbulence methodologies. It is found experimentally that the spatial correlation function ρ(r) shows a log-law on the mesoscale range, i.e., 50 ≤ r ≤ 500 km, with an experimental scaling exponent β = 0.45. The spatial structure function shows a power-law behavior on the mesoscale range 90 ≤ r ≤ 500 km. The experimental scaling exponent ζ(q) is convex, showing that the intermittent correction is relevant in characterizing the spatial dynamic of particulate matter. The measured singularity spectrum f(α) also shows its multifractal nature. Experimentally, the particulate matter is more intermittent than the passive scalar, which could be partially due to the mesoscale movements of the atmosphere, and also due to local sources, such as local industry activities.

  19. Distribution of particulate organic matter in Rajapur and Vagothan estuarines (west coast of India)

    Digital Repository Service at National Institute of Oceanography (India)

    Tulaskar, A.S.; Sawant, S.S.; Wagh, A.B.

    The distribution of particulate organic carbon (POC), particulate carbohydrates (PCHO) and particulate proteins (PP) in the suspended particulate matter was studied. The POC, PCHO and PP concentrations ranged from 176 to 883 mu g.l/1, 115 to 647 mu...

  20. SAFETY HEALTH IMPACTS OF PARTICULATE MATTER FROM EXCAVATION WORK SITES

    Directory of Open Access Journals (Sweden)

    Giuseppe Pizzo

    2012-01-01

    Full Text Available Epidemiological studies have shown a linear relationship between airborne particulates and effects on human health. This study examines the risk that can be run by populations which are exposed to significant pollutant sources such as excavation in urban areas for renovation work. The health risk assessment methodology defined by the WHO air quality guidelines for Europe was applied to assess the possible health effects from exposure to PM10 for daily average concentrations greater than 50 µg m-3 and greater than 100 µg m-3 for three consecutive days and for increments of 10 µg m-3. The methodology adopted was based on daily average concentrations detected in a monitoring period of 8 months in different areas in and around the excavation work site with concentrations of PM10 below or above the legal limits. The exposure estimates calculated show that urban areas with excavation work sites are damaging to human health, due to the large number of people exposed and the already high concentrations of PM10 within cities. It was found that even when in parts of a work site legal limits of PM10 are not exceeded, adverse effects on health still occur. The application, in the present study, of the WHO methodology of exposure assessment indicates the risk ratio for effects on human health. Epidemiological data do not suggest exposition threshold values below which there are no adverse health effects. It is not possible to identify a PM10 concentration value, attributable to an additional source, such as an excavation work site, below which there is no damage. The purpose of this research is therefore to stimulate debate and decisions by public authorities, in order to deepen knowledge and to address issues related to airborne particulates.

  1. Interaction between ozone and airborne particulate matter in office air

    DEFF Research Database (Denmark)

    Mølhave, Lars; Kjærgaard, Søren K.; Sigsgaard, Torben;

    2005-01-01

    This study investigated the hypotheses that humans are affected by air pollution caused by ozone and house dust, that the effect of simultaneous exposure to ozone and dust in the air is larger than the effect of these two pollutants individually, and that the effects can be measured as release of...

  2. Accuracy of chemical analysis of airborne particulates: results of an intercomparison exercise

    International Nuclear Information System (INIS)

    Since suitable standard reference materials for chemical analysis of airborne particulates are not available, an intercomparison exercise was carried out among 40 interested laboratories in order to evaluate the accuracy of various trace analysis techniques for this specific application. Six hundred grams of airborne particulates were collected from the inlet filters of the air conditioning installation of a hotel in the center of Milan. The sample was sieved to remove coarser particles, thoroughly mixed, and distributed in 1 to 5 gram aliquots. The homogeneity was checked by relative measurements carried out by three independent techniques. For 40 elements no inhomogeneity was found to exceed the analytical error, which was estimated to be approximately 10 percent. The data of the analytical exercise are being collected and evaluated. Results are available for 56 elements, but to date only 33 have been determined by more than one technique. Activation analysis, emission spectroscopy, atomic absorption, x-ray fluorescence and various wet chemical methods contributed to the intercomparison. No result was received from mass spectroscopic methods and, although analyses were specifically encouraged, very few results were received on the organic components. From a first approximate evaluation a good agreement was found for Al, Fe, Zn, Mn, Ca, Pb, Cl, S, Si, Ti, Mn, while for the other elements no definite conclusion can yet be drawn. An attempt will be made to interpret important cases of systematic errors, a few of which are already evident

  3. Particulate Matter Levels in Ambient Air Adjacent to Industrial Area

    Science.gov (United States)

    Mohamed, R. M. S. R.; Nizam, N. M. S.; Al-Gheethi, A. A.; Lajis, A.; Kassim, A. H. M.

    2016-07-01

    Air quality in the residential areas adjacent to the industrial regions is of great concern due to the association with human health risks. In this work, the concentrations of particulate matter (PM10) in the ambient air of UTHM campus was investigated tostudy the air qualityand their compliance to the Malaysian Ambient Air Quality Guidelines (AAQG). The PM10 samples were taken over 24 hours from the most significant area at UTHM including Stadium, KolejKediamanTunDr. Ismail (KKTDI) and MakmalBahan. The meteorological parameters; temperature, relative humidity, wind speed and wind direction as well as particulate matterwere estimated by using E-Sampler Particulate Matter (PM10) Collector. The highest concentrations of PM10 (55.56 µg/m3) was recorded at MakmalBahan during the working and weekend days. However, these concentrations are less than 150 pg/m3. It can be concluded that although UTHM is surrounded by the industrial area, the air quality in the campus still within the standards limits.

  4. Source apportionment studies on particulate matter in Beijing/China

    Science.gov (United States)

    Suppan, P.; Shen, R.; Shao, L.; Schrader, S.; Schäfer, K.; Norra, S.; Vogel, B.; Cen, K.; Wang, Y.

    2013-05-01

    More than 15 million people in the greater area of Beijing are still suffering from severe air pollution levels caused by sources within the city itself but also from external impacts like severe dust storms and long range advection from the southern and central part of China. Within this context particulate matter (PM) is the major air pollutant in the greater area of Beijing (Garland et al., 2009). PM did not serve only as lead substance for air quality levels and therefore for adverse health impact effects but also for a strong influence on the climate system by changing e.g. the radiative balance. Investigations on emission reductions during the Olympic Summer Games in 2008 have caused a strong reduction on coarser particles (PM10) but not on smaller particles (PM2.5). In order to discriminate the composition of the particulate matter levels, the different behavior of coarser and smaller particles investigations on source attribution, particle characteristics and external impacts on the PM levels of the city of Beijing by measurements and modeling are performed: a) Examples of long term measurements of PM2.5 filter sampling in 2010/2011 with the objectives of detailed chemical (source attribution, carbon fraction, organic speciation and inorganic composition) and isotopic analyses as well as toxicological assessment in cooperation with several institutions (Karlsruhe Institute of Technology (IfGG/IMG), Helmholtz Zentrum München (HMGU), University Rostock (UR), Chinese University of Mining and Technology Beijing, CUMTB) will be discussed. b) The impact of dust storm events on the overall pollution level of particulate matter in the greater area of Beijing is being assessed by the online coupled comprehensive model system COSMO-ART. First results of the dust storm modeling in northern China (2011, April 30th) demonstrates very well the general behavior of the meteorological parameters temperature and humidity as well as a good agreement between modeled and

  5. Simultaneously catalytic removal of NOx and particulate matter on diesel particulate filter

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The simultaneous removal of NOx and particulate matter (PM) exhausted from diesel engine was studied with a diesel particulate filter (DPF) on which a mixed metal oxide catalyst, Cu0.95K0.05Fe2O4 was loaded. The NOx reduction was observed in the same temperature range of the CO2 formation, implying the occurrence of the simultaneous removal of NOx and PM in an oxidizing atmosphere. It was shown that SOF and soot in PM are attributed to the reduction of NOx at lower and higher temperatures, respectively. The oxidation of PM was enhanced by the coexistence of NO and O2. The ignition and exhaustion temperatures of PM decrease as the order NO>O2>NO+O2. This is a combined process of PM trapping as well as the catalytic reactions of soot oxidation and NOx reduction, promising the most desirable after-treatment of diesel exhausts.

  6. Elemental analysis of airborne particulate by using thermal and epithermal neutron activation

    International Nuclear Information System (INIS)

    Thermal neutron activation analysis was used to determine Al, Br, Ca, Cl, Mn, Na, V, and Ti concentrations, whereas epithermal neutron activation analysis was used to determine Cu, I and Si concentrations. Counting by Compton suppression both in thermal neutron activation and epithermal neutron activation analysis showed the significantly different on detection limit of element compare with normal counting system. It revealed counting by Compton suppression gave better result. The enrichment factor of elements indicated that V and Mn were enriched in several fine particulate samples. Ca, Si and Na were not enriched, whereas Br, I and Cl were enriched in fine airborne particulate or in coarse one. It was found that Cl and Na did not have correlation, while Br and I showed the same enrichment the same enrichment trend and high correlation (0,9). It means that Br and I were from the same pollutant source. It could concluded that the thermal neutron and epithermal neutron activations analysis combined with counting by Compton suppression could enhance sensitivity of analysis of elemental air bone particulate that was very useful in air pollution study. Key words : activation analysis, thermal neutron, epithermal neutron, Compton

  7. A study to reduce DPM(Diesel Particulate Matter) emission

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bok Youn; Kang, Chang Hee; Jo, Young Do; Lim, Sang Taek [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    This research commenced in 1994 for the purpose of providing safety and environmental measures of underground mines where the mobile diesel equipment are operating. In this last research year, research on filtering of DPM(diesel particulate matter) has been carried out. Through the research, it was known that water scrubber is only one practical way to reduce DPM emission as of now. There are several kinds of the sophisticated DPM filters, but it is not practical yet to be used in underground equipment due to the many adverse effects of the devices such as tremendous increase of SOx, NOx and back pressure etc. (author). 1 tab., 3 figs.

  8. Correlation Study Between Suspended Particulate Matter and DOAS Data

    Institute of Scientific and Technical Information of China (English)

    SI Fuqi; LIU Jianguo; XIE Pinghua; ZHANG Yujun; LIU Wenqing; Hiroaki KUZE; Nofel LAGROSAS; Nobuo TAKEUCHI

    2006-01-01

    Continuous data of aerosol optical thickness monitored using differential optical absorption spectroscopy (DOAS) are correlated with the concentration of ground-measured suspended particulate matter (SPM).A high correlation is found between the DOAS and the ground SPM data, making it possible to calculate the mass extinction efficiency of the aerosols in the atmosphere. It is found that the value of mean mass extinction efficiency (MEE) varies over a range of 2.6-13.7 m2 g-1, with smaller and larger values occurring for size distributions dominated by coarse and fine particles, respectively.

  9. Ash reduction system using electrically heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  10. Low exhaust temperature electrically heated particulate matter filter system

    Science.gov (United States)

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2012-02-14

    A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.

  11. Elevated exhaust temperature, zoned, electrically-heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-04-17

    A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

  12. Size-resolved particulate matter composition in Beijing during pollution and dust events

    OpenAIRE

    Dillner, Ann M.; Schauer, James J; Zhang, Yuanhang; Zeng, Limin; Cass, Glen R.

    2006-01-01

    Each spring, Beijing, China, experiences dust storms which cause high particulate matter concentrations. Beijing also has many anthropogenic sources of particulate matter including the large Capitol Steel Company. On the basis of measured size segregated, speciated particulate matter concentrations, and calculated back trajectories, three types of pollution events occurred in Beijing from 22 March to 1 April 2001: dust storms, urban pollution events, and an industrial pollution event. For eac...

  13. Photoinduced particulate matter in a parenteral formulation for bisnafide, an experimental antitumor agent.

    Science.gov (United States)

    Rubino, J T; Chan, L L; Walker, J T; Segretario, J; Everlof, J G; Hussain, M A

    1999-08-01

    This paper assesses the cause of particulate formation in vials of the experimental antitumor agent bisnafide and investigates pharmaceutical techniques to reduce the number of particulates in the product. Solution preparation and particulate isolation were performed under Class 100 laminar air flow. Reversed-phase HPLC and infrared microscopy were used to characterize drug and isolated particulate matter, whereas a Hiac particle counter was used to quantify the particulate matter. Particulate matter was observed following agitation of the drug solutions and was found to be associated with specific lots of drug substance. HPLC of the isolated particulate matter indicated that the particulates consisted largely of bisnafide and impurities that were identified as the products of photodegradation, confirmed to be the result of the photolytic cleavage of bisnafide to form a poorly soluble aldehyde. The aldehyde may, in turn, interact with bisnafide molecules to form the particulate matter as suggested by the observed pH-dependent reversibility of the particulate phenomenon. The particulate matter could be reduced by protecting solutions of bisnafide from light during chemical synthesis and production of the dosage form and, alternatively, by reducing the solution pH to 3.0 or less, addition of surfactants below their critical micelle concentration, and removal of impurities by froth flotation of the bisnafide solutions. PMID:10434290

  14. Assessment of CO, CO2 and Suspended Particulate Matter Emissions

    Directory of Open Access Journals (Sweden)

    Bala Isah ABDULKARIM

    2007-09-01

    Full Text Available The concentrations of carbon oxides (CO and CO2 and suspended particulate matter at Benue Cement Company (BCC and Tse-Kucha community was investigated. Results obtained, shows that concentrations of carbon dioxide of 34.40ppm, 39.50 ppm, 48.50 ppm, 78.55 ppm, 65.25 ppm, 26.80 ppm and 29.5 ppm for quarry, raw mill, cement mill, Kiln, packing house, limestone stockpile and Tse-Kucha community respectively were below the maximum standard natural concentration of CO2 in atmosphere of 600ppm while concentrations of CO (1.25ppm - 4.00ppm measured in all the sample stations were below the Nigerian Ambient Air Quality Standards (NAAQS and WHO max limit of 10 ppm - 20 ppm for an 8-hourly average time. Lastly, the concentrations of suspended particulate matter of 375 μg/m3, 338 μg/m3 and 290 μg/m3 at the cement mill, packing house and raw mill respectively were also above the World Health Organization’s (WHO’s Guidelines and Standards for Ambient Air Quality which stipulates a range of 150 μg/m3 to 230 μg/m3 for a 24- hourly average.

  15. Urban particulate matter pollution: a tale of five cities.

    Science.gov (United States)

    Pandis, Spyros N; Skyllakou, Ksakousti; Florou, Kalliopi; Kostenidou, Evangelia; Kaltsonoudis, Christos; Hasa, Erion; Presto, Albert A

    2016-07-18

    Five case studies (Athens and Paris in Europe, Pittsburgh and Los Angeles in the United States, and Mexico City in Central America) are used to gain insights into the changing levels, sources, and role of atmospheric chemical processes in air quality in large urban areas as they develop technologically. Fine particulate matter is the focus of our analysis. In all cases reductions of emissions by industrial and transportation sources have resulted in significant improvements in air quality during the last few decades. However, these changes have resulted in the increasing importance of secondary particulate matter (PM) which dominates over primary in most cases. At the same time, long range transport of secondary PM from sources located hundreds of kilometres from the cities is becoming a bigger contributor to the urban PM levels in all seasons. "Non-traditional" sources including cooking, and residential and agricultural biomass burning contribute an increasing fraction of the now reduced fine PM levels. Atmospheric chemistry is found to change the chemical signatures of a number of these sources relatively fast both during the day and night, complicating the corresponding source apportionment. PMID:27310460

  16. Compositional Analysis of Fine Particulate Matter in Fairbanks, Alaska

    Science.gov (United States)

    Nattinger, K.; Simpson, W. R.; Huff, D.

    2015-12-01

    Fairbanks, AK experiences extreme pollution episodes that result in winter violations of the fine particulate matter (PM2.5) National Ambient Air Quality Standards. This poses a significant health risk for the inhabitants of the area. These high levels result from trapping of pollution in a very shallow boundary layer due to local meteorology, but the role of primary (direct emission) of particulate matter versus secondary production (in the atmosphere) of particulate matter is not understood. Analysis of the PM2.5 composition is being conducted to provide insight into sources, trends, and chemistry. Methods are developed to convert carbon data from IMPROVE (post-2009 analysis method) to NIOSH (pre-2009 method) utilizing blank subtraction, sampler bias adjustment, and inter-method correlations from co-located samples. By converting all carbon measurements to a consistent basis, long-term trends can be analyzed. The approach shows excellent mass closure between PM2.5 mass reconstructed from constituents and gravimetric-analyzed mass. This approach could be utilized in other US locations where the carbon analysis methods also changed. Results include organic and inorganic fractional mass percentages, analyzed over an eight-year period for two testing sites in Fairbanks and two in the nearby city of North Pole. We focus on the wintertime (Nov—Feb) period when most air quality violations occur and find that the particles consist primarily of organic carbon, with smaller percentages of sulfate, elemental carbon, ammonium, and nitrate. The Fairbanks area PM2.5 organic carbon / elemental carbon partitioning matches the source profile of wood smoke. North Pole and Fairbanks PM2.5 have significant compositional differences, with North Pole having a larger percentage of organic matter. Mass loadings in SO42-, NO3-, and total PM2.5 mass correlate with temperature. Multi-year temporal trends show little if any change with a strong effect from temperature. Insights from this

  17. Assessment of Contribution of Contemporary Carbon Sources to Size-Fractionated Particulate Matter and Time-Resolved Bulk Particulate Matter Using the Measurement of Radiocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, H M; Young, T M; Buchholz, B A

    2009-04-16

    This study was motivated by a desire to improve understanding of the sources contributing to the carbon that is an important component of airborne particulate matter (PM). The ultimate goal of this project was to lay a ground work for future tools that might be easily implemented with archived or routinely collected samples. A key feature of this study was application of radiocarbon measurement that can be interpreted to indicate the relative contributions from fossil and non-fossil carbon sources of atmospheric PM. Size-resolved PM and time-resolved PM{sub 10} collected from a site in Sacramento, CA in November 2007 (Phase I) and March 2008 (Phase II) were analyzed for radiocarbon and source markers such as levoglucosan, cholesterol, and elemental carbon. Radiocarbon data indicates that the contributions of non-fossil carbon sources were much greater than that from fossil carbon sources in all samples. Radiocarbon and source marker measurements confirm that a greater contribution of non-fossil carbon sources in Phase I samples was highly likely due to residential wood combustion. The present study proves that measurement of radiocarbon and source markers can be readily applied to archived or routinely collected samples for better characterization of PM sources. More accurate source apportionment will support ARB in developing more efficient control strategies.

  18. DISTRIBUTION AND CHARACTERIZATION OF POLYCYCLIC AROMATIC HYDROCARBON COMPOUNDS IN AIRBORNE PARTICULATES OF EAST ASIA

    Institute of Scientific and Technical Information of China (English)

    Yan Liu; Libin Liu; Jin-Ming Lin; Ning Tang; Kazuichi Hayakawa

    2006-01-01

    A review is presented on the distribution and characterization of polycyclic aromatic hydrocarbons (PAHs)and their derivatives, including nitro-PAHs and hydro-PAHs, on atmospheric particulates of East Asia. Generally, PAH compounds with two or three aromatic rings are released mainly into the gas phase, while those containing three or more aromatic rings are associated with particulate matter (PM) emission. Particle-associated PAHs are primarily adsorbed on fine particles, and little associated with coarse particles. Investigation into the concentration level of PAHs in different areas can serve not only to reflect the pollutant status and sources but also to lead to the formulation of control strategies.The results of the present study show that China has more severe PAH pollution than such East Asian countries as Japan and Korea.

  19. Airborne pariculate matter from livestock production systems: A review of an air pollution problem

    NARCIS (Netherlands)

    Cambra-Lopez, M.; Aarnink, A.J.A.; Zhao, Y.; Calvet, S.; Torres, A.G.

    2010-01-01

    Livestock housing is an important source of emissions of particulate matter (PM). High concentrations of PM can threaten the environment, as well as the health and welfare of humans and animals. Particulate matter in livestock houses is mainly coarse, primary in origin, and organic; it can adsorb an

  20. Development of emission factors for particulate matter in a school

    Energy Technology Data Exchange (ETDEWEB)

    Scheff, P.A.; Paulius, V.; Conroy, L.M.

    1999-07-01

    Schools have complex indoor environments which are influenced by many factors such as number of occupants, building design, office equipment, cleaning agents, and school activities. Like large office buildings, school environments may be adversely influenced by deficiencies in ventilation which may be due to improper operation of HVAC systems, attempts at energy efficiency that limit the supply of outdoor air, or remodeling of building components. Most importantly, children spend up to a third of their time in these structures, and thus it is desirable to better understand the environmental quality in these buildings. A middle school (grades 6 to 8) in a residential section of Springfield, IL was selected for this baseline indoor air quality survey. The school was characterized as having no health complaints, good maintenance schedules, and did not contain carpeting within the classrooms or hallways. The focus of this paper is on the measurements of air quality in the school. The development of emission factors for particulate matter is also discussed. Four indoor locations including the Cafeteria, a Science Classroom, an Art Classroom, and the Lobby outside of the main office, and one outdoor location were sampled for various environmental comfort and pollutant parameters for one week in February of 1997. Integrated samples (8 hour sampling time) for respirable and total particulate matter, and short-term measurements of bioaerosols (two minute samples, three times per day) on three consecutive days were collected at each of the indoor and outdoor sites. Continuous measurements of carbon dioxide, carbon monoxide, temperature and humidity were logged at all locations for five days. Continuous measurements of respirable particulate matter were also collected in the Lobby area. Detailed logs of occupant activity were also collected at each indoor monitoring location throughout the study. Total particle concentrations ranged from 29 to 177 {micro}g/m{sup 3} in the art

  1. Characterization of Particulate Matter from a Heavily Industrial Environment

    Science.gov (United States)

    Valarini, Simone; Ynoue, Rita Yuri

    2011-01-01

    A characterization of PM aerosols collected in Cubatão, Brazil is presented. Throughout 2009, 5 sampling campaings were carried out at CEPEMA (Centro de Capacitação e Pesquisa em Meio Ambiente da Universidade de São Paulo), in the vicinity of PETROBRAS oil refinery. Mini-vol portable air sampler was deployed to collect coarse and fine particles. Size-fractionated particle samples were collected by a Micro-Orifice Uniform Deposition Impactor (MOUDI) device. Gravimetric analysis showed three peaks for mass size distributions: the After-Filter stage (cut point diameter of less than 0,1μm), stage 7A (d=0,32μm) and stage 3A (d= 3,2μm). Fine particle matter (FPM) concentrations were almost always lower than coarse particle matter (CPM) concentrations. Comparison between the PM2.5 (particulate matter lower than 2.5μg.m-3) measurements by the MOUDI and Mini-Vol sampler reveals good agreement. However, MOUDI underestimates CPM. Reflectance analysis showed that almost all the Black Carbon is found in the Mini-Vol FPM and lower stages of the MOUDI, with higher concentrations at the After-Filter. The atmospheric loading of PM 2.5 was elevated at night, mainly due to more stable atmospheric conditions. Aerosol samples were analyzed for water- soluble ions, black carbon (BC), and trace elements using a number of analytical techniques.

  2. Concentration, spatial and size distribution of airborne aerobic mesophilic bacteria in broiler farms

    NARCIS (Netherlands)

    Adell, E.; Moset, V.; Yang Zhao, Yang; Cerisuelo, A.; Cambra-Lopez, M.

    2011-01-01

    In livestock houses, particulate matter (PM) and airborne microorganism are two of the most relevant air pollutants. Particulate matter may carry microorganisms, the inhalation of which can cause detrimental health effects. The aim of this study was to study the spatial distribution of airborne aero

  3. 40 CFR 52.1637 - Particulate Matter (PM10) Group II SIP commitments.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate Matter (PM10) Group II SIP... Particulate Matter (PM10) Group II SIP commitments. (a) On August 19, 1988, the Governor of New Mexico submitted a revision to the State Implementation Plan (SIP) that contained commitments, from the Director...

  4. 40 CFR 52.1489 - Particulate matter (PM-10) Group II SIP commitments.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate matter (PM-10) Group II SIP... Particulate matter (PM-10) Group II SIP commitments. (a) On March 29, 1989, the Air Quality Officer for the... inventory, and other tasks that may be necessary to satisfy the requirements of the PM-10 Group II SIPs....

  5. 40 CFR 52.2306 - Particulate Matter (PM10) Group II SIP commitments.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate Matter (PM10) Group II SIP... Particulate Matter (PM10) Group II SIP commitments. On July 18, 1988, the Governor of Texas submitted a revision to the State Implementation Plan (SIP) that contained commitments for implementing all of...

  6. 77 FR 38760 - National Ambient Air Quality Standards for Particulate Matter; Correction

    Science.gov (United States)

    2012-06-29

    ... AGENCY 40 CFR Parts 50, 51, 52, 53, and 58 RIN 2060-AO47 National Ambient Air Quality Standards for... revise the national ambient air quality standards (NAAQS) for particulate matter (PM). This action...: Questions concerning the ``National Ambient Air Quality Standards for Particulate Matter'' proposed...

  7. 40 CFR 60.48b - Emission monitoring for particulate matter and nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Emission monitoring for particulate matter and nitrogen oxides. 60.48b Section 60.48b Protection of Environment ENVIRONMENTAL PROTECTION... monitoring for particulate matter and nitrogen oxides. (a) Except as provided in paragraph (j) of...

  8. Epidemiologic studies of particulate matter and lung cancer

    Institute of Scientific and Technical Information of China (English)

    Yin-Ge Li; Xiang Gao

    2014-01-01

    Particulate matter (PM) plays an important role in air pollution, especially in China. European and American researchers conducted several cohort-based studies to examine the potential relationship between PM and lung cancer and found a positive association between PM and lung cancer mortality. In contrast, the results regarding PM and lung cancer risk remain inconsistent. Most of the previous studies had limitations such as misclassification of PM exposure and residual confounders, diminishing the impact of their findings. In addition, prospective studies on this topic are very limited in Chinese populations. This is an important problem because China has one of the highest concentrations of PM in the world and has had an increased mortality risk due to lung cancer. In this context, more prospective studies in Chinese populations are warranted to investigate the relationship between PM and lung cancer.

  9. Characterization of fine organic particulate matter from Chinese cooking

    Institute of Scientific and Technical Information of China (English)

    HE Ling-yan; HU Min; WANG Li; HUANG Xiao-feng; ZHANG Yuan-hang

    2004-01-01

    PM2.5 samples were collected by a three-stage cascade impactor at two kinds of Chinese restaurants to characterize fine organic particulate matter from Chinese cooking sources. Major individual organic compounds have been quantified by GC/MS, including series of alkanes, n-alkanoic acids, n-alkanals, alkan-2-ones and PAHs.Alkanes and ketones make up a significant fraction of particle-phase organic compounds, ranging from C11 to C26,and C9 to C19, respectively. In addition, other organic compound classes have been identified, such as alkanols,esters, furans, lactones, amides, and nitriles. The mass concentrations of fine particles, alkanes, n-alkanoic acids and PAHs in air emitted from the Uigur style cooking are hundreds times higher than ambient PM2.5 in Beijing.

  10. Fine particulate matter in acute exacerbation of COPD

    Directory of Open Access Journals (Sweden)

    Lei eNi

    2015-10-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is a common airway disorder. In particular, acute exacerbations of COPD (AECOPD can significantly reduce pulmonary function. The majority of AECOPD episodes are attributed to infections, although environmental stress also plays a role. Increasing urbanization and associated air pollution, especially in developing countries, have been shown to contribute to COPD pathogenesis. Elevated levels of particulate matter (PM in polluted air are strongly correlated with the onset and development of various respiratory diseases. In this review, we have conducted an extensive literature search of recent studies of the role of PM2.5 (fine PM in AECOPD. PM2.5 leads to AECOPD via inflammation, oxidative stress, immune dysfunction, and altered airway epithelial structure and microbiome. Reducing PM2.5 levels is a viable approach to lower AECOPD incidence, attenuate COPD progression and decrease the associated healthcare burden.

  11. Simulations of dispersion and deposition of coarse particulate matter

    CERN Document Server

    Cionco, Rodolfo G; Caligaris, Marta G

    2012-01-01

    In order to study the dispersion and deposition of coarse anthropogenic particulate matter (PMc, aerodynamic diameters> 10 mm), a FORTRAN simulator based on the numerical integrator of Bulirsch and Stoer has been developed. It calculates trajectories of particles of several shapes released into the atmosphere under very general conditions. This first version, fully three-dimensional, models the meteorology under neutral stability conditions. The simulations of such pollutants are also important because the standard software (usually originating in the United States Environmental Protection Agency-EPA-) describe only the behavior of PM10 (diameter less than 10 mm). Bulirsch and Stoer integrator of widespread use in astrophysics, is also very fast and accurate for this type of simulations. We present 2D and 3D trajectories in physical space and discuss the final deposition in function of various parameters. PMc simulations results in the range of 50-100 mm and densities of 5.5 g cm-3 emitted from chimneys, indi...

  12. High exhaust temperature, zoned, electrically-heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2015-09-22

    A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.

  13. The origin of ambient particulate matter concentrations in the Netherlands

    Science.gov (United States)

    Hendriks, Carlijn; Kranenburg, Richard; Kuenen, Jeroen; van Gijlswijk, René; Wichink Kruit, Roy; Segers, Arjo; Denier van der Gon, Hugo; Schaap, Martijn

    2013-04-01

    Particulate matter poses a significant threat to human health. To be able to develop effective mitigation strategies, the origin of particulate matter needs to be established. The regional air quality model LOTOS-EUROS, equipped with a newly developed labeling routine, was used to establish the origin of PM10 and PM2.5 in the Netherlands for 2007-2009 at the source sector level, distinguishing between national and foreign sources. The results suggest that 70-80% of modeled PM10 and 80-95% of PM2.5 in the Netherlands is of anthropogenic origin. About 1/3 of anthropogenic PM10 is of Dutch origin and 2/3 originates in foreign countries. Agriculture and transport are the Dutch sectors with the largest contribution to PM10 mass in the Netherlands, whereas the foreign contribution is more equally apportioned to road transport, other transport, industry, power generation and agriculture. For the PM2.5 fraction, a larger share is apportioned to foreign and anthropogenic origin than for PM10, but the same source sectors are dominant. The national contribution to PM levels is significantly higher in the densely populated Randstad area than for the country on average and areas close to the borders. In general, the Dutch contribution to the concentration of primary aerosol is larger than for secondary species. The sectoral origin varies per component and is location and time dependent. During peak episodes, natural sources are less important than under normal conditions, whereas especially road transport and agriculture become more important.

  14. Free amino acids in atmospheric particulate matter of Venice, Italy

    Science.gov (United States)

    Barbaro, Elena; Zangrando, Roberta; Moret, Ivo; Barbante, Carlo; Cescon, Paolo; Gambaro, Andrea

    2011-09-01

    The concentrations of free amino acids were determined in atmospheric particulate matter from the city of Venice (Italy) in order to better understand their origin. The analysis of aerosol samples was carried out via high-performance liquid chromatography coupled to a triple quadrupole tandem mass spectrometric detector (HPLC/ESI-MS/MS). The internal standard method was used and the analytical procedure was validated by evaluating the trueness, the precision, the recovery, the detection and the quantification limits. The particulate matter was collected using quartz fiber filters and extracted in methanol; after filtration the extract was directly analyzed. Forty samples were collected from April to October 2007 and the average concentrations of free amino acids in the aerosol were: alanine 35.6 pmol m -3, aspartic acid 31.1 pmol m -3, glycine 30.1 pmol m -3, glutamic acid 32.5 pmol m -3, isoleucine 2.4 pmol m -3, leucine 2.7 pmol m -3, methionine, cystine and 3-hydroxy-proline below the limit of detection, phenylalanine 2.8 pmol m -3, proline 43.3 pmol m -3, serine 8.6 pmol m -3, threonine 2.8 pmol m -3, tyrosine 1.7 pmolm -3, valine 3.8 pmol m -3, asparagine 70.2 pmol m -3, glutamine 38.0 pmol m -3, 4-hydroxy-proline 2.5 pmol m -3, methionine sulfoxide 1.1 pmol m -3, and methionine sulfone 0.1 pmol m -3. The total average concentration of these free amino acids in aerosol samples of Venice Lagoon was 334 pmol m -3. The temporal evolution and multivariate analysis indicated the photochemical origin of 4-hydroxy-proline and methionine sulfoxide and for other compounds an origin further away from the site of sampling, presumably reflecting transport from terrestrial sources.

  15. Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome.

    Directory of Open Access Journals (Sweden)

    Lisa Kish

    Full Text Available BACKGROUND: Particulate matter (PM is a key pollutant in ambient air that has been associated with negative health conditions in urban environments. The aim of this study was to examine the effects of orally administered PM on the gut microbiome and immune function under normal and inflammatory conditions. METHODS: Wild-type 129/SvEv mice were gavaged with Ottawa urban PM10 (EHC-93 for 7-14 days and mucosal gene expression analyzed using Ingenuity Pathways software. Intestinal permeability was measured by lactulose/mannitol excretion in urine. At sacrifice, segments of small and large intestine were cultured and cytokine secretion measured. Splenocytes were isolated and incubated with PM10 for measurement of proliferation. Long-term effects of exposure (35 days on intestinal cytokine expression were measured in wild-type and IL-10 deficient (IL-10(-/- mice. Microbial composition of stool samples was assessed using terminal restriction fragment length polymorphism. Short chain fatty acids were measured in caecum. RESULTS: Short-term treatment of wild-type mice with PM10 altered immune gene expression, enhanced pro-inflammatory cytokine secretion in the small intestine, increased gut permeability, and induced hyporesponsiveness in splenocytes. Long-term treatment of wild-type and IL-10(-/- mice increased pro-inflammatory cytokine expression in the colon and altered short chain fatty acid concentrations and microbial composition. IL-10(-/- mice had increased disease as evidenced by enhanced histological damage. CONCLUSIONS: Ingestion of airborne particulate matter alters the gut microbiome and induces acute and chronic inflammatory responses in the intestine.

  16. Atmospheric Light Detection and Ranging (LiDAR) Coupled With Point Measurement Air Quality Samplers to Measure Fine Particulate Matter (PM) Emissions From Agricultural Operations: The Los Banos CA Fall 2007 Tillage Campaign.

    Science.gov (United States)

    Airborne particles, especially fine particulate matter 2.5 micrometers (μm) or less in aerodynamic diameter (PM2.5), are microscopic solids or liquid droplets that can cause serious health problems, including increased respiratory symptoms such as coughing or difficulty breathing...

  17. Indoor and outdoor airborne particles. An in vitro study on mutagenic potential and toxicological implications.

    OpenAIRE

    Houdt, van, R.

    1988-01-01

    IntroductionAir pollution components are present as gases and as particulate matter. As particle deposition takes place in various parts of the respiratory system particulate matter may have other toxicological implications than gaseous pollutants, which all may penetrate in the lower part of the respiratory tract. In addition, suspended particulate matter represents a group of pollutants of variable physical as well as chemical composition. Therefore airborne particulate matter cannot be reg...

  18. Contributions Of Black Carbon Concentration To Atmospheric Particulate Matter Levels In Navrongo Senior High School. October 2010-March 2011.

    Directory of Open Access Journals (Sweden)

    Abdul-Razak Fuseini

    2015-03-01

    Full Text Available ABSTRACT The objective of this research was to assess the black carbon concentration in air borne particulate matter in ambient air due to the use of biomass for cooking in the Navrongo Senior High School. The Gent air sampler was used to sample airborne particulate matter in the Navrongo Senior High School. These particulates were collected on nuclepore polycarbonate filters for a period of six months. In addition to determination of particulate mass in the two fractions by gravimetric method the aerosol filters were also analyzed for black carbon BC concentration levels using the black smoke reflectometer method. The average fine fraction mass concentration determined was 134.59gm-3 with a minimum of 9.28gm-3 and a maximum of 338.11gm-3 and that of coarse fraction CF was 355.04gm-3 with a minimum of 61.73gm-3 and a maximum of 1117.43gm-3. The black carbon concentration in fine average was 7.62gm-3 with a minimum of 1.68gm-3 and a maximum of 35.35gm-3 and that of the coarse was 6.92gm-3 with a minimum of 1.76gm-3 and a maximum of 22.61gm-3. The results of this research were compared to other works in the country. It was however realized that the values of this research were about twice as much as the other works. This was due to the fact that biomass burning is generally used for cooking in the study area which is usual of Northern Ghana and so produces a lot of black carbon as compared to the other area which are semi-urban areas in the southern part of the country. The values obtained for coarse to fine particulate matter ratio suggest that the particulates were not only largely made up of combustion generated carbonaceous particles but also particulate matter emissions from natural activities.

  19. DETERMINATION OF MOBILITY AND BIOAVAILABILITY OF HEAVY METALS IN THE URBAN AIR PARTICULATES MATTER OF ISFAHAN

    Directory of Open Access Journals (Sweden)

    A KALANTARI

    2001-06-01

    Full Text Available Introduction: In addition to, Carbohyrates, Lipids, Amino acids and vitamins, some of the trace metals are known vital for biological activity. But some of them not only are not necessary, but also they are very toxic and carcinogen. In this research the rate of Mobility and Bioavailability of heavy metals associated with airborne particulates matter such as Zn, Pb, Cd, Cu, Fe, Ni and Cr have been measured. Methods: The sequential extraction has been used for releasing of heavy metales from solid samples as airborne particulates matter on the paper filter samples. Five stages in the sequential extraction procedure developed by Tessier, et al, was first used for extraction and determination of the concentration and percentages of heavy metals which could be released in each stage. In the 1st stage, exchangable metals were released. The sample was extracted with 10 ml of ammonium acetat, pH=7 for 1h. Then the sample was centrifuged at 2000 rpm. The solution of extraction, was analysed for Zn, Pb, Cd, Cu, Fe, Ni and Cr. In the 2nd stage, heavy metals bound to carbonates which were sensitive to pH were extracted. The residue from stage 1, with 10 ml of sodium acetate 1 M the pH was adjusted to 5 with acetic acid. Then the sample was centrifuged as stage 1. In the third stage heavy metals bound to iron and manganese oxides were extracted. The residue from stage 2 was reacted with 10 ml hydroxyl amine hydrochloride at 25% v/v. In the 4th stage metals bound to sulfides and organic compounds were extracted. The residue from stage 3 with 5 ml nitric acid and 5 ml hydrogen peroxide 30% and heated at 85° C. Finally in the 5th stage residual heavy metals were extracted. the residue from fraction 4 with 10 ml nitric acid and 3 ml hydroflouric acid were extracted. The concentrations of Pb and Cd in some fractions of sequential extraction were too low, so, we carried out preconcentration method for these two elements. Results and Discussion: The results

  20. Level, potential sources of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM10) in Naples

    Science.gov (United States)

    Di Vaio, Paola; Cocozziello, Beatrice; Corvino, Angela; Fiorino, Ferdinando; Frecentese, Francesco; Magli, Elisa; Onorati, Giuseppe; Saccone, Irene; Santagada, Vincenzo; Settimo, Gaetano; Severino, Beatrice; Perissutti, Elisa

    2016-03-01

    In Naples, particulate matter PM10 associated with polycyclic aromatic hydrocarbons (PAHs) in ambient air were determined in urban background (NA01) and urban traffic (NA02) sites. The principal objective of the study was to determine the concentration and distribution of PAHs in PM10 for identification of their possible sources (through diagnostic ratio - DR and principal component analysis - PCA) and an estimation of the human health risk (from exposure to airborne TEQ). Airborne PM10 samples were collected on quartz filters using a Low Volume Sampler (LVS) for 24 h with seasonal samples (autumn, winter, spring and summer) of about 15 days each between October 2012 and July 2013. The PM10 mass was gravimetrically determined. The PM10 levels, in all seasons, were significantly higher (P agents, (i.e Benzo[a]Pyrene, Indeno[1,2,3-cd]Pyrene, Benzo[b]Fluoranthene, Benzo[k]Fluoranthene and Benzo[g,h,i]Perylene), had a large contribution (∼50-55%) of total PAHs concentration in PM10 in two sites and in each of the campaigns. Diagnostic ratio analysis and PCA suggested a substantial contributions from traffic emission with minimal influence from coal combustion and natural gas emissions. In particular diesel vehicular emissions were the major source of PAHs at the studied sites. The use of Toxicity Equivalence Quantity (TEQ) concentration provide a better estimation of carcinogenicity activities; health risk to adults and children associated with PAHs inhalation was assessed by taking into account the lifetime average daily dose and corresponding incremental lifetime cancer risk (ILCR). The ILCR was within the acceptable range (10-6-10-4), indicating a low health risk to residents in these areas.

  1. An evaluation of indoor and outdoor biological particulate matter

    Science.gov (United States)

    Menetrez, M. Y.; Foarde, K. K.; Esch, R. K.; Schwartz, T. D.; Dean, T. R.; Hays, M. D.; Cho, S. H.; Betancourt, D. A.; Moore, S. A.

    The incidences of allergies, allergic diseases and asthma are increasing world wide. Global climate change is likely to impact plants and animals, as well as microorganisms. The World Health Organization, U.S. Environmental Protection Agency, U.S. Department of Agriculture, U.S. Department of Health and Human Services, and the Intergovernmental Panel on Climate Change cite increased allergic reactions due to climate change as a growing concern. Monitoring of indoor and ambient particulate matter (PM) and the characterization of the content for biological aerosol concentrations has not been extensively performed. Samples from urban and rural North Carolina (NC), and Denver (CO), were collected and analyzed as the goal of this research. A study of PM 10 (protein). Concentrations of these bioaerosols were reported as a function of PM size fraction, mass and volume of air sampled. The results indicated that higher concentrations of biologicals were present in PM 10 than were present in PM 2.5, except when near-roadway conditions existed. This study provides the characterization of ambient bioaerosol concentrations in a variety of areas and conditions.

  2. Ambient particulate matter air pollution and cardiopulmonary diseases.

    Science.gov (United States)

    Thurston, George; Lippmann, Morton

    2015-06-01

    Population exposures to ambient outdoor particulate matter (PM) air pollution have been assessed to represent a major burden on global health. Ambient PM is a diverse class of air pollution, with characteristics and health implications that can vary depending on a host of factors, including a particle's original source of emission or formation. The penetration of inhaled particles into the thorax is dependent on their deposition in the upper respiratory tract during inspiration, which varies with particle size, flow rate and tidal volume, and in vivo airway dimensions. All of these factors can be quite variable from person to person, depending on age, transient illness, cigarette smoke and other short-term toxicant exposures that cause transient bronchoconstriction, and occupational history associated with loss of lung function or cumulative injury. The adverse effects of inhaled PM can result from both short-term (acute) and long-term (chronic) exposures to PM, and can range from relatively minor, such as increased symptoms, to very severe effects, including increased risk of premature mortality and decreased life expectancy from long-term exposure. Control of the most toxic PM components can therefore provide major health benefits, and can help guide the selection of the most human health optimal air quality control and climate change mitigation policy measures. As such, a continued improvement in our understanding of the nature and types of PM that are most dangerous to health, and the mechanism(s) of their respective health effects, is an important public health goal.

  3. Inferring Atmospheric Particulate Matter Concentrations from Chinese Social Media Data

    Science.gov (United States)

    Tao, Zhu; Kokas, Aynne; Zhang, Rui; Cohan, Daniel S.; Wallach, Dan

    2016-01-01

    Although studies have increasingly linked air pollution to specific health outcomes, less well understood is how public perceptions of air quality respond to changing pollutant levels. The growing availability of air pollution measurements and the proliferation of social media provide an opportunity to gauge public discussion of air quality conditions. In this paper, we consider particulate matter (PM) measurements from four Chinese megacities (Beijing, Shanghai, Guangzhou, and Chengdu) together with 112 million posts on Weibo (a popular Chinese microblogging system) from corresponding days in 2011–2013 to identify terms whose frequency was most correlated with PM levels. These correlations are used to construct an Air Discussion Index (ADI) for estimating daily PM based on the content of Weibo posts. In Beijing, the Chinese city with the most PM as measured by U.S. Embassy monitor stations, we found a strong correlation (R = 0.88) between the ADI and measured PM. In other Chinese cities with lower pollution levels, the correlation was weaker. Nonetheless, our results show that social media may be a useful proxy measurement for pollution, particularly when traditional measurement stations are unavailable, censored or misreported. PMID:27649530

  4. Exploring Variation and Predictors of Residential Fine Particulate Matter Infiltration

    Directory of Open Access Journals (Sweden)

    Amanda J. Wheeler

    2010-08-01

    Full Text Available Although individuals spend the majority of their time indoors, most epidemiological studies estimate personal air pollution exposures based on outdoor levels. This almost certainly results in exposure misclassification as pollutant infiltration varies between homes. However, it is often not possible to collect detailed measures of infiltration for individual homes in large-scale epidemiological studies and thus there is currently a need to develop models that can be used to predict these values. To address this need, we examined infiltration of fine particulate matter (PM2.5 and identified determinants of infiltration for 46 residential homes in Toronto, Canada. Infiltration was estimated using the indoor/outdoor sulphur ratio and information on hypothesized predictors of infiltration were collected using questionnaires and publicly available databases. Multiple linear regression was used to develop the models. Mean infiltration was 0.52 ± 0.21 with no significant difference across heating and non-heating seasons. Predictors of infiltration were air exchange, presence of central air conditioning, and forced air heating. These variables accounted for 38% of the variability in infiltration. Without air exchange, the model accounted for 26% of the variability. Effective modelling of infiltration in individual homes remains difficult, although key variables such as use of central air conditioning show potential as an easily attainable indicator of infiltration.

  5. Atmospheric Particulate Matter Pollution During The 2008 Beijing Olympics

    Science.gov (United States)

    Wang, W.; Primbs, T.; Tao, S.; Zhu, T.; Simonich, S. M.

    2009-05-01

    To assess the particulate matter (PM) pollution during the 2008 Beijing Olympic games, size fractionated PM samples of >PM10, PM2.5-PM10, and Olympics, during the 2 week period of the Olympics, and for a 4 week time period following the Olympics. These time periods included 6 weeks with source control and 2 weeks without source control measures. Our SumPM10 (PM2.5-PM10 + Olympic time period and 93.9 ± 50.2 μg/ m3 and 124.5 ± 65.8 μg/ m3 outside of the Olympic time period, respectively, and were statistically different between the two time periods. In addition, the mean Olympic time period, the PM10 concentrations in Beijing were 2.9, 3.5, and 1.9 times higher than PM10 concentrations during the Olympic time periods in Atlanta, Sydney and Athens. In addition, the PM10 and PM2.5 concentrations during the Olympic time period exceeded the WHO guideline 81% and 100% of the time, respectively. Finally, compared to October, November, and December 2007, the PM10 concentrations were reduced by 9% to 27% during the same months in 2008, suggesting that the source control efforts (and possibly a down turn in the economy) have resulted in lower PM10 concentrations in Beijing.

  6. Particulate matter in rural and urban nursery schools in Portugal

    International Nuclear Information System (INIS)

    Studies have been showing strong associations between exposures to indoor particulate matter (PM) and health effects on children. Urban and rural nursery schools have different known environmental and social differences which make their study relevant. Thus, this study aimed to evaluate indoor PM concentrations on different microenvironments of three rural nursery schools and one urban nursery school, being the only study comparing urban and rural nursery schools considering the PM1, PM2.5 and PM10 fractions (measured continuously and in terms of mass). Outdoor PM2.5 and PM10 were also obtained and I/O ratios have been determined. Indoor PM mean concentrations were higher in the urban nursery than in rural ones, which might have been related to traffic emissions. However, I/O ratios allowed concluding that the recorded concentrations depended more significantly of indoor sources. WHO guidelines and Portuguese legislation exceedances for PM2.5 and PM10 were observed mainly in the urban nursery school. - Highlights: • This is the only study comparing urban and rural nurseries considering PM fractions. • A low number of children in classrooms is enough to increase PM concentrations. • Children in urban nurseries are exposed to higher PM concentrations than in rural. • Children were mainly exposed to the finer fractions, which are worse to health. - PM levels were higher in the urban nursery than in the rural ones, which might have been related to traffic emissions. Still concentrations depended more significantly of indoor sources

  7. A cost-effective weighing chamber for particulate matter filters.

    Science.gov (United States)

    Allen, R; Box, M; Liu, L J; Larson, T V

    2001-12-01

    Particulate matter (PM) is a ubiquitous air pollutant that has been receiving increasing attention in recent years due in part to the association between PM and a number of adverse health outcomes, including mortality and increases in emergency room visits and respiratory symptoms, as well as exacerbation of asthma and decrements in lung function. As a result, the ability to accurately sample ambient PM has become important, both to researchers and to regulatory agencies. The federal reference method for the determination of fine PM as PM2.5 in the atmosphere recommends that particle-sampling filters be conditioned and weighed in an environment with constant temperature and relative humidity (RH). It is also recommended that vibration, electrostatic charges, and contamination of the filters from laboratory air be minimized to reduce variability in filter weight measurements. These controls have typically been maintained in small, environmentally controlled "cleanrooms." As an alternative to constructing an elaborate cleanroom, we have designed, and presented in this paper, an inexpensive weighing chamber to maintain the necessary level of humidity control.

  8. Sources of atmospheric carbonaceous particulate matter in Pittsburgh, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Cabada, J.C.; Pandis, S.N.; Robinson, A.L. [Carnegie Mellon University, Pittsburgh, PA (United States)

    2002-06-01

    The organic carbon (OC)/elemental carbon (EC) tracer method is applied to the Pittsburgh, PA, area to estimate the contribution of secondary organic aerosol (SOA) to the monthly average concentration of organic particulate matter (PM) during 1995. An emissions inventory is constructed for the primary emissions of OC and EC in the area of interest. The ratio of primary emissions of OC to those of EC ranges between 2.4 in the winter months and 1.0 in summer months. A mass balance model and ambient measurements were used to assess the accuracy of the emissions inventory. It is estimated to be accurate to within 50%. The results from this analysis show a strong monthly dependence of the SOA contribution to the total organic PM concentration, varying from near zero during winter months to as much as 50% of the total OC concentration in the summer. Local wood and fugitive sources combustion are major sources of primary OC in western Pennsylvania on an annual basis (33 and 22% respectively), and wood burning is the dominant source during winter months. The coke producing industry and diesel combustion are the dominant sources of the primary EC emissions (21 and 30% respectively). The EC emissions show a weaker monthly dependence compared with that shown by OC sources. 57 refs., 9 figs., 8 tabs.

  9. Warthin-starry Silver Method Showing Particulate Matter in Macrophage

    Institute of Scientific and Technical Information of China (English)

    HONG-GANG LIU

    2008-01-01

    Objective To verify whether Warthin-Starry(WS)silver method could detect the air particulate matter(PM)/dust particles(Ps)located within the macrophages in situ. Methods There were 26 antopsy cases that resulted from cerebral hemorrhage(group A),silicosis(group B),and fetal death during pregnancy(group C).Samples were collected separately and serial sections were prepared from the lungs and lymph nodes and stained with hematoxylin and eosin(HE),WS silver,immunohistochemistry of CD68.Furthermore,ultrathin sections were taken from the WS positive serial sections of groups A and B.Ps were observed under a transmission electron microscope(TEM)and the elements of Ps were measured by X-ray spectrum analysis(X-RSA).Results In both groups A and B,WS staining was positive for the larger and fine Ps,the so called"dust cells",but HE staining Was almost negative for fine Ps.In group C,no larger or fine Ps were found.Immunohistochemical staining of CD68 certified that the"dust cells"containing Ps were macrophages.The results of TEM and X-RSA proved that the structure and elements of Ps belonged to PM indeed.Conclusion WS staining is a better than HE staining in showing the location of PM within macrophages.

  10. Characteristics and cellular effects of ambient particulate matter from Beijing

    International Nuclear Information System (INIS)

    In vitro tests using human adenocarcinomic alveolar epithelial cell line A549 and small mouse monocyte-macrophage cell line J774A.1 were conducted to test toxicity of six PM (particulate matter) samples from Beijing. The properties of the samples differ significantly. The production of inflammatory cytokine (TNF-α for J774A.1) and chemokine (IL-8 for A549) and the level of intracellular reactive oxygen species (ROS) were used as endpoints. There was a positive correlation between water soluble organic carbon and DTT-based redox activity. Both cell types produced increased levels of inflammatory mediators and had higher level of intracelllar ROS, indicating the presence of PM-induced inflammatory response and oxidative stress, which were dose-dependent and significantly different among the samples. The releases of IL-8 from A549 and TNF-α from J774A.1 were significantly correlated to PM size, Zeta potential, endotoxin, major metals, and polycyclic aromatic hydrocarbons. No correlation between ROS and these properties was identified. - Highlights: • Six PMs from Beijing were tested for toxicity using A549 and J774A.1 cell lines. • The properties of the PM samples differ significantly. • Dose-dependent inflammatory response and oxidative stress were found. • The release of inflammatory cytokine was significantly correlated to PM properties. • No correlation between ROS and PM properties was identified. - Cellular toxicity of PM2.5 from Beijing depends on their properties

  11. Particulate matter air pollution components and risk for lung cancer

    DEFF Research Database (Denmark)

    Raaschou-Nielsen, O; Beelen, R; Wang, M.;

    2016-01-01

    geocoded baseline addresses and assessed air pollution with land-use regression models for eight elements (Cu, Fe, K, Ni, S, Si, V and Zn) in size fractions of PM2.5 and PM10. We used Cox regression models with adjustment for potential confounders for cohort-specific analyses and random effect models......BACKGROUND: Particulate matter (PM) air pollution is a human lung carcinogen; however, the components responsible have not been identified. We assessed the associations between PM components and lung cancer incidence. METHODS: We used data from 14 cohort studies in eight European countries. We.......59; 1.12-2.26 per 2ng/m(3)) and PM10 K (1.17; 1.02-1.33 per 100ng/m(3)). In two-pollutant models, associations between PM10 and PM2.5 and lung cancer were largely explained by PM2.5 S. CONCLUSIONS: This study indicates that the association between PM in air pollution and lung cancer can be attributed...

  12. Inferring Atmospheric Particulate Matter Concentrations from Chinese Social Media Data.

    Science.gov (United States)

    Tao, Zhu; Kokas, Aynne; Zhang, Rui; Cohan, Daniel S; Wallach, Dan

    2016-01-01

    Although studies have increasingly linked air pollution to specific health outcomes, less well understood is how public perceptions of air quality respond to changing pollutant levels. The growing availability of air pollution measurements and the proliferation of social media provide an opportunity to gauge public discussion of air quality conditions. In this paper, we consider particulate matter (PM) measurements from four Chinese megacities (Beijing, Shanghai, Guangzhou, and Chengdu) together with 112 million posts on Weibo (a popular Chinese microblogging system) from corresponding days in 2011-2013 to identify terms whose frequency was most correlated with PM levels. These correlations are used to construct an Air Discussion Index (ADI) for estimating daily PM based on the content of Weibo posts. In Beijing, the Chinese city with the most PM as measured by U.S. Embassy monitor stations, we found a strong correlation (R = 0.88) between the ADI and measured PM. In other Chinese cities with lower pollution levels, the correlation was weaker. Nonetheless, our results show that social media may be a useful proxy measurement for pollution, particularly when traditional measurement stations are unavailable, censored or misreported. PMID:27649530

  13. Vis-NIR characterization of particulate matter in urban and industrial sites in the Mediterranean area

    Science.gov (United States)

    Salzano, R.; Montagnoli, M.; Salvatori, R.; Perrino, C.

    2010-12-01

    The optical properties of particulate matter are key parameters for the definition of the radiative balance of the atmosphere and require a deeper comprehension for improving modelling. Considering the cognitive gap evidenced by IPCC guidelines, additional tools are necessary for understanding how size distribution and mineralogy contribute to the complexity of a matrix such as particulate matter. Knowing that concentration and chemical composition are nowadays features that are “traditionally” investigated, the role of mineralogy and size distribution on the physico-chemical behaviour of airborne particles represent evidently primary goals for emerging approaches. From this point of view Vis-NIR spectroscopy could be considered an innovative technique. It is in fact a non-destructive and a relatively low-cost technique that provide information on the optical properties of materials. It is largely applied for Earth sciences purposes (for example: Pedology, Geology and Remote sensing) and requires a “calibration” with chemical or physical parameters. The difference between this technique and already developed methods (such as Aethalometry or other optical systems) consists on the simultaneous investigation of several wavelengths of the visible and near infrared regions instead of single bands. The development of this approach, focused on the relationship between light scattering and properties of materials, can provide important knowledge on the mineralogical composition of airborne particles and on the size distribution of particles. In addition of that the development of a database, constituted by airborne materials collected in different sites, can represent the link between remote or ground observations, radiative modelling and in situ sampling. The work carried out until now is based on field campaigns performed in the Mediterranean basin where PM10 and PM2.5 samples were collected in urban, traffic, industrial and background sites. Samples were

  14. Development of a Low-Cost Particulate Matter Monitor

    Energy Technology Data Exchange (ETDEWEB)

    White, Richard M.; Apte, Michael G.; Gundel, Lara A.; Black, Justin

    2008-08-01

    We describe a small, inexpensive portable monitor for airborne particulates, composed of the following elements: a. A simple size-selective inlet (vertical elutriator) that permits only particles below a pre-set diameter to pass and enter the measurement section; b. A measurement section in which passing particles are deposited thermophoretically on a micro-fabricated resonant piezoelectric mass sensor; c. An optical characterization module co-located with the mass sensor module that directs infrared and ultraviolet beams through the deposit. The emergent optical beams are detected by a photodiode. The optical absorption of the deposit can be measured in order to characterize the deposit, and determine how much is due to diesel exhaust and/or environmental tobacco smoke; and d. A small pump that moves air through the device, which may also be operated in a passive mode. The component modules were designed by the project team, and fabricated at UCB andLBNL. Testing and validation were performed in a room-sized environmental chamber at LBNL in to which was added either environmental tobacco smoke (ETS, produced by a cigarette smoking machine) or diesel exhaust (from a conventional diesel engine). Two pilot field tests in a dwelling compared the monitor with existing aerosol instruments during exposure to infiltrated ambient air to which cigarette smoke, diesel exhaust, wood smoke and cooking fumes were added. The limit of detection (LOD) derived from statistical analysis of field data is 18 mu g m-3, at the 99percent confidence level. The monitor weighs less than 120 g and has a volume of roughly 250 cm3. Power consumption is approximately 100 milliwatts. During this study, the optical component of the device was not fully implemented and has been left for future efforts. Suggested improvements in the current prototype include use of integrated thermal correction, reconfiguration of the resonator for increased particle collection area, increased thermophoretic

  15. Particulate Matter Pollution and its Regional Transport in the Mid-Atlantic States

    Science.gov (United States)

    He, H.; Goldberg, D. L.; Hembeck, L.; Canty, T. P.; Vinciguerra, T.; Ring, A.; Salawitch, R. J.; Dickerson, R. R.

    2015-12-01

    Particulate matter (PM) causes negative effects on human health, impair visibility in scenic areas, and affect regional/global climate. PM can be formed through chemical changes of precursors, including biogenic VOCs and anthropogenic SO2 and NOx often from fossil fuel combustion. In the past decades, PM pollution in the US has improved substantially. However, some areas in the Mid-Atlantic States are still designated as 'moderate' nonattainment by EPA. We utilize datasets obtained during the NASA 2011 DISCOVER-AQ campaign to characterize the composition and distribution of summertime PM pollution in the Mid-Atlantic States. Aircraft measurements and OMI satellite retrieval of major anthropogenic precursors (NO2 and SO2) are analyzed to investigate the regional transport of PM precursors from upwind sources. We compare PM concentration and chemical composition observed during the field campaign to CMAQ simulations with the latest EPA emission inventory. Specifically, we focus on the secondary organic aerosol (SOA) chemistry in CMAQ simulations using various biogenic VOCs estimates from the MEGAN and BEIS models. Airborne PM observations including PILS measurements from DISCOVER-AQ campaign and OMI retrievals of HCHO are also used to validate and improve the representation of SOA chemistry and PM pollution within CMAQ. The comparison reveals the source and evolution of PM pollution in the Mid-Atlantic States.

  16. Estimation of Fine Particulate Matter in Taipei Using Landuse Regression and Bayesian Maximum Entropy Methods

    Directory of Open Access Journals (Sweden)

    Yi-Ming Kuo

    2011-06-01

    Full Text Available Fine airborne particulate matter (PM2.5 has adverse effects on human health. Assessing the long-term effects of PM2.5 exposure on human health and ecology is often limited by a lack of reliable PM2.5 measurements. In Taipei, PM2.5 levels were not systematically measured until August, 2005. Due to the popularity of geographic information systems (GIS, the landuse regression method has been widely used in the spatial estimation of PM concentrations. This method accounts for the potential contributing factors of the local environment, such as traffic volume. Geostatistical methods, on other hand, account for the spatiotemporal dependence among the observations of ambient pollutants. This study assesses the performance of the landuse regression model for the spatiotemporal estimation of PM2.5 in the Taipei area. Specifically, this study integrates the landuse regression model with the geostatistical approach within the framework of the Bayesian maximum entropy (BME method. The resulting epistemic framework can assimilate knowledge bases including: (a empirical-based spatial trends of PM concentration based on landuse regression, (b the spatio-temporal dependence among PM observation information, and (c site-specific PM observations. The proposed approach performs the spatiotemporal estimation of PM2.5 levels in the Taipei area (Taiwan from 2005–2007.

  17. Occupational exposure to particulate matter from three agricultural crops in California.

    Science.gov (United States)

    Moran, Rebecca E; Bennett, Deborah H; Garcia, John; Schenker, Marc B

    2014-03-01

    Agricultural work is a major contributor to California's and the nation's economy and employs a large number of workers. However, agricultural work can have numerous risks, such as exposure to elevated levels of particulate matter (PM) and other airborne pollutants with potential adverse health effects. To determine the magnitude of occupational exposures, PM levels were assessed for 89 workers from three major crops in California; almonds, melons and tomatoes. Personal samples were collected for PM2.5 and inhalable PM using personal sampling equipment. Geometric mean concentrations from personal exposure for workers in almonds (inhalable PM=4368 μg/m(3), PM2.5=122 μg/m(3), N=5), tomatoes (inhalable PM=1410 μg/m(3), PM2.5=12 μg/m(3), N=33), and melons (inhalable PM=1118 μg/m(3), PM2.5=19 μg/m(3), N=51) showed high PM exposure when working with these three crops. Large exposure differences by crop were more common than by task (i.e. harvesting, packing and weeding) among the three crops studied. This is the largest study of agricultural workers engaged in hand harvesting, a significant employer of farm labor, and relatively high levels of exposure to PM were measured. PMID:23831254

  18. Pulmonary antioxidants exert differential protective effects against urban and industrial particulate matter

    Indian Academy of Sciences (India)

    L L Greenwell; T Moreno; R J Richards

    2003-02-01

    This investigation focuses on the application of an in vitro assay in elucidating the role of lung lining fluid antioxidants in the protection against inhaled particles, and to compare the toxicities of different airborne particulate matter (PM), PM10, collections from South Wales, UK. PM collections from both urban and industrial sites caused 50% oxidative degradation of DNA in vitro at concentrations as low as 12.9 ± 2.1 g ml–1 and 4.9 ± 0.9 mg ml–1 respectively. The primary source of this bioreactivity was found to be the soluble fraction of both particle collections. The coarser PM10–2.5 fraction also showed greater oxidative bioreactivity than the PM2.5–0.1 in both cases. When repeated in the presence of a low molecular weight fraction of fresh pulmonary lavage fluid, as well as in artificial lung lining fluid (200 M urate, glutathione and ascorbate), the DNA damage was significantly reduced in all cases ( < 0.05). The antioxidants exerted a greater effect on the industrial samples than on the urban samples, and on the PM10–2.5 fractions than on the PM2.5–0.1 fractions, supporting the previous findings that respirable PM and urban samples contain fewer free radical sources than inhalable PM and industrial samples.

  19. Organic composition of aerosol particulate matter during a haze episode in Kuala Lumpur, Malaysia

    Science.gov (United States)

    Radzi Bin Abas, M.; Rahman, Noorsaadah A.; Omar, Nasr Yousef M. J.; Maah, M. Jamil; Abu Samah, Azizan; Oros, Daniel R.; Otto, Angelika; Simoneit, Bernd R. T.

    The solvent-extractable compounds of urban airborne particulate matter were analyzed to determine the distributions of homologous and biomarker tracers. Samples were collected by high-volume air filtration during the haze episode of 1997 around the University of Malaya campus near Petaling Jaya, a suburb of Kuala Lumpur, Malaysia. These results show that the samples contain n-alkanes, n-alkan-2-ones, n-alkanols, methyl n-alkanoates, n-alkyl nitriles, n-alkanals, n-alkanoic acids, levoglucosan, PAHs, and UCM as the dominant components, with minor amounts of terpenoids, glyceryl esters and sterols, all derived from natural biogenic sources (vascular plant wax), from burning of biomass, and from anthropogenic utilization of fossil fuel products (lubricating oil, vehicle emissions, etc.). Some compositional differences are observed in the samples and greater atmospheric concentrations were found for almost all organic components in the samples collected near a roadway. The results interpreted in terms of major sources are due to local build-up of organic contaminants from vehicular emissions, smoke from biomass burning, and natural background as a result of the atmospheric stability during the haze episodes. The organic components transported in from areas outside the region, assuming all smoke components are external to the city, amount to about 30% of the total organic particle burden.

  20. Study on the Adsorption Capacities for Airborne Particulates of Landscape Plants in Different Polluted Regions in Beijing (China

    Directory of Open Access Journals (Sweden)

    Wei-Kang Zhang

    2015-08-01

    Full Text Available Urban landscape plants are an important component of the urban ecosystem, playing a significant role in the adsorption of airborne particulates and air purification. In this study, six common landscape plants in Beijing were chosen as research subjects, and the adsorption capacities for each different plant leaf and the effects of the leaf structures for the adsorption capacities for particulates were determined. Preliminary results show that needle-leaved tree species adsorbed more airborne particulates than broad-leaved tree species for the same leaf area. Pinus tabuliformis exhibits the highest adsorption capacity, at 3.89 ± 0.026 μg·cm−2, almost two times as much as that of Populus tomentosa (2.00 ± 0.118 μg·cm−2. The adsorption capacities for PM10 of the same tree species leaves, in different polluted regions had significant differences, and the adsorption capacities for PM10 of the tree species leaf beside the Fifth Ring Road were higher than those of the tree species leaves in the Botanical Garden, although the adsorption capacities for PM2.5 of the same tree species in different polluted regions had no significant differences. By determining the soluble ion concentrations of the airborne particulates in two regions, it is suggested that the soluble ion concentrations of PM10 in the atmosphere in the Botanical Garden and beside the Fifth Ring Road have significant differences, while those of PM2.5 in the atmosphere had no significant differences. In different polluted regions there are significant adaptive changes to the leaf structures, and when compared with slightly polluted region, in the seriously polluted region the epidermis cells of the plant leaves shrinked, the surface textures of the leaves became rougher, and the stomas’ frequency and the pubescence length increased. Even though the plant leaves exposed to the seriously polluted region changed significantly, these plants can still grow normally and healthily.

  1. EDITORIAL: Global impacts of particulate matter air pollution

    Science.gov (United States)

    Bell, Michelle L.; Holloway, Tracey

    2007-10-01

    Even in well-studied, data-rich regions of the United States and Europe, understanding ambient particulate matter (PM, aka aerosols) remains a challenge. Atmospheric aerosols exhibit chemical heterogeneity, spatial and seasonal variability, and result in a wide range of health impacts (mortality, respiratory disease, cardiovascular disease, eye irritation, and others). In addition, aerosols play an important role in climate, exerting warming effects (black carbon), cooling effects (sulfate and organic carbon), and affecting precipitation and cloud cover. Characterizing the emission sources, concentrations, transport patterns, and impacts is particularly difficult in developing countries, where data are scarce, emissions are high, and health impacts are often severe. We are pleased to present this focus issue of Environmental Research Letters (ERL) devoted to the study of PM on an international scale. Our authors are leading researchers who each bring cross-cutting analysis to this critical health and environmental issue. Collectively, the research presented here contributes to our understanding of PM sources, processes, and impacts, while highlighting key steps forward. In this issue, Zhang et al examine the size distribution and composition of emitted anthropogenic PM in China, finding that the characteristics of primary aerosol emissions differ significantly between industrialized and developing regions in China. Concentration measurements of PM, like detailed emissions inventories, are rare in the developing world. van Vliet and Kinney analyze fine particles in Nairobi based on monitoring data for PM2.5 and black carbon. Using measurements from multiple locations of differing proximity to roadways, the authors evaluate traffic-source contributions to PM exposure. The impact of emission location and exposed population are also evaluated by Liu and Mauzerall, but on a continent-to-continent scale. The authors quantify the connection between SO2 emissions and

  2. 77 FR 50378 - Approval and Promulgation of Implementation Plans; Tennessee; Knoxville; Fine Particulate Matter...

    Science.gov (United States)

    2012-08-21

    ... Particulate Matter 2002 Base Year Emissions Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Direct final rule. SUMMARY: EPA is taking direct final action to approve the 1997 annual fine particulate... disclosure is restricted by statute. Certain other material, such as copyrighted material, is not placed...

  3. 78 FR 78315 - Revision to the Idaho State Implementation Plan; Approval of Fine Particulate Matter Control...

    Science.gov (United States)

    2013-12-26

    ... AGENCY 40 CFR Part 52 Revision to the Idaho State Implementation Plan; Approval of Fine Particulate... particulate matter (PM 2.5 ) nonattainment area (Logan UT-ID). The EPA is proposing a limited approval of PM 2..., the disclosure of which is restricted by statute. Certain other material, such as copyrighted...

  4. Particulate matter regulation for two-stroke two wheelers: necessity or haphazard legislation?

    NARCIS (Netherlands)

    Rijkeboer, R.C.; Bremmers, D.A.C.M.; Samaras, Z.; Ntziachristos, L.

    2005-01-01

    Although interest in particulate emissions has increased considerably during recent years, the subject of particulate matter (PM) emissions from small two-stroke engines used in road vehicles is still largely unexplored. This paper presents the results of an investigation, which examined the typical

  5. On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Matt; Matthews, Ron

    2011-09-30

    The goal of the research was to refine and complete development of an on-board particulate matter (PM) sensor for diesel, DISI, and HCCI engines, bringing it to a point where it could be commercialized and marketed.

  6. AMBIENT COARSE PARTICULATE MATTER ASSOCIATED WITH HEMATOLOGIC FACTORS IN ADULT ASTHMATICS

    Science.gov (United States)

    Introduction: The elderly and those with cardiovascular disease are susceptible to particulate matter (PM) exposures. Asthmatics are thought to be primarily affected by PM via airway inflammation. We investigated whether factors in blood hemostasis change in response to fluctuat...

  7. AMBIENT PARTICULATE MATTER STIMULATES OXIDATIVE STRESS IN BRAIN MICROGLIA AND DAMAGES NEURONS IN CULTURE.

    Science.gov (United States)

    Ambient particulate matter (PM) damages biological targets through oxidative stress (OS) pathways. Several reports indicate that the brain is one of those targets. Since microglia (brain macrophage) are critical to OS-mediated neurodegeneration, their response to concentrated amb...

  8. Particulate matter, its elemental carbon fraction, and very early preterm birth

    Science.gov (United States)

    Background: Particulate matter (PM) has been variably associated with preterm birth, with potentially increased vulnerability during weeks 20-27 of gestation (extremely preterm birth (EPTB)), but the role of PM components have been less studied. Objectives: To estimate associati...

  9. Estimating particulate matter health impact related to the combustion of different fossil fuels

    International Nuclear Information System (INIS)

    Exposure to particulate matter (PM) in ambient air leads to adverse health effects. To design cost effective mitigation strategies, a thorough understanding of the sources of particulate matter is crucial. We have successfully generated a web map service that allows to access information on fuel dependent health effects due to particulate matter. For this purpose, the LOTOS-EUROS air pollution model was equipped with a source apportionment module that tracks the origin of the modelled particulate matter distributions thoughout a simulation. Combined with a dedicated emission inventory PM2.5 maps specified by fuel type were generated for 2007-2009. These maps were combined with a health impact calculation to estimate Lost of Life Expectancy for each fuel categories. An user friendly web client was generated to access the results and use the web mapping service in an easy manner. (orig.)

  10. Source apportionment of atmospheric fine particulate matter collected at the Seney National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The trends in secondary organic aerosol at a remote location are studied using atmospheric fine particulate matter samples collected at Seney National Wildlife...

  11. Adjustment of the flue gas path in small combustion appliances with regard to particulate matter reduction

    Science.gov (United States)

    Sulovcová, Katarína; Jandačka, Jozef; Nosek, Radovan

    2014-08-01

    Concentration of solid particles in ambient atmosphere is increasing in many countries nowadays. Particulate matter pollution in higher concentration has harmful impact on human and animal health. Source of particulate matter are not only industry and traffic. Small heat sources with biomass combustion, especially during winter heating season, are also significant producer of particulate matter emission. There is a huge importance to decrease quantities of solid particles which are getting into the atmosphere in every region of their production in order to decrease environmental pollution and improve air quality. The ability of flue gas emission elimination can influence future using of biomass combustion. Therefore effective and affordable solutions are searching for. The paper deals with the reduction of particulate matter in small heat source with biomass combustion by modification of geometric parameters in flue gas path.

  12. SPONTANEOUSLY HYPERTENSIVE RATS ARE SUSCEPTIBLE TO MICROVASCULAR THROMBOSIS IN RESPONSE TO PARTICULATE MATTER EXPOSURE

    Science.gov (United States)

    SPONTANEOUSLY HYPERTENSIVE RATS ARE SUSCEPTIBLE TO MICROVASCULAR THROMBOSIS IN RESPONSE TO PARTICULATE MATTER EXPOSURE.PS Gilmour, MC Schladweiler, AD Ledbetter, and UP Kodavanti. US EPA, ORD, NHEERL, ETD, PTB, Research Triangle Park, NC USA. Environmental particles (PM...

  13. A possible link between particulate matter air pollution and type 2 diabetes

    OpenAIRE

    Volders, Evelien

    2008-01-01

    Particulate matter (PM) air pollution is most commonly referred to as PM10 and can be subdivided into coarse particles, fine particles and ultrafine particles. Sources of PM air pollution include combustion from car engines and industrial processes. Expos

  14. Ambient particulate matter affects cardiac recovery in a Langendorff ischemia model.

    NARCIS (Netherlands)

    Bagate, Karim; Meiring, James J; Gerlofs-Nijland, Miriam E; Cassee, Flemming R; Wiegand, Herbert; Osornio-Vargas, Alvaro; Borm, Paul J A

    2006-01-01

    Exposure to ambient particulate matter (PM) is associated with increased mortality and morbidity among subjects with cardiovascular impairment. We hypothesized that exposure of spontaneously hypertensive (SH) rats to PM impairs the recovery of cardiovascular performance after coronary occlusion and

  15. Particulate matter inhalation exacerbates cardiopulmonary injury in a rat model of isoproterenol-induced cardiomyopathy

    Science.gov (United States)

    Ambient particulate matter (PM) exposure is linked to cardiovascular events and death, especially among individuals with heart disease. A model of toxic cardiomyopathy was developed in Spontaneously Hypertensive Heart Failure (SHHF) rats to explore potential mechanisms. Rats were...

  16. Sub-micrometre particulate matter is primarily in liquid form over Amazon rainforest

    Science.gov (United States)

    Bateman, Adam P.; Gong, Zhaoheng; Liu, Pengfei; Sato, Bruno; Cirino, Glauber; Zhang, Yue; Artaxo, Paulo; Bertram, Allan K.; Manzi, Antonio O.; Rizzo, Luciana V.; Souza, Rodrigo A. F.; Zaveri, Rahul A.; Martin, Scot T.

    2016-01-01

    Atmospheric particulate matter influences the Earth’s energy balance directly, by altering or absorbing solar radiation, and indirectly by influencing cloud formation. Whether organic particulate matter exists in a liquid, semi-solid, or solid state can affect particle growth and reactivity, and hence particle number, size and composition. The properties and abundance of particles, in turn, influence their direct and indirect effects on energy balance. Non-liquid particulate matter was identified over a boreal forest of Northern Europe, but laboratory studies suggest that, at higher relative humidity levels, particles can be liquid. Here we measure the physical state of particulate matter with diameters smaller than 1 μm over the tropical rainforest of central Amazonia in 2013. A real-time particle rebound technique shows that the particulate matter was liquid for relative humidity greater than 80% for temperatures between 296 and 300 K during both the wet and dry seasons. Combining these findings with the distributions of relative humidity and temperature in Amazonia, we conclude that near-surface sub-micrometre particulate matter in Amazonia is liquid most of the time during both the wet and the dry seasons.

  17. Cytotoxicity and genotoxicity of urban particulate matter in mammalian cells.

    Science.gov (United States)

    Dumax-Vorzet, Audrey F; Tate, M; Walmsley, Richard; Elder, Rhod H; Povey, Andrew C

    2015-09-01

    Ambient air particulate matter (PM)-associated reactive oxygen species (ROS) have been linked to a variety of altered cellular outcomes. In this study, three different PM samples from diesel exhaust particles (DEPs), urban dust standard reference material SRM1649a and air collected in Manchester have been tested for their ability to oxidise DNA in a cell-free assay, to increase intracellular ROS levels and to induce CYP1A1 gene expression in mammalian cells. In addition, the cytotoxicity and genotoxicity of PM were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and alkaline comet assay, respectively. All PM samples catalysed the Fenton reaction in a cell-free assay, but only DEP resulted in the generation of ROS as measured by dichlorodihydrofluorescein diacetate oxidation in mammalian cells. However, there was no evidence that increased ROS was a consequence of polycyclic aromatic hydrocarbon metabolism via CYP1A1 induction as urban dust, the Manchester dust samples but not DEP-induced CYP1A1 expression. Urban dust was more cytotoxic in murine embryonic fibroblasts (MEFs) than the other PM samples and also induced expression of GADD45a in the GreenScreen Human Cell assay without S9 activation suggesting the presence of a direct-acting genotoxicant. Urban dust and DEP produced comparable levels of DNA damage, as assessed by the alkaline comet assay, in MEFs at higher levels than those induced by Manchester PM. In conclusion, results from the cytotoxic and genotoxic assays are not consistent with ROS production being the sole determinant of PM-induced toxicity. This suggests that the organic component can contribute significantly to this toxicity and that further work is required to better characterise the extent to which ROS and organic components contribute to PM-induced toxicity.

  18. Small things make a big difference: particulate matter and exercise.

    Science.gov (United States)

    Cutrufello, Paul T; Smoliga, James M; Rundell, Kenneth W

    2012-12-01

    The increased risk of morbidity and mortality among adults and children with pre-existing cardiovascular or respiratory illness from emission-derived particulate matter (PM) is well documented. However, the detrimental effects of PM inhalation on the exercising, healthy population is still in question. This review will focus on the acute and chronic responses to PM inhalation during exercise and how PM exposure influences exercise performance. The smaller ultrafine PM (effects of PM inhalation, especially during exercise. This population, including the competitive athlete, is susceptible to pulmonary inflammation, decreased lung function (both acute and chronic in nature), the increased risk of asthma, vascular endothelial dysfunction, mild elevations in pulmonary artery pressure and diminished exercise performance. PM exposure is usually associated with vehicular traffic, but other sources of PM, including small engines from lawn and garden equipment, cigarette smoke, wood smoke and cooking, may also impair health and performance. The physiological effects of PM are dependent on the source of PM, various environmental factors, physical attributes and nature of exercise. There are a number of measures an athlete can take to reduce exposure to PM, as well as the deleterious effects that result from the inevitable exposure to PM. Considering the acute and chronic physiological responses to PM inhalation, individuals living and exercising in urban areas in close proximity to major roadways should consider ambient air pollution levels (in particular, PM and ozone) prior to engaging in vigorous exercise, and those exposed to PM through other sources may need to make lifestyle alterations to avoid the deleterious effects of PM inhalation. Although it is clear that PM exposure is detrimental to healthy individuals engaging in exercise, further research is necessary to better understand the role of PM on athlete health and performance, as well as measures that can

  19. Particulate Matter Fluxes in Cuenca Alfonso During 2002-2005

    Science.gov (United States)

    Silverberg, N.; Aguirre-Bahena, F.

    2007-05-01

    Time-series sediment trap data were collected between 2002 and 2005 from Cuenca Alfonso, a 400m-deep basin in Bahía de La Paz, a large embayment on the southwestern coast of the Gulf of California. Despite the lack of significant land drainage in this semi-dessert environment, terrigenous material, probably wind-born, dominates the sinking particulate matter. Peak lithogenic fluxes appear to be associated with higher frequencies of wind gusts stronger than 5 ms-1. Total mass flux fluctuated from week to week, and between years, averaging 277 gm-2y-1, essentially the same as radiometrically-determined accumulation rates of about 0.4 mmy-1 in cores of the underlying sediment. In 2003, the passage of 2 hurricanes induced high winds and flash flooding and the total mass flux offshore remained very high for two weeks following each event. This unusual sedimentation was equivalent to that of a full year without hurricanes and such events may account for some of the laminations found in cores. During most of 2005, on the other hand, sedimentation rates were lower than average. Although fluxes of all components tended to be highest during late fall and early winter, biogenic fluxes displayed peaks during all seasons of the year in Cuenca Alfonso. This is in contrast to the strong seasonal alternation between terrigenous sedimentation and diatom blooms observed in Guaymas Basin in the central Gulf. Furthermore, calcium carbonate dominated over biogenic silica within the marine component. Average annual fluxes of CaCO3, biogenic silica and POC were 52.5, 32.5 and 13.9 gm-2y-1, respectively.

  20. Emissions of particulate matter from animal houses in the Netherlands

    Science.gov (United States)

    Winkel, Albert; Mosquera, Julio; Groot Koerkamp, Peter W. G.; Ogink, Nico W. M.; Aarnink, André J. A.

    2015-06-01

    In the Netherlands, emissions from animal houses represent a major source of ambient particulate matter (PM). The objective of the present paper was to provide accurate and up to date concentrations and emission rates of PM10 and PM2.5 for commonly used animal housing systems, under representative inside and outside climate conditions and ventilation rates. We set up a national survey which covered 13 housing systems for poultry, pigs, and dairy cattle, and included 36 farms. In total, 202 24-h measurements were carried out, which included concentrations of inhalable PM, PM10, PM2.5, and CO2, ventilation rate, temperature, and relative humidity. On an animal basis, geometric mean emission rates of PM10 ranged from 2.2 to 12.0 mg h-1 in poultry and from 7.3 to 22.5 mg h-1 in pigs. The mean PM10 emission rate in dairy cattle was 8.5 mg h-1. Geometric mean emission rates of PM2.5 ranged from 0.11 to 2.41 mg h-1 in poultry and from 0.21 to 1.56 mg h-1 in pigs. The mean PM2.5 emission rate in dairy cattle was 1.65 mg h-1. Emissions are also reported per Livestock Unit and Heat Production Unit. PM emission rates increased exponentially with increasing age in broilers and turkeys and increased linearly with increasing age in weaners and fatteners. In laying hens, broiler breeders, sows, and dairy cattle, emission levels were variable throughout the year.

  1. Particulate matter assessment of a wetland in Beijing.

    Science.gov (United States)

    Qiu, Dongdong; Liu, Jiakai; Zhu, Lijuan; Mo, Lichun; Zhang, Zhenming

    2015-10-01

    To increase the knowledge on the particulate matter of a wetland in Beijing, an experimental study on the concentration and composition of PM10 and PM2.5 was implemented in Beijing Olympic Forest Park from 2013 to 2014. This study analyzed the meteorological factors and deposition fluxes at different heights and in different periods in the wetlands. The results showed that the mean mass concentrations of PM10 and PM2.5 were the highest at 06:00-09:00 and the lowest at 15:00-18:00. And the annual concentration of PM10 and PM2.5 in the wetland followed the order of dry period (winter)>normal water period (spring and autumn)>wet period (summer), with the concentration in the dry period significantly higher than that in the normal water and wet periods. The chemical composition of PM2.5 in the wetlands included NH4(+), K(+), Na(+), Mg(2+), SO4(2-), NO3(-), and Cl(-), which respectively accounted for 12.7%, 1.0%, 0.8%, 0.7%, 46.6%, 33.2%, and 5.1% of the average annual composition. The concentration of PM10 and PM2.5 in the wetlands had a significant positive correlation with relative humidity, a negative correlation with wind speed, and an insignificant negative correlation with temperature and radiation. The daily average dry deposition amount of PM10 in the different periods followed the order of dry period>normal water period>wet period, and the daily average dry deposition amount of PM2.5 in the different periods was dry period>wet period>normal water period.

  2. Experimental examination of effectiveness of vegetation as bio-filter of particulate matters in the urban environment.

    Science.gov (United States)

    Chen, Lixin; Liu, Chenming; Zou, Rui; Yang, Mao; Zhang, Zhiqiang

    2016-01-01

    Studies focused on pollutants deposition on vegetation surfaces or aerodynamics of vegetation space conflict in whether vegetation planting can effectively reduce airborne particulate matter (PM) pollution. To achieve a more comprehensive understanding of the conflict, we conducted experiments during 2013 and 2014 in Beijing, China to evaluate the importance of vegetation species, planting configurations and wind in influencing PM concentration at urban and street scales. Results showed that wind field prevailed over the purification function by vegetation at urban scale. All six examined planting configurations reduced total suspended particle along horizontal but not vertical direction. Shrubs and trees-grass configurations performed most effectively for horizontal PM2.5 reduction, but adversely for vertical attenuation. Trapping capacity of PMs was species-specific, but species selection criteria could hardly be generalized for practical use. Therefore, design of planting configuration is practically more effective than tree species selection in attenuating the ambient PM concentrations in urban settings.

  3. Immunity-Related Protein Expression and Pathological Lung Damage in Mice Poststimulation with Ambient Particulate Matter from Live Bird Markets.

    Science.gov (United States)

    Meng, Kai; Wu, Bo; Gao, Jing; Cai, Yumei; Yao, Meiling; Wei, Liangmeng; Chai, Tongjie

    2016-01-01

    The objective of this study was to obtain insight into the adverse health effects of airborne particulate matter (PM) collected from live bird markets and to determine whether biological material in PM accounts for immune-related inflammatory response. Mice were exposed to a single or repeated dose of PM, after which the expression of toll-like receptors (TLRs), cytokines, and chemokines in the lungs of infected mice were examined by enzyme-linked immunosorbent assay and histopathological analysis. Results after single and repeated PM stimulation with [Formula: see text] indicated that TLR2 and TLR4 played a dominant role in the inflammatory responses of the lung. Further analysis demonstrated that the expression levels of IL-1β, TNF-α, IFN-γ, IL-8, IP-10, and MCP-1 increased significantly, which could eventually contribute to lung injury. Moreover, biological components in PM were critical in mediating immune-related inflammatory responses and should therefore not be overlooked.

  4. Anti-Inflammatory Effects of Pomegranate Peel Extract in THP-1 Cells Exposed to Particulate Matter PM10

    Science.gov (United States)

    Park, Soojin; Seok, Jin Kyung; Kwak, Jun Yup; Suh, Hwa-Jin; Kim, Young Mi; Boo, Yong Chool

    2016-01-01

    Epidemiological and experimental evidence support health risks associated with the exposure to airborne particulate matter with a diameter of pomegranate peel extract (PPE) on THP-1 monocytic cells exposed to PM10. PM10 induced cytotoxicity and the production of ROS. It also increased the expression and secretion of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and monocyte chemoattractant protein-1 (MCP-1), and cell adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). PPE at 10–100 μg mL−1 attenuated the production of ROS and the expression of TNF-α, IL-1β, MCP-1, and ICAM-1, but not VCAM-1, in THP-1 cells stimulated by PM10 (100 μg mL−1). PPE also attenuated the adhesion of PM10-stimulated THP-1 cells to EA.hy926 endothelial cells. PPE constituents, punicalagin and ellagic acid, attenuated PM10-induced monocyte adhesion to endothelial cells, and punicalagin was less cytotoxic compared to ellagic acid. The present study suggests that PPE and punicalagin may be useful in alleviating inflammatory reactions due to particulate matter. PMID:27247608

  5. Anti-Inflammatory Effects of Pomegranate Peel Extract in THP-1 Cells Exposed to Particulate Matter PM10

    Directory of Open Access Journals (Sweden)

    Soojin Park

    2016-01-01

    Full Text Available Epidemiological and experimental evidence support health risks associated with the exposure to airborne particulate matter with a diameter of <10 μM (PM10. PM10 stimulates the production of reactive oxygen species (ROS and inflammatory mediators. Thus, we assumed that natural antioxidants might provide health benefits attenuating hazardous effects of PM10. In the present study, we examined the effects of pomegranate peel extract (PPE on THP-1 monocytic cells exposed to PM10. PM10 induced cytotoxicity and the production of ROS. It also increased the expression and secretion of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, and monocyte chemoattractant protein-1 (MCP-1, and cell adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1. PPE at 10–100 μg mL−1 attenuated the production of ROS and the expression of TNF-α, IL-1β, MCP-1, and ICAM-1, but not VCAM-1, in THP-1 cells stimulated by PM10 (100 μg mL−1. PPE also attenuated the adhesion of PM10-stimulated THP-1 cells to EA.hy926 endothelial cells. PPE constituents, punicalagin and ellagic acid, attenuated PM10-induced monocyte adhesion to endothelial cells, and punicalagin was less cytotoxic compared to ellagic acid. The present study suggests that PPE and punicalagin may be useful in alleviating inflammatory reactions due to particulate matter.

  6. Interim Particulate Matter Test Method for the Determination of Particulate Matter from Gas Turbine Engines, SERDP Project WP-1538 Final Report

    Science.gov (United States)

    Under Project No. WP-1538 of the Strategic Environmental Research and Development Program, the U. S. Air Force's Arnold Engineering Development Center (AEDC) is developing an interim test method for non-volatile particulate matter (PM) specifically for the Joint Strike Fighter (J...

  7. [Testing of Concentration and Characteristics of Particulate Matters Emitted from Stationary Combustion Sources in Beijing].

    Science.gov (United States)

    Hu, Yue-qi; Wu, Xiao-dong; Wang, Chen; Liang, Yun-ping; Ma, Zhao-hui

    2016-05-15

    A self-built monitoring sampling system on particulate matters and water soluble ions emitted from stationary combustion sources and a size separated sampling system on particulate matters based on FPS4000 and ELPI + were applied to test particulate matters in fumes of typical stationary combustion sources in Beijing. The results showed that the maximum concentration of total particulate matters in fumes of stationary combustion sources in Beijing was 83.68 mg · m⁻³ in standard smoke oxygen content and the minimum was 0.12 mg · m⁻³. And particle number concentration was in the 10⁴-10⁶ cm⁻³ number of grade. Both mass and number concentration ranking order of particulate matters emitted from stationary combustion sources in Beijing was: heating gas fired boilers power plant coal fired boilers coal fired boilers. And two or three peaks existed under 1 µm of particulate size for both number size distribution and mass size distribution. The number concentration for PM₂.₅ accounted for over 99.8% of that for PM₁₀ and that for PM₀.₁ accounted for over 83% of that for PM₂.₅. But the proportions of PM₀.₁, and PM₂.₅ in PM₁₀ were significantly lower in quality analysis,the proportion of PM₂.₅ in PM₁₀ was about 82%, and that of PM₀.₁ in PM₂.₅ was about 27%-33%. PMID:27506016

  8. Fractionation of airborne particulate-bound elements in haze-fog episode and associated health risks in a megacity of southeast China.

    Science.gov (United States)

    Li, Huiming; Wang, Qin'geng; Shao, Min; Wang, Jinhua; Wang, Cheng; Sun, Yixuan; Qian, Xin; Wu, Hongfei; Yang, Meng; Li, Fengying

    2016-01-01

    Haze caused by high particulate matter loadings is an important environmental issue. PM2.5 was collected in Nanjing, China, during a severe haze-fog event and clear periods. The particulate-bound elements were chemically fractionated using sequential extractions. The average PM2.5 concentration was 3.4 times higher during haze-fog (96-518 μg/m(3)) than non-haze fog periods (49-142 μg/m(3)). Nearly all elements showed significantly higher concentrations during haze-fog than non-haze fog periods. Zn, As, Pb, Cd, Mo and Cu were considered to have higher bioavailability and enrichment degree in the atmosphere. Highly bioavailable fractions of elements were associated with high temperatures. The integrated carcinogenic risk for two possible scenarios to individuals exposed to metals was higher than the accepted criterion of 10(-6), whereas noncarcinogenic risk was lower than the safe level of 1. Residents of a city burdened with haze will incur health risks caused by exposure to airborne metals.

  9. Vehicular emissions of organic particulate matter in Sao Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    B. S. Oyama

    2015-12-01

    Full Text Available Vehicular emissions have a strong impact on air pollution in big cities. Many factors affect these emissions: type of vehicle, type of fuel, cruising velocity, and brake use. This study focused on emissions of organic compounds by Light (LDV and Heavy (HDV duty vehicle exhaust. The study was performed in the city of Sao Paulo, Brazil, where vehicles run on different fuels: gasoline with 25 % ethanol (called gasohol, hydrated ethanol, and diesel (with 5 % of biodiesel. The vehicular emissions are an important source of pollutants and the principal contribution to fine particulate matter (smaller than 2.5 μm, PM2.5 in Sao Paulo. The experiments were performed in two tunnels: Janio Quadros (TJQ where 99 % of the vehicles are LDV, and Rodoanel Mario Covas (TRA where up to 30 % of the fleet was HDV. The PM2.5 samples were collected on quartz filters in May and July 2011 at TJQ and TRA, respectively, using two samplers operating in parallel. The samples were analyzed by Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometry (TD-PTR-MS, and by Thermal-Optical Transmittance (TOT. The organic aerosol (OA desorbed at TD-PTR-MS represented around 30 % of the OA estimated by the TOT method, mainly due to the different desorption temperatures, with a maximum of 870 and 350 °C for TOT and TD-PTR-MS, respectively. Average emission factors (EF organic aerosol (OA and organic carbon (OC were calculated for HDV and LDV fleet. We found that HDV emitted more OA and OC than LDV, and that OC emissions represented 36 and 43 % of total PM2.5 emissions from LDV and HDV, respectively. More than 700 ions were identified by TD-PTR-MS and the EF profiles obtained from HDV and LDV exhibited distinct features. Nitrogen-containing compounds measured in the desorbed material up to 350 °C contributed around 20 % to the EF values for both types of vehicles, possibly associated with incomplete fuel burning. Additionally, 70 % of the organic compounds measured from the

  10. Vehicular emissions of organic particulate matter in Sao Paulo, Brazil

    Science.gov (United States)

    Oyama, B. S.; Andrade, M. F.; Herckes, P.; Dusek, U.; Röckmann, T.; Holzinger, R.

    2015-12-01

    Vehicular emissions have a strong impact on air pollution in big cities. Many factors affect these emissions: type of vehicle, type of fuel, cruising velocity, and brake use. This study focused on emissions of organic compounds by Light (LDV) and Heavy (HDV) duty vehicle exhaust. The study was performed in the city of Sao Paulo, Brazil, where vehicles run on different fuels: gasoline with 25 % ethanol (called gasohol), hydrated ethanol, and diesel (with 5 % of biodiesel). The vehicular emissions are an important source of pollutants and the principal contribution to fine particulate matter (smaller than 2.5 μm, PM2.5) in Sao Paulo. The experiments were performed in two tunnels: Janio Quadros (TJQ) where 99 % of the vehicles are LDV, and Rodoanel Mario Covas (TRA) where up to 30 % of the fleet was HDV. The PM2.5 samples were collected on quartz filters in May and July 2011 at TJQ and TRA, respectively, using two samplers operating in parallel. The samples were analyzed by Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometry (TD-PTR-MS), and by Thermal-Optical Transmittance (TOT). The organic aerosol (OA) desorbed at TD-PTR-MS represented around 30 % of the OA estimated by the TOT method, mainly due to the different desorption temperatures, with a maximum of 870 and 350 °C for TOT and TD-PTR-MS, respectively. Average emission factors (EF) organic aerosol (OA) and organic carbon (OC) were calculated for HDV and LDV fleet. We found that HDV emitted more OA and OC than LDV, and that OC emissions represented 36 and 43 % of total PM2.5 emissions from LDV and HDV, respectively. More than 700 ions were identified by TD-PTR-MS and the EF profiles obtained from HDV and LDV exhibited distinct features. Nitrogen-containing compounds measured in the desorbed material up to 350 °C contributed around 20 % to the EF values for both types of vehicles, possibly associated with incomplete fuel burning. Additionally, 70 % of the organic compounds measured from the aerosol

  11. Study of glyphosate transport through suspended particulate matter

    Science.gov (United States)

    Amiot, Audrey; Landry, David; Jadas-Hécart, Alain; La Jeunesse, Isabelle; Sourice, Stéphane; Ballouche, Aziz

    2014-05-01

    complete (95% in 2 min). (ii) Kd obtained on the erodible fraction are two times higher than on 2 mm sieved soils. (iii) Desorption showed that glyphosate is desorbed from the erodible fraction at 40% after 25 desorptions. The aim of this study was to show the potential transport of glyphosate through suspended particulate matter. The adsorption on the erodible fraction argued to a significant transport potential of glyphosate on this fraction. The desorption of glyphosate from the erodible water fraction have revealed that the adsorption of glyphosate is reversible but it is much slower. These results demonstrate that glyphosate may be stored on the erodible fraction and be transported by these fractions. Keywords: Adsorption, Desorption, Glyphosate, Suspended Solids, Erosion.

  12. Determination of the Turkish Primary Students' Views about the Particulate Nature of Matter

    Science.gov (United States)

    Ozmen, Haluk; Kenan, Osman

    2007-01-01

    This study was conducted to determine 4th, 5th, and 6th grade Turkish primary students' conceptions about the particulate nature of matter via a test. The test consists of 36 items related to the changes of microscopic properties of solid, liquid and gas matters during phase changing, cooling, heating and pressing of them. The sample of the study…

  13. Cardiovascular and lung function in relation to outdoor and indoor exposure to fine and ultrafine particulate matter in middle-aged subjects

    DEFF Research Database (Denmark)

    Karottki, Dorina Gabriela; Bekö, Gabriel; Clausen, Geo;

    2014-01-01

    This cross-sectional study investigated the relationship between exposure to airborne indoor and outdoor particulate matter (PM) and cardiovascular and respiratory health in a population-based sample of 58 residences in Copenhagen, Denmark. Over a 2-day period indoor particle number concentrations...... period, we measured microvascular function (MVF) and lung function and collected blood samples for biomarkers related to inflammation, in 78 middle-aged residents. Bacteria, endotoxin and fungi were analyzed in material from electrostatic dust fall collectors placed in the residences for 4 weeks. Data...

  14. Current state of particulate matter research and management in Serbia (Introductory paper

    Directory of Open Access Journals (Sweden)

    Milena Jovašević-Stojanović

    2010-09-01

    Full Text Available Particulate matter is the air pollutant that currently receives most attention from the atmospheric research community, the legislative authorities and the general public. Limiting particulate matter in the atmosphere which will result in significant benefits for human health, with associated positive economic consequences. Successful management of particulate matter requires scientific knowledge about particulate matter “from cradle to grave”, covering sources of particles, processes that govern their formation, composition, dispersion and fate in the atmosphere, as well as knowledge about human exposure and associated health and well being. Such knowledge allows to design and perform effective and efficient abatement measures and monitoring. This paper provides an introduction to the research and monitoring regarding particulate matter in Serbia. The contributions were first partly presented at the 2nd international workshop of the WeBIOPATR “Outdoor concentration, size distribution and composition of respirable particles in WB urban area” project in September 2009. This information provides context to the contributions in this number, and was part of the rationale of the project WeBIOPATR.

  15. Enhanced rates of particulate organic matter remineralization by microzooplankton are diminished by added ballast minerals

    OpenAIRE

    Moigne, F. A. C.; Gallinari, M.; Laurenceau, E.; Rocha, C L

    2013-01-01

    International audience; To examine the potentially competing influences of microzooplankton and calcite mineral ballast on organic matter remineralization, we incubated diatoms in darkness in rolling tanks with and without added calcite minerals (coccoliths) and microzooplankton (rotifers). Concentrations of particulate organic matter (POM in suspension or in aggregates), of dissolved organic matter (DOM), and of dissolved inorganic nutrients were monitored over 8 days. The presence of rotife...

  16. Seasonal variations and source estimation of saccharides in atmospheric particulate matter in Beijing, China.

    Science.gov (United States)

    Liang, Linlin; Engling, Guenter; Du, Zhenyu; Cheng, Yuan; Duan, Fengkui; Liu, Xuyan; He, Kebin

    2016-05-01

    Saccharides are important constituents of atmospheric particulate matter (PM). In order to better understand the sources and seasonal variations of saccharides in aerosols in Beijing, China, saccharide composition was measured in ambient PM samples collected at an urban site in Beijing. The highest concentrations of total saccharides in Beijing were observed in autumn, while an episode with abnormal high total saccharide levels was observed from 15 to 23 June, 2011, due to extensive agricultural residue burning in northern China during the wheat harvest season. Compared to the other two categories of saccharides, sugars and sugar alcohols, anhydrosugars were the predominant saccharide group, indicating that biomass burning contributions to Beijing urban aerosol were significant. Ambient sugar and sugar alcohol levels in summer and autumn were higher than those in spring and winter, while they were more abundant in PM2.5 during winter time. Levoglucosan was the most abundant saccharide compound in both PM2.5 and PM10, the annual contributions of which to total measured saccharides in PM2.5 and PM10 were 61.5% and 54.1%, respectively. To further investigate the sources of the saccharides in ambient aerosols in Beijing, the PM10 datasets were subjected to positive matrix factorization (PMF) analysis. Based on the objective function to be minimized and the interpretable factors identified by PMF, six factors appeared to be optimal as to the probable origin of saccharides in the atmosphere in Beijing, including biomass burning, soil or dust, isoprene SOA and the direct release of airborne fungal spores and pollen. PMID:26921589

  17. The UK particulate matter air pollution episode of March–April 2014: more than Saharan dust

    International Nuclear Information System (INIS)

    A period of elevated surface concentrations of airborne particulate matter (PM) in the UK in spring 2014 was widely associated in the UK media with a Saharan dust plume. This might have led to over-emphasis on a natural phenomenon and consequently to a missed opportunity to inform the public and provide robust evidence for policy-makers about the observed characteristics and causes of this pollution event. In this work, the EMEP4UK regional atmospheric chemistry transport model (ACTM) was used in conjunction with speciated PM measurements to investigate the sources and long-range transport (including vertical) processes contributing to the chemical components of the elevated surface PM. It is shown that the elevated PM during this period was mainly driven by ammonium nitrate, much of which was derived from emissions outside the UK. In the early part of the episode, Saharan dust remained aloft above the UK; we show that a significant contribution of Saharan dust at surface level was restricted only to the latter part of the elevated PM period and to a relatively small geographic area in the southern part of the UK. The analyses presented in this paper illustrate the capability of advanced ACTMs, corroborated with chemically-speciated measurements, to identify the underlying causes of complex PM air pollution episodes. Specifically, the analyses highlight the substantial contribution of secondary inorganic ammonium nitrate PM, with agricultural ammonia emissions in continental Europe presenting a major driver. The findings suggest that more emphasis on reducing emissions in Europe would have marked benefits in reducing episodic PM2.5 concentrations in the UK. (letter)

  18. The UK particulate matter air pollution episode of March–April 2014: more than Saharan dust

    Science.gov (United States)

    Vieno, M.; Heal, M. R.; Twigg, M. M.; MacKenzie, I. A.; Braban, C. F.; Lingard, J. J. N.; Ritchie, S.; Beck, R. C.; Móring, A.; Ots, R.; Di Marco, C. F.; Nemitz, E.; Sutton, M. A.; Reis, S.

    2016-04-01

    A period of elevated surface concentrations of airborne particulate matter (PM) in the UK in spring 2014 was widely associated in the UK media with a Saharan dust plume. This might have led to over-emphasis on a natural phenomenon and consequently to a missed opportunity to inform the public and provide robust evidence for policy-makers about the observed characteristics and causes of this pollution event. In this work, the EMEP4UK regional atmospheric chemistry transport model (ACTM) was used in conjunction with speciated PM measurements to investigate the sources and long-range transport (including vertical) processes contributing to the chemical components of the elevated surface PM. It is shown that the elevated PM during this period was mainly driven by ammonium nitrate, much of which was derived from emissions outside the UK. In the early part of the episode, Saharan dust remained aloft above the UK; we show that a significant contribution of Saharan dust at surface level was restricted only to the latter part of the elevated PM period and to a relatively small geographic area in the southern part of the UK. The analyses presented in this paper illustrate the capability of advanced ACTMs, corroborated with chemically-speciated measurements, to identify the underlying causes of complex PM air pollution episodes. Specifically, the analyses highlight the substantial contribution of secondary inorganic ammonium nitrate PM, with agricultural ammonia emissions in continental Europe presenting a major driver. The findings suggest that more emphasis on reducing emissions in Europe would have marked benefits in reducing episodic PM2.5 concentrations in the UK.

  19. Flux estimation of fugitive particulate matter emissions from loose Calcisols at construction sites

    Science.gov (United States)

    Hassan, Hala A.; Kumar, Prashant; Kakosimos, Konstantinos E.

    2016-09-01

    A major source of airborne pollution in arid and semi-arid environments (i.e. North Africa, Middle East, Central Asia, and Australia) is the fugitive particulate matter (fPM), which is a frequent product of wind erosion. However, accurate determination of fPM is an ongoing scientific challenge. The objective of this study is to examine fPM emissions from the loose Calcisols (i.e. soils with a substantial accumulation of secondary carbonates), owing to construction activities that can be frequently seen nowadays in arid urbanizing regions such as the Middle East. A two months field campaign was conducted at a construction site, at rest, within the city of Doha (Qatar) to measure number concentrations of PM over a size range of 0.25-32 μm using light scattering based monitoring stations. The fPM emission fluxes were calculated using the Fugitive Dust Model (FDM) in an iterative manner and were fitted to a power function, which expresses the wind velocity dependence. The power factors were estimated as 1.87, 1.65, 2.70 and 2.06 for the four different size classes of particles ≤2.5, 2.5-6, 6-10 and ≤10 μm, respectively. Fitted power function was considered acceptable given that adjusted R2 values varied from 0.13 for the smaller particles and up to 0.69 for the larger ones. These power factors are in the same range of those reported in the literature for similar sources. The outcome of this study is expected to contribute to the improvement of PM emission inventories by focusing on an overlooked but significant pollution source, especially in dry and arid regions, and often located very close to residential areas and sensitive population groups. Further campaigns are recommended to reduce the uncertainty and include more fPM sources (e.g. earthworks) and other types of soil.

  20. Contribution of fungal spores to particulate matter in a tropical rainforest

    International Nuclear Information System (INIS)

    The polyols arabitol and mannitol, recently proposed as source tracers for fungal spores, were used in this study to estimate fungal contributions to atmospheric aerosol. Airborne particulate matter (PM2.5 and PM10) was collected at Jianfengling Mountain, a tropical rainforest on Hainan Island situated off the south China coast, during spring and analyzed for arabitol and mannitol by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The average concentrations of arabitol and mannitol exhibited high values with averages of 7.0 and 16.0 ng m-3 respectively in PM2.5 and 44.0 and 71.0 ng m-3 in PM10. The two tracers correlated well with each other, especially in the coarse mode aerosol (PM2.5-10), indicating they were mainly associated with coarse aerosol particles and had common sources. Arabitol and mannitol in PM10 showed significant positive correlations with relative humidity, as well as positive correlations with average temperature, suggesting a wet emissions mechanism of biogenic aerosol in the form of fungal spores. We made estimations of the contribution of fungal spores to ambient PM mass and to organic carbon, based on the observed ambient concentrations of these two tracers. The relative contributions of fungal spores to the PM10 mass were estimated to range from 1.6 to 18.2%, with a rather high mean value of 7.9%, and the contribution of fungal spores to organic carbon in PM10 ranged from 4.64 to 26.1%, with a mean value of 12.1%, implying that biological processes are important sources of atmospheric aerosol.

  1. 40 CFR 52.1081 - Control strategy: Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 1997 PM2.5 NAAQS has attained the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR 52..., in accordance with 40 CFR 52.1004(c), suspend the requirements for this area to submit an attainment... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate...

  2. 40 CFR 52.2059 - Control strategy: Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR 52.1004(c), suspends the... nonattainment areas have clean data for the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR 52... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate...

  3. Bayesian Hierarchical Modeling of Cardiac Response to Particulate Matter Exposure

    Science.gov (United States)

    Studies have linked increased levels of particulate air pollution to decreased autonomic control, as measured by heart rate variability (HRV), particularly in populations such as the elderly. In this study, we use data obtained from the 1998 USEPA epidemiology-exposure longitudin...

  4. Particulate matter in ambient air - Assessment of health risks. Partiklar i omgivningsluften - en bedoemning av haelsorisker

    Energy Technology Data Exchange (ETDEWEB)

    Camner, P.

    1986-07-01

    An investigation, based on literature data and research at SML, was made on deposition of particulate matter in lungs. The importance of mouth and nose breathing respectively is illustrated. By nose breathing only substances <10 micrometers reach the lung as compared to mouth breathing where substances >10 micrometers may deposit in the lung. Swedish limit values of total suspended particulate matter (TSP) of 50 micrograms/cubic meter are recommended as a 6 month mean value and 150 micrograms/cubic meter as a day mean value. For the PM/sub 10/ fraction, which is a measure of the mass fraction of particulate matter in the air that is deposited in the lung by mouth breathing, it is not possible to give a corresponding recommendation. Epidemiological data are lacking and the proposed method of measuring the PM/sub 10/ fraction would underestimate the importance of particles larger than 10 micrometers. (O.S.).

  5. Tonopah Test Range Air Monitoring: CY2012 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Miller, Julianne J

    2013-07-01

    401. This difference may be the result of using filter media at Station 400 with a smaller pore size than the media used at the other two stations. Average annual gamma exposure at Station 401 is slightly greater than at Station 400 and 402. Average annual gamma exposure at all three TTR stations are in the upper range to slightly higher than values reported for the CEMP stations surrounding the TTR. At higher wind speeds, the saltation counts are greater at Station 401 than at Station 402 while the suspended particulate concentrations are greater at Station 402 than at Statin 401. Although these observations seem counterintuitive, they are likely the result of differences in the soil material present at the two sites. Station 401 is located on an interfluve elevated above two adjacent drainage channels where the soil surface is likely to be composed of coarser material. Station 402 is located in finer sediments at the playa edge and is also subject to dust from a dirt road only 500 m to the north. During prolonged high wind events, suspended dust concentrations at Station 401 peaked with the initial winds then decreased whereas dust concentrations at Station 402 peaked with each peak in the wind speed. This likely reflects a limited PM10 source that is quickly expended at Station 401 relative to an abundant PM10 source at Station 402. In CY2013, to facilitate comparisons between radiological analyses of collected dust, the filter media at all three stations will be standardized. In addition, a sequence of samples will be collected at Station 400 using both types of filter media to enable development of a mathematical relationship between the results derived from the two filter types. Additionally, having acquired approximately four years of observations at Stations 400 and 401 and a year of observations at Station 402, a period-of-record analysis of the radiological and airborne dust conditions will be undertaken.

  6. Formation of Secondary Particulate Matter by Reactions of Gas Phase Hexanal with Sulfate Aerosol Particles

    Science.gov (United States)

    Zhang, J.

    2003-12-01

    The formation of secondary particulate matter from the atmospheric oxidation of organic compounds can significantly contribute to the particulate burden, but the formation of organic secondary particulate matter is poorly understood. One way of producing organic secondary particulate matter is the oxidation of hydrocarbons with seven or more carbon atoms to get products with low vapor pressure. However, several recent reports suggest that relatively low molecular weight carbonyls can enter the particle phase by undergoing heterogeneous reactions. This may be a very important mechanism for the formation of organic secondary particulate matter. Atmospheric aldehydes are important carbonyls in the gas phase, which form via the oxidation of hydrocarbons emitted from anthropogenic and biogenic sources. In this poster, we report the results on particle growth by the heterogeneous reactions of hexanal. A 5 L Continuous Stirred Tank Reactor (CSTR) is set up to conduct the reactions in the presence of seed aerosol particles of deliquesced ammonia bisulfate. Hexanal is added into CSTR by syringe pump, meanwhile the concentrations of hexanal are monitored with High Pressure Liquid Chromatograph (HPLC 1050). A differential Mobility Analyzer (TSI 3071) set to an appropriate voltage is employed to obtain monodisperse aerosols, and another DMA associated with a Condensation Nuclear Counter (TSI 7610) is used to measure the secondary particle size distribution by the reaction in CSTR. This permits the sensitive determination of particle growth due to the heterogeneous reaction, very little growth occurs when hexanal added alone. Results for the simultaneous addition of hexanal and alcohols will also be presented.

  7. Particulate Matter Assessment in the Air Based on the Heavy Metals Presence

    Directory of Open Access Journals (Sweden)

    Jandačka Dušan

    2014-05-01

    Full Text Available Particulate matters are the result of various processes in the atmosphere that are part of everyday life. The chemical composition of these particles is mainly influenced by their origin. Their behavior is also dependent on meteorological conditions and other factors as well. The aim of this paper was to identify sources of particulate matters by means of statistical methods due to the presence of 17 heavy metals. The problem solving assumes the knowledge of multivariate statistical data analysis methods as principal components analysis (PCA, factor analysis (FA and multivariate regression and vector algebra. For the application of methodology suitable software may prove appropriate.

  8. Notes on the Particulate Matter Standards in the European Union and the Netherlands

    Directory of Open Access Journals (Sweden)

    Hugo Priemus

    2009-03-01

    Full Text Available The distribution of Particulate Matter in the atmosphere, resulting from emissions produced by cars, trucks, ships, industrial estates and agricultural complexes, is a topical public health problem that has increased in recent decades due to environmental factors in advanced economies in particular. This contribution relates the health impact caused by concentrations of Particulate Matter (PM in ambient air to the PM standards, the size of the particles and spatial planning. Diverging impacts of PM standards in legal regulation are discussed. The authors present a review of the development of legal PM standards in the European Union, with a specific reference to The Netherlands.

  9. Preliminary studies of airborne particulate emmisions from the Ampellum S.A. copper smelter, Zlatna, Romania

    Directory of Open Access Journals (Sweden)

    Ben J. Williamson

    2003-04-01

    Full Text Available Preliminary studies have been carried on the characterization of particulate emissions from the Ampellum S.A. copper smelter in the town of Zlatna, Romania. The particulates studied were collected on polycarbonate filters using air pump apparatus and on the surfaces of lichens. Mass of total suspended particulates (TSP and PM10 varied from 19 to 230 μg/m3 and 3 to 146 μg/m3, respectively (PM10/TSP = 0.14 to 1.0, depending on wind direction and proximity to the smelter. Particulates on collection filters from a site directly downwind from the smelter have a mean equivalent spherical diameter (ESD of 0.94 μm (s.d. 1.1 and are dominantly made up of material with the composition of anglesite (PbSO4. The remainder of the material is a heterogeneous mixture of silicates and Fe-, Pb- and Cu-bearing phases. Particulates > 5 μm ESD are rare on the TSP filters, mainly due to the restricted sampling durations possible with the equipment used (<3 hours. Particulates have therefore been studied in the lichen Acarospora smaragdula, which was growing on posts downwind from the smelter and which was found to contain high levels and a broader range of particulates compared with the filters (<5 to 100 μm in diameter. Larger particles include 20-30 μm diameter Fe-rich spherules, which occasionally have Pb- and S-rich encrustations on their surfaces. The nature and possible health effects of the particulates are discussed and recommendations made for future studies.

  10. Anodic aluminum oxide with fine pore size control for selective and effective particulate matter filtering

    Science.gov (United States)

    Zhang, Su; Wang, Yang; Tan, Yingling; Zhu, Jianfeng; Liu, Kai; Zhu, Jia

    2016-07-01

    Air pollution is widely considered as one of the most pressing environmental health issues. Particularly, atmospheric particulate matters (PM), a complex mixture of solid or liquid matter suspended in the atmosphere, are a harmful form of air pollution due to its ability to penetrate deep into the lungs and blood streams, causing permanent damages such as DNA mutations and premature death. Therefore, porous materials which can effectively filter out particulate matters are highly desirable. Here, for the first time, we demonstrate that anodic aluminum oxide with fine pore size control fabricated through a scalable process can serve as effective and selective filtering materials for different types of particulate matters (such as PM2.5, PM10). Combining selective and dramatic filtering effect, fine pore size control and a scalable process, this type of anodic aluminum oxide templates can potentially serve as a novel selective filter for different kinds of particulate matters, and a promising and complementary solution to tackle this serious environmental issue.

  11. Establishment of Exposure-response Functions of Air Particulate Matter and Adverse Health Outcomes in China and Worldwide

    Institute of Scientific and Technical Information of China (English)

    HAI-DONG KAN; BING-HENG CHEN; CHANG-HONG CHEN; BING-YAN WANG; QING-YAN FU

    2005-01-01

    Objective To obtain the exposure-response functions that could be used in health-based risk assessment of particulate air pollution in China. Methods Meta analysis was conducted on the literatures on air particulate matter and its adverse health outcomes in China and worldwide. Results For each health outcome from morbidity to mortality changes, the relative risks were estimated when the concentration of air particulate matter increased to some certain units. Conclusion The exposure-response functions recommended here can be further applied to health risk assessment of air particulate matter in China.

  12. Large scale air monitoring: Biological indicators versus air particulate matter

    International Nuclear Information System (INIS)

    Biological indicator organisms are widely used for monitoring and banking purposes since many years. Although the complexity of the interactions between bioorganisms and their environment is generally not easily comprehensible, environmental quality assessment using the bioindicator approach offers some convincing advantages compared to direct analysis of soil, water, or air. Direct measurement of air particulates is restricted to experienced laboratories with access to expensive sampling equipment. Additionally, the amount of material collected generally is just enough for one determination per sampling and no multidimensional characterization might be possible. Further, fluctuations in air masses have a pronounced effect on the results from air filter sampling. Combining the integrating property of bioindicators with the world wide availability and uniform matrix characteristics of air particulates as a prerequisite for global monitoring of air pollution will be discussed. A new approach for sampling urban dust using large volume filtering devices installed in air conditioners of large hotel buildings is assessed. A first experiment was initiated to collect air particulates (300 to 500 g each) from a number of hotels during a period of three to four months by successive vacuum cleaning of used inlet filters from high volume air conditioning installations reflecting average concentrations per three months in different large cities. This approach is expected to be upgraded and applied for global monitoring. Highly positive correlated elements were found in lichen such as K/S, Zn/P, the rare earth elements (REE) and a significant negative correlation between Fig and Cu was observed in these samples. The ratio of concentrations of elements in dust and Usnea spp. is highest for Cr, Zn, and Fe (400-200) and lowest for elements such as Ca, Rb, and Sr (20-10). (author)

  13. 40 CFR Appendix K to Part 50 - Interpretation of the National Ambient Air Quality Standards for Particulate Matter

    Science.gov (United States)

    2010-07-01

    ... Air Quality Standards for Particulate Matter K Appendix K to Part 50 Protection of Environment... STANDARDS Pt. 50, App. K Appendix K to Part 50—Interpretation of the National Ambient Air Quality Standards... particulate matter data to determine attainment of the 24-hour standards specified in 40 CFR 50.6. For...

  14. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time.

    Science.gov (United States)

    Przybysz, A; Sæbø, A; Hanslin, H M; Gawroński, S W

    2014-05-15

    Particulate matter is harmful to human health. To reduce its concentration in air, plants could be used as biological filters, accumulating particulate matter on their foliage. In a study carried out at three sites with differing pollution levels and exposure to precipitation, the capacity of evergreen species (Taxus baccata L., Hedera helix L. and Pinus sylvestris L.) to accumulate particulate matter and trace elements from ambient air in urban areas was investigated. The effects of rainfall and the passage of time on particulate matter deposition on foliage were also determined. The results showed that foliage accumulated an increasing quantity of particulate matter in successive months, but the actual amount of particulate matter and trace elements accumulated differed considerably between sites and plant species. The greatest accumulation of air pollutants occurred on the foliage of plants protected from the rain at a site exposed to traffic related pollution and the smallest accumulation at a rural site. Among the species analysed, the deposited mass of particulate matter and trace elements was the greatest on P. sylvestris. In all species, precipitation removed a considerable proportion of particles accumulated on foliage. Most of the removed particulate matter was large size fraction, but little belong to the smallest size fraction. These results showed that both, the dynamics of deposition and leaf washing by rain during the season need to be considered when evaluating the total effect of vegetation in pollutant remediation. PMID:24607629

  15. A comprehensive study of the characterization of particulate matter emissions from a Delmarva broiler poultry operation

    Science.gov (United States)

    Carter, Shannon E.

    Particulate matter (PM) emissions from agricultural practices, including those from animal feeding operations (AFO's) have become an increasingly important topic, and has generated considerable interest from local and state agencies, as well as, the local community over the past decade. Because of growth in population, and an increase in commercial and residential development within close proximity to these operations, which house a large number of animals in confinement, and because of a better understanding of the effects of exposure to airborne contaminants on health, this has lead to an increase in concerns and a demand for more research to be conducted on PM from AFO's. Particulate matter generated within, and emitted from, AFO's can carry with it various components including metals and microorganisms that can negatively affect health. This research was conducted in order to verify if PM from a broiler poultry operation on Delmarva has the potential to become a health concern. The first step was to determine concentrations of two size segregated fractions of PM from indoor and outdoor sampling sites over four seasonal periods, early summer (ES), late summer (LS), Fall (F), and Winter (W). Both PM10 and PM2.5 were collected because of their classification from the Environmental Protection Agency as having the ability to cause significant health effects with short-term exposure. Next, temporal and spatial characteristics were investigated to determine their effects on PM concentrations over the four seasonal periods. Following this, the chemical composition and morphology of PM10 and PM2.5 generated from the broiler poultry operation was investigated. Finally, further detailed information was obtained on arsenic speciation and oxidation state in PM to investigate toxicity. Arsenic use in the poultry industry has been occurring for a number of decades, and is most frequently administered in the organic form. However, studies have shown that these organo

  16. Mutagenic and recombinagenic activity of airborne particulates, PM10 and TSP, organic extracts in the Drosophila wing-spot test

    International Nuclear Information System (INIS)

    The genotoxicity associated with air pollution in the city of Canoas, Rio Grande do Sul (Brazil), was assessed in November (spring) and January (summer). We applied the somatic mutation and recombination test (SMART) in Drosophila melanogaster in its standard version with normal bioactivation (ST) and in its variant with increased cytochrome P450-dependent biotransformation capacity (HB). The data indicated the genotoxicity of TSP and PM10 collected in November, in both ST and HB crosses. The genotoxic activity of the PM10 material in the spring sample was exclusively associated with the induction of mitotic recombination, whereas the TSP genetic toxicity was due to both recombinational as well as point and/or chromosomal mutation events. Considering PM10 collected in January, a positive response-100% (17.10 m3/ml) concentration-was observed in the HB cross, which was not detected in the ST cross. - Drosophila Wing-Spot Test can be used for detection of airborne particulates mutagenesis

  17. Simulation of Height of Stack Pile using SCREEN3 module for Particulate Matter Pollutants

    Directory of Open Access Journals (Sweden)

    Modi Musalaiah

    2014-12-01

    Full Text Available This study is regarding the air pollution in selected areas near to port (beside stack yards of port interested in particulate matter pollution. In this study, the amount of air pollution due to particulates is analyzed. The amount of air pollution is estimated using SCREEN 3 Methodology. In this study, SCREEN 3 methodology is a predefined software tool which can be used to estimate particulate matter pollution levels at different source release heights, terrain heights and at particular receptor height. The results obtained are reported and finally concluded that to avoid the pollution in the selected area, it is better to construct a periphery along the sides of stack yard (source of pollution

  18. Impact of Long-term Exposure to Air Particulate Matter on Life Expectancy and Survival Rate of Shanghai Residents

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To evaluate the impact of long-term air particulate matter exposure on the life expectancy and survival rate of Shanghai residents. Methods Epidemiology - based exposureresponse function was used for the calculation of attributable deaths to air particulate matter in Shanghai, and the effect of long-term exposure to particulate matter on life expectancy and survival rate was estimated using the life table of Shanghai residents in 1999. Results It was shown that in 1999, the long-term air particulate matter exposure caused 1.34-1.69 years reduction of life expectancy and a decrease of survival rate for each age group of Shanghai residents. Conclusion The effect of long-term exposure to air particulate matter on life expectancy is substantial in Shanghai.

  19. The added value of a proposed satellite imager for ground level particulate matter analyses and forecasts

    NARCIS (Netherlands)

    Timmermans, R.M.A.; Segers, A.J.; Builtjes, P.J.H.; Vautard, R.; Siddans, R.; Elbern, H.; Tjemkes, S.A.T.; Schaap, M.

    2009-01-01

    Monitoring aerosols over wide areas is important for the assessment of the population's exposure to health relevant particulate matter (PM). Satellite observations of aerosol optical depth (AOD) can contribute to the improvement of highly needed analyzed and forecasted distributions of PM when combi

  20. Processes and modeling of hydrolysis of particulate organic matter in aerobic wastewater tratment - A review

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Kommedal, Roald; Harremoës, Poul

    2002-01-01

    Carbon cycling and the availability of organic carbon for nutrient removal processes are in most wastewater treatment systems restricted by the rate of hydrolysis of slowly biodegradable (particulate) organic matter. To date, the mechanisms of hydrolysis are not well understood for complex...

  1. Species of fine particulate matter and the risk of preterm birth

    Science.gov (United States)

    Particulate matter (PM) has been variably associated with preterm birth (PTB), but the roles of PM species have been less studied. We estimated risk of birth in 4 preterm categories (risks reported as PTBs per 106 pregnancies; PTB categories = gestational age of 20-27; 28-31; 32-...

  2. Patients with asthma demonstrate airway inflammation after exposure to concentrated ambient particulate matter

    Science.gov (United States)

    ..To the Editor"': Of the three major particulate matter (PM) size fractions (ultrafme, fine and coarse),coarse PM (PM2.5- 10) has been the least examined in terms of its health effects on susceptible populations, this despite having characteristics that make it particula...

  3. 40 CFR 52.1638 - Bernalillo County particulate matter (PM10) Group II SIP commitments.

    Science.gov (United States)

    2010-07-01

    ... (PM10) Group II SIP commitments. 52.1638 Section 52.1638 Protection of Environment ENVIRONMENTAL... (CONTINUED) New Mexico § 52.1638 Bernalillo County particulate matter (PM10) Group II SIP commitments. (a) On December 7, 1988, the Governor of New Mexico submitted a revision to the State Implementation Plan...

  4. Laboratory Evaluation of Electrostatic Spray Wet Scrubber to Control Particulate Matter Emissions from Poultry Facilities

    Science.gov (United States)

    Particulate matter (PM) is a major air pollutant emitted from animal production and has significant impacts on health and the environment. Abatement of PM emissions is imperative and effective PM control technologies are strongly needed. In this work, an electrostatic spray wet scrubber (ESWS) techn...

  5. Characterization of cotton gin particulate matter emissions - Final year of field work

    Science.gov (United States)

    Due to EPA’s implementation of more stringent standards for particulate matter (PM) with an effective diameter less than 2.5 microns (PM2.5), the cotton ginners’ associations across the cotton belt agreed that there is an urgent need to collect gin emission data. The primary issues surrounding PM re...

  6. Oxidative potential of particulate matter collected at sites with different source characteristics

    NARCIS (Netherlands)

    Janssen, Nicole A. H.; Yang, Aileen; Strak, Maciej; Steenhof, Maaike; Hellack, Bryan; Gerlofs-Nijland, Miriam E.; Kuhlbusch, Thomas; Kelly, Frank; Harrison, Roy M.; Brunekreef, Bert; Hoek, Gerard; Cassee, Flemming

    2014-01-01

    Background: The oxidative potential (OP) of particulate matter (PM) has been proposed as a more health relevant metric than PM mass. Different assays exist for measuring OP and little is known about how the different assays compare. Aim: To assess the OP of PM collected at different site types and t

  7. INSTILLATION OF COARSE ASH PARTICULATE MATTER AND LIPOPOLYSACCHARIDE PRODUCES A SYSTEMIC INFLAMMATORY RESPONSE IN MICE

    Science.gov (United States)

    Coronary ischemic events increase significantly floowing a “bad air” day. Ambient particulate matter (PM10) is the pollutant most strongly associated with these events. PM10 causes inflammatory injury to the lower airways. It is not clear, however, if pulmonary inflation transl...

  8. Students' Conceptions of the Particulate Nature of Matter at Secondary and Tertiary Level

    Science.gov (United States)

    Ayas, Alipasa; Ozmen, Haluk; Calik, Muammer

    2010-01-01

    The aim of the present study is to elicit students' understanding of the particulate nature of matter via a cross-age study ranging from secondary to tertiary educational levels. A questionnaire with five-item open-ended questions was administered to 166 students from the secondary to tertiary levels of education. In light of the findings, it can…

  9. 78 FR 23492 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Particulate Matter Air...

    Science.gov (United States)

    2013-04-19

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Indiana; Particulate Matter Air Quality Standards AGENCY: Environmental Protection Agency (EPA). ACTION: Direct final rule... Ambient Air Quality Standards (NAAQS) promulgated by EPA in 2006, and removes the annual coarse...

  10. Elemental constituents of particulate matter and newborn’s size in eight European cohorts

    NARCIS (Netherlands)

    Pedersen, M.; Gehring, U.; Beelen, R.; Wang, M.; Giorgis-Allemand, L.; Andersen, A.M.N.; Basagaña, X.; Bernard, C.; Cirach, M.; Forastiere, F.; Hoogh, K. de; Gražuleviĉvienė, R.; Gruzieva, O.; Hoek, G.; Jedynska, A.; Klümper, C.; Kooter, I.M.; Krämer, U.; Kukkonen, J.; Porta, D.; Postma, D.S.; Raaschou-Nielsen, O.; Rossem, L. van; Sunyer, J.; Sørensen, M.; Tsai, M.Y.; Vrijkotte, T.G.M.; Wilhelm, M.; Nieuwenhuijsen, M.J.; Pershagen, G.; Brunekreef, B.; Kogevinas, M.; Slama, R.

    2016-01-01

    Background: The health effects of suspended particulate matter (PM) may depend on its chemical composition. Associations between maternal exposure to chemical constituents of PM and newborn’s size have been little examined. Objective: We aimed to investigate the associations of exposure to elemental

  11. Review, improvement and harmonisation of the Nordic particulate matter air emission inventories

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Illerup, Jytte Boll; Kindbom, Karin;

    In this study the Nordic particulate matter (PM) emission inventories are compared and for the most important sources - residential wood burning and road transport - a quality analysis is carried out based on PM measurements conducted and models used in the Nordic countries. All the institutions ...

  12. A comprehensive study of the characterization of particulate matter emissions from a Delmarva broiler poultry operation

    Science.gov (United States)

    Carter, Shannon E.

    Particulate matter (PM) emissions from agricultural practices, including those from animal feeding operations (AFO's) have become an increasingly important topic, and has generated considerable interest from local and state agencies, as well as, the local community over the past decade. Because of growth in population, and an increase in commercial and residential development within close proximity to these operations, which house a large number of animals in confinement, and because of a better understanding of the effects of exposure to airborne contaminants on health, this has lead to an increase in concerns and a demand for more research to be conducted on PM from AFO's. Particulate matter generated within, and emitted from, AFO's can carry with it various components including metals and microorganisms that can negatively affect health. This research was conducted in order to verify if PM from a broiler poultry operation on Delmarva has the potential to become a health concern. The first step was to determine concentrations of two size segregated fractions of PM from indoor and outdoor sampling sites over four seasonal periods, early summer (ES), late summer (LS), Fall (F), and Winter (W). Both PM10 and PM2.5 were collected because of their classification from the Environmental Protection Agency as having the ability to cause significant health effects with short-term exposure. Next, temporal and spatial characteristics were investigated to determine their effects on PM concentrations over the four seasonal periods. Following this, the chemical composition and morphology of PM10 and PM2.5 generated from the broiler poultry operation was investigated. Finally, further detailed information was obtained on arsenic speciation and oxidation state in PM to investigate toxicity. Arsenic use in the poultry industry has been occurring for a number of decades, and is most frequently administered in the organic form. However, studies have shown that these organo

  13. Lateral supply and downward export of particulate matter from upper waters to the seafloor in the deep eastern Fram Strait

    Science.gov (United States)

    Lalande, Catherine; Nöthig, Eva-Maria; Bauerfeind, Eduard; Hardge, Kristin; Beszczynska-Möller, Agnieszka; Fahl, Kirsten

    2016-08-01

    Time-series sediment traps were deployed at 4 depths in the eastern Fram Strait from July 2007 to June 2008 to investigate variations in the magnitude and composition of the sinking particulate matter from upper waters to the seafloor. Sediment traps were deployed at 196 m in the Atlantic Water layer, at 1296 and 2364 m in the intermediate and deep waters, and at 2430 m on a benthic lander in the near-bottom layer. Fluxes of total particulate matter, particulate organic carbon, particulate organic nitrogen, biogenic matter, lithogenic matter, biogenic particulate silica, calcium carbonate, dominant phytoplankton cells, and zooplankton fecal pellets increased with depth, indicating the importance of lateral advection on fluxes in the deep Fram Strait. The lateral supply of particulate matter was further supported by the constant fluxes of biomarkers such as brassicasterol, alkenones, campesterol, β-sitosterol, and IP25 at all depths sampled. However, enhanced fluxes of diatoms and appendicularian fecal pellets from the upper waters to the seafloor in the presence of ice during spring indicated the rapid export (15-35 days) of locally-produced large particles that likely contributed most of the food supply to the benthic communities. These results show that lateral supply and downward fluxes are both important processes influencing the transport of particulate matter to the seafloor in the deep eastern Fram Strait, and that particulate matter size dictates the prevailing sinking process.

  14. Chemical characterization of a polar portion in the neutral fraction derived from airborne particulate extracts responsible for the embryotoxicity in the chicken embryo

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, H.

    1988-01-01

    Airborne particulate matter was collected with a high-volume air sampler between June 1984 and May 1985 on the roof top of the authors institute. The tar material extracted was separated into six fractions by liquid-liquid partition and silica gel column chromatography. These fractions were then tested for their embryotoxicities by a chicken embryo assay. A moderately polar fraction per weight and a fraction containing polycyclic aromatic hydrocarbons (PAHs) had the greatest toxicity for chicken embryos. When the polar fraction was purified by high-pressure liquid chromatography, the purified fraction was 3.7 times more toxic than the original polar fraction. To determine the responsible components for the toxicity, the purified fraction as well as the original fraction was analyzed by capillary gas chromatography and gas chromatography-mass spectrometry. The characterized components were classified into oxygenated PAHs (containing ketones, quinones, and aldehydes), nitrogen-containing PAHS, diphenyl-substituted aliphatic ketones (or diketones), and esters of aliphatic acids.

  15. Source profiles of particulate organic matters emitted from cereal straw burnings

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuan-xun; SHAO Min; ZHANG Yuan-hang; ZENG Li-min; HE Ling-yan; ZHU Bin; WEI Yong-jie; ZHU Xian-lei

    2007-01-01

    Cereal straw is one of the most abundant biomass burned in China but its contribution to fine particulates is not adequately understood.In this study, three main kinds of cereal straws were collected from five grain producing areas in China. Fine particulate matters (PM2.5) from the cereal straws subjected to control burnings, both under smoldering and flaming status, were sampled by using a custom made dilution chamber and sampling system in the laboratory. Element carbon (EC) and organic carbon (OC) was analyzed.141 compounds of organic matters were measured by gas chromatography-mass spectrum (GC-MS). Source profiles of particulate organic matters emitted from cereal straw burnings were obtained. The results indicated that organic matters contribute a large fraction in fine particulate matters. Levoglucosan had the highest contributions with averagely 4.5% in mass of fine particulates and can be considered as the tracer of biomass burnings. Methyloxylated phenols from lignin degradation also had high concentrations in PM2.5,and contained approximately equal amounts of guaiacyl and syringyl compounds. β-Sitostrol also made up relatively a large fraction of PM2.5 compared with the other sterols (0.18%-0.63% of the total fine particle mass). Normal aikanes, PAHs, fatty acids, as well as normal alkanols had relatively lower concentrations compared with the compounds mentioned above. Carbon preference index (CPI) of normal alkanes and alkanoic acids showed characteristics of biogenic fuel burnings. Burning status significantly influenced the formations of EC and PAHs. The differences between the emission profiles of straw and wood combustions were displayed by the fingerprint compounds, which may be used to identify the contributions between wood and straw burnings in source apportionment researches.

  16. Temporal and spatial variations of particulate matter and gaseous pollutants in the urban area of Tehran

    Science.gov (United States)

    Alizadeh-Choobari, O.; Bidokhti, A. A.; Ghafarian, P.; Najafi, M. S.

    2016-09-01

    Being hemmed in on two sides by high mountains, the urban area of Tehran is characterized by high levels of particulate matter and gaseous pollutants, which have adverse consequences on human health, ecosystems and environment. Using air quality measurements taken in different regions of Tehran, spatial and temporal variations of particulate matter and gaseous pollutants are analyzed to identify the typical climatological aspects of air pollutants. In terms of particulate matter concentrations, South Tehran is more polluted than Central to North Tehran, while West Tehran is more polluted than the East. Concentrations of particles in North Tehran are lower in the midday compared to the midnight, whereas the opposite is true in South Tehran. The observed annual mean concentrations of PM2.5 and PM10 in North Tehran were 37.5 and 76.3 μg m-3, respectively, which are substantially greater than the national annual mean safety limits of 10 μg m-3 for PM2.5 and 20 μg m-3 for PM10. The observed high levels of particulate matter underline the essential need for a coordinated action to reduce the rapidly increasing air pollution over the growing urban area of Tehran. Noticeable monthly (seasonal) variations are evident in the observed PM10 concentrations, with a minimum of 61.5 μg m-3 in March (spring) and a maximum of 82.9 μg m-3 in July (summer), reflecting contribution of weather conditions. Analyzing daily PM2.5 (PM10) concentrations indicate that mid-week Wednesdays (Mondays) are the most polluted days. The higher mid-week concentrations reflect contribution of heavy vehicular traffic, industrial operation and increased commercial activities. Strong diurnal variations in the concentrations of particulate matter in North Tehran are detected, varying from a peak in late night to a minimum in late afternoon, indicating contribution of deeper daytime convective boundary layer and stronger winds in dispersion of particles.

  17. Origin of particulate matter and gaseous precursors in the Paris Megacity: Results from intensive campaigns, long term measurements and modelling

    Science.gov (United States)

    Beekmann, Matthias; Petetin, Hervé; Zhang, Qijie; Prevot, André S. H.; Sciare, Jean; Gros, Valérie; Ghersi, Véronique; Rosso, Amandine; Crippa, Monica; Zotter, Peter; Freutel, Fredericke; Poulain, Laurent; Freney, Evelyne; Sellegri, Karine; Drewnick, Frank; Borbon, Agnès; Wiedensohler, Aflred; Pandis, Spyros N.; Baltensperger, Urs

    2016-04-01

    Uncertainties on the origin of primary and secondary particulate matter and its gaseous precursors in megacities is still large and needs to be reduced. A detailed characterization of air quality in Paris (France), a megacity of more than 10 million inhabitants, during two one month intensive campaigns (MEGAPOLI) and from additional one year observations (PARTICULATE and FRANCIPOL), revealed that about 70% of the fine particulate matter (PM) at urban background is transported on average into the megacity from upwind regions. While advection of sulfate is well documented for other megacities, there was a surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The data set of urban local and advected PM concentrations in the Paris area were used for a thorough evaluation of the CHIMERE model and revealed error compensation for the local and advected components of organic matter and nitrate. During spring time, CHIMERE simulations overestimate the sensitivity of ammonium nitrate peaks to NH3, because (i) they underestimate the urban background NH3 levels, probably due to neglecting enhanced NH3 emissions for larger temperatures, and because they overestimate HNO3. However, from an ensemble of mobile Max-DOAS NO2 column and airborne NOy measurements around Paris, no clear sign on a NOx emission bias in the TNO-Airparif data set was made evident. The origin of organic PM was investigated by a comprehensive analysis of aerosol mass spectrometer (AMS), radiocarbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions contributed less than 20% in winter and 40% in summer to carbonaceous fine PM, unexpectedly little for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin, i.e. from biogenic precursors and from wood burning. Implementation

  18. Exposures to airborne particulate matter and adverse perinatal outcomes: a biologically plausible mechanistic framework for exploring potential Exposição à matéria particulada aérea e efeitos perinatais adversos: referencial mecanístico biologicamente plausível para exploração de potenciais

    Directory of Open Access Journals (Sweden)

    Srimathi Kannan

    2007-12-01

    Full Text Available This article has three objectives: to describe the biologically plausible mechanistic pathways by which exposure to particulate matter (PM may lead to adverse perinatal outcomes of low birth weight (LBW, intrauterine growth retardation (IUGR, and preterm delivery (PTD; review evidence showing that nutrition affects biologic pathways; and explain mechanisms by which nutrition may modify the impact of PM exposure on perinatal outcomes. We propose an interdisciplinary framework that brings together maternal and infant nutrition, air pollution exposure assessment, and cardiopulmonary and perinatal epidemiology. Five possible biologic mechanisms have been put forth in the emerging environmental sciences literature and provide corollaries for the proposed framework. The literature indicates that the effects of PM on LBW, PTD, and IUGR may manifest through the cardiovascular mechanisms of oxidative stress, inflammation, coagulation, endothelial function, and hemodynamic responses. PM exposure studies relating mechanistic pathways to perinatal outcomes should consider the likelihood that biologic responses and adverse birth outcomes may be derived from both PM and non-PM sources. We present strategies for empirically testing the proposed model and developing future research efforts.São três os objetivos deste artigo: descrever rotas mecanísticas biologicamente plausíveis pelas quais a exposição à matéria particulada (MP pode levar a efeitos perinatais adversos, como baixo peso ao nascer (BPN, retardo do crescimento intra-uterino (RCIU e nascimentos pré-termo (NPT; fazer uma revisão de evidências mostrando que a nutrição afeta rotas biológicas; explicar os mecanismos através dos quais a nutrição pode modificar o impacto da exposição a MP nos efeitos perinatais adversos. Propomos um referencial interdisciplinar que aproxime nutrição materna e infantil, avaliação de poluição do ar e epidemiologia cardiopulmonar e perinatal

  19. Conference particulate matter and indoor environment, I.N.E.R.I.S.; Particulate matter and indoor environment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Comprehensive characterisation of indoor and outdoor air as well as pollution emission sources Integrated health and environmental risk assessment Scientific and technical basis for airborne pollution management and control Fine and coarse particles. The sources of indoor air pollution are originate separately, are transported separately, are removed from atmosphere by different mechanisms, have different optical properties, have different chemical properties, require different control techniques. for the health effects due to particles, they decrease the lung function, increase respiratory symptoms, increase chronic obstructive pulmonary diseases, increased cardiovascular disease, increased mortality. The different sources contributing to the highest concentrations are: concentrations: tobacco smoking, cooking, vacuuming, dusting and sweeping, heaters, stoves, fireplaces and some other non identified sources. In the future we want more focus on fine and ultra fine particles, investigate source apportionment of particles, better understanding and quantification of exposure, to implement guidelines for particle concentration in indoor air and find better cleaning technologies. (N.C.)

  20. Flux estimation of fugitive particulate matter emissions from loose Calcisols at construction sites

    Science.gov (United States)

    Hassan, Hala A.; Kumar, Prashant; Kakosimos, Konstantinos E.

    2016-09-01

    A major source of airborne pollution in arid and semi-arid environments (i.e. North Africa, Middle East, Central Asia, and Australia) is the fugitive particulate matter (fPM), which is a frequent product of wind erosion. However, accurate determination of fPM is an ongoing scientific challenge. The objective of this study is to examine fPM emissions from the loose Calcisols (i.e. soils with a substantial accumulation of secondary carbonates), owing to construction activities that can be frequently seen nowadays in arid urbanizing regions such as the Middle East. A two months field campaign was conducted at a construction site, at rest, within the city of Doha (Qatar) to measure number concentrations of PM over a size range of 0.25-32 μm using light scattering based monitoring stations. The fPM emission fluxes were calculated using the Fugitive Dust Model (FDM) in an iterative manner and were fitted to a power function, which expresses the wind velocity dependence. The power factors were estimated as 1.87, 1.65, 2.70 and 2.06 for the four different size classes of particles ≤2.5, 2.5-6, 6-10 and ≤10 μm, respectively. Fitted power function was considered acceptable given that adjusted R2 values varied from 0.13 for the smaller particles and up to 0.69 for the larger ones. These power factors are in the same range of those reported in the literature for similar sources. The outcome of this study is expected to contribute to the improvement of PM emission inventories by focusing on an overlooked but significant pollution source, especially in dry and arid regions, and often located very close to residential areas and sensitive population groups. Further campaigns are recommended to reduce the uncertainty and include more fPM sources (e.g. earthworks) and other types of soil.

  1. Characteristics and chemical compositions of particulate matter collected at the selected metro stations of Shanghai, China

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Li; Hu, Yunjie; Hu, Qingqing [Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China); Lin, Jun [Key Laboratory of Nuclear Analysis Techniques, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, Chunlin; Chen, Jianmin [Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China); Li, Lina [Key Laboratory of Nuclear Analysis Techniques, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Fu, Hongbo [Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China)

    2014-10-15

    A campaign was conducted to assess and compare the air quality at the different metro platforms at Shanghai City, focusing on particulate matter (PM) levels, chemical compositions, morphology and mineralogy, as well as species of iron. Our results indicated that the average PM{sub 2.5} concentrations for the three metro lines were 177.7 μg/m{sup 3}, 105.7 μg/m{sup 3} and 82.5 μg/m{sup 3}, respectively, and the average PM{sub 1} concentrations for the three lines were 122.3 μg/m{sup 3}, 84.1 μg/m{sup 3} and 59.6 μg/m{sup 3}, respectively. Fe, Mn, Cr, Cu, Sr, Ba and Pb concentrations in all of the sampling sites were significantly higher than that in the urban ambient air, implicating that these trace metals may be associated with the metro systems working. Individual airborne dusts were studied for morphology and mineralogy characteristics. The results revealed that the presence of most individual particles were with no definite shape and most of them were with a large metal content. Furthermore, Fe-rich particles had significantly higher abundance in the metro systems, which were more frequently encountered in the underground lines than the aboveground line. The 2D distribution map of an interested Fe-rich particle showed an uneven Fe distribution, implying that a hollow or core of other substance exists in the particle center during the formation process. Cluster analysis revealed that Fe-rich particles were possibly a mixture of Fe species. Fitting of X-ray absorption near-edge fine structure spectra (XANES) showed the main iron species within the particles collected from the three contrasting metro lines of Shanghai to be hematite, magnetite, iron-metal and mineral Fe. Hematite and mineral Fe were all found in three lines, while magnetite only existed in aboveground metro line. Iron-metal was determined in both the older and younger underground lines, based on the X-ray diffraction (XRD) analysis. As diverse Fe species have different physical

  2. Particulate organic matter dynamics in coastal systems of the northern Beibu Gulf

    Science.gov (United States)

    Kaiser, David; Unger, Daniela; Qiu, Guanglong

    2014-07-01

    Estuarine particle fluxes are an integral part of land-ocean-connectivity and influence coastal environmental conditions. In areas with strong anthropogenic impact they may contribute to coastal eutrophication. To investigate the particulate biogeochemistry of a human affected estuary, we sampled suspended, sedimentary and plant particulate matter along the land-ocean continuum from Nanliu River to Lianzhou Bay in southern China. Riverine particle fluxes exceed inputs from land based pond aquaculture. Elemental (C/N) and isotopic composition of particulate organic carbon (δ13C) and total nitrogen (δ15N) showed that suspended and sedimentary organic matter (OM) mainly derive from freshwater and marine phytoplankton, with minor contributions from terrestrial and aquaculture derived particles. Amino acid composition indicates subseasonal variability of production and freshness of phytoplankton OM. Strongest compositional changes of suspended particles are associated with storm-related extreme precipitation events, which introduce soil derived OM. High concentrations of chlorophyll a reflect eutrophic conditions in riverine and coastal waters. Human impact results in high δ15N signals in suspended, sedimentary and plant particulate matter. Using these in a comparison with two little affected sites shows that anthropogenic influence disperses from the Nanliu River to remote estuaries and mangrove areas. Our results suggest that autochthonous production binds anthropogenic nutrients in particles that are transported along the coast.

  3. Particulate matter test in small volume parenterals: critical aspects in sampling methodology.

    Science.gov (United States)

    Pavanetto, F; Conti, B; Genta, I; Ponci, R; Montanari, L; Grassi, M

    1989-06-01

    The following critical steps of the particulate matter test sampling methodology for small volume parenteral products (SVPs), conduct by light blockage method, were considered: 1) reliability of the small volume aspirator sampler for different sample volumes; 2) particulate matter distribution inside each ampoule in liquid products (8 liquid SVPs tested); 3) influence of the sample preparation method on the evaluation of the final contamination of the sample. Nine liquid SVPs were tested by preparing samples following the three U.S.P. XXI methods: 1) unit as it is (direct analysis), II) unit diluted, III) sample obtained by combining several units. Particles counts were performed by a HIAC/ROYCO model 3000 counter fitted with a small volume sampler. The validation of the sampler shows that it should be improved. A more accurate and strict validation than the one stated by U.S.P. XXI is suggested. The particulate matter distribution in liquid products is found to be uniform inside the ampoule in the size range greater than or equal to 2 microns-greater than or equal to 10 microns; the analysis can be performed examining only a portion of the whole content. The three sample preparation methods lead to significantly different contamination results. The particulate control test should be conduct by direct analysis, as it is carried out under the same conditions as for product use. The combining method (III) is suggested for products of less than 2 ml volume that cannot be examined by direct analysis. PMID:2803449

  4. Characterization of airborne particulates by pyrolysis/mass spectrometry and carbon-14 analysis

    Energy Technology Data Exchange (ETDEWEB)

    Voorhees, K.J. (Colorado School of Mines, Golden); Durfee, S.L.; Currie, L.A.; Klouda, G.A.

    1981-08-01

    Pyrolysis/mass spectrometry (Py/MS) has been used to characterize the composition of organics in an ambient air particulate sample from the eastern Utah oil shale lands. The procedure involved collection of the individual contributors, pyrolysis of these samples, and finally a least-squares fitting of the individual contributor spectra to the pyrolysis mass spectrum of the ambient sample. The Py/MS results were verified by using /sup 14/C analysis.

  5. [Analyzer Design of Atmospheric Particulate Matter's Concentration and Elemental Composition Based on β and X-Ray's Analysis Techniques].

    Science.gov (United States)

    Ge, Liang-quan; Liu, He-fan; Zeng, Guo-qiang; Zhang, Qing-xian; Ren, Mao-qiang; Li, Dan; Gu, Yi; Luo, Yao-yao; Zhao, Jian-kun

    2016-03-01

    Monitoring atmospheric particulate matter requires real-time analysis, such as particulate matter's concentrations, their element types and contents. An analyzer which is based on β and X rays analysis techniques is designed to meet those demands. Applying β-ray attenuation law and energy dispersive X-ray fluorescence analysis principle, the paper introduces the analyzer's overall design scheme, structure, FPGA circuit hardware and software for the analyzer. And the analyzer can measure atmospheric particulate matters' concentration, elements and their contents by on-line analysis. Pure elemental particle standard samples were prepared by deposition, and those standard samples were used to set the calibration for the analyzer in this paper. The analyzer can monitor atmospheric particulate matters concentration, 30 kinds of elements and content, such as TSP, PM10 and PM2.5. Comparing the measurement results from the analyzer to Chengdu Environmental Protection Agency's monitoring results for monitoring particulate matters, a high consistency is obtained by the application in eastern suburbs of Chengdu. Meanwhile, the analyzer are highly sensitive in monitoring particulate matters which contained heavy metal elements (such as As, Hg, Cd, Cr, Pb and so on). The analyzer has lots of characteristics through technical performance testing, such as continuous measurement, low detection limit, quick analysis, easy to use and so on. In conclusion, the analyzer can meet the demands for analyzing atmospheric particulate matter's concentration, elements and their contents in urban environmental monitoring. PMID:27400540

  6. Efficiency of Respirator Filter Media against Diesel Particulate Matter: A Comparison Study Using Two Diesel Particulate Sources.

    Science.gov (United States)

    Burton, Kerrie A; Whitelaw, Jane L; Jones, Alison L; Davies, Brian

    2016-07-01

    Diesel engines have been a mainstay within many industries since the early 1900s. Exposure to diesel particulate matter (DPM) is a major issue in many industrial workplaces given the potential for serious health impacts to exposed workers; including the potential for lung cancer and adverse irritant and cardiovascular effects. Personal respiratory protective devices are an accepted safety measure to mitigate worker exposure against the potentially damaging health impacts of DPM. To be protective, they need to act as effective filters against carbon and other particulates. In Australia, the filtering efficiency of respiratory protective devices is determined by challenging test filter media with aerosolised sodium chloride to determine penetration at designated flow rates. The methodology outlined in AS/NZS1716 (Standards Australia International Ltd and Standards New Zealand 2012. Respiratory protective devices. Sydney/Wellington: SAI Global Limited/Standards New Zealand) does not account for the differences between characteristics of workplace contaminants like DPM and sodium chloride such as structure, composition, and particle size. This study examined filtering efficiency for three commonly used AS/NZS certified respirator filter models, challenging them with two types of diesel emissions; those from a diesel generator and a diesel engine. Penetration through the filter media of elemental carbon (EC), total carbon (TC), and total suspended particulate (TSP) was calculated. Results indicate that filtering efficiency assumed by P2 certification in Australia was achieved for two of the three respirator models for DPM generated using the small diesel generator, whilst when the larger diesel engine was used, filtering efficiency requirements were met for all three filter models. These results suggest that the testing methodology specified for certification of personal respiratory protective devices by Standards Australia may not ensure adequate protection for

  7. Efficiency of Respirator Filter Media against Diesel Particulate Matter: A Comparison Study Using Two Diesel Particulate Sources.

    Science.gov (United States)

    Burton, Kerrie A; Whitelaw, Jane L; Jones, Alison L; Davies, Brian

    2016-07-01

    Diesel engines have been a mainstay within many industries since the early 1900s. Exposure to diesel particulate matter (DPM) is a major issue in many industrial workplaces given the potential for serious health impacts to exposed workers; including the potential for lung cancer and adverse irritant and cardiovascular effects. Personal respiratory protective devices are an accepted safety measure to mitigate worker exposure against the potentially damaging health impacts of DPM. To be protective, they need to act as effective filters against carbon and other particulates. In Australia, the filtering efficiency of respiratory protective devices is determined by challenging test filter media with aerosolised sodium chloride to determine penetration at designated flow rates. The methodology outlined in AS/NZS1716 (Standards Australia International Ltd and Standards New Zealand 2012. Respiratory protective devices. Sydney/Wellington: SAI Global Limited/Standards New Zealand) does not account for the differences between characteristics of workplace contaminants like DPM and sodium chloride such as structure, composition, and particle size. This study examined filtering efficiency for three commonly used AS/NZS certified respirator filter models, challenging them with two types of diesel emissions; those from a diesel generator and a diesel engine. Penetration through the filter media of elemental carbon (EC), total carbon (TC), and total suspended particulate (TSP) was calculated. Results indicate that filtering efficiency assumed by P2 certification in Australia was achieved for two of the three respirator models for DPM generated using the small diesel generator, whilst when the larger diesel engine was used, filtering efficiency requirements were met for all three filter models. These results suggest that the testing methodology specified for certification of personal respiratory protective devices by Standards Australia may not ensure adequate protection for

  8. Analysis of concentration levels of particulate matter (PM10, total suspended particulates and black smoke in the city of Zrenjanin

    Directory of Open Access Journals (Sweden)

    Vujić Bogdana B.

    2010-01-01

    Full Text Available Air quality monitoring on the territory of AP Vojvodina was initiated in mid 90s. During the last decade of the 20th century the development of the air quality monitoring in Serbia didn’t keep up with the pace of the other countries in the region due to political isolation and severe economic crisis. Monitoring of the particular pollutants was conducted unsystematically and sporadically. Data presented in this paper were obtained on the territory of the city of Zrenjanin, which represents typical agglomeration in the region in regard to its geographical location, population, level of industry development and the presence of natural gas as energy product in the remote and domestic heating system of residential objects. Available data on the concentration levels of PM10 (particulate matter with aerodynamic diameter less than 10 μm, TSP (total suspended particulates and BS (black smoke during the period of 2005-2007 (three cold and three warm seasons have been used in this work in order to carry out analysis and comparison of the daily concentration levels of PM10, TSP and BS and their seasonal variation.

  9. Acute effects of particulate matter on respiratory diseases, symptoms and functions:. epidemiological results of the Austrian Project on Health Effects of Particulate Matter (AUPHEP)

    Science.gov (United States)

    Neuberger, Manfred; Schimek, Michael G.; Horak, Friedrich; Moshammer, Hanns; Kundi, Michael; Frischer, Thomas; Gomiscek, Bostjan; Puxbaum, Hans; Hauck, Helger; Auphep-Team

    To examine hypotheses regarding health effects of particulate matter, we conducted time series studies in Austrian urban and rural areas. Of the pollutants measured, ambient PM 2.5 was most consistently associated with parameters of respiratory health. Time series studies applying semiparametric generalized additive models showed significant increases of respiratory hospital admissions (ICD 490-496) at age 65 and older. The early increase of 5.5% in Vienna at a lag of 2 days in males and of 5.6% per 10 μg/m 3 at a lag of 3 days in females was not observed in a nearby rural area. Another increase of respiratory admissions (mainly COPD) was observed after a lag of 10-11 days. A time series on a panel of 56 healthy preschool children showed a significant impact of the carbonaceous fraction of PM 2.5 on tidal breathing pattern assessed by inductive plethysmography. In repeated oscillometric measurements of respiratory resistance in 164 healthy elementary school children not only immediate responses to fine particulates were found but also latent ones, possibly indicating inflammatory changes in airways. It may be speculated that the improvements of urban air quality prevented measurable effects on respiratory mortality. More sensitive indicators, however, still show acute impairments of respiratory function and health in elderly and children which are associated with fine particulates and subfractions related to motor traffic.

  10. Evaluating the mutagenicity of the water-soluble fraction of air particulate matter: A comparison of two extraction strategies.

    Science.gov (United States)

    Palacio, Isabel C; Oliveira, Ivo F; Franklin, Robson L; Barros, Silvia B M; Roubicek, Deborah A

    2016-09-01

    Many studies have focused on assessing the genotoxic potential of the organic fraction of airborne particulate matter. However, the determination of water-soluble compounds, and the evaluation of the toxic effects of these elements can also provide valuable information for the development of novel strategies to control atmospheric air pollution. To determine an appropriate extraction method for assessing the mutagenicity of the water-soluble fraction of PM, we performed microwave assisted (MW) and ultrasonic bath (US) extractions, using water as solvent, in eight different air samples (TSP and PM10). Mutagenicity and extraction performances were evaluated using the Salmonella/microsome assay with strains TA98 and TA100, followed by chemical determination of water-soluble metals. Additionally, we evaluated the chemical and biological stability of the extracts testing their mutagenic potential and chemically determining elements present in the samples along several periods after extraction. Reference material SRM 1648a was used. The comparison of MW and US extractions did not show differences on the metals concentrations, however positive mutagenic responses were detected with TA98 strain in all samples extracted using the MW method, but not with the US bath extraction. The recovery, using reference material was better in samples extracted with MW. We concluded that the MW extraction is more efficient to assess the mutagenic activity of the soluble fraction of airborne PM. We also observed that the extract freezing and storage over 60 days has a significant effect on the mutagenic and analytical results on PM samples, and should be avoided.

  11. Evaluating the mutagenicity of the water-soluble fraction of air particulate matter: A comparison of two extraction strategies.

    Science.gov (United States)

    Palacio, Isabel C; Oliveira, Ivo F; Franklin, Robson L; Barros, Silvia B M; Roubicek, Deborah A

    2016-09-01

    Many studies have focused on assessing the genotoxic potential of the organic fraction of airborne particulate matter. However, the determination of water-soluble compounds, and the evaluation of the toxic effects of these elements can also provide valuable information for the development of novel strategies to control atmospheric air pollution. To determine an appropriate extraction method for assessing the mutagenicity of the water-soluble fraction of PM, we performed microwave assisted (MW) and ultrasonic bath (US) extractions, using water as solvent, in eight different air samples (TSP and PM10). Mutagenicity and extraction performances were evaluated using the Salmonella/microsome assay with strains TA98 and TA100, followed by chemical determination of water-soluble metals. Additionally, we evaluated the chemical and biological stability of the extracts testing their mutagenic potential and chemically determining elements present in the samples along several periods after extraction. Reference material SRM 1648a was used. The comparison of MW and US extractions did not show differences on the metals concentrations, however positive mutagenic responses were detected with TA98 strain in all samples extracted using the MW method, but not with the US bath extraction. The recovery, using reference material was better in samples extracted with MW. We concluded that the MW extraction is more efficient to assess the mutagenic activity of the soluble fraction of airborne PM. We also observed that the extract freezing and storage over 60 days has a significant effect on the mutagenic and analytical results on PM samples, and should be avoided. PMID:27258903

  12. Examination of particulate matter and heavy metals and their effects in at-risk wards in Washington, DC

    Science.gov (United States)

    Greene, Natasha Ann

    One of the major contributions to pollution in the Washington, DC urban environment is particulate matter (PM). Quite often, ambient airborne toxics are closely associated with fine PM (PM2.5). We have performed high-resolution aerosol measurements of PM2.5 in four wards (Ward 1, 4, 5, and 7) of Washington, DC during two intensive observational periods (IOP). The first IOP occurred during the summer of 2003 (June 23rd to August 8th). The second IOP transpired during the late fall season of 2003 (October 20th to December 4 th). The measurement platform consisted of a Laser Particle Counter (LPC) and a Quartz Crystal Microbalance Cascade Impactor (QCM) to obtain both in-situ number and mass density distributions across the measurement sites. The data shows spatial distributions of particulate matter characterized as a function of size and mass properties. The QCM analyses show significant levels (> 15 mug/m3) of ward-averaged PM2.5 in Wards 4, 1, and 7 respectively during the summer IOP. However, all wards were less than the EPA National Ambient Air Quality Standard (NAAQS) of 15 mug/m 3 during the fall IOP ward-averaged measurements. Yet, investigations of the site-averaged measurements during the fall revealed some specific locations in Ward 4 that exceeded the NAAQS. Results also show that the aerosol mass density peaked in the 0.3 mum mode during the summer IOP and in the 0.15 mum mode during the fall IOP. The number density peaked in the 0.3--0.5 mum size range. Accordingly, the distributions have also been analyzed as a function of meteorological factors, such as wind speed and direction via NOAA HYSPLIT trajectories. One important attribute to this study is the evaluation of risks amongst IBC subgroups (youth, adults, elderly, black, white, hispanic, male, and female) for bath pediatric asthma rates and the onset of lung cancer over a lifetime (70-year period) when exposed to these levels of particulates. It has been determined that there are individual excess

  13. Piezoelectric properties of quartz and cristobalite airborne particulates as a cause of adverse health effects

    Science.gov (United States)

    Williamson, B. J.; Pastiroff, S.; Cressey, G.

    Inhalation of quartz and cristobalite dusts is commonly linked with health effects although the mechanisms involved are poorly understood. Grinding of these piezoelectric silica polymorphs produces particulates with transient piezoelectric charges. This is likely to cause vigorous reaction with atmospheric gases and, through interaction with surface charges and 'dangling bonds', may lead to the formation of highly deleterious ozonide, superoxide and hydroxyl radicals. It is hoped that this study will encourage experimental work to quantify piezoelectric effects in silica dusts and to develop a method for their neutralisation during cutting and grinding processes.

  14. Polychlorinated biphenyls and organochlorine pesticides in atmospheric particulate matter of Northern China: distribution, sources, and risk assessment.

    Science.gov (United States)

    Ding, Shuangshuang; Dong, Faqin; Wang, Bin; Chen, Shu; Zhang, Liufei; Chen, Mengjun; Gao, Mei; He, Ping

    2015-11-01

    The objectives of this work are to track the contamination levels, distribution characteristics, and sources of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in atmospheric particulate matter (APM) of Northern China and to provide more comprehensive and fundamental data for risk assessment of organochlorine contaminants (OCs) in environments. Samples were extracted and purified by the microwave-assisted extraction and solid-phase extraction system, respectively. PCBs and OCPs were analyzed by gas chromatograph-mass spectrometer. The concentrations of ΣPCBs and ΣOCPs ranged from 0.73 to 112.65 ng/g and 0.14 to 34.73 ng/g, respectively. PCBs in atmospheric particulates collected from Shijiazhuang City had the highest concentration, whereas OCP congeners were at the relatively low levels. However, the highest concentration of OCPs occurred in Yongning City. The principal component analysis indicated that the predominant compositions of PCBs in most of samples were tetrachlorobiphenyl (Tetra-CB), pentachlorobiphenyl (Penta-CB), hexachlorobiphenyl (Hexa-CB), and heptachlorbiphenyl (Hepta-CB), while hexachlorocyclohexanes (HCHs), DDTs, chlordanes, and endosulfans were the dominant components of OCPs, which was attributed to their application characteristics. OCs in those particles were further used to assess a potential cancer risk to humans via ingestion, dermal contact, and inhalation. Cancer risk was evaluated in airborne particles caused by PCBs and OCPs. TEQPCBs values suggested that the representative areas were subject to different pollution degrees. However, the pollution of OCPs in certain areas should be a concern due to 41.6% of the high risk, which could pose a potential risk to organisms. PMID:26139408

  15. Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter in Venice air.

    Science.gov (United States)

    Gregoris, Elena; Barbaro, Elena; Morabito, Elisa; Toscano, Giuseppa; Donateo, Antonio; Cesari, Daniela; Contini, Daniele; Gambaro, Andrea

    2016-04-01

    Harbours are important hubs for economic growth in both tourism and commercial activities. They are also an environmental burden being a source of atmospheric pollution often localized near cities and industrial complexes. The aim of this study is to quantify the relative contribution of maritime traffic and harbour activities to atmospheric pollutant concentration in the Venice lagoon. The impact of ship traffic was quantified on various pollutants that are not directly included in the current European legislation for shipping emission reduction: (i) gaseous and particulate PAHs; (ii) metals in PM10; and (iii) PM10 and PM2.5. All contributions were correlated with the tonnage of ships during the sampling periods and results were used to evaluate the impact of the European Directive 2005/33/EC on air quality in Venice comparing measurements taken before and after the application of the Directive (year 2010). The outcomes suggest that legislation on ship traffic, which focused on the issue of the emissions of sulphur oxides, could be an efficient method also to reduce the impact of shipping on primary particulate matter concentration; on the other hand, we did not observe a significant reduction in the contribution of ship traffic and harbour activities to particulate PAHs and metals. Graphical abstract Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter and evaluation of the effect of an European Directive on air quality in Venice. PMID:26681325

  16. Biomass burning as the main source of organic aerosol particulate matter in Malaysia during haze episodes.

    Science.gov (United States)

    Radzi bin Abas, M; Oros, Daniel R; Simoneit, B R T

    2004-05-01

    The haze episodes that occurred in Malaysia in September-October 1991, August-October 1994 and September-October 1997 have been attributed to suspended smoke particulate matter from biomass burning in southern Sumatra and Kalimantan, Indonesia. In the present study, polar organic compounds in aerosol particulate matter from Malaysia are converted to their trimethylsilyl derivatives and analyzed by gas chromatography-mass spectrometry in order to better assess the contribution of the biomass burning component during the haze episodes. On the basis of this analysis, levoglucosan was found to be the most abundant organic compound detected in almost all samples. The monosaccharides, alpha- and beta-mannose, the lignin breakdown products, vanillic and syringic acids and the minor steroids, cholesterol and beta-sitosterol were also present in some samples. The presence of the tracers from smoke overwhelmed the typical signatures of emissions from traffic and other anthropogenic activities in the urban areas.

  17. Biomass burning as the main source of organic aerosol particulate matter in Malaysia during haze episodes

    Energy Technology Data Exchange (ETDEWEB)

    Abas, M. Radzi bin [Malaya Univ., Dept. of Chemistry, Kuala Lumpur (Malaysia); Oros, Daniel R.; Simoneit, B.R.T. [Oregon State Univ., Environmental and Petroleum Geochemistry Group, Corvallis, OR (United States)

    2004-05-01

    The haze episodes that occurred in Malaysia in September-October 1991, August-October 1994 and September-October 1997 have been attributed to suspended smoke particulate matter from biomass burning in southern Sumatra and Kalimantan, Indonesia. In the present study, polar organic compounds in aerosol particulate matter from Malaysia are converted to their trimethylsilyl derivatives and analyzed by gas chromatography-mass spectrometry in order to better assess the contribution of the biomass burning component during the haze episodes. On the basis of this analysis, levoglucosan was found to be the most abundant organic compound detected in almost all samples. The monosaccharides, {alpha}- and {beta}-mannose, the lignin breakdown products, vanillic and syringic acids and the minor steroids, cholesterol and {beta}-sitosterol were also present in some samples. The presence of the tracers from smoke overwhelmed the typical signatures of emissions from traffic and other anthropogenic activities in the urban areas. (Author)

  18. Seasonal Variability of Concentration and Air Quality of Ambient Particulate Matter in Sosnowiec City

    Directory of Open Access Journals (Sweden)

    Jolanta Cembrzyńska

    2015-12-01

    Full Text Available Introduction: Exposing the population to more than standard concentration of particulate matter (PM is a crucial factor shaping the public health on urbanized areas both in Europe and Poland. In most cases, exceeded air quality standards relate to the winter period, in which there has been the greatest amount. Many studies have indicated, that exposure to PM can cause adverse health effects. Human exposure especially to fine particles (with an aerodynamic diameter less than 2.5 µm, causes risk of cardiovascular and respiratory diseases, due to daily mortality and hospital admissions. Various types of epidemiological studies have indicated, that ambient air pollution is responsible for increasing risk of lung cancer. For this reason, in 2013 The International Agency for Research on Cancer (IARC classified outdoor air pollution and particulate matter as carcinogenic to humans (Group 1.

  19. Polycyclic aromatic hydrocarbons and total extractable particulate organic matter in the Arctic aerosol

    International Nuclear Information System (INIS)

    Samples of total suspended particulate matter were collected in March and August 1979 at Barrow, Alaska, a remote site in the Arctic. Ambient concentrations of extractable particulate organic matter (POM), of polycyclic aromatic hydrocarbons (PAH) and of 210Pb were determined. The samples were also examined by optical and scanning electron microscopy. Average concentrations of POM and PAH were similar to those reported for other remote sites in the northern hemisphere, but the concentrations were considerably higher in March than in August. The presence of fly ash in the samples collected during the March sampling period, as well as seasonal differences in the concentrations of the organic species and 210Pb and in meteorology indicate that the principal source of POM and PAH was fossil fuel combustion in the mid-latitudes during the March sampling period. (author)

  20. Special issue of Atmospheric Environment for Particulate Matter: Atmospheric Sciences, Exposure, and the Fourth Colloquium on PM and Human Health

    Science.gov (United States)

    Middlebrook, Ann; Turner, Jay; Solomon, Paul A.

    2004-10-01

    In response to epidemiological studies published over 20 years ago, at least three research communities have been intensively studying airborne particulate matter (PM). These efforts have been coordinated by approaching the source-atmospheric accumulation/receptor-exposure-dose-health effects paradigm (adopted from NRC, 2001) from different perspectives or along different parts of the paradigm. The atmospheric sciences communities consider the emissions of particles and precursors from sources, their transport and transformation in air to receptor locations, and finally removal from the atmosphere. The exposure communities' interest is to examine the pathways by which pollution or PM, in this case, approaches and enters the body, typically by trying to relate PM concentrations at a central location(s) to exposure and perhaps dose. Both the atmospheric sciences and exposure communities approach the paradigm from left to right. In contrast, the health effects communities have studied health outcomes, including hospital admissions, school absences, disease rates and deaths in human populations, and potential mechanisms of biological actions in laboratory settings. In general, the health effects communities' approach the paradigm from right to left attempting to correlate an observed adverse health effect with dose or exposure measures. For the most part, research results are reported in scientific publications and conferences for each community respectively. Over the years, there has been little effort to integrate information from these diverse groups in a substantive way. While a major attempt took place in 1998 at the Chapel Hill workshop (Albritton and Greenbaum, 1998), little has occurred since.

  1. A rapid method for the analysis of methyl dihydrojasmonate and galaxolide in indoor and outdoor air particulate matter.

    Science.gov (United States)

    Fontal, Marta; van Drooge, Barend L; Grimalt, Joan O

    2016-05-20

    A method for the analysis of methyl dihydrojasmonate (MHDJ) in air particulate matter (PM1 and PM2.5) is described for the first time. This fragrance is determined together galaxolide (HHCB). Airborne particles were collected by filtration of air volumes between 100 and 1000m(3). Recovery efficiencies of filter extraction with Soxhlet and pressurized liquids were evaluated. The method included reaction with BSTFA:TMCS for generation of trimethylsilyloxy derivatives which prevented deleterious effects in the gas capillary column by interaction of hydroxyl groups from air constituents other than these fragrances. This step avoided the use of additional clean up methods such as liquid column chromatography affording direct quantification by GC-EI-MS. The proposed method had enough sensitivity for quantification of these fragrances in indoor and outdoor environmental samples using small aliquots of the PM extracts, e.g. 2.5%, and therefore saving sample material for eventual determination of other compounds. The detection limits were 0.03ng and 0.01ng for MHDJ and HHCB, respectively. Both MHDJ and HHCB were predominantly found in the smallest PM fraction analyzed (fragrances in indoor environments. Information on the occurrence of this and other fragrances is needed to increase the understanding on the influence of anthropogenic activities in the formation of organic aerosols and source apportionment. PMID:27113676

  2. Depth Dependent Elemental Compositions of Particulate Organic Matter (POM) in the Ocean

    OpenAIRE

    Schneider, B.; Schlitzer, Reiner; Fischer, G; Nöthig, Eva-Maria

    2003-01-01

    The production and downward transport of particulate organic matter (POM) creates vertical nutrient and carbon gradients controlling the CO2 exchange between ocean and atmosphere. C:N:P element ratios of POM determine relative magnitudes of downward phosphorus, nitrogen and carbon fluxes. Despite observational evidence for variable element ratios, it is common practice to use the constant Redfield ratios for biogeochemical modeling, which might lead to an underestimation of downward carbon fl...

  3. Integrated assessment and management of ambient particulate matter: International perspective and current research in Serbia

    Directory of Open Access Journals (Sweden)

    Bartonova Alena

    2012-01-01

    Full Text Available Air pollution mitigation is a necessity in Serbia, due to its high levels of criteria pollutants in ambient environment. Successful implementation of mitigation measures requires access to sufficient information from national research, and well running and efficient local participatory processes. To support air pollution mitigation in the West Balkan region, the WeBIOPATR project started a series of bi-annual conferences in 2007. They bring together an inter-disciplinary research community and local and national administrations from Serbia and its neighborhood, to present research results from Serbia and countries all over the world, and to share knowledge and best practices of mitigation. The conferences promote research that may support integrated assessment of particulate matter, and further refinement of the “Pressures-State-Impact“ (PSI part of the “Drivers-Pressures-State-Impact-Response“ (DPSIR framework. Integrated approach needs to be underpinned by solid disciplinary research covering e.g. air quality monitoring technologies, atmospheric and further ambient composition, atmospheric modeling, biological effects and human health. WeBIOPATR conferences report on recently performed studies of particulate matter in Serbia and abroad. Through the breadth of subjects and audience, they bring together a wide inter-disciplinary and cross-sectoral expertise in support of translation of research to practice. They also allow to present examples of successful mitigation achieved with the help of strong local participatory environmental governance, demonstrating the increasing recognition of the need to involve both public and private actors. This paper gives the main features of a full chain approach and elements of integrated approach to particulate matter research, summarizes the proceedings of the 3rd WeBIOPATR conference, and in addition, reviews the results of particulate matter monitoring and source identification studies in Serbia

  4. Genotoxicity and Mutagenicity of Suspended Particulate Matter of River Water and Waste Water Samples

    Directory of Open Access Journals (Sweden)

    Georg Reifferscheid

    2002-01-01

    Full Text Available Suspended particulate matter of samples of river water and waste water treatment plants was tested for genotoxicity and mutagenicity using the standardized umu assay and two versions of the Ames microsuspension assay. The study tries to determine the entire DNA-damaging potential of the water samples and the distribution of DNA-damaging substances among the liquid phase and solid phase. Responsiveness and sensitivity of the bioassays are compared.

  5. Dehydroepiandrosterone Protects Endothelial Cells against Inflammatory Events Induced by Urban Particulate Matter and Titanium Dioxide Nanoparticles

    OpenAIRE

    Elizabeth Huerta-García; Angélica Montiél-Dávalos; Ernesto Alfaro-Moreno; Gisela Gutiérrez-Iglesias; Rebeca López-Marure

    2013-01-01

    Particulate matter (PM) and nanoparticles (NPs) induce activation and dysfunction of endothelial cells characterized by inhibition of proliferation, increase of adhesion and adhesion molecules expression, increase of ROS production, and death. DHEA has shown anti-inflammatory and antioxidant properties in HUVEC activated with proinflammatory agents. We evaluated if DHEA could protect against some inflammatory events produced by PM10 and TiO2 NPs in HUVEC. Adhesion was evaluated by a coculture...

  6. A Bayesian Multivariate Receptor Model for Estimating Source Contributions to Particulate Matter Pollution using National Databases

    OpenAIRE

    2014-01-01

    Time series studies have suggested that air pollution can negatively impact health. These studies have typically focused on the total mass of fine particulate matter air pollution or the individual chemical constituents that contribute to it, and not source-specific contributions to air pollution. Source-specific contribution estimates are useful from a regulatory standpoint by allowing regulators to focus limited resources on reducing emissions from sources that are major cont...

  7. Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models.

    OpenAIRE

    Costa, D L; Dreher, K. L.

    1997-01-01

    Many epidemiologic reports associate ambient levels of particulate matter (PM) with human mortality and morbidity, particularly in people with preexisting cardiopulmonary disease (e.g., chronic obstructive pulmonary disease, infection, asthma). Because much ambient PM is derived from combustion sources, we tested the hypothesis that the health effects of PM arise from anthropogenic PM that contains bioavailable transition metals. The PM samples studied derived from three emission sources (two...

  8. Possible Noncausal Bases for Correlations Between Low Concentrations of Ambient Particulate Matter and Daily Mortality

    OpenAIRE

    Valberg, Peter A

    2003-01-01

    Numerous studies of populations living in areas with good air quality have reported correlations between daily average levels of ambient particulate matter (PM) and daily mortality rates. These associations persist at PM levels below current air quality standards and are difficult to reconcile with the toxicology of PM chemical constituents. The unusual level of lethality per unit PM mass predicted by these associations may result from confounding by unmeasured societal, behavioral, or stress...

  9. Method for determination of stable carbon isotope ratio of methylnitrophenols in atmospheric particulate matter

    Directory of Open Access Journals (Sweden)

    S. Moukhtar

    2011-11-01

    Full Text Available A technique for the measurement of the stable isotope ratio of methylnitrophenols in atmospheric particulate matter is presented. Atmospheric samples from rural and suburban areas were collected for evaluation of the procedure. Particulate matter was collected on quartz fibre filters using dichotomous high volume air samplers. Methylnitrophenols were extracted from the filters using acetonitrile. The sample was then purified using a combination of high-performance liquid chromatography and solid phase extraction. The final solution was then divided into two aliquots. To one aliquot, a derivatising agent, Bis(trimethylsilyltrifluoroacetamide, was added for Gas Chromatography-Mass Spectrometry analysis. The second half of the sample was stored in a refrigerator. For samples with concentrations exceeding 1 ng μl−1, the second half of the sample was used for measurement of stable carbon isotope ratios by Gas Chromatography-Isotope Ratio Mass Spectrometry.

    The procedure described in this paper provides a method for the analysis of methylnitrophenols in atmospheric particulate matter at concentrations as low as 0.3 pg m−3 and for stable isotope ratios with an accuracy of better than ±0.5‰ for concentrations exceeding 100 pg m−3.

    In all atmospheric particulate matter samples analysed, 2-methyl-4-nitrophenol was found to be the most abundant methylnitrophenol, with concentrations ranging from the low pg m−3 range in rural areas to more than 200 pg m−3 in some samples from a suburban location.

  10. Health Outcomes of Exposure to Biological and Chemical Components of Inhalable and Respirable Particulate Matter

    OpenAIRE

    Oyewale Mayowa Morakinyo; Matlou Ingrid Mokgobu; Murembiwa Stanley Mukhola; Raymond Paul Hunter

    2016-01-01

    Particulate matter (PM) is a key indicator of air pollution and a significant risk factor for adverse health outcomes in humans. PM is not a self-contained pollutant but a mixture of different compounds including chemical and biological fractions. While several reviews have focused on the chemical components of PM and associated health effects, there is a dearth of review studies that holistically examine the role of biological and chemical components of inhalable and respirable PM in disease...

  11. Genotoxicity and Mutagenicity of Suspended Particulate Matter of River Water and Waste Water Samples

    OpenAIRE

    Georg Reifferscheid; Oepen, Britta v.

    2002-01-01

    Suspended particulate matter of samples of river water and waste water treatment plants was tested for genotoxicity and mutagenicity using the standardized umu assay and two versions of the Ames microsuspension assay. The study tries to determine the entire DNA-damaging potential of the water samples and the distribution of DNA-damaging substances among the liquid phase and solid phase. Responsiveness and sensitivity of the bioassays are compared.

  12. Study of Hydrothermal Particulate Matter from a Shallow Venting System, offshore Nayarit, Mexico

    Science.gov (United States)

    Ortega-Osorio, A.; Prol-Ledesma, R. M.; Reyes, A. G.; Rubio-Ramos, M. A.; Torres-Vera, M. A.

    2001-12-01

    A shallow (30 ft) hydrothermal site named ``Cora'' (after the indigenous people thereby) was surveyed and sampled throughout direct observation with SCUBA diving during November 25 to December 4, 2000. A total of 10 dives were conducted in order to obtain representative samples from an 85oC fluid source of approximately 10 cm in diameter. Inherent difficulties to the sampling, such as poor visibility and strong bottom currents were overcome and samples of hydrothermal fluid, gas, rocks, and particulate matter were collected directly from the vent. Water samples and hydrothermal fluid were taken with a homemade 1 l cylindrical bottles of two lines by flushing in from the bottom for about ten minutes until total displacement of the seawater; similar procedure was carried out for gas samples. Particulate matter was collected with 0.4mm polycarbonate membrane filters and preserved in a desiccators at a fridge temperature until analysis onshore. Preliminary description of the rock samples suggest that pyritization is the main mineralisation process. Filters containing hydrothermal particulate matter were surveyed under the scanning electron microscope in order to identify the nature (inorganic and organic), as well as the chemistry of the particles. SEM examination revealed the presence of particles of different kind that suggests high degree of mixing and re-suspension: Planctonic organisms and organic matter appeared to be abundant; 25 micron particles of different carbonate faces and inorganic particles of silicates were also recognized. Distinctive euhedral colloidal grains were identified as the resulting process of precipitation from the solution. Microanalysis of iron and sulfur content of 10 micron particles indicate a very likely sulphide mineral face (greigite); 8 micron cinnabar particles are consistent with the mineralization conditions, observed as well in the inner walls of the vent. Analyses of dissolved and particulate trace metals are still ongoing at

  13. Development of analytical techniques for the characterization of natural and anthropogenic compounds in fine particulate matter

    OpenAIRE

    Piazzalunga,

    2007-01-01

    Aerosol is of central importance for atmospheric chemistry and physics, for the biosphere, the climate and public health. The primary parameters that determine the environmental and health effects of aerosol particles are their concentration and chemical composition. In this work we have developed the analytical techniques to study particulate matter composition. The knowledge of PM composition can be useful to identify the main PM sources, the health risk and the formation or depositio...

  14. Fine Particulate Matter Pollution and Hospital Admissions for Respiratory Diseases in Beijing, China.

    Science.gov (United States)

    Xiong, Qiulin; Zhao, Wenji; Gong, Zhaoning; Zhao, Wenhui; Tang, Tao

    2015-09-22

    Fine particulate matter has become the premier air pollutant of Beijing in recent years, enormously impacting the environmental quality of the city and the health of the residents. Fine particles with aerodynamic diameters of 0~0.3 μm, 0.3~0.5 μm, and 0.5~1.0 μm, from the yeasr 2007 to 2012, were monitored, and the hospital data about respiratory diseases during the same period was gathered and calculated. Then the correlation between respiratory health and fine particles was studied by spatial analysis and grey correlation analysis. The results showed that the aerial fine particulate matter pollution was mainly distributed in the Zizhuyuan sub-district office. There was a certain association between respiratory health and fine particles. Outpatients with respiratory system disease in this study area were mostly located in the southeastern regions (Balizhuang sub-district office, Ganjiakou sub-district office, Wanshoulu sub-district office, and Yongdinglu sub-district office) and east-central regions (Zizhuyuan sub-district office and Shuangyushu sub-district office) of the study area. Correspondingly, PM₁ (particulate matter with aerodynamic diameter smaller than 1.0 um) concentrations in these regions were higher than those in any other regions. Grey correlation analysis results showed that the correlation degree of the fine particle concentration with the number of outpatients is high, and the smaller fine particles had more obvious effects on respiratory system disease than larger particles.

  15. Does the composition of streamwater colloidal and particulate matter change during monsoon storms?

    Science.gov (United States)

    Prescott-Smith, J.; Pohlmann, M. A.; Perdrial, J. N.; Perdrial, N.; Troch, P. A.; Chorover, J.

    2012-12-01

    Streams draining mountain catchments are an important pathway for carbon and weathering products to leave the critical zone (CZ). During intense events such as North American monsoon related storms, shallow flow paths may dominate and introduce soil-derived particulate organic matter (POM), mineral particles and organo-mineral heteroaggregates, into the streams. However, it is not yet well understood how the composition of colloidal and particulate matter (PM) changes during the storm-fed hydrograph. We hypothesized that during small, low intensity storms (small hydrograph response) both organic and organo-mineral aggregates will dominate the suspended particulate load, and that during larger high intensity storms (distinct rise of stream water levels) there will be a significant increase in organic polysaccharide particulates during the rising limb and peak of the storm, with higher levels of minerals being re-introduced during the falling limb of the hydrograph. A headwater stream draining a small (1.3km2) watershed in the Santa Catalina Mountain Critical Zone Observatory (SCM-CZO) was sampled at high resolution (5 minute) intervals during monsoon storms, and solutions were cascade-filtered through polycarbonate filters of 8, 1.2, 0.4 and 0.025 μm pore size. The PM mass was determined and particles >8um were further analyzed using Fourier Transform Infrared (FTIR) microscopy. These qualitative spectral results were supplemented by the ultra-violet/visible and fluorescence spectra of the colloidal and dissolved (aliphatic C-H stretching bands were observed in both sets of spectra). Bands characteristic of silicate minerals were present in the particulate load (>8um) but not in the 8μm) mass per liter did not show a consistent trend of change over the course of the hydrograph. This suggests that the low intensity storm may not have moved enough particulate material into the stream to detect a shift in flow path using this method. Additional data are being

  16. Can particulate organic matter reveal emerging changes in soil organic carbon?

    DEFF Research Database (Denmark)

    Simonsson, Magnus; Kirchmann, Holger; Magid, Jakob;

    2014-01-01

    This study assessed whether particulate organic matter (POM) in sand fractions, isolated by wet sieving after treatment with Na hexametaphosphate, can be a sensitive indicator of incipient changes in the content and composition of soil organic matter. In five long-term field experiments including....... This makes the investigated POM fractions less suitable as indicators for changes in soil C stocks. However, the C/N ratio of Fraction B showed a distinct signature of the history of organic matter input to the soil, which was absent in the C/N ratio of the total fine earth. © Soil Science Society of America....... Although organic matter in Fraction B had a higher intrinsic sensitivity to soil management, which was partly able to overcome the larger errors, we concluded that an observer would be more likely to detect changes by measuring total organic C and N, when monitoring decadal changes in C and N pools...

  17. Dietary Supplementation with Olive Oil or Fish Oil and Vascular Effects of Concentrated Ambient Particulate Matter Exposure in Human Volunteers

    Science.gov (United States)

    Background: Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for cardiovascular disease. Olive oil (OO) and fish oil (FO) supplements have beneficial effects on endothelial function. Objective: In this study we evaluated the efficacy of...

  18. Olive Oil Supplements Ameliorate Endothelial Dysfunction Caused by Concentrated Ambient Particulate Matter Exposure in Healthy Human Volunteers

    Science.gov (United States)

    Context: Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for clinical cardiovascular events and progression of atherosclerosis. Dietary supplements such as olive oil and fish oil have beneficial effects on endothelial function, and ther...

  19. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset provides all data used to generate the figures and tables in the article entitled "Particulate matter and black carbon optical properties and emission...

  20. The impact of ambient particulate matter (PM10) on the population mortality for cerebrovascular diseasesa case-crossover study

    Institute of Scientific and Technical Information of China (English)

    王旭英

    2013-01-01

    Objective To analyze the association between the concentration of ambient inhalable particulate matter(PM10) and population mortality for cerebrovascular diseases and to explore the impact of PM10 on cerebrovascular

  1. Differential electrocardiogram efffects in normal and hypertensive rats after inhalation exposure to transition metal rich particulate matter

    Science.gov (United States)

    Inhalation of particulate matter (PM) associated with air pollution causes adverse effects on cardiac function including heightened associations with ischemic heart disease, dysrhythmias, heart failure, and cardiac arrest. Some of these effects have been attributable to transitio...

  2. Mutagenic and recombinagenic activity of airborne particulates, PM10 and TSP, organic extracts in the Drosophila wing-spot test

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues Dihl, Rafael [Programa de Pos Graduacao em Genetica e Biologia Molecular (PPGBM), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Grazielli Azevedo da Silva, Carla [Instituto de Quimica, Departamento de Quimica Organica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Souza do Amaral, Viviane; Reguly, Maria Luiza [Laboratorio de Diagnostico da Toxicidade Genetica (TOXIGEN), Programa de Pos Graduacao em Genetica e Toxicologia Aplicada (PPGGTA), Universidade Luterana do Brasil - ULBRA, Avenida Farroupilha 8001, 92420280 Canoas, RS (Brazil); Rodrigues de Andrade, Heloisa Helena [Laboratorio de Diagnostico da Toxicidade Genetica (TOXIGEN), Programa de Pos Graduacao em Genetica e Toxicologia Aplicada (PPGGTA), Universidade Luterana do Brasil -ULBRA, Avenida Farroupilha 8001, 92420280 Canoas, RS (Brazil)], E-mail: heloisa@ulbra.br

    2008-01-15

    The genotoxicity associated with air pollution in the city of Canoas, Rio Grande do Sul (Brazil), was assessed in November (spring) and January (summer). We applied the somatic mutation and recombination test (SMART) in Drosophila melanogaster in its standard version with normal bioactivation (ST) and in its variant with increased cytochrome P450-dependent biotransformation capacity (HB). The data indicated the genotoxicity of TSP and PM10 collected in November, in both ST and HB crosses. The genotoxic activity of the PM10 material in the spring sample was exclusively associated with the induction of mitotic recombination, whereas the TSP genetic toxicity was due to both recombinational as well as point and/or chromosomal mutation events. Considering PM10 collected in January, a positive response-100% (17.10 m{sup 3}/ml) concentration-was observed in the HB cross, which was not detected in the ST cross. - Drosophila Wing-Spot Test can be used for detection of airborne particulates mutagenesis.

  3. Policy research programme on particulate matter. Main results and policy consequences; Beleidsgericht onderzoeksprogramma fijn stof. Resultaten op hoofdlijnen en beleidsconsequenties

    Energy Technology Data Exchange (ETDEWEB)

    Matthijsen, J.; Koelemeijer, R.B.A.

    2010-06-15

    The Policy-Oriented Research on Particulate Matter (BOP) programme aimed at increasing knowledge on particulate matter so that future policy can be supported adequately. The main research objectives of BOP were to improve knowledge of the PM10 and PM2,5 concentrations, composition and sources of particulate matter; Increasing the understanding of the behavior of particulate matter in the urban area; Determining the trends in concentrations of particulate matter and its components; and Clarify the impact of policies in the past and the future of PM10 and PM2,5 concentrations. The first part of this study presents the main findings of the study, discussing the (chemical) composition of particulate matter, concentration trends, expected developments, health impacts, policy implications, and how to proceed with the particulate matter dossier. In the second part of the study the underlying analysis are elaborated. [Dutch] Het Beleidsgericht Onderzoeksprogramma Particulate Matter (BOP) had als doel om de kennis over fijn stof te vergroten, zodat beleidsvorming in de toekomst adequater ondersteund kan worden. De belangrijkste onderzoeksdoelstellingen van BOP waren: Verbeteren van de kennis over de PM10- en PM2,5-concentraties, de samenstelling en de bronnen van fijn stof; Vergroten van het inzicht in het gedrag van fijn stof in het stedelijke gebied; Bepalen van de trends in fijnstofconcentraties en de bestanddelen ervan; Verduidelijken van de invloed van beleidsmaatregelen in het verleden en de toekomst op de PM10- en PM2,5-concentraties. Het eerste deel van deze studie, de Bevindingen, presenteert de belangrijkste uitkomsten van het onderzoek. Hierbij komen achtereenvolgens aan de orde: de (chemische) samenstelling van fijn stof, trends in concentraties, verwachte ontwikkelingen, gezondheidseffecten, beleidsconsequenties en hoe nu verder te gaan met het dossier fijn stof. In het tweede deel van de studie, de Verdieping, staat de verantwoording en worden de

  4. Analytical in vitro approach for studying cyto- and genotoxic effects of particulate airborne material.

    Science.gov (United States)

    Aufderheide, Michaela; Scheffler, Stefanie; Möhle, Niklas; Halter, Beat; Hochrainer, Dieter

    2011-12-01

    In the field of inhalation toxicology, progress in the development of in vitro methods and efficient exposure strategies now offers the implementation of cellular-based systems. These can be used to analyze the hazardous potency of airborne substances like gases, particles, and complex mixtures (combustion products). In addition, the regulatory authorities require the integration of such approaches to reduce or replace animal experiments. Although the animal experiment currently still has to provide the last proof of the toxicological potency and classification of a certain compound, in vitro testing is gaining more and more importance in toxicological considerations. This paper gives a brief characterization of the CULTEX® Radial Flow System exposure device, which allows the exposure of cultivated cells as well as bacteria under reproducible and stable conditions for studying cellular and genotoxic effects after the exposure at the air-liquid or air-agar interface, respectively. A commercial bronchial epithelial cell line (16HBE14o-) as well as Salmonella typhimurium tester strains were exposed to smoke of different research and commercial available cigarettes. A dose-dependent reduction of cell viability was found in the case of 16HBE14o- cells; S. typhimurium responded with a dose-dependent induction of revertants. The promising results recommend the integration of cellular studies in the field of inhalation toxicology and their regulatory acceptance by advancing appropriate validation studies.

  5. Cleanroom airborne particulate limits and 70% isopropyl alcohol: a lingering problem for pharmaceutical manufacturing?

    Science.gov (United States)

    Eaton, Tim

    2009-01-01

    Seventy percent isopropyl alcohol (70% IPA) in water for injection is extensively utilised within pharmaceutical cleanrooms for glove and surface disinfection. When supplied in pressurised containers and delivered as an aerosol, it has been demonstrated that large quantities of 70% IPA particles are generated that remain airborne for substantial periods of time. Within non-unidirectional airflow cleanroom areas, such particles are likely to be recorded by the particle monitoring system. Consequently, the derived operational limits for particles will almost certainly be at "artificially high" levels and any particle generating activities with contamination potential may be masked. These high particle levels may not comply with the requirements of Annex 1 of the European Unions Guide to Good Manufacturing Practices (EU GGMP) and the United States Food and Drug Administration (FDA) Aseptic Processing Guideline. This is the case predominantly for the larger particles (> or =5 microm), the monitoring of which is exclusively required by the Annex 1 guide. However, by using canisters that deliver the 70% IPA as a stream, large quantities of particles are not generated and more meaningful and compliant operational levels can be obtained. Additionally, the EU GGMP's Annex 1 continuing requirement to monitor particles > or =5 microm appears to have little value or scientific justification and restricts further harmonisation of the European guide with the US FDA Aseptic Processing Guideline.

  6. Particulate matter in terrestrial solutions: insights from a European beech forest in Germany

    Science.gov (United States)

    Levia, Delphis; Michalzik, Beate; Bischoff, Sebastian; Näthe, Kerstin; Gruselle, Marie-Cecile; Legates, David; Richter, Susanne

    2015-04-01

    Particulate matter (PM) can affect the functional ecology and health of forest ecosystems. Nonetheless, the cycling of particulate matter is usually neglected in studies examining the biogeochemistry of forest ecosystems. The size and shape of PM has been documented to influence both its impaction on forest canopies and its biogeochemical reactivity. So what is the size and shape of PM in bulk precipitation, throughfall, stemflow, and Oa solution? An answer to this question is of prime importance to those wishing to better model the biogeochemistry of forests. This presentation examines the nature of PM in terrestrial solutions from a European beech (Fagus sylvatica L.) in east-central Germany during the leafed and leafless periods. Scanning electron microscopy, image processing, and data analysis permitted quantification of the size and shape of PM in forest solutions. Building upon the work of Levia et al. [2013]* who quantified the diameter distributions of 43,278 individual particulates in bulk precipitation, throughfall, stemflow, and Oa soil solution, this work delves into surface area, roundness, and perimeter of PM in terrestrial solutions. Initial analyses have revealed that there are marked differences in the geometry of PM in bulk precipitation, throughfall, stemflow, and Oa solutions with implications for biogeochemical modeling of PM flux in forests. --------------- * Levia, D.F., Michalzik, B., Bischoff, S., Näthe, K., Legates, D.R., Gruselle, M.C-. and Richter, S. 2013. Measurement and modeling of diameter distributions of particulate matter in terrestrial solutions. Geophysical Research Letters 40(7): 1317-1321. [DOI: 10.1002/grl.50305] Funding note: This work was funded by the Alexander von Humboldt Foundation.

  7. Pavement wear and airborne dust pollution in Norway

    OpenAIRE

    Snilsberg, Brynhild

    2008-01-01

    In several large cities in Norway the traffic volume is high. The use of studded tires and other friction enhancing measures during winter leads to significant pavement wear, which in turn leads to an increase in the amount of airborne particulate matter, often exceeding the limits set in the ambient air regulation. This represents a nuisance or health risk for people being exposed to the pollution. According to regulations set by the European Union particulate matter is measured and regulate...

  8. Confinement of airborne particulate radioactivity in the case of an accident

    International Nuclear Information System (INIS)

    In the case of an accident, the filter elements on the inlets and exhausts of the air-cleaning systems of a nuclear facility may become a part of the remaining fission product barrier. Among others, the Project Nuclear Safety is pursuing the information necessary to insure safe operation of air-cleaning systems under accident conditions. Experimental investigations into the response of HEPA filters to differential presssures involving both dry and moist air have demonstrated the occurrence of structural failure with subsequent loss of efficiency at low values of differential pressures. Contributions are being made to the development and verification of computer codes used to calculate those fluid-dynamic and thermodynamic conditions expected to prevail in an air-cleaning system as a result of potential accident situations. With regard to further investigations, a new test facility was put into operation for the realization of superimposed challenges and a new method for testing particulate removal efficiency under high temperature or high humidity was developed. (orig./HP)

  9. Enhanced rates of particulate organic matter remineralization by microzooplankton are diminished by added ballast minerals

    Directory of Open Access Journals (Sweden)

    F. A. C. Le Moigne

    2013-09-01

    Full Text Available To examine the potentially competing influences of microzooplankton and calcite mineral ballast on organic matter remineralization, we incubated diatoms in darkness in rolling tanks with and without added calcite minerals (coccoliths and microzooplankton (rotifers. Concentrations of particulate organic matter (POM in suspension or in aggregates, of dissolved organic matter (DOM, and of dissolved inorganic nutrients were monitored over 8 days. The presence of rotifers enhanced the remineralization of ammonium and phosphate, but not dissolved silicon, from the biogenic particulate matter, up to 40% of which became incorporated into aggregates early in the experiment. Added calcite resulted in rates of excretion of ammonium and phosphate by rotifers that were depressed by 67% and 36%, respectively, demonstrating the potential for minerals to inhibit the destruction of POM by zooplankton in the water column. Lastly, the presence of the rotifers and added calcite minerals resulted in a more rapid initial rate of aggregation, although not a greater overall amount of aggregation during the experiment.

  10. Emission estimates of particulate matter and heavy metals from mobile sources in Delhi (India).

    Science.gov (United States)

    Kumari, Ragini; Attri, Arun K; Panis, Luc Int; Gurjar, B R

    2013-04-01

    An attempt has been made to make a comprehensive emission inventory of particulate matter (PM) of various size fractions and also of heavy metals (HMs) emitted from mobile sources (both exhaust and non-exhaust) from the road transport of Delhi, India (1991-2006). COPERT-III and 4 models were mainly used toestimate these emissions. Results show that the annual exhaust emission of PM of size upto 2.5 micrometer (PM2.5) has increased from 3Gg to 4.5Gg during 1991-2006 irrespective of'improvement in vehicle-technology and fuel use. PM emission from exhaust and non-exhaust sources in general has increased. Heavy commercial vehicles-need attention to control particulate emission as it emerged as a predominant source of PM emissions. Among non-exhaust emissions of total suspended particulate matter (TSP), road-surface wear (~49%) has the prime contribution. As a result of-introduction of unleaded gasoline Pb has significantly reduced (~8 fold) whereas share of Cu and Zn are still considerable. Among non-exhaust sources, Pb release was the most significant one from tyre-wear whereas from break-wear, Cu release was found to be the most significant followed by Pb and Cr + Zn. Because of public health concerns further policies need to be developed to reduce emissions of PM and HMs from the road transport of megacity Delhi. PMID:25464689

  11. Design, testing and demonstration of a small unmanned aircraft system (sUAS) and payload for measuring wind speed and particulate matter in the atmospheric boundary layer

    Science.gov (United States)

    Riddell, Kevin Donald Alexander

    The atmospheric boundary layer (ABL) is the layer of air directly influenced by the Earth's surface and is the layer of the atmosphere most important to humans as this is the air we live in. Methods for measuring the properties of the ABL include three general approaches: satellite based, ground based and airborne. A major research challenge is that many contemporary methods provide a restricted spatial resolution or coverage of variations of ABL properties such as how wind speed varies across a landscape with complex topography. To enhance our capacity to measure the properties of the ABL, this thesis presents a new technique that involves a small unmanned aircraft system (sUAS) equipped with a customized payload for measuring wind speed and particulate matter. The research presented herein outlines two key phases in establishing the proof of concept of the payload and its integration on the sUAS: (1) design and testing and (2) field demonstration. The first project focuses on measuring wind speed, which has been measured with fixed wing sUASs in previous research. but not with a helicopter sUAS. The second project focuses on the measurement of particulate matter, which is a major air pollutant typically measured with ground-based sensors. Results from both proof of concept projects suggest that ABL research could benefit from the proposed techniques. .

  12. Tonopah Test Range Air Monitoring: CY2013 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A [DRI; Nikolich, George [DRI; Shadel, Craig [DRI; McCurdy, Greg [DRI; Etyemezian, Vicken [DRI; Miller, Julianne J [DRI

    2014-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during on-going monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2013 monitoring include: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2012 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations (this was the latest documented data available at the time of this writing); (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. However, differences in the observed dust concentrations are likely due to differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  13. Tonopah Test Range Air Monitoring. CY2014 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Nikoloch, George [Desert Research Inst. (DRI), Las Vegas, NV (United States); Shadel, Craig [Desert Research Inst. (DRI), Las Vegas, NV (United States); Chapman, Jenny [Desert Research Inst. (DRI), Las Vegas, NV (United States); Mizell, Steve A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Las Vegas, NV (United States); Etyemezian, Vicken [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J. [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2015-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2014 monitoring are: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2014 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations; (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. Differences in the observed dust concentrations are likely the result of differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  14. Enhanced rates of particulate organic matter remineralization by microzooplankton are diminished by added ballast minerals

    Directory of Open Access Journals (Sweden)

    F. A. C. Le Moigne

    2013-02-01

    Full Text Available To examine the potentially competing influences of microzooplankton and calcite mineral ballast on organic matter remineralization, we incubated diatoms in darkness in rolling tanks with and without added calcite minerals (coccoliths and microzooplankton (rotifers. Concentrations of particulate organic matter (POM, suspended or in aggregates, of dissolved organic matter (DOM, and of dissolved inorganic nutrients were monitored over 8 days. The presence of rotifers enhanced the remineralization of ammonium and phosphate, but not dissolved silicon, from the biogenic material, up to 40% of which became incorporated into aggregates early in the experiment. Added calcite resulted in rates of excretion of ammonium and phosphate by rotifers that were depressed by 67% and 36%, respectively, demonstrating the potential for minerals to inhibit the destruction of POM in the water column by zooplankton. Lastly, the presence of the rotifers and added calcite minerals resulted in more rapid kinetics of aggregation, although not a greater overall amount of aggregation during the experiment.

  15. Monitoring of 1-min personal particulate matter exposures in relation to voice-recorded time-activity data.

    Science.gov (United States)

    Quintana, P J; Valenzia, J R; Delfino, R J; Liu, L J

    2001-12-01

    Recent studies on the association between exposures to airborne particulate matter (PM) and disease have identified short-term peaks in PM exposures as posing especial health threats. Lightweight personal instruments are needed to characterize short-term exposures to PM and to identify the most important sources of high PM excursions. In this study, we measured exposure to fine PM using a small personal nephelometer (pDR; MIE, Inc) to investigate the utility of this instrument in identifying activities and microenvironments most associated with high PM exposures and the magnitude and duration of peaks in PM exposures. Ten adult volunteers wore a pDR recording PM concentrations at 1-min time intervals for 1 week each. PM concentrations were measured by the pDR in units of microg/m(3) based on light scatter. The use of a time-stamped voice recorder enabled activity and location to be continuously documented in real time. In addition, a small, inexpensive light intensity logger was affixed to the pDR to evaluate the potential of this instrument to assist in verifying wearer- recorded data. For each person, patterns of PM exposure were remarkably consistent over daily activities and showed large excursions associated with specific indoor and outdoor microenvironments and activities, such as cooking. When the magnitude and duration of excursions in PM were analyzed, we found that high PM levels occurred in relatively few of the minutes measured but comprised a substantial fraction of the total exposure to PM. Fifteen-minute averaged PM levels were found to be as much as 10 times the daily average. When the data were analyzed with a generalized estimating equation model to account for effects of autocorrelation and clustering, PM exposure was significantly higher during subject-reported events including barbeque, yard work, being near pets or construction activities, cooking, and environmental tobacco smoke exposure, as compared with periods with no pollution events

  16. Chemical characteristics and causes of airborne particulate pollution in warm seasons in Wuhan, central China

    Science.gov (United States)

    Lyu, Xiaopu; Chen, Nan; Guo, Hai; Zeng, Lewei; Zhang, Weihao; Shen, Fan; Quan, Jihong; Wang, Nan

    2016-08-01

    Continuous measurements of airborne particles and their chemical compositions were conducted in May, June, October, and November 2014 at an urban site in Wuhan, central China. The results indicate that particle concentrations remained at a relatively high level in Wuhan, with averages of 135.1 ± 4.4 (mean ± 95 % confidence interval) and 118.9 ± 3.7 µg m-3 for PM10 and 81.2 ± 2.6 and 85.3 ± 2.6 µg m-3 for PM2.5 in summer and autumn, respectively. Moreover, PM2.5 levels frequently exceeded the National Standard Level II (i.e., daily average of 75 µg m-3), and six PM2.5 episodes (i.e., daily PM2.5 averages above 75 µg m-3 for 3 or more consecutive days) were captured during the sampling campaign. Potassium was the most abundant element in PM2.5, with an average concentration of 2060.7 ± 82.3 ng m-3; this finding indicates intensive biomass burning in and around Wuhan during the study period, because almost no correlation was found between potassium and mineral elements (iron and calcium). The source apportionment results confirm that biomass burning was the main cause of episodes 1, 3, and 4, with contributions to PM2.5 of 46.6 % ± 3.0 %, 50.8 % ± 1.2 %, and 44.8 % ± 2.6%, respectively, whereas fugitive dust was the leading factor in episode 2. Episodes 5 and 6 resulted mainly from increases in vehicular emissions and secondary inorganic aerosols, and the mass and proportion of NO3- both peaked during episode 6. The high levels of NOx and NH3 and the low temperature during episode 6 were responsible for the increase of NO3-. Moreover, the formation of secondary organic carbon was found to be dominated by aromatics and isoprene in autumn, and the contribution of aromatics to secondary organic carbon increased during the episodes.

  17. Characterization and source identification of trace elements in airborne particulates at urban and suburban atmospheres of Tabriz, Iran.

    Science.gov (United States)

    Gholampour, Akbar; Nabizadeh, Ramin; Hassanvand, Mohammad Sadegh; Taghipour, Hasan; Rafee, Mohammad; Alizadeh, Zahra; Faridi, Sasan; Mahvi, Amir Hossein

    2016-01-01

    Concentration of particulate matter (PM10 and total suspended particulate (TSP)) and their elemental constituents were measured to identify the major sources of elements in urban and industrial suburban sites in Tabriz, Iran, from September 2012 to June 2013. TSP and PM10 samples were collected using high-volume samplers. Concentrations of 31 elements in aerosols and crustal soil were determined by ICPMS. The most abundant detected metals in the urban sampling sites were Al (217.5-4019.9 ng m(-3)), Fe (272.5-7658.0 ng m(-3)), Pt (4.7-1994.4 ng m(-3)), and P (13.6-2054.8 ng m(-3) (for TSP and Al (217.6-3687.3 ng m(-3)), Fe (197.1-3724.9 ng m(-3)), Pt (65.9-2054.5 ng m(-3)), and P (11.0-756.6 ng m(-3)( for PM10. In the suburban sampling site, the most abundant detected metals were Al (2083.0-9664.0 ng m(-3)), Fe (360.0-7221.5 ng m(-3)), P (229.4-870.5 ng m(-3)), and Ti (137.3-849.7 ng m(-3)) for TSP and Al (218.5-4179.6 ng m(-3)), Fe (106.3-2005.1 ng m(-3)), P (251.9-908.4 ng m(-3)), and Ba (10.6-584.9 ng m(-3)) for PM10. For the crustal soil, the most abundant detected elements included Al (60,088-60,694 ppm), Fe (19,886-20,474 ppm), Ti (894-3481 ppm), and Si (365-4246 ppm). Key emission sources were identified, and the concentrations contributed from individual sources were estimated. Enrichment factor (EF) explaining a preponderance of the variance in the data was applied to the datasets. EF calculations revealed that non-crustal trace elements were more enriched in the urban than suburban sampling sites. Results of the factor analysis on the elements showed that emissions from road traffic (involving oil and fuel combustions by vehicles, platinum group elements from vehicle exhaust, and resuspension of particulate matter from polluted soil) and construction dust from nearby construction sites and electricity generation plant were the major contributors of anthropogenic metals at ambient atmosphere in Tabriz. Results of this study elucidated the need for

  18. Electron microscopic time-lapse visualization of surface pore filtration on particulate matter trapping process.

    Science.gov (United States)

    Sanui, Ryoko; Hanamura, Katsunori

    2016-09-01

    A scanning electron microscope (SEM) was used to dynamically visualize the particulate matter (PM) trapping process on diesel particulate filter (DPF) walls at a micro scale as 'time-lapse' images corresponding to the increase in pressure drop simultaneously measured through the DPF. This visualization and pressure drop measurement led to the conclusion that the PM trapping in surface pores was driven by PM bridging and stacking at constricted areas in porous channels. This caused a drastic increase in the pressure drop during PM accumulation at the beginning of the PM trapping process. The relationship between the porous structure of the DPF and the depth of the surface pore was investigated in terms of the porosity distribution and PM penetration depth near the wall surface with respect to depth. The pressure drop calculated with an assumed surface pore depth showed a good correspondence to the measured pressure drop.

  19. Airborne particulate endocrine disrupting compounds in China: Compositions, size distributions and seasonal variations of phthalate esters and bisphenol A

    Science.gov (United States)

    Li, Jianjun; Wang, Gehui

    2015-03-01

    Phthalate esters and bisphenol A (BPA) are endocrine disrupting compounds (EDCs) and ubiquitously occur in the environment. In the past decade we have characterized atmospheric organic aerosols from various environments (e.g., urban, rural, mountain and marine) of East Asia on a molecular level, but not investigated EDCs in the samples. In the current study we re-analyzed our database for concentrations, compositions and size distributions of phthalates and BPA and compared with those in the literature to improve the understanding on air pollution status in China. Our results showed that airborne particulate phthalates and BPA are 63-1162 ng m- 3 and 1.0-20 ng m- 3 in the urban regions in China, respectively, being one to two orders of magnitude higher than those in the developed countries. Among the detected phthalates in Chinese urban areas, bis(2-ethylhexyl) phthalate (BEHP) is the predominant congener, contributing to 23-79% (ave. 53 ± 15%) of the total phthalates. Concentrations of phthalates and bisphenol A in Shanghai and Xi'an (two mega-cities in China) in 2009 were 3-84% lower than those in 2003, probably indicating a positive effect of the government's air pollution control in the recent years. Phthalates are higher in summer than in winter, because they are not chemically bonded to the polymeric matrix and more easily evaporate into the air under higher temperature conditions. Based on the size distribution observation, we found that diisobutyl and dibutyl phthalates mainly exist in coarse particles because of high volatilities, in contrast to BEHP and BPA, which are dominant in fine particles due to less volatility. Our results also indicate that BPA is mostly derived from the open burning of solid waste while phthalates are derived from both direct evaporation from the matrix and solid waste combustion.

  20. Biogeochemical consequences of vertical and lateral transport of particulate organic matter in the southern North Sea: A multiproxy approach

    NARCIS (Netherlands)

    Le Guitton, M.; Soetaert, K.; Sinninghe Damsté, J.S.; Middelburg, J.J.

    2015-01-01

    Vertical and lateral transports are of importance in continental shelf systems such as the North Sea andplay a major role in the processing of organic matter. We investigated the biogeochemical consequencesof these transports on particulate organic matter at the molecular level in the southern North

  1. PARTICULATE MATTER CONCENTRATION AND EMISSION FACTOR IN THREE DIFFERENT LAYING HEN HOUSING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Annamaria Costa

    2009-09-01

    Full Text Available The aim of this study was to evaluate PM10 concentration in three different laying hens houses (traditional battery cages with aerated open manure storage, aviary system and vertical tiered cages with manure belts with forced air drying and to evaluate particulate matter emission into atmosphere during one year of observation. Internal and external temperature and relative humidity, ventilation rate, PM10 concentration have been continuously monitored in order to evaluate particulate matter concentration changes during the day and the season and to define PM10 emission factors. PM10 concentration was corrected by gravimetric technique to lower measurements error. In the aviary system house, TSP and fine particulate matter (particles smaller than 2.5 micron concentration was measured. Average yearly PM10 concentration was remarkably higher in the aviary system house with 0.215 mg m-3 vs 108 mg m-3 for the ventilated belt house and vs 0.094 mg m-3 for the traditional battery cages house. In the Aviary system housing, TSP concentration was 0.444 mg m-3 and PM2.5 was 0.032 mg m-3, highlighting the existence of a severe working environment for men and animals. Recorded values for PM10 emission were 0.433 mg h-1 hen-1 for battery cages housing type, 0.081 mg h-1 hen-1 for ventilated belt cages house, values lower than those available in literature, while the aviary system housing type showed the highest PM10 emission (1.230 mg h-1 hen-1 with appreciable peaks during the morning, together with the increased animal activity and daily farmer operations, as feed administration, cleaning and droppings removal.

  2. PAHs concentration and toxicity in organic solvent extracts of atmospheric particulate matter and sea sediments.

    Science.gov (United States)

    Ozaki, Noriatsu; Takeuchi, Shin-ya; Kojima, Keisuke; Kindaichi, Tomonori; Komatsu, Toshiko; Fukushima, Takehiko

    2012-01-01

    The concentration of polycyclic aromatic hydrocarbons (PAHs) and the toxicity to marine bacteria (Vibrio fischeri) were measured for the organic solvent extracts of sea sediments collected from an urban watershed area (Hiroshima Bay) of Japan and compared with the concentrations and toxicity of atmospheric particulate matter (PM). In atmospheric PM, the PAHs concentration was highest in fine particulate matter (FPM) collected during cold seasons. The concentrations of sea sediments were 0.01-0.001 times those of atmospheric PM. 1/EC50 was 1-10 L g(-1) PM for atmospheric PM and 0.1-1 L g(-1) dry solids for sea sediments. These results imply that toxic substances from atmospheric PM are diluted several tens or hundreds of times in sea sediments. The ratio of the 1/EC50 to PAHs concentration ((1/EC50)/16PAHs) was stable for all sea sediments (0.1-1 L μg(-1) 16PAHs) and was the same order of magnitude as that of FPM and coarse particulate matter (CPM). The ratio of sediments collected from the west was more similar to that of CPM while that from the east was more similar to FPM, possibly because of hydraulic differences among water bodies. The PAHs concentration pattern analyses (principal component analysis and isomer ratio analysis) were conducted and the results showed that the PAHs pattern in sea sediments was quite different to that of FPM and CPM. Comparison with previously conducted PAHs analyses suggested that biomass burning residues comprised a major portion of these other sources. PMID:22797225

  3. Composition of particulate organic matter sampled in the troposphere over Siberia

    Science.gov (United States)

    Belan, Boris D.; Voronetskaya, Natalya G.; Pevneva, Galina S.; Golovko, Anatoly K.; Kozlov, Alexander S.; Simonenkov, Denis V.; Tolmachev, Gennadii N.

    2015-04-01

    In this paper we present some results of the analysis of organic compounds contained in the particulate matter sampled in the Siberian air shed during monthly research flights in 2012-2013. Aerosol sampling was performed in the tropospheric layer from 500 to 7000 m over the Karakan pine forest located on the east bank of the Novosibirsk Reservoir (River Ob). The Optik TU-134 aircraft laboratory was used as a research platform for in-situ measurements of atmospheric trace gas species and aerosols, as well as a particulate matter collection on PTFE filters. Analysis of the particulate organic matter sampled in the Siberian air shed in 2012-2013 allowed us to draw the following conclusions: the total content of n-alkanes increases in the spring and decreases in the winter. the length of the n-alkane homologous series had no seasonal dependence. maximum in the molecular weight distribution of n-alkanes varies depending on the season; compounds with C17, C22 and C25 chains dominated in winter and spring 2012, whereas in summer - C17 ones; in 2013 compounds with C17 chains dominated in winter, C18-C20 - in spring, and C21 and C23 - in summer. Carbon preference index (CPI) value for a given chain length of the homologous series (on the average from C12 to C28) did not reflect the contribution of sources of n-alkanes in the atmosphere. This work was supported by Interdisciplinary integration projects of the Siberian Branch of the Russian Academy of Science No. 35, No. 70 and No. 131; the Branch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5); State contracts of the Ministry of Education and Science of Russia No. 14.604.21.0100, (RFMTFIBBB210290) and No. 14.613.21.0013 (RFMEFI61314X0013); and Russian Foundation for Basic Research (grants No. 14-05-00526 and 14-05-00590).

  4. Particulate-matter content of 11 cephalosporin injections: conformance with USP limits.

    Science.gov (United States)

    Parkins, D A; Taylor, A J

    1987-05-01

    The particulate-matter content of 11 dry-powder cephalosporin injections was determined using a modified version of the official United States Pharmacopeial Convention (USP) method for particulate matter in small-volume injections (SVIs). Ten vials of each cephalosporin product were each constituted with 10 mL of Water for Injections BP that had been filtered through a 0.22-micron membrane. The pooled contents of the 10 vials for each product were allowed to stand under reduced pressure to ensure removal of gas bubbles. Particulate-matter content was determined using a HIAC/Royco particle counter on six 10-mL samples obtained from the pooled solutions for each product. All solution preparation and particle counting was performed in a horizontal-laminar-airflow hood. Modifications of the USP method used in this study included the use of six rather than two samples from each pooled solution, the addition of diluent to the injections through the rubber closure with a needle instead of into the open container, and changes in the degassing method. Particle counts for all products examined were lower than USP limits for SVIs. All but two products contained less than 15% of USP limits for particles greater than or equal to 10 microns in effective diameter and particles greater than or equal to 25 microns in effective diameter. The standard USP method for degassing (standing for two minutes) was inadequate. Application of reduced pressure for up to 10 minutes was necessary for thorough degassing of products.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3605122

  5. Analysis of aliphatic and aromatic hydrocarbons in particulate matter in Madrid urban area

    International Nuclear Information System (INIS)

    Levels of n-alkanes and polycyclic aromatic hydrocarbons have been measured in the air particulate matter during six months, from January to June of 1987, in an urban area of Madrid. The hydrocarbons were collected on glass fiber filters by high volumen sampling. The extraction was carried out by Sohxlet and ultrasonic techniques. The extracts were clean-up on silicagel fractionation and the chromatographic analysis was performed by capillary column gas chromatographic. Final results are discussed as well as the immission values related to the possible emission sources. (Author)

  6. Exposures to Particulate Matter and Polycyclic Aromatic Hydrocarbons and Oxidative Stress in Schoolchildren

    OpenAIRE

    Bae, Sanghyuk; Pan, Xiao-Chuan; Kim, Su-Young; Park, Kwangsik; Kim, Yoon-Hee; Kim, Ho; Hong, Yun-Chul

    2009-01-01

    Background Air pollution is known to contribute to respiratory and cardiovascular mortality and morbidity. Oxidative stress has been suggested as one of the main mechanisms for these effects on health. Objective The aim of this study was to analyze the effects of exposure to particulate matter (PM) with aerodynamic diameters ≤ 10 μm (PM10) and ≤ 2.5 μm (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) on urinary malondialdehyde (MDA) levels in schoolchildren. Methods The study population co...

  7. The Spatial Variation of Dust Particulate Matter Concentrations during Two Icelandic Dust Storms in 2015

    OpenAIRE

    Pavla Dagsson-Waldhauserova; Agnes Ösp Magnusdottir; Haraldur Olafsson; Olafur Arnalds

    2016-01-01

    Particulate matter mass concentrations and size fractions of PM1, PM2.5, PM4, PM10, and PM15 measured in transversal horizontal profile of two dust storms in southwestern Iceland are presented. Images from a camera network were used to estimate the visibility and spatial extent of measured dust events. Numerical simulations were used to calculate the total dust flux from the sources as 180,000 and 280,000 tons for each storm. The mean PM15 concentrations inside of the dust plumes varied from ...

  8. Formation of particulate matter monitoring during combustion of wood pellete with additives

    Science.gov (United States)

    Palacka, Matej; Holubčík, Michal; Vician, Peter; Jandačka, Jozef

    2016-06-01

    Application additives into the material for the production of wood pellets achieve an improvement in some properties such as pellets ash flow temperature and abrasion resistance. Additives their properties influence the course of combustion, and have an impact on the results of issuance. The experiment were selected additives corn starch and dolomite. Wood pellets were produced in the pelleting press and pelletizing with the additives. Selected samples were tested for the production of particulate matter (PM) during their direct burn. The paper analyzing a process of producing wood pellets and his effect on the final properties.

  9. Natural isotopic composition of nitrogen in suspended particulate matter in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, S.; Ramesh, R.; Bhosle, N.B.; Sardessai, S.; Sheshshayee, M.S.

    and the trans- formation processes it undergoes during its transportation to greater depths. Several such studies have been done in dif- ferent parts of the world ocean (Wada and Hattori, 1976; Saino and Hattori, 1980; Altabet, 1996). Similar studies on ocean... of the thirteen stations, ten have δ15N ranging from 3 and 7.6‰, falling in the range of δ15N Table 1. δ15N of particulate organic nitrogen in surface suspended matter from different oceanic regions of the world. Oceanic regions δ15N (‰) References Southern Ocean...

  10. Particulate matter in the indoor environment of museums in the megacity of São Paulo

    Directory of Open Access Journals (Sweden)

    Andrea Cavicchioli

    2014-01-01

    Full Text Available Atmospheric pollutants can have serious impacts on the preservation of São Paulo's tangible cultural heritage. The purpose of this paper is to report the results of a monitoring campaign focussed on particulate matter (PM that was conducted in three of the most important museums of the São Paulo megacity (Brazil: the Museu de Arqueologia e Etnologia (MAE-USP, the Museu Paulista (MP-USP, and the Pinacoteca do Estado de São Paulo (PE. These museums exhibit indoor PM and black carbon (BC concentrations consistent with their urban locations and their specific methods for managing the indoor environment.

  11. Continuous and semicontinuous monitoring techniques for particulate matter mass and chemical components: a synthesis of findings from EPA's Particulate Matter Supersites Program and related studies.

    Science.gov (United States)

    Solomon, Paul A; Sioutas, Constantinos

    2008-02-01

    The U.S. Environmental Protection Agency (EPA) established the Particulate Matter (PM) Supersites Program to provide key stakeholders (government and private sector) with significantly improved information needed to develop effective and efficient strategies for reducing PM on urban and regional scales. All Supersites projects developed and evaluated methods and instruments, and significant advances have been made and applied within these programs to yield new insights to our understanding of PM accumulation in air as well as improved source-receptor relationships. The tested methods include a variety of continuous and semicontinuous instruments typically with a time resolution of an hour or less. These methods often overcome many of the limitations associated with measuring atmospheric PM mass concentrations by daily filter-based methods (e.g., potential positive or negative sampling artifacts). Semicontinuous coarse and ultrafine mass measurement methods also were developed and evaluated. Other semicontinuous monitors tested measured the major components of PM such as nitrate, sulfate, ammonium, organic and elemental carbon, trace elements, and water content of the aerosol as well as methods for other physical properties of PM, such as number concentration, size distribution, and particle density. Particle mass spectrometers, although unlikely to be used in national routine monitoring networks in the foreseeable future because of their complex technical requirements and cost, are mentioned here because of the wealth of new information they provide on the size-resolved chemical composition of atmospheric particles on a near continuous basis. Particle mass spectrometers likely represent the greatest advancement in PM measurement technology during the last decade. The improvements in time resolution achieved by the reported semicontinuous methods have proven to be especially useful in characterizing ambient PM, and are becoming essential in allowing scientists to

  12. Airborne particulates. European directives and standardization; Matieres particulaires dans l`air ambiant directives europeennes et normalisation

    Energy Technology Data Exchange (ETDEWEB)

    Houdret, J.L. [Ecole Nationale Superieure des Mines, 59 - Douai (France)

    1996-12-31

    The development of future European directives concerning atmospheric dusts and particulates, organization of the in-charge committee, measurement requirements and limit value determination processes are presented. Various measuring methods and instruments used for particulate and aerosol measurements are reviewed

  13. Assessing deposition of airborne particulates and gases in the Selkirk area using lichens growing on tree trunks : non-technical summary

    International Nuclear Information System (INIS)

    An independent study was conducted to address the public concern regarding airborne emissions from Manitoba Hydro's coal-fired electricity generating station located in the Selkirk area. This document is a non-technical summary of the report issued by Ecostem Ltd. Since there are no air quality monitoring stations in the study area which covers more than 1,000 square km, Ecostem used lichens as biological indicators of historical deposition of airborne dust and gases. The sources of airborne dust and gases include urban centres, agriculture, pesticides, fertilizers, waste burning, vehicle use and manufacturing. Lichens have been commonly used as indicators since 1866. They provide useful information because they are long-lived, are not mobile, acquire most of their nutrients from the atmosphere, retain the airborne deposition they initially trap, and they can accumulate airborne particles year round. It is possible to obtain a record of the chemicals that have been present in the air by simply analyzing the lichen tissue. This study used the concentrations of various chemical elements in lichen tissue and the distribution and abundance of lichen species to see if airborne particulates were substantially elevated in the Selkirk area and if so, to determine if the coal-fired generating station was the apparent source of the pollution. A total of 62 stations and lichens on more than 400 trees were sampled. Sulphur, a fingerprint for gaseous emissions from the generating station, had tissue concentrations that were 1.32 times higher. Statistical analysis suggests that barium, boron and strontium were the clearest fingerprint elements for generating station emissions. Tissue concentrations of antimony, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, molybdenum, nickel, selenium, silver, thallium, tin, vanadium and zinc were examined further because they are considered to be toxic. It was noted that a conclusion regarding human health cannot be made

  14. The distribution features of the airborne fine particulate matter (PM2.5) ingredients and source analysis in Urumqi%乌鲁木齐市大气细颗粒物(PM2.5)污染成分特征

    Institute of Scientific and Technical Information of China (English)

    玛依热·热夏提; 晓开提·依不拉音; 康宏; 徐涛; 纪元

    2016-01-01

    目的:分析研究乌鲁木齐市2014-2015年空气大气细颗粒物(PM2.5)样品中主要的重金属和离子的浓度及分布特征。方法利用智能大流量PM2.5空气颗粒物采样器采集61个大气细颗粒物样品,对其主要的重金属和阴离子浓度的分布特征进行研究分析。结果所采集的样品中 PM2.5超标率高达100%,且采暖期 PM2.5浓度高于非采暖期。成分分析发现 Na、K、Mg、Ca、Pb、Zn、Fe 和 Cu 是 PM2.5中主要的重金属污染物,其中 Na、Mg、Ca、Zn、Fe 5种重金属相对比较固定,且所占比例最高,占总成分的90%以上。非采暖期这5种重金属污染浓度依次为Ca>Fe>Zn>Mg>Na;采暖期为 Ca>Zn>Fe>Na>Mg。PM2.5中的主要阴离子为 F-、Cl-、NO-3和SO2-4。在不同月份检测的细颗粒物阴离子中,不同阴离子所占比例相对比较稳定,且均为 SO2-4>NO-3>Cl->F-。结论乌鲁木齐市大气污染浓度较高,大气中 PM2.5超标严重。污染来源主要与交通尾气排放和含硫燃煤的燃烧有关,应加强大气中PM2.5污染的治理。%Objective To investigate the space distribution features of major heavy metals and ions as well as their concentration in atmospheric fine particles (PM2.5 )by collecting samples of atmospheric fine parti-cles (PM2.5 )in Urumqi from 2014 to 2015.Methods 63 atmospheric fine particle samples were collected by using TH-1000CII type intelligent flow PM2.5 particulate air sampler.Results Firstly,among the sam-ples of atmospheric fine particles (PM2.5 ),the over standard rate reaches 100%.Secondly,the concentra-tions of the atmospheric fine particles (PM2.5 )was higher in heating period than that in non-heating period. Thirdly,the results showed that Na,K,Mg,Ca,Pb,Zn,Fe and Cu are the main pollution elements of PM2.5 .Among those mental pollutants,Na,Mg,Ca,Zn and Fe were relatively fixed and they had the highest proportion

  15. Mutagenic and genotoxic activity of particulate matter MP2,5, in Pamplona, North Santander, Colombia

    Directory of Open Access Journals (Sweden)

    Martínez Montañez, Mónica Liseth

    2012-10-01

    Full Text Available Objective: To study the mutagenic and genotoxic activities of particulate material (MP2,5 collected in Pamplona, Norte de Santander, Colombia.Materials and methods: MP2,5 was monitored by means of a Partisol 2025 sequential air sampler with Plus Palmflex quartz filters. The latter were subjected to two extraction procedures: Soxhlet extraction using dichloromethane-acetone; and ultrasonic extraction using dichloromethane, acetone and dichloromethane/ acetone mix. The mutagenic and genotoxic activities were determined for each extract.Results: This is the first study conducted in Colombia that reports the mutagenic and genotoxic activities associated with particulate matter (MP2,5 taken from vehicular emissions in Pamplona, Norte de Santander. The mutagenic assay determined by the Ames test using Salmonella typhimurium strains TA98 and TA100 showed a high direct mutagenic activity in the analyzed extracts. On the other hand, the genotoxic activity, determined by means of the comet assay, was high too.Conclusion: Particulate material (MP2,5 present in air samples in Pamplona (northeastern Colombia is a risk factor for the exposed population because it can directly induce mutations and also cause genotoxic damage.

  16. Heavy metals in particulate and colloidal matter from atmospheric deposition of urban Guangzhou, South China.

    Science.gov (United States)

    Huang, Wen; Duan, Dandan; Zhang, Yulong; Cheng, Hefa; Ran, Yong

    2014-08-30

    Suspended particulate matter (SPM) and colloidal matter (COM) in annual dry and wet deposition samples in urban Guangzhou were for the first time collected, and their trace metals were investigated by using inductively coupled plasma mass spectrometry (ICP-MS). The deposition flux of SPM and of metal elements varied largely among the investigated seasons, and reached the maximum in spring. The correlation analysis indicated that significant correlations existed among some of the metal elements in the deposition samples. The enrichment factors (EF) of metals in COM in the deposition ranging from 79.66 to 130,000 were much higher than those of SPM ranging from 1.65 to 286.48, indicating the important role of COM. The factor analysis showed that emissions from street dust, non-ferrous metal production, and heavy fuel oil were major sources of the trace metals. Positive matrix factorization (PMF) model was used to quantitatively estimate anthropogenic source.

  17. Emission factors of carbonaceous particulate matter and polycyclic aromatic hydrocarbons from residential solid fuel combustions

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Guofeng [Jiangsu Academy of Environmental Science, Nanjing (China). Inst. of Atmospheric Sciences

    2014-07-01

    Emission inventory is basic for the understanding of environmental behaviors and potential effects of compounds, however, current inventories are often associated with relatively high uncertainties. One important reason is the lack of emission factors, especially for the residential solid fuel combustion in developing countries. In the present study, emission factors of a group of pollutants including particulate matter, organic carbon, elemental carbon (sometimes known as black carbon) and polycyclic aromatic hydrocarbons were measured for a variety of residential solid fuels including coal, crop straw, wood, and biomass pellets in rural China. The study provided a large number of emission factors that can be further used in emission estimation. Composition profiles and isomer ratios were investigated and compared so as to be used in source apportionment. In addition, the present study identified and quantified the influence of factors like fuel moisture, volatile matter on emission performance.

  18. Utilization, cycling and vertical transport of particulate organic matter in the coastal marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Landry, M.R.

    1992-01-01

    This project was funded as part of the California Basin Study (CaBS), a DOE-funded regional program investigating production, cycling, transport, and fate of organic matter, chemical tracers, and pollutants in the Southern California Bight. The study area, adjacent to Los Angeles, was of programmatic interest due to its heavy concentration of energy-related activities, including offshore oil drilling and natural seeps, shipping, nuclear power facilities, and industrial and municipal ocean waste disposal. It was also of scientific interest because the wide continental margin in the region, pot-marked with natural sediment traps in the form of deep basins with restricted inputs and outputs, was ideal for integrating water-column and benthic studies and tracing the fates of in situ production and introduced pollutants. Our role in the CABS Program was to investigate the flux of particulate matter through the water column, emphasizing the relationship between macrozooplankton feeding and particle flux.

  19. Global Estimates of Average Ground-Level Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth

    Science.gov (United States)

    Van Donkelaar, A.; Martin, R. V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.

    2010-01-01

    Exposure to airborne particles can cause acute or chronic respiratory disease and can exacerbate heart disease, some cancers, and other conditions in susceptible populations. Ground stations that monitor fine particulate matter in the air (smaller than 2.5 microns, called PM2.5) are positioned primarily to observe severe pollution events in areas of high population density; coverage is very limited, even in developed countries, and is not well designed to capture long-term, lower-level exposure that is increasingly linked to chronic health effects. In many parts of the developing world, air quality observation is absent entirely. Instruments aboard NASA Earth Observing System satellites, such as the MODerate resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR), monitor aerosols from space, providing once daily and about once-weekly coverage, respectively. However, these data are only rarely used for health applications, in part because the can retrieve the amount of aerosols only summed over the entire atmospheric column, rather than focusing just on the near-surface component, in the airspace humans actually breathe. In addition, air quality monitoring often includes detailed analysis of particle chemical composition, impossible from space. In this paper, near-surface aerosol concentrations are derived globally from the total-column aerosol amounts retrieved by MODIS and MISR. Here a computer aerosol simulation is used to determine how much of the satellite-retrieved total column aerosol amount is near the surface. The five-year average (2001-2006) global near-surface aerosol concentration shows that World Health Organization Air Quality standards are exceeded over parts of central and eastern Asia for nearly half the year.

  20. A rapid method for the analysis of methyl dihydrojasmonate and galaxolide in indoor and outdoor air particulate matter.

    Science.gov (United States)

    Fontal, Marta; van Drooge, Barend L; Grimalt, Joan O

    2016-05-20

    A method for the analysis of methyl dihydrojasmonate (MHDJ) in air particulate matter (PM1 and PM2.5) is described for the first time. This fragrance is determined together galaxolide (HHCB). Airborne particles were collected by filtration of air volumes between 100 and 1000m(3). Recovery efficiencies of filter extraction with Soxhlet and pressurized liquids were evaluated. The method included reaction with BSTFA:TMCS for generation of trimethylsilyloxy derivatives which prevented deleterious effects in the gas capillary column by interaction of hydroxyl groups from air constituents other than these fragrances. This step avoided the use of additional clean up methods such as liquid column chromatography affording direct quantification by GC-EI-MS. The proposed method had enough sensitivity for quantification of these fragrances in indoor and outdoor environmental samples using small aliquots of the PM extracts, e.g. 2.5%, and therefore saving sample material for eventual determination of other compounds. The detection limits were 0.03ng and 0.01ng for MHDJ and HHCB, respectively. Both MHDJ and HHCB were predominantly found in the smallest PM fraction analyzed (<0.5μm). The outdoor concentrations were highest in busy urban streets. However, indoor levels in school classrooms and subway stations were one order of magnitude higher than those observed outdoor. This difference was consistent with the use of these compounds as additives in cleaning and personal care products and the small dispersion of these fragrances in indoor environments. Information on the occurrence of this and other fragrances is needed to increase the understanding on the influence of anthropogenic activities in the formation of organic aerosols and source apportionment.

  1. The structural and functional effects of fine particulate matter from cooking oil fumes on rat umbilical cord blood vessels.

    Science.gov (United States)

    Zhu, Xiaoxia; Hou, Lijuan; Zhang, Jian; Yao, Cijiang; Liu, Ying; Zhang, Chao; Xu, Yachun; Cao, Jiyu

    2016-08-01

    A growing body of epidemiological evidence has supported the association between maternal exposure to airborne fine particulate matter (PM2.5) during pregnancy and adverse pregnancy outcomes. However, the specific biological mechanisms implicated in the causes of adverse pregnancy outcomes are not well defined. In this study, a pregnant rat model of exposure to different doses of cooking oil fumes (COFs)-derived PM2.5 by tail intravenous injection in different pregnant stages was established. The results indicated that exposure to COFs-derived PM2.5 was associated with adverse pregnancy outcomes, changed the structure of umbilical cord blood vessels, decreased the diameter and lumen area, and increased wall thickness. What's more, a significant increase of maximum contraction tension was observed in the early pregnancy high-dose exposure group and pregnant low-dose exposure group compared to the control group. Based on the maximum contraction tension, acetylcholine (ACh) did not induce vasodilation but caused a dose-dependent constriction, and there were significant differences in the two groups compared to the control group. Exposure to COFs-derived PM2.5 impaired the vasomotor function of umbilical veins by affecting the expression of NO and ET-1. This is the first study that evaluated the association of risk of adverse pregnancy outcomes and pregnant rats exposed to COFs-derived PM2.5 and primarily explored the potential mechanisms of umbilical cord blood vessels injury on a rat model. More detailed vitro and vivo studies are needed to further explore the mechanism in the future.

  2. Monitoring and Method development of Hg in Istanbul Airborne Particulates by Solid Sampling Continuum Source-High Resolution Electrothermal Atomic Absorption Spectromerty

    Directory of Open Access Journals (Sweden)

    Soydemir E.

    2014-07-01

    Full Text Available In this work, a method has been developed and monitoring for the determination of mercury in PM2.5 airborne particulates by solid sampling high-resolution continuum source electrothermal atomic absorption spectrometry. The PM2.5 airborne particulates were collected on quartz filters using high volume samplers (500 L/min in Istanbul (Turkey for 96 hours every month in one year. At first, experimental conditions as well as the validation tests were optimized using collected filter. For this purpose, the effects of atomization temperature, amount of sample intoduced in to the furnace, addition of acids and/or KMnO4 on the sample, covering of graphite tube and platform or using of Ag nanoparticulates, Au nanoparticulates, and Pd solutions on the accuracy and precision were investigated. After optimization of the experimental conditions, the mercury concentrations were determined in the collected filter. The filters with PM2.5 airborne particulates were dried, divided into small fine particles and then Hg concentrations were determined directly. In order to eliminate any error due to the sensitivity difference between aqueous standards and solid samples, the quantification was performed using solid calibrants. The limit of detection, based on three times the standard deviations for ten atomizations of an unused filter, was 30 ng/g. The Hg content was dependent on the sampling site, season etc, ranging from

  3. Deposition of heavy metals from particulate settleable matter in soils of an industrialized area

    Science.gov (United States)

    Sanfeliu, Teófilo

    2010-05-01

    Particulate air pollutants from industrial emissions and natural resource exploitation represent an important contribution to soil contamination. These atmospheric particles, usually settleable particulate matter form (which settle by gravity) are deposited on soil through both dry and wet. The most direct consequences on soil of air pollutants are acidification and salinization, not to mention the pollution that can cause heavy metals as components of suspended particulate matter. The main objective of this study was to evaluate the influence of air pollution in soil composition. For this purpose, has been conducted a study of the composition of heavy metals in the settleable particulate matter in two locations (Almazora and Vila-real) with high industrial density (mainly ceramic companies) located in the ceramic cluster of Castellón (Spain). Settleable air particles samples were collected with a PS Standard Britannic captor (MCV-PS2) for monthly periods between January 2007 and December 2009. We analyzed the following elements: Cd, Pb, Cu, Ni, Sb and Bi which are highly toxic and have the property of accumulating in living organisms. It has been determined the concentration of heavy metals in the soluble fraction of settleable air particles by ICP-MS. The annual variation of the results obtained in both populations shows a decline over the study period the concentrations of heavy metals analyzed. This fact is associated with the steady implementation of corrective measures in the main industrial sector in the area based on the treatment of mineral raw materials. Moreover, this decline is, in turn, a lower intake of heavy metals to the soil. REFERENCES Gómez E.T.; Sanfeliu T.; Rius J.; Jordán M.M. (2005) "Evolution, sources and distribution of mineral particles and amorphous phase of atmospheric aerosol in an industrial and Mediterranean coastal area" Water, air and Soil Pollution 167:311-330 Moral R., Gilkes R.J.; Jordán M.M. (2005) "Distribution of heavy

  4. Estimating the influence of different urban canopy cover types on atmospheric particulate matter (PM10) pollution abatement in London UK.

    Science.gov (United States)

    Tallis, Matthew; Freer-Smith, Peter; Sinnett, Danielle; Aylott, Matthew; Taylor, Gail

    2010-05-01

    In the urban environment atmospheric pollution by PM10 (particulate matter with a diameter less than 10 x 10-6 m) is a problem that can have adverse effects on human health, particularly increasing rates of respiratory disease. The main contributors to atmospheric PM10 in the urban environment are road traffic, industry and power production. The urban tree canopy is a receptor for removing PM10s from the atmosphere due to the large surface areas generated by leaves and air turbulence created by the structure of the urban forest. In this context urban greening has long been known as a mechanism to contribute towards PM10 removal from the air, furthermore, tree canopy cover has a role in contributing towards a more sustainable urban environment. The work reported here has been carried out within the BRIDGE project (SustainaBle uRban plannIng Decision support accountinG for urban mEtabolism). The aim of this project is to assess the fluxes of energy, water, carbon dioxide and particulates within the urban environment and develope a DSS (Decision Support System) to aid urban planners in sustainable development. A combination of published urban canopy cover data from ground, airborne and satellite based surveys was used. For each of the 33 London boroughs the urban canopy was classified to three groups, urban woodland, street trees and garden trees and each group quantified in terms of ground cover. The total [PM10] for each borough was taken from the LAEI (London Atmospheric Emissions Inventory 2006) and the contribution to reducing [PM10] was assessed for each canopy type. Deposition to the urban canopy was assessed using the UFORE (Urban Forest Effects Model) approach. Deposition to the canopy, boundary layer height and percentage reduction of the [PM10] in the atmosphere was assessed using both hourly meterological data and [PM10] and seasonal data derived from annual models. Results from hourly and annual data were compared with measured values. The model was then

  5. Results of measurements of particulate matter concentrations inside a pig fattening facility

    Directory of Open Access Journals (Sweden)

    Ulens, T.

    2016-01-01

    Full Text Available Description of the subject. This research note discusses the results of measurements of particulate matter concentrations inside a pig fattening facility. Objectives. The objectives of the present study were to investigate the correlations between the different size fractions of indoor particulate matter (PM inside a pig fattening facility and to investigate the evolution of particle size distribution (PSD through a fattening period and between two housing systems and two cleaning protocols. Method. Data from two consecutive fattening periods in a commercial pig barn were used. Results. Very high correlations were found between PM10 and PM2.5 indoor concentrations. Depending on the measuring instrument, high or low correlations were found between PM1 and PM10 or PM2.5 indoor concentrations. No differences in PSD could be found between the two housing systems or the two cleaning protocols. Conclusions. The results from the present study showed high correlations between the indoor concentrations of PM10 and PM2.5. In the present study, no differences in PSD were found.

  6. Characterisation of air particulate matter in Klang Valley by neutron activation analysis technique

    International Nuclear Information System (INIS)

    Air particulate matter is known to affect human health, impairs visibility and can cause climate change. Study on air particulate matter in term of particle size and chemical contents is very important to indicate the quality of air in a sampling area. Information on concentration of important constituents in air particles can be used to identify some of emission sources which contribute to the pollution problem. The data collected may also be, used as a basis to design a strategy in order to overcome the air pollution problem in the area. The study involved sampling of air dust at two stations, one in Bangi and the other in Kuala Lumpur using Gent Stack Sampler units. Each sampler capable of collecting air particle sizes smaller than 2.5 micron (PM 2.5) and between 2.5 - O micron on two different filters simultaneously. The filters were measured for their mass, elemental carbon and elemental concentrations using analytical equipment or techniques including reflectometer and Neutron Activation Analysis. The results of analysis on samples collected in 1997-1998 are discussed. (author)

  7. Spatial interpolation of fine particulate matter concentrations using the shortest wind-field path distance.

    Directory of Open Access Journals (Sweden)

    Longxiang Li

    Full Text Available Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health.

  8. Particulate matter air pollution exposure: role in the development and exacerbation of chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Sean H Ling

    2009-06-01

    Full Text Available Sean H Ling, Stephan F van EedenJames Hogg iCAPTURE Centre for Pulmonary and Cardiovascular Research and Heart and Lung Institute, University of British Columbia, Vancouver, British Columbia, CanadaAbstract: Due to the rapid urbanization of the world population, a better understanding of the detrimental effects of exposure to urban air pollution on chronic lung disease is necessary. Strong epidemiological evidence suggests that exposure to particulate matter (PM air pollution causes exacerbations of pre-existing lung conditions, such as, chronic obstructive pulmonary disease (COPD resulting in increased morbidity and mortality. However, little is known whether a chronic, low-grade exposure to ambient PM can cause the development and progression of COPD. The deposition of PM in the respiratory tract depends predominantly on the size of the particles, with larger particles deposited in the upper and larger airways and smaller particles penetrating deep into the alveolar spaces. Ineffective clearance of this PM from the airways could cause particle retention in lung tissues, resulting in a chronic, low-grade inflammatory response that may be pathogenetically important in both the exacerbation, as well as, the progression of lung disease. This review focuses on the adverse effects of exposure to ambient PM air pollution on the exacerbation, progression, and development of COPD.Keywords: chronic obstructive pulmonary disease, particulate matter, air pollution, alveolar macrophage

  9. Chemical compositions of fine particulate organic matter emitted from Chinese cooking.

    Science.gov (United States)

    Zhao, Yunliang; Hu, Min; Slanina, Sjaak; Zhang, Yuanhang

    2007-01-01

    Food cooking can be a significant source of atmospheric particulate organic matter. In this study, the chemical composition of particulate organic matter (POM) in PM2.5 emitted from four different Chinese cooking styles were examined by gas chromotography-mass spectrometry (GC-MS). The identified species are consistent in the emissions from different Chinese cooking styles and the quantified compounds account for 5-10% of total POM in PM2.5. The dominant homologue is fatty acids, constituting 73-85% of the quantified compounds. The pattern of n-alkanes and the presence of beta-sitosterol and levoglucosan indicate that vegetables are consumed during Chinese cooking operations. Furthermore, the emissions of different compounds are impacted significantly by the cooking ingredients. The candidates of organic tracers used to describe and distinguish emissions from Chinese cooking in Guangzhou are tetradecanoic acid, hexadecanoic acid, octadecanoic acid, oleic acid, levoglucosan, mannosan, galactosan, nonanal, and lactones. During the sampling period, the relative contribution of Chinese cooking to the mass concentration of atmospheric hexadecanoic acid should be less than 1.3% in Guangzhou.

  10. Atmospheric lead pollution in fine particulate matter in Shanghai,China

    Institute of Scientific and Technical Information of China (English)

    LI Xiaolin; ZHANG Yuanxun; TAN Mingguang; LIU Jiangfeng; BAO Liangman; ZHANG Guilin; LI Yan; IIDA Atsuo

    2009-01-01

    The Pb-monitoring program was extended for 6 years from 2002 to 2007 at 17 representative urban sites (6 traffic, 5 industrial, and 6 residential sites), and 3 suburban sites to assess the lead pollution in fine particulate matter (PM2.5) after phasing out leaded gasoline in Shanghai. Compared with Pb levels reported in other places, the Pb pollution in Shanghai still serious after phasing out leaded gasoline, which remains at high concentration range (213--176 ng/m3) in PM2.5 in winter. Significant spatial variation of Pb concentrations and strong seasonal variation of higher Pb concentration in winter than that in summer were detected. The size distribution of Pb in particulate matter has a unimodal mode that peaks at approximately 0.154--1.59 mm particle diameter, indicating that Pb is mainly concentrated in fine fraction. Lead in the fine fraction is enriched by a factor of 103--104 relative to Pb abundance in crust. Eight categories of Pb pollution sources were identified in the PM2.5 in the winter of 2007 in Shanghai. The important emission sources among them are vehicle exhaust derived from combustion of unleaded gasoline, metallurgic industry emission, and coal combustion emission.

  11. Particulate Matter deposition on Quercus ilex leaves in an industrial city of central Italy

    International Nuclear Information System (INIS)

    A number of studies have focused on urban trees to understand their mitigation capacity of air pollution. In this study particulate matter (PM) deposition on Quercus ilex leaves was quantitatively analyzed in four districts of the City of Terni (Italy) for three periods of the year. Fine (between 0.2 and 2.5 μm) and Large (between 2.5 and 10 μm) PM fractions were analyzed. Mean PM deposition value on Quercus ilex leaves was 20.6 μg cm−2. Variations in PM deposition correlated with distance to main roads and downwind position relatively to industrial area. Epicuticular waxes were measured and related to accumulated PM. For Fine PM deposited in waxes we observed a higher value (40% of total Fine PM) than Large PM (4% of total Large PM). Results from this study allow to increase our understanding about air pollution interactions with urban vegetation and could be hopefully taken into account when guidelines for local urban green management are realized. - Highlights: • A quantitative analysis of Particulate Matter deposition on urban Quercus ilex leaves was implemented. • Deposition data were correlated with pollutants sources such as roads and local steel factory, and with epicuticular waxes. • Results provide new insight about the capacity of trees in removing pollutants in urban environment. - This paper is providing useful information on PM deposition on urban vegetation

  12. Spatial Interpolation of Fine Particulate Matter Concentrations Using the Shortest Wind-Field Path Distance

    Science.gov (United States)

    Li, Longxiang; Gong, Jianhua; Zhou, Jieping

    2014-01-01

    Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW) with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health. PMID:24798197

  13. Comparison of discriminant analysis methods: Application to occupational exposure to particulate matter

    Science.gov (United States)

    Ramos, M. Rosário; Carolino, E.; Viegas, Carla; Viegas, Sandra

    2016-06-01

    Health effects associated with occupational exposure to particulate matter have been studied by several authors. In this study were selected six industries of five different areas: Cork company 1, Cork company 2, poultry, slaughterhouse for cattle, riding arena and production of animal feed. The measurements tool was a portable device for direct reading. This tool provides information on the particle number concentration for six different diameters, namely 0.3 µm, 0.5 µm, 1 µm, 2.5 µm, 5 µm and 10 µm. The focus on these features is because they might be more closely related with adverse health effects. The aim is to identify the particles that better discriminate the industries, with the ultimate goal of classifying industries regarding potential negative effects on workers' health. Several methods of discriminant analysis were applied to data of occupational exposure to particulate matter and compared with respect to classification accuracy. The selected methods were linear discriminant analyses (LDA); linear quadratic discriminant analysis (QDA), robust linear discriminant analysis with selected estimators (MLE (Maximum Likelihood Estimators), MVE (Minimum Volume Elipsoid), "t", MCD (Minimum Covariance Determinant), MCD-A, MCD-B), multinomial logistic regression and artificial neural networks (ANN). The predictive accuracy of the methods was accessed through a simulation study. ANN yielded the highest rate of classification accuracy in the data set under study. Results indicate that the particle number concentration of diameter size 0.5 µm is the parameter that better discriminates industries.

  14. Tracking Petroleum Refinery Emission Events Using Lanthanum and Lanthanides as Elemental Markers for Fine Particulate Matter

    Science.gov (United States)

    Kulkarni, P.; Chellam, S.; Fraser, M. P.

    2007-12-01

    This presentation reports the development and application of an analytical method to quantify the rare earth elements (REEs) in atmospheric particulate matter and emissions of catalyst material from the petroleum refining industry. Inductively coupled plasma - mass spectrometry following high temperature/high pressure microwave digestion has been used to study the REE composition of several fresh and spent catalysts used in fluidized-bed catalytic cracking (FCC) units in petroleum refineries as well as in ambient atmospheric fine particulate matter collected in Houston, TX. The results show that the routine emissions from local FCC units in Houston contribute a constant and low amount to ambient PM2.5 of ~0.1 micrograms per cubic meter. However, a significant (33 - 106 fold) increase in the contributions of FCC emissions to PM2.5 is quantified during an upset emission event compared with background levels associated with routine operation. The impact of emissions from the local refinery that reported the emission event was tracked to a site approximately 50 km downwind from the source, illustrating the potential exposure of humans over a large geographical area through the long-range transport of atmospheric fine particles as well as the power of elemental signatures to understand the sources of fine particles.

  15. Study of particulate matter in Limeira (Brazil) using SR-TXRF

    Energy Technology Data Exchange (ETDEWEB)

    Canteras, Felippe B.; Moreira, Silvana, E-mail: silvana@fec.unicamp.b [Universidade Estadual de Campinas (FEC/UNICAMP), SP (Brazil) Faculdade de Engenharia Civil, Arquitetura e Urbanismo

    2011-07-01

    Air pollution is a growing problem mainly in metropolitan areas in the world. The atmospheric pollutants are responsible for various environmental problems including the human health. Among the pollutants, the particulate matter is important, since it has a heterogeneous composition. The goal of this work was to analyze quantitatively the particulate matter in Limeira city, Sao Paulo State, Brazil. The sampling was made using a sequential filtering system, containing two filters putted in series, to collect fine and coarse fractions. After a removal in an acid medium, with ultrasound bath, the samples were analyzed by Synchrotron Radiation Total Reflection X-Ray Fluorescence (SR-TXRF). The results obtained for PM10 were in agreement with the standards defined by the Brazilian legislation and also with the standards established by USEPA. In all analyzed samples S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Ba and Pb were quantified. Employing multivariate statistical analysis (principal component and cluster analysis) was possible to identify the emission sources. For coarse fraction the main emission source was soil dusty responsible for 57% of the total in the coarse fraction, followed by vehicular emission with 30% and industrial 13%. In the fine fraction soil dusty was the mainly emission source contributing with 79% of the total, followed by vehicular emission with 13% and finally the industrial emission responsible just for 8%. (author)

  16. New insight into particulate mineral and organic matter in coastal ocean waters through optical inversion

    Science.gov (United States)

    Zhang, Xiaodong; Stavn, Robert H.; Falster, Alexander U.; Gray, Deric; Gould, Richard W.

    2014-08-01

    Suspended particulate inorganic matter (PIM) and particulate organic matter (POM) often exhibit significant variation both spatially and temporally in coastal oceans. The size distributions and optical properties of these particles are poorly known. Utilizing a newly developed inversion technique from the measured angular scattering pattern, we were able to examine POM and PIM in terms of detailed particle size distributions (PSD) and optical volume scattering functions (VSF), gaining further insights and knowledge of particles that will greatly improve biogeochemical investigations and remote-sensing algorithms. We report the results on two extremes or end-members of possible coastal environments, sediment-laden, turbid Mobile Bay, Alabama, USA and biologically productive, clear water Monterey Bay, California, USA. The optically inferred mass concentrations of PIM and POM, when accounting for the fractal nature of suspended particles, agreed well with the respective gravimetric determinations within the analysis and inversion uncertainty. Despite intra- and inter-site variability, the inferred PSDs in both coastal regions commonly showed an apparent background population of PIM at radii 50 μm. The clearly distinctive PSDs between PIM and POM provide evidence to support the Risović two-component model for suspended particulates. The shape of the VSFs, i.e., the scattering phase functions, for POM are similar between the two sites (backscattering ratio ≈ 0.0015), but the PIM in Monterey Bay exhibited a higher backscattering ratio than in Mobile Bay (backscattering ratios 0.012 vs. 0.008, respectively). At both sites, the mass-specific scattering cross section values for PIM (σ[PIM]) are about 70-80% lower than σ[POM], while the mass-specific backscattering cross section values for PIM (σb[PIM]) are 10-25% greater than σb[POM].

  17. MOLAR RATIOS OF C,N,P OF PARTICULATE MATTER AND THEIR VERTICAL FLUXES IN THE YELLOW SEA

    Institute of Scientific and Technical Information of China (English)

    王保栋; 战闰; 徐明德

    2002-01-01

    The vertical fluxes and molar ratios of carbon, nitrogen and phosphorus of suspended particulate matter in the Yellow Sea were studied based on the analysis of suspended particulate matter, sediments and sinking particles obtained by use of moored sediment traps. The POC:PON ratios indicate that most of the particulate organic matter in the Yellow Sea water column comes from marine life rather than the continent. The vertical fluxes of SPM, POC, PON and POP in the Yellow Sea are much higher than those in other seas over the world, and present a typical pattern in shallow epicontinental seas. The estimated residence time of the bioactive elements showed that the speed of the biogeochemical process of materials in the Yellow Sea is much shorter than that in the open ocean as there was high primary productivity in this region.

  18. Cocaine and other illicit drugs in airborne particulates in urban environments: A reflection of social conduct and population size

    International Nuclear Information System (INIS)

    Levels of cocaine and other psychoactive substances in atmospheric particulate matter (PM) were determined in urban environments representing distinct social behaviours with regard to drug abuse: night-life, university and residential areas. Three cities (with population >1 million and 3 for cocaine, 23-34 pg/m3 for cannabinoids, and 5-90 pg/m3 for heroin. The highest levels were recorded on weekends, with factors with respect to weekdays of 1-3 for cocaine, 1-2 for cannabinoids and 1.1-1.7 for heroin. Higher levels were detected in the night-life areas, pointing towards consumption and trafficking as major emission sources, and possibly ruling out drug manufacture. The similarities in temporal trends at all sites suggested a city-scale transport of psychoactive substances. Correlations were detected between cocaine and amphetamine consumption (r2 = 0.98), and between heroin and cannabinoids (r2>0.82). - Highlights: → Cocaine, heroin, cannabis and related illicit drugs are found in detectable amounts in urban air. → Illicit drug consumption and small-scale trafficking are the major emission sources. → Illicit drugs remain in atmospheric particles and are transported across cities during at least 5 days. → Levels of illicit drugs increase from residential to night-life areas, and maximise on weekends. → Correlations between illicit drugs were detected, suggesting differences in consumer groups. - The presence of illicit drugs in atmospheric particles can be used to track illicit drug abuse.

  19. The Stable and Radio- Carbon Isotopic Content of Labile and Refractory Carbon in Atmospheric Particulate Matter

    Science.gov (United States)

    McNichol, A. P.; Rosenheim, B. E.; Gerlach, D. S.; Hayes, J. M.

    2006-12-01

    Studies of the isotopic content of atmospheric particulate matter are hampered by difficulties in chemically defining the pools of carbon and analytically isolating the different pools. We are conducting studies on reference materials and atmospheric aerosol samples to develop a method to measure stable and radio- carbon isotopes on the labile and refractory carbon. We are using a flow-through combustion system that allows us to combust, collect and measure the isotopic content of the gases produced at all stages of heating/oxidizing. We compare our results to those measured using a chemothermal oxidation method (CTO) (Gustafsson et al., 2001). In this method, refractory carbon is defined as the material remaining after pre- combusting a sample at 375°C in the presence of oxygen for 24 hours. The reference materials are diesel soot, apple leaves and a hybrid of the two (DiesApple), all from NIST. These provide carbon with two well-defined fractions -- the soot provides refractory carbon that is radiocarbon dead and the apple leaves provide organic carbon that is radiocarbon modern. Radiocarbon results from DiesApple indicate that the "refractory" carbon defined by the CTO method is actually a mixture of old and modern carbon that contains over 25% modern carbon. This suggests that charred material formed from the apples leaves during the pre-combustion step is contributing to the fraction we identify as refractory carbon. We are studying this by analyzing the individual materials and the mixture using our flow-through system. First results with this system indicate that the refractory fraction trapped from the DiesApple contains much less modern carbon than the CTO method, less than 7%. We will present detailed concentration and isotopic results of the generation of carbon dioxide during programmed combustion of each of the reference materials. We studied the radiocarbon content of both the total carbon (TC) and refractory carbon in the fine particulate matter (PM

  20. Seasonal variations in the concentration and solubility of elements in atmospheric particulate matter: a case study in Northern Italy

    Directory of Open Access Journals (Sweden)

    Canepari S.

    2013-04-01

    Full Text Available Atmospheric particulate matter is characterized by a variety of chemical components, generally produced by different sources. Chemical fractionation of elements, namely the determination of their extractable and residual fractions, may reliably increase the selectivity of some elements as tracers of specific PM sources. Seasonal variations of atmospheric particulate matter concentration in PM10 and PM2.5, of elemental concentration in PM10 and PM2.5, of the extractable and residual fraction of elements in different size fractions in the range 0.18 – 18 μm are reported in this paper. The effect of the ageing of the air masses is discussed.

  1. Characterization and source apportionment of particulate matter Indonesia, during a recent peat fire episode.

    Science.gov (United States)

    See, Siao Wei; Balasubramanian, Rajasekhar; Rianawati, Elisabeth; Karthikeyan, Sathrugnan; Streets, David G

    2007-05-15

    An intensive field study was conducted in Sumatra, Indonesia, during a peat fire episode to investigate the physical and chemical characteristics of particulate emissions in peat smoke and to provide necessary data for source-receptor analyses. Ambient air sampling was carried out at three different sites located at varying distances from the peatfires to determine changes in mass and number concentrations of PM2.5 and its chemical composition (carbonaceous and nitrogenous materials, polycyclic aromatic hydrocarbons, water-soluble inorganic and organic ions, and total and water-soluble metals). The three sites represent a rural site directly affected by the local peat combustion, a semirural site, and an urban site situated downwind of the peat fires. The mass concentration of PM2.5 and the number concentration of airborne particles were as high as 1600 microg/m3 and 1.7 x 10(5) cm(-3), respectively, in the vicinity of peat fires. The major components of PM2.5 in peat smoke haze were carbonaceous particles, particularly organic carbon, NO3-, and SO4(2-), while the less abundant constituents included ions such as NH4+, NO2-, Na+, K+, organic acids, and metals such as Al, Fe, and Ti. Source apportionment by chemical mass balance receptor modeling indicates that peat smoke can travel long distances and significantly affect the air quality at locations downwind.

  2. Total exposure to airborne particulate matter in cities: the effect of biomass combustion.

    Science.gov (United States)

    Sarigiannis, Dimosthenis Α; Karakitsios, Spyros P; Kermenidou, Marianthi; Nikolaki, Spyridoula; Zikopoulos, Dimitrios; Semelidis, Stauros; Papagiannakis, Apostolos; Tzimou, Roxani

    2014-09-15

    The study deals with the seasonal variability of PM exposure and the effect that biomass combustion has upon it in the urban environment. The study is based on measurements, chemical analyses and modeling results performed in Thessaloniki (Greece). The measurements campaign included the assessment of outdoor and indoor air quality and the evaluation of biomass use for domestic heating. The outdoor measurements highlighted a significant increase of PM10 (from 30.1 to 73.1 μg/m(3)) and PM2.5 (from 19.4 to 62.7 μg/m(3)) concentrations during the transition from the warm to the cold period of the year 2012 compared to 2011. The increase in ambient air PM during the winter was attributed to the use of biomass burning for space heating. The latter was verified by the presence of levoglucosan in the PM (concentrations up to 8 μg/m(3)), especially for samples taken from the urban background site. Outdoor PM concentrations were also modeled using an artificial neural network model taking into account major meteorological parameters; the latter explained more than 90% of PM10 and PM2.5 day-to-day variability. Indoor concentrations followed a similar pattern, while in the case of fireplace use, average daily concentrations rise to 10 μg/m(3) and 14 μg/m(3) for PM2.5 and PM10 respectively. Indoor air concentrations were affected the most by the ambient air particle infiltration. Indoor air quality went down after 3h of open fire biomass combustion for space heating. Personal exposure was significantly determined by overall indoor air quality. Yet, dynamic exposure analysis revealed that peaks of intake do not correspond to peaks of ambient air PM concentrations altering thus total exposure patterns. Thus, cost-effective public health protection has to aim at reducing the exposure profile of susceptible population sub-groups combining awareness raising, emission reduction measures and financial incentives to influence the choice of space heating systems. PMID:25000575

  3. Genotoxicity biomarkers for airborne particulate matter (PM2.5) in an area under petrochemical influence.

    Science.gov (United States)

    Lemos, Andréia Torres; Lemos, Clarice Torres de; Flores, Andressa Negreiros; Pantoja, Eduarda Ozório; Rocha, Jocelita Aparecida Vaz; Vargas, Vera Maria Ferrão

    2016-09-01

    The effects of fine inhalable particles (PM2.5) were evaluated in an area under the influence of a petrochemical industry, investigating the sensitivity of different genotoxicity biomarkers. Organic extracts were obtained from PM2.5 samples at two sites, positioned in the first and second preferential wind direction in the area. The extracts were evaluated with Salmonella/microsome assay, microsuspension method, strains TA98, YG1021 and YG1024. The mammalian metabolization fraction (S9) was used to evaluate metabolite mutagenicity. The Comet Assay (CA) and Micronuclei Test were used in a Chinese hamster lung cell line (V79). All extracts showed mutagenicity in Salmonella, and nitrogenated compounds were strongly present. Genotoxicity were found in CA in almost all extracts and the micronuclei induction at the Site in the first (Autumn 1, Winter 1), and in the second (Spring 2) wind direction. V79 showed cytotoxicity in all samples. The three biomarkers were concordant in characterization Site NO with worse quality, compatible with the greater pollutants dispersion in the first wind direction. All PM2.5 concentrations were lower than those recommended by air quality standards but genotoxic effects were detected in all samples, corroborating that these standards are inadequate as quality indicators. The Salmonella/microsome assay proved sensitive to PM2.5 mutagenicity, with an outstanding influence of nitroarenes and aromatic amines. Analyses using CA and the micronucleus test broadened the levels of response that involve different damage induction mechanisms. Results show that the complex PM2.5 composition can provoke various genotoxic effects and the use of different bioassays is essential to understand its effects. PMID:27343868

  4. Stable isotopes of lead and strontium as tracers of sources of airborne particulate matter in Kyrgyzstan.

    Science.gov (United States)

    Central Asia is dominated by an arid climate and desert-like conditions, leading to the potential of long-range transport of desert dust. One potential source of dust to Central Asia is the Aral Sea, the surface area of which has receded in size from 68,000 km2 to 14,280 km2, lar...

  5. Stable Isotopes of Sr and Pb as Tracers of Sources of Airborne Particulate Matter in Kyrgyzstan

    Science.gov (United States)

    ConclusionsElemental concentrations were higher at the LIDAR site compared to the Bishkek site. Also, concentrations were higher during dust than non-dust events at both sites.The Sr isotopic ratios suggest dust from another region, such as from Western China, Africa, or Middle E...

  6. Observations of the effect of atmospheric processes on the genotoxic potency of airborne particulate matter

    DEFF Research Database (Denmark)

    Feilberg, Anders; Nielsen, Torben; Binderup, Mona-Lise;

    2002-01-01

    In this study, the relationship between genotoxic potency and the occurrence of polycyclic aromatic hydrocarbons (PAH), including benzo(a)pyrene (BaP), and nitro-PAH in urban and semi-rural air masses has been investigated. The Salmonella/microsome assay has been used as a measure of genotoxic...... potency. We find that the ratios of BaP/ mutagenicity and PAH/mutagenicity are highly variable. The processes responsible for the variation are formation and degradation of mutagens and transport of polluted air masses from heavily industrialized regions, Air masses from Central Europe are shown...... to be highly enriched in mutagens as well as in PAH and nitro-PAH. However, the mutagenic activity is much more elevated than the PAH levels when these air masses are mixed with local urban air. Part of the variation in the PAH/mutagenicity ratio can be explained by photochemical transformation. Since BaP has...

  7. Biomonitoring of airborne particulate matter emitted from a cement plant and comparison with dispersion modelling results

    Science.gov (United States)

    Abril, Gabriela A.; Wannaz, Eduardo D.; Mateos, Ana C.; Pignata, María L.

    2014-01-01

    The influence of a cement plant that incinerates industrial waste on the air quality of a region in the province of Córdoba, Argentina, was assessed by means of biomonitoring studies (effects of immission) and atmospheric dispersion (effects of emission) of PM10 with the application of the ISC3 model (Industrial Source Complex) developed by the USEPA (Environmental Protection Agency). For the biomonitoring studies, samples from the epiphyte plant Tillandsia capillaris Ruíz & Pav. f. capillaris were transplanted to the vicinities of the cement plant in order to determine the physiological damage and heavy metal accumulation (Ca, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb). For the application of the ISC3 model, point and area sources from the cement plant were considered to obtain average PM10 concentration results from the biomonitoring exposure period. This model permitted it to be determined that the emissions from the cement plant (point and area sources) were confined to the vicinities, without significant dispersion in the study area. This was also observed in the biomonitoring study, which identified Ca, Cd and Pb, pH and electric conductivity (EC) as biomarkers of this cement plant. Vehicular traffic emissions and soil re-suspension could be observed in the biomonitors, giving a more complete scenario. In this study, biomonitoring studies along with the application of atmospheric dispersion models, allowed the atmospheric pollution to be assessed in more detail.

  8. Total reflection X-ray fluorescence analysis of airborne particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Klockenkaemper, R.; Bayer, H.; Bohlen, A. von [Institut fuer Spektrochemie und Angewandte Spektroskopie, Dortmund (Germany)

    1995-03-01

    The collection of air dust by a `Berner`- and a `Battelle`-impactor was adapted to the subsequent analysis by Total reflection X-Ray Fluorescence (TXRF). A suitable impactor material has to be chosen in order to avoid high blank values, collection losses and memory effects. Stainless steel even coated by TiN is not at all suitable. Titanium and aluminium are less favourable than makrolon or another high polymer which may even be antistatic. Small sampling volumes of only 1 m{sup 3} and short sampling times of about 1 h are sufficient for a multielement analysis by TXRF. Low detection limits of ng/m{sup 3} and a repeatability of some % can be realized. (author).

  9. Biomonitoring of toxic compounds of airborne particulate matter in urban and industriel areas

    DEFF Research Database (Denmark)

    Klumpp, Andreas; Ro-Poulsen, Helge

    2010-01-01

    on man and environment. Two widely applied biomonitoring procedures, namely the standardised ryegrass exposure for monitoring of trace metals, and the standardised exposure of curly kale for monitoring of PAH compounds, is presented taking examples from a Europe-wide biomonitoring study conducted in 11...

  10. Health effects of ambient levels of respirable particulate matter (PM) on healthy, young-adult population

    Science.gov (United States)

    Shaughnessy, William J.; Venigalla, Mohan M.; Trump, David

    2015-12-01

    There is an absence of studies that define the relationship between ambient particulate matter (PM) levels and adverse health outcomes among the young and healthy adult sub-group. In this research, the relationship between exposures to ambient levels of PM in the 10 micron (PM10) and 2.5 micron (PM2.5) size fractions and health outcomes in members of the healthy, young-adult subgroup who are 18-39 years of age was examined. Active duty military personnel populations at three strategically selected military bases in the United States were used as a surrogate to the control group. Health outcome data, which consists of the number of diagnoses for each of nine International Classification of Diseases, 9th Revision (ICD-9) categories related to respiratory illness, were derived from outpatient visits at each of the three military bases. Data on ambient concentrations of particulate matter, specifically PM10 and PM2.5, were obtained for these sites. The health outcome data were correlated and regressed with the PM10 and PM2.5 data, and other air quality and weather-related data on a daily and weekly basis for the period 1998 to 2004. Results indicate that at Fort Bliss, which is a US Environmental Protection Agency designated non-attainment area for PM10, a statistically significant association exists between the weekly-averaged number of adverse health effects in the young and healthy adult population and the corresponding weekly-average ambient PM10 concentration. A least squares regression analysis was performed on the Fort Bliss data sets indicated that the health outcome data is related to several environmental parameters in addition to PM10. Overall, the analysis estimates a .6% increase in the weekly rate of emergency room visits for upper respiratory infections for every 10 μg/m3 increase in the weekly-averaged PM10 concentration above the mean. The findings support the development of policy and guidance opportunities that can be developed to mitigate exposures

  11. Seven year particulate matter air quality assessment from surface and satellite measurements

    Directory of Open Access Journals (Sweden)

    P. Gupta

    2008-01-01

    Full Text Available Using seven years of the Moderate Resolution Imaging Spectroradiometer (MODIS aerosol optical thickness (AOT data and ground measurements of particulate matter mass over one site in the Southeastern United States (33.55 N, 86.82 W we present a comprehensive analysis of various aspects of particulate matter air quality. Monthly, seasonal and inter-annual relationships are examined with emphasis on sampling biases, quality indicators in the AOT product and various cloud clearing criteria. Our results indicate that PM2.5 mass concentration over Northern Birmingham has decreased by about 23% in year 2006 when compared to year 2002 and air quality during summer months are poor when compared to winter months. MODIS-Terra AOT data was available only about 50% of the time due to cloud cover and favorable surface conditions. However, the mean difference in monthly mean PM2.5 was less than 2.2 μgm−3 derived using all the data and from only those days when satellite AOT was available indicating that satellite data does not have sampling issues. The correlation between PM2.5 and MODIS AOT increased from 0.52 to 0.62 when hourly PM2.5 data were used instead of daily mean PM2.5 data. Changing box size for satellite data around the ground station during comparisons produced less than ±0.03 difference in mean AOT values for 90% of observations. Application of AOT quality flags reduced the sample size but does not affect AOT-PM2.5 relationship significantly. We recommend using AOT quality flags for daily analysis, whereas long time scale analysis can be performed without using all AOT retrievals to obtain better sampling. Our analysis indicates that satellite data is a useful tool for monitoring particulate matter air quality especially in regions where ground measurements are not available.

  12. Filter-based control of particulate matter from a lean gasoline direct injection engine

    Energy Technology Data Exchange (ETDEWEB)

    Parks, II, James E [ORNL; Lewis Sr, Samuel Arthur [ORNL; DeBusk, Melanie Moses [ORNL; Prikhodko, Vitaly Y [ORNL; Storey, John Morse [ORNL

    2016-01-01

    New regulations requiring increases in vehicle fuel economy are challenging automotive manufacturers to identify fuel-efficient engines for future vehicles. Lean gasoline direct injection (GDI) engines offer significant increases in fuel efficiency over the more common stoichiometric GDI engines already in the marketplace. However, particulate matter (PM) emissions from lean GDI engines, particularly during stratified combustion modes, are problematic for lean GDI technology to meet U.S. Environmental Protection Agency Tier 3 and other future emission regulations. As such, the control of lean GDI PM with wall-flow filters, referred to as gasoline particulate filter (GPF) technology, is of interest. Since lean GDI PM chemistry and morphology differ from diesel PM (where more filtration experience exists), the functionality of GPFs needs to be studied to determine the operating conditions suitable for efficient PM removal. In addition, lean GDI engine exhaust temperatures are generally higher than diesel engines which results in more continuous regeneration of the GPF and less presence of the soot cake layer common to diesel particulate filters. Since the soot layer improves filtration efficiency, this distinction is important to consider. Research on the emission control of PM from a lean GDI engine with a GPF was conducted on an engine dynamometer. PM, after dilution, was characterized with membrane filters, organic vs. elemental carbon characterization, and size distribution techniques at various steady state engine speed and load points. The engine was operated in three primary combustion modes: stoichiometric, lean homogeneous, and lean stratified. In addition, rich combustion was utilized to simulate PM from engine operation during active regeneration of lean NOx control technologies. High (>95%) PM filtration efficiencies were observed over a wide range of conditions; however, some PM was observed to slip through the GPF at high speed and load conditions. The

  13. Physical properties of particulate matter from animal houses-empirical studies to improve emission modelling.

    Science.gov (United States)

    Mostafa, Ehab; Nannen, Christoph; Henseler, Jessica; Diekmann, Bernd; Gates, Richard; Buescher, Wolfgang

    2016-06-01

    Maintaining and preserving the environment from pollutants are of utmost importance. Particulate matter (PM) is considered one of the main air pollutants. In addition to the harmful effects of PM in the environment, it has also a negative indoor impact on human and animal health. The specific forms of damage of particulate emission from livestock buildings depend on its physical properties. The physical properties of particulates from livestock facilities are largely unknown. Most studies assume the livestock particles to be spherical with a constant density which can result in biased estimations, leading to inaccurate results and errors in the calculation of particle mass concentration in livestock buildings. The physical properties of PM, including difference in density as a function of particle size and shape, can have a significant impact on the predictions of particles' behaviour. The aim of this research was to characterize the physical properties of PM from different animal houses and consequently determine PM mass concentration. The mean densities of collected PM from laying hens, dairy cows and pig barns were 1450, 1520 and 2030 kg m(-3), respectively, whilst the mass factors were 2.17 × 10(-3), 2.18 × 10(-3) and 5.36 × 10(-3) μm, respectively. The highest mass concentration was observed in pig barns generally followed by laying hen barns, and the lowest concentration was in dairy cow buildings. Results are presented in such a way that they can be used in subsequent research for simulation purposes and to form the basis for a data set of PM physical properties. PMID:26976010

  14. Assessment of impact distances for particulate matter dispersion: A stochastic approach

    Energy Technology Data Exchange (ETDEWEB)

    Godoy, S.M.; Mores, P.L.; Santa Cruz, A.S.M. [CAIMI - Centro de Aplicaciones Informaticas y Modelado en Ingenieria, Universidad Tecnologica Nacional-Facultad Regional Rosario, Zeballos 1341-S2000 BQA Rosario, Santa Fe (Argentina); Scenna, N.J. [CAIMI - Centro de Aplicaciones Informaticas y Modelado en Ingenieria, Universidad Tecnologica Nacional-Facultad Regional Rosario, Zeballos 1341-S2000 BQA Rosario, Santa Fe (Argentina); INGAR - Instituto de Desarrollo y Diseno (Fundacion ARCIEN - CONICET), Avellaneda 3657, S3002 GJC Santa Fe (Argentina)], E-mail: nscenna@santafe-conicet.gov.ar

    2009-10-15

    It is known that pollutants can be dispersed from the emission sources by the wind, or settled on the ground. Particle size, stack height, topography and meteorological conditions strongly affect particulate matter (PM) dispersion. In this work, an impact distance calculation methodology considering different particulate sizes is presented. A Gaussian-type dispersion model for PM that handles size particles larger than 0.1 {mu}m is used. The model considers primary particles and continuous emissions. PM concentration distribution at every affected geographical point defined by a grid is computed. Stochastic uncertainty caused by the natural variability of atmospheric parameters is taken into consideration in the dispersion model by applying a Monte Carlo methodology. The prototype package (STRRAP) that takes into account the stochastic behaviour of atmospheric variables, developed for risk assessment and safe distances calculation [Godoy SM, Santa Cruz ASM, Scenna NJ. STRRAP SYSTEM - A software for hazardous materials risk assessment and safe distances calculation. Reliability Engineering and System Safety 2007;92(7):847-57] is enlarged for the analysis of the PM air dispersion. STRRAP computes distances from the source to every affected receptor in each trial and generates the impact distance distribution for each particulate size. In addition, a representative impact distance value to delimit the affected area can be obtained. Fuel oil stack effluents dispersion in Rosario city is simulated as a case study. Mass concentration distributions and impact distances are computed for the range of interest in environmental air quality evaluations (PM{sub 2.5}-PM{sub 10})

  15. Concentrations and composition of aerosols and particulate matter in surface waters along the transatlantic section

    Science.gov (United States)

    Nemirovskaya, I. A.; Lisitzin, A. P.; Novigatsky, A. N.; Redzhepova, Z. U.; Dara, O. M.

    2016-07-01

    Along the transatlantic section from Ushuaia to Gdańsk (March 26-May 7, 2015; cruise 47 of R/V Akademik Ioffe), data were obtained on the concentrations of aerosols in the near-water layer of the atmosphere and of particulate matter in surface waters, as well as of organic compounds within the considered matter (Corg, chlorophyll a, lipids, and hydrocarbons). The concentrations of aerosols amounted to 1237-111 739 particles/L for the fraction of 0.3-1 μm and to 0.02-34.4 μg/m2/day for the matter collected by means of the network procedure. The distribution of aerosols is affected by circumcontinental zoning and by the fluxes from arid areas of African deserts. The maximum concentration of the treated compounds were found in the river-sea frontal area (the runoff of the Colorado River, Argentina), as well as when nearing the coasts, especially in the English Channel.

  16. Suspended particulate matter in Jiaozhou Bay:Properties and variations in response to hydrodynamics and pollution

    Institute of Scientific and Technical Information of China (English)

    YANG Shilun; YANG Hua; WANG Liang; ZHANG Wenxiang; MENG Yi; ZHANG Jing; XUE Yuanzhong; CHEN Hongtao; WEI Hao; LIU Zhe; WU Ruiming; WANG Lingxiang

    2004-01-01

    Based on water samples collected and observations of currents, tidal levels as well as turbidities taken, respectively over a period of 15 and 7 d, in southwestern Jiaozhou Bay on August, 2001, it was found that: (ⅰ) the average content of non mineral component amounted to 87% of the suspended sediment matter (SPM) in Jiaozhou Bay, much higher than in estuaries and bays where turbidity is high and mineral particulates dominates; (ⅱ) in contrast to high turbid bays, SPM was generally coarser than bed deposits and in upper water column than in lower water column in Jiaozhou Bay; (ⅲ) in fair weathers, suspended sediment concentration (SPC) varied regularly within tidal cycles and neap-spring cycles, but the regularity was deformed in storms; and (ⅳ) SPC was controlled by settling/ resuspension near the bed and by advection at the surface at the study site with a depth of 20 m, suggesting weak vertical exchanges. It was concluded that SPM property of a low turbid bay is sensitive to pollution, and that the maintenance of low turbidity in the bay depends on less SPM supply, low waves and currents, and controlling on discharge of particulate pollutants.

  17. Long-term particulate matter exposure and mortality: a review of European epidemiological studies

    Directory of Open Access Journals (Sweden)

    Boffetta Paolo

    2009-12-01

    Full Text Available Abstract Background Several studies considered the relation between long-term exposure to particulate matter (PM and total mortality, as well as mortality from cardiovascular and respiratory diseases. Our aim was to provide a comprehensive review of European epidemiological studies on the issue. Methods We searched the Medline database for epidemiological studies on air pollution and health outcomes published between January 2002 and December 2007. We also examined the reference lists of individual papers and reviews. Two independent reviewers classified the studies according to type of air pollutant, duration of exposure and health outcome considered. Among European investigations that examined long-term PM exposure we found 4 cohort studies (considering total and cardiopulmonary mortality, 1 case-control study (considering mortality from myocardial infarction, and 4 ecologic studies (2 studies considering total and cardiopulmonary mortality and 2 studies focused on cardiovascular mortality. Results Measurement indicators of PM exposure used in European studies, including PM10, PM2.5, total suspended particulate and black smoke, were heterogeneous. This notwithstanding, in all analytic studies total mortality was directly associated with long-term exposure to PM. The excesses in mortality were mainly due to cardiovascular and respiratory causes. Three out of 4 ecologic studies found significant direct associations between PM indexes and mortality. Conclusion European studies on long-term exposure to PM indicate a direct association with mortality, particularly from cardiovascular and respiratory diseases.

  18. Particulate matter regulation for two-stroke two wheelers: Necessity or haphazard legislation?

    Science.gov (United States)

    Rijkeboer, Rudolf; Bremmers, Dion; Samaras, Zissis; Ntziachristos, Leonidas

    Although interest in particulate emissions has increased considerably during recent years, the subject of particulate matter (PM) emissions from small two-stroke engines used in road vehicles is still largely unexplored. This paper presents the results of an investigation, which examined the typical emission level and the typical characteristics of two-stroke PM, as well as the possible impact on the (urban) environment, all in comparison to diesel engines. Attention was also paid to the possible problems concerning the measurement of two-stroke PM and the possibilities to add a PM requirement to the moped type approval procedure. It is demonstrated that despite the significant PM emission levels of current two wheelers, particle characteristics are different compared to diesel exhaust PM and hence following a diesel-like procedure to quantify particle emissions may not be the indicated approach. Hence, based on the experimental evidence and the foreseen technology developments, recommended steps forward are proposed, taking into account the need for efficient regulation of PM and the particularities of the specific vehicle technology.

  19. Chemical-morphological analysis and evaluation of the distribution of particulate matter in the Toluca Valley

    International Nuclear Information System (INIS)

    The breathable fraction of the suspended particles is the main pollutant in the Metropolitan Area of the Toluca Valley (ZMVT), to have the bigger number of days outside of standard, especially during the winter and low water time, its registered maximum value is of 367 IMECA points in 2004. The particles present a potential risk for the lungs, its increase the chemical reactions in the atmosphere; its reduce the visibility; its increase the possibility of the precipitation, the fog and the clouds; its reduce the solar radiation, with the changes in the environmental temperature and in the biological growth rates of those plants; and it dirties the soil matters. For that reason it is very important to characterize physicochemical and morphologically by scanning electron microscopy the particulate material of the Toluca Valley, to determine to that type of particles is potentially exposed the population before drastic scenarios of air pollution of the Toluca Valley, as well as to evaluate the distribution of the one particulate material in the ZMVT. (Author)

  20. Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress

    Directory of Open Access Journals (Sweden)

    Nel Andre E

    2009-09-01

    Full Text Available Abstract Air Pollution has been associated with significant adverse health effects leading to increased morbidity and mortality. Cumulative epidemiological and experimental data have shown that exposure to air pollutants lead to increased cardiovascular ischemic events and enhanced atherosclerosis. It appears that these associations are much stronger with the air particulate matter (PM component and that in urban areas, the smaller particles could be more pathogenic, as a result of their greater propensity to induce systemic prooxidant and proinflammatory effects. Much is still unknown about the toxicology of ambient particulates as well as the pathogenic mechanisms responsible for the induction of adverse cardiovascular health effects. It is expected that better understanding of these effects will have large implications and may lead to the formulation and implementation of new regulatory policies. Indeed, we have found that ultrafine particles ( Extensive epidemiological evidence supports the association of air pollution with adverse health effects 123. It is increasingly being recognized that such effects lead to enhanced morbidity and mortality, mostly due to exacerbation of cardiovascular diseases and predominantly those of ischemic character 4. Indeed, in addition to the classical risk factors such as serum lipids, smoking, hypertension, aging, gender, family history, physical inactivity and diet, recent data have implicated air pollution as an important additional risk factor for atherosclerosis. This has been the subject of extensive reviews 56 and a consensus statement from the American Heart Association 7. This article reviews the supporting epidemiological and animal data, possible pathogenic mechanisms and future perspectives.

  1. 40 CFR Appendix J to Part 50 - Reference Method for the Determination of Particulate Matter as PM10 in the Atmosphere

    Science.gov (United States)

    2010-07-01

    ... of Particulate Matter as PM10 in the Atmosphere J Appendix J to Part 50 Protection of Environment... STANDARDS Pt. 50, App. J Appendix J to Part 50—Reference Method for the Determination of Particulate Matter... Composition Changes in Sampling and Analysis of Organic Compounds in Aerosols. Int. J. Environ. Analyt....

  2. HC-PM COUPLING MODEL FOR PARTICULATE MATTER EMISSION OF DIESEL ENGINES

    Institute of Scientific and Technical Information of China (English)

    Tan Piqiang; Lu Jiaxiang; Deng Kangyao

    2005-01-01

    A rapid, phenomenological model that predicts particulate matter (PM) emission of diesel engines is developed and formulated. The model is a chemical equilibrium composition model, and is based on the formation mechanisms of PM and unburned hydrocarbon (HC) emissions of diesel engines. It can evaluate the emission concentration of PM via the emission concentration of HC. To validate the model, experiments are carried out in two research diesel engines. Comparisons of the model results with the experimental data show good agreement. The model can be used to evaluate the concentration of PM emission of diesel engines under lack of PM measuring instruments. In addition, the model is useful for computer simulations of diesel engines, as well as electronic control unit (ECU) designs for electronically controlled diesel engines.

  3. The distribution of soiling by coarse particulate matter in the museum environment.

    Science.gov (United States)

    Yoon, Y H; Brimblecombe, P

    2001-12-01

    Soiling measurements are needed to address strategies to control dust and determine its sources. There is no widely recognized method for dust monitoring in museums, but we used sticky samplers to collect deposited coarse particulate matter, and both manual microscopic observations and image analysis for determining soiling potential in the museum environment. We adopt fractional area covered by deposited particles as a surrogate for soiling and the covering rate (unit: s-1) as a measure of the rate of soiling. It was clear that visitor flow was a major contributor to soiling, such that soiling mechanisms in different museums could be compared after measurements were normalised on a per capita basis. The proximity of visitors to objects was another important factor with the soiling declining with distance from visitor pathways (a half-distance of about 0.5 m), which suggests soiling of objects on open display could be reduced by increasing the distance from visitors. PMID:11761598

  4. Monitoring of tobacco smoke particulate matter air pollution in the universities of Kazan city

    Directory of Open Access Journals (Sweden)

    Vasylyev, V.A.

    2011-04-01

    Full Text Available Particulate matter (PM measurements were conducted in the premises of eight universities in Kazan city. Where smoking is allowed, PM concentrations reach dangerous levels. Smoking mostly takes place in rest-rooms, hallways, corridors, and kitchens of student dormitories. In premises where nobody smokes of the buildings where smoking is not fully forbidden, PM concentrations may be dangerous even for healthy people. Smoke-free policies in university buildings do not cause compensatory smoking at the entrances. PM concentrations at the upper floors of the buildings are generally higher, which needs to be taken in to account while interpreting the results of PM measurements. Smoke-free policies must cover both university buildings and student dormitories. (Full text is in Russian

  5. Liquid chromatographic determination of benzo(a)pyrene in total particulate matter of cigarette smoke

    Energy Technology Data Exchange (ETDEWEB)

    Tomkins, B.A.; Jenkins, R.A.; Griest, W.H.; Reagan, R.R.; Holladay, S.K.

    1985-09-01

    The benzo(a)pyrene (BaP) delivery of reference and commercially available tobacco cigarettes, as well as reference and placebo marijuana cigarettes, is determined using a sequential liquid chromatographic/liquid chromatographic procedure. The total particulate matter of sample cigarette smoke is collected using a Cambridge filter pad, which is ultrasonically extracted with acetone. The resulting extract is filtered, then fractionated using semipreparative-scale normal phase liquid chromatography (LC). Quantitative determination is achieved using analytical-scale reverse phase LC equipped with a fluorescence detector. The method is precise (+/- 10-15% relative standard deviation) and yields 85% or better BaP recovery at the ng/cig. level. A single pad may be analyzed in 8 person-hours, while a more typical lot of 12 pads (6 pads each for 2 cigarette brands) may be analyzed in 10 person-days.

  6. Characterization and seasonal variations of levoglucosan in fine particulate matter in Xi'an, China.

    Science.gov (United States)

    Zhang, Ting; Cao, Jun-Ji; Chow, Judith C; Shen, Zhen-xing; Ho, Kin-Fai; Ho, Steven Sai Hang; Liu, Sui-Xin; Han, Yong-Ming; Watson, John G; Wang, Ge-Hui; Huang, Ru-Jin

    2014-11-01

    PM2.5 (particulate matter with an aerodynamic diameter levoglucosan (1,6-anhydro-beta-D-glucopyranose) to evaluate the impacts of biomass combustion on ambient concentrations. Twenty-four-hour levoglucosan concentrations displayed clear summer minima and winter maxima that ranged from 46 to 1889 ng m(-3), with an average of 428 +/- 399 ng m(-3). Besides agricultural burning, biomass/biofuel combustion for household heating with straws and branches appears to be of regional importance during the heating season in northwestern China. Good correlations (0.70 levoglucosan relative to water- soluble K+, Cl-, organic carbon (OC), elemental carbon (EC), and glyoxal. The highest levoglucosan/OC ratio of2.3% wasfound in winter, followed by autumn (1.5%). Biomass burning contributed to 5.1-43.8% of OC (with an average of 17.6 +/- 8.4%). PMID:25509553

  7. Characterization of Particulate Matter Transport across the Lung-Surfactant Barrier using Langmuir Monolayers

    Science.gov (United States)

    Eaton, Jeremy; Dennin, Michael; Levine, Alex; George, Steven

    2014-03-01

    We investigate the transport of particulate matter acros the lung using a monolayer of bovine lung surfactant tagged with NBD in conjunction with alveolar lung cells below the air-water interface. The monolaye dynamically compressed and expanded to induce phase transitions as well as buckling and folding. Polystyrene spheres ranging from 20 to 500 nm in diameter were tagged with fluorescent molecules and deposited on the monolayer. We will present results of preliminary studies of the transport of beads from the air-water surface to the lung cells through the monolayer. Characterization of the transfer will focus on differential fluorescence microscopy to distinguish uncoated beads from beads from beads coated with surfactant monolayers. The presence or absence of surfactant associated with the beads provides insight into potential transfer mechanisms and will serve as an input into models of the bead transfer. We gladly acknowledge the support of NSF grant DMR-1309402.

  8. Indoor inhalation intake fractions of fine particulate matter: Review of influencing factors

    DEFF Research Database (Denmark)

    Hodas, Natasha; Loh, Miranda; Shin, Hyeong-Moo;

    2015-01-01

    , human-specific, and pollutant-specific factors. Due to a limited availability of data characterizing these factors, however, indoor emissions and intake of PM2.5 are not commonly considered when evaluating the environmental performance of product life cycles. With the aim of addressing this barrier......, a literature review was conducted and data characterizing factors influencing iFin,total were compiled. In addition to providing data for the calculation of iFin,total in various indoor environments and for a range geographic regions, this paper discusses remaining limitations to the incorporation of PM2......Exposure to fine particulate matter (PM2.5) is a major contributor to the global human disease burden. The indoor environment is of particular importance when considering the health effects associated with PM2.5 exposures because people spend the majority of their time indoors and PM2.5 exposures...

  9. Bayesian spatio-temporal modeling of particulate matter concentrations in Peninsular Malaysia

    Science.gov (United States)

    Manga, Edna; Awang, Norhashidah

    2016-06-01

    This article presents an application of a Bayesian spatio-temporal Gaussian process (GP) model on particulate matter concentrations from Peninsular Malaysia. We analyze daily PM10 concentration levels from 35 monitoring sites in June and July 2011. The spatiotemporal model set in a Bayesian hierarchical framework allows for inclusion of informative covariates, meteorological variables and spatiotemporal interactions. Posterior density estimates of the model parameters are obtained by Markov chain Monte Carlo methods. Preliminary data analysis indicate information on PM10 levels at sites classified as industrial locations could explain part of the space time variations. We include the site-type indicator in our modeling efforts. Results of the parameter estimates for the fitted GP model show significant spatio-temporal structure and positive effect of the location-type explanatory variable. We also compute some validation criteria for the out of sample sites that show the adequacy of the model for predicting PM10 at unmonitored sites.

  10. A novel methodology for determining low-cost fine particulate matter street sweeping routes.

    Science.gov (United States)

    Blazquez, Carola A; Beghelli, Alejandra; Meneses, Veronica P

    2012-02-01

    This paper addresses the problem of low-cost PM10 (particulate matter with aerodynamic diameter arc routing problem into a node routing problem is proposed in this paper. This is accomplished by building a graph that represents the area to sweep in such a way that the problem can be solved by applying any known solution to the Traveling Salesman Problem (TSP). As a way of illustration, the proposed method was applied to the northeast area of the Municipality of Santiago (Chile). Results show that the proposed methodology achieved up to 37% savings in kilometers traveled by the sweeping vehicle when compared to the solution obtained by solving the TSP problem with Geographic Information Systems (GIS)--aware tools. PMID:22442940

  11. Multifaceted health impacts of Particulate Matter (PM and its management: An overview

    Directory of Open Access Journals (Sweden)

    Prabhat Kumar Rai

    2015-03-01

    Full Text Available Urban air quality is becoming a serious public health concern at global scale. Particulate matter (PM pollution is intimately linked with human health. Present review describes the different human health implications associated with PM pollution. PM may derive its origin from natural and anthropogenic sources. Vehicle derived pollutants as well as industrial emissions simultaneously release deleterious fine-grained PM into the atmosphere. Fine PM especially PM2.5 and PM10 are particularly deleterious to human health. Air pollution PM is an important environmental health risk factor for several respiratory and cardiovascular morbidity and mortality. Further, PM is inextricably linked with genotoxicity and mutations. Literature review of the cellular and molecular basis of adverse effects associated with PM is presented in this paper. Finally, management, existing technologies and policy options to reduce or mitigate the adverse health impacts of PM pollution is discussed as an eco-sustainable approach.

  12. Heavy metal analysis of suspended particulate matter (SPM) and other samples from some workplaces in Kenya

    International Nuclear Information System (INIS)

    Air pollution studies in Nairobi are indicating a rising trend in the particulate matter loading. The trend is mainly attributed to increased volume of motor vehicles, the physical change of the environment, agricultural and industrial activities. In this study, total suspended particulate matter sampling at the Nairobi industrial area and inside one workplace are reported. Included also are the results of analysis of water samples and effluents collected from a sugar factory, a tannery, and mercury (Hg) analysis in some beauty creams sold in Nairobi. The samples were analysed for heavy metal content using Energy Dispersive X-ray Fluorescence (EDXRF) while the suspended particulate matter (SPM) concentrations were determined by gravimetric technique. Total reflection x-ray fluorescence (TRXF), atomic absorption spectrophotometry and PIXE analytical techniques plus the use of Standard and Certified Reference Materials (SRM's and CRM's) were used for quality control, analysis and evaluation of the accrued data. Air sampling in the industrial area was done twice (Wednesday and Saturday) every week for a period of two months (November and December, 1996) and twice monthly for a period of six months (January-June 1997). Each sample covering approximately 24 hours, was collected using the 'Gent' Stacked Filter Unit (SFU), for day and night times. The SPM were found to vary from 16 to 83 mgm-3 during the sampling period. The analysis of dust collected inside a workplace showed that there was poor filtration of the air pumped into the building and that there was a need for improvement of the air conditioning unit plus reduction of emissions from a neighbouring tyre factory. Beauty creams analysed showed that there is some mercury present in significant amounts (0.14 - 3.0%). The results of these mercury levels are presented for various brands of cosmetics sold in some market outlets in Nairobi. The health implications on the presence of mercury in some of these beauty

  13. Effect of auxiliary ventilations on diesel particulate matter dispersion inside a dead-end entry

    Institute of Scientific and Technical Information of China (English)

    Zheng Yi; Thiruvengadam Magesh; Lan Hai; Tien C. Jerry

    2015-01-01

    Diesel particulate matter (DPM) is considered carcinogenic after prolonged exposure. This paper used computational fluid dynamics (CFD) method to study the effect of four auxiliary ventilation systems on DPM distribution in a dead-end entry with loading operation. The auxiliary ventilation systems con-sidered include:blower fan and tubing;exhaust fan and tubing, jet fan, and push–pull system. A species transport model with buoyancy effect was used to examine the DPM dispersion pattern with unsteady state analysis. During the 200 s of the loading operation, high DPM levels were identified in the face and dead-end entry regions. This study can be used for mining engineer as guidance to design and setup of local ventilation. It can also be used for selection of DPM control strategies and DPM annual training for underground miners.

  14. Oil-suspended particulate matter aggregates: Formation mechanism and fate in the marine environment

    Science.gov (United States)

    Loh, Andrew; Shim, Won Joon; Ha, Sung Yong; Yim, Un Hyuk

    2014-12-01

    Oil suspended particulate matter (SPM) aggregates (OSA) are naturally occurring phenomena where oil droplets and particles interact to form aggregates. This aggregation could aid cleanup processes of oil contaminated waters. When OSA is formed, it makes oil less sticky and would facilitate the dispersion of oil into the water column. Increased oil-water surface contact by OSA formation enhances biodegradation of oil. Its applicability as a natural oil clean-up mechanism has been effectively demonstrated over past decades. There are many factors affecting the formation of OSA and its stability in the natural environment that need to be understood. This review provides a current understanding of (1) types of OSA that could be formed in the natural environment; (2) controlling factors and environmental parameters for the formation of OSA; (3) environmental parameters; and (4) fate of OSA and its applicability for oil spill remediation processes.

  15. Satellite-based retrieval of particulate matter concentrations over the United Arab Emirates (UAE)

    Science.gov (United States)

    Zhao, Jun; Temimi, Marouane; Hareb, Fahad; Eibedingil, Iyasu

    2016-04-01

    In this study, an empirical algorithm was established to retrieve particulate matter (PM) concentrations (PM2.5 and PM10) using satellite-derived aerosol optical depth (AOD) over the United Arab Emirates (UAE). Validation of the proposed algorithm using ground truth data demonstrates its good accuracy. Time series of in situ measured PM concentrations between 2014 and 2015 showed high values in summer and low values in winter. Estimated and in situ measured PM concentrations were higher in 2015 than 2014. Remote sensing is an essential tool to reveal and back track the seasonality and inter-annual variations of PM concentrations and provide valuable information on the protection of human health and the response of air quality to anthropogenic activities and climate change.

  16. Hazard identification of particulate matter on vasomotor dysfunction and progression of atherosclerosis

    DEFF Research Database (Denmark)

    Møller, Peter; Mikkelsen, Lone; Vesterdal, Lise Kristine;

    2011-01-01

    The development and use of nanoparticles have alerted toxicologists and regulators to issues of safety testing. By analogy with ambient air particles, it can be expected that small doses are associated with a small increase in risk of cardiovascular diseases, possibly through oxidative stress...... and inflammatory pathways. We have assessed the effect of exposure to particulate matter on progression of atherosclerosis and vasomotor function in humans, animals, and ex vivo experimental systems. The type of particles that have been tested in these systems encompass TiO(2), carbon black, fullerene C(60...... diseases. The vasomotor dysfunction includes increased vasoconstriction as well as reduced endothelium-dependent vasodilatation; endothelium-independent vasodilatation is often unaffected indicating mainly endothelial dysfunction. Pulmonary exposure to TiO(2), carbon black, and engineered nanoparticles...

  17. Estimation on dynamic release of phosphorus from wind-induced suspended particulate matter in Lake Taihu

    Institute of Scientific and Technical Information of China (English)

    FAN; Chengxin; ZHANG; Lu; QIN; Boqiang; WANG; Sumin; HU; We

    2004-01-01

    Through man-made disturbance experiments, the corresponding relationships between suspended particulate matter (SPM) and wind speed in different lake areas were simulated, the physicochemical formal transformation and biological mineralizing and decaying processes of phosphorus in SPM were studied, the contribution of phosphorus transformation to phosphorus loading of the water of Lake Taihu was quantitatively estimated. The results show SPM in physicochemical transformed to soluble reactive phosphorus (SRP), and the contribution of the total external loading of Lake Taihu, namely 4.7-7.5 times as much as SRP loading entering the lake by the rivers; thus it is the important source in dynamical internal loading of the lake. The determining factors for dynamical internal loading in lakes are organic phosphorus content in suspended solid and its biological transition availability.

  18. Simulation of the transport of suspended particulate matter in the Rio de la Plata

    Energy Technology Data Exchange (ETDEWEB)

    Hausstein, H.

    2008-11-06

    Numerical simulations of the transport of Suspended Particulate Matter in the Rio de la Plata estuary were performed with a three dimensional model for coastal waters driven by wave sand currents. Aturbulence based flocculation approach is implemented to the model. The model is for the first time applied under heavy conditions, since the Rio de la Plata has discharges up to 25000 m{sup 3}/s and SPM concentrations up to 300-400 mg/l. Such concentrations are also difficult to compute from satellite measurements. SeaWiFs satellite images served for the validation of the model results. The model is able to reproduce the shape and the position of the front as well as the zone of the turbidity maximum. It also identifies the zones of erosion and deposition which is of significant importance because of the dense ship traffic along the navigational channels towards Buenos Aires and the cities upstream the rivers. (orig.)

  19. Physicochemical factors and sources of particulate matter at residential urban environment in Kuala Lumpur.

    Science.gov (United States)

    Khan, Firoz; Latif, Mohd Talib; Juneng, Liew; Amil, Norhaniza; Mohd Nadzir, Mohd Shahrul; Syedul Hoque, Hossain Mohammed

    2015-08-01

    Long-term measurements (2004-2011) of PM10 (particulate matter with an aerodynamic diameter Kuala Lumpur urban environment. An advanced principal component analysis (PCA) technique coupled with absolute principal component scores (APCS) and multiple linear regression (MLR) has been applied. The average annual concentration of PM10 for 8 yr is 51.3 ± 25.8 μg m⁻³, which exceeds the Recommended Malaysian Air Quality Guideline (RMAQG) and international guideline values. Detail analysis shows the dependency of PM10 on the linear changes of the motor vehicles in use and the amount of biomass burning, particularly from Sumatra, Indonesia, during southwesterly monsoon. The main sources of PM10 identified by PCA-APCS-MLR are traffic combustion (28%), ozone coupled with meteorological factors (20%), and wind-blown particles (1%). However, the apportionment procedure left 28.0 μg m⁻³, that is, 51% of PM10 undetermined.

  20. Cocaine and other illicit drugs in airborne particulates in urban environments: A reflection of social conduct and population size

    Energy Technology Data Exchange (ETDEWEB)

    Viana, M., E-mail: mar.viana@idaea.csic.es [Institute for Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona (Spain); Postigo, C., E-mail: cprqam@cid.csic.es [Institute for Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona (Spain); Querol, X., E-mail: xavier.querol@idaea.csic.es [Institute for Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona (Spain); Alastuey, A., E-mail: andres.alastuey@idaea.csic.es [Institute for Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona (Spain); Lopez de Alda, M.J., E-mail: mlaqam@cid.csic.es [Institute for Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona (Spain); Barcelo, D., E-mail: dbcqam@cid.csic.es [Institute for Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona (Spain); King Saud University, Box 2454, Riyadh 11451 (Saudi Arabia); Artinano, B., E-mail: b.artinano@ciemat.es [Centre for Energy, Environment and Technology Research (CIEMAT), Av. Complutense 22, 28040 Madrid (Spain); Lopez-Mahia, P., E-mail: purmahia@udc.es [Department of Analytical Chemistry, University of A Coruna, Campus A Zapateira, 15071 A Coruna (Spain); Garcia Gacio, D., E-mail: dgarcia@udc.es [Department of Analytical Chemistry, University of A Coruna, Campus A Zapateira, 15071 A Coruna (Spain); Cots, N., E-mail: nuria.cots@gencat.ca [Department of the Environment, Catalonia Regional Government, Av. Diagonal 525, 08193 Barcelona (Spain)

    2011-05-15

    Levels of cocaine and other psychoactive substances in atmospheric particulate matter (PM) were determined in urban environments representing distinct social behaviours with regard to drug abuse: night-life, university and residential areas. Three cities (with population >1 million and <0.3 million inhabitants) were selected. Mean daily levels of drugs in PM were 11-336 pg/m{sup 3} for cocaine, 23-34 pg/m{sup 3} for cannabinoids, and 5-90 pg/m{sup 3} for heroin. The highest levels were recorded on weekends, with factors with respect to weekdays of 1-3 for cocaine, 1-2 for cannabinoids and 1.1-1.7 for heroin. Higher levels were detected in the night-life areas, pointing towards consumption and trafficking as major emission sources, and possibly ruling out drug manufacture. The similarities in temporal trends at all sites suggested a city-scale transport of psychoactive substances. Correlations were detected between cocaine and amphetamine consumption (r{sup 2} = 0.98), and between heroin and cannabinoids (r{sup 2}>0.82). - Highlights: > Cocaine, heroin, cannabis and related illicit drugs are found in detectable amounts in urban air. > Illicit drug consumption and small-scale trafficking are the major emission sources. > Illicit drugs remain in atmospheric particles and are transported across cities during at least 5 days. > Levels of illicit drugs increase from residential to night-life areas, and maximise on weekends. > Correlations between illicit drugs were detected, suggesting differences in consumer groups. - The presence of illicit drugs in atmospheric particles can be used to track illicit drug abuse.